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Abstract

This thesis was an attempt to simulate the detonation waves and contact surfaces

m unsteady flows with improved accuracy and efficiency through the use of adaptive

mesh refinement (AMR) In the present work, the problem dealt with is the simulation

of the working cycles of a pulsed detonation engine (PDE) A flexible code which can

be used for any unsteady flow simulation was developed The analysis was based on

the quasi one-dimensional Euler equations and the reaction rate was modelled using a

one-step irreversible reaction equation The numerical simulations were carried out using

two numerical schemes, namely. Roe's approximate Riemann solver and the advection

upstream splitting method (AUSM)

Results of this numerical study show the importance and effects of increasing the

spatial resolution The use of adaptive mesh reflnement made it possible to increase

the spatial resolution with insignificant increases in cost of computations The results

also show that the contact surfaces cannot be captured accurately merely by increasing

the spatial resolution, due to the high innate numerical diffusion of the flux schemes

The possibility of conflnmg an interface to a few cell distances by adding a suitable

confinement term has also been discussed
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a  speed of sound
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p  pressure
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Q  vector of conservative variables
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t  time

T  temperature

u  velocity
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Chapter 1

Introduction

There are abundant CFD applications, which involve the simulation of shocks and

other discontinuities A core objective of many CFD algorithms is to simulate these

features with high accuracy and minimal cost of computation The present work deals

with one such application, the simulation of a pulsed detonation engine (PDE), m which

there is a need to accurately simulate a detonation wave and contact surface The PDE

IS a novel alternative to conventional gas turbine or rocket engines that can provide im

provements m performance or costs for space propulsion Some anticipated advantages

of PDEs are (a) compactness, due to the high energy densities involved, (b) lower spe

cific fuel consumption due to higher thermodynamic efficiency compared to a constant

pressure combustion process and (c) reduction m mechanical complexity due to the lack

of compressor and turbine The PDE model used and all simulations carried out as part

of this work were based on a recent study by Mohanraj [10] and is aimed at generating

a flexible code and improving the efficiency of computation.

The operation of a PDE can be divided into three phases (a) the fill time during

which the chamber is filled with reactants, (b) the detonation travel time during which



the detonation is initiated and traverses through the chamber burning up the reactants

and (c) the blowdown time during which the bulk of the combustion products are expelled

by a system of compression and rarefaction waves After the blowdown process the fill

process starts again and the cyclic operation continues A detailed description of the

PDE operation is presented m chapter 4 (see also figure 4 1) A finely refined mesh is

required for accurately simulating the detonation waves and contact surfaces However

during some parts of the cycle, like the blowdown process, no sharp flow features are

present and the computation could as well be carried out using a coarse mesh In such

a situation, one attractive way to solve a problem is to use adaptive mesh refinement

(AMR)

Adaptive mesh refinement is used to increase the spatial and temporal resolution

of the numerical simulation while minimizing the computational cost The mesh is not

fixed m time and is constantly evolving to match the instantaneous requirements AMR

makes it possible to selectively refine the mesh only m some regions of the computational

domain where accuracy is of significance, while retaining a coarse mesh where it is not

This helps m minimizing the cost of computation

In the present work, operation of a PDE has been modelled using an AMR simulation

The analysis is based on the quasi one-dimensional Euler equations using a single progress

variable to model the reactants and products The numerical simulations were carried

out using two numerical schemes, namely. Roe's approximate Riemann Solver [13] and

AUSM"*" [8] Both the solutions are first order accurate m space and time The procedures

required for the AMR simulation were coded using the Fully Threaded Tree (FTT) data



structure of Khokhlov [6] Finally an attempt was made to effectively capture the contact

surfaces by adding artificial dissipation that has the effect of confining the spreading

contact surfaces



Chapter 2

Formulation of Numerical

Schemes

The present chapter lays the foundation for the numerical simulation of the deto

nation phenomenon. The reactive Euler equations for the system are expressed m the

conservation form and then two different numerical schemes are formulated for those

equations

2.1 Conservation Equations

The quasi-one-dimensional reactive Euler equations where a single reactant C is con

verted to a single product D by a one-step irreversible chemical reaction governed by

Arrhenius kinetics, may be written m conservative form as



where A — A{x) is the local cross section area, Q is the vector of conservative variables,

E IS the flux vector and H is the source term

/  \

Q =

( \ (
p pu 0

pu

,  =

pu"^ +p
,  -ff =

p /

A \dx J

pe {pe +p)u 0

pZ ̂ ^ —KpZ ^

\

(2 2)

Here p,u,p,T,e,Z,Ea and Ru are the density, velocity, pressure, temperature, specific

total energy, reactant mass fraction, activation energy and universal gas constant re

spectively K IS a, constant termed as the pre-exponential factor It is an empirical

parameter that determines the reaction rate The following equations are used to close

\

the system 2 1

e — e + —u "t" q^Z
(2 3)

P = p{p,T)

Here e is the specific internal energy (m J/kg) and qq is the heat release parameter (in

J/kg) for the chemical reaction C —)■ D It is assumed that the molecular weights and

the specific heats are constants for the reactant and product The various Jacobians and

matrices for this system of equations, essential for the development of flux schemes, axe

listed m Appendix A



2.2 Finite Volume Formulation

Let a domain of length L be split into N cells A cell of index where i G [l,iV],

IS characterized by its centroid Xi, volume V^, and location of its left and right faces

at Xi_ii2 and a;j+i/2 respectively The variation of area along the length is given by

A = A{x) Given this description of a cell, equation 2 1 is integrated over the volume of

a cell 1 m the usual fashion This results m an explicit update equation for the unknown

vector Q ,

AQi = - — ̂1+1/2A+1/2 - -^1-1/2^-1/2} + AtiLj (2 4)

=  + (2 5)

Here E is the numerical flux computed on the faces of the cells explicitly using one

of the numerical schemes to be discussed below In the finite-volume formulation 2 4,

the differences among all the numerical schemes he essentially m the definition of the

numerical flux -Ej+x/2 evaluated at the cell interface Figure 2 1 shows a typical quasi-

one-dimensional mesh along with its cells, their centroid and faces Two different upwind

numerical schemes for computing the numerical flux are presented m this chapter

2.3 Approximate Riemann Solvers

One way of designing an upwind numerical scheme is through the use of the so-called

Riemann solvers or approximate Riemann solvers In these methods the solution is

considered as piecewise constant over each mesh cell at a fixed time and the evolution



^i+3yf21-1/2

1-1 1+2

1-1/2
1+1/2

1+3/2

Figure 2 1- A typical quasi-one-dimensional mesh

of the flow to the next time step results from the wave interactions originating at the

boundaries between adjacent cells The cell interfaces separate two different fluid states

