11 University of Tennessee, Knoxville
i LN IWERSITY of

TENNESSEE TRACE: Tennessee Research and Creative
FHOREE Exchange
Masters Theses Graduate School

8-2000

A spatiotemporal indexing method for disaggregate
transportation data

Feng LU

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation

L, Feng, "A spatiotemporal indexing method for disaggregate transportation data. " Master's Thesis,
University of Tennessee, 2000.

https://trace.tennessee.edu/utk_gradthes/9418

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F9418&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

| am submitting herewith a thesis written by Feng L entitled "A spatiotemporal indexing method
for disaggregate transportation data." | have examined the final electronic copy of this thesis for
form and content and recommend that it be accepted in partial fulfillment of the requirements
for the degree of Master of Science, with a major in Geography.

Bruce Ralston, Major Professor
We have read this thesis and recommend its acceptance:
Cheng Liu, Shih-Lung Shaw

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submutting herewith a thesis written by Feng Lu entitled “A Spatiotemporal
Indexing Method for Disaggregate Transportation Data.” I have examined the final copy
of this thesis for form and content and recommend that 1t be accepted 1n partial
fulfillment of the requirements for the degree of Master of Science, with a major in
Geography

S D p st

/Bruce Ralston, Major Professor

We have read this thesis
and recommend its acceptance-

(L, s

Cheng L1u

AL L

Shih-Lung Shaw ™~

Accepted for the Council

L e

Intern Vice Provost and &‘S)
Dean of the Graduate Schoo

A SPATIOTEMPORAL INDEXING METHOD FOR
DISAGGREGATE TRANSPORTATION DATA

A Thesis
Presented for the
Master of Science
Degree
The University of Tennessee, Knoxville

Feng Lu
August 2000

Acknowledgments

There are several people to whom I am grateful for helps during the nearly two
years I have spent at the University of Tennessee. I would like to express my deepest
gratitude to Dr. Bruce Ralston for being my great advisor. Dr. Ralston spent much more
time to help me 1n my thesis-from topic selection, programming, to outline and writing.
In addition, he was helpful to my famuly. I am also grateful to Drs. Cheng Liu and Shih-
Lung Shaw. Dr. Liu oniginated the spatiotemporal indexing method 1n this thesis and
helped me learn data structures and code writing. Without his help, it would have been
impossible for me to finish my thesis so soon Ilearned basic GIS and transportation
knowledge including the spatiotemporal data models and their applications in
transportation from Dr Shaw. In fact, the spatiotemporal query problem for trip data was
first 1dentified by im Dr. Shaw and Dr. Liu also helped me personally.

There are a number of other people whose assistance should be recognized. I
would like to thank Mike Schultze and Amy Rose for their generous help 1n using
ArcInfo package to run my AML code. Amy also helped me debug the errors in the code.

Perhaps the greatest debt I owe 1s to my family. During the last three years I have
been studying 1n the US, my family gave me support. I feel great to have my wife Cuiling

and our daughter Rongrong’s love.

1

Abstract

Time, location, and attributes are three elements of a GIS, but all commercial GIS
packages can only handle location and attributes; they are 1n fact a static GIS.
Spatiotemporal GIS has been a hot research topic recently. Spatiotemporal GIS and 1its
application 1n transportation research are still premature. This thesis focuses on
spatiotemporal query problems on travel data Specifically, It attempts to answer this
question® during a time period, which trips pass through one or more specific streets? To
speed up this spatiotemporal query for large data sets, a spatiotemporal index on the trip
data 1s built by combining Avenue, AML, and C++. All the trip origin ends and those last
destination ends for each individual on each day are geocoded using Avenue scripts The
trip shortest path route system 1s created based on ArcInfo dynamic segmentation and
network analysis functions. An array of 2-D tree structures based on each trip’s beginning
time and ending time and each street traversed are then created in C++ and Avenue. This
array of 2-D tree structures 1s stored in memory. Fnally, the spatiotemporal query
function 1s performed by examining the array of 2-D tree structures for a given time
window using Avenue and C++. A sample trip log data file i the Knoxville Metropolitan
Area and Knox county street shape file are used to implement the spatiotemporal query.
Thus thesis is concluded that efficient indexing methods must be developed to handle

complicated spatiotemporal queries for large travel data sets

m

Table of Contents

Chapter Page
1. Introduction and Problem Descriptionscccveeveveiiinineniiinnininnnn 1
2. Literature REVIEWoiiiiiiis it i vvieieie o e, 7
Temporal Non-spatial Databases and Temporal Quertes 9
Spatial-temporal Data Models and Queriescccocvvverinrnnnn. 12
Activity-based Transportation Research and Temporal GIS-T 28
3. Data Description and Methodology coviviiiiiiiiniininennen, 33
Sample Data Descriptionccccveve v v civiviiiiiies eeneann 33
Trip Data Model (Representation of Trip Log Data Set) 36
Comparison of Common GIS Approaches and the 2-D Trees
ApProach ciiiiii e i s e 41
Methodology and Flowchart cocooviiiiinin v, 45
4. Creating the Trip Route System in Dynamic Segmentation 49
Linear Referencing Systems and Dynamic Segmentation 49
Geocode TP Ends . .cve vevvins ciiet ciiit cn cies i e, 53
Create a Trip Route System cooveveiiier © civiiiiiiiiiienenn, 60
5 Temporal Indexing e eteee e e eeeeieerereereeeeeanen 70
Generic Description of 2-D Tree Structure oo ceveennen o 70
Create an Array of 2-D Trees C eeeren e e e e 74
6 Spatiotemporal Query and Its Implementation 83
Spatiotemporal Query Code Descriptionccceeevenr ceevnennna. 83
Implementation and Examplesc.oooveviiiiininiiniininiinines 85
7. Conclusions and Future Research N 96
REfErencesocviiiiis viin ciiiiiiit criiiiiit o s e 99
APDENAIX ooetiiitiiii e eeen reeteeeeaens ceaeeeeaererae e 105
4 L P 132

v

Table

21.
3.1.

32.

List of Tables
Page
Temporal Indexes cooviiiiiiiiiiiiins v 11
Name and description of main fields in the trip log file 35
Trip path feature table description after using
WritePathLong commandcccevvee v cevvvins ceinininenen. 40

Figure

1.1.

2.1.
22
2.3.
24.
25.

26

2.7.
2.8.
2.9.
2.10.
2.11.

2.12

3.1.
3.2
33.

3.4.

4.1.

List of Figures

An example network on which trip1 and trip2 both pass

throughlink AB . .. coiiii i e e
Schematic representation of the space-time path
Schematic representation of the space-time prism et
The snapshot approach for representing spatiotemporal data
A space-time composite of urban encroachment

The ESTDM data StIUCIUIE «..vvs veveenrienneen cee eenvennn evennnns .

Spatial changes at time t, displayed as a simplified map (a)

and the corresponding event components (b) in the ESTDM model

Framework of the TRIAD model .. .eovvverr ceen o veeeeieenn e e,

The structure of the time-based view

The structure of the location-based Viewcovvvevr cer veveenns onn.

The search spaces of four primitive geographic queries

A conceptual framework of the relationships between

entities 1n a disaggregate travel data setcocee cenenvvnenn, .. .
Trip sample database of Knoxvilleccceeeeninin ceenininnnnnn...

Knox county network shape file coeiviiiiiniiiiininnnnn.

A route system named BUS on a ROADS coverage

Flowchart of building spatiotemporal index for disaggregate

transportation dataoco.eeviiiiniiiii i

A route defined on aset Of fOUr arcs .oovvee v voevvevveeeninneen e

vi

Page

13
15

19

21
22
23
24

26

32
34
37

42

46

50

Figure
4.2.
4.3.
44.
4.5.

4.6

4.7.

4.8.

4.9.

5.1.
5.2.
5.3.

6.1.

62.

63.

64.

6.5.

6.6.

An event database of traffic accidentsonarouteev.....
Pavement data contained in an event databaseccevunn. ...
Address geocoding object model in ArcViewc..ou.e.s .. .

Trip chain characteristics of the sample dataset

Geocoding result for the sample trip data set in Knoxville

Metropolitan ATeac.vvviiiieieies viee cr vieirieieneree e

A shortest path trip route system named path1 based on
STREETS network coverage and STREETS.STP stops

info file 1n ArcInfo network analysis « coevevennne...

A sample trip shortest path route system on Knox network

A sample text file exported from the section table of the

trIP TOULE SYSLEIM ...uvvuiniiiins crerienerrieneienes tee sene enennasnnn .
A generic 2-D tree structure, e eeeeereres tee eeereieeees . .
A sample trip 2-D tree based on starting time and ending time

The structure of an array of 2-D treescccveveen veens cnevnenen.

The user interface of a spatiotemporal query function

ON & tT1P TOULE SYSLEIM t.vvutinins cir ceneneierneeanne oo o eeereenananns

Create an array of 2-D tree structures by loading a DLL file

The time window (8 00 am — 9-00 am) of the spatiotemporal

query on one street (EXample ONe)vvveeniieiniiiinininieniaienennnns

The message box report showing the spatiotemporal query

result on one street (eXxample ONe)cove vevereiiiieniiieennns ...

The selected paths showing the spatiotemporal query

result on one street (EXample ONE)ceevvveeeieerereninineniennnnnns

The time window (5:00 pm — 7:00 pm) of the spatiotemporal

query on a set of streets (example tWo)ccevevieiins ve cen o e aeis

vi

54

56

61

62

68

69

71

73

74

87

88

89

90

91

92

Figure Page

6.7. The message box report showing the spatiotemporal query
result on a set of streets (example tWo)ceevveieniiiinnnen.. . 93

6.8. The selected paths showing the spatiotemporal query
result on a set of streets (example tWo)coeovverrneninins o eeeen. 94

Vil

Chapter 1

Introduction and Problem Descriptions

The study of travel demand analysis has evolved through several stages since 1950s.
It evolved from analyzing aggregate data (based on traffic analysis zones) to analyzing
disaggregate data (based on individuals or households). Pas (1990) classifies the
development of travel demand analysis and modeling into five eras. The social physics
era began in mid-1950s with the transportation studies in the major metropolitan areas of
North America. Travel demand models (e.g. the four step transportation demand
modeling) were formulated and calibrated at the level of the traffic analysis zone based
on physics models such as the gravity model These models were also called ‘aggregate
models’. The econometric era started in 1960s with the development of the econometrics
of discrete choice models which describe disaggregate behavior. In the 1970s, the
psychological scaling techniques to measure consumer’s perceptions, attitudes, and
beliefs were used in disaggregate behavior models. This era was called the psychological
era. The human activity analysis era started in mid-1970s. In the human activity analysis
framework, travel 1s treated as a dertved demand based on individuals’ needs and desires
to participate in activities at spatially separated locations. Human activities and travel
patterns within spatio-temporal constraints became the focus of this era. The fifth era
called the dynamic analysis era began 1n mid-1980s with focus on the longitudinal data
analysis This era can be seen as the extension of the human activity analysis era (Shaw,
1999). Thus the activity-based approach has been a focus in travel demand analysis since

mud-1970s.

The activity-based approach emphasizes travel and activity patterns, and the
dynamics of travel behavior. How to handle dynamic travel behavior is a major challenge
to the GIS-transportation community. Goodchild (2000) argues that there are three views
of GIS-T: the map view, the navigation view, and the behavior view The map view is
concerned about how to describe and represent a static transportation phenomenon.
DIME and TIGER data models created by the Burean of the Census are examples The
link-node data model 1s a basic structure for representing static transportation networks.
The navigation view 1s concerned about connectivity and planarity, and the storage of
time dependent attributes. Routing problems are the main perspectives of the navigation
view. The behavior view deals with the behavior of discrete objects — vehicles, people,
trains, or boats — on and off the network. The behavior view of GIS-T 1s important
because the traditional aggregate models cannot satisfy the needs of transportation
analysis. For example, when dealing with travel demand modeling, we should be
concerned about the characteristics of households and individual travelers. In the
meantime, the short-term activity patterns of travelers also should be analyzed. Time
therefore becomes an important element in GIS-T.

In fact, dynamic travel behavior and activity patterns are also important in Intelligent
Transportation Systems (ITS). According to Japan’s ITS system architecture, human,
vehicle, roadside, and center are the four important subsystems of ITS. ITS is concerned
with real time data. Human and vehicles are moving objects along networks. How to
capture the characteristics of moving objects (attributes, locations) and find their activity
patterns are important aspects of ITS. In order to capture these characteristics, continuous

data on moving objects is a concern. How to create data models for the continuous

moving objects 1s a challenge to GIS-T researchers due to the complexity of dynamic
traveler behavior and the large amount of data (Shaw, 1999).

Dangermond (1984) suggests that time, location, and attributes are three elements of a
GIS A major research question concerns the handling of large amounts of historical
spatial data. Many researchers have studied this problem. Hagerstrand’s time geography
provides the theoretical direction (Hagerstrand, 1970). He introduced time as the third
dimension of the trajectory of objects. Thus, location, attribute, and time become basic
elements of describing geographic features. Handling time component in GIS 1s a major
challenge. How should we store the large sets of data? How can such data be retrieved
efficiently? How can we perform spatial and temporal analysis?

There are several research topics for spatiotemporal GIS such as spatiotemporal data
models, temporal overlay, and spatiotemporal query This thesis focuses on how to build
a spatial temporal index function for trip log data.

Up to now, all commercial GIS packages only can handle one state of geographical
phenomenon. For example, ArcView’s shape file and ArcInfo’s coverage are both basic
organization units of spatial data, but they can only store static geographic features.
When dealing with multiple states or dynamic geographic features, all these dynamic
features have to be stored in different shape files or coverages. This approach for
handling dynamic geographic features 1s called the snapshot approach. With this
approach, there is data redundancy, because all geographic features at different states
have to be stored, even though some features do not change. Other shortcomings of this
approach are that there is no temporal overlay function, and it is difficult to trace

changing patterns of geographic features.

GIS 1ncludes functions for spatial data input, manipulation, retrieval, analysis,
display, and output. Users use GIS’ query functions to retrieve geographic information.
Spatiotemporal query 1s an 1mportant component in spatiotemporal GIS. Current
commercial GIS have data models and algorithms for efficiently handling spatial query.
However, temporal query 1s treated as a kind of attribute query. That 1s, all temporal
information 1s treated as attributes for spatial features. For example, when feature class A
exists during time bt and et, then bt and et can be attributes of A. When querying whether
A exists between time period bt and et, we can query based on attribute fields related to
tume.

What is a spatiotemporal query? According to Langran (1992), a spatiotemporal
query defines a search space within the data space composed of location, attributes, and
times by constratming location, attributes, and times to points or segments along each
axis

Spatiotemporal query 1s complicated and difficult to handle There 1s no generic
spatiotemporal data model available, because time is more complex than the spatial
domaun, as time dimenstons are non-homogeneous (Snodgrass, 1992). Without a
spatiotemporal data model, querying features based on space and time is 1nefficient.
Because all the current commercial GIS software can only use the snapshot approach to
handle spatiotemporal data, 1t is difficult to conduct spatiotemporal queries efficiently.

Querying trip log data based on a space-time window is a spatiotemporal query. Trip
log data analys:s is useful for urban transportation planmng and transportation behavioral
analysis. It comprises the basic data for disaggregate transportation and activity-based

modeling approaches.

Trip log data contains trip information for each household or each person on each
day, and each trip has its own path. In order to study traffic flow and traffic congestion on
a particular street, we might want to ask questions such as: during a time window, how
many trips pass through this street? What are those trips? That 1s, we want to create
spatiotemporal query windows.

There are different kinds of spatiotemporal queries for trip data. In this research, I
attempt to solve the problem of querying what trips pass through a set of streets during a
time window. For example (see Fig. 1.1), there are two trips (tripl, trip2) They both use
link AB. We might ask how to search trips passing through AB during the time period
9.30 — 10:30 am? If the data set 1s small, there will be no need to build a spatiotemporal
index. However, 1f the data set is quite large, 1t will be necessary to build a
spatiotemporal index.

Trips can be regarded as moving objects (points) along a network, and each trip has a
path (polyline). There 1s no generic data model to handle moving objects. Here, the trip
data model is assumed to be a spatial data model plus an attribute table to handle time
elements. A trip path 1s considered to be a basic spatial feature, and time elements
(beginning time, and ending time) are considered to be two fields 1n a path attribute table.

I'use the Knoxville area in Tennessee as a test area for building a spatiotemporal
index for trips The purpose 1s to speed spatiotemporal query. There are two input data
files: one is Knox County street network (Arcview shape file), and another is a trip log
file (a text file). Based on these two files, a trip path system can be created using
ArcInfo’s dynamic segmentation functions and network analyst. Then a spatiotemporal
index can be built for each street (arc) based on the starting and ending times trips pass

5

o
iEa

Figure 1.1. An example network on which tripl and trip 2 both pass through link AB.

through this street using a two-dimensional tree. Combining ArcView spatial search
function and two-dimensional tree structures, spatiotemporal query can be performed
efficiently. The construction of a spatiotemporal index and the development of

spatiotemporal query functions constitute the main contribution of this thesis.

Chapter 2

Literature Review

While spatiotemporal GIS is a new research area, its theoretical foundation can be
traced to time geography initiated by Hagerstrand (1970). The time geographic
framework focuses on the behavior possibilities of individuals within spatial and
temporal constraints. In this framework, an individual can only participate in events or
activities at a single location 1n space at a given time. Thus, the space-time path of an
individual can be drawn using a three-dimensional coordinate system (Figure 2 1). X-Y
coordinates stand for a planar space, while z stands for a time dimension A vertical line
represents stationary activities (an individual stays at a location for some time); while a
sloped line represents movements among different locations within a time period. The
higher the slope degree, the slower the movements will be. The broken lines describe the
spatial movements of the individual over a time frame. The space-time path can be
rotated to form the space-time prism, which determines the feasible set of locations for an
mdividual to participate 1n activities within space and time budgets (Figure 2.2). The
space-time prism does not trace the observed movements of an individual, instead, 1t
shows the feasible space for an individual to travel within a period of time.

Even though the time geographic framework was originally designed for describing
behavior patterns of individuals, 1t can be applied to all kinds of spatial temporal
phenomena. Geographic features might be points, lines, or polygons, and their
movements (or transformation or modification) can be continuous or discontinuous.

The time geographic (or space-time) framework provides theoretical foundation for these

7

z A

Figure 2.1. Schematic representation of the space-time path.
(Source: Miller, H. J., 1991.)

ral
+ T:’2

e s e - e -y

r
]
13
t

N

Z0

Figure 2.2. Schematic representation of the space-time prism.
(Source: Miller, H. J., 1991.)

phenomena
Current research on time and data models for GIS has focused mainly on the
representation of temporal geographical entities and implementation of temporal

databases

Temporal Non-spatial Databases and Temporal Queries

Some researchers in computer science began to study temporal database 1n 1980s.
They mainly focused on expanding the relational data model to incorporate some aspects
of temporality. There are three main approaches. relation-level versioning, tuple-level
versioning, and attribute-level versioning

Relation-level versioning creates a new snapshot of a table whenever any of its
attribute change. This approach 1s conceptually simple; however, 1t 1s highly redundant.
Ben-Zv1 (1982) ’s time relational model and Clifford and Warren (1983)’s historical data
mode] are two representatives of this approach.

Tuple-level versioning 1s an approach where attribute changes cause new records
(tuples) to be created or old records to be updated or deleted. Snodgrass and Ahn
(1985)’s method is a representative. They introduce two important aspects of time: world
time (or valid tume) and system time (or transaction time). The world time traces the
changes that occur in the real world, while the systeI'n time traces the changes recorded in
the database. They use four time stamps to bracket intervals of system time (from system
time to system time) and world time (from world time to world time). New tuples are
added to the bottom of a relation (table). Tuples are deleted by changing their time field
values. Tuples are altered by deleting the current version and adding the new version.

9

The tuple-level versioning approach 1s better than the relation-level versioning 1n that it
reduces storage cost a lot, and relational theories and algebra can apply.

Attribute-level versioning requires variable-length fields of complex domain to hold
Lists of time-stamped attribute versions (Langran, 1992). This approach 1s compact but
requires alternative relational algebra to handle Gadia (1986), and Clifford and Tansel
(1985)’s methods are the representatives of this approach.

In additron to these temporal data models, many temporal query languages have been
proposed Each temporal query language 1s related to one temporal data model.
Snodgrass (1992) lists twenty-one kinds of temporal query languages such as TQuel,
TSQL, Postquel, HQuel, and HSQL, which are based on conventional query languages —
SQL (Structured Query Language, a tuple calculus-based language), Quel (the tuple
calculus based query language), QBE (Query-by-Example, a domain calculus based
query language), relational algebra (a procedural language with relations as objects), and
DEAL (an extension of the relational algebra incorporating functions, recursion, and
deduction). Snodgrass argues that the implementations of these temporal query
languages are limuted 1n scope and are unsystematic in their design Now an effort is
underway within the research community to create a common generic Temporal
Structured Query Language based on SQL (Snodgrass, 1992).

