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Abstract

Stable carbon and oxygen isotopes from pedogenic carbonate and soil organic
matter in 2 modern Vertisol preserve coherent isotopic records that reflect changes in
climate and vegetation during pedogenesis. Three sites from Lake Charles series
Vertisols, on the Coastal Prairie of Texas showed similar and systematic carbon 1sotope
inflections with depth. These inflections suggest the following climate/ecosystem
changes: base of the profiles record cooler conditions, warmer/drier conditions are
recorded at mid-profile, and evidence for cooler/wetter conditions again is present at the
top of the profiles which agrees with a historical increase in C3 vegetation seen in Texas
and Oklahoma. Although both soil organic matter and pedogenic carbonate have similar
depth profiles, coexisting organic matter and carbonate are not contemporaneous.
Pedogenic carbonates do not show the uppermost, negative shift in isotopic composition,
most likely the result of insufficient time to crystallize carbonate with modern signatures.
Stable carbon isotopes of so1l organic matter and pedogenic carbonate appear to be
sensitive to soil horizonation and microtopography. The coherent record of stable carbon
isotopes preserved in these Vertisols indicate that these soils have not experienced
significant “self-mulching” or whole sale pedoturbation. Instead, the systematic so1l
morphology and isotopic profiles suggest that Vertisols may preserve useful paleoclimate

records.
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I. Introduction

Quaternary soil formation 1s strongly associated with climatic conditions on both
continental as well as a global scales (Mack and James 1994). Climatic conditions are
expressed in soil morphology, mineralogy, and chemistry (Smith et al., 1993; Hall and
Anderson, 2000). This association has prompted several studies of paleosols in order to
reconstruct pre-Quaternary paleoclimates (i.e., McPherson, 1979; Wright, 1982;
Retallack, 1983; Cerling and Hay, 1986; Cerling et al., 1989; Vanstone, 1991, Mack et
al., 1991; Mack, 1992; Driese and Mora, 1993; Mora et al., 1996). Recent studies of
modern and ancient soils employ stable isotope analysis of soil-formed minerals and soil
organic matter to describe and constrain the soil ecosystems and (paleo)climate (e.g.
Amundson et al., 1989; Kelly et al., 1991, 1998; Nordt, 1994; Mora et al., 1996; Boutton,
et al., 1998). Unfortunately, chimatic inferences based on paleosol features are often very
generalized. For example, vertic soil morphology is typically interpreted to simply
indicate “seasonal wet and dry conditions”. Few studies on modern soils have
systematically characterized climate-sensitive parameters that are likely to be preserved
in the rock record. Without a thorough understanding of modern climate indicators, the
climate information stored within paleosols may be significantly underinterpreted.

Thus study contributes to a larger-scale examination of a climate transect or
"climosequence” of a modern Vertisol sequence along the Coastal Prairie region of
Texas. Typical climosequence studies examine changes in soil morphology and
chemistry across a precipitation gradient in which all other soil forming factors, except
vegetation, are held constant (e.g. time, parent materal, topography). This study focuses
on three sites within the Texas Vertisol climosequence, examining: (1) pedogenic
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carbonate morphology as observed using transmitted light and cathodoluminescence
petrography, (2) the stable carbon and oxygen isotope compositions of soil organic matter
(SOM) and soil carbonate, and (3) the rélanonsmp between those isotopic compositions
and depth in the soil profile or characteristic Vertisol features such as microtopography or
pedogenic slickensides. These observations are used to constrain the impact of
pedogenic processes on the soil isotopic record and utility of the isotope record to
determine the climate/ecosystem 1n effect during pedogenesis.

The three study sites span only a limzted precipitation range (~17.8 cm/yr) and it
is expected that only minor variability from pedon to pedon will be observed. Ultimately,
isotopic trends observed in this study may be compared to results of related work along
the entire climosequence to evaluate whether all the soils retain a similar isotopic record

and which, if any, trends are climate sensitive.



IL. Study Area

This study is part of a much larger NSF funded project that investigates a modern
Vertisol climosequence along the Coast Prairie of Texas. The focus of this study is three
sites within the Lake Charles Series soils, near Houston, Texas (Figure 1). The parent
material for the Lake Charles Vertisols at each of these sites consists largely of alluvial to
deltaic deposits of the Beaumont Formation (Late Pleistocene), which possess a relatively
uniform and fine-grained texture (Bernard and LeBlanc, 1965; Barton, 1930a & b; Kunze
et al., 1963). The soils developed on an exposed terrace during low sea-level stand
(Bernard and LeBlanc, 1965). The maximum age of the Lake Charles series Vertisols is
constrained by soil development on the youngest facies of the parent Beaumont
Formation which is ~35K years old (Birdseye and Aronow, 1991). The three sites
examined in this study stretch across a sub-humid climate range that has a precipitation
regime from 104 to 122cm/yr and are located, from wettest to driest site, 1n Harris

County (201), Fort Bend County (157), and Wharton County (481) (Figure 1; Table 1).



Figure 1. Precipitation map of study areas.

Study Sites

e Lake Charles Series

22.9 - 33.0
33.0 -43.2
43.2 - 58.4
58.4 - 73.7
73.7 - 83.8
83.8 - 94.0
94.0 - 104 .1
104.1 - 114.3
114.3 - 129.5
129.5 - 149.9
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ITII. Summary of Physical Processes During Vertisol Formation

The modern soil order Vertisol accounts for approximately 2.2 to 2.4% of the
Earth’s land surface (Dudal and Eswaran, 1988; USDA-SCS, 1994). Although Vertisols
are reported to occur in most temperature and moisture regimes, Vertisol occurrence is
most abundant in the tropics (60%) and subtropics (30%) (Dudal and Eswaran, 1988;
Wilding and Coulombe, 1996). Modern Vertisols, such as the Lake Charles series of
coastal Texas, are composed predominantly of smectitic clays that possess high
shrink/swell potential (Huckabee et al., 1977). Although other mineralogies can be
dominant, Vertisol development requures the soil matrix to respond to seasonal moisture
changes by shrink/swell phenomena (Coulombe ez al., 1996a). Vertisols experience
seasonal, and sometimes extreme, wetting and drying periods that intensify the
shrink/swell processes of the clays. Shrink/swell of the so1l matrix results in mechanical
failure and movement of soil materials along shear planes or slickenslides (Figure 2). As
a result, topographic microhigh and microlow environments are developed that are
expressed on the surface as hummock and swale topography known as gilgai, and 1n the
subsurface as pseudo-anticlinal and pseudo-synclinal features in cross-section (Figure 2,
3,4). The Lake Charles Vertisols examined in this study exhibat this characteristic
hummock and swale topography, which allows for differentiation into microhigh and

mucrolow pedons at each sample site.
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Figure 3. Field shot of Lake Charles microhigh pedon from Harris Co.
(Armond Bayou), Texas shows a depth of ~ 1.5m. Slickenside faces
are observed concentrating more toward the bottom of the profile and
along the edges of the microhigh.



Figure 4. Field shot of Lake Charles microlow pedon from Harris Co.
(Armond Bayou, 201), Texas, shows a depth of ~1.5m. Slickenside
faces are observed and are especially concentrated along the edges
of the bowl structure.



IV. Controls on the Isotepic Composition of Pedogenic Carbonate

The formation of soil carbonate has been extensively studied (i.e., Singh and
Singh, 1972; Mermut and Dasog, 1986; Cerling, 1984; Cerling and Quade, 1993). Soil
carbonates form in arid to sub-humid conditions or in environments with a significant
seasonal moisture deficit (Birkeland, 1984; Jenny, 1980). Atmospheric carbon dioxide
(COy) and allochthonous carbonate dust are the likely sources for the calcium and
carbonate ions that precipitate as pedogenic carbonate (Ahmad and Mermut, 1996).

Within the vadose zone, most soil environments behave as open systems in which
equilibrium is quickly established between the soil solution and gaseous so1l CO,
(Bottinga, 1968; Magaritz and Amiel, 1980). Pedogenic carbonate precipitation (10” to
10? moles/cm/yr) 1s much slower than the respiration flux of COy, in soils (102 to 107
moles/cm/yr) (Cerling and Quade, 1993). Consequently, soil carbonates precipitating
from the bicarbonate solutions will have 1sotopic compositions reflecting soil CO,
compositions (Cerling, 1984).

Vegetation contributes the vast majority of carbon in most soils. Most temperate
region terrestrial plants utilize the C3 metabolic pathway (Calvin cycle) and produce
organic matter having §'"°C values of -24 to -34 %o (mean ~-27%o) (PDB) (Deines, 1980).
Many arid region plants, salt marsh plants, and some tropical grasses utilize the Hatch-
Slack metabolic pathway, which discriminates less against isotopically heavy carbon
(Deines, 1980). Cs-type organic matter has 813C values of -9 to -16%o (mean ~ -12%o)
(PDB). Thus, soil ecology plays the predominant role in controlling the isotopic
composition of SOM and, ultimately, of soil CO,) and soil carbonate. Soil-respired CO,

is produced by root respiration and microbial oxidation of organic material in the so1l
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(Cerling, 1984). These processes combine to create a soil pCO, that is much greater than

atmospheric pCO,. Typical soil pCO, values are 3000-10,000 ppmV whereas
atmospheric pCO; is about 360ppm (Cerling, 1984, 1991). As a result, atmospheric
pCO; 15 considered to have negligible influence on the isotopic measurements of soil
carbon, except 1n the geological past, when atmospheric CO; levels were significantly
elevated (Cerling, 1991; Mora et al., 1996; Ekart, et al. 1999; Mora and Driese, 1999).

Dorr and Munnich (1980) observed that the COy) collected in soil pores is
~4.4%o enriched in *C compared to soil-respired COyy). This effect is due to isotopic
fractionation resulting from CO,, diffusion through the soil. In fact, carbon undergoes
several fractionation steps as organic matter 1s converted to carbon dioxide and,
ultimately, so1l carbonate (Figure 5). First, soil respired COx, is fractionated during
diffusion through so1l resulting 1n a 4.4%o0 enrichment. As soil gas CO; is converted to
bicarbonate HCOj35q) , carbon is enriched by ~7.1 to 9.2%.. From bicarbonate in the soil
solution, carbon experiences a further 1.9 to 2.0%¢ enrichment as soil carbonate is
precipitated. Therefore, the resulting 5>C value of pedogenic carbonate is approximately
14 to 16%o heavier than the original organic matter (Cerling, 1984).