Ql at the left side and Qr at the right side and the resulting local interaction can be

exactly resolved since the initial conditions at time t — nAt correspond to the Riemann

or shock tube problem This problem will have an exact solution composed of a shock

wave, a contact discontinuity and an expansion fan separating regions of uniform flow

conditions Each wave carries information m an upwind manner and hence the resulting

state will only depend on the local physical properties The new piecewise constant

approximation at time t — {n + l)At is then obtained by averaging over each cell, the

fluid states resulting from the perturbation waves This produces an explicit conservative

scheme of first-order accuracy

Since the exact solution of the Riemann problem requires the resolution of a non

linear algebraic equation which can be quite time consuming, approximate Riemann

solutions are frequently considered to reduce the computational work at each interface



Two interesting Riemann solvers developed by Roe [13] and Liou [8] will be summarized

m the following sections The flux expressions of these numerical schemes are expressed

m a form suitable for comparison

2.4 Roe's Approximate Riemann Solver

The approximate Riemann solver developed by Roe [13] is based on a characteristic

decomposition of the flux difference while ensuring the conservation properties of the

scheme Roe constructs a mean value Jacobian A such that the following conditions are

met

1 B(Qr)-B(Ql)=A(Ql,Qr)(Qr-Ql)

2 The matrix A(Ql,Qr) has real eigenvalues and is diagonahzable (has linearly

independent eigenvectors) (See appendix A)

3 A (Q, Q) = A (Q) = dB/dQ, so that consistency is satisfled

As the first step an averaged state Q-Q (Ql, Qr), known as the Roe average is defined

For the system 2 1, the Roe average is defined by the following relationships

P = y/PLPR

ul-Jpl + ur^/Pr
u = — -=—

Vpl + (2 6)
^  + hRy/^

y/pL + ̂/PR

2 _ ̂ Ly/PL + Zr^/^
y/PL + y/PR



where h — e + p/p Further, the flux E in equation 2.2 can be expressed as a sum of the

convective and pressure terms

E = E^ + P (27)

/  \
1

E'^ — m = pMa, =
u

h

J

,  P =

(  \
0

V

0

(2 8)

Here m, M and a are the mass flux, Mach number and speed of sound respectively Using

these deflnitions the numerical flux for the first order Roe's scheme £^1+1/2 = E (Q^, Qi+i)

on the cell face straddling the ith and «+ 1th cells can be expressed as,

£i+i/2 = 2 ~ 2^^1+1/2 (<3i+i - QO + 2 + -^i+i) (2

l^li+l/2 — -^i+l/2|A.|i+l/2-^+i/2 (2 10)

Here the matrix |A1 can be referred to as "the magnitude of A" It is a positive definite

matrix and its eigenvalues are given by the magnitudes of the eigenvalues of A The

matrix M is composed of the right (or column) eigenvectors of A and |A| is the diagonal

matrix formed from the corresponding absolute values of the eigenvalues All the quan

tities m equation 2 10 are evaluated using the average value Q = Q{Qt, Qi+i) as defined

m 2 6

One disadvantage of Roe's approximate Riemann solver is that it only enforces jump

conditions across each cell and does not enforce a condition on entropy So both expan-



sion shocks and compression shocks are allowed In the present notation, the Rankine-

Hugoniot jump conditions are identically given by The entropy condition

that Si-i-i > Sj (or conversely, if the shock is propagating m the opposite direction) is

not contained m the relation = Ei and must be added externally Harten [4] ad

vocates a technique m which a local expansion fan is introduced in the approximate

Riemann solution when an expansion is detected through a sonic point This is realized

by limiting any vanishing eigenvalue to a small value e, which rules out the possibility

of an expansion shock As described by Harten [4], the use of this value e, introduces an

intermediate state (between the states Ql and Qr) that simulates the diffusion present

m an exact Riemann solver For cases where an eigenvalue A changes sign, the modified

eigenvalue is defined as ^

|A| =

The quantity e is obtained from.

|A|i+1/2 if |A|i+i/2 > e

^  if |A|i+1/2 < e

(2 11)

e = max [o, (Aj+i/2 - A^) , (a^+i - A^+i/s)] (2 12)

2.5 The Advection Upstream Splitting Method or AUSM"^

The AUSM"*" scheme of Liou [7, 8, 9] is formulated by basically distinguishing between

the convection and acoustic waves and treating them as two physically distinct processes
1  I

The convective terms are upstream-biased using an appropriately defined cell-interface

10



velocity, while the pressure term is strictly dealt with by using acoustic waves This ex

plains the scheme's name, advection upstream splitting method Following the procedure

used for the formulation of Roe's method, the flux E is expressed as.

E = E'' + P

(  \
1

= m^, m = pMa, ^ -
u

J

,  P =

( - \
0

V

0

(2 13)

(2 14)

The AUSM+ flux is deflned in terms of the interface mass flux mi/2) which is expressed

in terms of the Mach number at interface speed of sound ai/2 Note that the

interface quantities are denoted by the subscript 1/2

2.5.1 Definition of ai/2

It IS necessary to use a common speed of sound ax/2 rather than or Oi+i to achieve a

unification of the splittings of both Mach number M and unknown vector Q [7, 8] For

the present unsteady flow test case, the judicious choice of an interface speed of sound

will be.

1
®l/2 = ̂ ("i + Ot+l) (2 15)

11



Utilizing this common speed of sound, the mach numbers m the adjoining cells may be

defined as

M, = M,+i = ̂  (2 16)
ai/2 01/2

2.5.2 Mach Number and Pressure Functions

The interface mass flux and pressure are deflned m terms of certain polynomials of

the Mach number M These polynomials are called the Mach number and pressure

functions The following Mach number and pressure functions are deflned to facilitate

further analysis Let,

Mf,) (M)

Mfa) (M)

= -(M±|M|)

Mf,) (M), if |M| > 1,

(M ± 1)^ , otherwise

>ifi) (M), if |M| > 1,

M'^2) (-^) ̂  T 16PM^2) (-^)] ' otherwise

(2 17)

(2 18)

(2.19)

These polynomials were devised to meet certain properties, such as consistency, contin

uous differentiability, symmetry and monotonicity; see [7] for details They are the basic

ingredients used for defining the interface mass flux mi/2 Let the pressure functions be

deflned by.

-pi —
^(3) -

(M)/M, if \M\ > 1,
(2 20)

(M) (2 T M), otherwise

12



(M) /M, if \M\ > 1,
^ ' (2 21)

±jM^) (M) (2 ̂  M) - lQaMM'^2) i^)] ' otherwise

The numerals in the subscript of M and V indicate the degree of the polynomial used

m the range |M| < 1 For |Ml > 1 all polynomials are first order (a,/3) are parameters

as indicated Considering a few more conditions on the polynomials (see [9]), yields the

following values for a and 13,

2.5.3 Numerical Fluxes

In the AUSM+ scheme, the interface mass flux is deflned using the Mach number func

tions as follows (This is to ensure that the flux splitting will also satisfy the properties

of consistency, monotonicity, etc )

Mi/2(M„M,+i) = (M,) + (M,+i) (2 22)

Pi-^l/2<^l/2) if ̂ 1/2 > 0

PRMii2ai/2, otherwise
mi/2 (2 23)

Next the interface pressure is deflned as.