At the system level, many temporal index data structures have been proposed to speed
up temporal queries. Snodgrass (1992) summarized these temporal index structures
according to their foundation tree structure, temporal dimensions, temporal keys etc (see

table 2.1). All these temporal index structures are based on B+ trees (indexing on values

10

S[eAIoIUT Ja1],
[=<Y| Jjosmed - + XapuI | 0661 ‘I 10
‘sofue1 | ‘[eAlsjul yloq ylog Juow3aS | ‘UOSAO[O 11-¥S
Suryser] 8861
1 [eAIIUI SNOLIBA SNOLIBA ‘QaLL, +g | ‘B 19 ‘Uyy --
Xopuj
- Qwiy, + 1661 ‘I8 | Xopuf oW /QINqUNY
1 [eAISIUT g10q ypog 90L], +¢ | 10 ‘USRW[H | PAUIqUIO)) [QAS[-OM [,
0661 ‘Te
0 [eAzaIuI 109 yog 991 +9 | 30 ‘usew g XapuJ Qwi],
S[eAI)UI
I1=<Y| Josned pi[eA+suen) 6861 ‘810 11y
‘souei) | ‘[eAIour | ‘uomoesuen ylog 911~y | ‘uosAaojoy BIPOJAl POXIIA
0661 ‘T8
I [eAISIUI uornoesuen) Arewrud I +g | 10 ‘Pwo] 9211 -g nds-ounn],
Surysey ¥361
1 auou uonoesuer) Arewd | 10 9317, +¢ | ‘[10 ‘W' -
7661 ‘I8
0 [eAIoIUI uorjoesueI} ylog | Xxopufowir], | 19 ‘Usew[q | 931], +g OIUOJOUOTA
0661
0 JUSAQ uorjoBSURI) ylog 991, +(| ‘uosao[oy] 9a1], +g papis-do
7661 ‘18
0 JUSAD uornoesuey) | AIepuooss Il +g | 10 ‘Buna] xopu] jutodoay)
1661 ‘T8 19
0 JUSAD uorjoBsuRI) Arewg 1L +g | ‘ypuenn 9217, A[uo-puaddy
(s)Aay] (s)Aoy[| suorsuowu(y | A1epuOdaS
[etodwag-uoN | (erodwaj, [erodway, | /Arewnig | uo paseg uorne) QweN

(2661 ‘Ssvi3poug

204mn0g) saxapuy piodua] 1°7 219U

11

of a single key) and R trees (indexing on ranges of multiple keys) Each temporal index
structure has 1ts own advantages and application areas However, there is little effort to

compare them 1n space and time efficiency.

Spatial-temporal Data Models and Queries

A data model is an abstract representation of some real-world situation or domain of
imterest about which information will be stored in a database (Dictionary of Computing
1996) Data models are the cores of an information system; they define data object types,
relations, operations, and rules to maintarn database integrity (Date, 1995; Miller, H.J.
and Shaw, S L, 2000) Temporal GIS includes time elements in conventional GIS; 1t
aims to process, analyze, retrieve and manage spatiotemporal data. Spatiotemporal data
models are the cores of a temporal GIS Without a good data model, 1t will be meffectual
for a temporal GIS to handle spatiotemporal queries.

Since 1980s, geographers began to conduct studies on the representation of temporal
geographic entities, and several spatiotemporal data models have been proposed.
Peuquet (1999) classifies spatiotemporal data models into four kinds location-based
representation; entity-based representation, time-based representation; and a combined
approach. Yuan (1999) groups these data models into two kinds* by time-stamping spatial
objects, and by events or processes. Here, the author lists five kinds of spatiotemporal

data models according to their historical developments.

12

The Snapshot Model

The snapshot model views spatiotemporal data as a sequent of snapshots at different
time slices (Figure 2.3). In this model, every layer is a collection of temporally
homogeneous units of one theme i.e. one layer holds information related to a single
thematic domain at a time point. Spatiotemporal data are recorded by discrete temporal
intervals. At each time point, all features (or phenomena) are included regardless of what
has or has not changed since the previous snapshot. Temporal intervals are not
necessarily the same. For example, at time point t,, S, holds all the features even if some
features don’t change from S;; and temporal interval (t;-t) is not necessarily equal to
other temporal intervals (t,-t3, etc). The snapshot model is the only data model available
within current commercial GIS. The temporal urban mapping model for the Baltimore-
Washington area and the San Francisco Bay area (USGS, 1998) are examples of this

approach.

Figure 2.3. The snapshot approach for representing spatiotemporal data: each snapshot,
Si represents the state for a given point in time Ti. (Source: Peuquet et al, 1995)

13

Langran (1992) and Peuquet (1999) summarize three main shortcomings of snapshot

approach.

* Redundant storage. Even though during each temporal interval, only a small
portion of features changes, a snapshot is a complete map of all the regions, which
duplicates all the unchanged data. The data volume increases enormously when
the number of temporal points (or temporal mtervals) increases.

* No temporal topology. Temporal topology means temporal relationship for each
spatial feature (1.e. 1ts previous and next versions). In order to compare spatal
entities to their previous and next versions to retrieve spatial changes, those
temporal adjacent snapshots have to be compared exhaustively. The reason for
this problem is that snapshots represent states but not the events that change from
one state to another state.

¢ Undetermined change. Because snapshots only represent states, exactly when a
spatial entity changes cannot be determined. In addition, some critical changes at
some locations may occur between two consecutive snapshots, but may not be

represented.

The Space-time Composite Model

The space-time composite model represents spatio-temporal data as a set of spatially
homogeneous and temporally uniform objects, and can been viewed as overlays of
temporal snapshots. This approach was proposed by Christman (1983), and Langran and

Christman (1988) Space-time composite model begins with a base map or a layer that

14

represents the original state of geographic phenomena. Each change causes a portion of
the geographic phenomena to become discrete objects, which have their own histories.
After all temporal changes, the original layer is changed to a layer composed of basic
spatiotemporal units (points, lines, or polygons), which are overlays or intersections of
different temporal snapshots and have their distinct temporal attributes.

Figure 2 4 shows a space-time composite for urban encroachments. The land use
decomposes over time into smaller fragments, which reference distinct temporal attribute
sets The whole region was originally rural land use (at time T;) At time pont T, portion
A changed to urban land use; at time point T3, portion B changed to urban land use; at
time point T, portion C changed to urban land use. The procedure of urban
encroachments can be seen as overlays of three snapshots (T, T, T3), and keeps all

Intersection points, lines, and polygons as basic spatio-temporal units, which have their

own history.
C
T1 T2 T3 T4
B |
A Rural

A Rural Urban —»

C B Rural Rural Urban >

£ c Rural Rural Rural Urban

Figure 2.4 A space-time composite of urban encroachment. Each polygon has an
attribute history from that of its neighbors. (Modified from Langran 1992, pp. 41)

15

Space-time composite employs the topological model, thus explicitly maintaining the
integrity of individual entities and their changing topology through time. Compared to the
snapshot approach, this approach has the advantage of less data redundancy. In addition,
accessing temporal changing information 1n the space-time composite is conceptually
straightforward because this approach contains temporal topology.

However, two shortcomings can be detected in space-time composite model
(Langran, 1992; Yuan, 1999; Peuquet, 1999). As time progresses and temporal changes
increase, the space-time topology becomes quite complex 1.e. the representation
decomposes into progressively smaller objects, and ultimately poses intolerable storage
processing problems. There are many aspatial attributes that can change over time. If
components that make up the spatial and aspatial aspects of any given entity are changing
at different times and at different rates, maintaining the 1dentity of individual entities
becomes difficult (Peuquet, 1999).

Yuan (1999) points out that the space-time composite model 1s able to record
temporality within the largest common unts of attribute, space, and time, but it fails to
capture temporality attributes across space (1.e. motion or movement) Disaggregate
transportation or trip data can be described as moving objects, thus the space-time

composite model cannot efficiently represent disaggregate transportation data.

The Spatiotemporal Object Model

The spatiotemporal object model uses an object-oriented approach. In the object-
ortented approach, every entity is an object, which is the basic organizational unit. An
object has properties and methods. Spatiotemporal object (ST-Object) model was

16

*—ﬁ
proposed by Worboys (1992, 1994). The approach taken by Worboys is to form classes
of primitive spatiotemporal objects by associating two-dimensional temporal elements
(1e world time and system time) with spatial objects Composite spatiotemporal classes
are created based on primitive spatial object classes and primitive temporal object
classes.

The spatial data model Worboys built is based on combinatorial topology. Spatial
objects are represented as simplicial complexes. A simplex 1s either a single pomt, finite
straight line segment or triangular area. A simplicial complex 1s a collection of non-
overlapping simplexes.

A spatio-bitemporal object is created based on spatial and bitemporal (i e. world time
and system time) extents. This object can be represented by attaching bitemporal
elements as labels to components of simplicial complexes A ST-complex is a collection
of ST-simplexes, which 1s an elemental object (stmplex) to which 1s attached a
bitemporal reference

According to Peuquet (1999), the spatiotemporal data model provides a cohesive
representation that allows the identity of objects as well as complex interrelationships to
be maintained through time. This model is able to record changes in space, time, and
attributes. However, because the spatiotemporal object model represents the world as a

set of discrete objects consisting of ST-simplexes, continuous or gradual changes in space

through time cannot be represented.

17

The Time-based (or Event-based) Spatiotemporal Data Model

Spatiotemporal data models based on time or events mainly represent temporal
change as a function of time. In this approach, there 1s a base map or starting point, from
which, the sequence of events represents an ordered progression through time of known
changes.

Peuquet et al (1995) propose an Event-based Spatiotemporal Data Model (ESTDM)
based on time as 1ts orgamzation basis, and intend to analyze temporal relationships and
change patterns within a pre-specified geographical area (Figure 2 5). Using doubly
linked list structure, the ESTDM consists of a header, a base map that defines the initial
geographic area, and an event list with set of components attached to each event. The
header contains information about the thematic domain, a pointer to the base map, and
pointers to the first and last events. The base map shows an mitial snapshot of the entire
geographic area using a raster run-length-encoded method. The event list contains spatial
changes through temporal intervals. Each event contains a time-stamp, a list of pointers
pointing to each event component, and a pair of pointers pointing to the previous and next
events. An event component represents changes to a predefined location (raster cells) at a
time point. All locations that have changed to the same value within a single thematic
layer are members of the same component. Figure 2 6 shows the component structure: a
component descriptor that shows the new value; and an array of locational elements
called tokens. A single token represents a set of consecutive cells along a row using run-
length encoding. It consists of row number, the first column number (left-most column
with the same value), and the last column number (right-most column with the same

18

Header - >

to Plevent1 | " levent2 e ’ eventq | |
I 1y 1, [¢— | Y
y - \ 2

= 1N =3 o ™
- - - - - L E
2 2] IR 21 8.
base map gligl [g] |€ g £ E
siI8} (3] (3 S 3

Figure 2.5 The ESTDM data structure (Source: Peuquet et al, 1995)

e LR 8 VT 29
gt AT
r*w&&g . 4116[19] [(16] 617
15 T I R E =|[5]16l20] a7l 47
i
- 5_‘ I é’ E |6 [15]20] [17]10]12
[-3
20 :29 6 ‘_‘; N
o
11 1711 I 1 1 TTT I
25 | ENNEsnANREEEE

XN X Ny
(b)

Figure 2.6 Spatial changes at time t, displayed as a simplified map (a) and the
corresponding event components (b) in the ESTDM model. (Source: Peuquet et al, 1995)

value).

Because time is a basic organization unit, ESTDM has the capabilities of performing
temporal manipulations (temporally based queries) on spatiotemporal data. For example,
ESTDM can easily retrieve all locations that changed to a given value at a given time;
retrieve all locations that changed to a given value over a given temporal interval;

19

calculate the total change 1n area to a given value over a given temporal mterval. Adding
new events 1s straightforward (Just adding to the end of the event list). ESTDM can also
reduce data redundancy, since it only handles temporal changes.

ESTDM 1s a raster-based spatiotemporal data model. All temporal changes are
associated with predefined locations or cells. However, the adoption of ESTDM model to
a vector-based system requires redesign of event components. Spatial objects always
change 1n geometrical properties and topological relationships, how to handle spatial
objects’ 1dentities becomes a real challenge Using ESTDM approach 1n a vector-based
system, predefined entities have to be created to handle temporal changes. If the entities
are points, there is no problem of changing topology; but 1if the entities are lines or

polygons, these entities will be fragmented 1f changes occur.

Comprehensive Models

A comprehensive model integrates different kinds of spatiotemporal data models
together as one data model A feature-based data model (or vector ciata model) 1s more
effective in retrieving information about spatial features or objects; a location-based data
model (or raster data model) is more effective in retrieving information about locations;
while a time-based data model is more effective 1n retrieving information about specific
times or changes through time. Integrating these three data models would allow us to
handle complicated spatiotemporal problems such as managing changes of spatial objects
and maintaining object 1dentities.

A prototype of spatiotemporal data model called TRIAD was proposed by Peuquet
(1994) and implemented by Peuquet et al (1994). In TRIAD, there are three

20

Feature-Based
(What)

ﬁ - p (When)

Location-Based Time-Based

(Where) |t0 l tq I to

tel

Figure 2.7 Framework of the TRIAD Model (Source. Peuquet et al,
http /fwww.geog.psu.edu/tempest/)

mterdependent representations: feature-based, location-based, and time-based views,
which handle what, where, and when problems respectively (Figure 2.7).

The feature-based view maintains the integrity of geographic individual objects along
with their spatial and temporal changes (Figure 2 8). It consists of feature inherent and
non-inherent attributes (feature 1d, name, feature class, layer info, and other static
attributes), as well as spatial delimiters and temporal delimuters. Spatial delimuters store
feature’s first and latest generalized locations (the bounding rectangle for an areal feature,
two x~y coordinate pairs to denote the endpoints of a line, and a single x-y coordinate to
denote a point feature). Spatial delimuters are used for linking the feature-based view

with the location-based view to retrieve detailed location information. Temporal

21

Spatial Delimiters

Temporal Delimiters

Feature Class

Layer Info

Static Attributes

Figure 2.8 The Structure of the Feature-based View (Source: Peuquet et al,
http://www.geog.psu.edu/tempest/)

delimiters store the times a specific feature begins to exist and ceases to exist. Temporal
delimiters are used as the primary link to the time-based view to retrieve detailed events
or temporal changes.

The time-based view is a modified version of ESTDM (Peuquet, 1995) (Figure
2.9). In this view, the basic organization unit is an event. Attributes associated with each
event include one timestamp, feature changes and locational changes. The timestamp
stores the time at which the event occurs. Feature changes record the specific changes
occurring to one or a group of features during a temporal interval. Feature changes
consist of a list of feature ids (FID List), their attributes and new values. Locational

changes record the specific changes occurring to one or some locations during a temporal

22

Event List

t[l t~| tz l-.. te

o — i

Timestamp

Feature Changes

Locational Changes

L Attrib New Val FID List]

—{Attrib New Val Loc Listl

Figure 2.9 The Structure of Time-based View (Source: Peuquet et al,
http://www.geog.psu.edu/tempest/)

interval. Locational changes consist of a list of location ids (Loc List, cells or pixels),
attributes and new values associated with these locations.

The location-based view uses cells or pixels as the basic organizational units (Figure
2.10). Every cell is represented by a list of changes occurring at that location. There are
two types of changes: feature and attribute changes. A feature change records whether a
feature begins or ends its presence at that location, and the time of change. An attribute
change records a change in an attribute value.

The TRIAD model unifies feature-based, location-based, and time-based views
together and thus has the advantages of these three views or approaches. It’s easy to

store, retrieve, and manipulate spatiotemporal data using this model. For example,

23

I FID Begin/End Timestampl

&
Attrib New Val Timestamp

i}

Attrib New Val Timestamp

)
FID Begin/End Timestamp

Figure 2.10 The Structure of the Location-based View (Source* Peuquet et al,
http-/fwww geog psu.edu/tempest/)

spatiotemporal queries can be launched from any combination of the three views: when,
where, and/or what.

Yuan (1994) proposed a comprehensive data model called the three-domain model to
analyze wildfire. Simuilar to the TRIAD model, the three-domain model defines
semantical, temporal, and spatial objects 1n three interrelated domarns. She argues that
the major advantage of this model 1s that there 1s no pre-defined data object; rather the
model dynamucally links relevant objects from the three domains to represent a
geographic entity or concept (Yuan, 1999). Therefore, this model can manage

complicated changes of spatial objects and maintam object :dentities.

24

Spatiotemporal Queries

In the past, research on temporal GIS manly focused on the design of spatiotemporal
data models, which are the foundation of spatiotemporal data storage, manipulation,
retrieval, and analysis Spatiotemporal queries are usually associated with spatiotemporal
data models. For example, ESTDM is designed for handling temporal changes for
locations; thus it can easily handle queries related .to temporal intervals; while TRIAD is
designed based on what (feature), where (location), and when (time), and thus can handle
complicated spatiotemporal queries.

Langran (1992) listed a generalized set of potential queries for a temporal GIS to

treat.

“1. Examune a feature’s lifespan.
2 Examine a single time slice.
3. Examune a feature’s lifespan; when the feature meets some criteria,
examine 1ts time slice.
4. Examine a single time slice; examune the lifespans of features meeting
some criteria.
5 Examune the lifespans of all features.
6. Examune all time slices. ” (P 73).

She then summarized four primitive query types that are at the root of this list (Figure

2.11):
“ 1. Simple temporal query, i e. what 1s the state of a feature at a time slice?

2. Temporal range query, 1.e. what happens to a feature over a given period?

3. Simple spatiotemporal query, i.e. what is the state of a region at a time
slice?

4. Spatiotemporal range query, 1.e. what happens to a region over a period? ”

P 97).

25

time ———»

| - - |

entities

ONOGOTHEWN =

y

\|<—— x ———|
Figure 2.11 The search spaces of four primitive geographic queries. (a) A simple

temporal query. (b) A temporal range query. (c) A simple spatiotemporal query. (d) A
spatiotemporal range query. (Source: Langran, G., 1992. Pp 97)

According to Langran, a temporal query defines its data space by thematic attributes
and time; while a spatiotemporal query defines a geometric data space within which to
model cartographic objects.

Langran analyzed k-dimensional data structures and their applications in accessing
spatiotemporal data. Zero-dimensional data structures (e.g. k-d-tree, k-d-b-tree, multikey
hashing etc) were developed specifically to access dimensionless attribute data; One-
dimensional data structures (e.g. strip tree) can only handle one-dimensional spatial
object; while k-dimensional data structures (e. g. R-tree, R+ tree, Packed R-tree, Cell tree,
Grid file etc) can be used to access three-dimensional objects in three dimensional data
space. She tested four data structures (grid file, offset grid file, R-tree, and six-
dimensional data structure) to access spatiotemporal data stored in a space-time
composite in qualitative experiments and found R-tree and offset grid file data structures
appear to be reasonable approaches to spatiotemporal data access.

Peuquet (1994) grouped spatiotemporal queries into three classes:

26

The first query class addresses changes in an object or feature (spatial objects relative
to space and time or just to time), for example:
“(a) Has this object moved 1n the last two years?
(b) Where was this object two years ago?
(c) How has this object changed over the last five years?”
The second query class addresses changes 1n the spatial distribution of an object or a
set of objects (locations relative to time), for example:
“ (d) What areas of agriculture land use 1n January 1, 1980 have changed

to residential land use as of December 31, 19897
(e) Did any land use changes occur in this drainage basin between

January 1, 1980 and December 31, 19897

(f) What was the distribution of commercial land use 15 years ago?

(g) What areas have changed from predominantly agricultural land use to
urban land use over the last 50 years?”

The third query class addresses the temporal relationships among multiple geographic
phenomena (time relative to the attributes of specific locations or specific objects), for
example:

“(h) Which areas experienced a landslide within one week of a major
storm event?
(1) Which areas within one-half mile of the new urban bypass road have
changed from agricultural land uses to other land uses since
completion of that road?”

To measure all temporal relationships or temporal topology, Peuquet also outlined a
set of temporal operators, which include before, equal, meets, overlaps, within, and
start/end. These operators can be used to compare the temporal dimensions of different
events, and thus support the third query class.

In the TRIAD model, Qian and Peuquet (1997) used quadtrees to achieve compact
representation of location-based view and retrieve location-based changes. An extension

of R-tree indexing that maintains an index for attributes changes over arbitrary time

27

intervals was used in addition to the conventional B-tree used for checkpoint-based event
indexing for time-based view. Qian and Peuquet (1998) designed a visual query language
called VSQL, which combined both data base query capabilities and geographic data

presentation functionality.

Activity-based Transportation Research and Temporal GIS-T

Activity-based approaches became the focus of transportation demand analysis and
modeling 1n the mid-1970s (Pas, 1990). In this approach, travel is treated as a derived
demand to carry out individuals’ social and economic activities at spatially separated
locations. Goodwin (1983) defines the activity-based approach as “the consideration of
revealed travel patterns 1n the context of a structure of activities, of the individual or
household, with a framework emphasizing the 1mportance of time and space
coordinates”. From this definition, several important characteristics can be identified.
Transportation demand analysis focuses on activities but not trips. Trips are no longer
considered as the basic units of observation. The activity-based approach attempts to
reveal travel patterns within the context of individual or household, thus it 1s a
disaggregate approach. Activities and travel can only be performed under the constramts
of space and time. Each activity must be performed at a location and a time point.