In addition to the composition of soil organic matter, several other factors may
affect the isotopic signature of pedogenic carbonate nodules including microbial activity,
soil pCO3, and temperature (Cerling and Quade, 1993). For example, studies of soil
COy and soil carbonate indicate that 8'2C values systematically decrease with depth in
the soil profile until a steady state condition is reached (Cerling, 1984, 1991). Near the
soil-atmosphere interface, the influence of 1sotopically heavy C from atmospheric COy)

is more prevalent (Cerling, 1984; Quade e? al., 1989a). As a result, pedogenic carbonate

11
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Figure 5. Schematic illustrating the carbon isotopic fractionation process as soil organic
matter is converted to pedogenic carbonate (after Mora et al., 1993).
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precipitated in the upper portions of the profile or within the zone of soil cracking might

exhibit an 1sotopically heavier carbon signature dug to relatively greater exposure to
atmospheric CO,. Conversely, carbonate precipitated at greater depths and often below
the zone of soil cracking is likely to record 1sotopic compositions influenced mainly by
soil respiration. These effects are noted in both modern soils (Quade et al., 1989) and
ancient paleosols (Driese and Mora, 1993). Seasonal wet and dry periods may,
respectively, increase or lower soil respiration rates, thereby, influencing the isotopic
composition of pedogenic carbonate (Cerling, 1984, 1991).

The oxygen isotopic composition of pedogenic carbonate is controlled largely by
meteoric water compositions and temperature (Cerling, 1984; Siegenthaler et al., 1984;
Cerling and Hay, 1986; Pazdur et al., 1988; Cerling et al., 1989; Quade et al., 1989;
Cerling and Quade, 1993). Due to the effects of evaporation, the isotopic composition of
soil carbonate is typically slightly heavier than that of local meteoric water (Quade et al.,
1989). The isotopic composition of oxygen is much more susceptible to alteration during
recrystallization of carbonate during pedogenesis or diagenesis. Recrystallization
isotopic exchange of reactive carbonate minerals and water-rich fluids moving through
the so1l may alter the oxygen isotopic ratio, even at very low water to rock ratios (Banner
and Hanson, 1990), without significantly affecting the carbon ratios (Mora et al., 1998).
Pedogenic and diagenetic fluids are typically water-rich and, thus, much more abundant

in oxygen than carbon.
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V. Previous Isotopic Studies of Texas Soils

Recent 1sotopic studies on Quaternary Texas soils (i.e., Humphrey and Ferring,
1994; Waters and Nordt, 1995; Nordt ez al., 1998, Nordt, 1992) emphasized the
importance of carbon and oxygen isotopic ratios in interpreting previous climate regimes,
vegetation types, and soil water temperatures, as well as various soil properties that affect
the isotopic compositions of these soils. Based on the isotopic compositions of pedogenic
carbonate, Humphrey and Ferring (1994) inferred fluctuations in the relative abundance
of C3/Cs-type vegetation corresponding to Quaternary climate changes in central Texas.
They suggest that the Late Pleistocene climate was relatively cool with cool grassland
conditions dominating (i.e., Cs-dominated). Other studies (i.e., Gardner, 1984; Bryant
and Holloway, 1985; Nordt et al., 1994) also suggest cooler conditions prevailed in the
Late Pleistocene. Further, in north-central Texas, the early Holocene is characterized by
rapid alluvial sedimentation. Pedogenic carbonate precipitated in the early Holocene also
record C3-dominated conditions. This sedimentological evidence, coupled with the *C-
depleted isotope values, led Humphrey and Ferring (1994) to conclude that the early
Holocene was relatively cool, moist and humid. In contrast, slower rates of alluvial
deposition and carbon isotope values more typical of C, vegetation suggest a shift to
climatic conditions that were relatively warm and dry during the middle Holocene,
around 6000 to 4000 yr B.P. (Humphrey and Ferring, 1994; Nordt et al., 1994). This
middle Holocene warming/drying trend appears concurrent with a Southern High Plains
drought, identified by Holliday (1989), that occurred between ca. 6500 to 4000 yr B.P.
Late Holocene conditions in the Southern High Plains are considered to be moist overall,
with a minor dry event occurring ca. 2000 to 1000 yr B.P. Other studies report very

14



recent increases in C; shrubby vegetation in Texas and Oklahoma over the past few
hundreds of years (Boutton et al., 1998; Follett et al., 1997).

Studies utilizing pollen data, phytolith analysis, and mammalian faunas further
support this Late Pleistocene to Holocene climate/ecosystem history. Pollen, diatom
data, and mammalian faunas show that the Late Pleistocene in Texas was cool, with
increased winter precipitation supporting cool grassland vegetation, and exhibited
different plant communities than those of the Holocene (Bousman, 1998; Bradbury,
1997; Hall and Valastro, 1995; Toomey et al., 1993). Pollen and phytolith analysis of
sediments from north-central Texas suggest during the mid-Holocene increased aridity
which is characterized by warm season grasses and estimated temperatures that were 3°C
higher and estimated mean annual precipitation that 1s S5cm less than today (Fredlund ez
al., 1998; Bousman, 1998; Toomey et al., 1993). Extreme dry intervals in the mid-
Holocene occurred ~ 6500 yr B.P. and 5000yr B.P. (Bousman, 1998). Phytolith analysis

also supports the most recent increase in cool season grasses (Fredlund ez al., 1998).
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V1. Methodology
A. Field Work

Soil pits 2 to 3.5m deep were dug by backhoe to reveal a soil topographic profile
that contained both a microhigh and microlow for each of the three sites. Bulk soil
samples were systematically collected in the field at 10cm intervals through a microhigh
and laterally adjacent microlow. Pedogenic carbonate was collected as part of the bulk
soil samples with the exception of a few large nodules that were collected individually.
Oriented samples for thin-section analysis were also collected from each soil horizon.
Soil descriptions were made using standard field methods including characterization of
horizons/subhorizons, soil color, soil texture, and soil structures with respect to soil depth
(Soil Survey Staff, 1994). Soil descriptions were made by researchers from the USDA-
NRCS, Baylor University, Texas A&M University, and the University of Tennessee at

Knoxville (Appendix 1).

B. Laboratory Analysis
Soil samples were allowed to air dry. Select samples from each horizon were
coated in boat resin to ensure cohesiveness during thin section procedures. Soil samples
were cut dry on a hand saw, epoxied to a glass slide, and dry ground on sand paper to
~30pm thickness. Thin sections were made of so1l matrix as well as individual carbonate
nodules, for microscopic analysis using transmutted light and cathodoluminescence.
Stable 1sotopic analyses were conducted on both soi1l organic matter and

pedogenic carbonate from each possible 10cm interval. Carbonate material sampled was
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representative of the different carbonate morphologies observed; pedogenic morphology
is described in detail in a later section.

Pedogenic carbonate was extracted from the soil matrix using a binocular scope
equipped with a dentist drill and pick. Carbonate samples were finely ground with a
mortar and pestle and placed 1n a muffle oven and heated at 375°C for two hours in order
to remove volatile organic matter. Samples were weighed and ~6mg aliquots were
placed 1n a reaction vessel. Carbonate powder was reacted under vacuum with 100%
H3PO4 at 25°C and the gas evolved was cryogenically purified following the method of
McCrea (1950). Isotopic ratios were measured on a Finnigan-MAT DELTA plus mass
spectrometer at the University of Tennessee and are reported in standard 8-permul
notation (Hoefs, 1980) relative to the Pee Dee Belemnite Standard (PDB) according to
the expression:

8°C (%0) = [(R sampie/ R standard) ~1] x 10°
where R 1s the *C/*2C ratio of sample or standard CO,, respectively. & ®0 values are
stmularly reported relative to PDB. Analytical precision 1s £0.02%o for carbon and
+0.10%o for oxygen.

Carbon 1sotope analysis of soil organic matter was also performed on bulk
samples of soil matrix collected at 10cm intervals. Macroscopic organic matter was hand-
picked from soil samples prior to analysis. Dried soil samples were crushed with a
mortar and pestle and reacted with 1N HCI to remove any inorganic carbonate (acid pre-
treatment has no effect on 8'°C value of soil organic matter; Nordt ef al., 1994). Once
reaction was complete, samples were washed with deionized (DI) water, centrifuged, and

excess water and acid decanted. The DI water wash and centrifuge process was repeated
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until the soil samples obtained a pH of 5 to 6. Washed samples were allowed to air dry
and pulverized to a fine powder with a mortar and pestle. Soil samples (~60 to 200mg
sample to yield ~0.1 to 0.5mg of C) were loaded 1n ~20cm long quartz tubes along with
~600mg of CuO, 600mg of pure Cu metal beads, and a platinum wire. Quartz tubes were
evacuated, sealed, and the samples were combusted in a muffle furnace at 850°C for 3
hours. CO, gas was collected and cryogenically purified. The carbon isotopic
composition of the organic matter was measured on a Finnigan-MAT DELTA plus mass

spectrometer and reported in §-permil notation relative to PDB as described above.
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VII. Results and Discussion

1;4. Pedogenic Carbonate Morphology and Isotopic Compositions

i

| Pedogenic carbonate 1s common in the Lake Charles soil profiles and exhibits a

1
ﬂmge of morphologies from soft, powdery, diffuse carbonate masses to hard, discrete

nodules as large as 4cm across (Figures 6, 7, 8). Soft carbonate masses are not abundant
!
1n the soil profiles and generally occur below 100cm depth in Bss or Bkss soil horizons.

Hard nodules are the predominant carbonate morphology in the Lake Charles

series. Nodules occur at the following depths: in pedon 157, microhigh 90-210cm and
IiliCl‘OlOW 90-190 cm; 1n pedon 481, microhigh 10-220cm and microlow 110-220cm; and
1jh pedon 201, microhigh 10-218cm and microlow 150-270cm (Appendix 2). Hard
njodules occur in two basic types: (1) red, ferric iron stained nodules 2 to 40mm in
ciimneter which likely incorporate remnant iron oxides from the soil matrix (Figure 9) and
(i2) unstained nodules of similar size having a gray calcite matrix (Figure 10). Abundant
l\z/InO dendrites occur in both types of nodules but are especially abundant in the gray

nilatrix nodules. Detrital quartz and soil matrix fragments are incorporated into many of

1

tlhle hard nodules.

