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Abstract

The effect of an applied electric potential on the dynamics of bubble formation from a

single nozzle was studied experimentally Bubbling of dry nitrogen into glycerol through a nozzle

having an electrified tip was examined by pressure measurements upstream of the nozzle As the

applied electric potential is increased from zero, the bubble size is reduced and the bubbling

frequency is increased It has been found that, at constant flow rate, bubble-formation dynamics

exhibit the classic signs of a period-doubling bifurcation to chaos with increasing applied

potential The behavior is similar to that for increasing flow rate of the well-studied dripping

faucet and of bubble formation in liquids A three-dimensional bifurcation map was determined

as a function of gas flow rate and electrostatic potential The data indicate that although

bifurcation route is similar for applied voltage and flow, the effect on bubbling for applied

voltage IS significantly smaller than that for flow as measured by dimensionless variables

Electrostatic potential was successfully harnessed as the manipulated variable to track a set-point

of a constant average bubbling frequency with disturbances dues to flow-rate It was found that an

increase/decrease m electrostatic potential can be used to compensate a 50% change in the flow

rate A control scheme suggested by Ott, Grebogi and Yorke was implemented to tame the chaos

of bubbles with partial success Software tools namely the Bubble Toolbox for Chaotic Analysis

and the Automation Workbench for LabView were developed m conjunction with this

experiment
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Chapter 1

Introduction

In all chaos there is a cosmos, m all disorder a secret order

Carl Jung

Effervescence and bubbling have always been thought of as one of the simple

phenomena, which make life interesting to look at But beneath this innocuous visage lies a

system so complex that the last decade has produced a flurry of papers investigating the interplay

of bubbles From numerical modeling of bubbles to studying the effect of sounds of bubble

formation, numerous research thrusts have been made to try and capture this phenomenon m its

entirety Control of bubbles is one such aspect Several attempts have been made to control

bubbles, to tame them from a spectrum of sizes to a single file of pearls But till date no

successful attempts have been reported not only because of the spatio-temporal behavior, but also

the sensitivity of the bubbling experiments to external noise Yet it is the same simplicity of the

experimental arrangements with bubbling experiments, which have made chaotic analysis
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through bubbles a favorite It is certainly easier to study chaos in a bubble column than to

simulate it m earthquakes'

This research was carried out with two objectives

1  To identify a new control variable for bubbling

2  To tame chaos in bubbling by using the new control variable

These were two disjoint research directions The first involved understanding the bubbling from

the fluid mechanics point of view and studying the dynamics associated with the system Once

the system was quantified m terms of bubbling regimes and dimensionless numbers, the next step

was to integrate the system information with control equations and set-up a schemes to implement

the control The latter phase of implementing the control algorithm was the most challenging

And It IS this phase, where previous experience had showed, maximum investment was to be

made

Data acquisition and automation techniques were employed to generate large volumes of

data for study For the characterization studies of the bubble system, data analysis tools were built

for data mining from the experimental data sets Development of data analysis tools spurred study

of statistical techniques like principal component analysis and wavelets to the bubbling data

Finally, to employ the control algorithm, real time computing modules were built for online

analytical processing and simultaneous control All of the software tools built for this experiment

were m conjunction with Oak Ridge National Laboratory (ORNL) and are available through

ORNL for evaluation The reader is encouraged to contact the Duane D Bruns research group at

the University of Tennessee, Knoxville for an evaluation copy of the BUBBLE Toolbox for

Chaotic Analysis© (Samobat, 2000) and the BUBBLE Automation Workbench© (Samobat,

2000) along with sample data for research purposes
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This research project has been documented in three parts, one as a part of this Master's

thesis, a second as research papers submitted at the University of Tennessee, Knoxville and third

as software releases through Oak Ridge National Laboratory

In the present thesis, the first chapter gives an introduction to the overall project. The

second chapter updates the reader with concepts from research m bubbles and chaos control The

third chapter describes the experimental and data analysis techniques used. The fourth chapter

presents the results and analysis from the identification of the bubbling system The fifth chapter

has results from the attempt to control chaos by using a well-known control algorithm The sixth

and final chapter details the conclusions and recommendations



Chapter 2

Background

The world that we have created thus far creates problems which cannot be solved at the same level we

created them

Albert Einstem

2.7 Electrostatic potential as an additional bifurcation

variable

Though a seemingly simplistic phenomenon, bubbling involves complex interactions

between the gas and the liquid m play The production of bubbles by various means is used m a

plethora of technical applications, especially m the chemical and environmental engineering

fields Water treatment, metallurgy, froth flotation, fermentation, fluidization, and distillation are

some widespread examples Efficient gas-liquid processes introduce the gas m the form of small

bubbles, since the greater mterfacial area increases interphase heat and mass transfer In an ideal
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gas-liquid system, the bubbles are uniformly sized for even and predictable process performance,

however, m reality, gas-liquid systems generally have a broad bubble-size distribution and

complex dynamics (Kikuchi & co-workers, 1997, Femat 1998, Luewisutthichat & co-workers,

1997)

Bubble formation m a liquid from a submerged orifice has been the subject of numerous

scientific studies, primarily aimed at theoretical prediction and experimental measurement and

correlation of bubble size for prediction of mterfacial area (Deshpande & co-workers, 1991,

Terasaka & co-workers, 1992, Tsuge, 1986, Longuet-Higgms, 1991) Notable among these

works IS the development of an understanding that bubble size and bubbling frequency is

influenced m a complex way on the interactions between consecutively formed bubbles At low

gas flow rates, bubbling is regular and periodic, while at increasing flow rates bubble formation

becomes irregular In their classic paper, Davidson and Schuler (1960) were perhaps the first to

illustrate, through high-speed photography, the interaction between leading and trailing bubbles

that leads to coalescence at higher flow rates Subsequently, several investigators have identified

different regimes of bubbling, defined by dimensionless groups and characterized by different

amounts of interactions between forming bubbles (Miyahara & co-workers, 1984, Tsuge & co-

workers 1986) Models for the prediction of bubble volumes have been developed that

incorporate the interaction between a primary bubble and subsequent bubbles at higher gas flow

rates (Deshpande & co-workers, 1991)

With the availability of the advanced experimental equipment and the advent of the

science of nonlinear dynamics, progress has been made recently m the understanding of

bubbling Leighton and co-workers (1990) illustrated the complex hydrodynamic phenomena
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present m bubbling through both high-speed imaging and acoustic signatures Chaos in bubbling

patterns was first reported by Tritton and Edgell (1993), who reported a period-doubling

bifurcation with gas flow rate in bubbling of air from a single submerged orifice into water-

glycerol mixtures Mittoni and coworkers (1994), reported deterministic chaos m a similar system

under a range of conditions by varying chamber volume, injection nozzle diameter, liquid

viscosity and gas flow-rate Similar results were obtained for bubbles by Tufaile & Sartorelli

(2000) Nguyen and co-workers (1996), have demonstrated the spatio-temporal behavior of

bubbles in single train of rising gas bubbles m a liquid column

In the above studies, chaotic bubbling was studied primarily with flow rate as the

bifurcation variable Significant effects of external forces on bubbling, such as pulsing a flowing

liquid (Fawkner and co-workers, 1988), and application of sound perturbations (Cheng, 1996,

Tufaile & Sartorelli, 2000) have been demonstrated Most notably, Tufaile & Sartorelli (2000)

reported the capability to transform a chaotic bubbling state to a periodic state by the application

of a synchronized sound wave

The aim of the present study is to explore whether an applied electrostatic potential can

be used as an additional bifurcation variable m bubbling dynamics If successful, then

electrostatic potential can be employed for control

Zaky and Nossier (1977) first reported the effect of an electric field on bubbling, noting a

decrease in bubble size and an increase m pressure upstream of the nozzle with increasing

voltage for bubbling of air into transformer oil and n-heptane through an electrified needle

Further studies by Ogata et al (1979, 1985) and Sato et al (1979, 1980) showed that by the

application of a few kilovolts, bubble size can be reduced from a few mm to less than ICQ pm m
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many liquids, including nonpolar fluids like cyclohexane and polar compounds such as ethanol

and distilled water Sato and coworkers (1993) reported similar results for liquid-liquid systems

m which the time scale of electrical charge relaxation (i e, permittivity/conductivity) of the

injected fluid is greater than that of the continuous fluid This type of dispersion has been termed

"inverse electrostatic spraying" (Tsouris et al 1998) to differentiate it from the well studied

"normal" electrostatic spraying (Grace and Manjmssen 1994) Several practical applications have

been suggested for this type of spraying, including generating fine bubbles for flow tracers (Sato

et al 1980), enhancing gas-liquid reactions (Tsouris et al 1995), and producing uniform

microcapsules (Sato et al 1996)

Two mam controlling mechanisms have been identified - electric stress and

electrohydrodynamic flows The electric stress acts directly at the gas-liquid interface of growing

bubbles and is directed inward (Tsouris et al 1994, Hams and Basaran 1995) This force is

manifested by an increase m nozzle pressure with an increase m applied voltage Above a critical

voltage whose magnitude depends on nozzle geometry, electrohydrodynamic flows are induced

m the bulk fluid (Sato et al 1980, 1993, 1997) These toroidal flows have a significant velocity

near the injection nozzle and are directed outward from the points of highest field gradient. Under

conditions of electrohydrodynamic flow, a significant decrease m nozzle pressure is exhibited

with increasing voltage (Tsouris et al 1998) The dynamics of electrified bubbling are

complicated by the interactions of these mechanisms Sato (1980) described three regimes of

bubbling periodic bubbling, dispersed bubble production, and a high-voltage region

characterized by sparking and larger bubble production Similarly, Shin et al (1997) outlined

three bubbling modes - dripping, an erratic mixed mode, and a spraying mode These modes

were roughly characterized by flow rate using a Reynolds number, and by a combination of
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electrical forces and buoyancy forces using a modified Weber number To date, no detailed

study of the dynamics of electrified bubbling has been conducted, for example, it has not been

verified that the regimes characterized as periodic are truly periodic, nor are there any detailed

analyses and/or means of prediction of the transitions from periodic bubbling Beyond its

intrinsic scientific value, such information would be highly valuable m guiding the production of

monodispersed droplets/bubbles

In the present study, the effect of an applied electrostatic potential on bubbling dynamics

was determined experimentally In these experiments, bubbles were formed m a sufficiently

VISCOUS liquid (glycerol) such that electro-hydrodynamic flows were negligible and the mam

electrostatic mechanism affecting bubbling was the electric stress at the gas-liquid interfaces of

the forming bubbles Deterministic chaos analysis was applied to signals of the temporal

fluctuation of pressure m the injection nozzle during bubbling under controlled experimental

conditions to probe the combined effect of flow rate and applied voltage on bubble formation

dynamics

2.2 Chaos & feedback control

Identification of electrostatic potential as an additional bifurcation variable provided the

basis for further investigation into control of bubbling processes using electrostatic potential as

the additional control variable Study of chaos and understanding the chaotic patterns involved is

necessary for implementing control on the bubbling process

Since the classic paper by Ott, Grebogi and Yorke, (1990) controlling chaos in physical
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systems has been investigated by many researchers (Ditto & co-workers, 1990,1995, Hunt, 1991,