Pl/2 (Q^, Q^+l) = + ̂(5.«) i^^+l)P^+l (2 24)

13



Then the full numerical flux, ̂14-1/2 is

-^1+1/2 = 2 ["^1/2 + ̂j+i) ~ I'^1/2| (^I+I - ̂i)] +P1/2 (2 25)

Comparing the AUSM"*" flux equation 2 25 with Roe's flux expression 2 9, the follow

ing observations can be made

1 The first term on the RHS of equation 2 25 is clearly not a simple average of the

flux E at the i and ̂ -I-1 states, but rather a Mach number weighted average

2 The major difference between the two schemes is the dissipation term In equa

tion 2 25, the dissipation coefficient |mi/2| is merely a scalar, while m Roe's

scheme 2 9, the dissipation coefficient is the matrix |A|j_|.i/2

3 The AUSM+ scheme does not involve computation of the Jacobian matrix, and it

always involves only the common term mi/2 for any additional conservation laws

This reduces the computational cost, and again, the cost is only linearly increased

when any additional conservation equations are considered As will be seen later,

the AUSM"^ scheme performs as well as Roe's scheme and costs less

14



Chapter 3

Adaptive Mesh Refinement

Adaptive Mesh Refinement (AMR) is used to increase the spatial and temporal res

olution of a numerical simulation with insignificant increases m cost of computation In

the present unsteady flow simulation, the refined portion of the mesh has to closely follow

those regions of the flow where gradients are large (shocks, detonation waves and con

tact surfaces), to prevent them fi:om passing out of the fine mesh region as the iteration

proceeds This necessitates periodic rebuilding of the mesh The individual computa

tional cells can be organized on a tree structure, so that each cell can be refined or

unrefined separately from the others, as needed While this tree structure is natural for

mesh refinement, it requires additional features to allow an efficient data structure to be

declared The Fully-Threaded Tree (FTT) algorithm of Khokhlov [6] satisfies these re

quirements In the FTT structure every cell has an easy access to its children, neighbors

and parents It could be said that an FTT is a tree threaded m all possible directions,

which explains the reason behind its name This tree structure allows all operations

and modifications of the tree to be performed m parallel, which is quite promising for

use with parallel computers The tree structure and implementation details of FTT as

15



applied by Khokhlov [6] are explained here

3.1 FTT Structure and Implementation

The computational domain of length i, is subdivided into a number of cells of various

sizes 1/2,1/4,1/8, of L Cells are logically organized m a binary tree with the entire

computational domain being the root With every cell i the following information can

be associated

iLv(i) — level of the cell m the tree

iKy(i) — TRUE/FALSE if cell is spht/unspht

iPr(i) — pointer to a parent cell

zCh(t,j) — pointers to children, j=l,2

iNb(i,j) — pointers to neighbors, j=l,2

The cell size is related to the level tLv(i) by Aj = Cells m the tree are

either split (have children) or leaves (do not have children) Logical relations between

cells m the tree, and the directions of various pointers are illustrated m figure 3 1 for

the one-dimensional binary tree In figure 3 1, the root (cell 1) represents the entire

computational domain It has two children (cells 2 and 3), each representing half of

the domain Cell 2 is further subdivided into two cells (cells 4 and 5) Neighboring

leaves are not allowed to differ in size by more than a factor of 2 The neighbor-neighbor

relation is not reciprocal for leaves of different sizes that face each other In Fig 3 1, cell

16



Level=l

Level=2

•  1-5 •Level=3 I—

Figure 3 1 Logical relationship between cells of a one-dimensional, binary, fully threaded
tree

5 has cell 3 as its neighbor, but cell 3 has cell 2 as its neighbor and not cell 5 A jth.

neighbor of a cell t either has the same size as the cell itself, = Aj, or it is two

times larger, AjjV6(i,j) = 2Aj In the former case, the neighbor may be a leaf or a split

cell In the latter case, it can only be a leaf

In the FTT structure, all cells are organized in groups called "octs" Each oct

contains two cells (When extended to multi-dimensions, every oct contains 4 cells m

a two-dimensional configuration and 8 cells m three-dimensions). The name "oct" is

chosen because it contains 8 cells m three-dimensions The FTT structure implemented

is illustrated m figure 3 2 Each cell stores the physical state vector Q" and AQ associated

with it It also has a pointer to an oct which contains its children, if any, or a ml pointer

Each octet knows its level, OctLv, which is equal to the level of the oct's cells Each

oct has a pointer OctPr to a parent cell It also has pointers OctNb(k) to parent cells

of neighboring octs The number of neighbors for 1, 2 and 3 dimensions are k=2, 4 and

6 respectively Octs also contain the coordinates r{x,y,z) of their centers, which is also

17



Oct 1

OctPr

OctLv

r(x,y,z)

OctNb(2)

Oct 3

OctPr

OctLv

r(x,y,z)

OctNb(2)

Cell 1

Q"
Ag

OctCh

Cell 1

g"
Ag

OctCh

Cell 2

g"
Ag

OctCh

Cell 2

g"
Ag

OctCh

Oct 2

OctPr Cell 1 Cell 2

OctLv
g"
Ag

g"
Agr(x,y,z)

OctNh(2) OctCh OctCh

Oct 4

OctPr

OctLv

r(x,y,z)

OctNh(2)

Cell 1 Cell 2

g" g"
Ag Ag

OctCh OctCh

Figure 3 2 Relationship between cells and octs in a fully threaded tree Pointers from
octs to cells and from cells to octs are indicated by arrows
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the centroid of their parent cells For the uniform area case, the coordinates of cells that

belong to an oct can be found by adding or subtracting Aj/2 from the corresponding

oct's coordinates But for the variable area cases, the location of the centroid needs to

be computed Hence, it is economical to store the coordinates rather than compute them

every time they are needed

3.2 Integration Procedure

Integration m time on the tree can utilize the usual flux evaluation algorithms used for

grids, but requires a different time-stepping strategy to be computationally efficient This

strategy is quite different from that typically used on regular grids In the integration

procedure described below, integration m time and tree refinement are coupled together

and time stepping at different levels of the tree and tree refinements of these levels are

interleaved Also the computations are organized not on a cell-by-cell, but on a face-by-

face basis At every face, fluxes are evaluated, changes to cell values on the left and on

the right of the face are applied, and then fluxes are discarded

The finite volume formulation 2 4 has to be used to update Q with different time

steps At(/) at different levels of the tree /, Imtn < i < Imax, where Imm and Imax are the

minimum and maximum levels of leaves {Imm represents the cells on the coarsest grid

and Imax those on the finest grid) A global time step, on the coarsest grid. At = At{lmm)

is determined from the CFL condition

2 ̂ min
At' a j—p- (3 1)

maxi (Oi -I- |ui|)
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where a is the sound speed, a < 1 is the CFL number, and the maximum m equation 3 1

IS taken over all leaves i m all the levels Time steps at various levels are scaled back

proportionate to cell size,

At(;) = (3 2)

Integration at different levels of the tree is interleaved with tree refinement Let the

procedure of advancing level I one step At{l) m time be designated as A(l), and the

procedure of tree refinement at level I as 7l{l) The TZ procedure consists of refining

leaves of level I and unrefinmg split cells of level I according to certain refinement criteria

This procedure is described in section 3 3 The advancement procedure A is described

below.

