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Abstract .

This thesis (was an attempt to simulate the ‘detonatlon waves and contact surfaces
m unsteady flows with 1mprc\);/ed accuracy and efficiency through the use of adaptive
mesh refinement (AMR) In the present w‘ork, the problem dealt with 1s the 81mu1:cxt10n
of the working cycles of a pulsed detonation engine (PDE) A flexible code which can
be used for any unsteady flow simulation was developed The analysis was base’d on
the quas1 one-dimensional Euler equations and the reaction rate was modelled using a
one-step irreversible reaction equation The numerical simulations were carried out using
two numerical schemes, namely, Roe’s approximate Riemann solver and the advection
upstream splitting method (AUSM)

Results of this numerical study show the importance and effects of increasing the
spatial resolution The use of adaptive mesh refinement made 1t possible to increase
the spatial resolution with msignificant mncreases in cost of computations The results
also show that the contact surfaces cannot be captured accurately merely by increasing
the spatial resolution, due to the high innate numerical diffusion of the flux schemes

The possibility of confining an interface to a few cell distances by adding a switable

confinement term has also been discussed
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Nomenclature

speed of sound

Jacobian of flux vector E with reSpect to conservative variables )
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pressure
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qo heat release per unit mass

Q vector of conservative variables
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R spectfic gas constant
R,

universal gas constant

S entropy

t time

T temperature

U velocity

Up detonation velocity
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z cartesian coordinate
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€ specific internal energy

€ confinement parameter
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3 refinement 1ndicator
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Chapter 1

Introduction

There are abundant CFD applications, which involve the simulation of shockq and
other discontinuities A core objective of many CFD algorithms 1s to simulate these
features with high accuracy and minimal cost of computation The present work deals
with one such application, the simulation of a pulsed detonation engine (PDE), 1n which
there 1s a need to accurately simulate a detonation wave and contact surface The PDE
1s a novel alternative to conventional gas turbine or rocket engines that can provide im-
péovements m performance or costs for space propulsion Some anticipated advantages
of PDEs are (a) compactness, due to the high energy densities involved, (b) lower spe-
cific fuel consumption due to higher thermodynamic efficiency compared to a constant
pressure combustion process and (c) reduction 1n mechanical complexity due to the lack
of compressor and turbine The PDE model used and all simulations c\arned] out as part
of this work were based on a recent study by Mohanraj [10] and 1s aimed at generating
a flexible code and 1mproving the efficiency of computation.

The operation of a PDE can be divided into three phaées (a) the fill tsme during

which the chamber 1s filled with reactants, (b) the detonation travel time during which

-~



the detonation 1s mitiated and traverses through the chamber burning up the reactants
and (c) the blowdown time during which the bulk of the combustion products are expelled
by a system of compression and rarefaction waves After the blowdown process the fill
process starts agan and the cyclic operation continues A detailed description of the
PDE operation 1s presented 1n chapter 4 (see also figure 4 1) A finely refined mesh 1s
required for accurately simulating the detonation waves and contact surfaces However
during some parts of the cycle, like the blowdown process, no sharp flow features are
present and the computation could as well be carried out using a coarse mesh In such
a situation, one attractive way to solve a problem 1s to use adaptive mesh refinement
(AMR)

Adaptive mesh refinement 1s used to increase the spatial and temporal resolution
of the numerical simulation while mimimizing the computational cost The mesh 1s not
fixed 1n time and 1s constantly evolving to match the instantaneous requirements AMR
makes 1t possible to selectively refine the mesh only in some regions of the computational
domain where accuracy 1s of significance, while retaining a coarse mesh where 1t 1s not
This helps in minimizing the cost of computation

In the present work, operation of a PDE has been modelled using an AMR simulation
The analysis 1s based on the quas: one-dimensional Euler equations using a single progress
variable to model the reactants and products The numerical simulations were carried
out using two numerical schemes, namely, Roe’s approximate Riemann Solver [13] and
AUSM™ [8] Both the solutions are first order accurate in space and time The procedures

)
required for the AMR simulation were coded using the Fully Threaded Tree (FTT) data



structure of Khokhlov [6] Finally an attempt was made to effectively capture the contact
surfaces by adding artificial dissipation that has the effect of confining the spreading

contact surfaces




Chapter 2

JFormulation of Numerical

Schemes

The present chapter lays the foundation for the numerical simulation of the deto-

nation phenomenon. The reactive Euler equations for the system are expressed i the

conservation form and then two different numerical schemes are formulated for those

equations

2.1 Conservation Equations

i

The quasi-one-dimensional reactive Euler equations where a single reactant C 1s con-

verted to a single product D by a one-step irreversible chemical reaction governed by

|l
Arrhenius kinetics, may be written 1n conservative form as

8QA  OEA _

5t T op — A

(2.1)




where A = A(z) 15 the local cross section area, @ 1s the vector of conservative variables,

FE 15 the flux vector and H 1s the source term

P pu 0
5 D ( dA)
pu puc+p =\ 5=
Q = ) E= ) H= A\ dz . (2 2)
pe (pe +p)u 0
pZ puZ ~KpZ exp—Fa/BuT

Here p,u,p,T,e,Z,E, and R, are the density, velocity, pressure, temperature, specific
total energy, reactant mass fraction, activation energy and universal gas constant re-
spectively K 1s a constant termed as the pre-exponential factor It 1s an empirical
parameter that determines the reaction rate The following equations are used to close

AN

the system 2 1
1
e = e+-u’+q2Z
2 (23)
p = p(pT)
Here € 1s the specific internal energy (in J/kg) and go 1s the heat release parameter (in
J/kg) for the chemical reaction C — D It 1s assumed that the molecular weights and
the specific heats are constants for the reactant and product The various Jacobians and

matrices for this system of equations, essential for the development of flux schemes, are

Listed in Appendix A




2.2 Finite Volume Formulation

Let a domain of length L be split mto N cells A cell of index 4+, where + € [1, N],
1s characterized by 1its centroid z,, volume V,, and location of its left and right faces
at &,_1/5 and z,y1/5 respectively The variation of area along the length 1s given by
A = A(z) Given this description of a cell, equation 2 1 1s integrated over the volume of
a cell 1 1n the usual fashion This results i an explicit update equation for the unknown
vector @ ,

At 1~ =
AQ, = A [Ez+1/2Az+1/2 - Ez~1/2Az—1/2} +AtH, (24)

1

Qi =QF + AQ (25)

Here F 1s the numerical flux computed on the faces of the cells explicitly using one
of the numerical schemes to be discussed below In the fimite-volume formulation 2 4,
the differences among all the numerical schemes lie essentially ‘1n the definition of the
numerical flux Ez-{—l /2 evaluated at the cell interface Figure 21 shows a typical quasi-
one-dimensional mesh along with 1ts cells, their centroid and faces Two different upwind

numerical schemes for computing the numerical flux are presented in this chapter

2.3 Approximate Riemann Solvers

One way of designing an upwind numerical scheme 1s through the use of the so-called
Riemann solvers or approximate Riemann solvers In these methods the solution is

considered as piecewise constant over each mesh cell at a fixed time and the evolution
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Figure 2 1 A typical quasi-one-dimensional mesh

of the flow to the next time step results from the wave interactions originating at the
boundaries between adjacent cells The cell interfaces separate two different fluid states
Qr at the left side and Qg at the right side and the resulting local interaction can be
exactly resolved since the imitial conditions at time ¢ = nAt correspond to the Riemann
or shock tube problem This problem will have an exac‘t solution composed of a shock
wave, a contact discontinuity and an expansion fa;l separatmé regions of uniform flow
conditions Each wave carries information i an upwu;d manner and hence the resulting
state will only depend on the local physical properties The new piecewise constant
approximation at time £ = (n + 1)At 1s then obtamned by averaging over each cell, the
fluid states resulting from the perturbation waves This produces an explicit conservative
scheme of first-order accuracy