Roy et al, 1992, Garfinkel & co-workers, 1992, Rollins & co-workers, 1993, Petrov & co-

workers, 1993) This section begins with an introduction to concepts of chaos, and then proceeds

to develop the Ott, Grebogi and Yorke, (OGY) control algorithm for a 2-dimensional system

(Ditto & co-workers, 1990) A development for multi-variate OGY control is also presented

2.2.1 Concepts of chaos

Dynamical systems can be represented by equations of motion, which can be written as

x = F{x,p,t) (1)

for continuous systems and

x = F{x,p,n) (2)

for discrete systems In these equations, we have x e 91^, which are state variables, e 91^'',

which are system parameters, and F{ ), which is a set of N equations describing the behavior of

the system The solution to equation for continuous systems moves in a iV -dimensional space

called the phase space and is usually solved numerically The basis of this space is given by the

state variables x, i e the location of the state of the system is determined by taking all the state

variables as orthogonal coordinates m the phase space The system starts out at a certain initial

condition Xp = x{f = O) m space From the initial condition, dynamical systems trace smooth

trajectories in phase space as they proceed in time The shape m phase space that the trajectory

approaches as ^ > oo is called the attractor of the system For periodic motions these
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trajectories are loops that are traced repeatedly with every period of the system

Chaos can be termed as the superposition of a very large number of unstable periodic

motions A chaotic motion may dwell for a brief time on a motion that is very nearly periodic and

then may change to another motion that is periodic with a period that is perhaps five times that of

the original motion and so on The constant evolution from one (unstable) periodic motion to

another produces a long-term impression of randomness, while showing short-term glimpses of

order (Ditto et al, 1995)

Sensitivity to initial conditions is a hallmark of a chaotic systems For a chaotic system,

there are a very large number of trajectories corresponding to each unstable periodic motion,

which pass close together A small perturbation can shift the system from one trajectory to

another Thus for small changes m the initial state, the subsequent behavior of a chaotic system

can appear to be very different

The phase space trajectories contain all the information necessary to predict the future

dynamics of the system But phase space plots can be complicated and Pomcare sections of phase

space plots, which are obtained by cutting through the phase space with a plane, are used for

simplification (figure 2.1) The infinite numbers of points in the phase space are thus reduced

and the information contained is more manageable The number of points m the Pomcare section

reveals the underlying periodicity of the system Usually any periodic system of period n has a

section, which consists of a finite set of n distinct points, which reflect the fundamental

periodicity of the system However for chaotic systems, the superposition of infinite number of

periodic motions causes infinite number of points m the section

In general the evolution of a chaotic system converges to an extended geometric structure
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(the chaotic attractor), which is an infinitely long path (implying that it is not periodic motion),

but at the same time does not completely fill up the state space, (implying non-random behavior,

because a truly random system will have trajectories, which cover the entire volume of phase

space available to the system)

In order to control chaos according to the OGY scheme it is only necessary to identify an

unstable periodic point m the attractor, to characterize the shape of the attractor locally around

that point and to determine the response of the attractor at that point to an external stimulus

The OGY scheme can replace the Poincare section by a delay coordinate embedding

This embedding depends on the recognition that information obtained by measuring all the

system variables (position and momenta) at one given time may also be obtained by only one

system variable obtained at several subsequent times This system state vector (the set of all the

positions and momenta, x„ = ) is replaced by a delay

coordinate vector, (x' (t„ ), x' (t,, - At), x' (t„ - 2At),x' (t,, - 3 At),. . ..), where the superscript I

indicates on a particular experimental measurable and where A^is some appropriately chosen

delay In other words the dynamics m full space can be reconstructed from measurements of just

one time dependent variable and this time dependent variable carries sufficient information about

all the others For an N degree of freedom system with time series x(?), the signals are plotted

versus the delayed or advanced signals by a fixed time constant The time series generates a

trajectory p(t) m N dimensional space

p(t) = {x(t), x(t + At), x(t + 2At),..., x(t + mAt)} (3)

where m is the embedding dimension and k is the time delay or time lag According to Takens'
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theorem the rule of thumb for selecting time delay of lag involves satisfying the following

criteria m>2d + \, where d is the actual dimension of the attractor (Takens, 1981) The choice

of m and Af are not crucial except to avoid a natural period of the system

The OGY control scheme requires the attractor to be characterized and an unstable fixed

point on the Poincare section identified, about which control is desired Then the motion of the

point representing the current system state along the stable and unstable directions is identified

The stable and unstable directions on the map are the directions m the neighborhood of the

unstable fixed point, m which the current system state is seen to approach and depart to the

neighborhood of the fixed point These two directions form a saddle around the unstable point

These directions {eigenvectors), along with the speed (the eigenvalues), with which the points

approach the fixed point (or depart from the fixed point), characterize the shape of the attractor

locally around the fixed point The OGY control algorithm uses this property of chaotic systems

to identify the direction in which control is implemented These eigenvectors manifest themselves

as stable and unstable manifolds on the time return map, which is a low dimension projection of a

time delay embedding On the time return map, the unstable manifold lies along the tangent to the

chaotic attractor evaluated at the location of the fixed point

2.2.2 OGY control

The OGY method waits for the system to land close to the desired fixed point Once the

system is close to the fixed point, the control algorithm perturbs a parameter p such that the next

iteration falls onto the stable manifold of the unperturbed system (figure 2.2) The system
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(a) The system lands
close enough to the
fixed point so that lin
earization is valid.

(b) The next system
state x„+,(Ap) de
pends Hnearly on Ap,
and intersects with

the stable manifold.

(c) To find the p<m)t
on the stable man

ifold, we mist find
the vector on the

x„+i (Ap)-line that is
perpendicular to fi,.

Figure 2.2. OGY control algorithm

(Source: Van Goor,1998)
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dynamics will then naturally draw the system closer to the fixed point. The derivation of the

OGY algorithm is as follows The algorithm is based on the linearization of the system close to

the location of the fixed point, where the linearization is assumed to be valid. This is a reasonable

assumption as the fixed point maps to itself The linear dynamics can be expressed as

^,,+1 - (P) = iP)) (4)

where M e is the mapping matrix The mapping matrix M is characterized by its

eigenvectors and eigenvalues

(5)
Me. = le. ^ ^

where the subscripts u and s correspond to the unstable and stable directions respectively The

eigenvectors are normalized but may be non-orthogonal The eigenvalues satisfy the

condition, || < ||

Let us consider the space to be two-dimensional For a two-dimensional map,

orx^=[xi Xj] (6)X -

X,

.^2,

In this two-dimensional space there is a map that depends on a parameter p .

^,,.1 = f(x„,P ) (7)

The fixed point for this map is also a function of the parameter p

= f[^F,P ) (8)
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Thus if the parameter is changed every iteration the fixed point also changes

Xr{Pn) = f{xFiPn\p) (9)

The shift vector s for the estimation of the perturbed fixed point is given by

0?,,^,) ~ {p„ ) + - p„ )s,

dp p„^,-p,.

In the vicinity of the fixed point, the map can be represented by a two dimensional square matrix

for two-dimensional space

^,,+1 +M{x„ -Xj^)

If the current state is state of the system after the next iteration depends on the value of the

nominal parameter p^, and the perturbation Apwe apply to it To find an equation for , we

have,

^,,+1 = (Po + Ap) + M(x„ - Xp {p„ + t.p)) (12)

Expanding this into a first order Taylor series, we find

=Xr{Po + ̂p) + s^p + M{x„-Xp{p^)-s^p))

The current state of the system is shown in figure 2 2(a) Equation (13) is shown as a red line m

figure 2 2(b) To force the system towards the fixed point, state should be on the stable manifold

To express this condition mathematically, a change of basis is required with the new basis

vectors, and defined normal to the unstable and stable manifolds respectively In the new co-
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ordmate system, ~Xp)has to be orthogonal to the basis vector /„, (which is in turn

orthogonal to the stable direction )

This can be expressed as

fu (x„^i-Xp) = 0 (14)

The vectors and can be shown to be the left eigen vectors of M, and are defined as

(15)

The left and the right eigenvectors are related through the relation

= k (16)
fs

By replacing (x„^, -Xp) we get

0 = fjM{x„ - Xp (p) - sAp) + ffsAp (17)

By replacing M with its eigenvectors

0 = {x„ - Xp (p) - sAp) + fJsAp (18)

Solving for Ap and substituting Ax„ =x„-Xp (p), we get the OGY formula

^,,-1 fjs
,  "/'V, "-cAx„ (19)
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Comments

The OGY control algorithm is basically a Imear model, and it does two things

1  If the point IS on the stable manifold, no action is taken

2  If the point is not on the stable manifold, it tries to push it onto the stable manifold

If the final formula is analyzed, it can be explained as the product of a gam, and a ratio of

the current direction Ax, of the system to a base case, s On the numerator, the factor

fj Ax gives the component of the system along the unstable direction If the system is orthogonal

to the unstable eigenvector and is along the stable eigenvector (assuming a 2-dimension space),

and It will map to the fixed point and requires no external perturbation (dot product of orthogonal

vectors is zero) After the point proceeds to the unstable direction the control output tries to force

It onto the stable manifold and this is possible near the fixed point where the system is at its linear

best As the system goes away from the fixed point, the dot product increases and control output

IS maximum when the system moves along the unstable manifold trying to force it onto the stable

manifold

The basic assumption of linearity m the OGY control algorithm is that the eigenspace

does not change for the system m vicinity of the fixed point With a small perturbation m the

fixed-point location, the stable and unstable manifolds change to orient themselves such that the

eigenspace remains the same This is true for linear systems only, but can be extended to non

linear systems when the change m the eigenspace is not large

Equation (19) allows for only one system parameter to be controlled because the equation

(12) has only one degree of freedom as shown in figure 2 2 The univariate OGY is based on
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finding an intersection between the equation for the system state and the stable manifold For

univariate OGY to succeed, there cannot be more than one unstable direction as the control

algorithm adjusts the placement of the saddle fixed point through small perturbations of the

control variable Thus, the number of independent control variables needed should be equal to the

number of unstable directions For multi-dimensional spaces, a multi-dimensional return map is

plotted and information is extracted for multi-variate control

Multi parameter OGY

The development of the multivariate OGY control algorithm has been presented by Van Goor,

(1998)

Rewriting equation for the system state,

^,.+1 - iP) = - Xp {p„ + Ap)) (20)

where we now have a TV-dimensional system with iV„ unstable directions and stable

directions, (A^ = -I- A^„) In this equation, Ap e and S e is defined as

S =
dXp dxp

dp, dp,
(21)