I
1

A few nodules are micrite, but the majority of both hard and soft nodules are

1

rﬁ"licrospar (individual crystals up to 40um across; Figure 10), suggesting that these

nodules have undergone recrystallization from an original micrite precipitate. Under
|

cathodoluminescence, nodules exhibit a dull luminescence with no zonation patterns,
/
ejxcept a very small reaction rim around the nodules, which exhibits a brighter

h‘}1minesence. This suggests that the environmental conditions of precipitation did not
|

significantly vary during crystallization or recrystallization.

i
[
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Figure 6. This thin-section from Fort Bend Co. (157), microhigh
pedon at the Ak2 horizon, shows soft carbonate disseminated
through the soil matrix. Photomicrograph is in cross-nicols.
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Figure 7. Soft carbonate masses are the second of two main
morphologies of pedogenic carbonate which occur in the Lake
Charles Vertisols. These soft masses have a diffusive boundary into
the soil matrix. This soft carbonate mass is from the Ft. Bend
County (157) microhigh pedon from the Bkss3 horizon at -95 to -129
cm depth. The scale bar at the bottom is divided into centimeter
sections.
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Figure 8. Hard discrete nodules are one of the two main morphologies of
pedogenic carbonate which occur in the Lake Charles Vertisols. These hard
nodules have a discrete boundary with the soil matrix. This nodule is from
the Ft. Bend County (157) microhigh profile Bkss4 horizon at -129 to -144
cm depth. The scale bar on the right is divided into centimeter sections.
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Figure 9. Photomicrograph in cross-nicols of thin-section of a hard
Fe *3 stained nodule from the Lake Charles, Ft. Bend (157) site.
This nodule is from the Bkss2 horizon of the microhigh and shows
iron staining around the exposed surfaces of the nodule.
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Figure 10. Photomicrograph in cross-nicols of a gray matrix hard
nodule (which appears yellow) from the Lake Charles , Fort Bend
county (157) site. This nodule is from the Bkss2 horizon of the
microhigh. The coarse carbonate fabric of the nodule reveals
recrystallization.
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The carbon isotope compositions of both hard and soft carbonate (61*C = -11.02
to —1.36 %o) (Figures 11, 12, 13) are significantly different from modern marine
carbonate (+1%o; Hoefs, 1980). The relatively low §'°C values reflect the variable input
of isotopically light, soil CO; and, thus, constrains their pedogenic origin.

Oxygen isotope values (Figure 14) of most of the pedogenic carbonate fall within
the range of modern meteoric waters for Texas: -2.72%o (Humphrey and Ferring, 1994)
and -3.6%0 (JAEA at Waco, TX). The majority of hard nodules have a microspar matrix
suggesting recrystallization during pedogenesis. Soft carbonate masses are especially
sensitive to recrystallization due to their relatively large surface area. Soft masses show a
consistent and narrow range of consistent 5'30 values (mean ~-3.5%0 PDB). In the
‘Wharton County (481) mucrolow profile (Figure 13) some hard nodules occurring at
lower depths in the profile have significantly more negative §'°0 values (i.e., -120cm=
-5.0%0; and -200cm= -4.5%0). Low oxygen isotope values are also observed at depth in
the Fort Bend County (157) microhigh pedon (i.e., -150cm = -6.0%¢; -190cm= -5.3%o;
and -200cm= -5.5%0). These values may be more representative of original pedogenic
oxygen isotopic compositions (Figure 14). Throughout the Harris County (201) pedons,
the oxygen isotope compositions are uniform. As the wettest of the sites (122cm MAP),
the greatest influxes of meteoric water are expected through the system, increasing the
likelihood of recrystallization and exchange.

Isotopic compositions were determined for coexisting hard nodules and bulk
matrix carbonate (i.e., soft carbonate) from depths of —100 to —220cm in the 481
microhigh pedon (Table 2). If the carbonate nodules are derived from, or form at the
same time as disseminated matrix carbonate, then the two should have similar 1sotopic
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Figure 11. Plot of 8 13C versus depth for both SOM and pedogenic
carbonate for microhigh and microlow profiles of Harris Co. (201),
showing climate/ecosystem changes with horizonation.
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Figure 12. Plots for §13C for both SOM and pedogenic carbonate for microhigh
and microlow pedons at Fort Bend Co. (157), showing climate/ecosystem

trends with soil horizonation.
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Figure 13. Plots of 8 13C versus depth for both SOM and pedogenic
carbonate for microhigh and microlow of Wharton County (481) show
separate climate/ecosystem changes with horizonation.
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Figure 14. Oxygen isotopic signatures of the pedogenic carbonates from the Lake
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denoted by the yellow lines. (-2.7 o/oo PDB Humphrey and Ferring, 1994; -3.5 o/oo
PDB IAEA Waco, TX).
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Table 2. Disseminated carbonate matrix from 481 microhigh

compared with coexisting hard nodules

Soil Depth (cm) | Sample- Hard Nodule Type
Matrix
8130 81 80 813C 81 80
-100 -4.18 -3.35 -3.8 -2.48 B
-140 -4.75 -3.46 -4.56 | -2.85 A
-160 -4.28 -3.05 -5.54 -3 A
-180 -4.01 -3.13 -8.99 | -2.844 A
-220 -3.16 -3.17 | -10.37 | -3.47 A

Type A= Fe*2 stained nodule
Type B= gray matrix

30




signatures. Diffuse carbonate has relatively constant §'30 (-3.1 to —3.5%o) and 8'3C (-3.2
to —4.8%o) values. By comparison, hard nodules have a significantly wider range of §13C
values (-3 8 to —10.4%o) and consistent but different, §'%0 values (2.5 to —3.5%0). The
greatest discrepancy between the isotopic compositions of matrix carbonate and
coexisting hard nodules occurs at the base of the profile. This might be explained if the
noduies analyzed at a particular depth have experienced episodic accretion through therr
formation. In this scenario, the isotopic signatures of nodules reflect time-averaged
conditions of the soil temperature and soil solutions. Because of its greater surface area,
matrix carbonate is likely to be recrystallized relative to hard nodules and reflect more
recent soil conditions.

The origin of diverse pedogenic carbonate morphologies, including hard nodules,
disseminated carbonate, and soft carbonate masses, 1s not well understood. Numerous
parageneses can be argued, on the basis of petrography, including (1) continual
dissolution and reprecipitation of disseminated or soft carbonate, (2) precipitation and
accretion of soft carbonate to form hard nodules, (3) dissolution of hard nodules to soft
masses, and (4) carbonate coalescence and mechanical fracturing (c.f., Mermut and
Dasog, 1986; Drees and Wilding, 1987). Most important, however, is that the results of
these previous studies, as well as the petrographic and isotopic results of this study,
indicate that all forms are pedogenic in ongin. In most samples exanuned for this study,
the carbonate morphologies are isotopically indistingmishable. The few exceptions (i.e.,
the few carbonates with distinct oxygen isotope compositions) provide insight into the

complex, long term pedogenic record.
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B. An Isotopic Proxy Record of Climate and Ecosystem

Stable isotopes of soil carbonate and soil organic matter have been utilized in
various studies to assess climate and ecosystem changes (i.e. Cerling, 1984, 1991;
Salomons and Mook, 1986; Nordt, 1992; Humphrey and Ferring, 1994; Mora et al.,
1996; Boutton et al., 1998; Mora and Driese, 1999). These studies infer climate and
ecosystem changes, trends, or relative proportions of Cs and C, vegetation contributing to
the so1l biomass either directly, by measuring soil organic matter, or indirectly, by
analysis of pedogenic carbonate. Oxygen 1sotope compositions, where preserved, reflect
temperature and aridity conditions.

Determining the absolute age of climate/ecosystem changes can be challenging.
Measured “C ages of bulk soil organic matter are always younger than true ages of soils
due to continuous input of organic matter into soils and can be affected by soil carbon
dynamics (Wang et al., 1996a). Aliphatic hydrocarbons chemically extracted and
analyzed by accelerator mass spectrometry, appear to preserve the most accurate *4C ages
due to their low biodegradability (Huang, et al. 1999). Radiocarbon age dating of soil
carbonate requires constraints on production/diffusion behavior of soil *CO, (Amundson
et al., 1998) and the relative proportion of carbon 1n soil COy originating from: (1)
respiration from living plant roots, and (2) microbial respiration from the decay of soil
humus (Wang et al.1996a; Amundson et al., 1994). As pedogenic nodules accumulate,
younger “C 1s incorporated into the nodule, resulting in younger outer carbonate coatings
surrounding older **C carbonate 1n the center of the nodule (Amundson, et al., 1994).
Cultivation and logging disturb the C pools and can affect the '*C ages, particularly at
shallow depths (Wang et al., 1999).
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Despite these challenges, recent 'C studies of Texan soils indicate a gross
equivalence of time and depth in the soils (i.e., age of soil carbon increases with depth)
(Nordt, 1992; Humphrey and Ferring, 1994; Boutton et al., 1998). For the purpose of this
study, we infer a similar age-depth relationship. As will be demonstrated below, the
coherence of the isotopic record across three different sites, and in comparison with those
nearby soil/climate records, indicate that this is a reasonable assumption.

Isotopic profiles through Vertisol microhighs and microlows at each site are
shown in Figures 11-13. Similar patterns are observed in §"°C values of soil organic
matter and pedogenic carbonate in all three sites. From the bottom of the profiles,
~300cm to ~180 cm depth in the microlow and to ~160cm in the microhigh, relatively
low 8'*C values are noted (~-19 to -28%0 SOM; ~-11 to -6%o pedogenic carbonate).
Above this, there 15 a transition to more enriched isotopic values (~-13 to —20%0 SOM;
~-2 to —5%o0 pedogenic carbonate). The top 20 to SO0cm of most of the pedons show a
decrease in §'2C values of soil organic matter to ~-17 to =22%o SOM; no similar
inflection is seen at the top of the profiles in pedogenic carbonate compositions.