Since the exact solution of the Riemann problem requires the resolution of a non-
linear algebraic equation which can be quite time consuming, approximate Riemann

solutions are frequently considered to reduce the computational work at each interface
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Two 1nteresting Riemann solvers developed by Roe [13] and Liou [8] will be summarized
mn the following sections The flux expressions of these numerical schemes are expressed

mn a form suitable for comparison

2.4 Roe’s Approximate Riemann Solver

The approximate Riemann solver developed by Roe [13] 1s based on a characteristic
decomposition of the flux difference while ensuring the conservation properties of the
scheme Roe constructs a mean value Jacobian A such that the following conditions are

met

1 E(Qr) - E(Qr) = A(Qr,Qr) (Qr - Qu)

2 The matrix A(Qr,Qr) has real eigenvalues and 1s diagonalizable (has linearly

mdependent eigenvectors) (See appendix A)
3 A(Q,Q)=A(Q) =0E/dQ, so that consistency 1s satisfied

As the first step an averaged state @ = Q (Qr, Qr), known as the Roe average is defined

For the system 2 1, the Roe average 1s defined by the following relationships

P = +/PLPR

UrL\/pPL + UR+\/PR

VPL+ VPR (26)
hr+/pL + hr+/PR

VPL /PR
Z1\/PL + ZR\/PR

VoL + /Pr

&1
I

=1
I

N
I




where h = e+p/p Further, the flux E 1n equation 2.2 can be expressed as a sum of the

convective and pressure terms

E=E°‘+P 27
1 (o)
u p
E°=m¥, m=pMa, ¥= , P= (28)
h 0
Z 0

Here m, M and a are the mass flux, Mach number and speed of sound respectively Using
these definitions the numerical flux for the first order Roe’s scheme EH /2= E (Qu, Q1)

on the cell face straddling the sth and ¢ + 1th cells can be expressed as,

~

1
Ez+1/2 =

((m‘l’)z + (m‘I’)l+1) - %lAIz+1/2 (Quy1 — Q.) + 3 (P, + Poy1) (29)

[N-R

ar—1

|Alz+1/2 = M\z+1/2|A|z+1/2M1+1/2 (2 10)

Here the matrix |A| can be referred to as “the magnitude of A” It 1s a positive definite
matrix and 1ts eigenvalues are given by the magnitudes of the eigenvalues of A The
matrix M 1s composed of the right (or column) eigenvectors of A and |A| is the diagonal
matrix formed from the corresponding absolute values of the eigenvalues All the quan-
tities 1n equation 2 10 are evaluated using the average value Q = Q(Q., Quy1) as defined
m26

One disadvantage of Roe’s approximate Riemann solver 1s that 1t only enforces jump

conditions across each cell and does not enforce a condition on entropy So both expan-



sion shocks and compression shocks are allowed In the present notation, the Rankine-
Hugoniot jump conditions are identically given by E,y; = E, The entropy condition
that s,41 > s, (or conversely, if the shock is propagating in the opposite direction) is
not contamned 1n the relation F,;; = E, and must be added externally Harten [4] ad-
vocates a techmique 1 which a local expansion fan 1s mtroduced in the approximate
Riemann solution when an expansion 1s detected through a sonic point This 1s realized
by limiting any vanishing eigenvalue to a small value €, which rules out the possibility
of an expansion shock As described by Harten [4], the use of this value €, introduces an
intermediate state (between the states Q1 and Qg) that simulates the diffusion present
in an exact Riemann solver For cases where an eigenvalue A changes sign, the modified
eigenvalue 1s defined as >

5 Masijp of [Mogrye 2 €
A=q ! ‘ (211)

€ if [Mpy2 <€

The quantity € 1s obtained from,
€ = max [O, (j‘z+1/2 - )\z) , (>"L+1 - ;\H_]_/g):l (2 12)

2.5 The Advection Upstream Splitfing Method or AUSM™

‘The AUSMT scheme of Liou (7, 8, 9] 1s formulated by basically distinguishing between
the convection and acoustic waves and treating them as two physically distinct processes

t

The convective terms are upstream-biased using an appropriately defined cell-interface

10




velocity, while the pressure term is strictly dealt with by using acoustic waves This ex-
plains the scheme’s name, advection upstream splitting method Following the procedure

used for the formulation of Roe’s method, the flux E 1s expressed as,

E=E°+P (2 13)
. .
U P '
E°=m¥, m=pMa, U= , P= (2 14)
h 0 ‘
VA 0

The AUSM™ flux 1s defined in terms of the interface mass flux i, /2, which is expressed
in terms of the Mach number at interface M7, and speed of sound a1/ Note that the

interface quantities are denoted by the subscript 1/2

N

2.5.1 Definition of a;/,

It 15 necessary to use a common speed of sound a;/, rather than a, or a,+1 to achieve a
unification of the splittings of both Mach number M and unknown vector Q (7, 8] For
the present unsteady flow test case, the judicious choice of an interface speed of sound

will be,

1
a2 =3 (@, + ar41) (2 15)

11




Utilizing this common speed of sound, the mach numbers 1n the adjoming cells may be

defined as

Uy Ug4-1
M’L = ) M’L+1 =
ai/2 a/2

2.5.2 Mach Number and Pressure Functions

(2 16)

The interface mass flux and pressure are defined i terms of certain polynomials of

the Mach number M These polynomials are called the Mach number and pressure

functions The following Mach number and pressure functions are defined to facilitate

further analysis Let,

M (M) = 5 (M M)

,

{ :J:Z(M:izl)2, otherwise

Mz (M) = 9

(217)

(2 18)

if | M| > 1,
(2.19)

| M?E) (M) [1 F 165/\4?:2) (M)] , otherwise

These polynomials were devised to meet certain properties, such as consistency, contin-

uous differentiability, symmetry and monotonicity; see [7] for details They are the basic

igredients used for defining the interface mass flux my/, Let the pressure functions be

defined by,

M (M) /M, if [M| > 1,

1)
:E:MZE) (M)(2F M), otherwise

12

(2 20)



MGy (M) /M, if [M] > 1,

P(ﬂg,a) (M) (2 21)

=M, (M) [(2F M) - 16aM M, (M)], otherwise

The numerals 1n the subscript of M and P indicate the degree of the polynomial used
n the range |[M| < 1 For |M| > 1 all polynomuals are first order (a, ) are parameters
as mdicated Considering a few more conditions on the polynomials (see [9]), yields the

following values for o and S,

2.5.3 Numerical Fluxes

In the AUSMT scheme, the interface mass flux 1s defined using the Mach number func-
tions as follows (This 1s to ensure that the flux sphitting will also satisfy the properties

of consistency, monotonicity, etc )

