
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

8-2000

A spatiotemporal indexing method for disaggregate A spatiotemporal indexing method for disaggregate

transportation data transportation data

Feng Lü

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation Recommended Citation
Lü, Feng, "A spatiotemporal indexing method for disaggregate transportation data. " Master's Thesis,
University of Tennessee, 2000.
https://trace.tennessee.edu/utk_gradthes/9418

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F9418&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Feng Lü entitled "A spatiotemporal indexing method

for disaggregate transportation data." I have examined the final electronic copy of this thesis for

form and content and recommend that it be accepted in partial fulfillment of the requirements

for the degree of Master of Science, with a major in Geography.

Bruce Ralston, Major Professor

We have read this thesis and recommend its acceptance:

Cheng Liu, Shih-Lung Shaw

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council;

I am submitting herewith a thesis written by Feng Lu entitled "A Spatiotemporal
Indexing Method for Disaggregate Transportation Data." I have examined the final copy
of this thesis for form and content and recommend that it be accepted m partial
fulfillment of the requirements for the degree of Master of Science, with a major in
Geography

/Bruce Ralston, Major Professor

We have read this thesis

and recommend its acceptance-

Cheng Liu

Shih-Lung Shaw

Accepted for the Council

Intern Vice Provost and

Dean of the Graduate School

A SPATIOTEMPORAL INDEXING METHOD FOR

DISAGGREGATE TRANSPORTATION DATA

A Thesis

Presented for the

Master of Science

Degree
The University of Tennessee, Knoxville

Feng Lu
August 2000

Acknowledgments

There are several people to whom I am grateful for helps during the nearly two

years I have spent at the University of Tennessee. I would like to express my deepest

gratitude to Dr. Bruce Ralston for being my great advisor. Dr. Ralston spent much more

time to help me m my thesis-from topic selection, programming, to outline and writing.

In addition, he was helpful to my family. I am also grateful to Drs. Cheng Liu and Shih-

Lung Shaw. Dr. Liu originated the spatiotemporal indexing method in this thesis and

helped me learn data stmctures and code writing. Without his help, it would have been

impossible for me to finish my thesis so soon I leamed basic GIS and transportation

knowledge including the spatiotemporal data models and their applications in

transportation from Dr Shaw. In fact, the spatiotemporal query problem for trip data was

first identified by him Dr. Shaw and Dr. Liu also helped me personally.

There are a number of other people whose assistance should be recognized. I

would like to thank Mike Schultze and Amy Rose for their generous help m using

Arclnfo package to run my AML code. Amy also helped me debug the errors in the code.

Perhaps the greatest debt I owe is to my family. During the last three years I have

been studying m the US, my family gave me support. I feel great to have my wife Cuiling

and our daughter Rongrong's love.

Abstract

Time, location, and attributes are three elements of a GIS, but all commercial GIS

packages can only handle location and attributes; they are m fact a static GIS.

Spatiotemporal GIS has been a hot research topic recently. Spatiotemporal GIS and its

application m transportation research are still premature. This thesis focuses on

spatiotemporal query problems on travel data Specifically, It attempts to answer this

question- during a time period, which trips pass through one or more specific streets? To

speed up this spatiotemporal query for large data sets, a spatiotemporal index on the trip

data IS built by combining Avenue, AML, and C++. All the trip origin ends and those last

destination ends for each individual on each day are geocoded using Avenue scripts The

trip shortest path route system is created based on Arclnfo dynamic segmentation and

network analysis functions. An array of 2-D tree structures based on each tnp's beginning

time and ending time and each street traversed are then created m C++ and Avenue. This

array of 2-D tree structures is stored m memory. Finally, the spatiotemporal query

function IS performed by examining the array of 2-D tree structures for a given time

window using Avenue and C++. A sample trip log data file m the Knoxville Metropolitan

Area and Knox county street shape file are used to implement the spatiotemporal query.

This thesis is concluded that efficient indexing methods must be developed to handle

complicated spatiotemporal queries for large travel data sets

111

Table of Contents

Chapter Page

1. Introduction and Problem Descriptions 1

2. Literature Review 7

Temporal Non-spatial Databases and Temporal Queries 9
Spatial-temporal Data Models and Queries 12
Activity-based Transportation Research and Temporal GIS-T 28

3. Data Description and Methodology 33
Sample Data Description 33
Trip Data Model (Representation of Trip Log Data Set) 36
Comparison of Common GIS Approaches and the 2-D Trees
Approach 41

Methodology and Flowchart 45

4. Creating the Trip Route System in Dynamic Segmentation 49
Linear Referencing Systems and Dynanuc Segmentation 49
Geocode Trip Ends 53
Create a Trip Route System 60

5 Temporal Indexing 70
Generic Description of 2-D Tree Structure 70
Create an Array of 2-D Trees 74

6 Spatiotemporal Query and Its Implementation 83
Spatiotemporal Query Code Description 83
Implementation and Examples 85

7. Conclusions and Future Research 96

References 99

Appendix 105

Vita 132

IV

List of Tables

Table Page

2 1. Temporal Indexes 11

3.1. Name and description of main fields m the trip log file 35

3 2. Trip path feature table description after using
WritePathLong command 40

List of Figures

Figure Page

1.1. An example network on which tripl and tnp2 both pass
through link AB 6

2.1. Schematic representation of the space-time path 8

2.2 Schematic representation of the space-time pnsm 8

2.3. The snapshot approach for representing spatiotemporal data 13

2.4. A space-time composite of urban encroachment 15

2 5. The ESTDM data structure 19

2 6 Spatial changes at time h displayed as a simplified map (a)
and the corresponding event components (b) m the ESTDM model.... 19

2.7. Framework of the TRIAD model 21

2.8. The structure of the feature-based view 22

2.9. The structure of the time-based view 23

2.10. The structure of the location-based view 24

2.11. The search spaces of four primitive geographic queries 26

2.12 A conceptual framework of the relationships between
entities m a disaggregate travel data set 32

3.1. Tnp sample database of Knoxville 34

3.2. Knox county network shape file 37

3 3. A route system named BUS on a ROADS coverage 42

3.4. Flowchart of building spatiotemporal index for disaggregate
transportation data 46

4.1. A route defined on a set of four arcs 50

VI

Figure Page

4.2. An event database of traffic accidents on a route 51

4.3. Pavement data contained in an event database 51

4 4. Address geocodmg object model m ArcView 54

4.5. Trip chain characteristics of the sample data set 56

4.6 Geocodmg result for the sample trip data set m Knoxville
Metropolitan Area 61

4.7. A shortest path trip route system named pathl based on
STREETS netAvork coverage and STREETS.STP stops
info file m Arclnfo network analysis 62

4.8. A sample trip shortest path route system on Knox network 68

4.9. A sample text file exported from the section table of the
trip route system 69

5.1. A generic 2-D tree structure 71

5.2. A sample trip 2-D tree based on starting time and ending time 73

5.3. The structure of an array of 2-D trees 74

6.1. The user interface of a spatiotemporal query function
on a trip route system 87

6 2. Create an array of 2-D tree stmctures by loading a DLL file 88

6 3. The time window (8 00 am - 9*00 am) of the spatiotemporal
query on one street (example one) 89

6 4. The message box report showing the spatiotemporal query
result on one street (example one) 90

6.5. The selected paths showing the spatiotemporal query
result on one street (example one) 91

6.6. The time window (5:00 pm - 7:00 pm) of the spatiotemporal
query on a set of streets (example two) 92

Vll

Figure Page

6.7. The message box report showing the spatiotemporal query
result on a set of streets (example two) 93

6.8. The selected paths showing the spatiotemporal query
result on a set of streets (example two) 94

Vlll

Chapter 1

Introduction and Problem Descriptions

The study of travel demand analysis has evolved through several stages since 1950s.

It evolved from analyzing aggregate data (based on traffic analysis zones) to analyzing

disaggregate data (based on individuals or households). Pas (1990) classifies the

development of travel demand analysis and modeling into five eras. The social physics

era began in mid-1950s with the transportation studies in the major metropolitan areas of

North America. Travel demand models (e.g. the four step transportation demand

modeling) were formulated and calibrated at the level of the traffic analysis zone based

on physics models such as the gravity model These models were also called 'aggregate

models'. The econometric era started in 1960s with the development of the econometrics

of discrete choice models which describe disaggregate behavior. In the 1970s, the

psychological scaling techniques to measure consumer's perceptions, attitudes, and

beliefs were used in disaggregate behavior models. This era was called the psychological

era. The human activity andysis era started m mid-1970s. In the human activity analysis

framework, travel is treated as a derived demand based on individuals' needs and desires

to participate in activities at spatially separated locations. Human activities and travel

patterns within spatio-temporal constraints became the focus of this era. The fifth era

called the dynamic analysis era began m mid-1980s with focus on the longitudinal data

analysis This era can be seen as the extension of the human activity analysis era (Shaw,

1999). Thus the activity-based approach has been a focus in travel demand analysis since

mid-1970s.

The activity-based approach emphasizes travel and activity patterns, and the

dynamics of travel behavior. How to handle dynamic travel behavior is a major challenge

to the GIS-transportation community. Goodchild (2000) argues that there are three views

of GIS-T: the map view, the navigation view, and the behavior view The map view is

concerned about how to describe and represent a static transportation phenomenon.

DIME and TIGER data models created by the Bureau of the Census are examples The

link-node data model is a basic structure for representing static transportation networks.

The navigation view is concerned about connectivity and planarity, and the storage of

time dependent attributes. Routing problems are the main perspectives of the navigation

view. The behavior view deals with the behavior of discrete objects - vehicles, people,

trains, or boats - on and off the network. The behavior view of GIS-T is important

because the traditional aggregate models cannot satisfy the needs of transportation

analysis. For example, when dealing with travel demand modeling, we should be

concerned about the characteristics of households and individual travelers. In the

meantime, the short-term activity patterns of travelers also should be analyzed. Time

therefore becomes an important element in GIS-T.

In fact, dynamic travel behavior and activity patterns are also important in Intelligent

Transportation Systems (ITS). According to Japan's ITS system architecture, human,

vehicle, roadside, and center are the four important subsystems of ITS. ITS is concerned

with real time data. Human and vehicles are moving objects along networks. How to

capture the characteristics of moving objects (attributes, locations) and find their activity

patterns are important aspects of ITS. In order to capture these characteristics, continuous

data on moving objects is a concern. How to create data models for the continuous

moving objects is a challenge to GIS-T researchers due to the complexity of djmaimc

traveler behavior and the large amount of data (Shaw, 1999).

Dangermond (1984) suggests that time, location, and attributes are three elements of a

GIS A major research question concems the handling of large amounts of historical

spatial data. Many researchers have studied this problem. Hagerstrand's time geography

provides the theoretical direction (Hagerstrand, 1970). He introduced time as the third

dimension of the trajectory of objects. Thus, location, attribute, and time become basic

elements of describing geographic features. Handling time component in GIS is a major

challenge. How should we store the large sets of data? How can such data be retrieved

efficiently"^ How can we perform spatial and temporal analysis?

There are several research topics for spatiotemporal GIS such as spatiotemporal data

models, temporal overlay, and spatiotemporal query This thesis focuses on how to build

a spatial temporal index function for trip log data.

Up to now, all commercial GIS packages only can handle one state of geographical

phenomenon. For example, ArcView's shape file and Arclnfo's coverage are both basic

organization units of spatial data, but they can only store static geographic features.

When dealing with multiple states or dynamic geographic features, all these dynamic

features have to be stored m different shape files or coverages. This approach for

handling dynamic geographic features is called the snapshot approach. With this

approach, there is data redundancy, because all geographic features at different states

have to be stored, even though some features do not change. Other shortcomings of this

approach are that there is no temporal overlay function, and it is difficult to trace

changing patterns of geographic features.

GIS includes functions for spatial data input, manipulation, retrieval, analysis,

display, and output. Users use GIS' query functions to retrieve geographic information.

Spatiotemporal query is an important component in spatiotemporal GIS. Current

commercial GIS have data models and algorithms for efficiently handling spatial query.

However, temporal query is treated as a kind of attribute query. That is, all temporal

information is treated as attributes for spatial features. For example, when feature class A

exists during time bt and et, then bt and et can be attributes of A. When querying whether

A exists between time period bt and et, we can query based on attribute fields related to

time.

What is a spatiotemporal query? According to Langran (1992), a spatiotemporal

query defines a search space within the data space composed of location, attributes, and

times by constraining location, attributes, and times to points or segments along each

axis

Spatiotemporal query is complicated and difficult to handle There is no generic

spatiotemporal data model available, because time is more complex than the spatial

domain, as time dimensions are non-homogeneous (Snodgrass, 1992). Without a

spatiotemporal data model, querying features based on space and time is inefficient.

Because all the current commercial GIS software can only use the snapshot approach to

handle spatiotemporal data, it is difficult to conduct spatiotemporal queries efficiently.

Querying trip log data based on a space-time window is a spatiotemporal query. Trip

log data analysis is useful for urban transportation planning and transportation behavioral

analysis. It comprises the basic data for disaggregate transportation and activity-based

modeling approaches.

Trip log data contains trip information for each household or each person on each

day, and each trip has its own path. In order to study traffic flow and traffic congestion on

a particular street, we might want to ask questions such as: during a time window, how

many trips pass through this street*^ What are those trips'? That is, we want to create

spatiotemporal query windows.

There are different kinds of spatiotemporal queries for trip data. In this research, I

attempt to solve the problem of querying what trips pass through a set of streets during a

time window. For example (see Fig. 1.1), there are two trips (tripl, trip2) They both use

link AB. We might ask how to search trips passing through AB during the time period

9.30 - 10:30 am*? If the data set is small, there will be no need to build a spatiotemporal

index. However, if the data set is quite large, it will be necessary to build a

spatiotemporal index.

Trips can be regarded as moving objects (points) along a network, and each trip has a

path (polyline). There is no generic data model to handle moving objects. Here, the trip

data model is assumed to be a spatial data model plus an attribute table to handle time

elements. A trip path is considered to be a basic spatial feature, and time elements

(begmmng time, and ending time) are considered to be two fields m a path attribute table.

I use the Knoxville area in Tennessee as a test area for building a spatiotemporal

index for trips The purpose is to speed spatiotemporal query. There are two input data

files: one is Knox County street network (Arcview shape file), and another is a trip log

file (a text file). Based on these two files, a trip path system can be created using

Arclnfo's dynamic segmentation functions and network analyst. Then a spatiotemporal

index can be built for each street (arc) based on the starting and ending times trips pass

5

"si

VI

Figure 1.1. An example network on which tripl and trip 2 both pass through linkAB.

through this street using a two-dimensional tree. Combining ArcView spatial search

function and two-dimensional tree structures, spatiotemporal query can be performed

efficiently. The construction of a spatiotemporal index and the development of

spatiotemporal query functions constitute the main contribution of this thesis.

Chapter 2

Literature Review

While spatiotemporal GIS is a new research area, its theoretical foundation can be

traced to time geography initiated by Hagerstrand (1970). The time geographic

framework focuses on the behavior possibilities of individuals within spatial and

temporal constraints. In this framework, an individual can only participate in events or

activities at a single location m space at a given time. Thus, the space-time path of an

individual can be drawn using a three-dimensional coordinate system (Figure 2 1). X-Y

coordinates stand for a planar space, while z stands for a time dimension A vertical line

represents stationary activities (an individual stays at a location for some time); while a

sloped line represents movements among different locations within a time period. The

higher the slope degree, the slower the movements will be. The broken lines describe the

spatial movements of the individual over a time frame. The space-time path can be

rotated to form the space-time prism, which determines the feasible set of locations for an

individual to participate m activities within space and time budgets (Figure 2.2). The

space-time prism does not trace the observed movements of an individual, instead, it

shows the feasible space for an individual to travel within a period of time.

Even though the time geographic framework was originally designed for describing

behavior patterns of individuals, it can be applied to all kinds of spatial temporal

phenomena. Geographic features might be points, lines, or polygons, and their

movements (or transformation or modification) can be continuous or discontinuous.

The time geographic (or space-time) framework provides theoretical foundation for these

7

\

Figure 2.1. Schematic representation of the space-time path.
(Source: Miller, H. J., 1991.)

- - - 22. 1/V

T +112

zi

C

Figure 2.2. Schematic representation of the space-time prism.
(Source: Miller, H. J., 1991.)

phenomena

Current research on time and data models for GIS has focused mainly on the

representation of temporal geographical entities and implementation of temporal

databases

Temporal Non-spatial Databases and Temporal Queries

Some researchers in computer science began to study temporal database m 1980s.

They mainly focused on expanding the relational data model to incorporate some aspects

of temporality. There are three mam approaches, relation-level versionmg, tuple-level

versioning, and attribute-level versioning

Relation-level versionmg creates a new snapshot of a table whenever any of its

attribute change. This approach is conceptually simple; however, it is highly redundant.

Ben-Zvi (1982) 's time relational model and Clifford and Warren (1983)'s historical data

model are two representatives of this approach.

Tuple-level versioning is an approach where attribute changes cause new records

(tuples) to be created or old records to be updated or deleted. Snodgrass and Ahn

(1985)'s method is a representative. They introduce two important aspects of time: world

time (or valid time) and system time (or transaction time). The world time traces the

changes that occur in the real world, while the system time traces the changes recorded in

the database. They use four time stamps to bracket intervals of system time (from system

time to system time) and world time (from world time to world time). New tuples are

added to the bottom of a relation (table). Tuples are deleted by changing their time field

values. Tuples are altered by deleting the current version and adding the new version.

9

The tuple-level versioning approach is better than the relation-level versionmg in that it

reduces storage cost a lot, and relational theones and algebra can apply.

Attribute-level versionmg requires vanable-length fields of complex domain to hold

lists of time-stamped attribute versions (Langran, 1992). This approach is compact but

requires alternative relational algebra to handle Gadia (1986), and Clifford and Tansel

(1985)'s methods are the representatives of this approach.

In addition to these temporal data models, many temporal query languages have been

proposed Each temporal query language is related to one temporal data model.

Snodgrass (1992) lists twenty-one kinds of temporal query languages such as TQuel,

TSQL, Postquel, HQuel, and HSQL, which are based on conventional query languages -

SQL (Structured Query Language, a tuple calculus-based language), Quel (the tuple

calculus based query language), QBE (Query-by-Example, a domain calculus based

query language), relational algebra (a procedural language with relations as objects), and

DEAL (an extension of the relational algebra incorporating functions, recursion, and

deduction). Snodgrass argues that the implementations of these temporal query

languages are limited m scope and are unsystematic in their design Now an effort is

underway within the research community to create a common genenc Temporal

Structured Query Language based on SQL (Snodgrass, 1992).