The activity-based approach emphasizes travel activity patterns and the dynamics of
travel behavior. GIS has not been used in activity-based transportation study until
recently (Miller, 1991). In the activity-based approach, travel and activities have to be
represented as a dynamic process that is referenced in both space and time dimensions.
Spatiotemporal GIS-T data models have to be developed. However, up to now, there 1s

28

not an operational spatiotemporal GIS-Transportation (or temporal GIS-T) data model
available. In fact, there are very few articles touching temporal GIS-T (Shaw, 1999; Shaw
et al, 2000; Dueker, 1999; Goodchild, 2000; Moreira et al, 1999).

Each 1ndividual 1n each household makes trips every day. Trips are performed within
specific spatiotemporal constramnts Each trip has a starting location, an ending location,
and a path. Trips can be treated as moving objects along a transportation network.

Dueker (1999) outlines three approaches to represent moving objects by incorporating
a new dynamic or moving object class into GIS-T:

1. A static object with frequently changing positions;

2. A new object class with location as an attribute rather than part of the definttion;

3. A moving object construct with starting location and attributes of direction, speed,

and destination to define a moving object.

Moreira et al (1999) design a moving object data model similar to the third approach
of Dueker’s. In this model, the trajectory of moving objects is decomposed 1nto sections
that are described with variability functions. The basic data structure for each section
contains the identification of each object, the valid time interval, the variability function,
and 1nitial state value (i e. each basic tuple stores time interval, imitial value, and a
behavior function). Then a linear approximation function to describe the movement
within a valid time 1nterval can be described. Superset and subset semantics are used to
correct the imprecision.

Shaw et al (2000) propose an object-oriented conceptual framework for disaggregate
travel data (i.e. trp data) (Figure 2.12) and use a relational database approach and the
dynamic segmentation method to handle attributes, time, and spatial features based on a

29

sample travel log data set. The data associated with each trip 1s separated into four
components to reduce data redundancy: spatial (trip ends and trip path), temporal (trip
beginning time, trip ending time, and trip duration), actor (individual), and attributes (trip
characteristics such as trip purpose, travel mode, etc.). With the origin and destination of
each trip identified from the GIS geocoding function, a trip path (shortest path) is created
based on dynamic segmentation, which can minimize spatial data redundancy. Temporal,
actor, and attributes components are each associated with one relational table. These
relational tables and spatial database are linked together by some key fields such as
individual id and trip id. Thus trip data model separates spatial features and temporal
components, and temporal components can be treated as attributes of spatial features. For
example, trip path (line feature) stands for spatial feature for each trip; while temporal
attributes (e.g. beginning time, ending time, duration etc.) can be attached as attributes for
each trip path

Shaw (2000) suggests another temporal GIS-T data model called a temporal dynamic
segmentation, which 1s based on dynamic segmentation. A temporal dynamic
segmentation 1s different from a general dynamic segmentation 1n that the previous uses
time as the basic measurement unit; while the next uses distance. At some locations on a
trip path, there are significant speed changes. These locations can be termed as critical
points. Assuming speed is constant between two adjacent critical points, temporal
intervals can be calculated. A temporal route can be created based on these different
temporal intervals. This data model combines spatial and temporal data together (1.e.
spatial and temporal data determine a spatiotemporal object) and has a simple data
structure, thus data manipulation and retrieval related to time become easy. In a class

30

project dealing with trucking inventory analysis using GPS data, this data model was
implemented 1n ArcInfo’.

A spatiotemopral data model for disaggregate travel data should be able to answer
various queries that are based on location, time, attribute, or a combination of these
variables. Shaw et al (2000) propose various types of spatiotemporal database queries
using the following examples.

“Time-based query

1. Where were the trips that occurred between 7 am and 8 am on March 21, 1999?
(control time to find location)

2. What were the trip purposes of those trips that occurred between 7 am and 8 am
on March 21, 1999? Who made those trips? (control time to find attributes)

3. What was the change of trip patterns from 7 am to 9 am on March 21, 19997
(control time to find the change in location)

Location-based query:

4. What were the trips that traveled on Umversity Drive between 15 Street and
16™ Street? (control location to find attribute)

5. In which time period on March 21, 1999 did University Drive between 15" Street
and 16™ Street have the most trips? (control location to find time and attribute)
Attribute-based query:

6. Where were the work trips? (controls attribute value to find location)

7. What 1s the temporal distribution of all work trips? (control attribute value to
find time)

Combination query:

8. What was Joe Johnson's travel pattern on March 21, 1999? (control date and
attribute to find location and time)

9. D1d Joe Johnson show different daily travel patterns on March 21 and March 22
of 19997 (control attribute and time to find change pattern)

10. What were the trips made by Joe Johnson that had less than 20 minutes time
lapse between consecutive trips? (control time and attribute to find trip
chaining behavior). ”

In these query types, combination query is the most difficult one, since two variables
(among time, location, and attribute) have to be controlled to measure the other one.

Without an efficient index method, it would be impractical to make a combination query

" Thus class project was finished by Mo Chatterjee, Feng Lu, David Ralston, Amy Rose, and Xiachong Xin,
May, 2000

31

Household -~ . —f—- One rust exst
charactenistics 7 i Household
—6——— Onemyeust
>— One or more must exast
>9— One or more may exist
Individual \
charactensties [! Indrvidual
q
Tnp Base map
charactenistics } Tnp Trip end geometry
T T T Dynarnc
Begins Eads & segmentaion
Vi
Tnp Trip path Path
tme point PP I © geometry
Begins Ends
Tnp
duration

Figure 2.12 A conceptual framework of the relationships between entities in a
disaggregate travel data set (source: Shaw, 2000)

for a large database. Unfortunately, there are almost no spatiotemporal indexing methods

available. Thus is the reason for this study.

32

Chapter 3

Data Description and Methodology

As stated m Chapter 1, the purpose of this study 1s to build a spatiotemporal index
for disaggregate travel data. Specifically, this thesis intends to query what trips pass
through one or more streets during a tume window This chapter explains why 1t’s
necessary to build a spatiotemporal index, and presents the methodology and flow chart

for building one A sample data set and a trip data model are described first

Sample Data Description

The sample data used 1n this study 1s a dummy trip log data set in DBASE format
that describe travel characteristics of some households and individuals 1 the Knoxville
Metropolitan Area (Figure 3.1). This data set consists of 83 trips (records), and travel
characteristics of people who make these trips In activity-based modeling, travel
activities research is based on individuals and households Each trip 1s made by one
individual 1n one household. In this trip log data set, there are attributes related to each
trip such as starting address, ending address, starting time, and ending time. In addition,
household and 1ndividual information 1s also recorded. Since the trip log data set
involves the spatial, temporal, and other travel-related data items at the individual level, 1t
can be used to study travel activity patterns and the dynamics of travel behavior in a GIS
environment

Table 3 1 describes the main data fields 1n the trip log file There also are other

fields 1n this file such as trip purpose and individual’s attributes. Since the purpose of this
33

1 ArcView GIS 3.2

EeEdtIdJleFiddB{rMHeb

.1 ClEE @EE @ .-EI L'Z]-] [&JE]) D

Uof' 83 selected

L EX. S x
Hh | . bl A S dmd Sov | S Startg & S o] S ed Spd § p
1013 319 31 1.1 E 11700 12340 1 | 9300 Westiand Dr FL_IBW.5 1 11715 2380
10131 3191 311 1.2 E 11800 12380 |1 | 1542 Ebenezer Ad FL " TBwW 8 15 11815 |242(|
1013 319] 311 1.3 E 7930 12420 |1 | 9189 Blue Grass Ad FLTBW 1511 11945 | 246,
10131 3191 311 1.4 E 5045 12460 11 | 1401 Mourield Rd FLTBwW (3 4 12100 1256 |
0151 318 37, 1.1 A 0845 100 1”178 Nubbin Ridge Rd FLTBw 15 11 10700 1120
10161 318 371 1.3 A 11552 1250 17" 7110 Northshore D FL " Tew 1314 11608 | 305
0161 3191 371 1.4 A 11819 1305 17456 Wrights Ferry Aid FLTBw 511 11833 415
0151 319, 371 1.5 A 12208 | 415 1717732 Queensbury Dr A Tew (4T3 T3 o5 |
0191 402 31 1.1 D 0850 1429 |1 | 820 Galaher View Ad FLTBW 5 1 10858 | 144
10191 402, 31, 1.2 D 11230 11446 11 7800 Luscombe Dr FLTBW (1. 12 11240 | 14654
T - < 1 Soreene hd|

{___ Tuwir |
238.0 1 i 1542 Ebenezer Rd FL BW

B 1 1 1 1 Louis 1 4

242.0 1 19189 Blue Grass Rd FL iBW i5 1 131 i1 1 Louis 1 39 4

246.0 1 1401 Mourfield Rd FL iBwW i3 4 i1:1 i1 1 Louis 1: 38 4 _J

258.0 1 19300 Westland Dr FL iBW i5 1 1141 11 1 Louis 1i 38 4 :
21120 2 i 7110 Northshore Dr FL iBW i1 2 i1i1 11 1 Andre 1: 65 1:40

30.5 1 {1456 Wrights Ferry Rd FL iBW 5 1 i1:i1 41 1 Andre 1! 65 1:40

415 1 17732 Queensbury Dr FL iBW i 4 3 {141 (1 1 Andre 1: 65 1:40

52.5 1 11054 Tranquilla Ln FL iBW :i5 1 416141 1 Andre 1i 65 1:40

144.6 1 i 7800 Luscombe Dr FL iBW i1 2 114111 1 Ethel 1: 18 1:20

146.3 1 i 8000 Nubbin Ridge Rd FL iBW i3 4 1141 {1 1 Ethel 1:19 1:20

143.0 1 1820 Gallaher Vlew Rd FL iBW i5 1 1141 {1 1 Ethel 1i19 1i20

2044, R AR ko L X PO T Mz in n i4ia i~ a Plooon 1i aE [l';

Figure 3.1 Trip sample database of Knoxville. (Notes: due to the length of table records,
the original table is displayed as top and bottom tables here.)

34

Table 3 1 Name and description of main fields in the trip log file

Field Name Description

Hh identification number of household

Date date of each trip, concatenation of month and day
Indv 1dentification number of individual 1n each household
Trip_no identification number of trip made by each individual
S_time trip starting time, concatenation of hours and minutes
Started_fr starting address of each trip, in the format of US streets
S_city starting city name of each trip

S_co starting county name of each trip

E_time trip ending time, concatenation of hours and minutes
Traveled_t ending address of each trip, 1 the format of US streets
E city ending city name of each trip

E_co ending county name of each trip

Name name of individual

thesis 1s to query what trips pass through one or set of streets, only the main fields are
listed and described Hh 1s the 1dentification number of household represented by a
unique number Date 1s the date of each trip, represented by concatenation of month and
day. A Date value of 319 means March 19 1 e. the trip was performed on March 19. Indv
1s the 1dentification number of individual in a household. Jndv 1s only unique 1 each
household. In the trip table, each individual can make one or more trips. Name represents
the name of an individual Trip_no 1s the identification number of the trip made by one
individual Simularly, Trip_no 1s only unique for each indrvidual Each trip can be
uniquely 1dentified by concatenation of Hh, Date, Indv, and Trip_no S_time and E_time
are trip’s origin time and destination time, represented by concatenation of hours and
muinutes. Started_fr and Traveled_t are trip’s ongin address and destination address 1n

standard US streets format Thus a trip and 1ts related travel information can be

35

expressed For example (see Figure 3.1), the first trip 1n trip log table (first record) was
performed on March 19 by individual 1 (Indv) of household 1013 (Hh), whose name 1s
Louis (Name); 1t 1s the first trip (Trip_no) made by this individual on this day Thus trip
started from 9300 Westland Dr (Started_fr) at 17:00 (S_time) and ended at 1542
Ebenezer Rd (Traveled_t) at 17 15 (E_time).

In this trip log file, there are some incorrect addresses This 1s true 1n the real
world Sometimes, people don’t know exactly where they are during travel or fill survey
forms incorrectly These incorrect addresses can be neglected when building a trip data
model. Thus trip log file 1s small 1n size (only 83 trips), but it’s enough for this study,
since we are only concerned about spatiotemporal query methodology

The base coverage 1s Knox County street shape file, converted from a TIGER file
(Figure 3 2) There are totally 26005 street segments 1n Knox County. The trip log file

can be mapped onto this network based on trips’ starting addresses and ending addresses.

Trip Data Model (Representation of Trip Log Data Set)

In order to perform spatiotemporal queries, the trip log data set must be
represented 1n a GIS environment (1.e a trip data model must be created) Shaw (2000)
suggests that there are two kinds of representation 1ssues for trip data' representation of
trip locations, and representation of complex relationships among the different entities
(households, individuals, trips, and their spatial, temporal and attribute data). As stated 1n
Chapter 2, Shaw separates trip data into four components spatial (trip ends and trip path),

temporal (trip time points and trip duration), actor (individual or individuals involved in

36

i ArcView GIS 3.2 [=] B3

Fle Edt Iable Field Window Help '
(EE BEE ¢ BRE 6 E0

| Oof| 26005 selected

o Tgra7003ka.shp |4

g

5 ' Attributes of Tgr47093lka.shp
G rﬂ |

[PolLine | 42601711. 7133, 7121 Norris Fuw A21 Tl
Polline | 428017121 71051 71331 0.03895 AdT 1
PolLine | 426017131 7112, 7105! 0.01649 Shagbark Dr AdT :
Polyline | 426017141 70431 70841 0.06246 Shell Back Dr AdT]
Polline | 42601715, 70431 70721 0.21437 Pitch Pine Dr AdT 1004
PolyLine 42601716 7388 7363 0.09578 Norris Fwy A21 |
Polyline | 42801717 73881 71361 0.71701 Kenny Rd Ad1T 1002
PolyLine | 426017181 7100, 7124 0.03544 Shagbark Dr AdTT 3
PolyLine | 426017191 7426 73881 0.06631 Noris Fuy A7

,,,,,

Figure 3.2 Knox County network shape file (converted from tiger file)

37

each trip), and attributes (trip characteristics such as trip purpose, travel mode, etc) If
all the data related to trips are stored 1n one table (Figure 3.1), there 1s significant data
redundancy.

In this study, the main concern 1s how to perform a spatiotemporal query for trips
on a street network The representation of complex relationships among the different
entities will not be explored 1.e. the sample trip log table will not be separated into
different tables However, representation of trip locations must be explored

Shaw et al (2000) states there are two approaches for representing the location of
a trip. The point-based approach defines each trip as two point locations (1 € origin and
destination point). However, using this approach, 1t’s difficult to visualize the spatial
pattern of an ndividual trip, since there 1s no a path between each trip origin and
destination The path-based approach defines each trip as a path (each trip traverses a
path). The spatial pattern of an individual trip can be easily visualized using the path-
based approach. Since 1t’s difficult to get detailed trip path mnformation, most travel
surveys only collect trip onigin and destination locations. In order to represent trip path m
a GIS environment, a candidate path (usually the shortest path between trip origin and
trip destination locations) must be created for each trip In this study, I also assume that
trips always take shortest paths. This assumption 1s reasonable, as shortest paths can
show spatial patterns of trips. The global positioning system (GPS) can be used to record
location and time information of moving objects, thus 1t can record detailed path
information (locations and times along trip path) for each trip, and 1t has been used 1n
some transportation studies (Quiroga et al, 1998) In the future, GPS 1s likely to be
commonly used 1n collecting travel survey data

38

In order to represent trip path 1n a GIS environment, trip ends (trip origins and
destinations) must be geocoded first In this thesis, trip ends are geocoded 1n ArcView
Once the locations of trip ends are known, trip paths must be created. There are two
approaches to represent trip paths One approach 1s to create a trip path shape file, the
other approach 1s to use dynamic segmentation method to represent trip paths The trip
path shape file approach stores trip path locations and attributes in a new shape file. Since
all the trips take place on a street network, trip path locations can be found on the
network. Creating a new trip path shape file will duplicate trip path geometry Dynamic
segmentation assoclates numerous feature attributes with a line feature, a collection of
line features, or a portion of a line feature without changing the underlying geometry of
the lines. The dynamic segmentation approach does not create a new file to store trip
path locations 1 € 1t does not duplicate trip paths’ geometry Trip path locations are still
stored 1n the street network, and trip path attributes are associated with the street network.

Using the approach of creating a trip path shape file, the spatiotemporal query
problem can be solved using ArcView and C++ together *. ArcView doesn’t create route
systems based on dynamic segmentation. In ArcView Network Analyst Extension,
shortest paths can be written into a shape file (1 e trip paths can be saved as a shape file)
Since this spatiotemporal query is to query during a time window, which trips pass
through one or more streets, even 1f there 1s a trip path shape file, this shape file should
have relationships with the street network (1 e what streets one trip pass through should

be recognized)

* Personal communication with Dr Bruce Ralston, March, 2000
39

In ArcView Network Analyst Extension, there are two commands used to create
shortest paths as a shape file WrtePath and WritePathLong Using the WritePathlong
command (aNetwork. WritePathLong(aF1leName)), the relationship between a trip path
shape file and a street network can be 1dentified In fact, the Network.WritePathlong
request writes a record to the result theme feature table for each line feature (street)
traversed by a trip path segment (ArcView online help). Using this command, one trip
path 1s segmented by each street, through which 1t passes, into trip segments.

Table 3.2 1llustrates the fields written to the result theme feature table (1 e trip
path attribute table) Path_id stands for trip segment 1dentification number, while
N_recnum 1s the record number of the line feature (1 e street’s identification number).
N_recnum links the trip path shape file to the street network Based on the trip path
feature table, all trips that pass through a street can be 1dentified Therefore, the

spatiotemporal query can be performed

Table 3 2 Trip path feature table description after using WritePathLong command.
(Source ArcView V 3.2 Online Help).

Field Name Description

Path_id Identification number of the trip path segment to which the line
feature belongs.

F_label The name (label) of the stop at the start of the segment to which the
line feature belongs

T_label The name (label) of the stop at the end of the segment to which the
line feature belongs

F_cost The cost of reaching the begmning of the line feature

T_cost The cost of reaching the end of the line feature

N_recnum The record number of the line feature.

N_travdir The direction the line feature 1s traversed A value of FT means the
line 1s traversed 1n the same direction 1t was digitized A value of
TF means 1t 1s traversed 1n the opposite direction 1t was digitized

40

Creating trip path shape file m ArcView 1n this way results m data redundancy
Since trips are assumed to take place on the street network, creating another trip path
shape file will duplicate the geometric representation of each trip path (trip path geometry
information 1s already contained in the street network) Representing trip path using
dynamic segmentation can mimmize data redundancy Arclnfo route systems are an
mmplementation of dynamic segmentation. In dynamic segmentation, there is no need to
duplicate trip path geometry or coordinates. Trip paths can be associated with a street, a
collection of streets, or a portion of street of the network. Trip attributes such as starting
time and ending time are attached to trip paths Since dynamic segmentation method can
reduce data redundancy, trip paths are represented using the dynamic segmentation
approach in this thesis Dynamuc segmentation and 1ts implementation 1n ArcInfo will be

explored in Chapter 4

Comparison of Common GIS Approaches and the 2-D Trees Approach

After a trip path system 1s created, the spatiotemporal query can be performed
with or without a spatiotemporal index. In this study, a 2-D trees approach 1s used to
build a spatiotemporal index In order to compare the 2-D trees approach and common
GIS approaches, the section table and Big O notation are discussed first.

The section table 1s the key table 1n a trip path system for the spatiotemporal
query In the ArcInfo route system, there are three related tables: RAT (route attributes
table), SEC (section) table, and AAT (arc attribute table) (Figure 3 3). The basic unit of a
SEC table 1s section, which is a line feature or a portion of line feature A trip path 1s

41

ROADS.RATBUS
BUS# | BUS-ID

ROADS.SECBUS
ROUTELINK# | ARCLINK# | F-MEAS | T-MEAS |F-POS |T-POS | BUS# |BUS-ID

ARCFILE |
ROADS# | CODRDINATES

Figure 33 A route system named BUS on a ROADS coverage. This figure shows
relationships between RAT, SEC, and ARC files. (Source: Arcnfo V. 7.2.1 Online Help)

composed of a set of sections In the SEC table, for each section, there are trip path
(passing through this section) internal 1d, street (containing this section) nternal 1d, and
other attributes such as beginning time and ending time when one trip passes through a
street attached to each record.

Big O notation 1s used to describe how complex an algorithm or a program 1s
Instead of run-time analyses, big O notation derives a general assessment of the time (the
number of operations) required for an algorithm or a program. Specifically, 1t provides an
upper bound on the number of operations required. Big O notation can be defined by a
mathematical formula:

Definition: T(N) = O(f(N)) 1f there are positive constants ¢ and ng such that T(N)

<c f(N) when N>ny T(N) or O(f(N)) 1s referred to big O notation.