Thus we have

MS)Ap (22)

If IS to be on the stable manifold, then can be expressed as a linear combinations of the
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Stable eigenvectors of M

x = V^a (23)

where e and or G 91^'

Equating we have, ,

V^a - Mx„ +(S - MS)Ap (24)

Rearranging,

JAx,=[(,S-JS) V,]
Ap

-a

(25)
— a

Solving for

= [(5-JS) (26)
Ap

-a

Here only the first elements of the left hand matrix need to be calculated Ax„ is multiplied

with a fixed N^xN matrix to obtain the needed parameter perturbations to drive the system

into the stable manifold

2.3 Summary

In this section, the literature survey for bubbling systems was presented It was noticed

that chaos m bubbles has been observed only m the past decade and that attempts to control

bubbling concentrated on using flow-rate as the manipulated variable The effect of electrostatic
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potential on bubble/droplet formation has also been reported to be profound, both in terms of the

bubble size and frequency An introduction to chaos and development of a control scheme

suggested by Ott, Grebogi & Yorke (1990), has been presented
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Methods

Perfect logic and faultless deduction make a pleasant theoretical structure, hut it may be right or wrong,

The experimenter is the only one to decide, and he is always right

L Bnlloum, Scientific Uncertainity and Information, 1964

3.1. Experimental

3.1.1. Introduction

This beauty of this experimental set-up was its pristine simplicity Ail it consisted of was

a single gas tram, which culminated in a pearly column of bubbles It is indeed fascinating to

venture into the dynamics of a system as simple and discover and analyze details and patterns so

complex Not only were the results intriguing, the whole ordeal of obtaining the data soon

became one of the riveting highlights of this experiment with The BUBBLE Automation

WorkBench © (Sarnobat, 2000) for LabView ™ and The BUBBLE Chaotic Analysis Toolbox ©

(Sarnobat, 2000) for MATLAB ™ Screen shots have been provided m the appendix
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3.1.2. Set-up Details

A schematic of the experimental apparatus is shown m the figure 3.1 The

apparatus consisted of a gas flow and metering system, a data acquisition system, a pressure

transducer for monitoring the response of the system and a high voltage power

supply for maintaining an electrostatic field between the nozzle and the ground electrode The

high voltage power supply used was Bertan series 225, 0-50kV, regulated high voltage power

supply, with remote analog high voltage programming, and remote analog high voltage & current

monitoring, via a rear panel connector The high voltage power supply was interfaced with a PC-

based controller through a data acquisition board and, controlled and monitored remotely A high

voltage 'rippler'* was built m-house to add a +/- 450 V DC ripple to the output generated by the

high voltage power supply This component was built because of the slow response time (l-4s) of

the high voltage power supply to step from high voltage to low voltage The 'rippler' could

respond to eontrol moves at 500Hz

3.1.2.1. The glass column

A square glass column of 4x4 cm cross-section and 28 cm m height was constructed The top of

the glass column was sealed with a rubber gasket and plexiglass cover fitting with a fitting for

attaching an outlet tube The plexiglass cover was also fitted with a ground electrode through a

1/8-mch Swagelok fitting The ground electrode was maintained at a depth of 2 5 em m the

glycerin The value was determined by carrying out various trials with different the electrode

' The author acknowledges the creativity of Boyce O Griffith who was instrumental in the voltage 'rippler' being

constructed
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Figure 3.1. Experimental schematic:

(1) High voltage power supply (2) Ground electrode (3) Positive electrode (4) Drain valve (5)

Stop valve (6) Pressure transducer (7) Needle valve (8) Flow meter (9) Piezo-electric valve (10)

Rotameter (11) Pressure reducer (12) Pressure regulator (13) Nitrogen gas cylinder (14) Data

acquisition system



Chapter 3 Methods 25

inserted at different depths It was found that for the trials with a greater surface area of the

electrode exposed, the current through the liquid was higher, than it was when a lesser length of

the electrode was inserted into the liquid As a result of the greater current passing through the

liquid, the power supply tripped at a lower voltage, thus reducing the range through which the

voltage could be varied With the selected length of the electrode, the power supply could be set

to up to 13kV before the current exceeded the hardware limit of 0 3 mA

Gas was injected into the column through a plastic nozzle with a metal cap orifice, which

was electrified with the help of a copper wire passing through the plastic nozzle The construction

of the nozzle is discussed m further detail later in this section A liquid solution consisting of

99 98% pure glycerin was normally maintained at 8 5 inches above the nozzle

3.1.2.2. Gas flow and metering system

The type of gas used was chosen so as not to react with the liquid Nitrogen was found to

be satisfactory did not contain significant amounts of moisture. Normal compressed air was not

chosen because of the possibility of the liquid absorbing moisture from air, which would then

change the conductive properties of liquid Nitrogen was preferred over dry air because of its

property of inertness The liquid was found to be highly sensitive to moisture and so the column

was always kept covered The gas train used m the characterization experiments, consisted of a

pressure regulator, a rotameter, a piezo-electnc valve, a flow-meter, a flow control needle valve, a

pressure transducer and a stop valve, which were all connected m series A Brooks' model SHOR-

RATE II of tube number R-2-15-D rotameter (6 inch) with stainless steel floats was used for

measuring the gas flow rates covering a range of 10-500 cc/min Since throttling at the control
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valve tends to minimize fluctuations m the gas flow-rate upstream of pressure transducer, a fine

NUPPO type needle valve located downstream of the rotameter was used to improve gas flow

measurement The key reason for using this needle was to keep the stability of the gas flow

constant over the range of investigated flow rates and to minimize the volume between the valve

and the nozzle Without this valve variation of airflow was found at the rotameter due to bubble

formation and also the detachment at the nozzle or the damping effect of the gas holdup section

For latter part of the experiments, this was replaced with a MaxTek MV-112 piezo-electric valve

with a response time of the 70 microseconds This valve was interfaced with the DAQ card and

accepted a 0-5V, DC A Cole-Parmer 8168 gas flow meter was used to return the flow rate of

both as a digital display signal as well as a 0-5V DC output

The gas inlet nozzle was equipped with a 0 75-mm internal diameter orifice, which was

electrified by a copper wire passing through the nozzle An elbow in the gas inlet tube prevented

liquid buildup m the gas inlet line and residual liquid build-up could be drained periodically using

a dram valve Failure to remove these residual liquids resulted m erratic "burping" of the gas as

the bubbles formed at the tip of the nozzle

A pressure transducer (Setra Systems model 228,havmg a range from 0 to Ipsig)

measured the inlet line gas pressure just before the stop valve The output from the pressure

transducer was a 0-5 V DC analog signal, which was fed to the data acquisition board through a

signal amplifier, which was set at lOx amplification The drawback of this transducer was its

relatively high time lag (1-3 ms) For latter control part of the experiments, an Endevco piezo

electric pressure transducer (range of Ipsig), was used for high accuracy and lower response time

(70 micro-seconds) The signal was fed to a National Instruments' SC-2043-SG signal

conditioning card, which provided the necessary excitation and was later fed to the data
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acquisition card

3.1.2.3. Liquid selection

Some researchers have shown that the bubbling systems can exhibit chaotic behavior by

using low concentrations of glycerin and liquids other than glycerin Chakka (1994), investigated

the influence of liquid density and viscosity on the dynamics of bubble behavior The results from

this experiment suggested that glycerin exhibited the most regular behavior and the clearest

apparent bifurcation sequence among three liquids, which were studied (i e glycerin, karo syrup

and water) Apart from these factors, experiments conducted with electrostatic fields suggested

that only glycerin allowed very high voltages to be applied without appreciable current passing

through the liquid Glycerin with an assay of 99 98% (Fisher Chemicals) was chosen The high

voltage power supply used m the experiment allowed a maximum of 0 3mA of current, before the

supply tripped By adjusting the length of the ground electrode immersed m the glycerin, the

power supply could withstand a maximum voltage up to 13kV, before the current exceeded the

limit and the power supply tripped

Glycerin was found to be highly sensitive to moisture m the atmosphere It was also

observed that the conductivity of glycerin increased with time, as electric voltage was applied to

the liquid For consistent experimental conditions, fresh glycerin was used for each run, a run

being defined as data taken at a constant flow rate, by changing the applied voltage m increments

of lOOOV from OV to lOOOOV, with time intervals of 300s between successive readings, a reading

being defined as a snapshot of data being taken for a certain length of time at a constant flow-rate

and voltage
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3.1.2.4.Data acquisition system

The data acquisition system consisted of a National Instruments'™ PCI-MIO-16E-50 data

acquisition board, (DAQ board) was used with a Pentium'^'^ based PC National Instruments'™

Labview™ ver 5 1 was used as the data acquisition software The DAQ board was configured for

differential analog inputs (namely, pressure, current, voltage, output voltage monitor, flow), and

differential analog outputs (namely, voltage output to the power supply, piezo-electric valve) The

data was taken for 50s at 2000Hz or 5000 Hz, totaling either 100,000 or 250,000 data samples for

each reading For each flow-rate, 11 different voltage settings were used The data was stored was

spreadsheet files which was automatically loaded into MATLAB™ for data processing The

experiment was successfully automated through networking of two computers, with one computer

handling the data acquisition and the other computer doing the data analysis as soon as the run

was completed Two separate configurations one each for the simple data acquisition runs and the

real time simultaneous AI/AO were used For the control aspect of the experiment, a LabView

vi^ was configured for simultaneous analog input and analog output from 125 Hz to 500 Hz This

aspect of the experiment has been described m detail m a separate report (Samobat,2000)

'virtual instrument', jargon used by National Instruments for routines created with graphical programming

interfaces in LabView™

3.1.2.5.Nozzle construction

The nozzle was constructed keeping m mind two details (figure 3.2)

1) The orifice diameter

2) Chamber size



Chapter 3 Methods 29

(4)

A

(2)

(1)

(8)-

(10)

(3)

(6)

(7)

Figure 3 2 Nozzle construction details

(1) Gas inlet (2) Stop valve (3) Positive electrode connected to nozzle tip (4) Glass column (5)

Nozzle tip (6) Column liquid dram (7) Dram for accumulated glycerin (8) Metal cap (9) 0 75mm

ID orifice (10) Copper wire
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Test runs were carried out in this investigation with a nozzle having a 1mm orifice diameter The

results from this plotted were plotted and rather 'strange-looking' return maps found So, a slightly

smaller orifice diameter & a larger chamber size than previous work (Cheng, 1996) was chosen.