At the system level, many temporal index data structures have been proposed to speed

up temporal queries. Snodgrass (1992) summarized these temporal index structures

according to their foundation tree structure, temporal dimensions, temporal keys etc (see

table 2.1). All these temporal index structures are based on B+ trees (indexing on values

10

Ta
bl
e
2.
1
Te

mp
or

al
ln

de
xe

s
(S
ou
rc
e

Sn
od
gr
as
s,
 1
9
9
2
)

N
a
m
e

C
i
t
a
t
i
o
n

B
a
s
e
d
 o
n

P
n
m
a
r
y
/

S
e
c
o
n
d
a
r
y

T
e
m
p
o
r
a
l

D
i
m
e
n
s
i
o
n
s

T
e
m
p
o
r
a
l

K
e
y
(
s
)

N
o
n
-
T
e
m
p
o
r
a
l

K
e
y
(
s
)

A
p
p
e
n
d
-
o
n
l
y
 T
r
e
e

G
u
a
n
d
h
i
,

et
 a
l,

 1
9
9
1

B
+
 T
r
e
e

P
n
m
a
r
y

t
r
a
n
s
a
c
t
i
o
n

e
v
e
n
t

0

Ch
ec

kp
oi

nt
 I
nd
ex

L
e
u
n
g
,
 et

al
,
1
9
9
2

B
+
 T
r
e
e

se
co
nd
ar
y

t
r
a
n
s
a
c
t
i
o
n

e
v
e
n
t

0

Lo
p-

Si
de

d
B
+
 T
re
e

K
o
l
o
v
s
o
n
,

1
9
9
0

B
-
f
 T
r
e
e

B
o
t
h

t
r
a
n
s
a
c
t
i
o
n

e
v
e
n
t

0

M
o
n
o
t
o
n
i
c
 B
+
 T
r
e
e

E
l
m
a
s
n
,
 e
t

al
,
1
9
9
2

T
i
m
e
 I
n
d
e
x

B
o
t
h

t
r
a
n
s
a
c
t
i
o
n

i
n
t
e
r
v
a
l

0

L
u
m
,
 et
 a
l,

1
9
8
4

B
+
 T
r
e
e
 o
r

H
a
s
h
i
n
g

p
n
m
a
r
y

t
r
a
n
s
a
c
t
i
o
n

n
o
n
e

I

Ti
me
-S
pl
it
 B
-T
re
e

L
o
m
e
t
,
 e
t

al
,
1
9
9
0

B
+
 T
r
e
e

p
n
m
a
r
y

t
r
a
n
s
a
c
t
i
o
n

i
n
t
e
r
v
a
l

I

M
i
x
e
d
 M
e
d
i
a

R
-
T
r
e
e

K
o
l
o
v
s
o
n
,

et
 a
l,

 1
9
8
9

R
-
T
r
e
e

B
o
t
h

t
r
a
n
s
a
c
t
i
o
n
,

t
r
a
n
s
+
v
a
l
i
d

in
te
rv
al
,

pa
ir

s
o
f

i
n
t
e
r
v
a
l
s

k
 r
an

ge
s,

k
>
=
I

T
i
m
e
 I
n
d
e
x

E
l
m
a
s
n
,
 e
t

al
,
1
9
9
0

B
+
 T
r
e
e

B
o
t
h

b
o
t
h

i
n
t
e
r
v
a
l

0

T
w
o
-
l
e
v
e
l
 C
o
m
b
i
n
e
d

A
t
t
n
b
u
t
e
/
T
i
m
e
 I
n
d
e
x

E
l
m
a
s
n
,
 e
t

al
,
1
9
9
1

B
+
 T
r
e
e

+
 T
i
m
e

I
n
d
e
x

B
o
t
h

b
o
t
h

i
n
t
e
r
v
a
l

I

A
h
n
,
 et

 a
l,

1
9
8
8

B-
i-
 T
r
e
e
,

H
a
s
h
i
n
g

v
a
n
o
u
s

v
a
n
o
u
s

i
n
t
e
r
v
a
l

I

S
R
-
T
r
e
e

K
o
l
o
v
s
o
n
,

et
 a
l,

 1
9
9
0

S
e
g
m
e
n
t

I
n
d
e
x
 +
 R
-

T
r
e
e

B
o
t
h

b
o
t
h

in
te

rv
al

,

pa
ir

s
o
f

i
n
t
e
r
v
a
l
s

k
 r
an
ge
s,

k
>
=
 I

of a single key) and R trees (indexing on ranges of multiple keys) Each temporal index

structure has its own advantages and application areas However, there is little effort to

compare them m space and time efficiency.

Spatial-temporal Data Models and Queries

A data model is an abstract representation of some real-world situation or domain of

interest about which information will be stored in a database (Dictionary of Computing

1996) Data models are the cores of an information system; they define data object types,

relations, operations, and rules to maintain database integrity (Date, 1995; Miller, H.J.

and Shaw, S L, 2000) Temporal GIS includes time elements m conventional GIS; it

aims to process, analyze, retrieve and manage spatiotemporal data. Spatiotemporal data

models are the cores of a temporal GIS Without a good data model, it will be ineffectual

for a temporal GIS to handle spatiotemporal queries.

Since 1980s, geographers began to conduct studies on the representation of temporal

geographic entities, and several spatiotemporal data models have been proposed.

Peuquet (1999) classifies spatiotemporal data models into four kinds location-based

representation; entity-based representation, time-based representation; and a combined

approach. Yuan (1999) groups these data models into two kinds* by time-stamping spatial

objects, and by events or processes. Here, the author lists five kinds of spatiotemporal

data models according to their historical developments.

12

The Snapshot Model

The snapshot model views spatiotemporal data as a sequent of snapshots at different

time slices (Figure 2.3). In this model, every layer is a collection of temporally

homogeneous units of one theme i.e. one layer holds information related to a single

thematic domain at a time point. Spatiotemporal data are recorded by discrete temporal

intervals. At each time point, all features (or phenomena) are included regardless of what

has or has not changed since the previous snapshot. Temporal intervals are not

necessarily the same. For example, at time point t2, S2 holds all the features even if some

features don't change from Si; and temporal interval (ti-t2) is not necessarily equal to

other temporal intervals (t2-t3, etc). The snapshot model is the only data model available

within current commercial GIS. The temporal urban mapping model for the Baltimore-

Washington area and the San Francisco Bay area (USGS, 1998) are examples of this

approach.

a m
u

Figure 2.3. The snapshot approach for representing spatiotemporal data: each snapshot.
Si represents the state for a given point in time Ti. (Source: Peuquet et at, 1995)

Langran (1992) and Peuquet (1999) summarize three mam shortcomings of snapshot

approach.

• Redundant storage. Even though during each temporal interval, only a small

portion of features changes, a snapshot is a complete map of all the regions, which

duplicates all the unchanged data. The data volume increases enormously when

the number of temporal points (or temporal intervals) increases.

• No temporal topology. Temporal topology means temporal relationship for each

spatial feature (i.e. its previous and next versions). In order to compare spatial

entities to their previous and next versions to retrieve spatial changes, those

temporal adjacent snapshots have to be compared exhaustively. The reason for

this problem is that snapshots represent states but not the events that change from

one state to another state.

• Undetermined change. Because snapshots only represent states, exactly when a

spatial entity changes cannot be determined. In addition, some critical changes at

some locations may occur between two consecutive snapshots, but may not be

represented.

The Space-time Composite Model

The space-time composite model represents spatio-temporal data as a set of spatially

homogeneous and temporally uniform objects, and can been viewed as overlays of

temporal snapshots. This approach was proposed by Christman (1983), and Langran and

Christman (1988) Space-time composite model begins with a base map or a layer that

14

represents the original state of geographic phenomena. Each change causes a portion of

the geographic phenomena to become discrete objects, which have their own histories.

After all temporal changes, the original layer is changed to a layer composed of basic

spatiotemporal units (points, lines, or polygons), which are overlays or intersections of

different temporal snapshots and have their distinct temporal attributes.

Figure 2 4 shows a space-time composite for urban encroachments. The land use

decomposes over time into smaller fragments, which reference distinct temporal attribute

sets The whole region was originally rural land use (at time Ti) At time point T2, portion

A changed to urban land use; at time point T3, portion B changed to urban land use; at

time point T4, portion C changed to urban land use. The procedure of urban

encroachments can be seen as overlays of three snapshots (Ti, T2, T3), and keeps all

intersection points, lines, and polygons as basic spatio-temporal units, which have their

own history.

C

B

A

C

B

TI T2 T3 T4

Rural ►

Rural Urban w

Rural Rural Urban ►

Rural Rural Rural Urban

Figure 2.4 A space-time composite of urban encroachment. Each polygon has an
attribute history from that of its neighbors. (Modified from Langran 1992, pp. 41)

15

Space-time composite employs the topological model, thus explicitly maintaining the

integnty of individual entities and their changing topology through time. Compared to the

snapshot approach, this approach has the advantage of less data redundancy. In addition,

accessing temporal changing information m the space-time composite is conceptually

straightforward because this approach contains temporal topology.

However, two shortcomings can be detected in space-time composite model

(Langran, 1992; Yuan, 1999; Peuquet, 1999). As time progresses and temporal changes

increase, the space-time topology becomes quite complex i.e. the representation

decomposes into progressively smaller objects, and ultimately poses intolerable storage

processing problems. There are many aspatial attributes that can change over time. If

components that make up the spatial and aspatial aspects of any given entity are changing

at different times and at different rates, maintaining the identity of individual entities

becomes difficult (Peuquet, 1999).

Yuan (1999) points out that the space-time composite model is able to record

temporality within the largest common units of attribute, space, and time, but it fails to

capture temporality attributes across space (i.e. motion or movement) Disaggregate

transportation or trip data can be described as moving objects, thus the space-time

composite model cannot efficiently represent disaggregate transportation data.

The Spatiotemporal Object Model

The spatiotemporal object model uses an object-oriented approach. In the object-

oriented approach, every entity is an object, which is the basic organizational unit. An

object has properties and methods. Spatiotemporal object (ST-Object) model was

16

proposed by Worboys (1992,1994). The approach taken by Worboys is to form classes

of primitive spatiotemporal objects by associating two-dimensional temporal elements

(i e world time and system time) with spatial objects Composite spatiotemporal classes

are created based on primitive spatial object classes and pnmitive temporal object

classes.

The spatial data model Worboys built is based on combinatorial topology. Spatial

objects are represented as simplicial complexes. A simplex is either a single point, finite

straight line segment or triangular area. A simplicial complex is a collection of non-

overlapping simplexes.

A spatio-bitemporal object is created based on spatial and bitemporal (i e. world time

and system time) extents. This object can be represented by attaching bitemporal

elements as labels to components of simplicial complexes A ST-complex is a collection

of ST-simplexes, which is an elemental object (simplex) to which is attached a

bitemporal reference

According to Peuquet (1999), the spatiotemporal data model provides a cohesive

representation that allows the identity of objects as well as complex interrelationships to

be maintained through time. This model is able to record changes in space, time, and

attributes. However, because the spatiotemporal object model represents the world as a

set of discrete objects consisting of ST-simplexes, continuous or gradual changes in space

through time cannot be represented.

17

The Time-based for Event-based) Spatiotemporal Data Model

Spatiotemporal data models based on time or events mainly represent temporal

change as a function of time. In this approach, there is a base map or starting point, from

which, the sequence of events represents an ordered progression through time of known

changes.

Peuquet et al (1995) propose an Event-based Spatiotemporal Data Model (ESTDM)

based on time as its organization basis, and intend to analyze temporal relationships and

change patterns within a pre-specified geographical area (Figure 2 5). Using doubly

linked list structure, the ESTDM consists of a header, a base map that defines the initial

geographic area, and an event list with set of components attached to each event. The

header contains information about the thematic domain, a pointer to the base map, and

pointers to the first and last events. The base map shows an initial snapshot of the entire

geographic area using a raster run-length-encoded method. The event list contains spatial

changes through temporal intervals. Each event contains a time-stamp, a list of pointers

pointing to each event component, and a pair of pointers pointing to the previous and next

events. An event component represents change's to a predefined location (raster cells) at a

time point. All locations that have changed to the same value within a single thematic

layer are members of the same component. Figure 2 6 shows the component structure: a

component descriptor that shows the new value; and an array of locational elements

called tokens. A single token represents a set of consecutive cells along a row using run-

length encoding. It consists of row number, the first column number (left-most column

with the same value), and the last column number (right-most column with the same

18

Header

r

base map

Mo

^ event 1 n event 2 event q
to 2L

^ M ^

Figure 2.5 The ESTDM data structure (Source: Peuquet et al, 1995)

IS 20
N I

I «

A "v
Component
Descnpior .

/ \

A ̂

H

15 29

4 16 19 16 6 7

5 16 20 17 4 7

6 15 20 17 10 12

• •

* yi y2 * yi Vi

(W

Figure 2.6 Spatial changes at time t, displayed as a simplified map (a) and the
corresponding event components (b) in the ESTDM model. (Source: IPeuquet et al, 1995)

value).

Because time is a basic organization unit, ESTDM has the capabilities of performing

temporal manipulations (temporally based queries) on spatiotemporal data. For example,

ESTDM can easily retrieve all locations that changed to a given value at a given time;

retrieve all locations that changed to a given value over a given temporal interval;

19

calculate the total change in area to a given value over a given temporal interval. Adding

new events is straightforward (just adding to the end of the event list). ESTDM can also

reduce data redundancy, since it only handles temporal changes.

ESTDM IS a raster-based spatiotemporal data model. All temporal changes are

associated with predefined locations or cells. However, the adoption of ESTDM model to

a vector-based system requires redesign of event components. Spatial objects always

change in geometrical properties and topological relationships, how to handle spatial

objects' identities becomes a real challenge Using ESTDM approach in a vector-based

system, predefined entities have to be created to handle temporal changes. If the entities

are points, there is no problem of changing topology; but if the entities are lines or

polygons, these entities will be fragmented if changes occur.

Comprehensive Models

A comprehensive model integrates different kinds of spatiotemporal data models

together as one data model A feature-based data model (or vector data model) is more

effective in retnevmg information about spatial features or objects; a location-based data

model (or raster data model) is more effective in retrieving information about locations;

while a time-based data model is more effective m retrieving information about specific

times or changes through time. Integrating these three data models would allow us to

handle complicated spatiotemporal problems such as managing changes of spatial objects

and maintaining object identities.

A prototype of spatiotemporal data model called TRIAD was proposed by Peuquet

(1994) and implemented by Peuquet et al (1994). In TRIAD, there are three

20

Feature-Based

(What)

Location-Based
(Where)

(When)
Time-Based

to tl t2 ■ ■ ■ te

Figure 2.7 Framework of the TRIAD Model (Source. Peuquet et at,
http //www. geog.psu.edu/tempest/)

interdependent representations: feature-based, location-based, and time-based views,

which handle what, where, and when problems respectively (Figure 2.7).

The feature-based view maintains the integrity of geographic individual objects along

with their spatial and temporal changes (Figure 2 8). It consists of feature inherent and

non-inherent attributes (feature id, name, feature class, layer info, and other static

attributes), as well as spatial delimiters and temporal delimiters. Spatial delimiters store

feature's first and latest generalized locations (the bounding rectangle for an areal feature,

two x-y coordinate pairs to denote the endpomts of a line, and a single x-y coordinate to

denote a point feature). Spatial delimiters are used for linking the feature-based view

with the location-based view to retrieve detailed location information. Temporal

21

Feature

Feature ID

Name[sj

Spatial Delimiters

jr% Temporal Delimiters

Feature Class

Layer Info

Static Attributes

Figure 2.8 The Structure of the Feature-based View (Source: Peuquet et al,
http://www. geog.psu. edu/tempest/)

delimiters store the times a specific feature begins to exist and ceases to exist. Temporal

delimiters are used as the primary link to the time-based view to retrieve detailed events

or temporal changes.

The time-based view is a modified version of ESTDM (Peuquet, 1995) (Figure

2.9). In this view, the basic organization unit is an event. Attributes associated with each

event include one timestamp, feature changes and locational changes. The timestamp

stores the time at which the event occurs. Feature changes record the specific changes

occurring to one or a group of features during a temporal interval. Feature changes

consist of a list of feature ids (FID List), their attributes and new values. Locational

changes record the specific changes occurring to one or some locations during a temporal

Event List

*o| ̂1 1 *2 I

Timestamp

-Feature Changes

-Locatlonal Changes

Attrlb NewVal FID List

lAttrib NewVal Loc List

Figure 2.9 The Structure of Time-based View (Source: Peuquet et al,
http://www. geog.psu. edu/tempest/)

interval. Locatlonal changes consist of a list of location ids (Loc List, cells or pixels),

attributes and new values associated with these locations.

The location-based view uses cells or pixels as the basic organizational units (Figure

2.10). Every cell is represented by a list of changes occurring at that location. There are

two types of changes: feature and attribute changes. A feature change records whether a

feature begins or ends its presence at that location, and the time of change. An attribute

change records a change in an attribute value.

The TRIAD model unifies feature-based, location-based, and time-based views

together and thus has the advantages of these three views or approaches. It's easy to

store, retrieve, and manipulate spatiotemporal data using this model. For example,

/ / / / /

/ / M
/ / /

'

FID Begin/End Timestamp

I
Attrlb New Val Timestamp

Attrlb New Val Timestamp

FID Begin/End Timestamp

Figure 2.10 The Structure of the Location-based View (Source- Peuquet et al,
http-//www geogpsu.edu/tempest/)

spatiotemporal queries can be launched from any combination of the three views: when,

where, and/or what.

Yuan (1994) proposed a comprehensive data model called the three-domain model to

analyze wildfire. Similar to the TRIAD model, the three-domain model defines

semantical, temporal, and spatial objects in three interrelated domains. She argues that

the major advantage of this model is that there is no pre-defined data object; rather the

model dynamically links relevant objects from the three domains to represent a

geographic entity or concept (Yuan, 1999). Therefore, this model can manage

complicated changes of spatial objects and maintain object identities.

24

Spatiotemporal Queries

In the past, research on temporal GIS mainly focused on the design of spatiotemporal

data models, which are the foundation of spatiotemporal data storage, manipulation,

retrieval, and analysis Spatiotemporal queries are usually associated with spatiotemporal

data models. For example, ESTDM is designed for handling temporal changes for

locations; thus it can easily handle queries related to temporal intervals; while TRIAD is

designed based on what (feature), where (location), and when (time), and thus can handle

complicated spatiotemporal queries.

Langran (1992) listed a generalized set of potential queries for a temporal GIS to

treat.

" 1. Examine a feature's lifespan.
2 Exanune a single time slice.
3. Exanune a feature's lifespan; when the feature meets some criteria,

examine its time slice.

4. Examine a single time slice; exanune the lifespans of features meeting
some criteria.

5 Exanune the lifespans of all features.
6. Exanune all time slices. " (P 73).

She then summarized four primitive query types that are at the root of this list (Figure

2.11);

" 1. Simple temporal query, i e. what is the state of a feature at a time slice?
2. Temporal range query, i.e. what happens to a feature over a given period?
3. Simple spatiotemporal query, i.e. what is the state of a region at a time

slice?

4. Spatiotemporal range query, i.e. what happens to a region over a period? "
(P 97).

25

1

2

<0 3

b

Figure 2.11 The search spaces of four primitive geographic queries, (a) A simple
temporal query. (b)A temporal range query, (c) A simple spatiotemporal query, (d) A
spatiotemporal range query. (Source: Langran, G., 1992. Fp 97)

According to Langran, a temporal query defines its data space by thematic attributes

and time; while a spatiotemporal query defines a geometric data space within which to

model cartographic objects.

Langran analyzed k-dimensional data structures and their applications in accessing

spatiotemporal data. Zero-dimensional data structures (e.g. k-d-tree, k-d-b-tree, multikey

hashing etc) were developed specifically to access dimensionless attribute data; One-

dimensional data structures (e.g. strip tree) can only handle one-dimensional spatial

object; while k-dimensional data structures (e.g. R-tree, R-i- tree. Packed R-tree, Cell tree.

Grid file etc) can be used to access three-dimensional objects in three dimensional data

space. She tested four data structures (grid file, offset grid file, R-tree, and six-

dimensional data structure) to access spatiotemporal data stored in a space-time

composite in qualitative experiments and found R-tree and offset grid file data structures

appear to be reasonable approaches to spatiotemporal data access.

Peuquet (1994) grouped spatiotemporal queries into three classes:

The first query class addresses changes in an object or feature (spatial objects relative

to space and time or just to time), for example:

" (a) Has this object moved in the last two years?
(b) Where was this object two years ago?
(c) How has this object changed over the last five years?"

The second query class addresses changes in the spatial distribution of an object or a

set of objects (locations relative to time), for example:

" (d) What areas of agriculture land use m January 1, 1980 have changed
to residential land use as of December 31, 1989'^

(e) Did any land use changes occur in this drainage basin between
January 1, 1980 and December 31, 1989?