The relative proportions of C; versus C, vegetation can be calculated from soil
organic matter §'°C values (Figure 15) and a likely climate history can be inferred. The
bases of the profiles indicate predominantly Cs-type vegetation expressing cooler/wetter
climate conditions typical of the Late Pleistocene (Figure 15) (Gardner, 1984; Humphrey
and Ferring, 1994, Nordt et al., 1998). The middle of the isotopic profiles indicate a
change from C;- dominated cooler/wetter clumate typical of the Late Pleistocene/early
Holocene conditions to C4-dominated warmer/drier conditions characteristic of the

middle Holocene. Towards the top of the soil profiles (>70cm in the microhigh; >50cm in
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Figure 15. Soil ecology as %Cs-type vegetation for all 6 Lake Charles
pedons. The data suggests that the Late Pleistocene was mostly C3
with a dramatic increase in C4 vegetation in the mid-Holocene. The
modern trend of vegetation toward greater C3 grasses is observed in
the very top portions of the profiles. Values greater than 100% are
obtained due to some C3 vegetation having a signature lighter than
-26 o/oo (PDB). %C3 is calculated by:

X (-26) + (1-X) (-12) = & 13 C of soil organic matter where X is the
proportion of Cz-vegetation (i.e. C3/C3 + Ca).
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the microlow), so1l organic matter shifts again to more negative compositions, from a
>85% C4-domunated ecosystem to a 40-60% Cs-dominated ecosystem through the late
Holocene (Figure 15), consistent with a cooler/wetter late Holocene climate. Thus, all
three Lake Charles senes sites record a similar climate/ecosystem history that 1s
consistent with conditions inferred in other types of soils in central and south Texas (1.e.,
Nordt, 1992; Humphrey and Ferring, 1994). The history 1s recorded in both the
microhigh and microlow postions, although isotopic inflections occur at different depths

in these microtopographic positions.

C. Concordance of Soil Organic Matter and Pedogenic Carbonate Record

In the Lake Charles series, the difference in isotopic composition (A) between
pedogenic carbonates and soil organic matter varies significantly between and within
each site (Figure 16). Assuming equilibrium isotopic fractionation between soil CO, and
calcite at soil temperatures between 0 and 25°C and a steady state CO, diffusional
fractionation of 4.4%o, pedogenic carbonates precipitated should be ~14%0(25°C) to
17%4(0°C) enriched in *C relative to coexisting soil organic matter (Figure 5) (Deines et
al., 1974, Cerling et al., 1989). At the Fort Bend County site (157), Aped co3-org in the
mucrohigh is 7.70 to 17.05%o, with the majority of samples showing ~12%. difference
(Figure 16). A tighter range is measured in the microlow, from 9.86 to 12.94%o, with the
majority ~11.5-12%o. At the Wharton County site (481), Aped co3-org is 13.14 to 23.78%e,
with most vatues 17.5 to 18%o (Figure 16) in the microhigh and markedly variable
Aped co3-org Values in the microlow (A = 9.01 to 19.89%o, most 11-12%o). The 1sotopic

fractionation is greatest at the Harris County site (201) with microhigh values of 13.87 to
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Figure 16. Apedogenic CO3-organic matter show that the majority of values
do not fall within the14-16 0/00 expected if soil carbonate precipitated in
equilibrium with SOM found at the same depth in the porfile. The lack of
correlation suggests that the solution precipitating carbonate derived a portion of
its carbon from elsewhere in the soil profile. This discrepency suggests that soll
organic matter and soil carbonate at the same depth are not contemporaneous.
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24.15%o (most 14-16%o); the larger values occur towards the bottom of the profile (Figure
16). The few data measured in the adjacent microlow suggests A =11.91 to 23.35%.

The wide range of Apeq cos-org Values is not well understood but likely reflects
different sources of carbon in soil CO, and soil solutions and possibly the impact of
seasonal fluctuations in soil respiration rates or soil hydrology. The wide range of
Aped cos-org Values suggests that soil organic matter and pedogenic carbonate are not quite
contemporaneous, but, rather, soil organic matter reflects a more recent signature (Wang
et al., 1996a). This is not surprising, given the relatively rapid rate of soil carbon
turnover (10 to 10%yr) and its impact on soil CO, composition compared to the much
slower rate at which pedogenic carbonate is precipitated (10 to 10° yr) (Wang et al.,

1996b; Amundson et al., 1994; Cerling, 1991).

D. Organic Preservation Potential for Paleoclimate Analysis

Soil organic matter preserves the most coherent and complete climate/ecosystem
record in these Vertisols. What is the preservation potential of the organic compounds
for surviving to the rock record? In Vertisols, most organic matter is found in the clay-
size fraction (Leinweber, 1999; Skjemstad and Dalal, 1987; Skjemstad et al., 1986).
Organic matter stability is greatly enhanced by strong organic-mineral bonds to swelling
clays (Coulombe et al., 1996a). Also, 1n two separate studies (Arai et al., 1996; Gehring
et al., 1997), *C-NMR spectra on humic extracts from soils revealed a predominance of
aromatic carbon molecules as well as alkyl carbon molecules, both of which have good
preservation potential. These organic compounds have low extractability from Vertisols
due to the large surface area of clays and, therefore, may have good preservation potential
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for the geologic record (Leinweber, 1999). In addition, these Vertisols are basic soils,
and organic carbon exhibits low extractability (7-30%) in alkaline solutions (Arai et al.,
1996; Ristori et al., 1992; Gehring, et al., 1997). Therefore, organic carbon holds good
preservation potential for studies of paleo-climate/ecosystem in paleoVertisols, provided

that the depths of burial are moderate.

E. Constraints on Vertisol Pedogenic Processes

Several previous models of Vertisol mechanics have portrayed these soils as
“self-mulching” soils (i.e., Buol et al., 1980; Knight, 1980; Duchaufour, 1983) in which
material is continually re-mixed and homogenized by mechanical processes. In contrast,
the coherent isotopic profiles revealed in the microlow and microhigh of the Lake
Charles series Vertisols demonstrate that these soils are not chaotic, pedoturbated
mixtures. The chimneys of the microhighs do not serve as wholesale mixing pipes
resulting from mechanical translocations. Results of this study support earlier work (i.e.
Coulombe et al., 1996b; Wilding and Tessier, 1988; Yaalon and Kalmar, 1978) that
suggests that horizonation can be preserved in Vértisols.

Despite the gross similarity of isotopic trends in the Vertisol microhigh and
microlow, some differences’ persist. In general, isotopic inflections occur at slightly
higher soil levels in the microhigh compared to the corresponding microlow (Figure 11,
12, 13). For example, 1n the Fort Bend County (157) profile, inflection of soil organic
matter 5'°C values is observed at ~80cm depth in the microhigh and at ~90cm depth in
the microlow. Apparent climate shifts appear to coincide with soil horizonation.
Climate/ecosystem 1sotopic inflections interpreted to reflect a change from warmer/drier
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conditions towards cooler/wetter conditions occurs within the pedological boundary
Bkss1 and/or Bkss2 in both microhigh and microlow profiles (Figures 11, 12, 13). These
observations suggest not only that climate exerts a strong control on Vertisol formation,
but also that the microhigh and microlow environments are systematically related.

The difference 1n depth to the Bkss1 horizon between the microhigh and
microlow of each pedon increases as the mean annual precipitation (MAP; cm/yr)
mncreases (Figure 17). The depth difference between the occurrence of the Bkss1 of the
microhigh and microlow at site 201 soil is 141cm (MAP 122cm/yr); site 157 soil is
114cm (MAP 114cm/yr); site 481 soil 1s 107cm (MAP 104cm/yr). The wettest so1l (201)
shows the greatest difference between similar horizons 1n adjacent microhigh and
microlow environments. This phenomenon suggests climatic control on soil
microtoography. It also suggests a direct correlation between depth to pedogenic
carbonate precipitation and mean annual precipitation (MAP), a correlation that has been
championed 1n recent literature (Retallack, 1994).

Comparison of the ecosystem changes inferred from carbon isotopes (Figure 15)
across the study sites reveals several systematic results. The present relative precipitation
relationship among the three sites (Table 1) appears to have remained consistent
throughout the accumulation of these soils. The presently wettest site, 201, records the
greatest proportion of C; vegetation throughout the profile suggesting it has consistently
been wettest over the past 35,000 years. For example, in site 201 mid-profile (~-80 to
-175cm) interpreted to record the warmest/driest period during Vertisol formation, the
inferred ecosystem was 60-70% C; vegetation. At the other sites, the proportion at the

same depth/time was at most 15-25% Cs vegetation. Sites with greater moisture stress
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(i.e., 157) show the greatest proportion of C4 throughout the profile as well as more
abrupt shifts from a C3-dominated ecosystem in the base of the profiles to a C4~-dominated
ecosystem at mid-profile, compared to the wetter site 201 (Figure 15). The inferred soil
ecosystem appears not only influenced by precipitation but microtopography as well.

Site 481 shows the greatest difference in vegetation type between microhigh and
mucrolow environments. For example, at —130cm depth in the microlow, site 481,
records a ~25% C; environment. The adjacent microhigh shows a ~70% Cs ecosystem at
this same depth. This observation seems counter-intuitive to the general observation that
wetter microenvironments (i.e., ponding of water) occurs in Vertisol mirolows. Only site
481 shows a large discrepancy between the microlow and microhigh vegetation. A
possible explanation is that site 481, as the driest site, may be less affected by ponding or
experienced more extensive soil cracking which allowed greater infiltration of water
along fracture flow paths.

Several recent studies of Texas Vertisol chemistry indicate significant differences
in the moisture content, shrinkage and exchangeable bases/cations chemistry in gilgai
microhghs and microlows (Wilding et al., 1991; Driese et al., 2000). Unlike these
geochemical trends, however, most isotopic profiles of the Lake Charles series do not
record the significantly different histories. Soil organic matter and pedogenic carbonate
may be more resilient to the changes induced by the so1l water fluxes or Eh changes
compared to soluble soil cations and redox-sensitive trace elements. The rate of fluid
flow can be quite rapid in Vertisols (Bouma and Loveday, 1988; Coen and Wang, 1989;
Lin et al., 1997). Slickensides, cracks, and matrix macropores act as major transport
arteries for mass, water, and soluble species through these Vertisols; fluid movement by-
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passes most of the soil clay matrix (Bouma and Wosten, 1979; Lin et al., 1996, 1998).
Much of the soil water may simply miss the carbonates.

Accretionary growth of large carbonate nodules also has implications concerning
Vertisol formation. Two large carbonate nodules were taken from the microhigh of the
481 series (Fort Bend County) at 140cm (4cm diameter) and one from 180cm (2.7cm
diameter) depth. Despite the lack of zonation under cathodoluminescence, these hard
nodules appear in isotopic analysis to show an accretionary growth pattern similar to
concentric rings. Each nodule was dissected and carbonate samples were drilled and
taken every Smm across the interior of the nodule. Both nodules show isotopic zonation,
with *C-enriched compositions in the nodule center and progressively lighter signatures
somewhat concentrically out from the center (Figure 18 and 19); the total variation in
each nodule is ~-3%o (PDB). By comparison, §'%0 values do not vary showing values of
-3.9+ 1%o (PDB) in the nodule from 140cm depth and -3.0+ 0.5%0 (PDB) in the 180cm
depth nodule.