M1/2 (Mg, Myy1) = Ma,g) (M) + M@,ﬁ) (Mi41) (222)

pLMyjaa1/2, 1 My >0
My = (2 23)

pPrRM1 20172, otherwise

Next the interface pressure 1s defined as,

DPij2 (Qz, Qz+1) = P(_;,a) (Mz) D+ 'P(T';,a) (Mz+1) Dit1 (2 24)

13



Then the full numerical flux, Ez+1 /218

1
Eyyip =5 [maa (4 Tua) = Imajol (Ti1 = T)] +172 (225)

Comparmg the AUSM™ flux equation 2 25 with Roe’s flux expression 2 9, the follow-

1ng observations can be made

-

1 The first term on the RHS of equation 2 25 1s clearly not a simple average of the

flux F at the 2 and 2 + 1 states, but rather a Mach number weighted average

2 The major difference between the two schemes 1s the dissipation term In equa-
tion 225, the dissipation coefficient |m;/p| 15 merely a scalar, while mn Roe’s

scheme 2 9, the dissipation coefficient 15 the matrix |A], 41 /2

3 The AUSM™ scheme does not mvolve computation of the Jacobian matrix, and 1t
always mvolves only the common term m, for any additional conservation laws
This reduces the computational cost, and again, the cost is only linearly increased
when any additional conservation equations are considered As will be seen later,

the AUSM™ scheme performs as well as Roe’s scheme and costs less

14




Chapter 3

Adaptive Mesh Refinement

Adaptive Mesh Refinement (AMR) 1s used to increase the spatial and temporal res-
olution of a numerical simulation with msignificant mcreases m cost of computation In
the present unsteady flow simulation, the refined portion of the mesh has to closely follow
those regions of the flow where gradients are large (shocks, detonation waves and con-
tact surfaces), to prevent them from passing out of the fine mesh region as the 1teration
proceeds This necessitates periodic rebuillding of the mesh The individual computa-
tional cells can be organized on a tree structure, so that each cell can be refined or
unrefined separately from the others, as needed While this tree structure 1s natural for
mesh refinement, 1t requires additional features to allow an efficient data structure to be
declared The Fully-Threaded Tree (FTT) algorithm of Khokhlov [6] satisfies these re-
quirements In the FTT structure every cell has an easy access to 1ts children, neighbors
and parents It could be said that an FTT 1s a tree threaded 1n all possible directions,
which explains the reason behind i1ts name This tree structure allows all operations
and modifications of the tree to be performed 1n parallel, which 1s quite promising for

use with parallel computers The tree structure and 1mplementation details of FTT as

15



applied by Khokhlov [6] are explained here

3.1 FTT Structure and Implementation

The computational domain of length L, 1s subdivided mmto a number of cells of various
sizes 1/2,1/4,1/8, of L Cells are logically organized in a binary tree with the entire
computational domain being the root With every cell ¢ the following information can

be associated

1Lv(i) — level of the cell in the tree

1Ky(s) — TRUE/FALSE if cell 1s split/unsplit

1Pr(1y) — pomter to a parent cell
1Ch(1,3)) — pomters to children, j=1,2
1Nb(3,3) — pomters to neighbors, j=1,2

The cell size 1s related to the level 1Lu(z) by A, = L/22%(Y  Cells 1n the tree are
etther split (have children) or leaves (do not have children) Logical relations between
cells 1n the tree, and the directions of various pomnters are illustrated in figure 3 1 for
the one-dimensional binary tree In figure 3 1, the root (cell 1) represents the entire
computational domain It has two children (cells 2 and 3), each representing half of
the domain Cell 2 1s further subdivided mto two cells (cells 4 and 5)  Newghboring
leaves are not allowed to differ wn size by more than a factor of 2 The neighbor-neighbor

relation 1s not reciprocal for leaves of different sizes that face each other In Fig 3 1, cell

16
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Level=1 | —e
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Level=2

2 F A
3

Figure 3 1 Logical relationship between cells of a one-dimensional, binary, fully threaded
tree

Level=

5 has cell 3 as 1ts neighbor, but cell 3 has cell 2 as 1ts neighbor and not cell 5 A jth
neighbor of a cell ¢ either has the same size as the cell itself, IAsz(w) = A,, or it 1s two
times larger, A ny( ;) = 24, In the former case, the neighbor may be a leaf or a sphit
cell In the latter case, 1t can only be a leaf

In the FTT structure, all cells are orgamized 1 groups ¢alled “octs” Each oct
contains two cells (When extended to multi-dimensions, every oct contains 4 cells in
a two-dimensional configuration and 8 cells in three-dimensions). The name “oct” 1s
chosen because 1t contains 8 cells mn three-dimensions The FTT structure implemented
1s llustrated in figure 3 2 Each cell stores the physical state vector Q™ and AQ associated
with 1t It also has a pointer to an oct which contains 1ts children, if any, or a nil pointer
Each octet knows 1ts level, OctLv, which 1s equal to the level of the oct’s cells Each
oct has a pomter OctPr to a parent cell It also has pomters OctNb(k) to parent cells
of neighboring octs The number of neighbors for 1, 2 and 3 dimensions are k=2, 4 and

6 respectively Octs also contain the coordinates r(z,y, z) of their centers, which 1s also
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Oct1 Oct 2

OctPr Cell 1 Cell 2 OctPr Cell 1 Cell 2
OctLv Qn Qn OctLv Qr Qr
(X,y,Z) AQ AQ r(X,Y,Z) AQ AQ

OctNb(2) OctCh OctCh OctNb(2) OctCh| || OctCh

i

Oct 3 Oct 4
OctPr Cell 1 Cell 2 OctPr Cell 1 Cell 2
OctLv Qr Qr OctLv Qr Qr
1(X,Y,2) AQ AQ r(x,y,z) AQ AQ

OctNb(2) OctCh OctCh OctNb(2) OctCh OctCh

Figure 3 2 Relationship between cells and octs 1n a fully threaded tree Ponters from
octs to cells and from cells to octs are indicated by arrows
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the centroid of their parent cells For the umiform area case, the coordinates of cells that
belong to an oct can be found by adding or subtracting A,/2 from the corresponding
oct’s coordinates But for the variable area cases, the location of the centroid needs to
be computed Hence, 1t 1s economical to store the coordinates rather than compute them

every time they are needed

3.2 Integration Procedure

Integration 1n time on the tree can utilize the usual flux evaluation algorithms used for
grids, but requires a different time-stepping strategy to be computationally efficient This
strategy 1s quite different from that typically used on regular grids In the imtegration
procedure described below, integration in time and tree refinement are coupled together
and time stepping at different levels of the tree and tree refinements of these levels are
interleaved Also the computations are organized not on a cell-by-cell, but on a face-by-
face basis At every face, fluxes are evaluated, changes to cell values on the left and on
the right of the face are applied, and then fluxes are discarded

The finite volume formulation 2 4 has to be used to update @@ with different time
steps At(l) at different levels of the tree I, I <1 < lnag, where Ly, and ey are the
minimum and maximum levels of leaves (I represents the cells on the coarsest grid
and lpq, those on the finest grid) A global time step, on the coarsest grid, At = At(ln.n)

1s determined from the CFL condition

2_lmmL

At=o¢
max, (a, + |u,|)
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where a 1s the sound speed, ¢ < 1 1s the CFL number, and the maximum 1n equation 3 1

1s taken over all leaves ¢ 1 all the levels Time steps at various levels are scaled back

proportionate to cell size,

At(l) = 2l (32)

Integration at different levels of the tree 1s interleaved with tree refinement Let the
procedure of advancing level [ one step At(l) in time be designated as A(l), and the
procedure of tree refinement at level I as R(I) The R procedure consists of refining
leaves of level [ and unrefining split cells of level [ according to certain refinement criteria
This procedure 1s described m section 33 The advancement procedure A 1s described
below .