(f) What was the distribution of commercial land use 15 years ago?
(g) What areas have changed from predominantly agricultural land use to

urban land use over the last 50 years?"

The third query class addresses the temporal relationships among multiple geographic

phenomena (time relative to the attributes of specific locations or specific objects), for

example:

" (h) Which areas experienced a landslide within one week of a major
storm event?

(i) Which areas within one-half mile of the new urban bypass road have
changed from agricultural land uses to other land uses since
completion of that road?"

To measure all temporal relationships or temporal topology, Peuquet also outlined a

set of temporal operators, which include before, equal, meets, overlaps, within, and

start/end. These operators can be used to compare the temporal dimensions of different

events, and thus support the third query class.

In the TRIAD model, Qian and Peuquet (1997) used quadtrees to achieve compact

representation of location-based view and retrieve location-based changes. An extension

of R-tree indexing that maintains an index for attributes changes over arbitrary time

27

intervals was used in addition to the conventional B-tree used for checkpoint-based event

indexing for time-based view. Qian and Peuquet (1998) designed a visual query language

called VSQL, which combined both data base query capabilities and geographic data

presentation functionality.

Activity-based Transportation Research and Temporal GIS-T

Activity-based approaches became the focus of transportation demand analysis and

modeling in the mid-1970s (Pas, 1990). In this approach, travel is treated as a derived

demand to carry out individuals' social and economic activities at spatially separated

locations. Goodwin (1983) defines the activity-based approach as "the consideration of

revealed travel pattems in the context of a structure of activities, of the individual or

household, with a framework emphasizing the importance of time and space

coordinates". From this definition, several important characteristics can be identified.

Transportation demand analysis focuses on activities but not trips. Trips are no longer

considered as the basic units of observation. The activity-based approach attempts to

reveal travel pattems within the context of individual or household, thus it is a

disaggregate approach. Activities and travel can only be performed under the constraints

of space and time. Each activity must be performed at a location and a time point.

The activity-based approach emphasizes travel activity pattems and the dynamics of

travel behavior. GIS has not been used in activity-based transportation study until

recently (Miller, 1991). In the activity-based approach, travel and activities have to be

represented as a dynamic process that is referenced in both space and time dimensions.

Spatiotemporal GIS-T data models have to be developed. However, up to now, there is

28

not an operational spatiotemporal GIS-Transportation (or temporal GIS-T) data model

available. In fact, there are very few articles touching temporal GIS-T (Shaw, 1999; Shaw

et al, 2000; Dueker, 1999; Goodchild, 2000; Moreira et al, 1999).

Each individual in each household makes trips every day. Trips are performed within

specific spatiotemporal constraints Each trip has a starting location, an ending location,

and a path. Trips can be treated as moving objects along a transportation network.

Dueker (1999) outlines three approaches to represent moving objects by incorporating

a new dynamic or moving object class into GIS-T:

1. A static object with frequently changing positions;

2. A new object class with location as an attribute rather than part of the definition;

3. A moving object construct with starting location and attributes of direction, speed,

and destination to define a moving object.

Moreira et al (1999) design a moving object data model siimlar to the third approach

of Dueker's. In this model, the trajectory of moving objects is decomposed into sections

that are described with variability functions. The basic data structure for each section

contains the identification of each object, the valid time interval, the variability function,

and initial state value (i e. each basic tuple stores time interval, initial value, and a

behavior function). Then a linear approximation function to describe the movement

within a valid time interval can be described. Superset and subset semantics are used to

correct the imprecision.

Shaw et al (2000) propose an object-oriented conceptual framework for disaggregate

travel data (i.e. trip data) (Figure 2.12) and use a relational database approach and the

dynamic segmentation method to handle attributes, time, and spatial features based on a

29

sample travel log data set. The data associated with each trip is separated into four

components to reduce data redundancy: spatial (trip ends and trip path), temporal (trip

beginning time, trip ending time, and trip duration), actor (individual), and attributes (tnp

characteristics such as trip purpose, travel mode, etc.). With the origin and destination of

each trip identified from the GIS geocodmg function, a tnp path (shortest path) is created

based on dynamic segmentation, which can minimize spatial data redundancy. Temporal,

actor, and attnbutes components are each associated with one relational table. These

relational tables and spatial database are linked together by some key fields such as

individual id and trip id. This trip data model separates spatial features and temporal

components, and temporal components can be treated as attributes of spatial features. For

example, trip path (line feature) stands for spatial feature for each trip; while temporal

attnbutes (e.g. beginning time, ending time, duration etc.) can be attached as attributes for

each trip path

Shaw (2000) suggests another temporal GIS-T data model called a temporal dynamic

segmentation, which is based on dynamic segmentation. A temporal dynamic

segmentation is different from a general dynamic segmentation in that the previous uses

time as the basic measurement unit; while the next uses distance. At some locations on a

trip path, there are significant speed changes. These locations can be termed as critical

points. Assuming speed is constant between two adjacent critical points, temporal

intervals can be calculated. A temporal route can be created based on these different

temporal intervals. This data model combines spatial and temporal data together (i.e.

spatial and temporal data determine a spatiotemporal object) and has a simple data

structure, thus data manipulation and retrieval related to time become easy. In a class

30

project dealing with trucking inventory analysis using GPS data, this data model was

implemented m Arclnfo*.

A spatiotemopral data model for disaggregate travel data should be able to answer

various queries that are based on location, time, attribute, or a combination of these

variables. Shaw et al (2000) propose various types of spatiotemporal database queries

using the following examples.

"Time-based querv
1. Where were the trips that occurred between 7 am and 8 am on March 21,1999?

{control time to find location)
2. What were the trip purposes of those trips that occurred between 7 am and 8 am

on March 21, 1999? Who made those trips'^ (control time to find attributes)
3. What was the change of tnp patterns from 7 am to 9 am on March 21, 1999?

(control time to find the change in location)
Location-based querv:

4. What were the trips that traveled on University Drive between IS"' Street and
lb*** Street? (control location to find attribute)

5. In which time period on March 21, 1999 did University Drive between IS**" Street
and 16''* Street have the most trips? (control location to find time and attribute)
Attribute-based querv:

6. Where were the work trips'^ (controls attribute value to find location)
7. What IS the temporal distribution of all work trips? (control attribute value to

find time)
Combination querv:

8. What was Joe Johnson's travel pattern on Mareh 21, 1999? (control date and
attribute to find location and time)

9. Did Joe Johnson show different daily travel pattems on March 21 and March 22
of 1999? (control attribute and time to find change pattern)

10. What were the trips made by Joe Johnson that had less than 20 minutes time
lapse between consecutive tnps? (control time and attribute to find trip
chaining behavior)."

In these query types, combination query is the most difficult one, since two variables

(among time, location, and attribute) have to be controlled to measure the other one.

Without an efficient index method, it would be impractical to make a combination query

This class project was finished by Mo Chatterjee, Feng Lu, David Ralston, Amy Rose, and Xiaohong Xin,
May, 2000

31

Household

charactenstios >-

Individual

chaiactenstios

Tnp
charactensUcs >-

Household

ZK.

Individual

<)

One must exist

One may exist

One or mo re must exist

One or mote may exist

Tnp < Tnp end

Begins

Begms

A A

A A

Base map
geometiy

Ends Dynamic

Tnp Tnp path Path

Ume point 1 ̂ geometiy

Ends

Tnp
duiation

Figure 2.12 A conceptual framework of the relationships between entities in a
disaggregate travel data set (source: Shaw, 2000)

for a large database. Unfortunately, there are almost no spatiotemporal indexing methods

available. This is the reason for this study.

32

Chapter 3

Data Description and Methodology

As stated in Chapter 1, the purpose of this study is to build a spatiotemporal index

for disaggregate travel data. Specifically, this thesis intends to query what trips pass

through one or more streets during a time window This chapter explains why it's

necessary to build a spatiotemporal index, and presents the methodology and flow chart

for building one A sample data set and a trip data model are described first

Sample Data Description

The sample data used in this study is a dummy trip log data set m DBASE format

that describe travel characteristics of some households and individuals m the Knoxville

Metropolitan Area (Figure 3.1). This data set consists of 83 trips (records), and travel

characteristics of people who make these trips In activity-based modeling, travel

activities research is based on individuals and households Each trip is made by one

individual in one household. In this trip log data set, there are attributes related to each

trip such as starting address, ending address, starting time, and ending time. In addition,

household and individual information is also recorded. Since the trip log data set

involves the spatial, temporal, and other travel-related data items at the individual level, it

can be used to study travel activity patterns and the dynamics of travel behavior m a GIS

environment

Table 3 1 describes the mam data fields in the trip log file There also are other

fields in this file such as trip purpose and individual's attributes. Since the purpose of this

33

AlcView GIS 3.2

Ele Edit lable Field Window Help

M HJOSil] MOM [M] ME.y K z
83 selectedOof

-IbB-W >

-LH •'L4sa ofri ■£ i im f />;r^no\ ft sn. S HIm

1013,
10131
10131
10131
1015*
ioisl
ioisl

3191 31

aii'rii"
3191" "31"
iiiir'si"
3191 37

3191 37
319! 37

1015

1019
1019

319 i 37

'4021 3l"

Ill—lY
"'iTf

1 4

111
1 3

11 4

11700 1234.0
il86o""rmo"
11930 1 242.0
12045 1 246.0
10845 loo
11552 125.0
1 1819 130.5

115

1 1 D

112

2208 141.5

11
|1
m"
if
II

II

II
ii

9300 Westland Dr
11542 Ebenezer Rd

FL
FL

9189 Blue Glass Rd FL
,1401 MouifieldRd FL
I 7798 Nubbin Ridge Rd FL

I 7110 Northshoie Dr FL
1458 Wrights Ferrji Rd FL
7732 Queensbury Dr FL

0850 1142,9 II i 820 Gallaher View Rd FL

1230 1144.6 i 1 i 7800 Luscombe Dr FL

BW

BW
BW
BW

BW

BW
BW

BW

BW

BW

1715
1815
1945
2100
0700

23B.[^
■242C j
246LJ
'2561; I
'I'lo .

1808
1839

2222

0858
1240

30.5 ::

^5
■i'44.£; .
'I'iSilL

tiipdala dbl

f mi EiV£!m E£m WEO. VSWi■EMSi EE^E!
238.0 1 1542 Ebenezer Rd i '''- . BW 8 15 1 1 1 Louis 38! 4

2420 9189 Blue Grass Rd IFL BW 5
..

T" 1 1 Louis "'I'l
_ ..„

'2460" 'i"" 1401 MourfieldRd Tfl BW 3 |4 T 1 T Louis
..

258.0 9300 Westland Dr IFL BW ■5""' M 1 T Louis
........-2 -

7110 Northshore Dr i^L BW' 1 12
.....

1 1 Andre 651
........

40

30.5 1458 Wrights Ferry Rd .JFL BW 5 "Ti T
.......

...... 1 1 Andre ■"kT"" 40

41.5 7732 Queensbury Dr IFL BW 4 I3 T 1 ! Andre ..G5U 1 40
.....

"525" 1054 T ranquilla Ln Ifl BW 5 41 T r 1 Ar^re 651 1
........

l'44.8 "■ 7800 Luscombe Dr Ifl BW 1 2 T 1 1 Ethel ""igf"..
........

20

148.3 8000 Nubbin Ridge Rd "Tfl"""" BW "3 "■ ! 4 1
......

Ethd" Tgf" 20

"mo 820 Gallaher View Rd |fl "bw" "5""" 11 1.
.....

fl Et"hel 49.1.,-..Z..1
A. i nr- .nN n : n 1 h 0 TU - 4C : c

T5T3?

Figure 3.1 Trip sample database ofKnoxville. (Notes: due to the length of table records,
the original table is displayed as top and bottom tables here.)

34

Table 3 1 Name and description of mam fields in the trip log file

Field Name Description
Hh identification number of household

Date date of each trip, concatenation of month and day
Indv identification number of individual in each household

Trip_no identification number of trip made by each individual
S time trip starting time, concatenation of hours and minutes

Started_fr starting address of each trip, in the format of US streets
S_city starting city name of each trip
S_co starting county name of each trip
E_time trip ending time, concatenation of hours and minutes

Traveled_t ending address of each trip, in the format of US streets
E_city ending city name of each trip
E_co ending county name of each trip
Name name of individual

thesis IS to query what trips pass through one or set of streets, only the main fields are

listed and described Hh is the identification number of household represented by a

unique number Date is the date of each trip, represented by concatenation of month and

day. A Date value of 319 means March 19 i e. the trip was performed on March 19. Indv

IS the identification number of individual in a household. Indv is only unique m each

household. In the trip table, each individual can make one or more trips. Name represents

the name of an individual Trip_no is the identification number of the trip made by one

individual Similarly, Trip_no is only unique for each individual Each trip can be

uniquely identified by concatenation of Hh, Date, Indv, and Trip_no S_time and E_time

are trip's origin time and destination time, represented by concatenation of hours and

minutes. Started_fr and Traveledj are trip's ongm address and destination address in

standard US streets format Thus a trip and its related travel information can be

35

expressed For example (see Figure 3.1), the first trip in trip log table (first record) was

performed on March 19 by individual 1 {Indv) of household 1013 {Hh), whose name is

Louis {Name)', it is the first trip {Tripjid) made by this individual on this day This tnp

started from 9300 Westland Dr {Startedjr) at 17:00 (Sjtime) and ended at 1542

Ebenezer Rd (Traveled_t) at 17 15 (E_time).

In this trip log file, there are some incorrect addresses This is true m the real

world Sometimes, people don't know exactly where they are during travel or fill survey

forms incorrectly These incorrect addresses can be neglected when building a trip data

model. This trip log file is small in size (only 83 trips), but it's enough for this study,

since we are only concemed about spatiotemporal query methodology

The base coverage is Knox County street shape file, converted from a TIGER file

(Figure 3 2) There are totally 26005 street segments m Knox County. The trip log file

can be mapped onto this network based on trips' starting addresses and ending addresses.

Trip Data Model (Representation of Trip Log Data Set)

In order to perform spatiotemporal queries, the trip log data set must be

represented m a GIS environment (i.e a trip data model must be created) Shaw (2000)

suggests that there are two kinds of representation issues for trip data- representation of

trip locations, and representation of complex relationships among the different entities

(households, individuals, trips, and their spatial, temporal and attribute data). As stated m

Chapter 2, Shaw separates trip data into four components spatial (trip ends and trip path),

temporal (trip time points and trip duration), actor (individual or individuals involved m

36

AtcView GIS 3.2

(te

£le Edit lable Field Windov<f Help

SB] SH H
0 of' selected k KO

Tor47O03k a.stip |±.

H-

m
5(*:

:u»

t'J Attributes of Tgi47093lka.shp

S/}^ r&i 1 f/xidsi rntidg letsif/' 1 fixHt fedSn rOfct: Ffscki

PoiyLine 426017111 7133 7121 0.21397 Morris Fwy A21

Polyline 42601712 7105 7133 I 0.03^5 "mi"]]
PoiyLine 426017131 7112 7105 1 ''001649' Shagbark Dr

PoiyLine 42601714] 7049 7084 1 "'"o'ci^' Shell Back ''iir A41
_

PoiyLine 426017^51 7049' 7072 1 0.21437 Pitch Pine Dr

PoiyLine 426017161 7388 7363[aoii^a Morris Fwy "^T

PoiyLine 426017171 7S'8 S'se'1 0^711^" Kenny Rd A41 1002

PoiyLine 426017181 7100 7124 I oioi^' Shagbark Dr 1 •A4f Si'lf
PoiyLine 426017181 '7426 7388 1 ''''006631'' Morris Fwy

—

A21

-JJ
._i_J

Figure 3.2 Knox County network shape file (converted from tigerfile)

37

each trip), and attributes (trip characteristics such as trip purpose, travel mode, etc) If

all the data related to trips are stored in one table (Figure 3.1), there is significant data

redundancy.

In this study, the mam concern is how to perform a spatiotemporal query for trips

on a street network The representation of complex relationships among the different

entities will not be explored i.e. the sample trip log table will not be separated into

different tables However, representation of trip locations must be explored

Shaw et al (2000) states there are two approaches for representing the location of

a trip. The point-based approach defines each trip as two point locations (i e origin and

destination point). However, using this approach, it's difficult to visualize the spatial

pattern of an individual trip, since there is no a path between each trip origin and

destination The path-based approach defines each trip as a path (each trip traverses a

path). The spatial pattern of an individual trip can be easily visualized using the path-

based approach. Since it's difficult to get detailed trip path information, most travel

surveys only collect trip origin and destination locations. In order to represent trip path m

a GIS environment, a candidate path (usually the shortest path between trip origin and

trip destination locations) must be created for each trip In this study, I also assume that

trips always take shortest paths. This assumption is reasonable, as shortest paths can

show spatial pattems of trips. The global positioning system (GPS) can be used to record

location and time information of moving objects, thus it can record detailed path

information (locations and times along trip path) for each trip, and it has been used in

some transportation studies (Quiroga et al, 1998) In the future, GPS is likely to be

commonly used m collecting travel survey data

38

In order to represent trip path in a GIS environment, trip ends (tnp origins and

destinations) must be geocoded first In this thesis, trip ends are geocoded in ArcView

Once the locations of trip ends are known, trip paths must be created. There are two

approaches to represent trip paths One approach is to create a trip path shape file, the

other approach is to use dynamic segmentation method to represent trip paths The trip

path shape file approach stores trip path locations and attributes in a new shape file. Since

all the trips take place on a street network, trip path locations can be found on the

network. Creating a new trip path shape file will duplicate trip path geometry Dynamic

segmentation associates numerous feature attributes with a line feature, a collection of

line features, or a portion of a line feature without changing the underlying geometry of

the lines. The dynamic segmentation approach does not create a new file to store trip

path locations i e it does not duplicate trip paths' geometry Trip path locations are still

stored m the street network, and trip path attributes are associated with the street network.

Using the approach of creating a trip path shape file, the spatiotemporal query

problem can be solved using ArcView and C++ together *. ArcView doesn't create route

systems based on dynamic segmentation. In ArcView Network Analyst Extension,

shortest paths can be written into a shape file (i e trip paths can be saved as a shape file)

Since this spatiotemporal query is to query during a time window, which trips pass

through one or more streets, even if there is a trip path shape file, this shape file should

have relationships with the street network (i e what streets one trip pass through should

be recognized)

Personal communication with Dr Bruce Ralston, March, 2000

39

In ArcView Network Analyst Extension, there are two commands used to create

shortest paths as a shape file WritePath and WntePathLong Using the WritePathLong

command (aNetwork.WritePathLong(aFileName)), the relationship between a trip path

shape file and a street network can be identified In fact, the Network.WritePathLong

request writes a record to the result theme feature table for each line feature (street)

traversed by a tnp path segment (ArcView online help). Using this command, one trip

path IS segmented by each street, through which it passes, into trip segments.

Table 3.2 illustrates the fields written to the result theme feature table (i e trip

path attribute table) Path_id stands for trip segment identification number, while

N_recnum is the record number of the line feature (i e street's identification number).

N_recnum links the trip path shape file to the street network Based on the trip path

feature table, all trips that pass through a street can be identified Therefore, the

spatiotemporal query can be performed

Table 3 2 Trip path feature table description after using WritePathLong command.
(Source ArcView V 3.2 Online Help).

Field Name Description
Path_id Identification number of the trip path segment to which the line

feature belongs.
FJabel The name (label) of the stop at the start of the segment to which the

line feature belongs
TJabel The name (label) of the stop at the end of the segment to which the

line feature belongs
F_cost The cost of reaching the beginning of the line feature
T_cost The cost of reaching the end of the line feature
N_recnum The record number of the line feature.