42

Using a common GIS approach, the spatiotemporal query problem can be solved
graphically select one street or a set of streets from the trip path system 1n ArcView
(using SelectByPoint or SelectByRec commands) to retrieve selected streets, then
related trips and secttons are selected 1n the section table based on the selected streets’
1ds. From the set of selected trips and sections, a time range query can be made from
starting time and ending time (when a trip passes through a street)., Finally, trips passing
through selected street(s) during a time window can be retrieved and shown on the map

Using the common GIS approach, there 1s an efficiency problem Even after
graphically selecting one or more streets, the following temporal query still takes time of
O(k *n% Herek andn represent the total number of sections and number of selected
sections upon selected streets in the section table, respectively. First, selecting trips and
sections 1n the section table based on selected street(s) must search through the whole
section table (linear search); then upon the selected trips, beginning time and ending time
queries must be made (two linear searches) Thus temporal query takes O(k * n2) If the
trip data set 1s small or few trips pass through each street, this 1s not a problem. However,
for a metropolitan area, hundreds of thousands of trips are performed each day, and there
are many trips passing through each street The time to make a spatiotemporal query
using this common approach 1s prohibitive Thus an efficient spatiotemporal mndex or
data structure must be buult.

Bentley (1975) proposed a K-D-tree data structure, which handles K-dimensional
query on discrete objects (point objects) A K-D-tree 1s useful in that 1t can perform range

searching. A 2-D tree 1s a special case of a K-D tree

43

A 2-D tree data structure 1s used for two-dimensional range search. It’s a binary
tree and has the property that branching on odd levels 1s done with respect to the first key,
and branching on even levels is done with respect to the second key. Weiss (1997) states
that, for a perfectly balanced 2-D tree, a range query could take O(M + Nl/’) in the worst
case, to report M matches for N nodes

Since 2-D tree structure 1s designed for a two-dimensional range query, it can be
used to query starting time and ending time when trips pass through one or more streets.
In this thesis, the 2-D tree approach 1s used to create an array of 2-D tree structures for
the spatiotemporal query. From the section table of a trip path system, all streets where
there are trips passing through are recogmized. For each street, all trips passing through 1t
are 1dentified. Thus one 2-D tree can be built based on starting time and ending time of
trips passing through a street for each street Therefore, an array of 2-D trees ordered by
street internal 1ds 1s created, one for each street having trips passing over 1t. When
performing a spatiotemporal query, users can first graphically select one or more streets
from the trip path system 1n ArcView, then set a time window to retrieve trips from the
array of 2-D trees. After users select the street(s), the temporal query using an array of 2-
D trees could take O(log L * (M + N*)) 1n the worst case Here L, M, énd N represent
the number of streets on which there are trips traversing, the number of matched trips,
and the number of trips traversing a specific street, respectively Since L < k (the number
of streets 1s always less than the number of sections), N < n (the number of trips on a
street 1s less or equal to the number of sections on a street), and M < N, O(log L * (M +
N'/’)) << Ok * nz). This means 2-D tree approach speeds up the spatiotemporal query
greatly

44

Consider the following example Assume there are 100,000 trips 1n Knox
Metropolitan Area each day, and these trips are segmented m 500,000 sections 1n the trip
path system. There are 10,000 trips traversing Cumberland Ave., and 1000 trips are
within 8 00 am - 9 00 am. There are totally 26005 streets in this area If users query
during 8:00 am — 9-00 am, what trips pass through Cumberland Ave., the common GIS
approach will take 500,000 * (10000 * 10000) = 5 * 10" operations at the worst case, the
2-D tree approach will only take log 26005 * (1000 + 100) = 177386 operations at the
worst case We can see for a large data set, the 2-D tree approach performs the

spatiotemporal query much faster then the common GIS approach.

Methodology and Flowchart

Figure 3 4 shows the flowchart of building a spatiotemporal index From the trip
attribute table, a trip end location shape file 1s created using ArcView’s geocoding
function. Arcinfo’s dynamic segmentation modules are used to create shortest path trip
system Based on the resulting trip path system, an array of 2-D trees (according to
beginning time and ending time when trips pass through street segments) 1s built using a
C++ program and an Avenue script written for this thesis. The 2-D trees are linked back

to the trip path system to retrieve trips. The following shows the four main steps

Step 1 Geocode Origin and Destination Ends of Trips

ArcView 1s used to geocode trip ends In thus step, all the origin addresses and
those destination addresses that are each indrvidual’s last trip end on each day are
geocoded Since each individual performs a trip or a chain of trips on each day,

45

vwp uoyvLiodsunay 21p8a183sip 1of xaput odwazonnds Suppng fo DY MO p € 24nS: A

Klouraw
Ur pPaIols $321}
p-zjo ?h<

MITAOTY
ur $321 p-g

(£10nb rer0dway Ty(q
+ uonouny A1onb [eneds marpory)
MAAIY u K190 [eioduraoneds

Jo Aewre Sunearn

S3LIIND [eI0AUId) IO
9IE SIYIO Y] ‘SI31) p-7

3]qe} uonoas Jo Kere 3uiping Joj suo
ay th oy IXaL, suonouny I Sy,
AcoaﬁaoEmow
onueuk(]) WaisAg
anoy duy,
(ade1an0)
OJuoIY)
(sAreuy HOMIN
JI0MISN OJU[OTY)

wasAS Anoy Sunear)

ammyonns

901 p-g Suisn

D UI Suonouny xaput
[ezoduras Sunear)

(a8e1900)
u104)
spug duj,

(marpo1y)
Supoooan

alqel,
< anquyy
dug,

46

geocoding all trip origin addresses and the last destination address on each day for the
indrvidual can efficiently and sequentially describe the spatial patterns of the trip or trip

chain, and easily create trip shortest paths

Step 2 Create Trip Path System 1n ArcInfo

From the trip ends point shape file (geo-coding results), a trip path system 1s
created 1n ArcInfo network analysis’s path-finding function After a trip path system 1s
created, 1ts RAT table 1s joined to the section table based on route (trip) mnternal 1d.
Starting time and ending time fields are added to the section table Assuming speed is
constant for each trip, starting time and ending time when a trip passes through a street
(section) are linearly interpolated Then the section table 1s exported 1nto a text file from

which an array of 2-D trees 1s built.

Step 3 Build Temporal Index in C++ and ArcView

In C++, three DLL functions are created. The first builds an array of 2-D trees for
each street 1n the route system The resulting 2-D trees are stored 1n memory and a
pointer to them 1s passed back to ArcView. The other two functions are for temporal

query functions (query for one street, query for a set of streets respectively)

Step 4 Spatiotemporal Query in ArcView

In ArcView/Avenue, the spatiotemporal query problem 1s separated into spatial
query and temporal query Using ArcView spatial query function, streets are graphically
selected; then given a time window, one of the two temporal query DLL functions 1s

47

called to retrieves trips that pass through the selected streets The query results are shown

on the map, and 1n a2 message box

48

Chapter 4

Creating the Trip Route System in Dynamic Segmentation

Linear Referencing Systems and Dynamic Segmentation

Dafferent kinds of transportation features share the same dlgltlzed road network If
these transportation features are represented separately from the road network, there will
be much data redundancy On the other hand, many transportation data are recorded
using location referencing systems such as milepost and latitude-longitude. Efficient data
models must be developed to handle these various location schemes. In the late 1980s,
the concepts of dynamic segmentation for linear features and linear referencing were
proposed

Linear referenced data are those data located on a linear transportation feature
using an offset distance from a known point on the feature and following the feature’s
path to the desired location (Dueker et al, 1997) Linear referencing systems are used 1n
GIS-T to integrate linearly referenced data and geographic locational data. A linear
referencing system consists of three main components a transportation network, a
location referencing method; and a datum (Vonderohe et al, 1995, Dueker et al, 1997)
The transportation network contains node-arc topological relationships The linear
referencing method 1s a way to identify a specific location with respect to a known point
along a defined path The datum 1s a set of objects that serve as the basis for locating the

linear referencing system 1in the real world

49

Linking linear referenced data based on a linear referencing method to the
transportation network requires a segmentation scheme. Variable-length or dynamic
segmentation is such a segmentation scheme for controlling the attributes of linear
referenced data and measures the locations where this attribute exhibits a specific value
(Miller and Shaw, 2000). For example, the bus fares along a bus route on a street network
might show different values on different parts of the route, which vary in length. These
different parts can be considered as dynamic segments.

ArcInfo uses a relational data schema to support a dynamic segmentation model
based on a three level of structure of sections, routes, and events. Routes are linear
features such as a river, a highway or a pipeline. Each route has a “mile-post” type of
measure defined along it. As partial arcs or whole arcs, sections are the basic organization
units to integrate routes, events and the transportation network. A route is composed of

sequences of sections (Figure 4.1).

Route

Figure 4.1. A route defined on a set of four arcs. The start and end points of the route do
not have to coincide with the start and endpoints (nodes) of the arcs.

50

Traffic Accident Locations

372

Figure 4.2. An event database of traffic accidents on a route. Each event
is recorded in terms of a linear measure along the route and graphically
represented with a point maker. (Source: Arclnfo online help).

Pavement Quality

AN

s, 150

sy 316
’/___/ ‘-*"_-—un. = 400
Ill.

[y rrd poor
oo good
ILLTITIT fair

Figure 4.3. Pavement data contained in an event database. The pavement
events are defined in terms of a linear measure along the route. (Source:
ArcInfo online help).

Events are transportation phenomena that occur on the routes. There are three
event classes: point events, line events, and continuous events. Point events take place at
a single measure along a route (Figure 4.2). Line events take place between two
measures along a route (Figure 4.3). Line events can be discontinuous (have gaps) or
continuous (no gaps). Continuous events take place between two measures along a route,

and have no gaps. Events are a portion of a route or a single point on the route.

51

o

In Arclnfo, dynamic segmentation function 1s implemented 1n a route system. A
route system 1s composed of a group of routes such as a bus route system Two related
tables a section table (or SEC table) and a route attribute table (or RAT) together define
a route system (there 1s one SEC table and one RAT 1n a route system) SEC table and
RAT are tied to the network arc attribute table (AAT) through some key fields. Figure 3 3
shows the interrelationships among AAT, SEC, and RAT.

An AAT table contains fields such as Arc#, Arc user 1d, from node, to node, left
poly, right poly, length etc Arc# 1s the mternal 1d of each arc An AAT 1s connected with
a SEC table by Arc# of the AAT and Arclink# of the SEC table Arclink# in a SEC table
1s the internal 1d of an arc with which a section 1s associated. Routelink# 1n a SEC table is
the internal 1d of a route to which a section belongs. The Subclass# 1s the internal 1d of a
route 1n the AAT SEC table 1s connected with the RAT by Routelink# of the SEC and
Subclass# of the RAT Therefore, RAT, SEC, and AAT are linked together

In addition to Routelink# and Arclink#, a SEC table also contains F-meas, T-
meas, F-pos, and T-pos F-meas and T-meas are the starting and ending measures of a
section. The measure 1tem can be defined to satisfy different needs. For example, the
measure 1tem might be length, time, or travelling cost The F-pos and T-pos are the
starting and ending positions along an arc for one section. The F-pos and T-pos are
expressed as percentages For example, 1f a section 1s located from 40% to 60% of an arc,
then F-pos and T-pos equal to 40 and 60 respectively. The F-pos and T-pos are used to
associate one section to partial or a whole arc

In RAT, 1n addition to subclass# (route internal 1d), there 1s also a field called
subclass-1d (route user-1d) This route user-1d 1s defined by users, and can be used to link

52

with route attributes and events. Events along a route system are usually stored 1n an
event table (Info, DBASE or Text file). Events are tied to a route system by route user-1d

and off-distance measures on a route.

Geocode Trip Ends

Address geocoding in ArcView 1s a process to create a shape file based on an
address data file in tabular form and a reference feature theme The reference feature
theme contains address attributes associated with geographic features The address data
file or event table contains an address field for each record to match agamst the reference
feature theme ArcView compares addresses 1n the event table with the address attributes
1n the reference feature theme (or matchable theme) Based on some standards and rules,
ArcView can decide whether addresses match. When a match is found, locational
coordinates are derived from the matched feature in the matchable theme and assigned to
the address 1n the event table

Figure 4 4 shows the geocoding object model in ArcView. In the center of this
model, the MatchSource class performs indexing and searching on the matchable theme
Each matchable theme has a MatchSource associated with 1t. A MatchSource can be
created by using a predefined AddressStyle (such as “US Streets With Zones™) as a
template The MatchKey class performs street address standardization for the event table.
The MatchKey 1s applied to the MatchSource to a collection of possible match candidates
(MatchCand) called MatchCase The MatchCand’s best candidate’s score is compared
with a mimimum match score to determune f 1t’s an acceptable address to be made The
GeoName as a feature theme can store the final geocoding result

53

< ArcView Help =] B3
File Edit Bookmark Options Help
Help Topics| Back | Glossay |

Discussion 2]
MatchKey
MatchCase —cl MatchCand g
(@]
FTab MatchSource |~ GeoName
rerarence GeasSowee |
FTab

MatchField |
MatchPref
AddressStyle in ;

Figure 4.4. Address geocoding object model in ArcView. (Source: ArcView V. 3.2 Online
Help)

As stated in Chapter 3, in order to create a trip route system, all trip origin
addresses will be geocoded; in addition, those trip destination addresses that are the last
ending addresses for each person on each day also will be geocoded. In the sample data
set, each person on each day must have one trip or a chain of trips. The sample data set is
organized by ordered travel behaviors for each person in each household (i.e. trips are

|
‘ recorded sequentially for each person). If one person only makes one trip, then the origin
|
| and destination addresses are geocoded to make a trip path. If one person makes a chain

of trips, then all the origin addresses and the last destination address are geocoded to
54

make trip chains Only geocoding origin addresses will miss some trips ends, while
geocoding all origin and destination addresses will result in much data redundancy, since
most of trip destination addresses can be found 1n the next trip’s origin address field.
Even the geocoding approach used here has some data redundancy Some trips mught
share the same origin addresses, which will be geocoded multiple times However, using
this approach, trip paths can be convemently created i ArcInfo, and trip attributes can be
attached to these trip paths. The next section will show this advantage.

Figure 4 5 shows a subset of the sample data set. Person 31910131
(concatenation of Date, Hh, and Indv) made 4 trips on March 19. The trip cham of this
person pass through these addresses 9300 Westland Dr — 1542 Ebenezer Rd — 9189
Bluse Grass Rd — 1401 Mourfield Rd — 9300 Westland Dr. Thus geocoding all trip origin
addresses and the last destmation address (1 ¢ 9300 Westland Dr) can sufficiently
describe trip chain behavior of this person

There are two Avenue scripts to perform trip ends geocoding processes.
trip.match, and trip geocode. The trip match script makes the Knox network coverage
matchable, while the trip geocode script geocodes addresses for the sample data set. The
source code used 1n thlS‘ study 1s attached as an appendix. In the next section, pseudo

codes are used to describe these scripts

trip.match script: making a street theme matchable:

Input: a street theme (ArcView shape file or ArcInfo coverage)

Output: a matchable street theme

55

2 ArcView GIS 3.2
File Edit TIable Field Window Help

B o BRI 68 0
0of 83 selected DN

72 tripdata.dbf

2 /37| Shated £ Travekad ¢
10138 319: 1i1 9300 Westland Dr 1542 Ebenezer Rd et
1013: 319: 1:2 1542 Ebenezer Rd 9189 Blue Grass Rd !
1013: 319: 1:3 9189 Blue Grass Rd 1401 Mourfield Rd il
1013: 319: 1:i4 1401 Mourfield Rd 9300 Westland Dr
1015 319: 1] ii 7798 Nubbin Ridge Rd 7110 Northshore Dr
1015: 319 1:3 7110 Northshare Dr 1456 Wrights Ferry Rd
1015: 319; 1:4 1456 Wrights Ferry Rd 7732 Queensbury Dr
1015¢ 319 1i5 7732 Queensbury Dr 1054 Tranquilla Ln
1019 402 11 820 Gallaher View Rd 7800 Luscombe Dr
1019 402; 1:i2 7800 Luscombe Dr 8000 Nubbin Ridge Rd
1019: 402 1i3 8000 Nubbin Ridge Rd 820 Gallaher View Rd -
| { - &}

A
il R

Figure 4.5. Trip chain characteristics of the sample data set. Only origination address
(Started_fr) and destination address (Traveled_t) fields, and those fields (Hh, Date, Indv,
Trip_no) to determine a person and his/her trips are displayed.

Procedure:

If the theme is matchable, then exit.

Get an address style file name object corresponding to the style object database.
Get the list of styles from the address style file name.

Get the desired style “US Streets with Zone”, give it a name called addrStyle.
Set up components list for the US Streets with Zone style.

nameList = {"Fraddl", "Toaddl",

"Fraddr", "Toaddr", "NONE", "NONE",

"Fename"’ "Fetype", "NONE", llZiplﬂ, "Zipr"}
56

O

Search each field in nameList from the theme

Insert found fields into a new list called attlist

Create a MatchSource object using the address style named addrStyle, the theme,
and attlist

Assign the MatchSource object to the theme

trip.geocode script geocode addresses for the sample data set (event table),

based on a matchable theme Descriptions of fields in the event table can be

found 1n Chapter 3

Input: a matchable theme (street network), an event table.

Output: a geocoding result shape file

Procedure:

1 Preprocess the event table, generate one unique 1d field for each individual.
add the last destination address for each individual on each day to the bottom
of the origin address field, and generate one unique 1d for each trip

(Concatenation of Date, Hh, Indv, and Trip_no).

Get the Vtab for the event table. The Vtab 1s named as addressvtab

Get the matchable theme called theTheme

Create a field called nonunud to uniquely 1dentify each individual on each day
and add 1t to addressvtab.

Calculate nonuniid as concatenation of Date, Hh, Indv

Create a field called trip_1d to umquely 1dentify each trip

57

Calculate trip_1d as concatenation of Date, Hh, Indv, Trip_no.

For each record 1n the addressvtab
If this nonunnd <> next record’s nonunud (this means this record 1s the last
record for an mdividual on each day), then
Append one record on the bottom of addressvtab, set the Started_fr value as
this individual’s Travelled_t value, and set the nonunud as this individual’s
nonunud

Loop

2. Geocode the origin address field (Started_fr) in the event table, create a point

shape file

Set the matchabel feature theme (thetheme)’s MatchSource as aMatchSource
Specify the output point shape file for the geocoding result, using

GeoName Make, set the name of this shape file

Create a match key based on the standardization rules for the MatchSource.

Use the aMatchKey AllowIntersections request to support street intersection
standardization.

Create a new match case consisting of a list of candidate records and information
describing how well the candidates match the key

Create a new match preference used to access geocoding preferences such as

spelling weight, minimum acceptable score, etc

58

Create a new theme feature table using aMatchSource InttGeoTheme command
For every address record there will be a record 1n the ftab These are currently
unmatched.
For each record in the new theme feature table
Get an address for this record using aMatchKey SetKey
Find candidates for the address using aMatchSource.Search
If there are no candidates, then mark unmatched for this record and continue
Else if the best candidate exceeds the minimum spectfic match score, then
Mark matched for this record
Else write unmatched for this record.

Loop

3 Make marks on trip_id field of the unmatched records and their previous

record In order to avoid musmatch when creating a trip route system, the
unmatched record and its previous record for the same person on each day will
not be considered as stops These records’ trip_id 1s set by 99999999. Convert trip
beginning time (S_time) and ending time (E_time) into seconds and store them 1n

two new fields (startt and endt) respectively.

Add fields startt and endt to the geocoded shape file’s ftab.
Convert S_time 1nto seconds and store 1t 1n startt.

Convert E_time 1nto seconds and store 1t 1n endt

Create a unique value list for the nonunud field called valuelist

59

For each value 1n the valuelist

Select records that nonunud = value (1 e select one individual’s trip chans on

each 3ay).