The progression of heavier 1sotopes toward the centers of the nodules can be
explained in a number of ways. One possibility is that the carbonate nodule has remained
at the same depth throughout the duration of its growth, and the soil environment at that
depth has changed over time precipitating §:>C values representative of the changing
environment. Another possibility is that the nodule has moved upward 1n the soil profile
and, therefore, accreted different 8°C values as it has moved through changing soil
environments. If thus is the case, then the nodule may be traced downward 1n the
microhigh to its possible origin. Figure 20 depicts a possible scenario for the origin of
the nodule at ~180cm, moved to its present depth of 140cm. Accretionary growth pattern
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Figure 18. Microsample isotopic transect across 4cm diameter hard nodule
from 481 microhigh pedon at 140cm. The carbon isotopes suggest that this
nodule has an accretionary growth pattern representing several
climate/ecosytem changes. The oxygen isotopes do not show a variation
expected from several climate/ecosystem changes but instead show a pattern
suggesting these values_ were reset to -4 + 0.5 0/00, with the exception of one
analysis.
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Figure 20. Carbon isotope compositions of the core (open crossed symbol)
and rim (closed cross symbol) of a large nodule from 140cm depth in the
microhigh of site 481. The center of the nodule (5'3C = -1.50/00) closely
matches other nodules found at 180cm depth. The edge of the nodule (-4.1
o/00) matches other nodules found at 140cm. It is hypothesized that the large,
zoned nodule originated at a depth of ~180cm and moved to its present depth
of 140cm, accreting isotopically distinct material as it rose.
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of the hard carbonate nodules compounds implications for using pedogenic carbonates
for paleoclimate/paleoecology reconstruction. Larger nodules (>10mm diameter) will
likely preserve a mixed “time- averaged" composition that is petrographically cryptic.
Small pedogenic carbonate nodules (<10mm diameter) should be used 1n these analyses

in efforts to avoid "averaged” carbonate signatures at a particular depth.
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VIII. Conclusion

All three sites investigated 1n the Lake Charles series contained soil organic
matter as well as pedogenic hard nodules and soft carbonate, which showed similar and
systematic inflections with depth. If increasing soil depth 1s consistent with increasing
age in §"°C values, as indicated by other studies of central and eastern Texas, then the
stable carbon isotopes of pedogenic carbonate and soil organic matter appear to preserve
a climate/ecosystem record. Systematic isotopic inflections suggest climate/ecosystem
change from cooler/wetter conditions at the base of the profiles, to warmer/drier
conditions at mid-profile, and then shifting back to a historical cooler/wetter ecosystem at
the top of the profiles. This interpretation is consistent with other age-dated Texas soils.
Although both soil organic matter and pedogenic carbonate show similar
climate/ecosystem shufts, soil organic matter preserves the most coherent and complete
record. Lack of isotopic equilibrium between coexisting soil organic matter and
pedogenic carbonate suggests that the two carbon pools are not exactly contemporaneous,
especially at the top of the profiles 1n the most recent soil accumulations. Still, the two
pools record a significantly similar record of climate/ecosystem change. Horizonation
appears to be sensitive to climate as observed in the depth to the Bkss1 horizon in the
microhigh and the microlow as well as changes in depth of the Bkss1 horizon between
consecutive microhigh and microlow environments. Finally, the similar and apparently
coherent records of soil organic matter and pedogenic carbonate preserved in all three

Lake Charles sites does not support the "self-mulching” concept for these Vertisols.
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Appendix 1: Soil Profile Descriptions

Fort Bend County- 157 Microhigh
Sample Date: 6/22/99

Soil Series: Lake Charles

Site Identification #: 99TX157001A (microhigh)
Described by: Wes Miller and Larry Wilding
Recorded by: Mary Dunn

Location Information
Soil Survey Area Name: Fort Bend CO.

Classification: Fine, smectitic, hyperthermic Typic Hapludert

Ak1--0 to 10 cm; very dark gray (10YR 3/1) clay; weak fine granular structure; firm;
many fine roots; common fine and few medium interstitial pores; common medium
rounded white (2.5Y 8/1) nodules of calcium carbonate and few calcium carbonate
nodules are coated with yellowish brown (10YR 5/6) iron; clear smooth boundary.

Ak2--10 to 28 cm; very dark gray (10YR 3/1) clay; weak medium subangular blocky
structure parting to moderate fine and medium granular; firm; common fine roots; few
fine interstitial and few fine tubular pores; common fine and medium rounded white
(2.5Y 8/1) nodules of calcium carbonate and few calcium carbonate nodules are coated
with yellowish brown (10YR 5/6) iron; slightly effervescent; clear wavy boundary.

Bkss1--28 to 70 cm; dark gray (10YR 4/1) clay; moderate fine and medium angular
blocky structure; firm; common fine roots; few fine tubular pores; common distinct
intersecting slickensides that are tilted 55 to 60 degrees to the horizontal; common fine
and medium rounded whate (10YR 8/1) nodules of calcium carbonate and few calcrum
carbonate nodules are coated with yellowish brown (10YR 5/6) iron; slightly
effervescent; clear smooth boundary.

Bkss2--70 to 95 cm; dark grayish brown (2.5Y 4/2) clay; moderate fine and medium
angular blocky structure; firm; common fine roots; few fine tubular pores; common
intersecting slickensides that are tilted 40 to 50 degrees to the hornizontal; few distinct
pressure surfaces; common fine and medium white (10YR 8/1) nodules of calcium
carbonate; 5 percent fine and medium yellowish brown (10YR 5/6) masses of iron with
sharp boundaries; slightly effervescent; gradual wavy boundary.

Bkss3--95 to 129 cm; dark grayish brown (2.5Y 4/2) clay; moderate fine and medium
angular blocky structure; firm; common fine roots; few fine tubular pores; common
intersecting slickensides that are tilted 40 to 50 degrees to the horizontal; few distinct
pressure surfaces; common fine and medium white (10YR 8/1) nodules of calcium
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carbonate; 5 percent fine and medium yellowish brown (10YR 5/6) masses of iron with
sharp boundaries; slightly effervescent; gradual wavy boundary.

Bkss4--129 to 144 cm; 60 percent olive brown (2.5Y 4/3), 20 percent dark gray (10YR
4/1), 20 percent yellowish brown (10YR 5/6) clay; strong medium and coarse angular
blocky structure; very firm; common fine roots; common intersecting slickensides that
are tilted 35 to 45 degrees to the horizontal; dark gray (10YR 4/1) matrix material are
filled cracks Smm to 2.5 cm wide mixed within the olive brown (2.5Y 4/3) matrix
material; yellowish brown (10YR 5/6) matrix material is an oval mass about 10 cm wide
and 8 cm thick and is bounded by the olive brown (2.5Y 4/3) material; common fine to
coarse rounded light brownish gray (10YR 6/2) and white (10YR 8/1) nodules of calcium
carbonate; slightly effervescent; clear wavy boundary.

Bkss5--144 to 176 cm; dark yellowish brown (10YR 4/4), dark gray (10YR 4/1), strong
brown (7.5YR 5/8) clay; strong medium and coarse angular blocky structure; very firm;
common fine roots; common intersecting slickensides that are tilted 30 to 40 degrees to
the horizontal; dark gray (10YR 4/1) matrix material are filled cracks Smm to 2 cm wide
throughout the horizon; strong brown (7.5YR 5/8) matrix material dominates the lower 5
cm of the horizon; common fine to coarse rounded light brownish gray (10YR 6/2) and
white (10YR 8/1) nodules and masses of calcium carbonate that are concentrated near the
contact with the Bss1 horizon; strongly effervescent; clear wavy boundary.

Bss1--176 to 210 cm; strong brown (7.5YR 4/6) clay; moderate medium and coarse
angular blocky structure; very firm; common fine roots; common distinct intersecting
slickensides that are tilted 30 to 40 degrees to the horizontal; 6 percent fine and medium
prominent greenish gray (5G 6/1) iron depletions with clear boundaries on surfaces of
slickensides and on root pore linings; few fine rounded white (10YR 8/1) nodules of
calcium carbonate; strongly effervescent; gradual wavy boundary.

Bss2--210 to 240 cm; yellowish red (SYR 4/6) clay; moderate medium and coarse
angular blocky structure; extremely firm; common fine roots; many prominent
intersecting slickensides that are tilted 20 to 30 degrees to the horizontal; 8 percent fine
prominent light greenish gray (SGY 7/1) iron depletions with clear boundaries on
surfaces of slickensides; few fine dendritic black (10YR 2/1) masses of iron-manganese
on surfaces of slickensides within the light greenish gray (5GY 7/1) iron depletions;
strongly effervescent gradual wavy boundary.

Fort Bend County- 157 Microlow
Sample Date: 6/22/99

Soil Series: Lake Charles
Site Identification #: 99TX157001 (Microlow)

Location Information
Soil Survey Area Name: Fort Bend CO.
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Described by: Edward Griffin and Jon Wiedenfeld

Classification: Fine, smectitic, hyperthermic Typic Hapludert

A1--0to 10 cm; black (2.5Y 2/1) clay; moderate fine and medium subangular blocky
structure parting to moderate medium granular; very hard, very firm, moderate, very
sticky and very plastic; common very fine and fine roots; common fine interstitial pores;
few faint pressure surfaces; abrupt smooth boundary.

A2--10 to 29 cm; black (2.5Y 2/1) clay; moderate fine and medium subangular blocky
structure; very hard, very firm, very sticky and very plastic; common fine and medium
roots; common fine tubular pores; common distinct pressure surfaces; clear smooth
boundary.

Bss1--29 to 61 cm; black (2.5Y 2/1) clay; weak medium wedge-shaped structure parting
to moderate medium subangular blocky; very hard, very firm, very sticky and very
plastic; common fine roots; common fine tubular pores; common distinct intersecting
slickensides that are tilted at 50 to 65 degrees to the horizontal; clear wavy boundary.

Bss2--61 to 103 cm; very dark gray (2.5Y 3/1) clay; strong medium and coarse wedge-
shaped structure parting to moderate medium angular blocky; very hard, very firm, very
sticky and very plastic; common fine roots; common fine tubular pores; very few crayfish
krotovina filled with yellowish red (SYR 5/6) and very dark gray (2.5Y 3/1) clay; many
prominent intersecting slickensides that are tilted 30 to 40 degrees to the horizontal; very
shghtly effervescent; gradual wavy boundary.