N_travdir The direction the line feature is traversed A value of FT means the

line IS traversed in the same direction it was digitized A value of
TF means it is traversed in the opposite direction it was digitized

40

Creating trip path shape file m ArcView in this way results in data redundancy

Since trips are assumed to take place on the street network, creating another trip path

shape file will duplicate the geometric representation of each trip path (trip path geometry

information is already contained in the street network) Representing trip path using

dynamic segmentation can minimize data redundancy Arclnfo route systems are an

implementation of dynamic segmentation. In dynamic segmentation, there is no need to

duplicate trip path geometry or coordinates. Trip paths can be associated with a street, a

collection of streets, or a portion of street of the network. Trip attributes such as starting

time and ending time are attached to trip paths Since dynamic segmentation method can

reduce data redundancy, trip paths are represented using the dynamic segmentation

approach m this thesis Dynamic segmentation and its implementation in Arclnfo will be

explored m Chapter 4

Comparison of Common CIS Approaches and the 2-D Trees Approach

After a tnp path system is created, the spatiotemporal query can be performed

with or without a spatiotemporal index. In this study, a 2-D trees approach is used to

build a spatiotemporal index In order to compare the 2-D trees approach and common

GIS approaches, the section table and Big O notation are discussed first.

The section table is the key table m a tnp path system for the spatiotemporal

query In the Arclnfo route system, there are three related tables: RAT (route attributes

table), SEC (section) table, and AAT (arc attribute table) (Figure 3 3). The basic unit of a

SEC table is section, which is a line feature or a portion of line feature A trip path is

41

ROADS.RATBUS

BUS# BUS-ID

ROADS.SECBUS

ROUTELINK# AR CLINK# F-MEAS T-MEAS F-POS T-POS BUS# BUS-ID

t T

ARC FILE

ROADS# COORDINATES

Figure 3 3 A route system named BUS on a ROADS coverage. This figure shows
relationships between RAT, SEC, and ARC files. (Source: Arclnfo V. 7.2.1 Online Help)

composed of a set of sections In the SEC table, for each section, there are trip path

(passing through this section) internal id, street (containing this section) internal id, and

other attributes such as beginning time and ending time when one trip passes through a

street attached to each record.

Big O notation is used to describe how complex an algorithm or a program is

Instead of run-time analyses, big O notation derives a general assessment of the time (the

number of operations) required for an algorithm or a program. Specifically, it provides an

upper bound on the number of operations required. Big O notation can be defined by a

mathematical formula:

Definition: T(N) = 0(f(N)) if there are positive constants c and no such that T(N)

< c f(N) when N > no T(N) or 0(f(N)) is referred to big O notation.

42

Using a common GIS approach, the spatiotemporal query problem can be solved

graphically select one street or a set of streets from the trip path system m ArcView

(using SelectByPomt or SelectByRec conmiands) to retrieve selected streets, then

related trips and sections are selected m the section table based on the selected streets'

ids. From the set of selected trips and sections, a time range query can be made from

starting time and ending time (when a trip passes through a street).. Finally, trips passing

through selected street(s) during a time window can be retrieved and shown on the map

Using the common GIS approach, there is an efficiency problem Even after

graphically selecting one or more streets, the following temporal query still takes time of

0(k * n^) Here k and n represent the total number of sections and number of selected

sections upon selected streets m the section table, respectively. First, selecting trips and

sections m the section table based on selected street(s) must search through the whole

section table (linear search); then upon the selected trips, beginning time and ending time

queries must be made (two linear searches) Thus temporal query takes 0(k * n^) If the

trip data set is small or few trips pass through each street, this is not a problem. However,

for a metropolitan area, hundreds of thousands of trips are performed each day, and there

are many trips passing through each street The time to make a spatiotemporal query

using this common approach is prohibitive Thus an efficient spatiotemporal index or

data structure must be built.

Bentley (1975) proposed a K-D-tree data structure, which handles K-dimensional

query on discrete objects (point objects) A K-D-tree is useful in that it can perform range

searching. A 2-D tree is a special case of a K-D tree

43

A 2-D tree data structure is used for two-dimensional range search. It's a binary

tree and has the property that branching on odd levels is done with respect to the first key,

and branching on even levels is done with respect to the second key. Weiss (1997) states

that, for a perfectly balanced 2-D tree, a range query could take 0(M -f-) in the worst

case, to report M matches for N nodes

Since 2-D tree structure is designed for a two-dimensional range query, it can be

used to query starting time and ending time when trips pass through one or more streets.

In this thesis, the 2-D tree approach is used to create an array of 2-D tree structures for

the spatiotemporal query. From the section table of a trip path system, all streets where

there are trips passing through are recognized. For each street, all trips passing through it

are identified. Thus one 2-D tree can be built based on starting time and ending time of

trips passing through a street for each street Therefore, an array of 2-D trees ordered by

street internal ids is created, one for each street having trips passing over it. When

performing a spatiotemporal query, users can first graphically select one or more streets

from the trip path system m AreView, then set a time window to retrieve trips from the

array of 2-D trees. After users select the street(s), the temporal query using an array of 2-

D trees could take 0(log L * (M + m the worst case Here L , M, and N represent

the number of streets on which there are trips traversing, the number of matched trips,

and the number of trips traversing a specific street, respectively Since L < k (the number

of streets is always less than the number of sections), N < n (the number of trips on a

street is less or equal to the number of sections on a street), and M < N, 0(log L * (M +

N''")) « 0(k * n^). This means 2-D tree approach speeds up the spatiotemporal query

greatly

44

Consider the following example Assume there are 100,000 trips m Knox

Metropolitan Area each day, and these trips are segmented m 500,000 sections m the trip

path system. There are 10,000 trips traversing Cumberland Ave., and 1000 trips are

within 8 00 am - 9 00 am. There are totally 26005 streets m this area If users query

during 8-00 am - 9-00 am, what trips pass through Cumberland Ave., the common GIS

approach will take 500,000 * (10000 * 10000) = 5 * lO'^ operations at the worst case, the

2-D tree approach will only take log 26005 * (1000 + 100) = 177386 operations at the

worst case We can see for a large data set, the 2-D tree approach performs the

spatiotemporal query much faster then the common GIS approach.

Methodology and Flowchart

Figure 3 4 shows the flowchart of building a spatiotemporal index From the trip

attribute table, a trip end location shape file is created using ArcView's geocodmg

function. Arcmfo's dynamic segmentation modules are used to create shortest path trip

system Based on the resulting trip path system, an array of 2-D trees (according to

beginning time and ending time when trips pass through street segments) is built using a

C++ program and an Avenue script written for this thesis. The 2-D trees are linked back

to the trip path system to retrieve trips. The following shows the four mam steps

Step 1 Geocode Origin and Destination Ends of Trips

ArcView is used to geocode trip ends In this step, all the origin addresses and

those destination addresses that are each individual's last trip end on each day are

geocoded Since each individual performs a trip or a chain of trips on each day,

45

Tr
ip

A
t
t
r
i
b
u
t
e

T
a
b
l
e

Ge
oc
od
in
g

(
A
r
c
V
i
e
w
)

Tr
ip
 E
n
d
s

(P
oi

nt

Co
ve

ra
ge

)

N
e
t
w
o
r
k

(A
rc
ln
fo

Co
ve

ra
ge

)

Cr
ea
ti
ng
 R
ou
te
 S
ys

te
m

(A
rc
ln
fo
 N
e
t
w
o
r
k

An
al
ys
t)

4
^
a
\

Cr
ea
ti
ng
 t
em
po
ra
l

i
n
d
e
x
 f
u
n
c
t
i
o
n
s
 i
n
C

f
us

in
g
2-

d
tr
ee

/
s
t
r
u
c
t
u
r
e

/

T
n
p
 R
o
u
t
e

Sy
st

em
 (
D
y
n
a
m
i
c

Se
gm

en
ta

ti
on

)

T
h
r
e
e
 D
L
L
 f
u
n
c
t
i
o
n
s

on
e
fo

r
bu
il
di
ng
 a
rr
ay
 o
f

2
-
d
 t
re

es
,
th
e
ot
he
rs
 a
re

fo
r
t
e
m
p
o
r
a
l
 Q
ue
ri
es

T
e
x
t
 f
il

e
f
r
o
m
 t
h
e

s
e
c
t
i
o
n
 t
a
b
l
e

Sp
at

io
te

mp
or

al
 Q
ue
ry
 m
 A
rc

Vi
ew

(
A
r
c
V
i
e
w
 s
pa

ti
al

 q
ue
ry
 f
un

ct
io

n
+

D
L
L
 t
em
po
ra
l
qu
er
y)

I

Cr
ea

ti
ng

 a
rr

ay
 o
f

2
-
d
 t
re

es
 i
n

A
r
c
V
i
e
w

Ar
ra

y
o
f
 2
-d

t
r
e
e
s
 s
t
o
r
e
d
 m

m
e
m
o
r
y

Fi
gu

re
 3
 4
 F
lo

w
ch
ar
t o

f b
ui
ld
in
g s

pa
ti
ot
em
po
ra
l i

nd
ex
 fo
r
di
sa
gg
re
ga
te
 t
ra

ns
po

rt
at

io
n
da

ta

geocoding all trip origin addresses and the last destination address on each day for the

individual can efficiently and sequentially describe the spatial patterns of the trip or trip

chain, and easily create trip shortest paths

Step 2 Create Trip Path System in Arclnfo

From the trip ends point shape file (geo-coding results), a trip path system is

created m Arclnfo network analysis's path-finding function After a trip path system is

created, its RAT table is joined to the section table based on route (trip) mtemal id.

Starting time and ending time fields are added to the section table Assuming speed is

constant for each trip, starting time and ending time when a trip passes through a street

(section) are linearly interpolated Then the section table is exported into a text file from

which an array of 2-D trees is built.

Step 3 Build Temporal Index m C++ and ArcView

In C++, three DLL functions are created. The first builds an array of 2-D trees tor

each street m the route system The resulting 2-D trees are stored m memory and a

pointer to them is passed back to ArcView. The other two functions are for temporal

query functions (query for one street, query for a set of streets respectively)

Step 4 Spatiotemporal Query m ArcView

In ArcView/A venue, the spatiotemporal query problem is separated into spatial

query and temporal query Using ArcView spatial query function, streets are graphically

selected; then given a time window, one of the two temporal query DLL functions is

47

called to retrieves trips that pass through the selected streets The query results are shown

on the map, and in a message box

48

Chapter 4

Creating the Trip Route System in Dynamic Segmentation

Linear Referencing Systems and Dynamic Segmentation

Different kinds of transportation features share the same digitized road network If

these transportation features are represented separately from the road network, there will

be much data redundancy On the other hand, many transportation data are recorded

using location referencing systems such as milepost and latitude-longitude. Efficient data

models must be developed to handle these various location schemes. In the late 1980s,

the concepts of dynamic segmentation for linear features and linear referencing were

proposed

Linear referenced data are those data located on a linear transportation feature

using an offset distance from a known point on the feature and following the feature's

path to the desired location (Dueker et al, 1997) Linear referencing systems are used m

GIS-T to integrate linearly referenced data and geographic locational data. A linear

referencing system consists of three mam components a transportation network, a

location referencing method; and a datum (Vonderohe et al, 1995, Dueker et al, 1997)

The transportation network contains node-arc topological relationships The linear

referencing method is a way to identify a specific location with respect to a known point

along a defined path The datum is a set of objects that serve as the basis for locating the

linear referencing system in the real world

49

Linking linear referenced data based on a linear referencing method to the

transportation network requires a segmentation scheme. Variable-length or dynamic

segmentation is such a segmentation scheme for controlling the attributes of linear

referenced data and measures the locations where this attribute exhibits a specific value

(Miller and Shaw, 2000). For example, the bus fares along a bus route on a street network

might show different values on different parts of the route, which vary in length. These

different parts can be considered as dynamic segments.

Arclnfo uses a relational data schema to support a dynamic segmentation model

based on a three level of structure of sections, routes, and events. Routes are linear

features such as a river, a highway or a pipeline. Each route has a "mile-post" type of

measure defined along it. As partial arcs or whole arcs, sections are the basic organization

units to integrate routes, events and the transportation network. A route is composed of

sequences of sections (Figure 4.1).

Route

Figure 4.1. A route defined on a set offour arcs. The start and end points of the route do
not have to coincide with the start and endpoints (nodes) of the arcs.

50

Traffic Accident Locations

28
B8

no
260

372

Figure 4.2. An event database of traffic accidents on a route. Each event
is recorded in terms of a linear measure along the route and graphically
represented with a point maker. (Source: Arclnfo online help).

Pavement Quality

50
316

1^

poor

good

iitiMiii fair

Figure 4.3. Pavement data contained in an event database. The pavement
events are defined in terms ofa linear measure along the route. (Source:
Arclnfo online help).

Events are transportation phenomena that occur on the routes. There are three

event classes: point events, line events, and continuous events. Point events take place at

a single measure along a route (Figure 4.2). Line events take place between two

measures along a route (Figure 4.3). Line events can be discontinuous (have gaps) or

continuous (no gaps). Continuous events take place between two measures along a route,

and have no gaps. Events are a portion of a route or a single point on the route.

51

In Arclnfo, dynamic segmentation function is implemented m a route system. A

route system is composed of a group of routes such as a bus route system Two related

tables a section table (or SEC table) and a route attribute table (or RAT) together define

a route system (there is one SEC table and one RAT m a route system) SEC table and

RAT are tied to the network arc attribute table (AAT) through some key fields. Figure 3 3

shows the interrelationships among AAT, SEC, and RAT.

An AAT table contains fields such as Arc#, Arc user id, from node, to node, left

poly, right poly, length etc Arc# is the internal id of each arc An AAT is connected with

a SEC table by Arc# of the AAT and Arclmk# of the SEC table Arclmk# in a SEC table

IS the internal id of an arc with which a section is associated. Routelmk# in a SEC table is

the internal id of a route to which a section belongs. The Subclass# is the internal id of a

route m the AAT SEC table is connected with the RAT by Routelmk# of the SEC and

Subclass# of the RAT Therefore, RAT, SEC, and AAT are linked together

In addition to Routelmk# and Arclmk#, a SEC table also contains F-meas, T-

meas, F-pos, and T-pos F-meas and T-meas are the starting and ending measures of a

section. The measure item can be defined to satisfy different needs. For example, the

measure item might be length, time, or travelling cost The F-pos and T-pos are the

starting and ending positions along an arc for one section. The F-pos and T-pos are

expressed as percentages For example, if a section is located from 40% to 60% of an arc,

then F-pos and T-pos equal to 40 and 60 respectively. The F-pos and T-pos are used to

associate one section to partial or a whole arc

In RAT, m addition to subclass# (route internal id), there is also a field called

subclass-id (route user-id) This route user-id is defined by users, and can be used to link

52

with route attributes and events. Events along a route system are usually stored in an

event table (Info, DBASE or Text file). Events are tied to a route system by route user-id

and off-distance measures on a route.

Geocode Trip Ends

Address geocodmg in ArcView is a process to create a shape file based on an

address data file in tabular form and a reference feature theme The reference feature

theme contains address attributes associated with geographic features The address data

file or event table contains an address field for each record to match against the reference

feature theme ArcView compares addresses m the event table with the address attnbutes

m the reference feature theme (or matchable theme) Based on some standards and rules,

ArcView can decide whether addresses match. When a match is found, locational

coordinates are derived from the matched feature in the matchable theme and assigned to

the address in the event table

Figure 4 4 shows the geocodmg object model m ArcView. In the center of this

model, the MatchSource class performs indexing and searching on the matchable theme

Each matchable theme has a MatchSource associated with it. A MatchSource can be

created by using a predefined AddressStyle (such as "US Streets With Zones") as a

template The MatchKey class performs street address standardization for the event table.

The MatchKey is applied to the MatchSource to a collection of possible match candidates

(MatchCand) called MatchCase The MatchCand's best candidate's score is compared

with a minimum match score to determine if it's an acceptable address to be made The

GeoName as a feature theme can store the final geocodmg result

53

^ AlcView Help

File £dit Bookroaik Options JHelp

Helplopics gack Olosseiy

3Discussion

MatchKey

Match Case

—0—

MulCnUliHl

FTsil MatehSnumR GeoName

retierBftcs GeoSoufcs

MatchHeld

AddressStyle

FTab

Match rVef

Index File

iU

J

Figure 4.4. Address geocoding object model in ArcView. (Source: ArcView V. 3.2 Online
Help)

As stated in Chapter 3, in order to create a trip route system, all trip origin

addresses will be geocoded; in addition, those trip destination addresses that are the last

ending addresses for each person on each day also will be geocoded. In the sample data

set, each person on each day must have one trip or a chain of trips. The sample data set is

organized by ordered travel behaviors for each person in each household (i.e. trips are

recorded sequentially for each person). If one person only makes one trip, then the origin

and destination addresses are geocoded to make a trip path. If one person makes a chain

of trips, then all the origin addresses and the last destination address are geocoded to

54

make trip chains Only geocoding origin addresses will miss some trips ends, while

geocodmg all origin and destination addresses will result in much data redundancy, since

most of trip destination addresses can be found m the next trip's origin address field.

Even the geocoding approach used here has some data redundancy Some trips might

share the same origin addresses, which will be geocoded multiple times However, using

this approach, trip paths can be conveniently created m Arclnfo, and trip attributes can be

attached to these trip paths. The next section will show this advantage.

Figure 4 5 shows a subset of the sample data set. Person 31910131

(concatenation of Date, Hh, and Indv) made 4 trips on March 19. The trip chain of this

person pass through these addresses 9300 Westland Dr - 1542 Ebenezer Rd - 9189

Bluse Grass Rd - 1401 Mourfield Rd - 9300 Westland Dr. Thus geocoding all trip origin

addresses and the last destination address (i e 9300 Westland Dr) can sufficiently

describe trip chain behavior of this person

There are two Avenue scripts to perform trip ends geocodmg processes,

trip.match, and trip geocode. The trip match script makes the Knox network coverage

matchable, while the trip geocode script geocodes addresses for the sample data set. The

source code used in this study is attached as an appendix. In the next section, pseudo

codes are used to describe these scripts

trip.match script: making a street theme matchable:

Input; a street theme (ArcView shape file or Arclnfo coverage)

Output: a matchable street theme

55

I 'J AicView GIS 3.2 1- Dlxl

£ile Edit lable Field Window Help

lMj 1 1m P:Q i LMJ [IsstJ 10 E: ,\

! *0 of ̂ 83 selected [TIwnij

''J tiipdata.dbf LEJ
Ml T/itno St3ftsd_& 1 TravshcLt

1013 3191 1 1 9300 Westland Dr ! 1542 Ebenezer Rd \a.

1013 siaj i 2 1542 Ebenezer Rd ! 9189 Blue Grass Rd ■ i
j'oTf 319! i 3 9189 Blue Grass Rd !1401 MourfieldRd .J
iM
iniR

319! i 4

•H

1401 MourfieldRd

77QR MiiKKin Ririn^

! 9300 Westland Dr

1 u o

ioTs
O 1 O t 1

3191 i
: 1

3

r t oo iNULiuiri riiu^c nu

7110 Northshore Dr ! 1456 Wrights Ferry Rd
. " 1

ioTs" 3191 i 4 1456 Wrights Ferry Rd ! 7732 Queensbury Dr

Tm's" 3191 1 5 7732 Queensbury Dr ! 1054 T ranquilla Ln

1019

CM
O

i 820 Gallaher View Rd ! 7800 Luscombe Dr

I'dig" 402! 1 2 !7800 Luscombe Dr ! 8000 Nubbin Ridge Rd
Tdi's 4021 i 3 i 8000 Nubbin Ridge Rd i 820 Gallaher View Rd

^1 1 J" i
•j j
.j_i

Figure 4.5. Trip chain characteristics of the sample data set. Only origination address
(StartedJr) and destination address (Traveledj) fields, and those fields (Hh, Date, Indv,
Trip no) to determine a person and his/her trips are displayed.