For each record 1n each individual’s trip chains (1 e the selected records)
If this record is unmatched (“Av_status = U”) then set trip_id = 99999999
If this record 1s unmatched and has previous record, then set previous
record’s trip_id = 99999999

Loop

Loop

The sample data set’s trip ends were geocoded by running these two Avenue
scripts. There were 95 records geocoded successfully among 100 records The geocoding

result was saved as geocode.shp (Figure 4.6)

Create a Trip Route System

Assuming each trip always take the shortest path, then a trip route system can be
created using ArcInfo network analysis functions In ArcInfo’s Arcplot, the
NETCOVER command 1s used for creating a route system based on distance, time, cost,
or other measures Stops represent trip ends of a route. In this case, stops are the origin
and destination ponts of a trip ArcInfo assumes all stops are at nodes of the base
network. Stops are stored 1n an info file, in which node-1ds are recorded. The stops info
file 1s connected with the base network by node-1ds. Figure 4 7 shows a shortest path
route system data file structure STREETS 1s the base network coverage In the stop file

60

= ArcView GIS 3.2

Fle Edt Iable Field Window

ﬂ Geocodeshp
.

o Tgra7083ka.shp
AN

"[Point 11700 | 9300 Westland Dr

1715

LS

1542 Ebenezer Rd

X
£nd |

3672904

Point {1800 | 1542 Ebenezer Rd

1815

9189 Blue Grass Ad

386890 |

Point {1930 | 9189 Blue Grass Rd

1945

1401 Mourfield Rd

410670 |

Point | 2045 | 1401 Mourfield Rd

9300 Westland Dr

453600 |

Point | 0645 | 7798 Nubbin Ridge Rd

0700

7110 Northshore Dr

151200

Point {1552 | 7110 Northshore Dr

1608

1456 Wrights Ferry Rd

T T

345648E

Point | 1819 ! 1456 Wrights Ferry Rd

1833

7732 Queensbury Dr

389034—

1054 T el

o
-

4757390

(e Fe
wdad

Figure 4.6. Geocoding result (Geocode.shp) for the sample trip data set in Knoxville

Metropolitan Area. Tgr47093lka.shp is the Knox street network.

NETCOYER — STREETS RATPATH1 -route attnbute table

PATH 1#-route
PATH1-ID-route-id

NETCOYER~STREETS SECPATH1-sectiontable
ROUTELINK® -route

ARCLINK# -arc \
FHMEAS -from-cumulative mpedance X { Stop?2

THMEAS -to-cumulehive impedance
F-POS -from-posttion Stop

T-POS -to-position
PATH1# -section Ll

—_

PATH 14D -section4d

STOPS —STREETS STP-stopsfile
STREETSHD -stopnode-d
IN_ORDER - order
ROUTE_ID - outputroute
STOP_JMP -stopimpedance -

TRANSFER -transfer
STOPS_ECUMUL_IMP—cumulativeimped ce

Stop 3

CUMUL_TRANS - cumulative t fer

Figure 4.7. A shortest path trip route system named pathl based on STREETS network

coverage and STREET STP stops info file in ArcInfo network analysis. (Source: ArcInfo
V. 7.2.1 Onhine Help).

named STREETS.STP, STREETS-ID, the stop node-1d in STREETS coverage, 1s a
required field. Other fields in STREETS.STP are optional. For example, IN_ORDER
means the creation of a route system by an order of stops. If there 1s no IN_ORDER field,
then routes are created by the sequence of stops (1.e. according to the stop sequence 1 the
Info table) ROUTE_ID 1s used to classify the stops into groups to make sequential
routes among each group. STOPS_IMP represents the impedance when a trip passes
through an intersection or stop. For example, travelers’ speed might slow down when

passing through an intersection STOPS_IMP can be set a value to represent blockade

62

time or cost TRANSFER represents a cost when travelers turn directions (to the right or

to the left) at the intersections

Some trip ends (origin and destination pornts) might not be at nodes. To overcome
the shortcoming of all stops being at nodes in ArcInfo, pseudo nodes must be created
based on these trip ends using the split command i ArcEdit After that step 1s completed,
network analysis functions can be used to create a route system Splitting a network using
trip ends that are not at nodes destroys the topology of the network The unsplit command
can be used to restore the network topology after creating the route system. Unsplit not
only updates the network coverage, 1t also updates route systems. Before creating a
shortest path route system, the geocode shp (Geocoding result from ArcView/Avenue)
and the Tgr470931ka shp (the network shape file) must be converted into ArcInfo
coverages

An AML code was used to automatically create a trip shortest path system After
creating the trip route system, the section table 1s exported to a text file that 1s used to
create an array of 2-D trees for the streets. The following shows main steps to create the

shortest path system

Input: an arc coverage (network including nodes) and a point coverage
(geocoding result).

Output: a shortest path route system, and a text file.

Procedure:

1 Splitting the network coverage using the point coverage and creating a stop info
file The stop file contains two fields, <network>-1d, and route_1d. <network>-1d

63

stores node-1ds, while route_id stores associated trip_ids started from this stop
route_id 1s use\d to classify stops into different groups to create shortest paths.
This creates one shortest path for each trip For each individual, the starting point
and ending point on each day will be added to the stop file once, all other points

will be added twice Thus a trip chains can be generated for each individual (each

shortest path 1s created by two adjacent nodes in the stop file)

In ArcEdit:
Create an 1nfo file that contains the unique values from the field of person 1d
(nonunud) 1 the point coverage (this info file contains all individual 1ds)
Create a stop info file including <network>-1d (node-1d from the network), and
route_1d 1n order to store stop node-1ds and trip-1ds.
For each record in the info file that contains nonuniid unique values.
From the point coverage, select all records that nonunud = this nfo file’s
nonunud value (1 e select all the trip ends for one individual on each day)
For each record 1n the selected set of the point coverage
Get this record’s x, y coordinates, and select arcs using these coordinates
from the network coverage
If this record (point) 1s at either the from node or the to node of the selected
arc, then
Set the node’s 1d to a variable ni,
Else 1f this point (record) 1s not at the from node, nor the to node of the
selected arc, then

64

Split the network using the coordinates of this point (x, y).
Set the new node’s 1d to a variable nu.
If this record 1s the first or last one 1n the selected set of the point coverage, or
this record’s trip_id = 99999999, then
Add one record to the stop mfo file, set the value of <network>-1d = ni,
the value of route_1d = previous selected pomnt’s trip_id (for the first
selected record., 1ts previous selected pont’s trip_id equals to its own
trip_1d)
Else if the previous selected point’s trip_id = 99999999, then
Add one record to the stop info file, set the value of <network>-1d = ni,
the value of route_1d = this point’s trip_1d
Else
Add one record to the stop 1nfo file, set the value of <network>-1d = n,
the value of route_id = previous selected point’s trip_id,
Add another record to the stop nfo file, set the value of <network>-1d =
n1, the value of route_id = this point’s trip_id
Loop

Loop

2 Create a shortest path route system using network analyst functions. Each
shortest path is created based on each route_id After a trip route system 1s
created, unsplit the network to restore network’s topology and update the whole
trip route system

65

In Arcplot

Imtialize a trip route system based on the network.

Assign stops to the stop info file, assign route_id to this file’s route_id, other
options are default.

Finish the trip route system based on stops

Go to Arcedit:

Select all arcs from the network coverage.

Unsplit them.

3 Create a text file containing information from the SEC table of the trip route
system. The text file contains Trip_1d (trip’s 1d from the geocode.shp), Arclink#
(street internal number), beginning time (when the trip enter the street), and
ending time (when the trip leaves the street) The point coverage’s attribute table
(PAT)’s startt (starting time for each trip) and endt (ending time for each trip) are
already 1n the unit of seconds, so they can be used to interpolate the beginning
time and ending time when this trip passes through a street. The RAT will be
jomned by the point coverage’s PAT based on the <subclass>-1d (user 1d) 1n the
RAT and Trip_1d in the point coverage’s PAT. The SEC table must be joined by
RAT based on the SEC table’s RouteLink# and the RAT’s <subclass>#.
Assuming speed 1s constant for each whole trip, beginning time and ending time
when a trip passes through a street are calculated by linear interpolation Finally,
export Trip_id, Arc#, beginning time, and ending time to a text file

66

In Arc:
Buuld relationship between RAT and the point coverage’s PAT (using relate
function) based on RAT’s <subclass>-1d and the PAT’s Trip_id.
Buuld relationship between SEC table and RAT (using relate function) based on
SEC table’s RouteLink# and RAT’s <subclass>#
Go to ArcEdit.
Add beginning time and ending time fields to the SEC table.
For each route (trip)
Select from the SEC all sections that are parts of this route (trip)
Set the f-meas of the first selected section to variable f.
Set the t-meas of the last selected section to variable t.
Calculate begmning time = startt + (endt — startt) * (f-meas — f) / (t - f).
Calculate ending time = startt + (endt — startt) * (t-meas —f) / (t - f)
Loop
Go to Tables
Unload the section table’s Trip_id, ArcLink#, beginning time, and ending time

fields to a text file

For the sample problem, there are 72 trip shortest paths created. Figure 4 8 shows
the trip route system (called paths)’s structure AAT (Tgr470931ka.aat), RAT
(Tgr470931ka ratpaths), SEC (Tgr470931ka.secpaths), and their interrelationships Figure
4 9 shows the output text file

67

= ArcView GIS 3.2
Fle Edt Table Fieid Window Help

J, Geocode

o FPaths
N

{_Tgra7083ka

el Seopaths
315104111 Al

315104112 ‘
315104113 i

1

2

4 315104114
5 315104115
6 318108121
7

8

q

318108122

318108123
210101311

Ninimiaiaiaiaia

2 1947093k a. aat

s .,’...51‘-‘., / ok A
00 . 37 ,
I I 002 k' 38 42601790 %] Lovelace Ad
o I 000 3 33142601791 18 15
2778/ 0,003 40 40742601792 18 P Lovelace Ad
I T4 T 0,003 i 41 42601793 2 4
@l 0.007 2 42142601795 5 i8 Lovelace Ad
T I 0.008 43 431426017 3 3 George Lovelace [n
LT I) 0.007 44 4442601808 15 i

LL

Figure 4.8. A sample trip shortest path route system on Knox network. The Arrows show
the interrelationship between AAT, RAT, and SEC table.

68

) ArcView GIS 3.2 O] x|

File Edit Iable Field Window Help

1 Oof[762 selected
5 Al
315104111 606 36524 36551 B
315104171 B3 36551 36973 i
315104111 2449138973 37051 |
315104111 2443337081 37434
315104171 25337137494 37500
315104112 2593739000 33258
315104112 24524 39258 33328
315104112 2452539328 33362
315104112 24285 39362 35434]
315104112 242861 39434 33491 |
315104112 23862, 39491 40354 |
315104112 24290 40294 40357
315104112 24283140357 40418
315104112 8531 40416 40448 1
" AR1N4112 2R938 4nd4R 4n499 hai ‘

Figure 4.9. A sample text file exported from the section table of the trip route system.
Trip id is the unique id of each trip; Tgr47093lka# is the street internal id; Btime and
Etime are starting and ending times (in seconds) when a trip traverses a street.

69

Chapter 5

Temporal Indexing

In this chapter, an array of 2-d trees for those streets on which trips pass will be
built to speed up the spatiotemporal query discussed in Chapter 3. The 2-D tree structure
will be described first, then the C++ program that contains the three DLL functions (one
for building an array of 2-D trees, the other two are for temporal queries) is discussed
Finally, the Avenue script used to call the DLL function to create an array of 2-d trees 1s

presented.

Generic Description of 2-D Tree Structure

The 2-D tree structure 1s 1n fact a “2-dumensional binary search tree”. This
structure 1s a natural generalization of the standard one-dimensional binary search tree;
1t’s also a special case of the K-D tree (k-dimensional binary search tree) structure The
2-D tree and the K-D tree were proposed by Bentley (1975) In a 2-D tree, each node can
have at most two children (left child, right child) There are two keys for comparison to
decide the position of a node 1n the tree For a node, one of the two keys of its left child 1s
always less than 1ts own; one of the two keys of its right child 1s greater than its own. The
2-D tree has the property that branching at an even level (assuming the root is at depth 0)
1s done with respect to the first key, and branching at an odd level is done with respect to
the second key. For temporal querying, the first key 1s the beginning time and the second

key 1s the ending time

70

Figure 5 1 shows a general 2-D tree structure X, Y are two keys of a node, Left,
and Right represent pomnters pointing to the left child and right child respectively. Data
stands for the additional data fields of a node. In order to build a 2-D tree, nodes are
compared with X at even depths and Y at odd depths (the root 1s at depth 0). The first
point (node) 1s the root; the second point (node) 1s the right child of the first point, since
X of the second point 1s greater than X of the first point, the third point 1s the left child of
the second point; since Y of the thrid point 1s less than Y of the second point and X of the

third point 1s greater than X of the first point.

IXlYlIFFTIRIGHT |DATA |

2NN

X|Y|IFFT |RTGHT IDATA

' N\

X I Y l T FFT I RIGHT DATA

Figure 5 1. A generic 2-D tree structure. (Source* Worboys, 1995)

Figure 5.2 shows an example of building a 2-D tree for trips based on trip starting
time and ending time The first, second, and third columns of each trip record represent
trtp 1d, beginning time, and ending time respectively. All trips are sequentially inserted
to a2-D tree Trip 1 1s mserted to a null 2-D tree first, and becomes the root Since trip 1
1s at even level (depth = 0), trip 2 1s compared to trip 1 with respect to beginning time and
becomes the right child of trip 1 (beginning time of trip 2 1s greater than that of trip 1).
When inserting trip 3, trip 3 1s compared to trip 1 to decide on which side (left or right)
trip 3 ought to go Since beginning time of trip3 is greater than that of trip 1, trip 3 will go
to trip 1’s right child Then trip 3 1s compared to trip 2 with respect to ending time (trip 2
15 at odd level) and becomes the left child of trip 2 (the ending tume of trip 3 1s less than
that of trip 2) Simuilarly, trip 4 becomes the left child of trip 1, trip 5 becomes the right
child of trip 2, and trip 6 becomes the left child of trip 3

Several kinds of queries are possible on a 2-D tree (Weiss, 1997). A range query
searches nodes whose first key 1s between a specified set of values and whose second key
1s between another specified set of values An exact match searches for a node whose
first key and second key are exactly equal to predefined values. A partial match query
searches nodes based on one of the two keys (1 e one of the two keys equal to a value)
The exact match and partial match queries are both special cases of range query

Weiss argues that the running time of a range query depends on whether or not
the tree 1s balanced or a partial match 1s requested, and how many items are found For a
balanced tree, the range query takes O(M + N”*) time 1n the worst case. M and N

represent the number of nodes found and total number of nodes, respectively

72

Tnp 1 10 20

Tonp4 | 7 10 Tap2 | 20 | 30

Tnp 3 15 25 Tnp 5 25 40

Trp 6 12 20

Figure 5 2 A sample trip 2-d tree based on starting time and ending time. The first
column of each data s trip id, the second and the third columns are starting time and
ending time Trips are inserted into the 2-d tree sequentially (i.e. by tripl, trip2, trip3 .)

A 2-D tree 1s a simple data structure for range query. In GIS, the two keys of 2-D
tree can be seen as x and y coordinates of points Therefore, 2-D tree range query can be
fit for points However, 2-D tree suffers from the problem of its structure depending on
the order 1n which nodes are inserted (Worboys, 1995). Different node insertion orders
result 1n different 2-D trees. In the worst case, the 2-D tree has the height of the total

number of nodes.

73

Create an Array of 2-D Trees

From the trip route system, a text file containing route_id, arc#, starting time, and
ending time 1s created Thus text file contains information about each trip, its related arcs,
and the time window when this trip passes through those related arcs. Based on this text
file, all trips (including time windows) passing over each specific street can be 1dentified.
Next, one 2-D tree recording the trips’ 1ds and time attributes will be built for each
specific street segment To speed up spatiotemporal query, streets’ internal 1ds (Arc#) are
stored 1n a sorted array, and each data 1tem 1n this array has a pointer pointing to the 2-D
tree structure (Figure 5 3).

C++ and Avenue together are used to build this array of 2-D trees. C++ 1s used to
create some dynamic-link library (DLL) functions for an Avenue script to call. A DLL 1s

an executable module that contains functions that other applications can use to perform

Arc 1 Arc2 Arc 3 Arc 4 Arcn
(Arc#) (Arc#) (Arc#) (Arc#) (Arc#)

Figure 5.3 The structure of an array of 2-D trees. An ordered array of arc#. For

each arc#, there is a pointer pointing to a 2-D tree based on starting time and ending
time.

74

tasks DLLs are linked to an application at run-time. Three C++ files (twod.h, twod cpp,
and BuildIndex.cpp) are used to create three DLL functions (two query functions, and
one function for building an array of 2-D trees). One Avenue script 1s used to call the
DLL function that creates an array of 2-D trees based on streets and stores them 1n

memory. These C++ files are now described 1n detail.

1. twod.h the header file for creating a 2-D tree structure. This file defines a 2-
D tree structure and functions or procedures 1n C++ Each 2-D tree has a root
node A node 1s composed of one time array that contans two elements (1.e
beginning time and ending time), one trip 1d, and two pointers pointing the left
child and the right child Node insertion 'and range searching procedures for a

2-D tree are defined.

2. twod.cpp: the file used to build a 2-D tree, and perform a range query.
Building a 2-D tree (inserting nodes imto a 2-D tree) 1s composed of two
procedures: recursively 1nsert one 1tem or trip (including trip 1d, beginning

time, and ending time), and insert one node to a 2-D tree.

Recursively insert one item: recursively comparing this item to 2-D tree nodes

to decide 1ts position 1n the tree.
Input: an item array (1item []) which includes three elements: begmning time,

ending time, and trip 1d, a pre-known node called tnode, and one binary integer

75

called level to measure whether this pre-known node 1s at even or odd level. 0 and

1 represent even level and odd level respectively

Return: a 2-D tree node.

Procedure:

If tnode 1s null, then
Create a new tnode, and set the fields or values of this tnode by the item[] Thus
tnode’s pointers pointing to its left chuld and right child are set to null.

Else 1f item [level] less than time [level] of the tnode, then
Recursively 1nsert this item to the tnode’s left child, level will become !level (if
previous level 1s 0, then this level will be 1, vice verse)

Else

Recursively nsert this item to the tnode’s right child, level will become !level.

Insert one node to a 2-D tree:

Input: a 2-D tree T, and an 1tem array item [].

Procedure:

If T’s root 1s null, then
Create a new node, set the fields and values of this node by 1tem[], and set T’s
root as this node.

Else
Call the recursively mnserting procedure. The current node 1s T’s root, and level

1s 0 1tem[] will begin to compare and insert to T from T’s root

76

Range query 1n a 2-D tree 1s also composed of two procedures
RecPrintRange() and PrintRange() RecPrintRange() recursively query if nodes of
the 2-D trees satisfying the range query condition, and output query results into a
text file PrintRange() 1s used to query from the 2-D tree with a range of rectangle

for beginning time and ending time

RecPrintRange():

Input: one array of two elements called low [] (low ends of beginning time and
ending time), one array of two elements called high [] (high ends of beginning
time and ending time), one 2-D tree node called tnode, and one binary integer
level (O or 1, represents even or odd level of tnode)
Output: a text file storing the query results
Procedure:
If tnode 1s not null, then
If tnode’s time elements (beginning time and ending time) are between the
range of low [] and high [], then output this node 1nto a predefined text file
If low [level] less than time [level] of tnode, then

Recursively apply this procedure* RecPrintRange() to tnode’s left child, set

the level to !level.
If hugh [level] 1s greater or equal than time [level] of tnode, then
Recursively apply this procedure RecPrintRange() to tnode’s right child, set

the level to 'level

77

PrintRange():

Input: one array of two elements called low [] (low ends of beginning time and
ending time), one array of two elements called high [] (high ends of beginning
time and ending time), and a 2-D tree T.

Procedure:

Apply RecPrintRange() procedure to T’s root, and set level to 0.

2. BuildIndex.cpp: build a temporal index. There are three DLL functions:

BuildIndex(), QueryTimel(), and QueryTime2().

BuildIndex(): create an array of 2-D tree structures for streets based on time
elements (see Figure 5 3) A 2-D tree structure called arcStruc 1s composed of
arcid (1nteger) and one 2-D tree.

Input: a text file containing trip_1d, arc#, beginning time, and ending time
Return: a pointer to an array of 2-D tree structures
Procedure:

Read all values of arci# field from the text file and insert arc#s to a set (a set 1s
composed of unique and ordered elements)
Allocate memory for an array of arcStruc (1 e. create an array of 2-D tree
structures space), assign the values of arcid fields by the set.
Read 1n each record from the text file including trip_id, arc#, beginning time, and
ending time

Get the middle element from the array of 2-D tree structures’ arcid field,

78

If this record’s arc# equal to this element, then msert this record into the 2-D tree

related to the element by calling 2-D tree insertion procedure.

Else if this record’s arc# less than this element, then apply the same strategy to the
left parts of the array of 2-D tree structures from this element

Else 1f this record’s arc# 1s greater than this element, then apply the same strategy
to the right parts of the array of 2-D tree structures from this element

Loop

Return this array of 2-D tree structures.

QueryTimel(): query the array of 2-D tree structures based on one arc (street) 1d

and range of beginning time and ending time This procedure 1s used to query one

arc

Input: one pomnter (an array of 2-D tree structures), arc 1d, lower end of tume

range, and higher end of time range

Output: a text file storing the query result.

Procedure:

Get the muddle element from the array of 2-D tree structures’ arcid field,

If this arc 1d equal to this element, then call PrintRange() procedure.

Else 1f this arc 1d less than this element, then apply the same strategy to the
left part of the array of 2-D tree structures from this element.

Else 1f this arc 1d 1s greater than this element, then apply the same strategy to

the right part of the array of 2-D tree structures from this element.

79

QueryTime2(): query the array of 2-D tree structures for a set of streets based on

range of beginning time and ending time.