This was primarily based on the results obtained from test runs with the 1mm diameter nozzle It

was observed that the glycerin sometimes 'weeped' through the orifice and caused erratic 'burping'

of the liquid, causing a renegade spike m the pressure signal Increasing the chamber volume

ensured that the liquid which weeped through could be drained via a tee-bend m the nozzle

design

(The column should be drained prior to switching the gas supply off In case the glycerin weeps

into the gas inlet line, the line should be purged with acetone or methanol and then air/nitrogen

keeping the dram open)

3.1.3. Procedure

The experiments were carried out as a series of runs where the flowrate was held constant

and the voltage gradually stepped up by increments of lOOOV from OV to 10,000V The flow rate

was varied from lowest permissible flow-rate of a slow period-1, and increased m steps of 5

absolute rotameter units to a highly chaotic bubbling regime The experiment was automated

using LabView and so a large number of runs could be carried out with high efficiency The

automation program varied the voltage, waited for stabilization of the bubbles, which was

observed to be less than 300s, checked for instabilities in the high voltage and logged the data

acquired as a text file with a record of the date, time, flow and voltage at which the data was

recorded at The rotameter flow rate had to be set manually The data file contained pressure,

voltage and current time series The data was then preprocessed and variables stored as binary
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files, which were later used in conjunction with an indigenously developed, GUI-based

MATLAB Bubble Toolbox© to generate various plots for data analysis The volume of data

generated was very large as each run contributed to a data files cumulatively sized at 40MB

3.2. Data analysis

Various approaches have been adopted for the data analysis of bubbling systems

involving chaos Fractal and deterministic chaos analyses have been adopted to analyze the

complex dynamic behavior of multi-phase reactors Hurst exponents from rescaled-range

analysis, various types of fractal dimensions, Kolmogorov entropy and Lyapunov exponents have

been used to characterize different hydrodynamic regimes and transitions among them (Kikuchi

and co-workers, 1997, Ruzicha, 1997, Leuwisutthichat and coworkers, 1997)

This study was carried out to study the period doubling bifurcation route to chaos with

electrostatic fields as the bifurcation variable The following data analysis techniques were used

for the characterization of chaotic bubble behavior

3.2.1. Power spectra

The classical linear method for analyzing time series was used to transform the

information into the frequency domain using Fourier analysis Fourier analysis proved to be

highly sensitive to changes in periodicity of the bubbling system Femat & co-workers (1998),

effectively used power spectra to study periodic-quasipenodic-chaotic routes Transitions from

one regime to another could be very effectively identified as long as the system was not close to
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chaos When the system went chaotic, the regime could not be predicted conclusively, though it

indicated the possibility of chaos In this study, power spectrum distribution was used to identify

the periodicity of bubbling m conjunction with a neural network

3.2.2. Bifurcation and route to chaos

Bifurcation plots have been widely used m literature (Martien & co-workers, 1985,

Mittoni & co-workers, 1994, Tufaile & co-workers, 2000) to illustrate impending chaotic

behavior m dynamical systems as a series of changes in the nature of the periodic motions as a

result of a variation in some process input variable For the bubbling process, the changes were

quantified m terms of the period of formation of the bubble Extensive 3-dimensional bifurcation

plots were generated to compare and study the simultaneous effect of both electrostatic potential

and flow rate on the system

3.2.3. Time return maps

Time series signals give all the information one needs to observe the dynamics of a

system But the nature of the information can be simplified with the help of time return maps or a

Poincare map, without loss of the information about the dynamics of the system. Time return

maps were used to transfer all the information of a non-linear time series of pressure

measurement and give a visual aid to determine the exact fundamental periodicity of the system

(Moon, 1992) For generating a time return map, a period of formation vector was generated by

measuring either the peak-to-peak time distance or the time distance between the troughs
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Another method often cited in literature (Nguyen and co-workers, 1996), is used in conjunction

with a zero crossing distance of the waveform For the control aspect of the experiment, zero-

crossings were used with the advantage of faster implementation

3.2.4. Phase space reconstruction

\

A classical phase space trajectory plotting of a dynamic system ofA^ dependent variables

requires N dimensions with orthogonal coordinate directions m order to represent each dynamical

variable But, this is limited by the amount of data available for analysis (Takens, 1981) For a

system governed by an attractor, the dynamics m the full phase space can be reconstructed from

measurements of just one time dependent variable, and this time dependent variable carries

sufficient information about all the others (Takens, 1986) Phase space plots were used to

conclusively establish the existence of chaos and identify the periodicity of the system

3.2.5. Multivariate statistical techniques

The periodicity of the bubbling process was modeled using statistical techniques such as

regression, principal component analysis, linear and non-linear partial least squares (Samobat &

Hmes, 2000) This was an innovative approach to modeling the bubbling using a data based

approach to attempt a numeric model for real time periodicity identification The input data used

was a histogram plot of the period of formation of the bubbles, which was 'regressed' onto a

'regime vector' (figure 3.3) The output of the model returned a number (from 1 through 16),

which indicated the regime of the bubbling as perio-1, -2, -4 or chaos Numbers higher than 4

indicated the existence of chaos Numbers between any two states indicated the extent to which
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Period histogram Regime vector

Statistical model

Figure 3.3. Multivariate statistical techniques used to predict the bubbing regime

from the period of formation data.
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the system corresponded to each regime The training data used was generated manually by

visually inspecting the entire data set for the regime the system was in Results from this

analysis are referenced m a separate paper by Samobat & Hmes (1999)

3.2.6. Neural network model for regime identification

A neural network model was trained by linear vector quantization (Tsoukalas, L H, and

co-workers, 1997) for identification of the periodicity of the bubbling Information about the

bubbling regimes was extracted by frequency domain analysis using power spectra and

identifying fundamental peaks The fundamental bubbling frequency, (average bubbling

frequency), was fed into the neural network along with 5 characteristic peak heights The neural

network used a Kohonen map, (Tsoukalas, L H, and eo-workers, 1997) to cluster the data and the

output was the cluster the input belonged to The network could have discrete outputs of 1,2,4 and

chaos A scheme for real time identification of bubbling periodicity and change m periodicity was

identified (figure 3.4), (Samobat & co-workers, 1999)
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Modification & Anaiysis

What will prove altogether remarkable is that some very simple schemes to produce erratic numbers

behave identically to some erratic aspects ofnatural phenomena

Mitchell Feigenbaum, 1980

Visually, the bubbling experiment was really beautiful to observe From a single steady

tram of pearly bubbles at higher periodicities, to a sequence of alternating bubble sizes and finally

a flurry of bubbles when the system goes into chaos The dynamics of this system needed to be

understood and analyzed before trying to control the bubbling phenomenon This called for

visualizing the system in various subspaces, reading the underlying order of the bubble sizes and

finally crystallizing all the observations into a control algorithm This section deals with the

deductions made from the experimental data.

4.1. Formation of a single bubble

As a bubble is produced, the pressure m the gas inlet upstream changes Therefore the

line pressure m the gas stream can characterize bubbling The output of the pressure transducer
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measuring the pressure upstream of the nozzle was fed to the computer through a DAQ card and

the pressure trace seen with LabView m real-time as the bubble is being formed As a bubble is

formed, the pressure m the gas inlet begins to decrease A typical bubble formation pressure trace

IS shown m the figure. 4.1

It IS observed that the pressure rises rapidly, reaches a peak and then begins to fall off at a

much slower rate than the rate of pressure increase When a bubble is just beginning to form, the

nozzle orifice is covered with a film of liquid which seals the orifice and thus does not allow the

gas to form the bubble (figure 4 1, region 1) The surface tension forces prevent the seal from

breaking and so the pressure m the gas inlet line rises When the pressure m the gas line exceeds

the surface tension forces of the liquid, the seal breaks and the bubble begins to form As the

liquid seal breaks (figure 4 1, region 2), the gas pressure drops and as the bubble begins to grow

(Figure 4 1, region 3), the gas pressure drops even further The bubble grows upto a point when

the the buoyancy forces exceed the surface tension forces holding the bubble down to the nozzle

face Once the buoyancy force exceeds the surface tension forces (figure 4 1, region 4), bubble

release occurs and a liquid seal forms at the nozzle orifice This marks the formation of another

bubble and the whole cycle repeats again So the bubble starts forming when the pressure in the

line IS maximum The pressure slowly starts falling as the bubble is formed and when bubble

release occurs, pressure is at the lowest point m the line It can be observed that the initial rate of

decrease of pressure is much higher than the rate of decrease of pressure near bubble release This

happens because the initial rate of growth of the bubble is rapid and as the bubble reaches the

maximum volume dictated by the surface tension of the liquid, the growth of the bubble is

inhibited and is slower

Another phenomenon which was observed was that of 'shoulders' m the experimental data. It

was found that the pressure time series peaks were 'interrupted' with smaller shoulders which has
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Figure 4.1. Pressure trace in gas inlet line, upstream of the nozzle. (1) surface tension forces

are larger than the pressure in the nozzle, preventing bubble growth;(2) pressure in nozzle

equals surface tension forces; (3) bubble growth occurs; and (4) buoyancy and inertial forces

overcome surface tension, causing bubble detachment.
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lower peak heights, but could not be neglected in the period calculations A typical 'shoulder'

occurrence is shown in figure 4.2

On further investigation with high-speed imaging, it was found that there is indeed a physical

phenomenon associated with the occurrence of these shoulders It can be seen from figure 4 2 that

the 'shoulder' occurs after a series of medium to large sized bubbles When the bubble just before

the 'shoulder' leaves the nozzle tip, due to its large size the bubble creates a wake around itself

This causes the succeeding bubble to get sucked into the wake and causes it to leave before it

matures into a larger bubble This prematurely released bubble then coalesces with the preceeding

bubble, after which the next bubble does not get affected by any wake and thus is large The

phenomenon of shoulders was mainly predominant near period-4 regime, close to the occurrence

of chaos The 'shoulders' were ignored m analysis because the peak-finding algorithm was

configured to detect major peaks only

4.2. Regimes of bubbling

With a single tram of bubbles, bubbling regimes having periodicities of 1 through 8 have been

reported before entering the regime of chaotic bubbling With glycerol solutions, bubbling

regimes of 1,2,4 and 8 have been reported (Cheng, 1996) With the present study, bubbling

regime of 8 was not observed This is attributed to the larger size of the nozzle used as compared

to previous investigation by Cheng (1996), where a nozzle diameter of 1mm ID was used The

bubbling system was seen to undergo a period doubling bifurcation into chaos This section

reproduces results by previous workers by observing the bifurcation sequence of bubbling with

increase m flow rate
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Figure 4.2. 'Shoulders' in pressure time series
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4.2.1. Period-1 bubbling

Period-1 bubbling is when the system is at its linear best All bubbles produced are of the

same size and a pearly string of bubbles emanates from the nozzle This is observed at relatively

low values of flow rate and voltage when there is minimal interaction between the succeeding

bubbles

Figure 4.3 shows typical pressure trace of period-1 bubbling at low flow rates

Approximately 8 peaks are observed m 2 seconds giving a frequency of about 4Hz In this plot

the pressure traces are seen to be identical to each other with equal peak heights and peaks

occurring regularly, equal distances apart m time At low flow rates it is observed that a single

tram of bubbles is produced All the bubbles m the tram are equally sized and the tram of bubble