Procedure;

If the theme is matchable, then exit.

Get an address style file name object corresponding to the style object database.

Get the list of styles fi-om the address style file name.

Get the desired style "US Streets with Zone", give it a name called addrStyle.

Set up components list for the US Streets with Zone style.

nameList = {"Fraddl", "Toaddl",

"Fraddr", "Toaddr", "NONE", "NONE",

"Fename", "Fetype", "NONE", "Zipl", "Zipr"}

56

Search each field in nameList from the theme

Insert found fields into a new list called attlist

Create a MatchSource object using the address style named addrStyle, the theme,

and attlist

Assign the MatchSource object to the theme

trip.geocode script geocode addresses for the sample data set (event table),

based on a matchable theme Descriptions of fields m the event table can be

found m Chapter 3

Input; a matchable theme (street network), an event table.

Output: a geocodmg result shape file

Procedure:

1 Preprocess the event table, generate one unique id field for each individual,

add the last destination address for each individual on each day to the bottom

of the origin address field, and generate one unique id for each trip

(Concatenation of Date, Hh, Indv, and Trip_no).

Get the Vtab for the event table. The Vtab is named as addressvtab

Get the matchable theme called theTheme

Create a field called nonuniid to uniquely identify each individual on each day

and add it to addressvtab.

Calculate nonuniid as concatenation of Date, Hh, Indv

Create a field called trip_id to uniquely identify each trip

57

Calculate trip_id as concatenation of Date, Hh, Indv, Tnp_no.

For each record in the addressvtab

If this nonuniid <> next record's nonuniid (this means this record is the last

record for an individual on each day), then

Append one record on the bottom of addressvtab, set the Started_fr value as

this individual's Travelled_t value, and set the nonuniid as this individual's

nonuniid

Loop

2. Geocode the origin address field (Started_fr) in the event table, create a point

shape file

Set the matchabel feature theme (thetheme)'s MatchSource as aMatchSource

Specify the output point shape file for the geocodmg result, using

GeoName Make, set the name of this shape file

Create a match key based on the standardization rules for the MatchSource.

Use the aMatchKey Allowlntersections request to support street intersection

standardization.

Create a new match case consisting of a list of candidate records and information

describing how well the candidates match the key

Create a new match preference used to access geocodmg preferences such as

spelling weight, minimum acceptable score, etc

58

Create a new theme feature table using aMatchSource InitGeoTheme command

For every address record there will be a record m the ftab These are currently

unmatched.

For each record in the new theme feature table

Get an address for this record using aMatchKey SetKey

Find candidates for the address using aMatchSource.Search

If there are no candidates, then mark unmatched for this record and continue

Else if the best candidate exceeds the minimum specific match score, then

Mark matched for this record

Else write unmatched for this record.

Loop

3 Make marks on trip_id field of the unmatched records and their previous

record In order to avoid mismatch when creating a trip route system, the

unmatched record and its previous record for the same person on each day will

not be considered as stops These records' trip_id is set by 99999999. Convert trip

beginning time (S_time) and ending time (E_time) into seconds and store them m

two new fields (startt and endt) respectively.

Add fields startt and endt to the geocoded shape file's ftab.

Convert S_time into seconds and store it in startt.

Convert E_time into seconds and store it in endt

Create a unique value list for the nonuniid field called valuelist

59

For each value m the valuelist

Select records that nonuniid = value (i e select one individual's trip chains on

each day).

For each record in each individual's trip chains (i e the selected records)

If this record is unmatched ("Av_status = U") then set tnp_id = 99999999

If this record is unmatched and has previous record, then set previous

record's trip_id = 99999999

Loop

Loop

The sample data set's trip ends were geocoded by running these two Avenue

scripts. There were 95 records geocoded successfully among 100 records The geocoding

result was saved as geocode.shp (Figure 4.6)

Create a Trip Route System

Assuming each trip always take the shortest path, then a trip route system can be

created using Arclnfo network analysis functions In Arclnfo's Arcplot, the

NETCOVER command is used for creating a route system based on distance, time, cost,

or other measures Stops represent trip ends of a route. In this case, stops are the origin

and destination points of a trip Arclnfo assumes all stops are at nodes of the base

network. Stops are stored in an info file, m which node-ids are recorded. The stops info

file is connected with the base network by node-ids. Figure 4 7 shows a shortest path

route system data file structure STREETS is the base network coverage In the stop file

60

'* AlcView GIS J 2

Ele Edk Idbb Fjeld Wndow He^

11 HH® (UOIIJ i0 IBSiB S 0OQj MB ®
0 of [i od selected

V' Oflocodt^hp

Tor470831(j.shp

fil.

AUiibules of Geocode.shp

fclSMdS ves■IHZZSIIIiiHI ■SISEKS551ESB55EBISI!
Point _ 1700 1715 1542 Ebenezer Rd 319101311 131910131 M 83 3672000 367290^
PoW _ ikio 1542 Ebenezer Rd Tsi's"' 9189 Blue Gross Rd 3191013121 31910131 M 83 3888000 ^^'§0 !
Poirir" iSo 9189 Blue Gross Rd T945 " 1401 MourlieldRd 319i0lS3l3i9imS M ^ ra 41CBaM" 410670

Point ^5 1401 Mourfield Rd "21 ro " iiSiiWestiondDr 319101^41 sigl'oiTi M ^ 83 4322700 453800

Point 0645 7798 Nubbin Ridge Rd 7110 Northshore Dr ""siVioi'sifi'Siimsi""' M 83 ■" "1298700" 151200

Point 7110Northshore Dr
..

1456 Wrights Ferrji Rd "^91015121 3i9im51 M 83 324^20 348M8 !
Point Toio' ^ 1458 Wrights Ferr^ R d 7732 Queensbury Dr ^91015131 31910ii'51 M 83 ^140 3B'S34-J

— TTn n. , L rr. irm T.. ■ nT". 1 2 ^ fvi nt M < i -M n-t m ci ti 1 .. j Teninn j-ie-'v-.o

d:;;

Figure 4.6. Geocoding result (Geocode.shp) for the sample trip data set in Knoxville
Metropolitan Area. Tgr47093lka.shp is the Knox street network.

61

NETCOVER — STREETS RATPATH1 -route attnbute table

PATH 1#-route

PATH 1 -ID-route-id

NETCOVER-STREETS SECPATH1 -aection table

ROUTELINK#-route
ARCLINKi)!-arc

F-MEAS -from-cumulative impedance
T-WEAS -to-cumulative impedance
F-POS-from-poaition
T-POS-to-position
PATH iKt-section

PATHHD-aectionnd

STOPS —STREETS STP-stops file

STREETSHD-stopnodend
IN_ORDER-order
ROUT EJD - 0 ut p ut ro ut e
STOPJMP-stopimpedance
TRANSFER-transfer
CUMULJMP - cumulative impedahi
CUMUL TRANS-cumulative transt

STOPS-{[

S^

So

Stop

Figure 4.7. A shortest path trip route system named pathl based on STREETS network
coverage and STREET STP stops info file inArcInfo network analysis. (Source: Arclnfo
V. 7.2.1 Online Help).

named STREETS.STP, STREETS-E), the stop node-id in STREETS coverage, is a

required field. Other fields in STREETS.STP are optional. For example, IN_ORDER

means the creation of a route system by an order of stops. E there is no IN_ORDER field,

then routes are created by the sequence of stops (i.e. according to the stop sequence m the

Info table) ROUTE_ID is used to classify the stops into groups to make sequential

routes among each group. STOPS_IMP represents the impedance when a trip passes

through an intersection or stop. For example, travelers' speed might slow down when

passing through an intersection ST0PS_I1VIP can be set a value to represent blockade

62

time or cost TRANSFER represents a cost when travelers turn directions (to the right or

to the left) at the intersections

Some trip ends (origin and destination points) might not be at nodes. To overcome

the shortcoming of all stops being at nodes m Arclnfo, pseudo nodes must be created

based on these trip ends using the split command in ArcEdit After that step is completed,

network analysis functions can be used to create a route system Splitting a network using

trip ends that are not at nodes destroys the topology of the network The unspht command

can be used to restore the network topology after creating the route system. Unspht not

only updates the network coverage, it also updates route systems. Before creating a

shortest path route system, the geocode shp (Geocoding result from ArcView/A venue)

and the Tgr470931ka shp (the network shape file) must be converted into Arclnfo

coverages

An AML code was used to automatically create a trip shortest path system After

creating the trip route system, the section table is exported to a text file that is used to

create an array of 2-D trees for the streets. The following shows mam steps to create the

shortest path system

Input; an arc coverage (network including nodes) and a point coverage

(geocoding result).

Output: a shortest path route system, and a text file.

Procedure:

1 Splitting the network coverage using the point coverage and creating a stop info

file The stop file contains two fields, <network>-id, and route_id. <network>-id

63

stores node-ids, while route_id stores associated trip_ids started from this stop

route_id is used to classify stops into different groups to create shortest paths.

This creates one shortest path for each trip For each individual, the starting point

and ending point on each day will be added to the stop file once, all other points

will be added twice Thus a trip chains can be generated for each individual (each

shortest path is created by two adjacent nodes in the stop file)

In ArcEdit:

Create an info file that contains the unique values from the field of person id

(nonuniid) in the point coverage (this info file contains all individual ids)

Create a stop info file including <network>-id (node-id from the network), and

route_id m order to store stop node-ids and trip-ids.

For each record m the info file that contains nonuniid unique values.

From the point coverage, select all records that nonuniid = this info file's

nonuniid value (i e select all the trip ends for one individual on each day)

For each record in the selected set of the point coverage

Get this record's x, y coordinates, and select arcs using these coordinates

from the network coverage

If this record (point) is at either the from node or the to node of the selected

arc, then

Set the node's id to a variable ni.

Else if this point (record) is not at the from node, nor the to node of the

selected arc, then

64

Split the network using the coordinates of this point (x, y).

Set the new node's id to a variable ni.

If this record is the first or last one in the selected set of the point coverage, or

this record's tnp_id = 99999999, then

Add one record to the stop info file, set the value of <network>-id = ni,

the value of route_id = previous selected point's trip_id (for the first

selected record, its previous selected point's trip_id equals to its own

tnp_id)

Else if the previous selected point's trip_id = 99999999, then

Add one record to the stop info file, set the value of <network>-id = ni,

the value of route_id = this point's trip_id

Else

Add one record to the stop info file, set the value of <network>-id = ni,

the value of route_id = previous selected point's trip_id.

Add another record to the stop info file, set the value of <network>-id =

ni, the value of route_id = this point's trip_id

Loop

Loop

2 Create a shortest path route system using network analyst functions. Each

shortest path is created based on each route_id After a trip route system is

created, unsplit the network to restore network's topology and update the whole

trip route system

65

In Arcplot-

Initialize a trip route system based on the network.

Assign stops to the stop info file, assign route_id to this file's route_id, other

options are default.

Finish the trip route system based on stops

Go to Arcedit:

Select all arcs from the network coverage.

Unsplit them.

3 Create a text file containing information from the SEC table of the trip route

system. The text file contains Trip_id (trip's id from the geocode.shp), Arclink#

(street internal number), beginning time (when the trip enter the street), and

ending time (when the trip leaves the street) The point coverage's attribute table

(PAT)'s startt (starting time for each trip) and endt (ending time for each trip) are

already in the unit of seconds, so they can be used to interpolate the beginning

time and ending time when this trip passes through a street. The RAT will be

joined by the point coverage's PAT based on the <subclass>-id (user id) in the

RAT and Trip_id in the point coverage's PAT. The SEC table must be joined by

RAT based on the SEC table's RouteLink# and the RAT's <subclass>#.

Assuming speed is eonstant for each whole trip, beginning time and ending time

when a trip passes through a street are calculated by linear interpolation Finally,

export Tnp_id, Arc#, beginning time, and ending time to a text file

66

In Arc:

Build relationship between RAT and the point coverage's PAT (using relate

function) based on RAT's <subclass>-id and the PAT's Trip_id.

Build relationship between SEC table and RAT (using relate function) based on

SEC table's RouteLink# and RAT's <subclass>#

Go to ArcEdit.

Add beginning time and ending time fields to the SEC table.

For each route (trip)

Select from the SEC all sections that are parts of this route (trip)

Set the f-meas of the first selected section to variable f.

Set the t-meas of the last selected section to variable t.

Calculate beginning time = startt + (endt - startt) * (f-meas - f) / (t - f).

Calculate ending time = startt + (endt - startt) * (t-meas - f) / (t - f)

Loop

Go to Tables

Unload the section table's Trip_id, ArcLink#, beginning time, and ending time

fields to a text file

For the sample problem, there are 72 trip shortest paths created. Figure 4 8 shows

the trip route system (called paths)'s structure AAT (Tgr470931ka.aat), RAT

(Tgr470931ka ratpaths), SEC (Tgr470931ka.secpaths), and their interrelationships Figure

4 9 shows the output text file

67

1 AicViewGIS 3.2 HQQ]
£le £d^ Xabte Rdd Window

[Ml SHIM]
tl°k>

[o| lU [HE|[g a \Mj} S]B M
Oofi' 2E005selaclad IfelJiltl

HEBai
Otoeodt

Tgr47003ka

7V—-

□TxllEiU
A99!MICr f-mtm f"0O*

0.000 0.004
0.004 0.005
0.005 0.008

24491 0.008 0.009
24492 0.G13

0.01325937 0.01

0.000 0.00525937

24524 0.005 0.007
nm? nnR

0.3421 100.0001 1 , 1 36000 36524

0.0001 100.0001 2 2 , 38K4 36551

0.000 i 100.0001 3
r 3 3G973

0.000! 100.0001 4 4 1 3S9'73 I" 37051
0.0001 ioaoool 5 S" 5 37051 37494

0.000 i d.857l 6 L 6 37494 37500

0.8571 100.0001 7 r 7 39000 39^5
0.0001 100.0001 8 ^ 8 39255 39328
n firm I innnm! q qq^?

315104111

"3T5T04Ti"2
"ITsTmiTS'

315104114
315104115
318108121
318108122

8 318108123

'<* tgf470931kd aal
mzmm mgnmK^5^3HE53iEBj!^ mmmssmmm

39 38 0 0 0.000 37 37:^ 42601789 25: 24 Pine HII lP' A41

39 "40 0 0 0.002" 38 38 42601790 25 28 Lovelace ML. A41

42 41 0 6j 0.000 39 42601791^ 15 'mT
42 38 0 0 d.003 40 40 42601792 18 25 Lovdece Rd A^i"
43 37 0 0.003 41 41 42601793 2 4 A41

44 42 d" ^ C["6"07 42 42 r 42601795 5 18 Lovdece A4T
'46" 45 0 0 dd^~ 43 43: 42601796 20 39 Qe^ge Lovelace Ln A41

41 37 0 0 0.007 44 44 42601808 15 4
gBaiamaU

A41

Figure 4.8. A sample trip shortest path route system on Knox network. The Arrows show
the interrelationship between AAT, RAT, and SEC table.

68

AfcView GIS 3.2

Eile Edit lable Held tfmdow Help

Qua

m m HID III

Oof 762 selected

"j secpalhs.lxl HSOl
T4p_xf Pfibje 1

1

i 3151041111 2593G i 36000 36524 ±1

315104111 6061 36524 36551 J.
315104111 691 i 36551 36973

315104111 24491 i 36973 37051 1
315104111 24492 i 37051" 37494 1
315104111 259371 37494 37500

315104112 25937 j 39000 39255
'M '

315104112 24524 i 39255 39328

315104112 24525 i 39328 39362

315104112 24285 i 39362 39434

315104112 24286 i 39434 39491 li
315104112 23862 i 39491 40294 , t

315104112 24290 j 40294 40357 ' '" i; 4

315104112 24289 i 40357" 40416

315104112 8531 40416 40448
▼ 1:
m

iiRiniii?

^1
Iniifi' ifiiqq

-j_j
. .1 -j

Figure 4.9. A sample textfile exported from the section table of the trip route system.
Trip id is the unique id of each trip; Tgr47093lka# is the street internal id; Btime and
Etime are starting and ending times (in seconds) when a trip traverses a street.

69

Chapter 5

Temporal Indexing

In this chapter, an array of 2-d trees for those streets on which trips pass will be

built to speed up the spatiotemporal query discussed in Chapter 3. The 2-D tree structure

will be described first, then the C++ program that contains the three DLL functions (one

for building an array of 2-D trees, the other two are for temporal queries) is discussed

Finally, the Avenue script used to call the DLL function to create an array of 2-d trees is

presented.

Generic Description of 2-D Tree Structure

The 2-D tree structure is in fact a "2-dimensional binary search tree". This

structure is a natural generalization of the standard one-dimensional binary search tree;

It's also a special case of the K-D tree (k-dimensional binary search tree) structure The

2-D tree and the K-D tree were proposed by Bentley (1975) In a 2-D tree, each node can

have at most two children (left child, right child) There are two keys for comparison to

decide the position of a node m the tree For a node, one of the two keys of its left child is

always less than its own; one of the two keys of its right child is greater than its own. The

2-D tree has the property that branching at an even level (assuming the root is at depth 0)

IS done with respect to the first key, and branching at an odd level is done with respect to

the second key. For temporal querying, the first key is the beginning time and the second

key IS the ending time

70

Figure 5 1 shows a general 2-D tree structure X, Y are two keys of a node, Left,

and Right represent pointers pointing to the left child and right child respectively. Data

stands for the additional data fields of a node. In order to build a 2-D tree, nodes are

compared with X at even depths and Y at odd depths (the root is at depth 0). The first

point (node) is the root; the second point (node) is the right child of the first point, since

X of the second point is greater than X of the first point, the third point is the left child of

the second point; since Y of the thrid point is less than Y of the second point and X of the

third point is greater than X of the first point.

X y IFFT RIGHT DATA

X y I FFT RIGHT DATA

• < Y y IFFT RTOHT DATA

Figure 51. A generic 2-D tree structure. (Source- Worboys, 1995)

71

Figure 5.2 shows an example of building a 2-D tree for trips based on trip starting

time and ending time The first, second, and third columns of each trip record represent

trip id, beginning time, and ending time respectively. All trips are sequentially inserted

to a 2-D tree Trip 1 is inserted to a null 2-D tree first, and becomes the root Since trip 1

IS at even level (depth = 0), trip 2 is compared to trip 1 with respect to beginning time and

becomes the right child of trip 1 (beginning time of trip 2 is greater than that of tnp 1).

When inserting trip 3, trip 3 is compared to trip 1 to decide on which side (left or right)

trip 3 ought to go Since beginning time of trip3 is greater than that of trip 1, trip 3 will go

to trip I's right child Then tnp 3 is compared to trip 2 with respect to ending time (trip 2

IS at odd level) and becomes the left child of trip 2 (the ending time of trip 3 is less than

that of trip 2) Similarly, trip 4 becomes the left child of trip 1, trip 5 becomes the right

child of trip 2, and trip 6 becomes the left child of trip 3

Several kinds of queries are possible on a 2-D tree (Weiss, 1997). A range query

searches nodes whose first key is between a specified set of values and whose second key

IS between another specified set of values An exact match searches for a node whose

first key and second key are exactly equal to predefined values. A partial match query

searches nodes based on one of the two keys (i e one of the two keys equal to a value)

The exact match and partial match queries are both special cases of range query

Weiss argues that the running time of a range query depends on whether or not

the tree is balanced or a partial match is requested, and how many items are found For a

balanced tree, the range query takes 0(M + hme m the worst case. M and N

represent the number of nodes found and total number of nodes, respectively

72

Tnp 1 20

Tnp 4 7 10 Tnp 2 20 30

Tnp 3 15 25 Tnp 5 25 40

Tnp 6 20

Figure 5 2 A sample trip 2-d tree based on starting time and ending time. The first
column of each data is trip id, the second and the third columns are starting time and
ending time Trips are inserted into the 2-d tree sequentially (i.e. by tripl, trip2, tripS .)