Input: one pomter (an array of 2-D tree structures), one mput text file containing

arc 1ds, lower end and higher end of time range.

Output: a text file storing the query result

Procedure:

Read 1n each arc 1d from the input text file

Get the middle element from the array of 2-D tree structures’ arcid field,

If this arc 1d equal to this element, then call PrintRange() procedure.

Else 1f this arc id less than this element, then apply the same strategy to the
left part of the array of 2-D tree structures from this element.

Else 1f this arc 1d 1s greater than this element, then apply the same strategy to
the right part of the array of 2-D tree structures from this element.

Loop

4. BuildTrees: an Avenue script used to create an array of 2-D tree structures

from a text file, and store this structure as a pointer 1n memory 1n the form of a
global variable The benefit of storing the address of an array of 2-D tree
structures as a global variable 1s that a global variable remains in one ArcView
application until this application 1s closed or until the ClearGlobals request
executes Therefore, different spatiotemporal queries can be performed based on

this structure

80

There are three steps to call a DLL function or procedure in Avenue. First,
create a DLL object, then create a DLLProc corresponding to a procedure 1n the
DLL. Finally, execute the call request on the DLLProc (ArcView V. 3.2 Online

Help).

Input: a text file from the SEC table of a trip route system

Return: a pointer to an array of 2-D tree structures

Procedure:

Clear all global variables.

Create a DLL object from BuildIndexDLL.dl file (a DLL file containing the three
DLL functions)

Make a DLLProc from the procedure of BuildIndex() in the DLL

Call this DLLProc by using the mnput text file and store the calling result as a
global variable

Make a DLLProc from the procedure of QueryTime1() 1n the DLL and store 1t as
a global variable.

Make a DLLProc from the procedure of QueryTime2() 1n the DLL and store 1t as

a global variable

BuildTrees script 1s executed by clicking the Button C in an ArcView View GUI
(graphic user nterface, see Figure 6.1) The sample text file exported from SEC table of
the trip path system 1s called secpaths.txt. When BuildTrees script 1s executed, the
BuildIndex() function 1s called to create an array of 2-D tree structures based on the

81

secpaths txt. This array of 2-D tree structures 1s stored 1n memory for a spatiotemporal
query script to call In the meantime, the two temporal query functions (QueryTime1()
and QueryTime?2()) are also stored as two global variables for the spatiotemporal query
script to call. Next chapter will explain this spatiotemporal query script and the
implementation of the spatiotemporal query.

This chapter has discussed the 2-D tree and an array of 2-D tree structures based
on starting and ending times for trips when traversing each street The C++ program that
includes three DLL functions for butlding temporal index and temporal queries are
described. Finally, the temporal index (an array of 2-D tree structures) 1s created for the

sample data set

82

Chapter 6

Spatiotemporal Query and Its Implementation

After an array of 2-D tree structures 1s created, an Avenue script is used to
perform the spatiotemporal query. In this chapter, the spatiotemporal query Avenue script

1s described first, then some query examples are implemented

Spatiotemporal Query Code Description

One Avenue script called stquery.tool 1s used to perform the spatiotemporal query
(1e which trips pass through a set of streets within one time window). In this script, an
ArcView spatial query function 1s applied on the trip route system’s network coverage to
get Arc#s (1 e street internal 1ds), then temporal query functions (DLLs created 1n C++)
are used to search the array of 2-D tree structures to identify those trips that meet the time
constramts Fnally the query results will be shown on the map and 1n a report box. The
following shows the contents of this script

There must be a trip route system and an array of 2-D tree structures of trips based
on time ranges for the streets for this procedure to be run.

Input: Users select streets, and a time window.

Output: a report window containing query results (i e. selected trips, and their

beginning time and ending time pass through those specific streets), and the query

results are shown on the map (trip route system)

Procedure:

Use aView.ReturnUserRect command to get a rectangle from the user on the map
83 -

(View) 1n order to select street(s) from the network coverage
If this rectangle 1s null, then
Use aView GetDisplay ReturnUserPoint command to get the location of the
mouse on the map display 1n order to select street(s) from the network
coverage
Use anFTheme SelectByPoint command to select features (streets) of the
anFTheme (the network coverage) at the mouse location
Else
Use anFTheme SelectByRect command to select features (streets) of the
anFTheme (the network coverage) within the rectangle area
If the number of selected street(s) 1s greater than or equal to 1, then
Get the time range: lower end and higher end, and convert them 1nto seconds.
If the number of selected street(s) equals to 1, then
Get the selected street’s internal 1d.
Call the DLLProc that contains QueryTime1() function to perform temporal
query on the array of 2-D tree structures based on the street internal 1d and time
range, and store the result trips 1n a text file.
Read in the text file
For each record (trip) of the text file
Use aFTab Query command to query the trip route attribute table by the
trip_id of this record
Loop
Display the text file as a message box report

84

Close the text file
Else 1f the number of selected streets 1s greater than 1, then

Add those street internal 1ds nto a list

Create a text file

Write those street internal tds from the list into this text file.

Call the DLLProc that contains QueryTime2() function to perform temporal

query on the array of 2-D tree structures based on the text file and time range,

and store the results 1n an output text file

Read 1n the output text file

For each record (trip) of the output text file
Use aFTab Query command to query the trip route attribute table by the
trip_id of this record

Loop

Daisplay the output text file as a message box report.

Close the output text file

Implementation and Examples

The spatiotemporal query function 1s performed 1n an ArcView application. The
trip route system 1s loaded into a View (Figure 6.1). A geocoded theme consisting of trip
origin ends and last destination ends for each mndividual on each day 1s created using the
methods described 1n previous chapters. The Tgr470931ka theme 1s the Knox street

network coverage Paths theme 1s the trip route system

85

One button and one tool have been added to ArcView for performing the
spatiotemporal query. The button containing 1con C is used to create an array of 2-D tree
structures of trips based on starting time and ending time for streets. In an ArcView
application, this button should be clicked only once, since the array of 2-D tree structures
are stored in memory as long as the ArcView application exists. Figure 6.2 shows how to
create an array of 2-D tree structures by loading the BuildIndexDLL dll file. The tool
containing icon Q 1s used to perform the spatiotemporal query. After the array of 2-D tree
structures 1s created, users can use the tool to repeatedly perform spatiotemporal queries
In the sample project, the Tgr470931ka theme should be active. Users select street(s) by
drawing a rectangle box or clicking one point on the view Then a time window message
box appears, and users can specify a time range during which trips pass through the
specific street(s) (Figure 6.3, 6.6) The low and high ends of a time range are both m the
format of HHMM (concatenation of hours and minutes) Finally all selected trips will be
shown on the map and 1n a message box report.

Figure 6 3 to Figure 6 8 show two examples of the spatiotemporal query on one
street and a set of streets respectively.

Example one: during 8 00 am — 9:00 am, which trips pass through the specific
street? After keying the spatiotemporal tool down, the user selects the specific street by
drawing a rectangle box or clicking on that street. The user then inputs the time range in
the message box (Figure 6.3). Finally, the trip 402117011 (Tr1p_id) 1s selected and shown
in a message box report (Figure 6.4) and on the map (Figure 6 5)

Example two: during 17:00 — 19-00, which trips pass through a set of streets? If
the spatiotemporal tool 1s down, the user can select a set of streets by drawing a rectangle

86

Geocode Create an
addresses of array of 2-D
an event tree structures
table

. Ag¥iew GIS 34

ﬂ Geocode
[}

{ Paths
P

« Tgra7003ka

—
v
s

Spatiotemporal
query: query trips
passing through
one or more
streets within a
time window

(=] E3

EE

Scale 1254465

g

Figure 6.1. The user interface of a spatiotemporal query function on a trip route system.

87

& AncView GIS 32 il
Ee Edit View TIheme Graphics !ﬁndon Help

| & ED Ill HEEEES II]

{ Geocode
L]

| o Paths
[T A
| o« Tgra7093ka File Name:
| buildindexdll.dll i\eng

1 info
£ tard7093ka

pa—
».
pE—

e
Lt

Figure 6.2. Create an array of 2-D tree structures by loading a DLL file.

88

“AreView GIS 3.2
Fie Edt View Iheme Graphics Window Help

gSE AN

Ol NG E 7] &<l T])
(el |

| 7 Geocode
s

| o Paths
it

ﬂ Tgr47083 ka 1
o T @/“’

~Z Time Window

2

Enter a time period
Lower end of the time window | 0800
higher end of the time window | 0900

|4}

Figure 6.3. the time window (8:00 am — 9:00 am) of the spatiotemporal query on one
street (example one).

89

& AeriPw GIs 32
Edit View Theme Graphics Window Help

I@ E @EE RN & I
OENRECEVEHEEWOR

"l stquery. apy O] x| |

ﬂ Geocode
L]

Scale 1:|107.423

f| Paths
i Tnp_ld, Begining Time [seconds). Ending Time (sec
402117011 29400 30258

| & Tgra7093Ka 1

L«
—

UK‘ e

T

e |
vl
ad L
X I il AT

525

Figure 6.4. The message box report showing the spatiotemporal query result on one
Street (example one).

90

2 ArcView GIS 3.2 (=] E3

Fle Edt Iable Field Window Help

BOE & BXE &E ED EE
[1| 7eskded X0

2 Viewl

402117011 |

i 11 315104111

PolyLine 2. 315104112 |
PolyLine 3 315104113
PolyLine 4 315104114
PolyLine 51 315104115
PolyLine 6 318108121
| PolyLine 71318108122

Figure 6.5. The selected paths showing the spatiotemporal query result on one street
(example one).

L A View GIS 3.2 ‘ ‘
Eile Edit View TIheme E:aphm M'adow Help

ﬂ Geocode -“" .“ @ ’-"';"'
. % o4 ,.!
v ;-\tr; ‘ N v

] Tgia7093ka -
| NG

;‘s
i

_-.-v’ 6‘\ ’ \lh 4—
=2 % xﬁﬁ%‘
AN s

" Time Window

Enter a time period
Lower end of the time window | 1700

]
higher end of the time window [1500 |
<&

f ...I;ﬂ
NS Y
2 \""' 4 P

Origin: (-84.07, 35.88) dg Extent: (1.08, 0.93) mi Area: 1.07 sqmi a3 |

Figure 6.6. The time window (5:00 pm — 7:00 pm) of the spatiotemporal query on a set
of streets (example two).

»Mu'v'wwl"il’rﬁé‘ ‘ il
File Edit View Iheme EJW l:‘fndow Hd:u

E] o el A
®la

ﬂ Geocode
®

ﬂ Paths
SN

ﬂ Torgeous s a : ! Tnp_ld. Begining Time [seconds). Ending Time [sec...
L 1319101311 61646 61667
- 319101311 61667 61701
319103033 63785 63855
319101311 61809 61850
319103033 64545 64584
319103033 64584 64628
319101311 6177261809
319103033 64320 64372
319103033 64483 64545
319103033 64017 64148

319101311 62015 62042 ;] .
2131N2N22 RA2GR £4290 /

Figure 6.7. The message box report showing the spatiotemporal query result on a set of
streets (example two).

93

2 ArcView GIS 3.2

Ele Edt Iable Field Window Help ‘
E] M

BHR & ERE EED &
| .

Jof 72 selected DEN)

>

o Geocode A
Paths |
ar o, | e

| « Tgra7093ka

i~ Attributes of Paths
[PolyLine CHEEEELHD
| PolyLine 18; 318103012
‘| PolyLine 22: 319103033
| PolyLine 1 315104111
| PolyLine 2i 315104112
| PolyLine 3i 315104113
‘| PolyLine 4: 315104114
‘| PolyLine 5i 315104115

Figure 6.8. The selected paths showing the spatiotemporal query result on a set of
streets (example two).

box, then mput the time range into the time window (Figure 6 6) Fally the trip
319101311, 319103012, and 319103033 (Tr1p_1d) are selected and shown 1n a message

box report (Figure 6 7) and on the map (Figure 6.8)

95

Chapter 7

Conclusions and Future Research

In this study, spatiotemporal index on the trip data 1s built by combining
ArcView/Avenue, ArcInfo/AML, and C++. This spatiotemporal index 1s used to answer
the question about which trips pass through one or more specific streets during a time
period All the trip origin ends and those last destination ends for each individual on each
day are geocoded using Avenue scripts. The trip shortest path route system 1s created
based on the geocoded locations, and ArcInfo dynamic segmentation and network
analysis functions. An array of 2-D tree structures based on each trip’s beginning and
ending times and each street segment traversed 1s then created in C++ and Avenue This
array of 2-D tree structures 1s stored 1n memory. Finally, the spatiotemporal query
function 1s performed by examning an array of 2-D tree structures for a given time
window using Avenue and C++

This study explores the spatiotemporal query problems for trip data. The
spatiotemporal index developed 1s used to solve the spatiotemporal query problem for
large trip data sets. If the size of a trip data set is small, there will be no need to develop
such an index. Even though this study can only solve one kind of spatiotemporal query
problem, 1t shows that efficient data structures can be created to solve complex
spatiotemporal query problems for large data sets. An efficient trip data model (1 e. how
to represent disaggregate transportation data in a GIS environment) is the foundation for

spattotemporal queries and other data manipulation and analysis.

96

However, some shortcomings can be 1dentified 1n this research. First, trips are
assumed to take shortest paths. In fact, travel behavior is complicated. Thus, trips do not
always take the shortest paths. Second, the spatiotemporal index can only solve one type
of spatiotemporal problem, while there are several kinds of spatiotemporal query
problems for disaggregate transportation data. The spatiotemporal index developed in this
thesis can only solve the problem about which trips pass through one or more street(s)
during a time window It cannot solve a similar problem about which trips pass through
point locations or partial streets during a time window. Third, this spatiotemporal mdex
18 1n fact the combination of spatial index and temporal index. Since a 2-D tree structure
1s only fit for point or non-dimensional search (Worboy, 1995), this structure cannot be
used to perform the spatiotemporal query for trip data itself. The spatial query function 1n
ArcView 1s used first to get selected streets, then 2-D tree structures are used to query
trips passing through these streets during a time window. In fact, the array of 2-D tree
structures 1s only a temporal index, since 1t 1s built based on beginning time and ending
time. Finally, this spatiotemporal index can only be used to query historical trip data
Assuming trip information and streets do not change, it is a static data structure If trips or
streets change, the array of 2-D tree structures will have to be rebuilt If the data set 1s
very large, this can be quite time consuming.

In future studies on spatiotemporal queries for disaggregate transportation data,
there are at least three aspects to be considered.

Data collection: traditionally, disaggregate transportation data or trip data are
collected by travel surveys, which usually record trip origin and destination addresses,
and neglect other intermedsate locations. Sice GPS techniques can identify the location

97

of moving objects, they should be used in travel surveys. Trip intermediate points will be
recorded by GPS; therefore, trip paths can be clearly 1dentified The mexactness of the
shortest path as a trip path will be overcome. In addition, after the spatiotemporal index 1s
created, a large trip data set should be used to implement the spatiotemporal query.

Data model: A trip data model is the foundation of data retrieval, manipulation,
and analysis. In this study, trip spatial information (trip path) s represented by dynamic
segmentation, while trip temporal information is considered as an attribute of trip spatial
mformation Shaw (2000) suggests a new trip data model combining trip spatial and
temporal information together using the dynamic segmentation approach. Chapter 2
mtroduces this data model. Since trip spatial and temporal data are integrated parts of
this data model, spatiotemporal manipulation, retrieval, and analysts can be easily
handled. In the future, this approach can be adopted as a base to build spatiotemporal
indexes

Index structure: If the 2-D tree structures are used to build a spatiotemporal

index, these trees should be balanced first to speed up query. On the other hand, 2-D trees
should be saved 1n a disk file Since 2-D tree 1s a static structure, 1t is difficult to handle
dynamuc trip data (1.e trips or streets change) Robinson (1981) proposed KDB-tree
(combination of the KD-tree structure with the B-tree idea) to handle dynamic data. The
KDB-tree structure might be a replacement of the 2-D (or K-D) tree structure. In
addition, trip paths are one-dimensional linear objects, some multi-dimensional spatial
data structures such as R tree and R+ trees should be explored in spatiotemporal queries

for trip data.

98

REFERENCES

99

References

Ahn, I and Snodgrass, R. (1988) Partitioned Storage for Temporal Databases,
Information Systems, 13(4), pp. 369-391.

Arc/Info Online Help Documents, Dynamic Segmentation.
Arc/Info Online Help Documents, Network Analyst.
ArcView Online Help Documents, Geocoding.

Bentley, JL (1975) Multidimensional Binary Search Trees Used for Associate
Searching, Comm. ACM, 18, pp 509-517

Ben-Zvi,J (1982). The Time Relational Model, Ph.D. Dissertation, Computer Science
Department, UCLA.

Chrisman, N R (1983). The Role of Quality Information in the Long-term Functioning of
a Geographic Information System, 1n Proceedings of Auto Carto 6, Vol. 2, (Ottawa-
Steering Commuttee of the Sixth International Symposium on Automated Cartography),
pp. 303-321

Clifford, J and Warren, D S (1983) Formal Semantics for Time 1n Databases, ACM
Transactions on Database Systems, 8 (2), pp 214-254.

Clifford, J , and Tansel, AU (1985) On an Algebra for Historical Relational Databases,
mn Proceedings of the SIGMOD’85 Conference (New York. ACM), pp 247-265.

Dangermond, J (1984). A Classification of Software Components Commonly Used in
Geographic Information Systems, in Proceedings of the U.S./Australia Workshop on
Design and Implementation of Computer-Based Geographic Information Systems,
(Amberst: IGU Commussion on Geographical Data Sensing and Processing), pp. 70-91

Date, C 1. (1995) An Introduction to Database Systems, 6™ edition (Reading' Addison-
Wesley Publishing Company).

Dictionary of Computing, (1996). 4™ edition (New York: Oxford University Press)

Dueker, K.J and Butler, J A. (1997). GIS-T Enterprise Data Model with Suggested
Implementation Choices, Center for Urban Studies, Portland State University.

100

Dueker, K. J (1999) GIS-T Data Sharing Issues, Draft Discussion Paper 99-02, Center
for Urban Studies, Portland State University.

Elmasr, R et al (1990). The Time Index — An Access Structure for Temporal Data, 1n
Proceedings of the Conference on Very Large Databases. Brisbane, Australia.

Elmasri, R. et al (1991). Efficient Implementation Techniques for the Time Index, 1
Proceedings of the Seventh International Conference on Data Engineering.

Elmasri, R , et al (1992) Partitioning of Time Index for Optical Disks, in Proceedings of
the International Conference on Data Engineering. Golshani, F. (Ed), IEEE, Phoenix,
AZ, pp 574-583

Gadia, S K. (1986) Toward a Multthomogeneous Model for a Temporal Database, 1n
Proceedings of the International Conference on Data Engineering, (New York IEEE),
pp. 390-397.

Goodchild, M F (2000). GIS and Transportation Status and Challenges,
Geolnformatica, forthcoming

Goodwin P (1983) Some Problems in Activity Approaches to Travel Demand, In
Carpenter, S. and Stopher P (Eds) Recent Advances in Travel Demand Analysts,
Aldershot, UK. Gower Publishing, pp. 470-474.

Gunadhi, H and Segev, A (1991). Efficient Indexing Methods for Temporal Relations,
IEEE Transactions on Knowledge and Data Engineering

Hagerstrand T. (1970). What about People 1n Regional Science? Papers of Regional
Science Association, 24, pp. 7-21.

Japan Ministry of Construction, Comprehensive Plan for ITS in Japan.
www 1ts go Jp/ITS/SMinistries/index html

Japan Minustry of Construction, System Architecture. www its go jp/ITS/index/indexSA html

Kolovson, D. and Stonebraker, M (1989). Indexing Techniques for Historical Databases,

in Proceedings of the Fifth International Conference on Data Engineering. Los
Angeles, CA, pp. 127-137

Kolovson, C. and Stonebraker, M (1990) S-Trees Database Indexing Techniques for

Multi-Dimensional Interval Data, Technical Report UCB/ERL M90/35, University of |
California.

101

Kolovson, C.P. (1990). Indexing Techmques for Multi-Dimensional Spatial Data and
Historical Data in Database Management Systems, Ph.D. Dissertation, University of
California, Berkeley.

Langran, G and Chrisman, NR (1988) A Framework for Temporal Geographic
Information, Cartographica, 25 (3), pp. 1-14.

Langran, G (1992). Tume in Geographic Information Systems (London: Taylor &
Francis), pp. 37-44, 55-67, 95-157

Leung, T.Y. and Muntz, R. (1992). Generalized Data Stream Indexing and Temporal
Query Processing, in Second International Workshop on Research Issues in Data
Engineering: Transaction and Query Processing.

Lomet, D. and Salzberg, B. (1990) The Performance of a Multiversion Access Method,
mn Proceedings of ACM SIGMOD International Conference on Management of Data.
Atlantic City, pp. 353-363.