Let the right and left neighbors of cell i be %+ and , respectively The state vector

at the beginning and end of a global time step is Q" and respectively The A{1)

procedure is described m the form of the following pseudocode

for (leaves % of level Z —1){ if(« has split neighbors) AQj = 0

for (leaves z of level l){

if (z+ IS a leaf or boundary){

Compute fluxes (^j^+) face;

AQi = AQi — Ei^i/2Ai+i/2 + HiVz

^  I

' A(3i+ = AQ14. + £?j+i/2A+1/2 ^

}
)

if (z- IS a leaf of level Z— 1 or boundary){
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Compute fluxes at^the face;

AQi — AQi + £^j_i/2 A-1/2

AQi- = AQj_ — £^i_i/2A-i/2

(
}  -

}

for (cells I of level l){

if (z IS a leaf)

+ AQ, * At(0/V; .

AQ, = 0

else

1 A
9

J=l

The global time step of integration consists of going through all levels of the tree,

starting with and performing a sequence of refinements and advances at every tree

level Advancing the solution by one global time step is done through a call for the

procedure S{1), where the procedure S{1) is a combination of advancing and refinement

procedures,

S{1) = n{l)S{l + l)A{l)S{l + 1)^(0 (3 3)

and S{1) does nothing if I > Imax All procedures m 3 3 are performed from left to

)

right For example, for Imm = 6 and Imax = 8, the sequence generated by 3 3 would be
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5(6) = [7^(6) [n{l) [7^8^(8)X(8)] ̂ (7) [778X(8)^(8)] ̂ (7)] ̂ (6) [7^(7) [778^(8)^(8)]

^(7) [778.A(8)^(8)] .4(7)] >1(6)] Square brackets separate different levels of recursion

A vivid description of the algorithm can be found in [6] In the procedure A(l) the fluxes

E are calculated using one of the numerical schemes described m the previous chapter

3.3 Mesh Refinement

The most difiicult part of adaptive mesh refinement is to decide where and when to refine

or unreflne a mesh The refinement procedure currently implemented consists of four

steps

1 For every cell, a refinement indicator, 0 < ̂ < 1, is computed Large ̂  > ̂spht

indicates that a leaf must be refined, and small ̂  < ijom indicates that a split cell

can be unrefined, ̂spht some predefined constant values

2 Smooth ̂  m order to prevent cells from being falsely refined (mesh trashing) m

places where ̂  fluctuates around critical values ̂ spht and ̂ jom

3 Leaves are refined if ̂  > ̂spht

4 Split cells are unreflned if ̂  and if they have not just been split and if

joining them does not produce an isolated leaf

An indicator proportional to the gradients m the solution can be used to compute ̂

Such an indicator shows where to expect a large error m the solution The indicator ̂
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IS constructed as a mciximum of several indicators,

(3 4)

each of which is either a shock indicator, a contact discontinuity indicator, or a gradient

indicator, all normalized to unity, 0 < < 1 As a shock indicator the quantity used is.

= max 4%,

.  ̂ \Pim{i,3) — Pi\ ^ ̂
1  U / v ^ 65,

mm[pzNb{z,3),Pi)

0  otherwise

(3 5)

The constant eg determines the minimum shock strength to be detected. In the present

work. Eg was generally set to 1 0 A contact discontinuity indicator is defined as.

J=l,2

=

,  \PiNb{i,]) - Pi\ - Pil
i  it , , < £5, , X ^ £c

mm {PiNb{i,j)^Pt) mm {PiNb{i,]), Pi)

0 otherwise

(3 6)

The quantity Ec was set to 0 1 for most calculations Another possible indicator for the

contact discontinuity is.

=

1  r \PiNb{i,j) Pi I
1  11 . . ̂  fcc

\PiNbii,j) -Pi\

0 otherwise

(3 7)
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One more indicator is used for locating the interface between the burnt gases and
)

fresh propellants This indicator is constructed on the reactant mass fraction Z as,

1  if 0 02 < Z < 0 98

(3 8)
0  otherwise

A gradient indicator for a variable b may be constructed as

^  I IIW,J)I l^^l l ] (3 9)
J-b2 I max(|6jjv6(z,j)U^'i|),

where b may be mass density, energy density, pressure, velocity, vorticity etc For the

present problem the gradient indicator is constructed on pressure and temperature Ac

cording to equations 3 4-3 8, shocks and contact discontinuities are marked with ̂  = 1

and refined to the maximum refinement level allowed and the gradient indicators 3 9 are

applied only to a smooth fiow.
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Chapter 4

Pulsed Detonation Engine Model

The Pulsed Detonation Engine (PDE) is a novel alternative to conventional gas

turbine or rocket engines and may provide improvements m both performance and costs

for space propulsion The aim of the present work is to develop a computational model

I

of the PDE, which can simulate all stages of the working cycle The PDE model was

developed based on a recent study by Mohanraj [10] The following sections present the

operational details of the PDE model, along with various parameters used m controlling

the operation The default values used for those parameters are also stated, and those

were the typical values used for obtaining all the results of chapter 5, unless otherwise

stated

4.1 PDE operational stages

The various stages m the operation of the PDE are shown m figure 4 1 A typical cycle

of operation of the PDE can be divided into the following three stages

Detonation initiation and propagation At the beginning of every cycle, the tube

IS full of fresh fuel and oxidizer The detonation is initiated by specifying a finite
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Figure 4.1: Various stages in the operation of a pulsed detonation engine, (a) Tube filled
with fuel and oxidizer; (b) Detonation initiation; (c) Detonation propagation; (d) Blow-
down phase; (e) Tube after the combustion products have been exhausted; (f) Propellant
fill phase.



region of high temperature and pressure at the upstream end of the tube A typical

initiation region would be of size Xmit — 0 002m, with temperature = SSOOAT

and pressure ratio = 30 Once initiated the detonation wave traverses through

the tube consuming the reactants

Blowdown phase After the exit of the detonation wave the bulk of the combustion

products are expelled by a system of compression and rarefaction waves

Propellant fill phase In the present model, the time period of cyclic operation of the