Let the right and left neighbors of cell ¢ be 14 and 1—, respectively The state vector

at the beginning and end of a global time step 1s Q™ and Q"1 respectively The A(l)

procedure 1s described 1n the form of the following pseudocode

for (leaves 7 of level ! —1){ 1f(: has split neighbors) AQ, =0
for (leaves 2 of level !){
.
1f (2+ 1s a leaf or boundary){

Compute fluxes Ez+1/2 at the (1,1+) face;

— i

AQ’L = AQz - Ez+1/2Az+1/2 + HzV;
(AQuy = AQuy + Ey1p A1y

}

1f (12— 1s a leaf of level | —1 or boundary){

)
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Compute fluxes E_1/2 at ‘the (1,2—) face;
AQy=AQ+E, 104, 12 )

AQi- =AQu —E,_1/3 A, 1/

}

for (cells 1 of level [){
1f (2 15 a leaf)
Qr=Qr +AQ, x At()/V, .
AQ,=0

else

N

1K
Q:L = E 231 QzCh(z,])
]:

The globz;l tume step of mtegration consists of going through all levels of the tree,
starting with l,,,n, and performing a se(iuence of refinements and advances at every tree
level Advancing the solution by one global time step 1s done through a call for the
procedure S(I), where the procedure S() 1s a combmation of advancing and refinement

procedures,

S() = RS + DADS( + DAQ) (33)

and S(I) does nothing 1f | > le,; All procedures in 3 3 are performed from left to

)
right For example, for [, = 6 and I, = 8, the sequence generated by 3 3 would be
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5(6) = [R(6) [R(7) [RSA(8)A(®)] A(7) [REAB)A()] A(7)] A(6) [R(7) [RSA(8)A()]

A(7) [R8A(8)A(8)] A(7)] A(6)] Square brackets separate different levels of recursion
A vivid description of the algorithm can be found m [6] In the procedure A(l) the fluxes

E are calculated using one of the numerical schemes described 1n the previous chapter

3.3 Mesh Refinement

The most difficult part of adaptive mesh refinement 1s to decide where and when to refine
or unrefine a mesh The refinement procedure currently implemented consists of four

steps

1 For every cell, a refinement mdicator, 0 < £ < 1, 1s computed Large £ > &g pint
mdicates that a leaf must be refined, and small £ < &;0:n, 1ndicates that a split cell

can be unrefined, &spi¢ and §;0in are some predefined constant values

2 Smooth ¢ 1n order to prevent cells from being falsely refined (mesh trashing) in

places where ¢ fluctuates around critical values £sppt and &50in
3 Leaves are refined 1f £ > &gpint

4 Spht cells are unrefined 1f { < {;n and if they have not just been splhit and if

joming them does not produce an 1solated leaf

An mdicator proportional to the gradients i the solution can be used to compute ¢

Such an indicator shows where to expect a large error in the solution The indicator &

22



1s constructed as a maximum of several indicators,
¢ =max (¢,¢% ) (34)

each of which 1s erther a shock indicator, a contact discontinuity indicator, or a gradient

indicator, all normahzed to unity, 0 < €% < 1 As a shock indicator the quantity used 1s,

& = max 2y
1 of Ipsz(z,;)) —pll > €, (3 5)
;S‘J — min (ple('L,j)>p7.)

0 otherwise

The constant £; determines the mimimum shock strength to be detected. In the present

work, €; was generally set to 10 A contact discontinuity indicator 1s defined as,

& = anlffgff,y
L [PaNb(s,g) — Pl <o, |PuNb () — 21l S, (36)

= min (pTNb(l,]ﬁp") min (p’LNb(’L,])’ pz)

C
2V

0 otherwise

The quantity e, was set to 0 1 for most calculations Another possible indicator for the

contact discontinuity 1s,

1 if IplN—b(""])___LZ' > g
57?,] — |psz(1.,]) - pzl (3 7)

0 otherwise
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One more ndicator £7 1s used for locating the interface between the burnt gases and

1

fresh propellants This indicator is constructed on the reactant mass fraction Z as,

1 f002<Z2<098

p 0 otherwise

A gradient indicator for a variable b may be constructed as

b, —|b ‘
éf:n_l?’%( ey ) o
=12 \ max (|szb(2aJ)|’ |bl|)

where b may be mass density, energy density, pressure, velocity, vorticity etc For the
present problem the gradient 1é1d1cator 1s constructed on pressure and temperature Ac-
cording to equations 3 4-3 8, shocks and contact discontinuities are marked with £ =1
and refined to the maximum refinement level allowed and the gradient indicators 3 9 are

applied only to a smooth flow.
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Chapter 4 |

Pulsed Detonation Engine Model

The Pulsed Detonation Engimme (PDE) 1s a novel alternative to conventional gas
turbine or rocket engines and may provide improvements bo’;h performance and costs
for space propulsion The aim of the present work 1s to develop a computational model
of the ll)DE, which can simulate all stages of the working cycle The PDE model was
developed based on a recent study by Mohanraj [10] The following sections present the
operational details of the PDE model, along with various parameters used in controlling
the operation The default values used for those parameters are also stated, and those
were the typical values used for obtaining all the results of chapter 5, unless otherwise

stated

4.1 PDE operational stages

The various stages in the operation of the PDE are shown 1n figure 4 1 A typical cycle

of operation of the PDE can be divided into the following three stages

Detonation initiation and propagation At the beginning of every cycle, the tube

1s full of fresh fuel and oxidizer The detonation 1s imitiated by specifying a finite
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Valve closed Fuel-Oxidizer mixture

a.
b.
Combustion products
¢
Expansion fan
P
=l -
d. > Pamb
——
=
c. Pamb
Fuel-Oxidizer mixture Purge gases
f.

Valve open

Figure 4.1: Various stages in the operation of a pulsed detonation engine. (a) Tube filled
with fuel and oxidizer; (b) Detonation initiation; (c) Detonation propagation; (d) Blow-
down phase; (e) Tube after the combustion products have been exhausted; (f) Propellant
fill phase.
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region of high temperature and pressure at the upstream end of the tube A typical
mitiation region would be of size Z,n,; = 0 002m, with temperature T, = 3500K
and pressure ratio p, = 30 Once initiated the detonation wave traverses through

the tube consuming the reactants

Blowdown phase After the exit of the detonation wave the bulk of the combustion

products are expelled by a system of compression and rarefaction waves

Propellant fill phase In the present model, the time period of cyclic operation of the
PDE 1s specified, and the valve opening 1s determined by this time period The
mjection of fresh propellants immediately behind the burnt gases can result in
premature heating and combustion of the new propellant charge during the filling
phase This 1s prevented by mjectmé sufficient amount of purge gases before the
propellant charges The njection of propellants 1s stopped by closing the valve
at the upstream end, as soon as the fresh charge of propellants reaches a sensor
location (close to the end of tube) The end of the filling phase 1s followed by

mitiation of a fresh wave of detonation and the cyclic operation continues

4.2 Computational Model

The one-dimensional reactive Euler equations 2 1 are used to represent the flow processes
in the PDE model The reaction rate 1s modelled by a one step irreversible reaction
equation governed by Arrhenius kinetics The working fluid 1s a stoichiometric Hy — Oy

mixture, the values of various parameters used for this working flud are as follows
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Ratio of specific heats v = 1 25, molecular weight MW = 15kg/kmol, activation energy
E,/R, = 1500K, pre-exponential factor K = 7.5 x 10°, heat release per umt mass
go = 7769 x 108J/kg