Bss3--103 to 135 cm; very dark gray (2.5Y 3/1) clay; strong medium and coarse wedge-
shaped structure parting to moderate medium angular blocky; very hard, very firm, very
sticky and very plastic; common fine roots; very few crayfish krotovina filled with
yellowish red (S5YR 5/6) and very dark gray (2.5Y 3/1) clay; many prominent intersecting
slickensides that are tilted at 45 to 60 degrees to the horizontal; few fine black (10YR
2/1) nodules of iron-manganese; very slightly effervescent; gradual wavy boundary.

Bkss1--135 to 158 cm; dark gray (2.5Y 4/1) clay; moderate medium and coarse wedge-
shaped structure parting to moderate medium and coarse angular blocky; very hard, very
firm, very sticky and very plastic; common very fine and fine roots; very few crayfish
krotovina filled with yellowish red (SYR 5/6) and very dark gray (2.5Y 3/1) clay;
common prominent intersecting slickensides that are tilted 35 to 45 degrees to the
horizontal; 1 percent fine uncoated nodules of calcium carbonate; 2 percent nodules of
calcium carbonate coated with strong brown (7.5YR 5/6) iron; very slightly effervescent;
gradual wavy boundary.

Bkss2--158 to 175 ¢m; 60 percent gray (2.5Y 5/1), 20 percent light olive brown (2.5Y

5/3), 20 percent light yellowish brown (2.5Y 6/3) clay; weak coarse wedge-shaped

structure parting to moderate medium and coarse angular blocky; very hard, very firm,
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very sticky and very plastic; common very fine and fine roots; common prominent
intersecting slickensides that are tilted at 30 to 45 degrees to the horizontal; 3 percent fine
and medium nodules of calcium carbonate coated with brown (10YR 4/3) iron; 2 percent
uncoated nodules of calcium carbonate; strongly effervescent; gradual smooth boundary.

Bkss3--175 to 193 c¢m; yellowish red (SYR 5/6) clay; moderate coarse prismatic structure
parting to moderate medium and coarse subangular blocky; extremely hard, extremely
firm, very sticky and very plastic; common very fine and fine roots; 5 percent crayfish
krotovinas filled with yellowish red (SYR 5/6) and very dark gray (10YR 3/1) clay and
few fine nodules of calcium carbonate; common distinct intersecting slickensides that are
tilted at 35 to 40 degrees to the horizontal on horizontal faces of peds; 1 percent fine
prominent light greenish gray (5GY 7/1) iron depletions with clear boundaries on
surfaces of slickensides; strongly effervescent; clear wavy boundary.

B’s1--193 to 216 cm; yellowish red (5YR 5/6) clay; weak coarse wedge-shaped structure
parting to weak medium and coarse subangular blocky; extremely hard, extremely firm,
very sticky and very plastic; common distinct dark gray (10YR 4/1) intersecting
slickensides that are tilted 30 to 35 degrees to the horizontal; 7 percent fine and medium
prominent light greenish gray (SGY 7/1) iron depletions with sharp boundaries on
surfaces of slickensides; few fine rounded concretions of calcium carbonate coated with
yellow (10YR 7/8) iron; strongly effervescent; gradual smooth boundary.

B’ss2--216 to 240 cm; yellowish red (5YR 4/6) clay; moderate coarse wedge-shaped
structure parting to moderate medium and coarse subangular blocky; extremely hard,
extremely firm, very sticky and very plastic; very few very fine roots between peds;
common prominent intersecting slickensides that are tilted 25 to 35 degrees to the
horizontal; 10 percent fine prominent light greenish gray (10GY 7/1,8/1) 1ron depletions
with sharp boundaries on the surfaces of slickensides; strongly effervescent; gradual
smooth boundary.

B’ss3--240 to 272 cm; yellowish red (SYR 5/6) clay; weak coarse angular blocky
structure parting to weak medium angular blocky; extremely hard, extremely firm, very
sticky and very plastic; very few very fine roots between peds; few faint intersecting
slickensides that are tilted 15 to 25 percent to the horizontal; 4 percent fine prominent
light olive gray (5Y 6/2) iron depletions with sharp boundaries on root traces in interiors
of peds and on surfaces of slickensides; few fine and medium black (10YR 2/1) masses
of iron manganese on root traces; strongly effervescent; gradual smooth boundary.

B’ss4--272 to 300 cm; yellowish red (SYR 5/6) clay extremely hard, extremely firm, very
sticky and very plastic; very few very fine roots between peds; few prominent
intersecting slickensides that are tilted 15 to 25 percent to the horizontal; 6 percent fine
and medium light gray (5Y 7/2) iron depletions with sharp boundaries on root traces in
interiors of peds and on surfaces of slickensides; strongly effervescent.
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Wharton County- 481 Microhigh
Sample Date: 6/23/99

Soil Series: Lake Charles

Site Identification #: 99TX481001A (microhigh)
Described by: Wes Miller and Larry Wilding
Recorded by: Mary Dunn

Location Information
Soil Survey Area Name: Wharton Co.

Classification: Fine, smectitic, hyperthermic Typic Hapludert

Ak1--0 to 15 cm,; very dark gray (10YR 3/1) clay; weak medium subangular blocky
structure parting to moderate fine and medium granular; friable; many fine roots;
common fine and few medium interstitial pores; few fine masses of grayish brown (2.5Y
5/2) clay throughout; 3 percent subrounded nodules of calcium carbonates 2 to 4 mm in
size; matrix is noncalcareous; clear smooth boundary.

Ak2--15 to 33 cm; very dark gray (2.5Y 3/1) clay; moderate fine and medium angular
blocky structure; friable; common fine roots; few fine tubular and interstitial pores;
common distinct pressure surfaces; few distinct intersecting slickensides; 20 percent light
yellowish brown (2.5Y 6/3) masses and nodules of calcium carbonates along surfaces of
slickensides; slightly effervescent; clear smooth boundary.

Bkss1--33 to 78 cm; dark gray (2.5Y 4/1) clay; strong fine and medium angular blocky
structure; friable; common fine roots; few fine tubular pores; common distinct
intersecting slickensides that are tilted 40 to 50 degrees to the horizontal; 30 percent fine
and medium rounded nodules of calcium carbonate and 1 percent nodules of calcium
carbonate coated with brownish yellow (L0YR 6/8) iron; strongly effervescent; abrupt
wavy boundary.

Bkss2--78 to 104 cm; weak red (7.5R 4/4) clay; moderate fine and medium angular
blocky structure; firm; common fine roots; few very fine tubular pores; many distinct
intersecting slickensides that are tilted 30 to 45 degrees to the horizontal; 5 percent of
matrix are cracks filled with very dark gray (2.5Y 3/1) clay 1 cm to 3 cm wide; 5 percent
subrounded nodules of calcium carbonate 2 to 4 mm in size; 10 percent masses of olive
brown (2.5Y 4/3) clay 1 to 3 cm in size mixed within the weak red (7.5YR 4/4) matrix
material; 5 percent of the horizon 1s a reddish yellow (7.5YR 6/6) strongly effervescent
clay intrusion 4 to 8 cm wide that arcs from the upper part of the Bkss3 horizon and
extends to the lower part of the Bkss1 horizon; strongly effervescent; abrupt wavy
boundary.

Bkss3--104 to 157 cm; dark grayish brown (2.5Y 4/2) clay; strong medium and coarse
angular blocky structure; firm; common fine roots; very few very fine tubular pores;
common distinct intersecting slickensides that are tilted 30 to 50 degrees to the
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horizontal; 5 percent fine and medium subrounded nodules of calcium carbonate; 5
percent of the horizon is a strong brown (7.5YR 5/6) strongly effervescent clay intrusion
4 to 8 cm wide that arcs from the upper part of the Bkss4 horizon and extends to the
lower part of the Bkss2 horizon; strongly effervescent; abrupt wavy boundary.’

Bkss4--157 to 181 cm; light olive brown (2.5Y 5/4) clay; strong medium and coarse
angular blocky structure; firm; common fine roots; very few very fine pores; common
distinct coarsely grooved intersecting slickensides tilted 30 to 60 degrees to the
horizontal; 10 percent fien and medium nodules of calcium carbonate concentrated near
contact with Bss1 horizon; 10 percent of the horizon is a strong brown (7.5YR 4/6)
strongly effervescent clay intrusion 4 to 10 cm wide that arcs from the Bss1 horizon and
extends to the lower part of the Bkss3 horizon; 4 percent fine rounded black (10YR 2/1)
iron-manganese nodules and masses; strongly effervescent; clear wavy boundary.

Bss1--181 to 260 cm; yellowish red (5YR 5/6) clay; strong medium to very coarse
angular blocky structure; firm; common fine roots; common distinct intersecting
shickensides that are tilted 20 to 60 degrees to the horizontal; 2 percent fine and medium
prominent light brownish gray (2.5Y 6/2) iron depletions on surfaces of slickensides; 10
percent fine rounded black (10YR 2/1) iron-manganese nodules and masses; 2 percent
fine nodules of calcium carbonate; 10 percent of the horizon is reddish yellow (7.5YR
7/6) clay mixed with the yellowish red (SYR 5/6) matrix material; strongly effervescent;
abrupt wavy boundary.

Bss2--260 to 300 cm; yellowish red (SYR 5/6) clay; strong very coarse angular blocky
structure; very firm; very few very fine roots; common prominent intersecting
slickensides that are tilted 20 to 40 degrees to the horizontal; 8 percent fine and medium
Light brownish gray (2.5Y 6/2) iron depletions on surfaces of slickensides; 1 percent fine
masses of black (10YR 2/1) dendritic masses of iron-manganese on surfaces of
slickensides; less than 1 percent fine nodules of calcium carbonate; strongly effervescent.

Wharton County- 481 Microlow
Sample Date: 6/23/99

Soil Series: Lake Charles

Site Identification #: 99TX481001microlow
Described by: Edward Griffin and Jon Wiedenfeld
Recorded by: J. David Wagner

Location Information
Soil Survey Area Name: Wharton CO.

Classification: Fine, smectitic, hyperthermic Typic Hapluderts
Al--0 to 12 cm; black (2.5Y 2/1) clay; moderate fine and medium subangular blocky

structure; hard, firm, very sticky and very plastic; common fine roots; common fine
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tubular pores; less than 1 percent vey fine and fien rounded nodules of iron-manganese;
less than 1 percent fine rounded nodules of calcium carbonate coated with brownish
yellow (10YR 6/8) iron; clear smooth boundary.