Lum, V. et al (1984) Designing DBMS Support for the Temporal Dimension, 1n
Proceedings of ACM SIGMOD International Conference on Management of Data
Yormark, B (Ed.), Association for Computing Machinery, Boston, MA, pp 115-130.

Muller, H.J. (1991). Modeling Accessibility Using Space-time Prism Concepts Within
Geographic Information Systems, International Journal of Geographical Information
Systems, 5, 287-301.

Miller, H.J. and Shaw, S.L. Geographic Information Systems for Transportation —
Principles and Applications. forthcoming

Morerra, J. et al (1999). Representation and Manipulation of Moving Points: An
Extended Data Model for Location Estimation, Cartography and Geographic
Information Science, 26 (2), pp 109-123.

Pas, E (1990). Is Travel Demand Analysis and Modeling in the Doldrums? In Jones, P.
(Ed.) Developments in Dynamic and Activity-based Approaches to Travel Analysis,
Aldershot, UK. Gower Publishing, pp. 3-27.

Peuquet, D. (1994). It’s About Time: A Conceptual Framework for the Representation of
Temporal Dynamics 1n Geographuic Information Systems, Annals of the Association of
American Geographers, 84 (3), pp. 441- 461

Peuquet, D and N, D. (1995). An Event-based Spatiotemporal Data Model (ESTDM)

for Temporal Analysis of Geographical Data, International Journal of Geographical
information systems, 9 (1), pp.7-24.

102

Peuquet, D. and Qian, L.J. (1996) An Integrated Database Model for Spatiotemporal
GIS, 7" International Symposiwum on Spatial Data Handling, pp 21-31.

Peuquet, D. (1999). Time in GIS and Geographical Databases, Geographical Information
Systems, edited by Longley, P. et al. (New York' John Wiley & Sons, Inc.), pp. 91-103.

Qian, L.J. and Peuquet, D. (1998). Design of a Visual Query Language for GIS, The 8th
International Symposwum on Spatial Data Handling, Vancouver

Quuroga, C et al (1998) A GIS-GPS (Dynamuc Segmentation) Methodology for
Conducting Travel Time Studies, http //www rsip lsu edu/projects/tte/tte_main htmi

Robinson, J.T. (1981) The K-D-B-Tree A Search Structure for Large Multidimensional
Dynamuc Indexes, Association for Computing Machinery SIGMOD, 10, pp. 10-18.

Shaw, S.L. (1999). Activity-Based Travel Demand Modeling Using Geographic
Information Systems, Department of Geography, University of Tennessee, Knoxville.
Report of UTK Faculty Research Grant.

Shaw, S.L., and Wang, D.M. (2000) Handling Disaggregate Spatiotemporal Travel Data
with GIS, Geolnformatica, 4 (2), pp 161-178.

Shaw, S L., (2000). Moving Toward Spatiotemporal GIS for Transportation Applications,
Proceedings of ESRI User Conference, http //www esri com

Snodgrass, R., and Ahn, I (1985). A Taxonomy of Time 1n Databases, in Proceedings of
the SIGMOD’ 85 Conference, (New York: ACM), pp 236-245.

Snodgrass, R T. (1992) Temporal Databases, in A. U Frank, I Campari and U.
Formentini (eds.) Theories and Methods of Spatio-Temporal Reasoning in Geographic
Space, Berlin: Springer-Verlag, pp. 22-64.

US Department of the Interior, US Geological Survey, National Mapping Division
(1998). http /fedcwww?2 cr usgs gov/umap/umap html

Vonderohe, A et al (1995). On the Results of a Workshop on Generic Data Model for
Linear Referencing Systems, GIS-T 95 Proceedings

Weiss, M A. (1997). Data Structures and Algorithms Analysis in C. 2™ Edition
(Addison-Wesley), pp. 485-488.

Worboys, M F. (1992). A Model for Spatio-temporal Information, n Corwin, E. and

Cowen, D (Eds) Proceedings of the 5" International Symposium on Spatial Data
Handling, Columbus, OH: International Geographical Union, pp 606-611

103

Worboys, M.F. (1994). A Unified Model of Spatial and Temporal Information, Computer
Journal, 37 (1), pp. 26-34

Worboys, M F. (1995). GIS A Computing Perspective (London Taylor & Francis), pp.
264-267

Yuan, M. (1994). Wildfire Conceptual Modeling for Building GIS Space-time Models,
Proceedings GIS/LIS94, pp 860-869

Yuan, M (1999). Temporal GIS and Spatio-Temporal Modeling
http-//ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers /yuan_may/may .html

104

Appendix

105

/ Seskskeckok Sdeokodeok /

/* File name twod h */
/* Description this 1s the header file for 2-d tree ~ */
[x¥ ek skokeok ok sk k% /

#1fndef _"TWOD_H__
#define _"TWOD_H_

typedef struct twodnode

{ !
long nt time[2],
long 1nt tripid,

struct twodnode *left,
struct twodnode *right,

} TwoDNode,
typedef struct {
TwoDNode *root,
} TwoDTree,
/* create a new empty 2-d tree */
TwoDTree *new_TwoDTree(),
/* free the 2-d tree */
void Free_TwoDTree(TwoDTree *),
/* 1nsert a array of two long 1nt items 1nto the 2-d tree */
TwoDNode *TwoDTree_Insert_Node(TwoDTree *, long int []),
/* print the 2-d tree from the node 1n order */
vold TwoDTree_Print_Tree(TwoDNode *),
/* print the 2-d tree from the node preorder */
print_tree(TwoDNode *),
/* search a particular node 1n the 2-d tree */
TwoDNode *TwoDTree_Search(TwoDTree *, long int []),
/* search nodes from the 2-d tree 1n a range */
PrintRange(long int [], long 1nt [], TwoDTree *),

#endif

106

/ seokoskock skokok %k /

/* File name twod cpp */
/* Description this 1s a file for creating and querying basic 2-d tree structure */
Jrxdokkokkkokdolorkok * dokskokkskok Hkkk ok /
#include <stdio h>

#include <stdlib h>

#include <malloc h>
#include "twod h"

/* create a new empty 2-d tree */

TwoDTree *new_TwoDTree()
{
TwoDTree *t,
t = (TwoDTree *) malloc(sizeof(TwoDTree)),
t->root = NULL,
return t,

}

extern FILE *Ofp,

/*
recurstve function used for inserting node 1nto 2-d tree

*/

static TwoDNode *Recursivelnsert(long nt item[], TwoDNode *tnode, 1nt level)
{
1f (tnode == NULL) {
tnode = (TwoDNode *) malloc(sizeof(TwoDNode)),
if (tnode == NULL) {primtf("out of space\n"), exit(1),}
tnode->tripid = item([2],
tnode->time[0] = 1tem[0],
tnode->time[1] = item[1],
tnode->left = NULL,
tnode->right = NULL,

else 1f (item[level] < tnode->time[level])

tnode->left = Recursivelnsert(item, tnode->left, 'level),
else

tnode->night = Recursivelnsert(item, tnode->nght, 'level),
return tnode,

}

/*
insert a node 1nto the 2-d tree

*/

TwoDNode *TwoDTree_Insert_Node(TwoDTree *f, long int item[])
107

TwoDNode *fd,
if (f->root == NULL){
fd = (TwoDNode *) malloc(sizeof(TwoDNode)),
fd->time[0] = item[0],
fd->time[1] = item[1],
fd->tripid = 1tem([2],
fd->left = NULL,
fd->right = NULL,
f->root = fd,
return fd,
} else
return Recursivelnsert(item, f->root, 0),

}

/*
recursive function used for finding node
*/

static TwoDNode *RecursiveSearch(long it item[], TwoDNode *tnode, 1nt level)

{

if (tnode == NULL) {printf("not found\n"), exit(1),}
else 1f ((1tem[0] == tnode->time[0]) && (item[1] == tnode->time[1])
&& (item[2] == tnode->tripid))
return tnode,
else if (item[level] < tnode->time[level])
return RecursiveSearch(item, tnode->left, tlevel),
else 1f (item[level] >= tnode->time[level])
return RecursiveSearch(item, tnode->right, 'level),

return (NULL),
}
/*
searching node 1n the 2-d tree
*/

TwoDNode *TwoDTree_Search(TwoDTree *t, long 1nt 1item[])
{

return RecursiveSearch(item, t->root, 0),

}

/*1n order print the 2-d tree */

void
TwoDTree_Print_Tree(TwoDNode *header)

{
if (header == NULL) return,

TwoDTree_Print_Tree(header->left),

fprintf(Ofp, " %I1d %Id %Ild\n", header->time[0], header->time[1], header->tripid),
TwoDTree_Print_Tree(header->right),

108

/* pre order print the 2-d tree */

print_tree (TwoDNode * root)

{
if (root '= NULL)
{
fprintf (Ofp, "%Id %Id %1d\n", root->time[0], root->time[1], root->tripad),
if (root->left '= NULL)
{
fprintf (Ofp, "left child\n"),
print_tree(root->left),

}

if (root->right '= NULL)

{
fprintf (Ofp, "right child\n"),
print_tree(root->r1ght),

/* thus 1s for recursively searching for the nodes based on a range */

static vord RecPrintRange(long int low[], long int lugh[], TwoDNode *t, int level)

{
if (t '=NULL)
{
1if (low[0] <= t->time[0] && t->time[0] <= hgh[0] && low[1] <= t->time[1] && t->time[1] <= high[1])
fprintf(Ofp, "%Id %1d %ld\n", t->tripid, t->time[0], t->time[1]),
if (lowflevel] < t->time[level])
RecPrintRange(low, high, t->left, 'level),
if (hugh[level] >= t->time{level])
RecPrintRange(low, high, t->right, !evel),

/* searching for the nodes from the 2-d tree based on a range */

PrintRange(long it low[], long int high[], TwoDTree *t)
{

RecPrintRange(low, high, t->root, 0),
}

/* recursively free TwoDNode */

109

static void Recursive_Free_TwoDTree(TwoDNode *fn)

{
if (fn == NULL) return,
if (fn->left '= NULL) Recursive_Free_TwoDTree(fn->left),
if (fn->nght '= NULL) Recursive_Free_TwoDTree(fn->night),
free(fn),
return,

}

/* free the 2-d tree */

voud Free_TwoDTree(TwoDTree *f)
{

Recursive_Free_TwoDTree(f->root),
free(f),
return,

}

110

[k skeskoksekolokokok ket sk stk sk ok skt ook ek skokosk ok ok ******/

/* Program name BuildIndex cpp */
/* Description Building a spatial temporal index using 2-d tree based on */
/* starting time and ending time for each arc */
/** Kk eskeok ok keckokosk ek ok skokok ok k% a‘****/
#include <stdio h>

#include <stdlib h>

#include <1ostream>

#include <set>

#include <string>

#include <algorithm>

#nclude "twod h"

using namespace std ,

typedef set<long int> SET_INT,

// define a struct for each arc including arcid, and 2-d tree

typedef struct{
long 1nt arcid,
TwoDTree *tt,
} arcStruc,

FILE *Ofp,
long 1nt s1ze,

extern "C"
—declspec(dllexport)

/* Query the array of 2-d trees based on arcids, begining time, and ending time
arcid, result will be written 1nto ofname
*/

mnt QueryTimel(arcStruc ** pt, long int arcid, long nt bt, long 1nt et, char * ofname)

long 1t lo,

long 1nt hi,

long int mu,
long 1nt low[2],
long it high[2],
low[0] = bt,
low[1] =bt,
high{0] = et,
high[1] = et,

1/ check 1f there are problems with the input and output files
if ((Ofp = fopen (ofname, "w")) == NULL)
{
printf("erro m open output file\n"),

exit(1),

111

/* read 1n arcids from the put file and do binary search to find the query result,
then write 1nto output file

*/
lo=0,
hi=s1ze-1,
while(lo <= hi)
{
mi=(lo+h1)/2,
if (pt[mi]->arcid < arcid) lo=m + 1,
else 1f (pt[mu]->arcid > arcid) h=mi - 1,
else {
PrintRange(low, high, pt[m]->tt),
break,
}
}
fclose(Ofp),
return (1),
}
extern "C"
__declspec(dllexport)

/* int QueryTime(arcStruc ** npt, long 1nt arcid, long 1nt bt,long 1nt et)
Query the array of 2-d trees based on arcids, begining time, and ending time
arcids are 1n file fn, result will be written 1nto outfn

*/

it QueryTime2(arcStruc ** npt, char * fn, char * ofn, long nt bt, long 1nt et)

{
long 1nt lo,
long mt hi,
long 1nt mi,
long 1nt low[2],
long 1nt high[2],
FILE *nfp,
long 1nt arcid,
low[0] = bt,
low[1] =bt,
high[0] =et,
high[1] =et,

/" check if there are problems with the input and output files
if ((Ofp = fopen (ofn, "w")) == NULL)
{ printf("erro 1 open 1nput file\n"),
exit(1),
1{}f ((nfp = fopen (fn, "r")) == NULL)

printf("erro 1n open output file\n"),
exit(1),

112

/* read 1n arcids from the mput file and do binary search to find the query result,

then write 1nto output file

*/

while (fscanf (nfp, "%Id", &arcid) '= EOF)
{

}
fclose(nfp),

fclose (Ofp),
return (0),

extern "C"
__declspec(dllexport)

hi=s1ze - 1,
while(lo <= h1)

{
mi=(lo+hi)/2,
if (npt[mu]->arcid < arcid) lo = mu1 + 1,
else 1f (npt[m]->arcid > arcid) h1 =mu - 1,
else {
PrintRange(low, high, npt{mu]->tt),
break,
}
}

/* buld an array of arcStruc For each arc, build a 2-d tree
user should mnput section file name which includes necessary information

*/

arcStruc **

BuildIndex (char * infile)

{
SET_INT

long 1t
long int
long it
lIong 1t
long 1nt ar[3],
arcStruc **pt,

it lo, h1, my, 1,

FILE *fp,

arcID,
routlD,
bt,

et,

// check if there 1s a problem with 1nput file

if ((fp = fopen (infile, "r")) == NULL)
{

printf("erro 1n 1put file"),

exit(1),

113

// read in 1nput file, and 1nsert arcids nto set arcIDs

while (fscanf(ifp," %ld, %1d,%1d,%1d", &routID, &arcID, &bt, &et) '= EOF)

{

arcIDs nsert(arcID),
}
fclose(ifp),

| SET_INT 1terator it,
1=0,

// malloc an array of arcStruc, and assign values

pt = (arcStruc **) malloc (arcIDs s1ze() * sizeof (arcStruc *)),
for (1t = arcIDs begin(), 1t '= arcIDs end(), 1t++){
pt[1] = (arcStruc *) malloc (s1zeof (arcStruc)),
ptli]->arcid = *1t,
ptl1]->tt = new_TwoDTree(),
1++,

}

size = arcIDs si1ze(),
arcIDs clear(),

if ((fp = fopen (infile, "r")) == NULL)

{
printf("erro 1n open nput file\n"),
exit(1),

}

// read 1n 1nput file, do binary search, and insert nodes 1nto 2-d trees

while (fscanf(ifp, "%Id, %Id, %Id, %1d", &routID, &arcID, &bt, &et) '= EOF)

{
ar[0] = bt,
ar[1] =et,
ar[2] = routID,
lo=0,
hi=size- 1,
while (lo <= hi)
{
mi=(lo+h1)/2,
if (pt[mi]->arcid < arcID) lo=mu + 1,
else if (ptfmi]->arcid > arcID) h1=mu - 1,
else {
(void *) TwoDTree_Insert_Node(pt[m]->tt, ar),
break,
}
}
}
return pt,

114

/* Sesfesheskeskeoleok sk sk sk sk sk e sk sfestesteste st shesheske ke ke sk sk sk sk sk sfesteske e sk sk ke ke e ke o * Shesfesfe seskeske skl sl stk e sk sk stk skoskok

/* File name tripdyna aml

/* Description

/* ths file creates a shortest path route system Assume users have a point coverage

/* (which can be a geocoding result for disaggregate trip dat), and the trips are all

/* sequential The point coverage only has points for each starting address, 1n addition,

/* ending addresses for each individual at each day

/* In arc/info, 1n order to create shortest path route system, all stops have to be at

/* nodes To overcome this shortcoming, the pont coverage 1s first used for sphitting the
/* network, creating pseudo nodes Using these pseudo nodes, shortest path system can be
/* created Then using unsplit command to delete all the pseudo nodes, which doesn' affect
/% the final route system, because all the route system will be updated

/*

/* input arc coverage (network including nodes), point coverage (used as stops to

/* create shortest paths based on each individual)

/*

/* output a shortest paths route system and a text file

/*

sfestesk skeok skok ko skokeskok eokkesk stk sk ke sk sk ok ok ke sk she ok sfeskeoke ke sk sk s sk st sk s st sk sk sk sk sk stk sk sk skeste sk sk sfeste stk sk sk sk ok sk

/* check 1f the 1nput arguments are correct

&args arc_cover point_cover
&if [null %arc_cover%] = true or [null %point_cover%] = true &then
&do
&type USAGE final aml <arc_cover> <point_cover>
&message &on
&stop
&end

/* create an info file to store nonuruld field values from the pornt file

&s non [LISTUNIQUE %pornt_cover% -POINT nonumld nonunud txt]
TABLES
&uf [EXISTS nonum dat -info] &then
&do
sel nonuni dat

purge

y
&end
&else
&do
define nonun: dat
nonunud 10 10 C
&end
sel nonuni dat
ADD FROM nonunud txt

q

&if [show program] = ARC &then
&do

115

display 0
ae

graphics off

&end
coord key
weedtolerance 0 00001

/* create a stop file to store pseudo node 1d and route_1d

create stps info
Yoarc_cover%-id, 4, 5, b
route_1d, 4, 12, b

/* get the total number of this info file, and based on each record, to select

/* ponts 1n the point coverage to split arc coverage

EDIT nonuni dat INFO

&S NON [SHOW NUMBER TOTAL)
&scent 1

&DO CNT =1 &TO %NON%

SEL $RECNO = %CNT%

&S TE [SHOW INFO [SHOW SELECT 1] ITEM nonunud]

ec %pont_cover%

ef point

SEL NONUNIID = [QUOTE %TE%]
&s end [show number SELECTED]

/* for each individual, get the points and split the arc coverage

&s count 1
&do COUNT =1 &to %end%

&s x [extract 1 [show label [show select %count%] coordinate]]
&s y [extract 2 [show label [show select %count%] coordinate]]
&s n1d [show point [show select %count%] 1tem trip_id]

&if %count% = 1 &then
&s nd_pre = %nd%
&if %count% <> 1 or %nd% <> 99999999 &then
&do
ec %arc_cover%
ef arc
sel
Y0x%,%y %

&uaf [show number selected] = 1 &then
&do

&s xy_node [show arc [show select 1] nodes]
&s x_1 [extract 1 %xy_node%]

&s y_1 [extract 2 %xy_node%]

&s x_2 [extract 3 %xy_node%]

&s y_2 [extract 4 %xy_node%]

&s 21 = %x% - %ox_1%

&s z2 = %y% - %oy_1%

&s k1l = %x% - %x_2%

&s k2 = %oy% - %oy_2%

116

&sz2=%z1% * %z1% + %z22% * %z2%
&s k= %k1% * %k1% + %k2% * %k2%

/* check 1f these points are at nodes, 1f so, then write down node 1ds,
/* else, split

&if [SQRT %z%] <= 0 00001 &then
&s n1 = [show node [show arc [show select 1] fnode#] 1d]

&else &if [SQRT %k%] <= 0 00001 &then
&s n1 = [show node [show arc [show select 1] tnode#] 1d]
&else
&do
spht
%ox%,%y %
&end

/* after split, store each pseudo node’s 1d, and add to a stop file

&if [show number selected] = 2 &then
&do
&aif [show arc [show select 1] fnode#] = [show arc [show select 2] tnode#] &then
&s n1 = [show node [show arc [show select 1] fnode#] 1d]
&else
&s n1 = [show node [show arc [show select 1] tnode#] 1d]
&end

/* add nodes or pseudo nodes 1nto the stop file

edit stps info
&uf %ocount% = 1 or %count% = %end% or %rd% = 99999999 &then
&do
add
calc %arc_cover%-1d = %m%
calc route_id = %rnd_pre%
&end
&else &if %rid_pre% = 99999999 &then
&do
add
calc %arc_cover%-1d = %m%
calc route_1d = %nd%
&end
&else
&do
add
calc %arc_cover%-1d = %m%
calc route_id = %rid_pre%
add
calc %arc_cover%-1d = %nm%
calc route_i1d = %nd%
&end
&end
&end
&s rid_pre %rid%
ec %point_cover%