The PDE engine geometry used for the results presented in the next chapter are
based on a constant area duct, open at one end, and with a valve at the other However
the present quasi one-dimensional framework leaves scope for specifying any arbitrary

area distribution along the tube length and for the study of various geometries

4.3 Boundary conditions

The upstream boundary 1s modelled as a valve, which remains open while the tube 1s
being filled, and 1s closed at all other times When the valve 1s fully closed, the upstream
boundary 1s modelled as a rigid wall, by applying mirror conditions over a ghost cell
lymg across the wall When the valve 1s open or partially open, the mlet boundary
conditions are obtamed from the specified reservoir conditions For low values of the
reservoir pressure, the stagnation pressure at the inlet boundary i1s the same as the
reservoir pressure If the reservoir pressure 1s above the choking limit, the stagnation
pressure (1n conjunction with the mstantaneous va,lv;e area) 1s used to specify the mass
flow rate To simulate realistic valve operation in the PDE model, the valve opening
and closing processes are characterized by a valve response time (7yq1ye). During the
valve opening process the valve area 1s linearly increased from zero (fully closed) to
the specified maximum (fully open) valve area, and vice versa during the valve closing

process In the present work, mstantaneous valve action was assumed (7yqwe = 0) and

28




the reservorr pressure was set to 5 x 103N/m? The maximum valve area was chosen as

ten percent of the cross-sectional area of the tube

The downstream boundary can have several possible outflow conditions subsonic
mflow or outflow, or sonic or supersonic outflow Sonic and supersonic inflow could be
allowed, but has not been implemented Under some operating conditions, the back
pressure 1s so low that choked outflow conditions prevail over most of the cycle For
high back pressure conditions, the exit unchokes and subsonic outflow or reverse flow
may occur The exit boundary conditions are based upon the method of characteristics
procedure If the outflow 1s sonic or supersonic, no exit boundary condition 1s allowed,
and all variables at the exit plane are determined from conditions inside the flowfield
Sonic or supersonic outflow generally implies the pressure at the exit plane 1s above the
ambient pressure If the outflow 1s subsonic, the exit pressure 1s specified as the ambient
pressure and the remaining quantities are computed using the characterstic equations
corresponding to the outgoing waves If reverse flow occurs, the stagnation values for
pressure and temperature are specified as those corresponding to the ambient condition,
while the reactant mass fraction Z 1s taken as 0 Typical values for the ambient conditions
are Pamp = 0 5 x 10° and T,y = 300K

The procedure for switching from sonic outflow to subsonic outflow 1s important be-
cause the sonic outflow condition does not involve external conditions Consequently,
once the outflow becomes sonic, there 1s no mechamsm for checking when 1t should un-
choke again The present model employs a procedure to determine whether the pressure

at the nozzle exit 1s such that the presence of a normal shock results 1n a post-shock

29




pressure lower than the ambient pressure If that were the case, the boundary condition

forces a normal shock at the exit and thereafter enforces the subsonic outflow condition
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Chapter 5

Results and Discussion

5.1 Detonation Initiation and Mesh Size

The aim of the present study 1s to perform an adaptive mesh refined simulation of the
detonation phenomenon to capture the finer aspects of the flow with higher precision
However, the dependency of the mitiation process on the mesh size, needs to be studied
to analyze the effect of mesh refinement Numerical simulations were performed using
Roe’s flux equation 29 for a tube of length I = 005m with an iitiation region of
S1Z€ Typye = 0002m In the mmitiation region the pressure ratio p, used was 30 and
the temperature T} was set to 3500K Simulations were carried out on uniform meshes
of size 256, 512, 1024 and 2048 cells The mitiation 1s a physical process, which 1s |
being modelled numerlcélly 1n these computations The cell size Az 1s a part of the
computational model and 1t mnfluences the mitiation process

While the detonation could be succ)essfully mitiated m the first 3 cases, 1t failed

to itiate for meshes of size 2048 cells and above A comparison of figures 51 and 5 2

shows the difference between a case in which the detonation mitiates properly and one in

\
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Figure 5 1 Pressure and Temperature profiles at ¢ = 1 0 x 10~5s, for a uniform mesh of
1024 cells (Every 4th pont 1s shown)
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Figure 5 2 Pressure and Temperature profiles at £ =1 0 X 10~3s, for a uniform mesh of
2048 cells (Every 8th pownt 1s shown)
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which 1t fails to mnitiate In figure 5 1 the shock and the flame are co-located Figure 5 2
shows the shock running ahead of the flame Also note that the shock 1n figure 5 2 has
travelled a much shorter distance than the one 1n figure 5 1 (the figures correspond to the
same time) The reduced numencai diffusion associated with smaller values of Az might
be one reason why the detonation fails to mtiate in fine meshes If the temperature
of a precursor cell 1s high, numerical diffusion would raise the temperature in the next
cell to the igmition lumit or above and help in the propagation.of the reaction front It
might be this factor that 1s missing, when Az 1s reduced below a imit To discount
the possibility of a spurious propagation of the detonation wave due to the suspected
role of numerical diffusion, the observed speed of detonation wave 1s compared with the
theoretically predicted speed

The detonation velocity vp, may be defined as the velocity at which the detonation

wave enters the unburnt fuel mixture As shown in [15] an approximate expression for

the detonation velocity would be,

o 1/2
vp = [2(72+1) %R “nlp 4 20 (51)
0p,2 Cp,2

where T 1s the temperature of the unburnt fuel and G, ; and Cj, 2 are the specific heats of
the reactants and products For the present case, Cp,1 = Cp 2 and the equation simplifies
to,

1/2
vp = [2(7+1)7R<T1+g—(;>] (52)

i

Substituting v = 1 25, MW=15, R, = 8314J/(kg — K), R = R,/MW, q = 7769 x
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Figure 5 3 Location of Reaction front as a function of time for various mesh sizes durmmg
the mitiation phase
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Figure 54 Location of Reaction front as a function of time for various mesh sizes on a
longer time scale
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10%J/kg and T = 300K, the detonation velocity vp 1s found to be 3110 54m/s Fig-
ures 5 3 and 5 4 show the distance traveled by the reaction front with respect to time
for various mesh sizes  The observed speed of the reaction front 1s 3015m/s and is
almost the same for all the cases 1n which the detonation was 1mitiated properly

Figures 5 5—5 8 show the other notable difference between the solutions obtamed
for various mesh sizes  The peak pressure and temperature (Just behind the reaction
front) are higher for smaller cell sizes and there 1s a big difference in the peak pressure
and temperature values reached during the mitiation phase These could be explammed
only with considerable insight about the mitiation and propagation mechanism