A2--12 to 28 cm; black (2.5Y 2/1) clay; moderate fine and medium subangular blocky
structure; hard, firm, very sticky and very plastic; common fine roots; common fine
tubular pores; very few distinct pressure surfaces; clear smooth boundary.

Bss1--28 to 59 cm; black (2.5Y 2/1) clay; moderate medium and coarse subangular
blocky structure; very hard, firm; common fine roots; many fine tubular pores; common
distinct intersecting slickensides that are tilted 60 to 70 degrees to the horizontal; few fine
rounded nodules of calcium carbonate coated with brownish yellow (10YR 6/8) iron;
clear smooth boundary.

Bss2--59 to 83 cm; black (2.5Y 2/1) clay; moderate medium and coarse subangular
blocky structure; very hard, very firm; common fine roots; common fine and medium
tubular pores; common distinct intersecting slickensides that are tilted 60 to 70 degrees to
the horizontal; less than 1 percent fine rounded nodules of calcium carbonate coated with
brownish yellow (10YR 6/8) iron; less than 1 percent very fine and fine rounded nodules
of iron-manganese; gradual wavy boundary.

Bss3--83 to 123 cm; very dark gray (2.5Y 3/1) clay; moderate medium wedge-shaped
structure parting to moderate fine and medium angular blocky; very hard, very firm;
common fine roots along surfaces of slickensides; common fine and medium tubular
pores; many promunent intersecting slickensides that are tilted 50 to 60 degrees to the
horizontal; gradual wavy boundary.

Bss4--123 to 147 cm; dark gray (2.5Y 4/1) clay; moderate medium wedge-shaped
structure parting to moderate fine and medium angular blocky; very hard, very firm;
common fine roots along surfaces of slickensides; many prominent intersecting
slickensides that are tilted 40 to 50 degrees to the horizontal; few crawfish krotovinas 3 to
4 cm in diameter filled with a mixture of grayish brown (2.5Y 5/2), dark gray (2.5Y 4/1),
and yellowish red (5YR 5/6) clay; less than 1 percent fine faint light olive brown (2.5Y
5/3) iron concentrations with diffuse boundaries along surfaces of slickensides; very
slightly effervescent; clear smooth boundary.

Bkss1--147 to 165 cm; dark gray (2.5Y 4/1) clay; moderate medium and coarse wedge-
shaped structure parting to moderate fine and medium angular blocky; very hard, very
firm; common fine roots on surfaces of slickensides; many prominent intersecting
slickensides that are tilted 30 to 40 degrees to the horizontal; few crawfish krotovinas 3 to
4 cm wide and filled with a mixture of grayish brown (2.5Y 5/2), dark gray (2.5Y 4/1),
and yellowish red (5YR 5/6) clay; few fine rounded uncoated nodules of calcium
carbonate; very slightly effervescent; clear smooth boundary.

Bkss2--165 to 176 cm; grayish brown (2.5Y 5/2) clay; weak medium and coarse wedge-
shaped structure parting to moderate medium and coarse angular blocky; very hard, very
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firm, very sticky and very plastic; common very fine and fine roots along surfaces of
slickensides; common distinct intersecting slickensides that are tilted 30 to 40 degrees to
the horizontal; few crawfish krotovinas 3 to 4 cm in diameter and filled with a mixture of
grayish brown (2.5Y 5/2), dark gray (2.5Y 4/1), and yellowish red (SYR 5/6) clay; 5
percent fine and medium rounded nodules of calcium carbonate and 1 percent of the
nodules are coated with brownish yellow (10YR 6/8) iron; strongly effervescent; abrupt
smooth boundary.

Bkss3--176 to 200 cm,; reddish brown (5YR 5/4); weak medium and coarse subangular
blocky structure; extremely hard, extremely firm, slightly sticky and slightly plastic; very
few very fine and fine roots; few crawfish krotovinas 3 to 4 cm in diameter and filled
with a mixture of grayish brown (2.5Y 5/2), dark gray (2.5Y 4/1), yellowish red (SYR
5/6) clay, and few fine rounded masses and nodules of calcium carbonate; common
distinct intersecting slickensides that are tilted 15 to 25 degrees to the horizontal; 7
percent fine and medium grayish green (5G 5/2) 1ron depletions with sharp boundaries on
surfaces of slickensides; 1 percent fine and medium rounded nodules of calcium
carbonate in matrix; strongly effervescent; gradual wavy boundary.

Bkss4--200 to 250 cm; yellowish red (SYR 5/6) clay; moderate medium and coarse
wedge-shaped structure parting to moderate medium and coarse subangular blocky;
extremely hard, extremely firm, slightly sticky and slightly plastic; very few very fine
roots; common prominent intersecting slickensides that are tilted 10 to 20 degrees to the
horizontal; 5 percent fine and medium grayish green (5G 5/2) and 2 percent fine gray
(2.5Y 5/1) iron depletions with sharp boundaries on surfaces of slickensides; 1 percent
fine and medium rounded nodules of calcium carbonate; strongly effervescent.

Harris County- 201 Microhigh
Sample Date: 6/24/99

Soil Series: Lake Charles (microhigh)
Site Identification #: 99TX201001A

Location Information

Soil Survey Area Name: Armand Bayou, Harris County, Texas
Described by: Wes Miller and Larry Wilding

Recorded by: Ricky Lambert

Classification: Fine, smectitic, hyperthermic Aquic Hapludert (This would be a
Calciudert if provided 1n Taxonomy)

Ak--0 to 10 cm; dark gray (2.5Y 4/1) clay; weak coarse angular blocky structure parting
to moderate medium granular; firm, very sticky and very plastic; many fine roots;
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common fine interstitial pores; very few faint intersecting slickensides; 2 percent fine
prominent strong brown (7.5YR 4/6) iron concentrations along root pore linings; few fine
uncoated nodules of calcium carbonate; matrix is noncalcareous; clear smooth boundary.

Bkssgl--10 to 27 cm; grayish brown (2.5Y 5/2) clay; moderate medium angular blocky
structure; firm, very sticky and very plastic; common fine roots; few fine interstitial
pores; common faint intersecting slickensides; few rounded 2 to 4 mm black (10YR 2/1)
nodules of iron-manganese; 2 percent fine prominent yellowish red (YR 5/8) iron
concentrations with clear boundaries on surfaces of peds and on root pore linings; few 2
to 10 mm weakly indurated nodules of calcium carbonate coated with olive yellow (2.5Y
6/6) iron; few masses of calcareous red (2.5YR 5/8) clay 5Smm to 1cm in size mixed with
calcium carbonate nodules; matrix is noncalcareous; clear wavy boundary.

Bkssg2--27 to 49 cm; grayish brown (2.5Y 5/2) clay; moderate fine and medium angular
blocky structure; firm, very sticky and very plastic; common fine roots; few fine tubular
pores; common distinct weakly grooved interesecting slickensides that are tilted 20 to 40
degrees from the horizontal; 1 percent fine prominent strong brown (7.5YR 5/6) iron
concentrations with clear boundaries on root pore linings; few rounded 2 to 4 mm black
(10YR 2/1) nodules of iron-manganese; common weakly indurated nodules of calcium
carbonate coated with olive yellow (2.5Y 6/6) iron; few masses of calcareous red (2.5YR
5/8) clay Smm to lcm in size mixed with calcium carbonate nodules; matrix is
noncalcareous; clear wavy boundary.

Bkssg3--49 to 67 cm; grayish brown (2.5Y 5/2) clay; moderate fine and medium angular
blocky structure; firm, very sticky and very plastic; common fine roots; few fine tubular
pores; many weakly grooved distinct intersecting slickensides that are tilted at 30 to 40
degrees from the horizontal; 5 percent fine distinct dark grayish brown (2.5Y 4/2) iron
depletions on surfaces of slickensides; few rounded 2 to 10 mm black (10YR 2/1)
nodules of iron-manganese; common weakly indurated nodules of calcium carbonate
coated with olive yellow (2.5Y 6/6) iron; common masses of calcareous red (2.5YR 5/8)
clay Smm to 2cm in size mixed with calcium carbonate nodules; shightly effervescent;
abrupt wavy boundary.

Bkssg4--67 to 105 cm; grayish brown (2.5Y 5/2) clay; moderate medium and coarse
angular blocky structure; firm, very sticky and very plastic; common fine roots; few fine
tubular pores; many weakly grooved distinct intersecting slickensides that are tilted at 15
to 30 degrees from the horizontal; 15 percent medium faint olive brown (2.5Y 4/4)iron
concentrations with diffuse boundaries on surfaces of slickensides; 10 percent medium
faint dark gray (2.5Y 4/1) iron depletions with diffuse boundaries on surfaces of
slickensides; common uncoated rounded nodules of calcium carbonate 2 to Smm in size;
few rounded nodules of black (10YR 2/1) of iron-manganese 4 to 8 mm in size; strongly
effervescent; clear wavy boundary.

Bkssg5--105 to 148 cm; gray (2.5Y 5/1) clay; moderate medium and coarse angular
blocky structure; firm, very sticky and very plastic; common fine roots between peds; few
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very fine tubular pores; many prominent coarsely grooved intersecting slickensides; 35
percent fine and medium distinct light yellowish brown (2.5Y 6/4) iron concentrations
with diffuse boundaries on surfaces of slickensides; 10 percent fine prominent dark gray
(2.5Y 4/1) iron depletions with clear boundaries on surfaces of slickensides; common
rounded black (10YR 2/1) nodules of iron-manganese 2 to 8mm in size; common
rounded uncoated nodules of calcium carbonate 2 to 15mm in size; slightly effervescent;
clear wavy boundary.

Bkssg6--148 to 177 cm; gray (5Y 6/1) clay; moderate medium and coarse angular blocky
structure; firm, very sticky and very plastic; common fine roots; few fine tubular pores;
common distinct finely grooved intersecting slickensides that are tilted at 30 to 35
degrees to the horizontal; 40 percent coarse prominent light yellowish brown (2.5Y 6/3)
iron concentrations with diffuse boundaries on surfaces of slickensides; common rounded
black (10YR 2/1) iron-manganese concretions; few rounded uncoated strongly indurated
nodules of calcium carbonate 2 to 3 mm in size; slightly effervescent; clear wavy
boundary.