117

ef point

sel nonunud = [quote %te%]
&s count %count% + 1
&end

EDIT nonum.dat INFO

&S CNT %CNT% + 1
&END

quit

y
y

/* create shortest path route system based on the stop file Create shortest path
/* based on each route_id

ap

netcover %arc_cover% paths 1
stops stps # route_1d

path stops

quit

tables

select %arc_cover% ratpaths
alter

paths-1d

paths-1d

12

q
/* unsplit the network

ae
ec %arc_cover%
ef arc

sel all

unsplit

quit

y

y

/* build relations between section attribute table, route attribute table, and point pat

relate drop
$all

relate add
route
%arc_cover% ratpaths
info
routelink#
paths#
linear

w

path

118

%point_cover% pat
info

paths-1d

trip_1d

linear

™w

/* add begining time and ending time fields into the section attribute table

ae

ec %arc_cover%

ef route paths

&s tot [show number total]
ef section paths

additem begint 4 10 b
additem endingt 4 10 b
save

/* calculate begining time and ending time for the section attribute table
/* based on interpolation

&s count 1

&do count =1 &to %tot%

sel routelink# = %count%

&s f [show section paths [show select 1] 1tem f-meas]

&s t [show section paths [show select [show number selected]] 1tem t-meas]

&s t %t% - Yof%

calc begint = route//path/startt + (route//path//endt - route//path/startt) * (f-meas - %f%) * 1000 0/ (
1000 0 * %t%)

calc endingt = route//path//startt + (route//path//endt - route//path//startt) * (t-meas - %f%) * 1000 0 / (
1000 0 * %t%)

save

&s count = %count% + 1

&end

quit

y

y

/* output some selected fields from section attribute table to a ascu file

tables
select %arc_cover% secpaths
unload secpaths txt route//paths-1d arclink# begint endingt

q
&return

119

? geskeskskeokskokokskok skeskeseskkok sokoskesk sk skkok seokoksk

>File Name trip geocode

’

"Description geocode addresses for an event table based on a matchable
’ theme
"Input a matchable theme (street network), an event table

’Output a geocoding point shape file
9 seskeskeoskeoskeskeok sk ok ko sk ok skeokesk sk skeoke sk sk ok ok sk ¥ sokRgkekk skkok

’The matchable theme 1s active, and the event table 1s a dbase file
’called tripdata dbf

theView = av GetActiveDoc
theThemes = theView GetAcTiveThemes
1f (theThemes = nil) then
exit
end
theTheme = theView GetActiveThemes Get(0)

’load an event table, and make a copy of this table
" All editing will be conducted on this copy

workDir = av getproject getworkdir asstring
theFname = filedialog show("* dbf", "Table(* dbf)", "Load the tripdata table")
1f (n1l <> thefname) then
thefile = (workDir + "\tripcopy dbf") asfilename
file copy(thefname, thefile)
else
exit
end
1sOK = vtab canmake(thefile)
if (1sOK not) then
msgbox error("Invalid file", "")
exit
end
addressVtab = vtab make(thefile, false, false)
attributestable = table make(addressVtab)
attributestable setname("Trip-Log table™)

*Edit addressVtab create two fields trip_1d and nonunnd

"trip_1d 1s the concatenation of Date, Hh, Indv, and Trip_no, trip_id can
’umquely 1dentify each trip

"nonuniid 1s the concatenation of Date, Hh, and Indv, 1t’s used to uniquely 1dentify
>each indivicual on each day

if (addressVtab CanEdit) then

addressVtab SetEditable(true)
end
startField = addressVTab FindField("Started_fr")
endField = addressVTab Findfield("traveled_t")
nonfield = addressvtab findfield("nonunild")

120

tripfield = addressvtab findfield("trip_id")
if (nonfield <> nil) then
addressvtab removefields({ nonfield})
end
if (tripfield <> nil) then
addressvtab removefields({tripfield })
end
nonunild = Field Make("nonunild", #FIELD_CHAR, 10, 0)
tripid = Field Make("trip_1d", #FIELD_LONG, 12, 0)
addressVTab AddFields({tripid, nonunild})
addressvtab Calculate("([Date] AsString Trim+[Hh] AsString Trim+[Indv] AsString Trim+[Trip_no] AsStr
ing Trim) asnumber”, tripid)
addressvtab Calculate("[Date] AsString Trim+[Hh] AsString Trim+[Indv] AsString Trim", nonunild)

"To geocode all starting addresses and some ending addresses for creating trip paths,
’ for each individual on each day, appending one record on the bottom of the table, replacing
> value of Start_fr on this record with the value of Traveled_t from the last trip on each day

num = addressVTab getnumrecords
foreachtmn 0 (num - 1)
if (addressvtab ReturnValueString(nonunild, 1) trim <> addressvtab ReturnValueString(nonumild,
1+1) trim) then
a = addressVTab ReturnValueString(endField, 1)
b = addressvtab returnvaluestring(nonunild, 1)
newRec = addressVTab AddRecord
addressVTab SetValueString(startField, newRec, a)
addressVTab SetValueString(nonunild, newRec, b)
end
end

addressField = addressVTab FindField("Started_fr")
zipField = addressVTab FindField("Zip")

if ((theTheme IsMatchable) Not) then
av Run("trip match", nil)
end

> Get the matchable feature source and double check that 1t 1s valid

aMatchSource = theTheme GetMatchSource

if (aMatchSource = Nil) then
MsgBox Error("Theme"++theTheme GetName++"is not matchable ","")
exit

end

"Specify the output point shapefile that will be created from the

* matched addresses

" Specify the output point shapefile for the geocoding result

aGeoName = GeoName Make(aMatchSource, addressVTab, addressField, zipField)

fnOutFile = FileDialog Put(av GetProject MakeFileName("theme”, "shp”),
"* shp","Output GeoCoding Shapefile")

121

if (fnOutFile = ml) then

exat
else

aGeoName SetFileName(fnOutFile)
end

’Create a match key based on the standardization rules for the
’MatchSource Use the aMatchKey Allowlntersections request to
’ supporting street intersection standardization

aMatchKey = MatchKey Make(aMatchSource GetStanRules)
aMatchKey Allowlntersections(aMatchSource GetXStanRules, aMatchSource GetXDehmuter)

’Create a new match case A match case 1s comprised of a list of

>candidate records and information describing how well the candidates
"match the key The MatchCase will be populated with candidates later

aMatchCase = MatchCase Make(aMatchSource, aMatchKey)
aMatchCase AllowIntersections(aMatchSource, aMatchKey)

’Create a new match preference which will be used to access various
’ geocoding preferences, such as spelling weight, minimum acceptable
’ score, etc

aMatchPref = MatchPref Make

’Create a new theme feature table For every address record there
"will be arecord in the FTab These are currently unmatched, 1€

" the shape field 1s empty and the status 1s ‘U’ for unmatched We
"must match an address to populate the shape field and toggle the status
“to ‘M’ for matched, something we do 1n the next step

*aMatchSource ImtGeoTheme request will open the geocoding index
aGeoTheme = aMatchSource InitGeoTheme(aGeoName)
geoThemeVTab = aGeoTheme

addrGeoThemeField = geoThemeVTab FindField(" Started_fr")
z1pGeoThemeField = geoThemeVTab FindField("Zip")

" Populate the feature table by matching addresses to the matchable
"Theme This places a point 1n the FTab’s shape field for and sets

’the status to M (matched) for each match

numrecs = geoThemeVTab GetNumRecords
numMatched = 0

av ShowMsg("Matching Addresses ")

for each 1 1n geoThemeVTab GetDefBitMap
av SetStatus((1 / numrecs) * 100)

’Get an address
122

o

aMatchKey SetKey(geoThemeVTab ReturnValueString(addrGeoThemeField, 1))
if (zipGeoThemeField <> Nil) then

aMatchKey SetZoneKey(geoThemeVTab ReturnValueString(zipGeoThemeField, 1))
end

’ Find candidates for the address
numCand = aMatchSource Search(aMatchKey, 70, aMatchCase)

*If theie are no candidates, continue on to the next addresss This
’will be an unmatched record If candidates are found, take the best
’candidate and see 1f 1t exceeds the mimimum spectfied match score
*If 1t does write 1t, otherwise write unmatch

' If there are no candidates, WriteUnMatch and continue to the next addresss

if (numCand = 0) then ’No candidates
aMatchSource WriteUnMatch(1, aMatchKey)
else ’We have at least one candidate

aMatchCase ScoreCandidates

cand = aMatchCase GetBestCand

candScore = cand GetScore

minScore = aMatchPref GetPrefVal(#MATCHPREF_MINMATCHSCORE)

* If the min required match score 1s exceeded - write 1t!
* If the mun 1s not met then the cand 1s not written and the record
’will remain unmatched

1f (candScore >= minScore) then
aMatchSource WriteMatch(1, aMatchKey, cand)
numMatched = numMatched + 1

end

end
end

av ClearMsg
av ClearStatus
aMatchSource EndMatch

’Report the results of the geocoding

MsgBox Info("Total records processed "++numrecs AsString+NL+
"Total addresses matched "++numMatched AsString, "Geocoding Results")

> Add the new theme to the view and draw 1t

newTheme = Theme Make(aGeoName)
theFTab = newTheme GetFTab
tripIdField = theFTab findField("trip_1d")
newTheme SetLabelField(tripldField)
theView AddTheme(newTheme)
newTheme SetVisible(true)

123

addressVTab RemoveFields({ nonunild})

obitmap = addressvtab getselection

addressvtab query("[trip_1d] IsNull", obitmap, #VTAB_SELTYPE_NEW)
addressvtab removerecords(obitmap)

obitmap clearall

addressVTADb SetEditable(false)

>Create Startt and Endt fields 1n the geocoding attribute table,
’and store starting time and ending time 1n seconds

theftab seteditable(true)

starttfld = theftab findfield("Startt")
endtfld = theftab findfield("Endt")
if (starttfld <> nil) then
theftab removefields({starttfld })
end
if (endtfld <> nil) then
theftab removefields({endtfld})
end
startt = field make("Startt", #FIELD_LONG, 10, 0)
endt = field make("Endt", #FIELD_LONG, 10, 0)
theftab addfields({startt, endt})
stimefield = theftab findfield("S_time")
etimefield = theftab findfield("E_time")
if ((stimefield = nil) or (etimefield = nil)) then
exit
end
theftab Calculate("[S_time] Trim left(2) Asnumber * 3600 + [S_time] Trim right(2) Asnumber * 60",
startt)
theftab Calculate("[E_time] Trim left(2) asnumber * 3600 + [E_time] Trim right(2) asnumber * 60", endt)

’update geocoding shape file’s trip_id field If not matched,
*trip_1d 1s set to 99999999, and 1t’s previous record’s trip_id 1s set by 99999999
"1t’s convenient for shortest path creation
valuelist = list make
nonunud = theftab findfield("nonunild")
tripid = theftab findfield("trip_1d")
avfld = theftab findfield("Av_status")
for each 11n theftab

tmpStr = theftab ReturnValueString(nonunild, 1)

if (tmpStr <> nil) then

valuelist Add(tmpStr)

end
end
valuelist removeduplicates
theftab seteditable(true)
thebitmap = theftab getselection
thebitmap clearall

for each j 1n 0 (valuelist count - 1)
expr = "([" + nonunnd getname + "}= " + valuelist get(j) quote + ")"
theftab query(expr, thebitmap, #VTAB_SELTYPE_NEW)

124

theftab updateselection

for each rec 1n thebitmap
if (theftab returnvalue(avfld, rec) = "U") then
theftab setvaluestring(tripid, rec, "99999999")
if (thebitmap GetPrevSet(rec) <> -1) then
theftab setvaluestring(tripid, thebitmap getprevset(rec), "99999999")
end
end
end
end
thebitmap clearall
theftab updateselection
theftab seteditable(false)

125

? %k skkok %ok seokokskokok

’File Name trip.match

’

"Description make one street network matchable

2 seskok sk skok skokosk ok osk ook Heskokokok * ks skekokoiok kR eokok ok ok

’ Prepare for address matching by making a theme matchable

theProject = av.GetProject
theTheme = theProject FindDoc("View1") FindTheme("Tgr470931ka shp")
if (n1l = theTheme) then
MsgBox Error ("Unable to access Street theme 1n view1", ")
exit
end

> Verify whether the theme 1s already matchable

if (theTheme 1sMatchable) then
MsgBox Warning ("Street 1s already matchable", "")
exit

end

> The GetDefStylesODB request to the AddressStyle class returns
’a file name object corresponding to the style object database
*supplied with ArcView

addrStyleFilename = AddressStyle GetDefStylesODB

if (n1l = addrStyleFilename) then

MsgBox Error ("Unable to find the default address style ODB", "")
exit

end

’The hist of styles can be extracted from the address style
’file name, and the desired style can be found within that list

addrStyleList = AddressStyle GetStyles
(addrStyleFilename)

addrStyle = AddressStyle FindStyle

("US Streets with Zone")

* Associate the known fields to the address components
theVTab = theTheme GetFTab

attlast = {}

>Setup for the US Streets with Zone style

nameList = {"Fraddl", "Toaddl",
"Fraddr", "Toaddr", "NONE", "NONE",
"Fename", "Fetype", "NONE", "Zipl", "Zipr"}
for each fldName 1n nameList

if (fldName = "NONE") then

126

’ NONE 1nd1cates that there 1s no field to match

attList Add ("") 'Add a null value
conttnue
end

> Get the field object

aField = theVTab FindField (fldName)
if (n1l = aField) then
MsgBox Error ("Unable to access required field"++ fldName,"")
exit
end
attList Add (aField)
end

*Create a MatchSource object

aMatchSource = MatchSource Make (addrStyle, theTheme, attList)
’Now assign the MatchSource object to the theme

theTheme SetMatchSource (aMatchSource)

" Verify whether the theme 1s matchable

if (theTheme IsMatchable) then

eli\;[sgBox Info (theTheme GetName++"1s matchable”, "")

MsgBox Warning (theTheme GetName++"Is not matchable", "")
end

127

2 sk skske ok sk ok sk ok ok ok s sk ok sk sk skesk ok ok sk ok sk ok sk sk e skesk sk sk okeok steskok sk sok¥k %
File Name buildtrees

’

’Descrlptlon Thus program builds array of two-d trees After building, the array of two-d trees
will be stored 1n memory When users make a query, 1t will go to query this array

3 ek ks skskok s sk seskeske skl st s shesheseske sk sk stesheshesheske ke she ke sk sfe e sesfe sk e ok

av clearglobals
theFname = filedialog show("* dll", "DLL(* dll)", "Get BuildIndexDLL file")
if (n1l = theFname) then
msgbox info("Please select DLL file”, "ERROR")
exit
end
myDLL = DLL Make(theFname)
twoD = DLLProc Make(myDLL, "BuildIndex",
#DLLPROC_TYPE_POINTER,{#DLLPROC_TYPE_STR})
if (twoD = nil) then
msgbox error("Error”, "")
exit
end
infile = "secpaths txt"
_mytwod = twoD Call({1nfile})
_querytimel = DLLProc Make(myDLL, "QueryTimel”, #DLLPROC_TYPE_INT32,
{#DLLPROC_TYPE_POINTER, #DLLPROC_TYPE_INT32, #DLLPROC_TYPE_INT32,
#DLLPROC_TYPE_INT32,
#DLLPROC_TYPE_STR})
_querytime2 = DLLProc Make(myDLL, "QueryTime2", #DLLPROC_TYPE_INT32,
{#DLLPROC_TYPE_POINTER, #DLLPROC_TYPE_STR, #DLLPROC_TYPE_STR,
#DLLPROC_TYPE_INT32,
#DLLPROC_TYPE_INT32})

128

sk kst s o ot sk kol sk ke e ke ke kst skook s sk ke ek sk sk sk e sk ok sk sk ek skl sk sk sk e itk sksk sk s ke ek skok sk ok ok ok

*File Name stquery tool

*Description perform a spatiotemporal query (1 € which trips pass through one
’ or more specific streets within one time window

’

*Input Users selecting streets, and a time window

Output a report box contianing query results, the query result 1s also
’ shown on the map

ok sk oK SR sk e ok ok o sk sfe sk ok ok ok *¥ skok *okok

’create an arclist list, get network (Tgr470931ka)’s ftab and trip path (Paths)’s ftab

arclist = li1st make

theView = av GetActiveDoc

r = theView ReturnUserRect

theTheme = theView GetActiveThemes get(0)
pathftab = theView findtheme("Paths") getftab
pathfld = pathftab findfield("Paths-1d")
theftab = theTheme getftab

arcfld = theftab findfield("Tgr470931ka#")

*the user can either draw a box or a point to query features

thebitmap = theftab getselection
thebitmap clearall
if (r IsNull) then
p = theView GetDisplay ReturnUserPoint
if (System IsShiftKeyDown) then
op =#VTAB_SELTYPE_XOR
else
op =#VTAB_SELTYPE_NEW
end
if (theTheme CanSelect) then
theTheme SelectByPoint(p, op)
thebitmap = theftab getselection
theftab updateselection
pathftab getselection clearall
end
else
if (System IsShiftKeyDown) then
op =#VTAB_SELTYPE_OR
else
op =#VTAB_SELTYPE_NEW
end
if (theTheme CanSelect) then
theTheme SelectByRect(r, op)
thebitmap = theftab getselection
theftab updateselection
pathftab getselection clearall
end
end

129

’Given a time window

if (thebitmap count > 0) then
labels = {"Lower end of the time window", "higher end of the time window"}
defaults = {"0800", "1000"}
timewindow = msgbox multunput("Enter a time period”, "Time Window", labels, defaults)
if ((tmewindow = nil) or (tmewindow 1sempty)) then
msgbox error("You need to input a time window", "ERROR")
return nil
end

‘convert time range 1nto seconds .
bt = (imewindow get(0) trim left(2) asnumber * 3600) + (imewindow get(0) trim right(2) asnumber * 60)
et = (tmewindow get(1) trim left(2) asnumber * 3600) + (titmewindow get(1) trim right(2) asnumber * 60)
end

"1f selecting an arc, then use querytimel function

if (thebitmap count = 1) then
for each 1 1n thebitmap
arcid = theftab returnvalue(arcfld, 1)
end
queryl = _querytumel call({_mytwod, arcid, bt, et, "r txt"})

’

get the query result from r txt and query route feature table

f = linefile make("r txt" Asfilename, #FILE_PERM_READ)
tf = textfile make("r txt" asfilename, #FILE_PERM_READ)
if (tf getsize = Q) then
msgbox info("no trips found", "")
thebitmap clearall
return nil
end
resultlist = tf read(tf getsize)
tf close
ok = true
thebitmap clearall
pathftab getselection clearall
pathbitmap = pathftab getselection

"repeatedly query pathftab

while (ok)
s = f readelt
if (n1l = s) then
ok = false
else
expr = "([Paths-1d] =" + s aslist get(0) + ")"
pathftab Query(expr, pathbitmap, #VTAB_SELTYPE OR)
end
end

’display query result in a message box
130

msgbox report(resulthist asstring, "Trip_Id, Begining Time (seconds), Ending Time (seconds)")
f close

*1if selecting more than one arc, then use querytime2 function
elseif (thebitmap count > 1) then
’ get the selected arcs, put into arclist, then output to infile txt

arclist empty
for each 11n thebitmap
arclist add(theftab returnvalue(arcfld, 1))
end
infile = hinefile make("infile txt" asfilename, #FILE_PERM_WRITE)
foreach11n 0 (arclist count - 1)
infile writeelt(arclist get(1) asstring)
end
nfile close

’use querytime2 function to get query result

query2 = _querytime?2 call({_mytwod, "infile txt", "r txt", bt, et})
f = Iinefile make("r txt" Asfilename, #FILE_PERM_READ)
tf = textfile make("r txt" asfilename, #FILE_PERM_READ)
if (tf getsize = 0) then
Msgbox info("no trips found", "")
thebitmap clearall
return nil
end
resultlist = tf read(tf getsize)
tf close
ok = true
thebitmap clearall
pathftab getselection clearall
pathbitmap = pathftab getselection

*repeatedly query path ftab

while (ok)
s = freadelt
1if (nil = s) then
ok = false
else
expr = "([Paths-1d] = " + s aslist get(0) +)"
pathftab Query(expr, pathbitmap, #VTAB_SELTYPE_OR)
end
end

*display query result 1nto a message box

msgbox report(resultlist asstring, "Trip_Id, Begining Time (seconds), Ending Time (seconds)")
f close

end

av GetProject SetModified(true)

131

Vita

Feng Lu was born 1n Hunchun, Jilin Province, P.R.China, on August 26, 1967 He
attended No. 2 Yanbian High School m Yanyi, where he graduated 1n July 1986 He
entered Peking Untversity in September 1986, and graduated in July 1990 with a
Bachelor of Science degree majoring 1n Economic Geography. From July 1990 until
August 1994, he worked as a research assistant 1n Changchun Institute of Geography,
Academua Sinica, and got a Master’s degree 1n Cartography and Remote Sensing in July
1994. From September 1994 to July 1997, he worked as a research assistant 1n the
Department of Urban and Environmental Sciences at Peking Untversity. He entered

Ph D. program 1n urban studies at the Untversity of New Orleans in August 1997, then
transferred to the Department of Geography at the University of Tennessee in August
1998 Upon successful defense of this thesis, Feng Lu will recerve his M.S. in Geography

with an emphasis 1n GIS and Transportation.

132

	A spatiotemporal indexing method for disaggregate transportation data
	Recommended Citation

	A spatiotemporal indexing method for disaggregate transportation data