An mdication of the complexity of the flow dynamics during the mitiation period
can be seen from the z — ¢ diagrams 59 and 510  They correspond to the results
shown 1n figures 51 and 52 The ¢ — ¢ diagrams show details of the shock, expansion
fan and contact surface The pathline of the shock-wave 1n figure 5 9 shows an increase
i velocity when the detonation was mitiated This 1s 1 contrast to figure 5 10, where

the detonation fails to mitiate and the shock continues to move at the same velocity

5.2 Contact Discontinuity

During a typical application of the pulsed detonation engine model, the initiation and
propagation of the detonation wave are simulated followed by the ensuing blow-down
process This 1s followed by the propellant fill process It 1s during this stage that the
accurate capture of the contact discontinuity plays a significant role As explained in the

previous chapter, during the filling process a buffer region of non-combustible purge gases
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v

1s injected first followed by fresh propellants The i)resence of purge gases avoids the
premature heating and combustion that could have occurred had the fresh propellants
been 1njected immediately behind the burnt gases During this phase, there are two
contact surfaces that need to be captured accurately with minimal numerical diffusion,
one between the cold purge gases and th,e burnt gases-and the other between the fresh
propellants and the purge gases

Roe’s approximate Rlem‘a,nn solver (equation 2 9), has been known to smear contact
discontinuities, as do most othe(r‘shock-capturmg schemes Figure 5 11 shows the 1n-
terface profiles, at one instant of time during the filling phase, computed using three
different mesh sizes (256, 512 and 1024 cells) The plot shows the profiles of both the
density (p) and the reactant mass fraction (Z) Decreasing the’mesh size, does reduce
the thickness of the interface, but 1t becomes smeared over a larger number of pomtsl
Whenever Az 1s reduced, the perm‘1351b1e time step per 1teration 1s also reduced Hence,
the solver does a larger number of time steps (approximately 4 times as many) on a mesh
with 1024 cells, than on a mesh of 256 cells This gives more time for the interface to
diffuse across more cells for a given physical time But the smaller mesh size does h{elp
to capture the interface with shghtly better accuracy ‘

From results obtained for a mesh of 256 cells, (see ﬁg;lre 5 11) 1t can be seen that the
unburnt fuel has diffused far enough to come 1n contact with the burnt gases even before
1t has travelled half the tube length This high numerical diffusion offsets the purpose of

‘Injecting purge gases Refining the mesh could solve this problem to some extent, but

the effect 1s quite slow as noted here Figure 5 12 shows a plot of the interface thickness
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Figure 5 11 Density (p) and Reactant Mass fraction (Z) profiles at time £ =1 8 X 10™%s,
for different mesh sizes (Every other poimnt 1s shown)
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with respect to the mesh size in number of cells The nterface spreads to a greater
number of cells as the mesh 15 refined further This 1s an indicator to the fact that the
numerical scheme 1s less than first order accurate i capturing a contact surface

Figure 5 13 presents a comparison of contact surface profiles, obtained using three
different numerical schemes, Roe’s scheme, AUSM ™ (both are explamned n chapter 2)
and the space-time method [2] The space-time method 1s second order accurate in
space and time, while the other two are first order accurate The space-time method
1s able to capture the contact surface with reasonable accuracy and the solution 1s far
better than those obtained with the other two schemes Comparing the first order Roe
and AUSMT schemes with a second order solution 1s not a good way to estimate the
capability of these schemes, but this comparison helps to verify the viabihity of space-
time method One should note the close agreement between the results obtained using
Roe’s scheme and AUSM*T The AUSM™ scheme performs as well as Roe’s scheme and
mn typical computations consumed 50% less CPU time The CPU time used by the
different numerical schemes for typical simulations of a full PDE cycle on an Origin 2000
processor are listed in table 5 1 The table shows the significant cost advantage of using
AMR (results from AMR are presented mn the next section) Despite bemng faster than
Roe’s scheme, the AUSM™ scheme 1s considerably slower than the space-time method
Taking advantage of the efficiency of AUSM™ over Roe’s scheme, results for the later

sections will computed using the AUSM* scheme
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Figure 5 13 Comparison of Density (p) and Reactant Mass Fraction (Z) profiles at time

t = 18 x 10™%s, obtained using different numerical schemes, for a mesh of 1024 cells
(Every other point 1s shown)

Table 5.1: CPU tume (1n seconds) used by different numerical schemes for different mesh

sizes on an Origin 2000 processor

| Mesh Size | Space-Time Method | Roe’s scheme | AUSM™ scheme |
256 cells 65 172 95
512 cells 263 692 378
1024 cells 1066 2774 1520
AMR, Ty = 7, Iag = 10 — 190 106
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5.3 Adaptive Mesh Refined Simulations

The prev1oﬁs section shows the importance and effects of increasing the spatial resolution
mn the numerical stmulation A cost effective way of increasing the spatial resolution 1s to
finely refine the mesh wherever more resolution 1s required and let the coarse mesh remain
where the cell size 1s inconsequential In this section we present results obtained with
adaptive mesh refinement, using the Fully Threaded Tree (FTT) algorithm explaned in
chapter 3 As explaned earlier, one of the important features of this algorithm 1s 1ts
ability to dynamically readjust the mesh as the flow evolves This makes sure that the
fine aspects of the flow do not escape the finely refined region of the mesh

Figure 5 14 shows the evolution of the mesh as the solution 1s advanced in time The
plot shows the pressure distribution at various instants of time, while the detonation
wave 1s propagating along the length of the tube Also plotted 1s the mesh structure
at those mnstants Recollecting the relationship between cell size A, and level 1Lv(z),
A, = 2_”’"(1)L, the cells that are highly refined are those whose level 1s equal to lp,e4
The figure shows a case where [y, = 7 and e, = 10 (Note Il = 10 corresponds
to 1024 cells when uniform grid 1s used) The following numerical values were used for
the parameters that govern the refinement process, £;o;n =01, {spit =04, €5 =10 and
e=01

The amblen’t pressure pgmp was set to 0 5 x 10°N/m? and the reference pressure pre 1
to 101325 x 105 N/m? which resulted 1n a high pressure gradient at the exit during the
onset of the computation This 1s one mstance where the gradient mndicator (equation 3 9)

senses the high pressure gradient and the mesh 1s refined (as seen from the mesh structure
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Figure 5 14 Pressure plot and mesh structure at three different instants of time during
the propagation of the detonation wave Ilnwm = 7, lmaz = 10, §5om = 01, Eoptt = 04,
e$=10,ec=01

50



Uniform mesh, 1024 cells
———— AMR,_=7,] =10

! 'min ? 'max

005
0 045
004
0035
003
8
£0 025
- 0
002
0015
0 01

0005

|

1
5E-06 1E-05 1 5E-05
time

o I\IIIITIIIIIIIIIIIIllllll[ll‘ll]lillllll]llllllllll

=]

k)

Figure 5 15 Location of reaction front as a function of time for a uniform grid and AMR
grid
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att = 3x107%s in figure 5 14) The location of the detonation front 1s sensed by the shock
mndicator (equation 3 5) and the finely refined region follows 1t continuously throughout
the length of the tube Figure 5 15 shows the location of the reaction front with respect
to time for an equal spaced mesh (1024 cells) and AMR mesh (I;n = 7 and 4, = 10)
The location and speed of the detonation wave front obtammed using AMR simulation
agree closely with those obtaned using a uniform grid