Bkss1--177 to 202 cm; yellowish red (SYR 5/6) clay; weak coarse angular blocky
structure; firm, very sticky and very plastic; common fine roots between peds; common
distinct finely grooved intersecting slickensides that are tilted 35 to 50 degrees to the
horizontal; 5 percent fine distinct pale brown (10YR 6/3) iron concentrations with diffuse
boundaries; 2 percent fine prominent gray (SY 5/1) iron depletions with clear boundaries
throughout; few fine dendritic black (10YR 2/1) iron-manganese concentrations in gray
(5Y 5/1) iron depletions; common rounded nodules of black (10YR 2/1) iron-manganese
1 to 2 mm in size; few rounded uncoated strongly indurated nodules of calcium carbonate
2 to 3 mm in size; strongly effervescent; clear wavy boundary.

B’ss1--202 to 235 cm; yellowish red (SYR 4/6) clay; weak coarse angular blocky
structure; firm, very sticky and very plastic; common very fine and fine roots; few
distinct finely grooved intersecting slickensides that are tilted at 20 to 40 degrees to the
horizontal; 5 percent medium prominent light yellowish brown (2.5Y 6/3) iron
concentrations with clear boundaries on surfaces of peds; common rounded nodules of
black (10YR 2/1) iron-manganese 1 to 2mm in size; few medium masses of 1ron
manganese on surfaces of slickensides; few masses of calcium carbonate 3 to Smm in
size; strongly effervescent; clear wavy boundary.

B’ss2--235 to 270 cm; red (2.5YR 4/6) clay; strong coarse angular blocky structure
parting to moderate medium angular blocky; very firm, very sticky and very plastic;
common very fine and fine roots; common prominent coarsely grooved intersecting
slickensides that are tilted 35 to 45 degrees to the horizontal; 5 percent fine and medium
prominent light greenish gray (10Y 7/1) iron depletions with clear boundaries on surfaces
of slickensides; 1 percent fine prominent light yellowish brown (2.5Y 6/3) iron depletions
on surfaces of slickensides; common rounded black nodules of (10YR 2/1) iron-
manganese 1 to 2mm in size; common fine masses of black (10YR 2/1) iron-manganese
on surfaces of slickensides; strongly effervescent.
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Harris County- 201 Microlow
Sample Date: 6/24/99

Soil Series: Lake Charles

Site Identification #: 99TX201001 (microlow)
Described by: Lee Nordt and Jon Wiedenfeld
Recorded by: J. David Wagner

Location Information
Soil Survey Area Name: Armand Bayou, Harris County, Texas

Classification: Fine, smectitic, hyperthermic Aquic Hapludert

A--0 to 16 cm; very dark gray (10YR 3/1) clay; weak fine and medium subangular
blocky structure; firm, very sticky and very plastic; many very fine and fine roots;
common very fine and fine interstitial pores; few fine pores filled with coarse material;
few active unfilled krotovinas 1 to 5 cm wide; 3 percent fine distinct brown (7.5YR 4/4)
iron concentrations with sharp boundaries along root pores linings; few fine iron-
manganese nodules; clear smooth boundary.

Bw--16 to 44 cm; black (2.5Y 2/1) clay; weak medium prismatic structure parting to
moderate medium and coarse angular blocky; firm, very sticky and very plastic; common
very fine and fine roots; common fine tubular pores; very few faint intersecting
slickensides; very few distinct pressure faces; 1 percent fine prominent strong brown
(7.5YR 5/6) iron concentrations with clear boundaries along root pore linings; 1 percent
fine faint gray (2.5Y 5/1) iron depletions with clear boundaries on surfaces of peds; few
fine and medium iron-manganese nodules; gradual smooth boundary.

Bss1--44 to 65 cm; dark gray (2.5Y 4/1) clay; moderate medium prismatic structure
parting to moderate medium angular blocky; firm, very sticky and very plastic; common
very fine and fine roots; common fine tubular pores; common distinct intersecting
slickensides that tilt 30 to 45 degrees from the horizontal; 3 percent fine prominent
yellowish red (SYR 5/6) iron concentrations with sharp boundaries along root pore
linings; few medium iron-manganese nodules; gradual wavy boundary.

Bss2--65 to 88 cm; dark gray (2.5Y 4/1) clay; weak coarse prismatic structure parting to
moderate medium angular blocky; firm, very sticky and very plastic; common very fine
and fine roots; common very fine and fine tubular pores; common distinct intersecting
slickensides that tilt 35 to 55 degree from the horizontal; 10 percent fine faint light
yellowish brown (2.5Y 6/3) iron concentrations with diffuse boundaries on surfaces of
slickensides and peds; 3 percent fine faint gray (2.5Y 5/1) iron depletions with clear
boundaries on surfaces of slickensides and peds; few medium iron-manganese nodules;
gradual wavy boundary.

Bss3--88 to 117 cm; gray (2.5Y 5/1) clay; moderate medium angular blocky structure;
very firm, very sticky and very plastic; common fine roots; very fine and fine tubular
69



pores; few crawfish krotovina 1 to 5 cm wide filled with grayish brown (2.5Y 5/2) and
very dark gray (2.5Y 3/1) material; few active unfilled krotovinas; common distinct
intersecting slickensides that tilt 40 to 55 degrees from the horizontal; 15 percent fine
faint light yellowish brown (2.5Y 6/3) and 3 percent fine and medium distinct light
yellowish brown (2.5Y 6/4) iron concentrations with diffuse boundaries on surfaces and
interiors of peds; few fine and medium iron-manganese nodules; clear wavy boundary.

Bss4--117 to 151 cm; light brownish gray (2.5Y 6/2) clay; moderate medium angular
blocky structure; very firm, very sticky and very plastic; common fine roots; very fine
and fine tubular pores; few crawfish krotovinas 1 to 5 cm wide filled with grayish brown
(2.5Y 5/2) and very dark gray (2.5Y 3/1) material; common distinct intersecting
slickensides that tilt 30 to 40 degrees from the horizontal; 15 percent fine and medium
faint light yellowish brown (2.5Y 6/4) iron concentrations with diffuse boundaries on
surfaces of slickensides and on interiors of peds; 1 percent fine distinct greenish gray
(5BG 6/1) iron depletions with diffuse boundaries on surfaces of slickensides and on
interiors of peds; few fine and medium iron-manganese nodules; clear wavy boundary.

Bkss1--151 to 177 cm; light yellowish brown (2.5Y 6/3) clay; weak medium and coarse
subangular blocky structure; very firm, very sticky and very plastic; common fine roots;
very fine and fine tubular pores; few crawfish krotovinas 1 to 5 cm wide filled with
yellowish red (SYR 5/6) and very dark gray (2.5YR 3/1) material; common distinct
intersecting slickensides that tilt 30 degrees from the horizontal; 5 cm wide arcing
yellowish red (SYR 5/6) clay intrusion from Bkss2 horizon; 3 percent fine faint gray
(2.5Y 5/1) iron depletions with clear boundaries on surfaces of slickensides; less than 1
percent fine prominent strong brown (7.5YR 5/6)iron concentrations with diffuse
boundaries along surfaces of slickensides and as a halo around manganese nodules; 1
percent fine faint greenish gray (SBG 6/1) wron depletions with sharp boundaries along
root pore linings; common fine rounded strong brown (7.5YR 5/6) iron-manganese
concretions; few fine nodules of calcium carbonate; slightly effervescent; gradual smooth
boundary.

Bkss2--177 to 212 cm; reddish brown (SYR 5/4) clay; weak coarse subangular blocky
structure; very firm, very sticky and very plastic; very few very fine and fine roots; very
fine and fine tubular pores; few crawfish krotovinas filled with dark gray (10YR 4/1) and
reddish brown (SYR 5/4) material; common faint intersecting slickensides that tilt 20
degrees from the horizontal; 7 percent fine prominent gray (2.5Y 6/1) iron depletions
with clear boundaries on surfaces of slickensides; 1 percent fine prominent greenish gray
(5BG 6/1) iron depletions along root pore linings; 1 percent fine prominent light
yellowish brown (10YR 6/4) iron concentrations with diffuse boundaries between peds;
common fine nodules of calcium carbonate; strongly effervescent; gradual wavy
boundary.

B’ss1--212 to 242 cm; red (2.5YR 5/6) clay; weak medium and coarse prismatic
structure; very firm, very sticky and very plastic; very few very fine and fine roots; very
few very fine and fine tubular pores; few crawfish krotovinas 0.5 to 1.5 cm wide filled
with dark gray (2.5Y 4/1) and red (2.5YR 4/8) material; common faint intersecting
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slickensides that tilt 20 degrees from the horizontal; 5 percent fine and medium
prominent yellow (2.5Y 7/6) iron concentrations with diffuse boundaries on surfaces of
peds; 3 percent fine prominent greenish gray (SBG 6/1)iron depletions with clear
boundaries on root pore linings; few fine and medium nodules of calcium carbonate;
strongly effervescent; clear smooth boundary.

B’ss2--242 to 261 cm; red (2.5YR 5/6) clay; moderate fine and medium platy structure
parting to moderate fine angular blocky; very firm, very sticky and very plastic; very fine
and fine roots; very fine and fine tubular pores; few crawfish krotovinas 1 to 2 cm wide
filled with gray (2.5Y 6/1), red (2.5YR 5/6) clay and few fine very pale brown (10YR
8/2) nodules of calcium carbonate; common faint intersecting slickensides that tilt 15 to
20 degrees from the horizontal; common fine and medium prominent light greenish gray
(10Y 7/1) iron depletions with clear boundaries on root pore linings; common fine
nodules of iron-manganese at top of horizon; strongly effervescent.

B’s3--261 to 279 cm; red (2.5YR 4/6) clay; moderate fine and medium platy structure
parting to moderate fine angular blocky; very firm, very sticky and very plastic; very few
very fine and fine roots; very few very fine and fine tubular pores; 10 percent of horizon
are red (2.5YR 4/8) fractured conchoidal blocks; common faint intersecting slickensides
that tilt 15 to 20 degrees from the horizontal; 10 percent fine and medium prominent light
greenish gray (10Y 7/1) iron depletions with clear boundaries along root pore linings;
strongly effervescent.

B’ss4--279 to 300 cm; red (2.5YR 5/6) clay; moderate fine and medium platy structure
parting to moderate fine angular blocky; very firm, very sticky and very plastic; very fine
and fine roots; very fine and fine tubular pores; 15 percent of horizon are red (2.5YR 4/8)
fractured conchoidal blocks; 10 percent lenses 1 to 2 cm thick of light yellowish brown
(10YR 6/4) silt loam; few faint intersecting slickensides; common fine and medium
prominent light greenish gray (10Y 7/1) iron depletions with clear boundaries along root
pore linings; strongly effervescent.
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