A 2-D tree is a simple data stmcture for range query. In GIS, the two keys of 2-D

tree can be seen as x and y coordinates of points Therefore, 2-D tree range query can be

fit for points However, 2-D tree suffers from the problem of its structure depending on

the order m which nodes are inserted (Worboys, 1995). Different node insertion orders

result m different 2-D trees. In the worst case, the 2-D tree has the height of the total

number of nodes.

73

Create an Array of 2-D Trees

From the trip route system, a text file containing route_id, arc#, starting time, and

ending time is created This text file contains information about each trip, its related arcs,

and the time window when this trip passes through those related arcs. Based on this text

file, all trips (including time windows) passing over each specific street can be identified.

Next, one 2-D tree recording the trips' ids and time attributes will be built for each

specific street segment To speed up spatiotemporal query, streets' internal ids (Arc#) are

stored in a sorted array, and each data item in this array has a pointer pointing to the 2-D

tree structure (Figure 5 3).

C++ and Avenue together are used to build this array of 2-D trees. C++ is used to

create some dynamic-link library (DLL) functions for an Avenue script to call. A DLL is

an executable module that contains functions that other applications can use to perform

Arc 1

(Arc#)
Arc 2

(Arc#)
Arc 3

(Arc#)

Arc 4

(Arc#)
• ••

Arc n

(Arc#)

Figure 5.3 The structure of an array of 2-D trees. An ordered array of arc#. For
each arc#, there is a pointer pointing to a 2-D tree based on starting time and ending
time.

lA

tasks DLLs are linked to an application at run-time. Three C-i~i- files (twod.h, twod cpp,

and Buildlndex.cpp) are used to create three DLL functions (two query functions, and

one function for building an array of 2-D trees). One Avenue script is used to call the

DLL function that creates an array of 2-D trees based on streets and stores them m

memory. These C++ files are now described in detail.

L twod.h the header file for creating a 2-D tree structure. This file defines a 2-

D tree structure and functions or procedures m C++ Each 2-D tree has a root

node A node is composed of one time array that contains two elements (i.e

beginning time and ending time), one trip id, and two pointers pointing the left

child and the right child Node insertion and range searching procedures for a

2-D tree are defined.

2. twod.cpp: the file used to build a 2-D tree, and perform a range query.

Building a 2-D tree (inserting nodes into a 2-D tree) is composed of two

procedures: recursively insert one item or trip (including trip id, beginning

time, and ending time), and insert one node to a 2-D tree.

Recursively insert one item: recursively comparing this item to 2-D tree nodes

to decide its position in the tree.

Input; an item array (item []) which includes three elements: beginning time,

ending time, and trip id, a pre-known node called tnode, and one binary integer

75

called level to measure whether this pre-known node is at even or odd level. 0 and

1 represent even level and odd level respectively

Return; a 2-D tree node.

Procedure:

If tnode IS null, then

Create a new tnode, and set the fields or values of this tnode by the item[] This

tnode's pointers pointing to its left child and right child are set to null.

Else if Item [level] less than time [level] of the tnode, then

Recursively insert this item to the tnode's left child, level will become Ilevel (if

previous level is 0, then this level will be 1, vice verse)

Else

Recursively insert this item to the tnode's right child, level will become Ilevel.

Insert one node to a 2-D tree:

Input: a 2-D tree T, and an item array item [].

Procedure:

If T's root IS null, then

Create a new node, set the fields and values of this node by item[], and set T's

root as this node.

Else

Call the recursively inserting procedure. The current node is T's root, and level

IS 0 item[] will begin to compare and insert to T from T's root

76

Range query in a 2-D tree is also composed of two procedures

RecPrintRangeO and PrintRange() RecPrintRange() recursively query if nodes of

the 2-D trees satisfying the range query condition, and output query results into a

text file PrmtRangeO is used to query from the 2-D tree with a range of rectangle

for beginning time and ending time

RecPrintRangeO:

Input; one array of two elements called low [] (low ends of beginning time and

ending time), one array of two elements called high [] (high ends of beginning

time and ending time), one 2-D tree node called tnode, and one binary integer

level (0 or 1, represents even or odd level of tnode)

Output: a text file storing the query results

Procedure:

If tnode IS not null, then

If tnode's time elements (beginning time and ending time) are between the

range of low [] and high [], then output this node into a predefined text file

If low [level] less than time [level] of tnode, then

Recursively apply this procedure- RecPrintRangeO to tnode's left child, set

the level to Ilevel.

If high [level] is greater or equal than time [level] of tnode, then

Recursively apply this procedure RecPrintRangeO to tnode's right child, set

the level to 'level

77

PrintRan2eO:

Input: one array of two elements called low [] (low ends of beginning time and

ending time), one array of two elements called high [] (high ends of beginning

time and ending time), and a 2-D tree T.

Procedure:

Apply RecPrintRangeO procedure to T's root, and set level to 0.

2^ Buildlndex.cpp: build a temporal index. There are three DLL functions:

BuildlndexO, QueryTimel(), and QueryTime2().

BuildlndexO: create an array of 2-D tree structures for streets based on time

elements (see Figure 5 3) A 2-D tree structure called arcStruc is composed of

arcid (integer) and one 2-D tree.

Input: a text file containing trip_id, arc#, beginning time, and ending time

Return: a pointer to an array of 2-D tree structures

Procedure:

Read all values of arc# field from the text file and insert arc#s to a set (a set is

composed of unique and ordered elements)

Allocate memory for an array of arcStruc (i e. create an array of 2-D tree

structures space), assign the values of arcid fields by the set.

Read in each record from the text file including trip_id, arc#, beginning time, and

ending time

Get the middle element from the array of 2-D tree structures' arcid field,

78

If this record's arc# equal to this element, then insert this record into the 2-D tree

related to the element by calling 2-D tree insertion procedure.

Else if this record's arc# less than this element, then apply the same strategy to the

left parts of the array of 2-D tree structures from this element

Else if this record's arc# is greater than this element, then apply the same strategy

to the right parts of the array of 2-D tree structures from this element

Loop

Return this array of 2-D tree structures.

QuervTimelQ: query the array of 2-D tree structures based on one arc (street) id

and range of beginning time and ending time This procedure is used to query one

arc

Input; one pointer (an array of 2-D tree structures), arc id, lower end of time

range, and higher end of time range

Output: a text file storing the query result.

Procedure:

Get the middle element from the array of 2-D tree structures' arcid field.

If this arc id equal to this element, then call PrmtRange() procedure.

Else if this arc id less than this element, then apply the same strategy to the

left part of the array of 2-D tree structures from this element.

Else if this arc id is greater than this element, then apply the same strategy to

the right part of the array of 2-D tree structures from this element.

79

OuervTime20: query the array of 2-D tree structures for a set of streets based on

range of beginning time and ending time.

Input: one pointer (an array of 2-D tree structures), one input text file containing

arc ids, lower end and higher end of time range.

Output: a text file storing the query result

Procedure:

Read m each arc id from the input text file

Get the middle element from the array of 2-D tree structures' arcid field.

If this arc id equal to this element, then call PrmtRange() procedure.

Else if this arc id less than this element, then apply the same strategy to the

left part of the array of 2-D tree structures from this element.

Else if this arc id is greater than this element, then apply the same strategy to

the right part of the array of 2-D tree structures from this element.

Loop

4. BuildTrees: an Avenue script used to create an array of 2-D tree structures

from a text file, and store this structure as a pointer m memory m the form of a

global variable The benefit of storing the address of an array of 2-D tree

structures as a global variable is that a global variable remains in one ArcView

application until this application is closed or until the ClearGlobals request

executes Therefore, different spatiotemporal queries can be performed based on

this structure

80

There are three steps to call a DLL function or procedure in Avenue. First,

create a DLL object, then create a DLLProc corresponding to a procedure in the

DLL. Finally, execute the call request on the DLLProc (ArcView V. 3.2 Online

Help).

Input; a text file from the SEC table of a trip route system

Return: a pointer to an array of 2-D tree structures

Procedure:

Clear all global variables.

Create a DLL object from BuildIndexDLL.dll file (a DLL file containing the three

DLL functions)

Make a DLLProc from the procedure of Buildlndex() in the DLL

Call this DLLProc by using the input text file and store the calling result as a

global variable

Make a DLLProc from the procedure of QueryTimel() m the DLL and store it as

a global variable.

Make a DLLProc from the procedure of QueryTime2() m the DLL and store it as

a global variable

BuildTrees script is executed by clicking the Button C in an ArcView View GUI

(graphic user interface, see Figure 6.1) The sample text file exported from SEC table of

the trip path system is called secpaths.txt. When BuildTrees script is executed, the

BuildlndexO function is called to create an array of 2-D tree structures based on the

81

secpaths txt. This array of 2-D tree structures is stored in memory for a spatiotemporal

query script to call In the meantime, the two temporal query functions (QueryTimel()

and QueryTime2()) are also stored as two global variables for the spatiotemporal query

script to call. Next chapter will explain this spatiotemporal query script and the

implementation of the spatiotemporal query.

This chapter has discussed the 2-D tree and an array of 2-D tree structures based

on starting and ending times for trips when traversing each street The C++ program that

includes three DLL functions for building temporal index and temporal queries are

described. Finally, the temporal index (an array of 2-D tree structures) is created for the

sample data set

82

Chapter 6

Spatiotemporal Query and Its Implementation

After an array of 2-D tree structures is created, an Avenue scnpt is used to

perform the spatiotemporal query. In this chapter, the spatiotemporal query Avenue script

IS described first, then some query examples are implemented

Spatiotemporal Query Code Description

One Avenue script called stquery.tool is used to perform the spatiotemporal query

(i e which trips pass through a set of streets within one time window). In this script, an

ArcView spatial query function is applied on the trip route system's network coverage to

get Arc#s (i e street intemal ids), then temporal query functions (DLLs created in C++)

are used to search the array of 2-D tree structures to identify those trips that meet the time

constraints Finally the query results will be shown on the map and in a report box. The

following shows the contents of this script

There must be a trip route system and an array of 2-D tree structures of trips based

on time ranges for the streets for this procedure to be run.

Input; Users select streets, and a time window.

Output: a report window containing query results (i e. selected trips, and their

beginning time and ending time pass through those specific streets), and the query

results are shown on the map (trip route system)

Procedure:

Use aView.RetumUserRect command to get a rectangle from the user on the map
83

(View) in order to select street(s) from the network coverage

If this rectangle is null, then

Use aView GetDisplay RetumUserPoint command to get the location of the

mouse on the map display m order to select street(s) from the network

coverage

Use anFTheme SelectByPoint command to select features (streets) of the

anFTheme (the network coverage) at the mouse location

Else

Use anFTheme SelectByRect command to select features (streets) of the

anFTheme (the network coverage) within the rectangle area

If the number of selected street(s) is greater than or equal to 1, then

Get the time range: lower end and higher end, and convert them into seconds.

If the number of selected street(s) equals to 1, then

Get the selected street's internal id.

Call the DLLProc that contains QueryTimel() function to perform temporal

query on the array of 2-D tree structures based on the street internal id and time

range, and store the result trips in a text file.

Read in the text file

For each record (trip) of the text file

Use aFTab Query command to query the trip route attribute table by the

trip_id of this record

Loop

Display the text file as a message box report

84

Close the text file

Else if the number of selected streets is greater than 1, then

Add those street internal ids into a list

Create a text file

Write those street internal ids from the list into this text file.

Call the DLLProc that contains QueryTime2() function to perform temporal

query on the array of 2-D tree structures based on the text file and time range,

and store the results m an output text file

Read in the output text file

For each record (trip) of the output text file

Use aPTab Query command to query the trip route attribute table by the

trip_id of this record

Loop

Display the output text file as a message box report.

Close the output text file

Implementation and Examples

The spatiotemporal query function is performed in an ArcView application. The

trip route system is loaded into a View (Figure 6.1). A geocoded theme consisting of trip

origin ends and last destination ends for each individual on each day is created using the

methods described in previous chapters. The Tgr470931ka theme is the Knox street

network coverage Paths theme is the trip route system

85

One button and one tool have been added to ArcView for performing the

spatiotemporal query. The button containing icon C is used to create an array of 2-D tree

structures of trips based on starting time and ending time for streets. In an ArcView

application, this button should be clicked only once, since the array of 2-D tree structures

are stored in memory as long as the ArcView application exists. Figure 6.2 shows how to

create an array of 2-D tree structures by loading the BuildlndexDLL dll file. The tool

containing icon Q is used to perform the spatiotemporal query. After the array of 2-D tree

structures is created, users can use the tool to repeatedly perform spatiotemporal queries

In the sample project, the Tgr470931ka theme should be active. Users select street(s) by

drawing a rectangle box or clicking one point on the view Then a time window message

box appears, and users can specify a time range during which trips pass through the

specific street(s) (Figure 6.3, 6.6) The low and high ends of a time range are both in the

format of HHMM (concatenation of hours and minutes) Finally all selected trips will be

shown on the map and m a message box report.

Figure 6 3 to Figure 6 8 show two examples of the spatiotemporal query on one

street and a set of streets respectively.

Example one: during 8 00 am - 9:00 am, which trips pass through the specific

street? After keying the spatiotemporal tool down, the user selects the specific street by

drawing a rectangle box or clicking on that street. The user then inputs the time range in

the message box (Figure 6.3). Finally, the trip 402117011 (Trip_id) is selected and shown

in a message box report (Figure 6.4) and on the map (Figure 6 5)

Example two: during 17:00 - 19*00, which trips pass through a set of streets'^ If

the spatiotemporal tool is down, the user can select a set of streets by drawing a rectangle

86

Geocode

addresses of

an event

table

Spatiotemporal
query: query trips
passing through
one or more

streets within a

time window

Create an

array of 2-D
tree structures

'graphics Window Help

SSffl [fijlUS
Fde

mm
Scale 1:| 254.465

V".^ 9«ooode

" /V
^ TgtirOOSka

■ A/

jj

Figure 6.1. The user interface ofa spatiotemporal query function on a trip route system.

87

iAieViieWrGIS'3.2

Ele £dt yiew Iheme Qtaphics Umdcw Help

OnTxl

w C m ^11A 9 'Si ¥:!o m
|o Q f!'M Scate 1:1254.465

[QLil
aMx

^ Oeooodc

^ T8f47Ci83kj File Name:
/Ay I bulldindeKdlLdll

m

Directories:

c'vfeng

rEiT"

DK

Cancel

□ geocode
CU info
Q tgr47093lka

Drives

3 F-
ust Res of Type:
I DLU'.dll) 3

Figure 6.2. Create an array of 2-D tree structures by loading a DLL file.

88

; Ele £di ^iew Iheme Graphics Window Udp

@1 c t" m ift #1 ¥!

loioi^iM-bica Scale 1; 107,429 -84.10 ♦♦
35.96 t

□ X

Ocooodt

" A/
<1^ Tgt47093ka
:_./yL

Time Window

Enter a ime penod
OK

Lower end of the time window 0800

Cancelhigher end of the time window |0900

A

A
-J-J
JJ

Figure 6.3. the time window (8:00 am - 9:00 am) of the spatiotemporal query on one
street (example one).

89

□IS.
£ie Edit Viem Iheme Eraphics l^ndow Help

? iMlfDI IM
OIQI IN |-b|(&liaiOi^i f 1 Scale 1:| 107,429 4.17 «

5.96 t

■iWtlMpiVi.api

^ Otocode

P'thi

A/
HH, Tgt47083kj

„_..._A/

□sS

Tilp_ld. Begining Time (seconds). Ending Time (sec

402117011 29400 30258

□ IX

OK

Figure 6.4. The message box report showing the spatiotemporal query result on one
street (example one).

90

AfcView GIS 3.2

Ble Edit lable Field Window Help

Ml [jjiPB] S OOEi n;
1 of 72 selected ITMl

■r=ni—»l
□ X

^ Otocodc

V] Paths
A^:

^ Tgt470g3kj
■ A/

::s:

V

t'J Attributes of Paths Bl i]E3
.TAanp \P^ 1

PoliiLine. , _ 7\ 402117011

PolyLine i i 315104111

PolyEine 1 2 315104112

PolyLine J 3_ 3^5104113
Poj^Line i.. 315104114
PolyLine 1 5 315104115

PolyLine 1 B 318108121
Po^iLine r 7 318108122

Figure 6.5. The selected paths showing the spatiotemporal query result on one street
(example one).

91

Eie

fa

B5SHB0H
Edit l^ew Iherr*

B]
Qraphics i dow Help

f SI <^>'i
Tor

• •

■BjllllH

o @

Oeocodc

« P'ths
A/

^ Tgt47003l(j
.._..A/

^ Time Window

Enter a bme period

Lower end of the dme twdow 11700
OK

Hghet end of the time window h^OO Cancel

Origin; (-84.07,35.88) dg Extent (1.08,0.99) mi Area: 1.07 $q mi

Figure 6.6. The time window (5:00 pm - 7:00 pm) of the spatiotemporal query on a set
of streets (example two).

92

Eie Edit View Iheme fitapNcs Window Help

^ 1 + 4 M!9 0
It N "bi XaI Scale 1:181.191 7

n X

Oftooodtt

ntH
A/

^ Tgi470e3l«

:.._zv

•SRr\

Trip Id, Begining Time (seconds), Lnding Time (sec

319101311

319101311

319103033

319101311

319103033

319103033

319101311

319103033

319103033

319103033

319101311
•31 qi n-snT;

61646 61667

61667 61701

63785 63855

61809 61850

54545 64584
64584 64628
51772 61809

54320 54372

64483 54545

54017 54148

52015 52042
cyi'jQC omn

OK

Figure 6.7. The message box report showing the spatiotemporal query result on a set of
streets (example two).

93

Q AicView GIS 3 2 mmts]
Be £dil :labie Field Mridow

o

Help

[§j [mI IM! (9 i E; lib. io ®
i 3 of 72 selected E

V) €*ooode r—tj^

IQ Tgi47093l<j

A/

-tv

r>^

\ CTZ

Zfnm

?
Atliibutes ot Paths

Pjihfi P^-id

Poly e 9 319101311

Poly e 18 319103012

Poly e 22 319103033

Poly e i' 315104111

Poly e 2 3^5104112
Poly

e

3 315104113

4 315104114

Poly e 5 315104115

Figure 6.8. The selected paths showing the spatiotemporal query result on a set of
streets (example two).

94

box, then input the time range into the time window (Figure 6 6) Finally the trip

319101311, 319103012, and 319103033 (Trip_id) are selected and shown m a message

box report (Figure 6 7) and on the map (Figure 6.8)

95

Chapter 7

Conclusions and Future Research

In this study, spatiotemporal index on the trip data is built by combining

ArcView/A venue, Arcbifo/AML, and C++. This spatiotemporal index is used to answer

the question about which trips pass through one or more specific streets during a time

period All the trip origin ends and those last destination ends for each individual on each

day are geocoded using Avenue scripts. The trip shortest path route system is created

based on the geocoded locations, and Arclnfo dynamic segmentation and network

analysis functions. An array of 2-D tree structures based on each trip's beginning and

ending times and each street segment traversed is then created m C++ and Avenue This

array of 2-D tree structures is stored m memory. Finally, the spatiotemporal query

function IS performed by examining an array of 2-D tree structures for a given time

window using Avenue and C++

This study explores the spatiotemporal query problems for trip data. The

spatiotemporal index developed is used to solve the spatiotemporal query problem for

large trip data sets. If the size of a trip data set is small, there will be no need to develop

such an index. Even though this study can only solve one kind of spatiotemporal query

problem, it shows that efficient data structures can be created to solve complex

spatiotemporal query problems for large data sets. An efficient trip data model (i e. how

to represent disaggregate transportation data in a GIS environment) is the foundation for

spatiotemporal queries and other data manipulation and analysis.