IS seen to rise slowly, with all of the bubbles rising at the equal velocities There is uniform

interaction between the bubbles and bubble formation The pressure trace output obtained for this

case of bubbling is a series of identical peaks

With a slight increase m flow rate or increase m voltage, the frequency of bubbling

increases A similar tram of bubbles as the earlier case is seen only that the sizes of bubbles are

different But even now no interaction is seen between the bubbles (figure 4.6a)

When the control parameter is increased further, the frequency of bubbles increases

further But now interaction is observed between the bubbles and bubbles of two different sizes

can be seen with the naked eye (figure 4.6b) The larger bubble seen to be the leading bubble and

the smaller bubble is seen to be the trailing bubble This marks the transition from period-1 to

period-2 regime
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(a)

O'

(b)

Figure 4.6 High speed images of slow bubbling

(a) Penod-1 bubbling. No interaction observed (b)Penod-2 bubbling. Subtle interaction
between bubbles observed
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Figure 4.4 shows the power spectrum distribution for period-1 bubbling A peak at 3 8Hz

IS seen to be prominent This gives the frequency of period-1 bubbling This is the dominant

frequency and the other smaller peaks seen m figure 4 5 at 7 6Hz, 11 4Hz and so on are the

hannonics of this dominant frequency If the period of the bubbles is calcuated, the mean

calculated period is 0 2615s, which gives a frequency of bubbling as 1/0 2615s=3 8246Hz

When the time-embedding algorithm is used to perform principal component analysis on the

pressure trace time series, and the first two principal components plotted against each other, the

result IS a single loop m phase space The system has a periodic component, which retraces itself

in phase space as the system proceeds further m time This is a characteristic of period-1 Figure

4.5 depicts the phase space for period-1.

4.2.2. Period-2 bubbling

In period-2 bubbling, the bubbles produced are alternately large and small m size This

mainly occurs because of the mter-bubble interactions Figure 4.7 shows a period-2 bubbling

pressure trace

Peaks of two distinctly different heights are observed These correspond to the two different sizes

of bubbles The larger peak implies that the gas pressure forces in the nozzle along with the

buoyancy forces needed to overcome the surface tension forces are larger and so a larger bubble

IS formed before bubble release occurs The smaller peak suggests that resultant upward forces

are stronger and overcome the surface tension forces faster, resulting m a smaller bubble and

causing faster bubble release The main reason period-2 occurs is the drag reduction caused by

the wake left behind by the leading bubble, which sometime causes coalescence of the leading

and the trailing bubble (figure 4.10) So now two different periods of bubble formation are
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^  '

Figure 4 10. High speed images of penod-2 formation of bubbles Leading large

bubble causes wake which forces an early release of the trailing bubble
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observed Comparison of this pressure trace with the one for period-1 bubbling shows that the

peak- to-peak time intervals m the pressure trace for period-2 is smaller than that for period-1 due

to higher flow-rate and bubble interaction This is because the frequency of bubbling is higher m

case of period-2 than m case of period-1 The plot shows about 12 peaks formed in 2 seconds

giving a frequency of about 6Hz

Figure 4.8 shows a plot of the power versus the frequency of period-2 bubbling Here we

observe two different principal frequencies One dominant peak is seen at 6Hz and another

dominant peak is seen at 3 Hz

The average period of the bubbling was calculated to be 0 1803s (5 5458Hz) for the

larger bubble and 0 1494s (6 6937Hz) for the smaller bubble But m the power spectrum contrary

to expectations of two peaks at the respective frequencies, only one peak at 6Hz, which is the

average of the two bubbling frequencies, is observed This is because the calculated period is the

time of formation of bubble But the maximum power occurs at the frequency at which both the

events of bubble formation occur which is the average of the two frequencies The whole cycle of

formation of bubbles of two different sizes is occurring at one half the frequency at which the

event for formation of the individual bubbles is occurring

The Fourier transform sees the pressure trace as two separate period-one bubbling

patterns occurmg alternately, and a period-two bubbling pattern occuring at half the average

bubbling frequency of the period-1 bubbles This is illustrated in the pressure trace (figure4 7)

with the two individual period-l's shown by red and black bars, and the period-2's being

indicated by pink and blue (Note that pink and blue bars are used to show the same pattern)

To summarize, period-2 is characterised by two peaks m the power spectrum distribution,

the higher of which corresponds to the frequency at which the bubble formation occurs and the
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other peak corresponds to the frequency at which the pattern of bubbling repeats itself The

average frequency of bubble formation is equal to the reciprocal of the average period between

the bubbles and the frequency at which the period-2 bubbling pattern repeats itself is half of the

average frequency The maximum power occurs at the average frequency of bubble formation

and the power at the frequency of the bubbling pattern is comparatively much lower

Chaotic systems are best studied m phase space where bifurcations can be identified as

soon as they occur Figure 4.9 depicts the trajectory m phase space the system follows in period-

2 bubbling The trajectory is seen to comprise of two loops Even though the loops seem to merge

as one at certain parts on the phase plot, the distinctness of the two loops is maintained, though a

magnified scale is required to observe them

4.2.3. Period-4 bubbling

Period-4 bubbling can be thought of as a combination of two-period-2 bubbling patterns

juxtaposed next to each other to form an overall sequence of four bubbles

Figure 4.11 shows the pressure trace for period-4 bubbling Four distinctly different peaks

are seen m the pressure trace As the control variable is increased from period-2, the bubbling

increases m frequency and consequently the period reduces Further increases m the flow-rate

lead to period-4 bubbling A pattern of four different bubbles with alternate leading (large) and

(trailing) small bubbles repeats itself Here the pattern of 4 different peaks is subtle and special

analysis tools like time return maps have to be used It can be seen that the peak to peak height

has reduced considerably and the frequency of the bubbles has increased Approximately 18

peaks can be counted within the 2s time interval shown and the frequency of the bubbles is about

9Hz
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Figure 4.12 shows the plots for the power spectrum distribution for period-4 bubbling In the

power spectrum distribution, the dominant peak occurs at 9 4Hz, (peak 1) with two smaller peaks

at 4 6Hz (peak 2), and 2 3 Hz (peak 3) The peak at 7 1 Hz, and the rest of the peaks occurmg m

the spectrum are harmonics of these three frequencies Period-4 bubbling occurs with formation

of four bubbles of different sizes So, the frequency of the formation of these four different

bubbles dominates and is seen as a peak at 9 4Hz But within each period-4 bubbling pattern, two

period-2 bubbling patterns are observed

Each of the two period-2 patterns are different from each other and this gives rise to

period-4 The averge bubbling frequency of each of the two bubbling patterns shows up as the

peak at 4 6Hz. These period-2 bubbling patterns occur faster than the whole cycle of period-4

bubbling and are slower than the frequency of the individual bubbles The whole bubbling pattern

of period-4 bubbling occurs at a frequency which is one half the frequency of period-2 bubbling

and shows up as a very small peak at 2 3 Hz

Period-4 is thus characterised by three peaks m the power spectrum distribution The

highest of the peaks corresponds to the frequency of bubble formation This frequency is equal to

the reciprocal of the averaged period between the bubbles The lowest of the peaks corresponds to

the frequency at which the overall bubbling pattern repeats itself This frequency is equal to the

reciprocal of the period of each cycle of four bubbles The middle peak corresponds to the

frequency at which the period-2 bubbling within period-4 bubbling repeats itself This frequency

IS double the frequency of period-4 bubbling

The phase plot for period-4 bubbling is shown m figure 4.13 On close examination, it

can be seen tha there are four distinct loops m the phase plot, which could be mistaken for only 2
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loops due to low resolution The system traces each of the four loops as the bubbling proceeds

At least four peaks are required for the bubbling to close four loops in phase space

4.2.4. Chaotic bubbling

The description 'deterministically chaotic' (or chaotic, for short) is assigned to that class

of physical and mathematical systems that exhibit bounded, irregular behavior due to sensitive

dependence on initial conditions Visually, chaotic bubbling is a regime wherein no truly

repeating pattern can be traced Figure 4.14 shows the non-linear pressure time series for

observations for chaotic bubbling

Figure 4.15 shows the power spectrum distribution of chaotic bubbling To fully

appreciate the spectrum of chaotic bubbling, a larger window size of 16,384 was used to reveal

the details in the distribution, versus a window of 8,192 m earlier calculations A similar window

size was tried for each of the cases of periodic bubbling, but no significant difference m the

power spectrum distribution was observed In chaotic bubbling, bubbles of different sizes are

formed m an aperiodic yet deterministic manner So a spectrum of different bubbling frequencies

exist and it becomes difficult to uniquely characterize chaos via power spectral analysis But a

qualitative indication of chaos can be obtained from the power spectral distribution, and possible

chaotic behavior of bubbling can be predicted from the spectral observations From the figure

4 15 we observe that now the peaks become less distinct and the bubble frequencies start to

spread throughout the range of possible bubbling frequencies Also, the power at the fundamental

frequencies starts to decrease, indicating a larger spreading of power among other bubbling

frequencies it is important to note that certain frequencies was favored , and these frequencies

show a distinct signature of period-4 bubbling
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In phase space (figure 4.16), the chaotic bubbling traces independent multiple loops, which

outline a so-called strange attractor (unlike random systems which fill up the whole of the phase

space)

In summary, periodicity can be diagnosed by analysis of the power spectrum distribution

Qualitative indication of chaotic bubbling is also possible, but the effectiveness of the power

spectrum as a qualitative tool diminishes as chaos increases

4.3. Effect of electrostatic potential on bubbling

To illustrate the effect of electrostatic potential on bubbling, a sample 'data slice' at a

nitrogen gas flow-rate of 334 cc/mm was chosen The data slice was taken at & constant flow rate

increasing the voltage from 0 to 10,000 V m increments of lOOOV Each of the runs was plotted

m a unique color with respect to the whole database, which was defined by an RGB (red-green-

blue) vector formed by a constant, fraction of maximum voltage and fraction of maximum flow

rate (RGB vector-[frac max voltage frac maximum flow-rate 1]) All plots m this section has

been plotted on the same scale for easy comparison

4.3.1. Pressure traces

The non-linear pressure time series is the raw variable, available for analysis of the

bubbling process Figure 4.17 shows pressure traces for bubbling at constant flow rate, but at

various voltages The data samples were taken at 2kHz, and a data length of 1 s has been shown