The discontinuity mdicator (equations 3 6, 3 8) becomes significant during the filling
phase, when the location of the mterface needs to be sensed and the mesh refined at those
locations However the contact surface was not sensed during the detonation propagation
phase as evident 1 figure 5 14 Figures 5 16-5 18 show the density and reactant mass
fraction plots, along with the mesh structure as the filling proceeds ~When the filling
begins, the interface between the purge gases and the burnt gases 1s quite sharp and the
mdicator (equation 3 6) 1s able to locate 1ts presence However as the interface moves
and spreads to a few more cells, the mdicator does not identify 1t as a discontinuity
anymore and the mesh becomes coarse

The sensing of the Z-front 1s totally different The Z-sensor does 1dentify the con-
centration gradient and then refines the mesh throughout the filling phase It can be
mnferred from equation 3 8 that the indicator will sense the Z-front and reﬁné the mesh,
even 1f 1t starts spreading to a large number of cells But a diffuse Z-front necessitates
mesh refinement over a wide range of cells, which becomes computationally expensive

The terface sensing constant €°, plays a significant role in sensing an interface,

’

reducing 1ts value could be helpful in keeping track of an interface even when 1t starts
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Figure 5 17 Plots of density, reactant mass fraction and mesh structure, at time ¢t =
16 x 10~%s, during the filing phase lmun = 7, lmaz = 10, &on = 01, Esprt = 04,
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Figure 5 18 Plots of density, reactant mass fraction and mesh structure, at time ¢ =
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to diffuse However using a very low € might lead to spurious mesh refinement Results

obtained by reducing the value of €° from 01 to 0 05 are shown 1n figures 5 19-5 21
The results show that using a low €° helps to maintain a finely refined mesh around the
interface for a longer time, but as noted earlier, this 1s of little help Figure 5 22 shows
a comparison of the interface profiles obtamned using a uniform mesh (1024 cells) and
AMR mesh (l;n = 7 and ljpep = 10) The Z-front on the AMR mesh 1s as wide as 1t was
on the uniform mesh However the density plot shows that the contact-surface between
the hot and cold gases in the AMR grid, has diffused to a greater number of pomts
than in the uniform grid This 1s because the discontinuity indicator fails to 1dentify the
mterface once 1t starts diffusing and the mesh becomes coarse near the tail end of the
iterface This 1s 1n contrast to the Z-interface which was sensed properly (even when
diffuse) and captured as accurate as a uniform grid simulation

Other than using a contact discontinuity indicator, there 1s one more way to track
an mterface and refine the mesh For sumple problems like the present one, 1t 1s possible
to introduce a tracking variable .5, whose mitial value 1s set during the beginning of
the filling phase As the solution 1s advanced during each time step, the location of the
mterface 1s updated using the interface velocity u,s (velocity at the point closest to z,f)
at that mstant

zf? = wf}d + u, f At (1)

It 1s now possible to create a band, with 1ts center at z,; and thickness Az, ¢, within
which the discontinuity indicator £ 1s set to umty This allows the cells within that

band to be refined to the maximum level Figures 5 23-5 25 show the results obtained
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Figure 5 22 Plots of density and reactant mass fraction at time ¢ = 2 0 x 10™%s, during
the filling phase for a uniform grid and AMR grid
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Figure 5 24 Plots of density, reactant mass fraction and mesh structure, at time ¢t =
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by this method A band of finely refined cells follows the interface as 1t moves, but no
reasonable value of Az,; will be large enough to contain the interface as 1t starts to
diffuse A comparison of the interface profiles obtamned using the tracking variable with
those obtained using suitable values for €¢ are presented 1n figures 5 26 and 527 The
results presented mn this section demonstrate that the adaptive mesh refinement 1s able
to reach the levels of accuracy obtained using a uniform mesh of comparable size with a
significant cost advantage The following section discusses about techniques other than

v

increasmg the spatial resolution, for accurately resolving a contact discontinuity

5.4 Improved methods for resolving a contact discontinuity

Increasing the spatial resolution helps to capture a contact discontiuity with improved
accuracy Adaptive mesh refinement 1s a convenient way of increasing the spatial reso-
lution to very fine levels with insignmificant increases 1n cost However the fact remains
that, mspite of increasing the spatial resolution the contact surfaces will still remain
diffused over a large number of cells This 1s due to the mnnate numerical diffusion of
the numerical schemes By nature a shock wave always tends to steepen, because i any
finite compression wave, the (u + a) charaé;erlstlcs progressively approach each other
coalescing into a shock wave However the contact surfaces do not have this property
and they ;end to diffuse The problem in numerical simulations 1s that, due to the pres-
ence of high numerical diffusion, the contact surfaces diffuse to levels far higher than

those occuring physically The diffusion of the contact surfaces can be countered by

adding certain artificial dissipation terms that behave as negative diffusion and help in
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confining an interface within a few cell distances The rest of this section discusses one

such technique, called the Confinement method

5.4.1 Confinement of a passive scalar discontinuity

Pulses and step discontinuities concentrated over only two or three grid cells can be
convected over long distances without spreading (even on a coarse grid and with only first
order finite-difference schemes), by the addition of a non-linear confinement term [14, 11]

The 1dea of confining contact discontinuities was apparently first discussed by Harten [3]

This method 1involves treating the features as solitary waves, which 1nvolve functions that
obey a non-linear, discrete evolution equation, such that their internal structure remains
fixed and confined to a thin region a few grid cells wide Basic expressions and results
for one dimensional scalar advection equation have been presented by Steinhoff [14] and

Puskos [11] Consider the one dimensional advection equation for a scalar w,

ow ow
T (53)
A first order upwind discretization of this equation will be
wptl = wl — o (w] —w,) (54)

where n labels the time step, 2 the grid index and o = aAt/Az This scheme of dis-

cretization 1s highly diffusive A Taylor’s series expansion of equation 5 4 shows that the
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diffusion can be represented as,

o(l—-o0)

~ woAz20%w, where, py = 7

The basis of the Confinement procedure 1s to counter this numerical diffusion by
adding a term to equation 54 which would convect a step discontinuity inward, along

1ts own derivative

n

witt = wp — o (W —wig) —ef (w,) (5 5)

Here, ¢f 1s the “confinement term” added to the basic numerical scheme and ¢ is the
“confinement parameter” One form of this confinement term which conserves the scalar

w, maintains the actual speed of advection a and 1s switable for the advection of a step

f (w) =67 ((5;@) (6;“)?“)) (56)

discontinuity 1s,

Wiy — Wiy
The operator §; 1s defined as d, f, = f, — fic1 The results presented in Ref [11]
show that this equation 1s able to confine and advect a step discontinuity in a scalar
equation However this choice of the confinement term has some limitations, there exists
a maximum stable value of ¢ for a given ¢ This condition reduces the effectiveness of the

Confinement method when low values of o are involved The next subsection discusses

the extension of this Confinement procedure to a system of equations
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5.4.2 Confinement of contact discontinuities in vector systems

The switabihity of the Confinement method for the present problem depends on how
best 1t could be extended to a vector system of equations This subsection descibes the
extension of this method to Euler equations using the characteristic equations as basis
The one-dimensional reactive Euler eclluatlons 2 1 can be diagonalized by pre-multiplying

with M~ (refer Appendix A) to obtam the characteristic form of those equations

8004 004
= +A

o = A (57)

where, A = diag (u,u + a,u — a,u) Applying the defimition 6Q = M~16Q, the following

definttions of the characteristic variables 5@ = (041,042, 043, 5(}4)T are obtained, with 6@