96

However, some shortcomings can be identified m this research. First, trips are

assumed to take shortest paths. In fact, travel behavior is complicated. Thus, tnps do not

always take the shortest paths. Second, the spatiotemporal index can only solve one type

of spatiotemporal problem, while there are several kinds of spatiotemporal query

problems for disaggregate transportation data. The spatiotemporal index developed in this

thesis can only solve the problem about which trips pass through one or more street(s)

during a time window It cannot solve a similar problem about which tnps pass through

point locations or partial streets during a time window. Third, this spatiotemporal index

IS m fact the combination of spatial index and temporal index. Since a 2-D tree structure

IS only fit for point or non-dimensional search (Worboy, 1995), this structure cannot be

used to perform the spatiotemporal query for trip data itself. The spatial query function m

ArcView is used first to get selected streets, then 2-D tree structures are used to query

trips passing through these streets during a time window. In fact, the array of 2-D tree

structures is only a temporal index, since it is built based on beginning time and ending

time. Finally, this spatiotemporal index can only be used to query historical trip data

Assuming trip information and streets do not change, it is a static data structure If trips or

streets change, the array of 2-D tree structures will have to be rebuilt If the data set is

very large, this can be quite time consuming.

In future studies on spatiotemporal queries for disaggregate transportation data,

there are at least three aspects to be considered.

Data collection: traditionally, disaggregate transportation data or trip data are

collected by travel surveys, which usually record trip origin and destination addresses,

and neglect other intermediate locations. Since GPS techniques can identify the location

97

of moving objects, they should be used in travel surveys. Trip intermediate points will be

recorded by GPS; therefore, trip paths can be clearly identified The inexactness of the

shortest path as a trip path will be overcome. In addition, after the spatiotemporal index is

created, a large trip data set should be used to implement the spatiotemporal query.

Data model; A trip data model is the foundation of data retrieval, manipulation,

and analysis. In this study, trip spatial information (trip path) is represented by dynamic

segmentation, while trip temporal information is considered as an attnbute of tnp spatial

information Shaw (2000) suggests a new trip data model combining tnp spatial and

temporal information together using the dynamic segmentation approach. Chapter 2

introduces this data model. Since trip spatial and temporal data are integrated parts of

this data model, spatiotemporal manipulation, retrieval, and analysis can be easily

handled. In the future, this approach can be adopted as a base to build spatiotemporal

indexes

Index structure; If the 2-D tree structures are used to build a spatiotemporal

index, these trees should be balanced first to speed up query. On the other hand, 2-D trees

should be saved in a disk file Since 2-D tree is a static structure, it is difficult to handle

dynanuc trip data (i.e trips or streets change) Robinson (1981) proposed KDB-tree

(combination of the KD-tree structure with the B-tree idea) to handle dynamic data. The

KDB-tree structure might be a replacement of the 2-D (or K-D) tree structure. In

addition, trip paths are one-dimensional linear objects, some multi-dimensional spatial

data structures such as R tree and R+ trees should be explored in spatiotemporal queries

for trip data.

98

REFERENCES

99

References

Ahn, I and Snodgrass, R. (1988) Partitioned Storage for Temporal Databases,
Information Systems, 13(4), pp. 369-391.

Arc/Info Online Help Documents, Dynamic Segmentation.

Arc/Info Online Help Documents, Network Analyst.

ArcView Online Help Documents, Geocodmg.

Bentley, J L (1975) Multidimensional Binary Search Trees Used for Associate
Searching, Comm. A CM, 18, pp 509-517

Ben-Zvi, J (1982). The Time Relational Model, Ph.D. Dissertation, Computer Science
Department, UCLA.

Chrisman, N R (1983). The Role of Quality Information in the Long-term Functioning of
a Geographic Information System, in Proceedings ofAuto Carto 6, Vol. 2, (Ottawa-
Steering Committee of the Sixth Intemational Symposium on Automated Cartography),
pp. 303-321

Clifford,! and Warren, D S (1983) Formal Semantics for Time in Databases, ACM
Transactions on Database Systems, 8 (2), pp 214-254.

Clifford, J , and Tansel, AU (1985) On an Algebra for Historical Relational Databases,
in Proceedings of the SIGMOD'85 Conference (New York. ACM), pp 247-265.

Dangermond, J (1984). A Classification of Software Components Commonly Used m
Geographic Information Systems, m Proceedings of the U.S./Australia Workshop on
Design and Implementation of Computer-Based Geographic Information Systems,
(Amherst: IGU Commission on Geographical Data Sensing and Processing), pp. 70-91

Date, C J. (1995) An Introduction to Database Systems, 6"^ edition (Reading- Addison-
Wesley Publishing Company).

Dictionary of Computing, (1996). 4* edition (New York: Oxford University Press)

Dueker, K.J and Butler, J A. (1997). GIS-T Enterprise Data Model with Suggested
Implementation Choices, Center for Urban Studies, Portland State University.

100

Dueker, K. J (1999) GIS-T Data Sharing Issues, Draft Discussion Paper 99-02, Center
for Urban Studies, Portland State University.

Elmasri, R et al (1990). The Tune Index - An Access Structure for Temporal Data, in
Proceedings of the Conference on Very Large Databases. Brisbane, Australia.

Elmasri, R. et al (1991). Efficient Implementation Techniques for the Time Index, m
Proceedings of the Seventh International Conference on Data Engineering.

Elmasri, R , et al (1992) Partitioning of Time Index for Optical Disks, in Proceedings of
the International Conference on Data Engineering. Golsham, F. (Ed), IEEE, Phoenix,
AZ,pp 574-583

Gadia, S K. (1986) Toward a Multihomogeneous Model for a Temporal Database, m
Proceedings of the International Conference on Data Engineering, (New York IEEE),
pp. 390-397.

Goodchild, M F (2000). GIS and Transportation Status and Challenges,
Geolnformatica, forthcoming

Goodwin P (1983) Some Problems m Activity Approaches to Travel Demand, In
Carpenter, S. and Stopher P (Eds) Recent Advances in Travel Demand Analysis,
Aldershot, UK. Gower Publishing, pp. 470-474.

Gunadhi, H and Segev, A (1991). Efficient Indexing Methods for Temporal Relations,
IEEE Transactions on Knowledge and Data Engineering

Hagerstrand T. (1970). What about People in Regional Science? Papers of Regional
Science Association, 24, pp. 7-21.

Japan Ministry of Construction, Comprehensive Plan for ITS m Japan.
www Its go ip/ITS/5Ministries/index html

Japan Ministry of Construction, System Architecture, www its go ip/lTS/mdex/indexSA html

Kolovson, D. and Stonebraker, M (1989). Indexing Techniques for Historical Databases,
in Proceedings of the Fifth International Conference on Data Engineering. Los
Angeles, CA, pp. 127-137

Kolovson, C. and Stonebraker, M (1990) S-Trees Database Indexing Techniques for
Multi-Dimensional Interval Data, Technical Report UCB/ERL M90/35, University of
California.

101

Kolovson, C.P. (1990). Indexing Techniques for MuIti-Dimensional Spatial Data and
Histoncal Data in Database Management Systems, Ph.D. Dissertation, University of
California, Berkeley.

Langran, G and Chrisman, N R (1988) A Framework for Temporal Geographic
Information, Cartographica, 25 (3), pp. 1-14.

Langran, G (1992). Time in Geographic Information Systems (London: Taylor &
Francis), pp. 37-44, 55-67, 95-157

Leung, T.Y. and Muntz, R. (1992). Generalized Data Stream Indexing and Temporal
Query Processing, m Second International Workshop on Research Issues in Data
Engineering: Transaction and Query Processing.

Lomet, D. and Salzberg, B. (1990) The Performance of a Multiversion Access Method,
m Proceedings of ACM SIGMOD International Conference on Management of Data.
Atlantic City, pp. 353-363.

Lum, V. et al (1984) Designing DBMS Support for the Temporal Dimension, in
Proceedings of ACM SIGMOD International Conference on Management of Data
Yormark, B (Ed.), Association for Computing Machinery, Boston, MA, pp 115-130.

Miller, H.J. (1991). Modeling Accessibility Using Space-time Prism Concepts Within
Geographic Information Systems, International Journal of Geographical Information
Systems, 5, 287-301.

Miller, H.J. and Shaw, S.L. Geographic Information Systems for Transportation -
Principles and Applications, forthcoming

Moreira, J. et al (1999). Representation and Manipulation of Moving Points: An
Extended Data Model for Location Estimation, Cartography and Geographic
Information Science, 26 (2), pp 109-123.

Pas, E (1990). Is Travel Demand Analysis and Modeling in the Doldrums? In Jones, P.
(Ed.) Developments in Dynamic and Activity-based Approaches to Travel Analysis,
Aldershot, UK. Gower Publishing, pp. 3-27.

Peuquet, D. (1994). It's About Time: A Conceptual Framework for the Representation of
Temporal Dynamics m Geographic Information Systems, Annals of the Association of
American Geographers, 84 (3), pp. 441- 461

Peuquet, D and Niu, D. (1995). An Event-based Spatiotemporal Data Model (ESTDM)
for Temporal Analysis of Geographical Data, International Journal of Geographical
information systems, 9 (1), pp.7-24.

102

Peuquet, D. and Qian, LJ. (1996) An Integrated Database Model for Spatiotemporal
GIS, 7"" International Symposium on Spatial Data Handling, pp 21-31.

Peuquet, D. (1999). Time in GIS and Geographical Databases, Geographicallnformatwn
Systems, edited by Longley, P. et al. (New York- John Wiley & Sons, Inc.), pp. 91-103.

Qian, L.J. and Peuquet, D. (1998). Design of a Visual Query Language for GIS, The 8th
International Symposium on Spatial Data Handling, Vancouver

Quiroga, C et al (1998) A GIS-GPS (Dynamic Segmentation) Methodology for
Conducting Travel Time Studies, http //www rsip Isu edu/proiects/ttg/ttg mam html

Robinson, J.T. (1981) The K-D-B-Tree A Search Structure for Large Multidimensional
Dynamic Indexes, Association for Computing Machinery SIGMOD, 10, pp. 10-18.

Shaw, S.L. (1999). Activity-Based Travel Demand Modeling Using Geographic
Information Systems, Department of Geography, University of Tennessee, Knoxville.
Report of UTK Faculty Research Grant.

Shaw, S.L., and Wang, D.M. (2000) Handling Disaggregate Spatiotemporal Travel Data
with GIS, Geolnformatica, 4 (2), pp 161-178.

Shaw, S L., (2000). Moving Toward Spatiotemporal GIS for Transportation Applications,
Proceedings of ESRI User Conference, http //www esn com

Snodgrass, R., and Ahn, I (1985). A Taxonomy of Time in Databases, in Proceedings of
the SIGMOD' 85 Conference, (New York: ACM), pp 236-245.

Snodgrass, R T. (1992) Temporal Databases, in A. U Frank, I Campari and U.
Formentim (eds.) Theories and Methods of Spatio-Temporal Reasoning in Geographic
Space, Berlin: Springer-Verlag, pp. 22-64.

US Department of the Interior, US Geological Survey, National Mapping Division
(1998). http //edcwvyw2 cr uses gov/umap/umap html

Vonderohe, A et al (1995). On the Results of a Workshop on Generic Data Model for
Linear Referencing Systems, GIS-T 95 Proceedings

Weiss, M A. (1997). Data Structures and Algorithms Analysis in C. 2"*^ Edition
(Addison-Wesley), pp. 485-488.

Worboys, M F. (1992). A Model for Spatio-temporal Information, m Corwm, E. and
Cowen, D (Eds) Proceedings of the 5'^ International Symposium on Spatial Data
Handling, Columbus, OH: Intemational Geographical Union, pp 606-611

103

Worboys, M.F. (1994). A Unified Model of Spatial and Temporal Information, Computer
Journal, 37 (1), pp. 26-34

Worboys, M F. (1995). GIS A Computing Perspective (London Taylor & Francis), pp.
264-267

Yuan, M. (1994). Wildfire Conceptual Modeling for Building GIS Space-time Models,
Proceedings GIS/LIS'9A, pp 860-869

Yuan, M (1999). Temporal GIS and Spatio-Temporal Modeling
http•//ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf papers/yuan_may/may.html

104

Appendix

105

y ^ ^ 4: ^ if: ik * Nc ̂ ̂He ^

/* File name twod h */

/* Descnption this is the header file for 2-d tree */

#ifndef_TWOD_H_

#define_TWOD_H_

typedef struct twodnode

{
long int time[2],
long int txipid,
struct twodnode *left,

struct twodnode *right,

} TwoDNode,

typedef struct {
TwoDNode *root,
} TwoDTree,

/* create a new empty 2-d tree */

TwoDTree *new_TwoDTree(),

/* free the 2-d tree */

void Free_TwoDTree(TwoDTree *),

/* insert a array of two long int items into the 2-d tree */

TwoDNode *TwoDTree_Insert_Node(TwoDTree *, long mt []),

/* print the 2-d tree from the node m order */

void TwoDTree_Prmt_Tree(TwoDNode *),

/* print the 2-d tree from the node preorder */

print_tree(TwoDNode *),

/* search a particular node in the 2-d tree */

TwoDNode *TwoDTree_Search(TwoDTree *, long mt []),

/* search nodes from the 2-d tree in a range */

PrmtRange(long mt [], long mt [], TwoDTree *),

#endif

106

/* File name twod cpp */
/* Description this is a file for creating and querying basic 2-d tree structure */
y ;jc :{c if; * :f: ^ ^ ^ ̂ ^ :4c:{; :f; 4: ^ :{c :f;

#include <stdio h>

#include <stdlib h>

#include <malloc h>

#include "twod h"

/* create a new empty 2-d tree */

TwoDTree *new_TwoDTree()

{
TwoDTree *t,

t = (TwoDTree *) malloc(sizeof(TwoDTree)),
t->root = NULL,

return t,

}

extern FILE *Ofp,

/*

recursive function used for inserting node into 2-d tree

*/

static TwoDNode *RecursiveInsert(long int item[], TwoDNode *tnode, int level)

{
if (mode ==NULL) {

tnode = (TwoDNode *) malloc(sizeof(TwoDNode)),
if (tnode == NULL) {printf("out of space\n"), exit(l),}
tnode->tripid = item[2],
tnode->time[0] = item[0],
tnode->time[l] = item[l],
tnode->left = NULL,
tnode->right = NULL,

}
else if (item[level] < tnode->time[level])

tnode->left = Recursivelnsert(item, tnode->left, 'level),
else

tnode->nght = Recursivelnsert(item, tnode->nght, 'level),
return tnode,

}

/*

insert a node into the 2-d tree

TwoDNode *TwoDTree_Insert_Node(TwoDTree *f, long int item[])

107

TwoDNode *fd,

if(f->root ==NULL){
fd = (TwoDNode *) malloc(sizeof(TwoDNode)),
fd->time[0] = item[0],

fd->time[l] = item[l],
fd->tripid = item[2],
fd->left = NULL,
fd->nght = NULL,
f->root = fd,

return fd,

} else
return Recursivelnsert(item, f->root, 0),

}

/*

recursive function used for finding node
*/

static TwoDNode *RecursiveSearch(long int item[], TwoDNode *tnode, int level)

if (tnode == NULL) {printf("not foundVn"), exit(l),}
else if ((item[0] ~ tnode->time[0]) && (item[l] == tnode->time[l])

&& (item[2] == tnode->tripid))
return tnode,

else if (item[level] < tnode->time[level])
return RecursiveSearch(item, tnode->left, 'level),

else if (item[level] >= tnode->time[level])
return RecursiveSearch(item, tnode->right, 'level),

return (NULL),

/*

searching node in the 2-d tree
*/

TwoDNode *TwoDTree_Search(TwoDTree *t, long int item[])

{
return RecursiveSearch(item, t->root, 0),

}

/* in order print the 2-d tree */

void

TwoDTree_Pri n t_Tree(TwoDNode *header)

{
if (header == NULL) return,
TwoDTree_Print_Tree(header->left),
fprintf(Ofp," %ld %ld %ld\n", header->time[0], header->time[l], header->tripid),
T woDTree_Pri n t_T ree(header->right),

108

/* pre order print the 2-d tree */

print_tree (TwoDNode * root)

{
if (root '=NULL)

fprintf (Ofp, "%ld %ld %ld\n", root->time[0], root->time[l], root->tripid),
if (root->left 1= NULL)

{
fpnntf (Ofp, "left child\n"),
print_tree(root->left),

}
if (root->right '= NULL)

{
fpnntf (Ofp, "right child\n"),
print_tree(root->right),

}

/* this is for recursively searching for the nodes based on a range */

static void RecPrmtRange(long int low[], long int high[], TwoDNode *t, int level)
{
if(t i=NULL)

{
if (low[0] <= t->time[0] && t->time[0] <= high[0] && low[l] <= t->time[l] && t->time[l] <= high[l])

fprintf(Ofp, "%ld %ld %ld\n", t->tripid, t->time[0], t->time[l]),
if (low[level] < t->time[level])

RecPrintRange(low, high, t->left, 'level),
if (high[level] >= t->time[level])

RecPrintRange(low, high, t->nght, 'level).

/* searching for the nodes from the 2-d tree based on a range */

PrintRange(long int low[], long int high[], TwoDTree *t)
{

RecPrmtRange(low, high, t->root, 0),
}

/* recursively free TwoDNode */

109

static void Recursive_Free_TwoDTree(TwoDNode *fn)

{
if (fn = NULL) return,
if (fn->left '= NULL) Recursive_Free_TwoDTree(fn->left),
if (fn->right '= NULL) Recursive_Free_TwoDTree(fn->nght),
free(fn),
return,

}

/* free the 2-d tree */

void Free_TwoDTree(TwoDTree *f)

{
Recursi ve_Free_TwoDTree(f->root),
free(f),
return,

}

110

/* Program name Buildlndex cpp */
/* Description Building a spatial temporal index using 2-d tree based on */
/* starting time and ending time for each arc */

#inelude <stdio h>

#mclude <stdlib h>

#inelude <iostream>

#mclude <set>

#include <string>
#mclude <algorithm>
#mclude "twod h"

using namespace std ,
typedef seKlong mt> SET_INT,

// define a struct for each arc including arcid, and 2-d tree

typedef struct {
long int arcid,
TwoDTree *tt,

} arcStruc,

FILE *Ofp,
long mt size,

extern "C"

declspec(dllexport)

/* Query the array of 2-d trees based on arcids, begimng time, and ending time
arcid, result will be written into ofname

*/

mt QueryTimel(areStrue ** pt, long int arcid, long int bt, long mt et, char * ofname)

long mt lo,
long mt hi,
long mt mi,
long mt low[2],
long mt high[2],
low[0] = bt,
low[l] =bt,
high[0] = et,
high[l] = et,

// check if there are problems with the input and output files

if ((Ofp = fopen (ofname, "w")) == NULL)
{

prmtf("erro m open output file\n"),
exit(l).