The voltage for each of the pressure traces has been mentioned as the title for each of the
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subplots The voltage increases from left to right, and from top to bottom The ordmate shows the

output from the pressure transducer and the abcissa shows the data sample number

A subtle difference m the pressure traces can be observed by visual inspection The

number of pressure trace peaks increase with an increase m applied electrostatic potential It can

be seen that the frequency of bubbling increases as the voltage increases

Note The variation of pressure traces with increase in voltage is highly dependent on the nozzle

diameter In test runs carried out on with a nozzle diameter of 1mm internal diameter, a greater

effect of electrostatic voltage was manifest (figure 4.18-20) This was attributed to the lower

internal pressure in larger bubbles, allowing them to be distorted more by electrostatic forces

4.3.2. Periods of formation

Shifts m bubble formation period appear to be consistent with the onset of bifurcations

Using the pressure time series, the distance between the peaks was calculated and the

corresponding time distance computed and plotted against the bubble index

Figure 4.21 illustrates the effect of applied electrostatic potential on the period of

formation of bubbles It can be observed that at the start of the run, the system is just into period-

4 In the first plot, we observe three clearly distinct bubble periods, while closer inspection

reveals that the longest period is actually split into two that are very close together. As the voltage

IS increased, period of formation of bubbles begins to decrease The difference between the

periods of formation also increases This gives rise to four

distinctly different, but faster bubbles Another interesting observation is that the smaller bubbles

explain for most of the change m bubble size spectrum with change m electrostatic potential This
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IS because increase in electrostatie potential causes smaller bubbles to be released faster as

compared to larger bubbles

When the voltage is approximately about 3000V, four distinct bands of periods of

formation are seen As the voltage is increased further, the periods continue to get smaller and the

bands move away from each other Here it can be seen that the mam difference occurs m the

period of formation of the larger bubbles, which are seen at the top of the plots So, from voltages

from about 3000V up to 6000V, the system is said to be into well-defined period-4 bubbling

At about 7000V, the bubbling system is seen to be on the verge of transitionmg into more

complex behavior approaching chaos At this state when the system is extremely sensitive to

ambient eonditions and any disturbances however subtle are enough to affeet the regime of the

system m an exponential manner, either to cause the bubbling to revert to period-4 or to push it

into chaos

When the system approaches chaos, the periodicity of the system is lost and the bands

seen m the period of formation plot become more and more fuzzy as the system approaches

chaos But during the transition into chaos, the system bears a signature of the earlier bubbling

regime Here (figure 4 21 subplot for 8022v) we can see that though the system enters chaos,

there is a persistent memory of the original period-4

4.3.3. Time return maps

Time return maps are used for visualizing transitions m periodicity and chaos In a time

return map, the period of every bubble is plotted against the period of the succeeding bubble.

Figure 4.22 & figure 4.23 illustrate the change m the periodicity of bubbles with an

increase m the applied electrostatic potential at a constant flow rate, and vice versa. (For
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comparison of the effect of electrostatic potential with the effect flow on the bubbling, figure

4.24 shows all the plots from figure 4 22-23 on the same graph) At low values of applied

electrostatic potential, the bubbling system is seen to have just bifurcated to a period-4 condition

(indicated by the four distinct points on the plot) As the voltage is increased, the points on the

time return map are seen to diverge from each other, indicating a shift into better-defined period-

4 This happens because now the system has distinctly different periods of formation of bubbles

Between 3000-6000V, the system is seen to be m well-defined penod-4 conditions In the region

from 3000-6000V, the change m either control variable, (flow rate or applied electrostatic

potential), have to be substantial before the periodicity is changed (Note* Progressive time return

maps of an entire dataset are presented in appendix A)

At higher voltages, the system becomes more and more unstable and bifurcates into chaos

at voltages beyond 7000V and higher As the system bifurcates into chaos, the return map begins

to fill m with the four distinct points becoming more and more indistinct When the system is

fully chaotic, all the points he along a narrow ribbon-like strange attractor The shape of the

attractor is a system dependent phenomenon and characterizes a deterministic mapping

relationship between successive bubble events Figure 4.25(a) illustrates the time return map m 3

dimensions It is worthwhile to note that the system reached this chaotic state at aconstant flow

rate, with an increase in the applied electrostatic potential The return map plotted m this figure

also gives information about the number of times the system revisited various regions on the

return map The colors vary directly with the intensity of points, with the lighter end of the

spectrum indicating a maximum return frequency and darker colors indicating a minimum The

frequency distribution plot indicating the percentage of the total number of bubbles is shown m

figure 4.25b
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4.3.4. Phase space analysis

At lower applied voltages, four distinct loops are seen in the phase space As the system moves

towards chaos, the phase space plot becomes more complex and less distinct. When chaotic, the

system moves along several non-repeating trajectories in phase space, which are seen as a tangle

of separate loops (figure 4.26)

4.3.5. Power spectrum distribution

Power spectrum analysis (figure 4.27) reveals power in a narrow range of frequencies at lower

voltages when the system has higher periodicity As applied voltage increases, the broadening

bubble size distribution causes the peak height reduction, suggesting more distribution of power

along a wider range of frequencies An increase m the frequency of the dominant peak suggests

an increase m the average bubbling rate At bubbling regimes m chaos and near chaos, the power

IS spread along a range of frequencies causing an increase m the power at lower frequencies As

with flow changes, the power spectrum distribution though can only qualitatively suggest the

occurrence of chaos

4.3.6. Bifurcation diagram

Bifurcation diagrams illustrate the effect of the control variable on the periodicity of the

system By studying bifurcation plots, the dynamic state of the column can be qualitatively

predicted and one or more parameters correspondingly adjusted to target a specific bubbling

regime Bifurcation analysis was used mainly to decide the optimum system state at which to

employ control
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4.3.6.1. Bifurcation at constant voltage

In figure 4,28, the flow rate has been kept constant at 334 cc/mm, and the voltage was gradually

increased in steps of 1000 volts from 0 to 10,000 V Bifurcation of the bubbles with increase in

electrostatic potential control variable is evident from this plot At low values of the applied

electrostatic potential, the system exhibits period-4 With an increase m voltage from left to right,

the period of formation of bubbles decreases and at the same time the size distribution of the

bubbles increases Now, the system has four distinctly different bubbles forming At higher

values of applied voltage, the system starts bifurcating into chaos When the system is chaotic, the

periods of formation are almost continuously distributed along a wide band

4.3.6.2.Bifurcation with voltage and flow

In non-linear dynamics literature bifurcation maps involving changes to only one control

parameter have widely been used To analyze the effect of electrostatic potential m tandem with

flow rate, similar bifurcation plots were made at different flow rates and plotted on the same plot

to generate 3-dimensional bifurcation plots It is seen that electrostatic potential alters the

dynamics of the bubbling by decreasing the periodicity of the system. Figure 4.29 gives the

bifurcation of the system along the two axes and also marks the specimen system state to be

studied m blue This state is also highlighted m figure 4 28 It can be observed that with flow, the

system is at a much higher value of
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bubble formation at the top right comer of figure 4 29 Voltage on the other hand is much more

subtle m its effect, which is manifest on the voltage axis

4.3.6.3.Bubbling regimes in terms of dimensionless

numbers

Studying bubbling regimes in terms of dimensionless numbers give the operating

conditions a more universal flavor The dimensionless numbers chosen for study are the Tsuge

flow-rate number (Tsuge, 1984) and the electric Bond number (Harris &Basaran, 1995, Shin &

coworkers, 1997)

Tsuge's flow rate number is defined as

N^,=Bo.Fr'' (1)

where

Bo = (2)

The Tsuge flow-rate number is a ratio of the buoyancy forces characterized by Fr and the

surface tension forces, characterized by Bo

Electric Bond number is defined as

d.Be = (Hams & Basaran, 1995) (4)
cr
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The electric Bond number is a ratio of the electrostatic forces and the surface tension

forces

In order to study the collective effect of electrostatic and buoyancy forces, Shin and co-

workers,(1997) suggested a modified Weber number which was the ratio of the sum of the

electrostatic forces as compared to surface tension forces This number is an indication of the

total upward forces, which seek to release the bubble, as compared to the surface tension force

which prevents the bubble release.

Modified Weber number is defined as

The period of formation has been plotted against the voltage and the flow-rate m figure

4.30 while m figure4.31 the electric Bond number and Tsuge flow-rate number is used One

important observation in these two figures is that while the plots appear to be continuous m figure

4 30, a significant break m data is seen when the numbers are plotted on dimensionless axis m

figure 4 31 This is because the dimensionless number definition contains a 'squared' term for the

electrostatic field and flow rate for each of the two axes This causes the values to shoot up as the

absolute value increases This also implies that the change m system state will be higher per unit

change in control variable at higher values of the control variable

The modified Weber number suggested by Shm and co-workers illustrates the combmed

effect of electrostatic potential and flow rate on the bubbling regimes pgure 4.32) Here the red

markers indicate chaotic regimes and the colors with lower temperature indicate higher

periodicity The regime identification was done by an empirical 'regime-identifier' algorithm,

which used ratios of peaks from the power spectral analysis It is seen that period-1 is only seen
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at the low voltages and low flow rates As either of the variables is increased, the bubbling regime

passes through a period-2 and four before bifurcating into chaos The bubbling regime cannot be

predicted using the modified Weber number alone as the regime is also based on the ratio of the

electrostatic and buoyancy forces however the figure does show a clustering of regimes

according to the modified Weber number

The effective regimes of bubbling m terms of periodicity can be identified m figure 4.33,

which gives the periodicity of the system m terms of the dimensionless flow rate number and

electric Bond number From figure 4 33, it can be observed that the increase m electric Bond

number has a greater effect on the regime at values of higher Tsuge flow-rate numbers At the

Tsuge flow-rate number of about 1 7, increase in the electric Bond number causes change in

bubbling regimes from penod-2 into period-4 and finally into chaos

The ffequeney of bubbling is affected by both the flow rate and the electrostatic potential

Figure 4.34 shows the surface plot of the bubbling frequency as a function of the flow rate

number and the electric Bond number The plot also shows the projection of the surface plot onto

the flow rate axis and the electrostatic axis, which can be termed as operating lines The

projection gives a qualitative idea about how the individual control variable impacts the

frequency of bubbling The projection on the flow axis shows the effect of the electrostatic

potential The linearity of the operating lines suggests the nature of the effect the flow The

electrostatic potential shifts the operating line from the lower extremity to the upper extremity, as

the bubbling frequency increases with an increase m electrostatic potential The linearity of the

operating line is not affected to a large degree This indicates that the electrostatic forces have a

smaller effect on bubbling behavior than changing flow rateThe difference between the two

operating lines gives the gam, which can be harnessed as a result of electrostatic potential as an

additional control variable
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On the other hand, the operating lines on the electrostatic axes are affected by flow rate in

stronger way The operating line at low flow rates is close to being linear, where as at higher flow

rates the operating line is curved suggesting more non-linear characteristics Again the difference

in the operating lines is the gam due to flow rate as the control variable

Figure 4 34 suggests that to obtain maximum gam for control, the values of flow and

electrostatic potential should be at the upper operating limit But this also implies that the system

will be chaotic and so any small changes m either of the control variables will be amplified

exponentially Well, that's where engineering and chaotic analysis comes together



Chapter 5

Application & Implementation

The world is what it is and I am what I am This out there and this in me, all this, everything, the

result of inexplicable forces A chaos whose order is beyond comprehension

Henry Miller, Black Spring

Electrostatic potential was shown to dramatically affect the bifurcation sequence of

chaotic bubbling An increase in electrostatic potential eaused an increase in the average bubbling

at a constant flow rate This has provocative implications wherein the effect of electrostatic

potential can be harnessed to optimize and control the entire bubbling phenomena The emphasis

m this research was on closed loop control enhancements to process performance

5.1. Periodicity identification

The bubbling periodicity identification was the initial step to controlling bubbling This

identification was to be done m real time so that dynamic calculations could be utilized to control

the bubbling
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5.1.1. Statistical modeiing