PDE IS specified, and the valve opening is determined by this time period The

injection of fresh propellants immediately behind the burnt gases can result m

premature heating and combustion of the new propellant charge during the filling

phase This is prevented by injecting sufficient amount of purge gases before the

propellant charges The injection of propellants is stopped by closing the valve

at the upstream end, as soon as the fresh charge of propellants reaches a sensor

location (close to the end of tube) The end of the filling phase is followed by

initiation of a fresh wave of detonation and the cyclic operation continues

4.2 Computational Model

The one-dimensional reactive Euler equations 2 1 are used to represent the flow processes

in the PDE model The reaction rate is modelled by a one step irreversible reaction

equation governed by Arrhenius kinetics The working fluid is a stoichiometric i?2 - O2

mixture, the values of various parameters used for this working fluid are as follows
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Ratio of specific heats 7 = 1 25, molecular weight MW = 15kg/kmol, activation energy

Ea/Ru = IBOOR", pre-exponential factor K = 7.5 x 10^, heat release per unit mass

go = 7 769 X 10^ J/kg

The PDE engine geometry used for the results presented m the next chapter are

based on a constant area duct, open at one end, and with a valve at the other However

the present quasi one-dimensional framework leaves scope for specifying any arbitrary

area distribution along the tube length and for the study of various geometries

4.3 Boundary conditions

The upstream boundary is modelled as a valve, which remains open while the tube is

being filled, and is closed at all other times When the valve is fully closed, the upstream

boundary is modelled as a rigid wall, by applying mirror conditions over a ghost cell

lying across the wall When the valve is open or partially open, the inlet boundary

conditions are obtained from the specified reservoir conditions For low values of the

reservoir pressure, the stagnation pressure at the inlet boundary is the same as the

reservoir pressure If the reservoir pressure is above the choking limit, the stagnation

pressure (m conjunction with the instantaneous valve area) is used to specify the mass

flow rate To simulate realistic valve operation in the PDE model, the valve opening

and closing processes are characterized by a valve response time {ryaive}- During the

valve opening process the valve area is linearly increased from zero (fully closed) to

the specified maximum (fully open) valve area, and vice versa during the valve closing

process In the present work, instantaneous valve action was assumed {ryaive = 0) ̂^.d
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the reservoir pressure was set to 5 x 10®iV/m^ The maximum valve area was chosen as

ten percent of the cross-sectional area of the tube

The downstream boundary can have several possible outflow conditions subsonic

inflow or outflow, or sonic or supersonic outflow Sonic and supersonic inflow could be

allowed, but has not been implemented Under some operating conditions, the back

pressure is so low that choked outflow conditions prevail over most of the cycle For

high back pressure conditions, the exit unchokes and subsonic outflow or reverse flow

may occur The exit boundary conditions are based upon the method of characteristics

procedure If the outflow is sonic or supersonic, no exit boundary condition is allowed,

and all variables at the exit plane are determined from conditions inside the flowfleld

Sonic or supersonic outflow generally implies the pressure at the exit plane is above the

ambient pressure If the outflow is subsonic, the exit pressure is specified as the ambient

pressure and the remaining quantities are computed using the characteristic equations

corresponding to the outgoing waves If reverse flow occurs, the stagnation values for ̂

pressure and temperature are specified as those corresponding to the ambient condition,

while the reactant mass fraction Z is taken as 0 Typical values for the ambient conditions

are p- amh = 0 5 x 10^ and Tamb - SOOJC

The procedure for switching from sonic outflow to subsonic outflow is important be

cause the sonic outflow condition does not involve external conditions Consequently,

once the outflow becomes sonic, there is no mechanism for checking when it should un-

choke again The present model employs a procedure to determine whether the pressure

at the nozzle exit is such that the presence of a normal shock results m a post-shock
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pressure lower than the ambient pressure If that were the case, the boundary condition

forces a normal shock at the exit and thereafter enforces the subsonic outflow condition
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Chapter 5

Results and Discussion

5.1 Detonation Initiation and Mesh Size

The aim of the present study is to perform an adaptive mesh refined simulation of the

detonation phenomenon to capture the finer aspects of the flow with higher precision

However, the dependency of the initiation process on the mesh size, needs to be studied

to analyze the effect of mesh refinement Numerical simulations were performed using

Roe's fiux equation 2 9 for a tube of length L = 0 05m with an initiation region of

size x^n^t = 0 002m In the initiation region the pressure ratio pr used was 30 and

the temperature was set to 3500K Simulations were carried out on uniform meshes

of size 256, 512, 1024 and 2048 cells The initiation is a physical process, which is

being modelled numerically m these computations The cell size Ax is a part of the

computational model and it infiuences the initiation process

While the detonation could be successfully initiated m the first 3 cases, it failed
f

to initiate for meshes of size 2048 cells and above A comparison of figures 5 1 and 5 2

shows the difference between a case m which the detonation initiates properly and one m
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which it fails to initiate In figure 5 1 the shock and the flame are co-located Figure 5 2

shows the shock running ahead of the flame Also note that the shock in figure 5 2 has

travelled a much shorter distance than the one m figure 5 1 (the figures correspond to the

same time) The reduced numerical diff'usion associated with smaller values of Ax might

be one reason why the detonation fails to initiate m fine meshes If the temperature

of a precursor cell is high, numerical diffusion would raise the temperature m the next

cell to the ignition limit or above and help m the propagation, of the reaction firont It

might be this factor that is missing, when Ax is reduced below a limit To discount

the possibility of a spurious propagation of the detonation wave due to the suspected

role of numerical diffusion, the observed speed of detonation wave is compared with the

theoretically predicted speed

The detonation velocity vd, may be defined as the velocity at which the detonation

wave enters the unburnt fuel mixture As shown m [15] an approximate expression for

the detonation velocity would be.

vd — 2 (72 + 1) 72^2 (-p^Ti -1-
Cp,2 C,,2^

1/2

(5 1)

where Ti is the temperature of the unburnt fuel and Cp^i and Cp^2 are the specific heats of

the reactants and products For the present case, Cpfi = Cp^2 and the equation simplifies

to,

VD - 2(7 + l)7i2fTi + ̂
1/2

(5 2)

Substituting 7 = 1 25, MW=15, Ru ' 8S14:J/{kg — K), R — R^/MW, 90 = 7 769 x
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IQ^Jjkg and T = 300i^", the detonation velocity vd is found to be 3110 54m/s Fig

ures 5 3 and 5 4 show the distance traveled by the reaction front with respect to time

for various mesh sizes The observed speed of the reaction front is 3015m/s and is

almost the same for all the cases in which the detonation was initiated properly

Figures 5 5—5 8 show the other notable difference between the solutions obtained

for various mesh sizes The peak pressure and temperature (just behind the reaction

front) are higher for smaller cell sizes and there is a big difference m the peak pressure

and temperature values reached during the initiation phase These could be explained

only with considerable insight about the initiation and propagation mechanism

An indication of the complexity of the flow dynamics during the initiation period

can be seen from the x — t diagrams 5 9 and 5 10 They correspond to the results

shown m figures 5 1 and 5 2 The x — t diagrams show details of the shock, expansion

fan and contact surface The pathhne of the shock-wave m figure 5 9 shows an increase

m velocity when the detonation was initiated This is in contrast to figure 5 10, where

the detonation fails to initiate and the shock continues to move at the same velocity