0
representing an arbitrary variation, either — or —

ot oz

. 1
o1 = dp-— a—26p
o 1 p
6Gs = 507 op + g du 58)
.o 1 p
gy = 57 op 2a(5u
1

604 = 6(pZ)— —0p

From the eigenvalues 1n the diagonal matrix A, we see that two of these variables, §;
and g4 are convected at the local fluid velocity v These two variables, §; and §y, are the
characteristic variables of interest for the present problem, the variables that correspond
to the ones that need to be confined for capturing mnterfaces within a few cell distances

A confinement term can be added to the first and last characteristic equations (the
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equations bemng convected at speed u), similar to the scalar equation 5 5

0RA | (O

ot oz

= HA - eFA (59)
where,
F=(f(),0,0,f (q)"

The function f 1s defined 1n equation 5 6 Now pre-multiplying equation 5 9 by M takes

1t back to the conservative form,

0QA OJFA _ _
7 + 837 = H.A €F.A (5 10)
where,
f(d)
e uf (q1)
F—=MF= (511)

The modified finite volume update equation (refer equation 2 4) for the unknown vector

Q 1s, )

At ~
AQu=—<7 [Ez+1/2Az+1/2 - Ez—l/‘ZAz—l/Z} +AtH, — eAtF, (512)
7

QM =Qr + AQ, (513)
This equation 1s tried on a simple problem, two 1nterfaces moving at a constant speed

m a straight tube A tube of length L = 20m with both ends open 1s filled with the
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same working fluid as the PDE model The mitial condition can be stated as,

Al

.
1 01325N/m?
250m/s
f2<z<6
400K
p
1
U
= { (5 14)
T Pl
1 01325N/m?
Z
250m/s
otherwise
300K
{ 0

The contact surfaces are at £ = 2 and £ = 6 and are to be convected at the constant
speed u The results shown 1n figures 5 28 and 5 29 show that 1t 1s possible to capture
the interface within fewer cell distances when a sufficiently high value of the confinement
parameter € 1s used However this improvement could not be repeated in more compli-
cated flow situations like the filling phase of the PDE model This may be attributed to
several reasons On important reason being that the confinement term in equation 5 6 1s
neither the only choice nor the best In this work, the confinement term used for a scalar
advection problem was extended 1n a straight forward way to a system of equations No
attempt was made to try usmg other possible expressions as confinement terms The
present confinement term was found to be unstable, leading to oscillations within a few

time steps It could be possible to devise a stable expression for the confinement term
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E;ren with such an expression, the possible difficulties are foreseeable

As 1s seen from the results, a higher value of the confinement parameter € 1s necessary
for effective Confinement The system has to be stable for la}ge values of € even for low
values of the CFL number ¢ In a problem situation, such as the PDE model, the
effective local CFL number based on u could easily be as low as 0 056—0 1, even when
. the global CFL number based on %+ a 15 set to 0 9 While negative diffusion should be
added near the contact surface, care should be taken not to meddle with the diffusion
near the shocks (The density and entropy are discontinuous near a shock too) When
these and other concerns are addéessed, Confinement of the contact surfaces should be

achievable even 1n complicated flow situations




Chapter 6

Conclusions and
Recommendations

An unsteady flow solver code was developed from scratch and used for simulating the
various phases of a PDE working cycle. Simulations were carried out using two rllumerlcal
schemes, Roe’s approximate Riemann Solver and advection upstream splitting method
(AUSM™) The results show that AUSM™ scheme performs as well as Roe’s scheme and
costs less In typical computations AUSM™ consumed 50% less CPU time compared
to Roe’s scheme Nevertheless 1t still remained more costly than Chang’s space-time
method The effect of mesh size on the imitiation and propagation of a detonation
wave and the interface were studied The study showed the importance and effects of
increasing the spatial resolution

A fully threaded tree (FTT) structure was used for adaptive refinement of the mesh
Results obtained using this adaptive mesh refinement procedure show that it 1s able
to reach the Ievells of accuracy obtained using a uniform mesh of comparable size In

terms of CPU time consumed, the adaptive refinement helped 1n reducing the cost of

computation by a factor of 10 This significant savings 1n cost of computation makes it
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possible to increase the spatial resolution to very fine levels without increasing the cost
much Even with the increase 1n spatial resolution, the accuracy of contact surfaces is
not satisfactory This 1s due to the high numerical diffusion of the flux schemes

An 1improved method for accurately resolving the contact discontinuity by adding a
suitable negative diffusion, namely the Confinement method, was tested for a simple flow
problem This method yielded good results for this simple test case However 1t failed
1 complicated flow situations, like the present PDE model

Future work can be directed towards extending the flow solver to multi-dimensions
Also a multi-species full kinetic model can be implemented to model the chemical reac-
tion mstead of the present simplified chemisty model Making the solver second-order
accurate could be helpful in capturing the contact discontinuities more accurately How-
ever Confinement seems to be the best option for capturing the contact discontinuities
with 1mproved accuracy Some of the difficulties that might arise in the extension of
the Confinement method to complicated flow situations have been 1dentified The most
notable among them being the presence of multiple CFL numbers 1n the flow field More
attention needs to be paid towards developing better expressions for the confinement
term which would remain stable and effective over a broad range of CFL numbers The
Confinement method should also be tailored such that 1t adds negative diffusion only

near the interfaces without meddling with the shocks and detonation fronts
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Appendix A

Jacobians and Eigensystem for
Reactive Euler Equations

The conservative form of the quasi-one-dimensional reactive Euler equations can be

written as,

8QA+3EA_
ot ér

HA (A1)

where A = A(z) 1s the area, @ 1s the unknown vector, E 1s the flux vector and H 1s the

source term

P pu
5 p dA
pu pu®+p -
Q= , E= , H= A dz (A 2)
pe (oe +p)u 0
pZ } . puZ —KpZ exp—Ee/BuT }
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The flux Jacobian A = %g— can be written as
0 1 0 0
—3)u?
S ~-3u -1 ~@-Da
A=11 (y=1)u® - yeu —g('r—l)u2+ve
yu o —(y—1)qu
. +(v—1) quz —(r-DaZ
—uZ Z 0 u
(A3)

Equation A 1 can be premultiplied by M= % (]T/I\ 1s the matrix of right eigenvectors

of A) to obtain the characteristic form,

a0A 0604
-??+A

2= = A4 (A 4)

which 1ntroduces the diagonal matrix of eigenvalues,

uU—+a
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The transformation matrices are,

[ -y (y-LHM (y-1) (v-1)gq ]
2 a a? a?
_M(l_('r—l)M> l-(yv-1)M (v=1) (v=1) g
-l = 2 2 2a 2a2 2a?
%(H(v—l)M) —l1-(y-1)M (y-1) (=g
2 2 2a 202 202
(y-1)M*Z (y-1)MZ r-1)Z (v-1)qZ
- e 1+ =
L Qa a Q L
(A 6)
1 1 1 0
. U u-+a u—a 0
M=
22— u_2+ a+a—2(+ Z u—2—ua+ < +qoZ e
0 Z Z 1

Here M 1s the mach number and a the speed of sound
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