An initial approach was modeling the bubbling periodicities as a function of the

frequency distribution of the periods of formation using various regression techniques (Saraobat

& Hmes, 1999) The results were not satisfactory because of the non-lmearity and extreme

sensitivity of the bubbling process to perturbations, as against the least squares approach adopted

by most of the regression analysis A sample of the model performance is shown m figure 5.1

The model performance degraded when the system changed from higher periodicities to lower

ones Near chaotic conditions, the model could not discriminate between any of the regimes

5.1.2. Neural network models

It was found that power spectrum analysis could be used to extract the significant

information (section 4 2) The fundamental peak gives the average frequency of bubbling (say x)

and peaks observed at 0 75x, 0 5x, 0 25x give information about the periodicity regimes of the

bubbling (figures 4 4, 4 7, 4.10, 4 13) A non-zero peak height at 0 5x suggests period-2 and a

peak at 0 25x indicate period-4 The peak at 0 75x is a harmonic of frequencies at 0 25x, but also

gives a qualitative indication about the existence of chaos The peak heights of these peaks along

with the average bubbling frequency are all that are required to characterize the bubbling

periodicity A neural network was constructed to map periodicity regimes of bubbling (Samobat

and co-workers, 1999) The neural network was designed to have 5 inputs and one output Four of

the five inputs were the peak heights at multiples of Ix, 0 75x, 0 5x, 0 25x, where x is the

fundamental frequency m the power spectrum distribution of the time series The fifth input was

the value of the fundamental frequency itself The neural network had one output, which was the

periodicity of the system A periodicity of 16 was assigned to the class when the system was m

deterministic chaos A Kohonen based neural network was used and the training was conducted
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Figure 5.1. Performance of numerical model using partial least squares. Input data

are the frequency distribution of the periodicity and the output is a 'state' vector, which

indicates the likelihood of the bubbling regime. Each of the periods was assigned a

likelihood' between 0-1 which indicated the extent to which the system corresponded to

that state. (The green line indicates the target and the red line is the estimated state)
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With linear vector quantization, (Tsoukalas &Uhrig, 1996, Samobat & co-workers, 1999) The

performance of the neural network model is shown m figure 5.2 The model performance was

found to be satisfactory, but implementation m LabView for real time calculations was difficult

Also for the neural network large amounts of training data were required and the model would

only be valid if the operating regimes were all comprehensively represented m the training data

This was a big factor m considering other techniques for real time identification

5.1.3. Periodicity pattern detector

An important constraint on the real time periodicity identification is the adaptability of

the algorithm to LabView implementation A real time simultaneous mput/outputvi was designed

to calculate the periods of formation This was a software timed data acquisition and hence all the

calculations were done within a 10ms loop between data points The disadvantage of this method

was that any memory usage of by the operating system reflected in the timing loops being longer

than the 10ms This caused a outliers m the zero-crossings because the time between zero-

crossings also included the additional processing time required by LabView The effective rate of

data acquisition was lOOHz at the 'worst' operating condition, which took maximum length of

time to process the data The periods of formation were dynamically plotted as a time return map,

which clearly indicated the periodicity of formation

A simple 'pattem-identifier' routine was set up to identify the bubbling regime It was

based on the observation that regular patterns are formed m periodic regimes and in chaos no

pattern can be detected For period-1 formation, every bubble is of the same size, for period-2

every third bubble and for period-4, every fourth bubble In chaos none of the bubbles form a

pattern A target array of every second, third & fourth bubble set up The value of the period of

formation of the current bubble was subtracted from each of the array elements and the averaged

differences are compared against a tolerance A moving window based approach was used keeping
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Figure 5.2. Neural network performance for identifying the periodicity of

bubbling. A Kohonen map was used and the network trained by linear vector

quantization. The inputs were the fundamental peak heights extracted from the power

spectrum distribution and the average bubbling frequency. (The red dots indicate the

target and the blue dots indicate the estimated state).
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{Bubble (3)-
Bubble(0)} <lolerance

{Bubble (2)-
Bubble(0)}<lolerance

{Bubble (])-
Bubble(0)}< tolerance

Regime

0 0 0 Chaos

0 0 1 9

0 1 0 Period-4

0 1 1 Period-1

1 0 0 Penod-4

1 0 1 9

1 1 0 Period-2

1 1 1 Period-1

Table 5 1 Truth table for bubble regime identification (Key Y=1,N=0)

the last 32 bubbles in the history array Longer windows can be used to decrease the over-

sensitivity of the identifier to changes in periodicity Depending on which elements are below the

tolerance, a truth table is set-up for the regimes of bubbling

The results (figure 5.3, 5.4) suggest that this regime identifier can be used with

confidence for detecting period-1 and period-2 But, when the bubbling regime enters period-4,

the measurement error due to either computational limits reached byLabView or due to external

noise, causes erratic results because this identifier compares the bubble sizes and any error will

cause a misclassification of period-4

This identifier was used for feedback control to ensure regime of bubbling A simple P-I

controller can be implemented for manipulating the flow-rate and/or voltage to achieve the

required regime of bubbling Presently this is limited by computational requirements for control

into either of the regimes

5.2. Regime targeting of bubbling with electrostatic

potential

Electrostatic potential was shown to affect the frequency of bubbling m a manner similar

to increasing the flow rate In the frequency plot of figure 4 34, it can be seen that for a single
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frequency of bubbling, an operating line can be determined. This suggests that voltage and flow

can be used in tandem to maintain constant bubbling frequency An increase in flow rate can be

compensated by a corresponding decrease in electrostatic potential, or vice versa

A simple Pl-controller loop was used with voltage as the manipulated variable, flow rate

as the disturbance and the average bubbling frequency as the process variable to be held at a set-

point The average bubbling frequency was calculated by taking the mean of the previous 20

bubbles The control moves were implemented after multiples of 20 bubbles (~ls) to give the

system time to stabilize before implementing the next control move Results are shown mfigures

5.5-5.7

Figure 5.5 (a) shows the response of the system to a gradual increase m the disturbance

(flow rate) The period for formation, manipulated variable (electrostatic potential) and flow-rate

are plotted against the number of bubbles Before the disturbance was introduced into the system,

the system was at a steady period 1 bubbling with the electrostatic potential at lOkV The flow

rate was gradually varied in a series of small increments from 200cc/mm to 420 cc/mm The set

point was set to the average bubbling frequency before the disturbance was introduced The aim

was to get the controller to manipulate voltage to match the bubbling frequency before the

disturbance was injected

From figure 5 5, it can be seen that the controller steps down the voltage so maintain a

constant bubbling period of formation (0 05 s) The plot for the flow rate is noisy on the right hand

side because the flow rate varies as the pressure at the nozzle varies with the formation of each

bubble Figure 5 5 (b) shows the return maps before and after the disturbance Before the

disturbance is injected, the system is in a 'noisy' period-1 After the controller has compensated

for the disturbance, the bubbling frequency is maintained at the set point, but now the system is

into a noisy period-4
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Figure 5.6 illustrates the effect of a negative step change of 235 cc/min in the

disturbance The controller compensates the disturbance and in effect the system goes from a

period-4 to a noisy period-1

Figure 5.7 illustrates the effect of a positive step change of 220 cc/min m the

disturbance The controller action maintains the set point of 0.05s, but changes the periodicity of

the system from a period-1 into period-4

In figures 5 5-5 7, outliers are observed on the plot, which shows the zero-crossings

These outliers (at ~0 9-1 Os) are actually the formation times of two bubbles, which are caught

because of a computing limitation of LabView These do not cause a control loop problem as

moving window approach is adopted and an average past bubble period is used as the process

variable For the runs shown in the figures 5 5-5 7, a moving window of 20 bubbles was found to

give satisfactory results

5.3. OGY Control

The slow control regime targeting method described m section 5 2, demonstrates the

effect of voltage and suggests that electrostatic potential can be used for control of individual

bubbles at a higher frequency

5.3.1. Calculations

The crucial step for control is the extraction of information about system stability from

the time return maps This is because all the constants m the control law are calculated from the

values of the stable and unstable manifolds and their corresponding eigenvalues, which m turn are
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obtained from time return maps The development of the OGY control algorithm has been

presented m an earlier section (chapter 2)

There are four aspects to this calculation

1  Identifying the unstable fixed-point

2  Calculating the manifold directions

3  Computing the eigenvalues

4  Shift vector determination

The first two steps are shown m figure 5.8-5.9

5.3.1.1.Identifying the unstable fixed-point

The unstable fixed-point can be thought of as a periodic trajectory onto which the system

IS to be stablized On the time return map, (which can be thought of as pseudo-phase space), the

point moves along the stable manifold, mapping to the fixed-point, and continues to map to the

fixed-point, until a perturbation causes it to continue along the unstable manifold to complete the

sequence For a chaotic attractor, each of the properties is necessary and sufficient. This means

that all points which map to then selves are fixed-points and all fixed-points map to themselves

5.3.1.2. Calculating the manifolds

To calculate the stable and unstable manifolds, various methods have been suggested A least

square fitting method has been suggested in Cheng (1996), m which the mapping matrix M is

calculated by least square approximation of the map data This method though is fraught with

errors and as the chaotic system is highly sensitive to the smallest
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perturbations (such as noise), the effectiveness of this method is greatly reduced Another method

suggested by Cheng (1996), uses cluster analysis to calculate the manifolds

In this method, like other conventional fixed-point calculation approaches, a small

tolerance is chosen to approximate a region around the fixed-point Then the points, which map to

that region are selected and the manifolds calculated It was observed that m some cases the

points map to the fixed-point, jump within the approximated tolerance and then jump out along

the unstable manifold In such cases, the movement of the fixed-point within the tolerance is

neglected But the location of the fixed-point has to be approximated first This is tricky because

the system has to 'hit' the fixed-point multiple times to be sure that it is the fixed-point In

experimental trials, due to presence of system noise, the chaotic system may map to the

neighborhood of the unstable fixed-point a number of times before mapping to the fixed-point