5.2 Contact Discontinuity

During a typical application of the pulsed detonation engine model, the initiation and

propagation of the detonation wave are simulated followed by the ensuing blow-down

process This is followed by the propellant fill process It is during this stage that the

accurate capture of the contact discontinuity plays a significant role As explained m the

previous chapter, during the filling process a buffer region of non-combustible purge gases
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IS injected first followed by fresh propellants The presence of purge gases avoids the
'  'y

premature heating and combustion that could have occurred had the fresh propellants

been injected immediately behind the burnt gases During, this phase, there are two

contact surfaces that need to be captured accurately with minimal numerical diffusion,

one between the cold purge gases and the burnt gases- and the other between the fresh

propellants and the purge gases

I  '

Roe's approximate Riemann solver (equation 2 9) has been known to smear contact

discontinuities, as do most other shock-capturing schemes Figure 5 11 shows the in

terface profiles, at one instant of time during the filling phase, computed using three

different mesh sizes (256, 512 and 1024 cells) The plot shows the profiles of both the

density (p) and the reactant mass fraction (Z) Decreasing the mesh size, does reduce

I

the thickness of the interface, but it becomes smeared over a larger number of points

Whenever Ax is reduced, the permissible time step per iteration is also reduced Hence,

the solver does a larger number of tirne steps (approximately 4 times as many) on a mesh

with 1024 cells, than on a mesh of 256 cells This gives more time for the interface to

diffuse across more cells for a given physical time But the smaller mesh size does help

to capture the interface with slightly better accuracy

Prom results obtained for a mesh of 256 cells, (see figure 5 11) it can be seen that the

unburnt fuel has diffused far enough to come m contact with the burnt gases even before

it has travelled half the tube length This high numerical diffusion offsets the purpose of

injecting purge gases Refining the mesh could solve this problem to some extent, but

the effect is quite slow as noted here Figure 5 12 shows a plot of the interface thickness
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with respect to the mesh size in number of cells The interface spreads to a greater

number of cells as the mesh is refined further This is an indicator to the fact that the

numerical scheme is less than first order accurate m capturing a contact surface

Figure 5 13 presents a comparison of contact surface profiles, obtained using three

different numerical schemes, Roe's scheme, AUSM+(both are explained m chapter 2)

and the space-time method [2] The space-time method is second order accurate m

space and time, while the other two are first order accurate The space-time method

IS able to capture the contact surface with reasonable accuracy and the solution is far

better than those obtained with the other two schemes Comparing the first order Roe

and AUSM"*" schemes with a second order solution is not a good way to estimate the

capability of these schemes, but this comparison helps to verify the viability of space-

time method One should note the close agreement between the results obtained using

Roe's scheme and AUSM+ The AUSM+ scheme performs as well as Roe's scheme and

m typical computations consumed 50% less CPU time The CPU time used by the

different numerical schemes for typical simulations of a full PDE cycle on an Origin 2000

processor are listed m table 5 1 The table shows the significant cost advantage of using

AMR (results from AMR are presented m the next section) Despite being faster than

Roe's scheme, the AUSM"'" scheme is considerably slower than the space-time method

Taking advantage of the efficiency of AUSM+ over Roe's scheme, results for the later

sections will computed using the AUSM"^ scheme
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Figure 5 13 Comparison of Density (p) and Reactant Mass Fraction (Z) profiles at time
< = 1 8 X 10~^s, obtained using different numerical schemes, for a mesh of 1024 cells
(Every other point is shown)

Table 5.T CPU time (m seconds) used by different numerical schemes for different mesh
sizes on an Origin 2000 processor

Mesh Size Space-Time Method Roe's scheme AUSM"*" scheme

256 cells 65 172 95

512 cells 263 692 378

1024 cells 1066 2774 1520

AMR, Ifnin ~ 7, Imax ' 10 — 190 106
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5.3 Adaptive Mesh Refined Simulations

The previous section shows the importance and effects of increasing the spatial resolution

in the numerical simulation A cost effective way of increasing the spatial resolution is to

finely refine the mesh wherever more resolution is required and let the coarse mesh remain

where the cell size is inconsequential In this section we present results obtained with

adaptive mesh refinement, using the Fully Threaded Tree (FTT) algorithm explained in

chapter 3 As explained earlier, one of the important features of this algorithm is its

ability to dynamically readjust the mesh as the flow evolves This makes sure that the

fine aspects of the flow do not escape the finely refined region of the mesh

Figure 5 14 shows the evolution of the mesh as the solution is advanced m time The

plot shows the pressure distribution at various instants of time, while the detonation

wave is propagating along the length of the tube Also plotted is the mesh structure

at those instants Recollecting the relationship between cell size Aj and level

Aj = the cells that are highly refined are those whose level is equal to Imax

The figure shows a case where Imin — 7 and Imax ~ 10 (Note Imax = 10 corresponds

to 1024 cells when uniform grid is used) The following numerical values were used for

the parameters that govern the refinement process, = 0 1, ̂spht = 0 4, = 1 0 and

£ = 01

The ambient pressure Pamb was set to 0 5 x and the reference pressure Pre/

to 1 01325 X which resulted m a high pressure gradient at the exit during the

onset of the computation This is one instance where the gradient indicator (equation 3 9)

senses the high pressure gradient and the mesh is refined (as seen from the mesh structure
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at t = 3 X 10~®s m figure 5 14) The location of the detonation front is sensed by the shock

indicator (equation 3 5) and the finely refined region follows it continuously throughout

the length of the tube Figure 5 15 shows the location of the reaction front with respect

to time for an equal spaced mesh (1024 cells) and AMR mesh {Imm = 7 and Imax = 10)

The location and speed of the detonation wave front obtained using AMR simulation

agree closely with those obtained using a uniform grid

The discontinuity indicator (equations 3 6,3 8) becomes significant during the filling

phase, when the location of the interface needs to be sensed and the mesh refined at those

locations However the contact surface was not sensed during the detonation propagation

phase as evident m figure 5 14 Figures 5 16-5 18 show the density and reactant mass

fraction plots, along with the mesh structure as the filling proceeds When the filling

begins, the interface between the purge gases and the burnt gases is quite sharp and the

indicator (equation 3 6) is able to locate its presence However as the interface moves

and spreads to a few more cells, the indicator does not identify it as a discontinuity

anymore and the mesh becomes coarse

The sensing of the Z-front is totally different The Z-sensor does identify the con

centration gradient and then refines the mesh throughout the filling phase It can be

inferred from equation 3 8 that the indicator will sense the Z-front and refine the mesh,

even if it starts spreading to a large number of cells But a diffuse Z-front necessitates

mesh refinement over a wide range of cells, which becomes computationally expensive

The interface sensing constant plays a significant role in sensing an interface,

reducing its value could be helpful in keeping track of an interface even when it starts

52



0 9

0 8

0 7

0 6

A D
N
: 05

A □Q.

0 4
A O

0 3 A g

02

0 1

0 -

P
z

Mesh Level

0 01

10

<D
>
<D

0 02 0 03 0 04 0 05
X

Figure 5 16 Plots of density, reactant mass fraction and mesh structure, at time t =
1 3 X 10~^s, during the filling phase Imm = 7, Imax = 10, Cjoin = 0 1, Cspht = 0 4,

= 1 0, gC 0 1

53



N

P

Z

Mesh Level
0 9

0 8

0 7

0 6

0 5

0 4

0 3

0 2

0 1
11111 111 11111111 III 1111111111 i-m-m

0 01 0 02 0 03

X

0 04 0 05

Figure 5 17 Plots of density, reactant mass fraction and mesh structure, at time t =
1 6 X 10~^s, during the filling phase Imm = 7, Imax — 10, ijom = 0 1, ̂ spht = 0 4,
= 1 0, = 0 1

54



p

z

Mesh Level
0 9

0 8

0 7

0 6

N
- 05
Q.

0 4

0 3

0 2

0 1
nTTTTnimimmJ^""

L_1

0 01 0 02 0 03

X

0 04 0 05

Figure 5 18 Plots of density, reactant mass fraction and mesh structure, at time t =
2 0 X 10~^s, during the filling phase Ijnin — ^max — ^join 0 1) ̂ spht 0 4,
= 1 0, = 0 1

55



to diffuse However using a very low e'^ might lead to spurious mesh refinement Results

obtained by reducing the value of from 0 1 to 0 05 are shown m figures 5 19-5 21

The results show that using a low helps to maintain a finely refined mesh around the

interface for a longer time, but as noted earlier, this is of little help Figure 5 22 shows

a comparison of the interface profiles obtained using a uniform mesh (1024 cells) and

AMR mesh [Imm = 7 and Imax = 10) The Z-front on the AMR mesh is as wide as it was

on the uniform mesh However the density plot shows that the contact-surface between

the hot and cold gases m the AMR grid, has diffused to a greater number of points

than m the uniform grid This is because the discontinuity indicator fails to identify the

interface once it starts diffusing and the mesh becomes coarse near the tail end of the

interface This is m contrast to the Z-mterface which was sensed properly (even when

diffuse) and captured as accurate as a uniform grid simulation

Other than using a contact discontinuity indicator, there is one more way to track

an interface and refine the mesh For simple problems like the present one, it is possible

to introduce a tracking variable x^f, whose initial value is set during the beginning of

the filling phase As the solution is advanced during each time step, the location of the

interface is updated using the interface velocity Ui/ (velocity at the point closest to x^f)

at that instant

It IS now possible to create a band, with its center at Xif and thickness Asjy, within

which the discontinuity indicator is set to unity This allows the cells within that

band to be refined to the maximum level Figures 5 23-5 25 show the results obtained
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by this method A band of finely refined cells follows the interface as it moves, but no

reasonable value of Axj/ will be large enough to contain the interface as it starts to

diffuse A comparison of the interface profiles obtained using the tracking variable with

those obtained using suitable values for e'^ are presented in figures 5 26 and 5 27 The

results presented m this section demonstrate that the adaptive mesh refinement is able

to reach the levels of accuracy obtained using a uniform mesh of comparable size with a

significant cost advantage The following section discusses about techniques other than

increasing the spatial resolution, for accurately resolving a contact discontinuity

5.4 Improved methods for resolving a contact discontinuity

Increasing the spatial resolution helps to capture a contact discontinuity with improved

accuracy Adaptive mesh refinement is a convenient way of increasing the spatial reso

lution to very fine levels with insignificant increases m cost However the fact remains

that, mspite of increasing the spatial resolution the contact surfaces will still remain

diffused over a large number of cells This is due to the innate numerical diffusion of

the numerical schemes By nature a shock wave always tends to steepen, because in any

finite compression wave, the {u + a) characteristics progressively approach each other

coalescing into a shock wave However the contact surfaces do not have this property

and they tend to diffuse The problem m numerical simulations is that, due to the pres

ence of high numerical diffusion, the contact surfaces diffuse to levels far higher than

those occuring physically The diffusion of the contact surfaces can be countered by

adding certain artificial dissipation terms that behave as negative diffusion and help m
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confining an interface within a few cell distances The rest of this section discusses one

such technique, called the Confinement method

5.4.1 Confinement of a passive scalar discontinuity

Pulses and step discontinuities concentrated over only two or three grid cells can be

convected over long distances without spreading (even on a coarse grid and with only first

order finite-difference schemes), by the addition of a non-linear confinement term [14, 11]

The idea of confining contact discontinuities was apparently first discussed by Harten [3]

This method involves treating the features as solitary waves, which involve functions that

obey a non-linear, discrete evolution equation, such that their internal structure remains

fixed and confined to a thin region a few grid cells wide Basic expressions and results

for one dimensional scalar advection equation have been presented by Steinhoff [14] and

Puskos [11] Consider the one dimensional advection equation for a scalar w,

dw dw

A first order upwind discretization of this equation will be

V). =  (5 4)

where n labels the time step, i the grid index and a = aAt/Ax This scheme of dis

cretization IS highly diffusive A Taylor's series expansion of equation 5 4 shows that the
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diffusion can be represented as,

A  2-i2 1 O-(l-cr)jiQixx o^w, where, fio — z

The basis of the Confinenient procedure is to counter this numerical diffusion by

adding a term to equation 5 4 which would convect a step discontinuity inward, along

its own derivative

=  -a {w^ - w^_i) - ef (w^) (5 5)

Here, sf is the "confinement term" added to the basic numerical scheme and e is the

"confinement parameter" One form of this confinement term which conserves the scalar

w, maintains the actual speed of advection a and is suitable for the advection of a step

discontinuity is,

(a 6)

The operator S~ is defined as S~fi — ft — /i-i The results presented m Ref [11]

show that this equation is able to confine and advect a step discontinuity in a scalar

equation However this choice of the confinement term has some limitations, there exists

a maximum stable value of e for a given a This condition reduces the effectiveness of the

Confinement method when low values of a are involved The next subsection discusses

the extension of this Confinement procedure to a system of equations
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5.4.2 Confinement of contact discontinuities in vector systems

The suitability of the Confinement method for the present problem depends on how

best it could be extended to a vector system of equations This subsection descibes the

extension of this method to Euler equations using the characteristic equations as basis

The one-dimensional reactive Euler equations 2 1 can be diagonalized by pre-multiplymg

with M~^ (refer Appendix A) to obtain the characteristic form of those equations

=  (")

where, A = diag (u, u + a, u — a, u) Applying the definition 5Q = M ̂6Q, the following

definitions of the characteristic variables 6Q — {Sqi,6q2,6qs, Sq^)^ are obtained, with SQ

,  9 drepresenting an arbitrary variation, either — or —
ot ox

6qi = Sp-

2a2 2a (5 g)

% = ̂  {pZ) - ̂5p

From the eigenvalues m the diagonal matrix A, we see that two of these variables, qi

and ̂ 4 are convected at the local fluid velocity u These two variables, and ̂ 4, are the

characteristic variables of interest for the present problem, the variables that correspond

to the ones that need to be conflned for capturing interfaces within a few cell distances

A confinement term can be added to the flrst and last characteristic equations (the
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equations being convected at speed u), similar to the scalar equation 5 5

dt dx
(5 9)

where,

F = {f mAojm'

The function / is defined in equation 5 6 Now pre-multiplymg equation 5 9 by M takes

it back to the conservative form,

ot ox
(5 10)

where.