Itself A comprehensive dataset is required before enough information about the fixed-point

location IS acquired

The direction of the unstable manifold is the tangent to the chaotic attractor at the fixed-

point location (figure 5 9) Identification of the manifolds from experimental data is usually

different from the direction of the manifold calculated from analysis of the time return map To

compensate from the error m manifold direction, the calculated unstable manifold direction was

swept through an angle of 15° on either side to search the control law solution space

5.3.1.3.Calculating the eigenvalues

By knowing the manifold directions and hence the eigenvectors, one can calculate the

corresponding eigenvalues based on the following procedure, (taken from Cheng, 1996)

Consider two consecutive mapping points going to the fixed-point
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Pl ~ [^n+l ^n+2 ]

The slope between these points is

^ _ ̂n+2 ~^n+l
^i+l ~ K

Since they are located on the same eigenvector, the generalized solution for mapping points can

be written m the form

'ji+i ~
_  - At„ _

(^-1)

Taking the limit as /I -> 0, the eigenvalues around the fixed-point are equal to the slopes of the

eigenvectors by L'Hospitals rule

m =

X A. 7^1

A A = 1

The following algorithm was used to calculate the fixed-point and the manifolds

1  After studying time return maps, a MATLAB™ routine was written to sort the points

which map within a certain distance of each other A single fixed-point was isolated by

visual inspection of the walk-in states (Figure 5 8)

2 After choosing a tolerance around this fixed-point, points that mapped to this region were

determined and the stable direction calculated as an average of many directions identified

(figure 5 9)

3  Unstable manifolds were approximated as the direction along which maximum numbers

of points leave the fixed-point location This direction was then varied through 15° on

either side of the approximated unstable manifold direction to compensate for the error m

approximation



Chapter 5 Application & Implementation 96

5.3.1.4. Shift vector

The shift vector is a measure of how much a unit change in the perturbation changes the

location of the fixed point It is calculated by calculating the fixed-point location from return

maps at corresponding to two different conditions of the control variable and then observing the

change m the fixed point For the present experiment, the two return maps were plotted at 9500V

and 10500V giving an effective perturbation of lOOOv to the system The change m the fixed

point was found to be 0 001s Thus the change m the return map per unit volt increase m the

electrostatic potential is le-5s

The OGY control algorithm m its final form is

Ap= ̂ ^ " =cAx„

and IS implemented as

Ap = Ci (c2 Ax, + C3 Ax2 ) = cAx„

5.3.2. Results

Choice of the bubbling regime was based on the following observations

1  Control gain available with electrostatic potential was greater at higher voltages

From figure 4 34, it can be seen that the voltage gam has a non-linear behavior and changes

m bubbling with unit changes m voltage are greater at higher voltages applied at the nozzle

2  From the flow rate response, it can be seen that the flow rate affects the bubbling

with an order of magnitude increase over electrostatic potential To counter the effect of flow, a
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comparatively large gam m electrostatic potential is needed (which is not possible with the

limitations of current equipment) Consequently the minimum flow rate needed to ensure that the

system was m chaos at the operating voltage was chosen

The goal was to bring the system back into higher periodicities, ideally to period-1

Several runs with the OGY parameters were carried out and manual tuning of the gam

coefficients had to be done to ensure that the control moves were m operating limits A scaling

coefficient (c,) of the order of 10"^ had to be added to get the calculated controller output to be m

the permissible range of the voltage nppler which was + 490V For the control trial carried out m

figure 5.10 the following constants were used'

1  Base voltage 10,000 V

2  Flow-rate 443 cc/mm

3  Controller coefficients Ci=0 01, C2=-6 2e5, C3=0 084e5

4 Data acquisition rate lOOHz

These constants were for the set of operating conditions unique to this experimental run

Time return maps and manifold calculations were carried out for every experimental run as the

system information changed with every change in operating conditions

The results of a representative OGY control attempt is shown m figure 5 10 In section (a), the

system is nearly fully chaotic with no voltage being applied and with the application of

electrostatic potential m (b), the system goes m to, what can be termed as, 'full-blown' chaos

Note that a remnant of a period-4 signature can be observed m (b) When the controller action is

initiated at index 890 m section (ci), it can be seen that though the system is still m chaos, the
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period-4 signature is less distinct Instead an additional band is observed at the top where the

system fixed-point location is calculated In section (02) it can be seen that there is only one band

of bubbling This is because the OGY control moves tend to p' ush' the system on the stable

manifold and the points favor dwelling on the fixed-point The red line indicates the fixed-point

location The control was turned off at the index 1750 Even after the control is turned off, the

system is seen to be in a state of entrainment m section (d) and the entramment is lost m section

(e) where appearance of additional bands is seen The voltage was again turned off at an index of

2500

Tight control was not observed m controlling the bubbling to a periodic state from its

open-loop chaotic behavior with control turned on, but a distinct effect of the control moves on

the bubbles was obvious The effect of the control scheme is better illustrated m a frequency

distribution plot (figures 5.11-5.14) A progressive increase in the hits on the fixed-point can be

seen when the control is turned on (figures 5 12-5 13), as opposed to when there is no control

(figures 5 11,5 14) After the control is turned off (figure 5 14), the number of fixed-point hits is

observed to be higher than the number before the control was turned on (figure 5 11) This can be

explained by the entrainment phenomenon m which a chaotic system maintains characteristics

even after the perturbations are turned off

5.3.3. Entrainment studies

In the present control experiments, tight control was not observed It was surmised that

the controllers gam of 490 V provided by the voltage 'rippler' was not sufficient To confirm this

assumption, entramment studies were carried out (Cheng, 1996) The response of the bubbling to

a square wave of i 490V amplitude at various frequencies was studied No perceptible change
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was observed in the pattern of the bubbles This confirmed that the available gam was not

sufficient to control the bubbling from chaotic bubbling to period-1 The present voltage swing

available moves the fixed point by a distance of 0 001s This is confirmed by the value of the shift

vector which is le-5 s/volts To move the fixed point by a distance of 0 01s, rather than 0 001s, an

amplification factor of lOx is required for the present voltage swing This would approximately

mean a voltage swing of ~5000V

5.4. Summary

Real time identification of bubbling was attempted through statistical modeling

techniques Real time identification was shown to succeed for bubbling regimes of period-1 and

period-2 with a scheme that compares the sizes of bubbles with a previous moving window

history Regimes of period-4 could not be identified mainly because of lack of faster computing

resources and the sensitivity of the calculations to measurement errors Electrostatic potential was

harnessed to control bubbling to a constant average bubble period of formation as the set point,

with an increase/decrease in the flow-rate as the disturbance It was found that with changes in

disturbanee the regime of bubbling could be changed while maintaining a constant average

bubbling rate Electrostatic potential was also used as the control variable m the OGY chaos

control algorithm to tame the chaos in bubbling with partial success



Chapter 6

Conclusions & recommendations

Discovery, they believe, is inevitable

Ian Malcolm, m Michael Crichton's Jurrassic Park

The mam objective of this research was to identify the modification of bubbling

phenomena with electrostatic potential and then tame the chaos of bubbling with the newly

identified variable

Electrostatic potential was identified as a bifurcation variable, which could be used to

modify the periodicity of the bubbling Extensive 3-d bifurcation plots revealed that the effect of

electrostatic potential on the period of formation in comparison to flow-rate is similar. Surface

contour plots, which mapped frequency of bubbling as a function of flow-rate and electrostatic

potential suggested that effect of electrostatic potential on the bubbling frequency was non-linear

with relatively greater effect on the bubbling at higher flow-rates Electrostatic potential was

discovered to modify bubbling to an extent where it could be used for control

Flow control, which was carried out by previous researchers, was unsuccessful mainly

because of the lack of fast valves It was also felt that the dynamics of the change m the nozzle
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chamber supply pressure to change in flow-rate also presents a challenge to using flow-rate as the

manipulated variable Electrostatic potential was identified as a control handle with better

response dynamics (as compared to flow-rate) and thus was conjectured to promise relatively

'crisper' control The effect of electrostatic potential on bubbling regimes was studied at different

flow parameters and the non-linear gam characteristics of electrostatic potential were identified

The bubbling regime at higher electrostatic potential was found to be more sensitive to unit

change m voltage than at lower voltages This investigation of chaos in bubbling led to

development of several data analysis and automation tools (Samobat, 1999, 2000)

A real time bubbling regime identification module m LabView was successfully

implemented to achieve simultaneous feedback control and real time return map updating with a

moving window history Regime control was demonstrated targeting a specific bubbling regime

for period-1 and period-2 Electrostatic potential was successfully used as the manipulated

variable to track a constant average bubbling frequency with flow-rate changes as the disturbance

Future work can include integration of the two control modules for maintaining a constant

bubbling frequency within a constant regime This is presently limited by sufficiently fast

computing resources

OGY control was attempted with partial success, limited by the small gam provided by

the physical equipment (± 490 volts) It is recommended that the same experiment be repeated

with a higher voltage swing (± 5000 volts) if a voltage Vi/i/j/er'with a response time of greater

then 40Hz can be built. It is also recommended that multivariate control with voltage and flow

rate both as control variables is carried out with voltage as the fine-tuning parameter and flow

control providing the rough tuning parameter A real time OGY control module needs to be

investigated into which can do dynamic fixed-point calculations and controller coefficient

updates This currently is limited by computer speed and memory But that should not be a tight
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constraint in the future Alternatively, an OGY controller tuning search module can be

implemented to fine tune the controller after the rudimentary manifold calculations This is

currently limited by the problem of running the column continuously for long periods of time,

which causes an increase m the conductivity of glycerol with time

Data analysis tools developed with MATLAB™ used multi-variate statistical techniques

like principal component analysis to analyze bubbling Wavelets and multi-scale methods were

used with promising success and its potential as a chaos analysis tool are stressed

Finally m the regime of bubbling and associated phenomena, m the present study the

effects of electro-hydrodynamic (BHD) flows were assumed to be negligible and were not

studied Future study of bubbling can include study of BHD flows induced with different shapes

of nozzles, various chamber sizes and changing the nozzle diameter Changing the liquid

selection is another avenue of investigation The application of electrostatic potential to inverse

spraying m liquid-liquid system holds bright prospects m light of the this research
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Nomenclature

R  modified Bond number
e

Bo Bond number

c  control vector

B) diameter

e  eigenvector

E  electric field

f  left eigenvector

Fr Froude number

g  gravitational acceleration

J  Jacobian

k  Embedding dimension

M mapping matrix

N  Dimension number

M  Tsuge flow-rate number
W

p  system parameter

s  shift vector

t  time

u  superficial velocity

X  system state

We Weber number

p  density

^  eigenvalue

s  permittivity

<7 surface tension
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