F^MF =
u

f{4l)

uf (gi)

/ (gi) + go/ (g4)

V
/(g4)

/

(5 11)

The modified finite volume update equation (refer equation 2 4) for the unknown vector

Q IS, I

At r~AQ (5 12)i = -^ [-£^1+1/2^+1/2 - -£1-1/2^-1/2} + At Hi- eAtFi

Q^+'^Q^ + AQi (5 13)

This equation is tried on a simple problem, two interfaces moving at a constant speed

in a straight tube A tube of length L = 20m with both ends open is filled with the
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same working fluid as the PDE model The initial condition can be stated as,

/  ' , \
1 01325Ar/m2

/  \
P

u

250m/s

400ir

if 2 < a; < 6

\

1 01325A^/m2

250m/s

300ii:

0

(5 14)

otherwise

/

The contact surfaces are at a; = 2 and x = 6 and are to be convected at the constant

speed u The results shown m figures 5 28 and 5 29 show that it is possible to capture

the interface within fewer cell distances when a sufliciently high value of the confinement

parameter e is used However this improvement could not be repeated m more compli

cated flow situations like the filling phase of the PDE model This may be attributed to

several reasons On important reason being that the confinement term in equation 5 6 is

neither the only choice nor the best In this work, the confinement term used for a scalar

advection problem was extended m a straight forward way to a system of equations No

attempt was made to try using other possible expressions as confinement terms The

present confinement term was found to be unstable, leading to oscillations within a few

time steps It could be possible to devise a stable expression for the confinement term
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Even with such an expression, the possible difficulties are foreseeable

As IS seen from the results, a higher value of the confinement parameter e is necessary

for effective Confinement The system has to be stable for large values of e even for low

values of the CFL number cr In a problem situation, such as the PDE model, the

effective local CFL number based on u could easily be as low as 0 05—0 1, even when

the global CFL number based on n + o is set to 0 9 While negative diffusion should be

added near the contact surface, care should be taken not to meddle with the diffusion

near the shocks (The density and entropy are discontinuous near a shock too) When

these and other concerns are addressed, Confinement of the contact surfaces should be

achievable even m complicated flow situations
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Chapter 6

Conclusions and

Recommendations

An unsteady flow solver code was developed from scratch and used for simulating the

various phases of a PDE working cycle. Simulations were carried out using two numerical

schemes, Roe's approximate Riemann Solver and advection upstream splitting method

(AUSM"^) The results show that AUSM"*" scheme performs as well as Roe's scheme and

costs less In typical computations AUSM"*" consumed 50% less CPU time compared

to Roe's scheme Nevertheless it still remained more costly than Chang's space-time

method The effect of mesh size on the initiation and propagation of a detonation

wave and the interface were studied The study showed the importance and effects of

increasing the spatial resolution

A fully threaded tree (FTT) structure was used for adaptive refinement of the mesh

Results obtained using this adaptive mesh reflnement procedure show that it is able

to reach the levels of accuracy obtained using a uniform mesh of comparable size In

terms of CPU time consumed, the adaptive reflnement helped m reducing the cost of

computation by a factor of 10 This sigmflcant savings m cost of computation makes it
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possible to increase the spatial resolution to very fine levels without increasing the cost

much Even with the increase in spatial resolution, the accuracy of contact surfaces is

not satisfactory This is due to the high numerical diffusion of the fiux schemes

An improved method for accurately resolving the contact discontinuity by adding a

suitable negative diffusion, namely the Confinement method, was tested for a simple flow

problem This method yielded good results for this simple test case However it failed

m complicated flow situations, like the present PDE model

Future work can be directed towards extending the flow solver to multi-dimensions

Also a multi-species full kinetic model can be implemented to model the chemical reac

tion instead of the present simplified chemisty model Making the solver second-order

accurate could be helpful in capturing the contact discontinuities more accurately How

ever Confinement seems to be the best option for capturing the contact discontinuities

with improved accuracy Some of the difficulties that might arise m the extension of

the Confinement method to complicated flow situations have been identified The most

notable among them being the presence of multiple CFL numbers m the flow field More

attention needs to be paid towards developing better expressions for the confinement

term which would remain stable and effective over a broad range of CFL numbers The

Confinement method should also be tailored such that it adds negative diffusion only

near the interfaces without meddling with the shocks and detonation fronts
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Appendix A

Jacobians and Eigensystem for
Reactive Euler Equations

The conservative form of the quasi-one-dimensional reactive Euler equations can be

written as,

ftrtA a p?yi

(A 1)
dQA , dEA

+ —— = HA
dt dx

where A — A{x) is the area, Q is the unknown vector, E is the flux vector and H is the

source term

Q =

/  \ (  \ (  \
p pu 0

9  , p dA
pu pu +p

, H =
A dx

pe (pe + p)u 0

^pz ) ^ — A'pZexp-^"/^^ ̂

(A 2)
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dE
The flux Jacobian A = -7— can be written as

oQ

A =

0

(7 — 3) v?
2

(7 — 1) — jeu

+ (7 - 1) qouZ

—uZ

- (7 - 3) n

\  f 3 o ^
--(7- l)u +76

- (7 - 1) qoZ

Z

0  0

(7-1) - (7 - 1) 90

ju - (7 - 1) qou

0  u

(A3)

Equation A 1 can be premultiplied by M~^ = —— (M is the matrix of right eigenvectors

of A) to obtain the characteristic form,

at ox
(A 4)

which introduces the diagonal matrix of eigenvalues,

u

A =

u + a

u — a

U

(A 5)
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The transformation matrices are,

,  (7-1)M2

=

(7 - 1) M'^Z

M =

u

2  2
u  u

u + a

(7 - 1) M

(7 — 1) M\ 1 — (7 — 1) M

V 2a

—1 — (7 — 1) M
2a

(7 - 1) MZ

(7-1)
a2

(7-1)
2a2

(7-1)
2a2

(7-l)X

u — a

2

0

y + ̂+TTT)
u

(7 - 1) QQ
a?

(7- 1)90
2a2

(7- 1)90

1 +

2a2

(7 - 1) qoZ

+ qa --ua+^^_^^

Z  Z

Here M is the mach number and a the speed of sound

0

0

+ qoZ qo

(

1

(A 6)

(A 7)
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