111

/* read in arcids from the input file and do binary search to find the query result,
then write into output file

*/

lo = 0.

hi = size - 1,
while(lo <= hi)

{
mi = (lo + hi) / 2,
if (pt[mi]->arcid < arcid) lo = mi + 1,
else if (pt[mi]->arcid > arcid) hi = mi -1,
else {

PrmtRange(low, high, pt[mi]->tt),
break,

}

}

fclose(Ofp),
return (1),

extern "C"

declspec(dllexport)

/* int QueryTime(arcStruc ** npt, long mt arcid, long int bt,long int et)
Query the array of 2-d trees based on arcids, beginmg time, and ending time
arcids are in file fn, result will be written into outfn

*/

mt QueryTime2(arcStruc ** npt, char * fn, char * ofn, long mt bt, long mt et)
{

long mt lo,
long mt hi,
long mt rm,
long mt low[2],
long mt high[2],
FILE *nfp,
long mt arcid,
low[0] = bt,
low[l] = bt,

high[0] = et,
high[l] = et,

// check if there are problems with the input and output files

if ((Ofp = fopen (ofn, "w")) == NULL)

{
prmtfC'erro m open input file\n"),
exit(l),

}
if ((nfp = fopen (fn, "r")) == NULL)

{
pnntfC'erro m open output file\n"),
exit(l).

112

* read in arcids from the input file and do binary search to find the query result,
then write into output file

*/

while (fscanf (nfp, "%ld", &arcid) '= EOF)

{
lo = 0,
hi = size -1,
while(lo <= hi)

{
mi = (lo + hi) / 2,
if (npt[mi]->arcid < arcid) lo = mi + 1,
else if (npt[mi]->arcid > arcid) hi = mi -1,
else {

PrintRange(low, high, npt[mi]->tt),
break,

}

}
fclose(nfp),

fclose (Ofp),
return (0),

extern "C"

declspec(dllexport)

/* build an array of arcStruc For each arc, build a 2-d tree
user should input section file name which includes necessary information

*/

arcStruc **

Buildlndex (char * infile)

{
SET_INT arcIDs,

long int arcID,
long int routID,
long int bt,
long int et,
long int ar[3],
arcStruc **pt,
int lo, hi, mi, I,

RLE *ifp,

// check if there is a problem with input file

if ((ifp = fopen (infile, "r")) == NULL)
{

pnntfC'erro in input file"),
exit(l).

113

// read in input file, and insert arcids into set arcIDs

while (fscanf(ifp,"%ld,%ld,%ld,%ld", &routID, &arcID, &bt, c&et) '= EOF)

{
arcIDs insert(arcID),

}

fclose(ilp),

SBT_INT Iterator It,

1 = 0,

// malloc an array of arcStruc, and assign values

pt = (arcStruc **) malloc (arcIDs size() * sizeof (arcStruc *)),
for (it = arcIDs begin(), it '= arcIDs end(), it++){

pt[i] = (arcStruc *) malloc (sizeof (arcStruc)),
pt[i]->arcid = *it,
pt[i]->tt = new_TwoDTree(),
1++,

}

size = arcIDs size(),
arcIDs clear(),

if ((ifp = fopen (mfile, "r")) == NULL)

{
prmtf("erro in open input file\n"),
exit(l),

}

// read m input file, do binary search, and insert nodes into 2-d trees

while (fscanf(ifp, "%ld, %ld, %ld, %ld", &routID, &arcID, &bt, &et) '= EOF)
{
ar[0] = bt,
ar[I] = et,

ar[2] = routID,

lo = 0,
hi = size - 1,

while (lo <= hi)

{
mi = (lo + hi) / 2,
if (pt[mi]->arcid < arcID) lo = mi + 1,
else if (pt[mi]->arcid > arcID) hi = mi - 1,
else {

(void *) TwoDTree_Insert_Node(pt[mi]->tt, ar),
break,

}
}

}
return pt.

114

/* File name tripdyna ami
/* Description
/* this file creates a shortest path route system Assume users have a point coverage
/* (which can be a geocoding result for disaggregate trip dat), and the tnps are all
/* sequential The point coverage only has points for each starting address, m addition,
/* ending addresses for each individual at each day
/* In arc/info, m order to create shortest path route system, all stops have to be at
/* nodes To overcome this shortconung, the point coverage is first used for splitting the
/* network, creating pseudo nodes Using these pseudo nodes, shortest path system can be
/* created Then using unsplit command to delete all the pseudo nodes, which doesn't affect
/* the final route system, because all the route system will be updated
/*

/* input arc coverage (network including nodes), point coverage (used as stops to
/* create shortest paths based on each individual)
/*

/* output a shortest paths route system and a text file
/*

♦ Ms***

/* check if the input arguments are correct

&args arc_cover point_cover
&if [null %arc_cover%] = true or [null %point_cover%] = true &then
&do

&type USAGE final ami <arc_cover> <point_cover>
&message &on
&stop
&end

/* create an info file to store nonunild field values from the point file

&s non [LISTUNIQUE %point_cover% -POINT nonunild nonuniid txt]
TABLES

&if [EXISTS nonuni dat -info] &then
&do

sel nonuni dat

purge

y

&end

&else

&do

define nonuni dat

nonunild 10 ID C

&end

sel nonuni dat

ADD FROM nonunild txt

q

&if [show program] = ARC &then
&do

115

display 0
ae

graphics off
&end

coord key
weedtolerance 0 00001

/* create a stop file to store pseudo node id and route_id

create stps info
%arc_cover%-id, 4, 5, b
route_id, 4, 12, b

/* get the total number of this info file, and based on each record, to select
/* points in the point coverage to split arc coverage

EDIT nonuni dat INFO

&S NGN [SHOW NUMBER TOTAL]
&s cnt I

&D0 CNT = I &TO %NON%

SEE $RECNO = %CNT%

&S TE [SHOW INFO [SHOW SELECT 1] ITEM nonuniid]

ec %point_cover%
ef point
SEL NONUNIID = [QUOTE %TE%]
&s end [show number SELECTED]

/* for each individual, get the points and split the arc coverage

&s count 1

&do COUNT = 1 &to %end%

&s X [extract 1 [show label [show select %count%] coordinate]]
&s y [extract 2 [show label [show select %count%] coordinate]]
&s rid [show point [show select %count%] item trip_id]
&if %count% = 1 &then

&s rid_pre = %rid%
&if %count% <> 1 or %rid% <> 99999999 &then

&do

ec %arc_cover%

ef arc

sel

%x%,%y%

&if [show number selected] = 1 &then
&do

&s xy_node [show arc [show select 1] nodes]
&s x_l [extract 1 %xy_node%]
&s y_l [extract 2 %xy_node%]
&s x_2 [extract 3 %xy_node%]
&s y_2 [extract 4 %xy_node%]
&s zl = %x% - %x_I%
&s z2 = %y% - %y_l%
&s kl = %x% - %x_2%
&s k2 = %y% - %y_2%

116

&s z = %z\% * %zl% + %z2% * %z2%

&s k = %kl% * %kl% + %k2% * %k2%

/* check if these points are at nodes, if so, then write down node ids,
/* else, split

&if [SQRT %z%] <= 0 00001 &then
&s ni = [show node [show arc [show select 1] fnode#] id]

&else &if [SQRT %k%] <= 0 00001 &then
&s ni = [show node [show arc [show select 1] tnode#] id]

&else

&do

split
%x%,%y%
&end

/* after split, store each pseudo node's id, and add to a stop file

&if [show number selected] = 2 &then
&do

&if [show arc [show select 1] fnode#] = [show arc [show select 2] tnode#] &then
&s ni = [show node [show arc [show select 1] fnode#] id]

&else

&s ni = [show node [show arc [show select 1] tnode#] id]
&end

/* add nodes or pseudo nodes into the stop file

edit stps info
&if %count% = 1 or %count% = %end% or %rid% = 99999999 &then

&do

add

calc %arc_cover%-id = %ni%

calc route_id = %rid_pre%
&end

&else &if %rid_pre% = 99999999 &then
&do

add

calc %arc_cover%-id = %ni%

calc route_id = %rid%

&end

&else

&do

add

calc %arc_cover%-id = %ni%

calc route_id = %rid_pre%
add

calc %arc_cover%-id = %m%

calc route_id = %rid%

&end

&end

&end

&s nd_pre %rid%
ec %point_cover%

117

ef point
sel nonunnd = [quote %te%]
&s count %count% + 1

&end

EDIT nonuni.dat INFO

&S CNT %CNT% + 1

&END

quit

y

y

/* create shortest path route system based on the stop file Create shortest path
/* based on each route_id

ap

netcover %arc_cover% paths ini
stops stps # route_id
path stops
quit

tables

select %arc_cover% ratpaths
alter

paths-id
paths-id
12

q

/* unsplit the network

ae

ec %arc_cover%

ef arc

sel all

unsplit
quit

y

y

/* build relations between section attribute table, route attribute table, and point pat

relate drop
$all

relate add

route

%arc_cover% ratpaths
info

routelink#

paths#
linear

rw

path

118

%point_cover% pat
info

paths-id
trip_id
linear

rw

/* add begining time and ending time fields into the section attribute table

ae

ec %arc_cover%

ef route paths
&s tot [show number total]
ef section paths
additem begint 4 10 b
additem endingt 4 10 b
save

/* calculate begimng time and ending time for the section attribute table
/* based on interpolation

&s count 1

&do count = 1 &to %tot%

sel routelmk# = %count%

&s f [show section paths [show select 1] item f-meas]
&s t [show section paths [show select [show number selected]] item t-meas]
&s t %t% - %f%

calc begint = route//path//startt + (route//path//endt - route//path//startt) * (f-meas - %f%) * 1000 0 / (
1000 0 * %t%)
calc endingt = route//path//startt + (route//path//endt - route//path//startt) * (t-meas - %f%) * 1000 0 / (
1000 0 * %t%)
save

&s count = %count% + 1

&end

quit

y

y

/* output some selected fields from section attribute table to a ascii file

tables

select %arc_cover% secpaths
unload secpaths txt route//paths-id archnk# begint endingt
q

&return

119

' File Name trip geocode
>

' Description geocode addresses for an event table based on a matchable
' theme

' Input a matchable theme (street network), an event table

' Output a geocoding point shape file
'**

' The matchable theme is active, and the event table is a dbase file
' called tripdata dbf

theView = av GetActiveDoc

theThemes = theView GetAcTiveThemes

if (theThemes = nil) then
exit

end

theTheme = theView GetActiveThemes Get(O)

' load an event table, and make a copy of this table
' All editing will be conducted on this copy

workDir = av getproject getworkdir asstring
thePname = filedialog show("* dbf, "Table(* dbf)", "Load the tripdata table")
if (ml <> thefname) then
thefile = (workDir + "\tripcopy dbf) asfilename
file copy(thefname, thefile)

else

exit

end

isOK = vtab canmake(thefile)
if (isOK not) then
msgbox error("Invahd file","")
exit

end

addressVtab = vtab make(thefile, false, false)
attributestable = table make(addressVtab)
attributestable setname("Trip-Log table")

'Edit addressVtab create two fields trip_id and nonuniid
'trip_id IS the concatenation of Date, Hh, Indv, and Trip_no, trip_id can
' uniquely identify each trip
' nonuniid is the concatenation of Date, Hh, and Indv, it's used to uniquely identify
' each indivicual on each day

if (addressVtab CanEdit) then
addressVtab SetEditable(true)

end

startPield = addressVTab FindField("Started_fr")
endField = addressVTab Findfield("traveled_t")
nonfield = addressvtab findfield("nonuniId")

120

tripfield = addressvtab findfield("trip_id")
if (nonfield <> ml) then
addressvtab removefieIds({ nonfield})

end

if (tripfield <> ml) then
addressvtab remo vefields({tripfield})

end

nonunild = Field Make("nonuniId", #FIELD_CHAR, 10, 0)
tripid = Field Make("trip_id", #FIELD_LONG, 12, 0)
addressVTab AddFields({tripid, nonunild})
addressvtab Calculate("([Date] AsString Trim+[Hh] AsString Trim+[Indv] AsString Trim+[Trip_no] AsStr
ing Trim) asnumber", tripid)
addressvtab Calculate("[Date] AsString Tnm+[Hh] AsString Trim+[Indv] AsString Trim", nonunild)

'To geocode all starting addresses and some ending addresses for creating trip paths,
' for each individual on each day, appending one record on the bottom of the table, replacing
' value of Start_fr on this record with the value of Traveled_t from the last trip on each day

num = addressVTab getnumrecords
for each i m 0 (num - 1)
if (addressvtab ReturnValueString(nonumId, i) trim <> addressvtab ReturnValueStrmg(nonuniId,

1+1) trim) then
a = addressVTab ReturnValueStrmg(endField, i)
b = addressvtab returnvaluestrmg(nonuniId, i)
newRec = addressVTab AddRecord

addressVTab SetValueString(startField, newRec, a)
addressVTab SetValueString(nonuniId, newRec, b)

end

end

addressField = addressVTab FmdField("Started_ff")
zipField = addressVTab FmdField("Zip")

if ((theTheme IsMatchable) Not) then
av Run("trip match", ml)

end

' Get the matchable feature source and double check that it is valid

aMatchSource = theTheme GetMatchSource

if (aMatchSource = Nil) then
MsgBox Error("Theme"++theTheme GetName++"is not matchable ","")
exit

end

' Specify the output point shapefile that will be created from the
' matched addresses

' Specify the output point shapefile for the geocodmg result

aGeoName = GeoName Make(aMatchSource, addressVTab, addressField, zipField)

fnOutFile = FileDialog Put(av GetProject MakeFileName("theme", "shp"),
"* shp","Output GeoCodmg Shapefile")

121

if (fnOutFile = nil) then
exit

else

aGeoName SetFileName(fnOutFile)
end

' Create a match key based on the standardization rules for the
' MatchSource Use the aMatchKey Allowlntersections request to
' supporting street intersection standardization

aMatchKey = MatchKey Make(aMatehSource GetStanRules)
aMatchKey AllowIntersections(aMatchSource GetXStanRules, aMatchSource GetXDelimiter)

' Create a new match case A match case is compnsed of a list of

' candidate records and information describing how well the candidates
' match the key The MatchCase will be populated with candidates later

aMatchCase = MatchCase Make(aMatchSource, aMatchKey)
aMatchCase AllowIntersections(aMatchSource, aMatchKey)

' Create a new match preference which will be used to access various
' geocoding preferences, such as spelling weight, minimum acceptable
' score, etc

aMatchPref = MatchPref Make

' Create a new theme feature table For every address record there

' will be a record m the FTab These are currently unmatched, i e
' the shape field is empty and the status is U' for unmatched We
' must match an address to populate the shape field and toggle the status
' to M' for matched, something we do m the next step

' aMatchSource InitGeoTheme request will open the geocoding index

aGeoTheme = aMatchSource InitGeoTheme(aGeoName)
geoThemeVTab = aGeoTheme
addrGeoThemePield = geoThemeVTab FmdField("Started_ff")

zipGeoThemeField = geoThemeVTab FindField("Zip")

' Populate the feature table by matching addresses to the matchable
' Theme This places a point in the FTab's shape field for and sets
' the status to M (matched) for each match

numrecs = geoThemeVTab GetNumRecords
numMatched = 0

av ShowMsgC'Matching Addresses ")

for each i in geoThemeVTab GetDefBitMap
av SetStatus((i / numrecs) * 100)

' Get an address

122

aMatchKey SetKey(geoThemeVTab RetumValueString(addrGeoThemeField, i))
if (zipGeoThemeField <> Nil) then
aMatchKey SetZoneKey(geoThemeVTab RetumValueStnng(zipGeoThemeField, i))

end

' Find candidates for the address

numCand = aMatchSource Search(aMatchKey, 70, aMatchCase)

' If theie aie no candidates, continue on to the next addresss This

' will be an unmatched record If candidates are found, take the best
' candidate and see if it exceeds the minimum specified match score
' If It does write it, otherwise write unmatch

' If there are no candidates, WnteUnMatch and continue to the next addresss

if (numCand = 0) then ' No candidates
aMatchSource WnteUnMatchfi, aMatchKey)

else ' We have at least one candidate

aMatchCase ScoreCandidates

cand = aMatchCase GetBestCand

candScore = cand GetScore

minScore = aMatchPref GetPrefVal(#MATCHPREF_MINMATCHSCORE)

'If the mm required match score is exceeded - write it'
' If the mm is not met then the cand is not written and the record

' will remain unmatched

if (candScore >= minScore) then
aMatchSource WriteMatchf i, aMatchKey, cand)
numMatched = numMatched + 1

end

end

end

av ClearMsg
av ClearStatus

aMatchSource EndMatch

' Report the results of the geocoding

MsgBox Info("Total records processed "++numrecs AsStrmg+NL+
"Total addresses matched "++numMatched AsStnng, "Geocoding Results")

' Add the new theme to the view and draw it

newTheme = Theme Make(aGeoName)
theFTab = newTheme GetFTab

tripIdField = theFTab findField("trip_id")
newTheme SetLabelField(tripIdField)
theView AddTheme(newTheme)
newTheme SetVisible(true)

123

address VTab Remo veFields({nonunild})
obitmap = addressvtab getselection
addressvtab query("[tnp_id] IsNull", obitmap, #VTAB_SELTYPE_NEW)
addressvtab removerecords(obitmap)
obitmap clearall
addressVTAb SetEditable(false)

' Create Startt and Endt fields m the geocodmg attribute table,
'and store starting time and ending time m seconds

theftab seteditable(true)

starttfld = theftab fmdfield("Startt")
endtfld = theftab findfield("Endt")
if (starttfld <> ml) then
theftab removefields({ starttfld})

end

if (endtfld <> ml) then
theftab removefields({ endtfld})

end

startt = field make("Startt", #FIELD_LONG, 10, 0)
endt = field make("Endt", #FIELD_LONG, 10, 0)
theftab addfields({startt, endt})
stimefield = theftab findfield("S_time")
etimefield = theftab findfield("E_time")
if ((stimefield = ml) or (etimefield = nil)) then
exit

end

theftab Calculate("[S_time] Trim left(2) Asnumber * 3600 + [S_time] Trim right(2) Asnumber * 60",
startt)

theftab Calculate("[E_time] Trim left(2) asnumber * 3600 + [E_time] Trim right(2) asnumber * 60", endt)

update geocodmg shape file's trip_id field If not matched,
trip_id IS set to 99999999, and it's previous record's tnp_id is set by 99999999
It's convenient for shortest path creation

valuelist = list make

nonunild = theftab findfield("nonuniId")
tripid = theftab findfield("trip_id")
avfld = theftab findfield("Av_status")
for each i m theftab

tmpStr = theftab ReturnValueStrmg(nonuniId, i)
if (tmpStr <> ml) then
valuelist Add(tmpStr)

end

end

valuelist removeduphcates
theftab seteditable(true)
thebitmap = theftab getselection
thebitmap clearall

for each j in 0 (valuelist count - 1)
expr = "([" + nonunild getname + "]= " + valuelist get(j) quote + ")"
theftab query(expr, thebitmap, #VTAB_SELTYPE_NEW)

124

theftab updateselection

for each rec in thebitmap
if (theftab returnvalue(avfld, rec) = "U") then
theftab setvaluestnng(tripid, rec, "99999999")
if (thebitmap GetPrevSet(rec) <> -1) then
theftab setvaluestring(tripid, thebitmap getprevset(rec), "99999999")

end

end

end

end

thebitmap clearall
theftab updateselection
theftab seteditable(false)

125

File Name trip.match

Description make one street network matchable

>}:************

' Prepare for address matching by making a theme matchable

theProject = av.GetProject
theTheme = theProject FmdDoc("Viewl") FindTheme("Tgr470931ka shp")
if (ml = theTheme) then
MsgBox Error ("Unable to access Street theme m viewl","")
exit

end

' Verify whether the theme is already matchable

if (theTheme isMatchable) then
MsgBox Warning ("Street is already matchable","")
exit

end

' The GetDefStylesODB request to the AddressStyle class returns
' a file name object corresponding to the style object database
' supplied with ArcView

addrStyleFilename = AddressStyle GetDefStylesODB
if (ml = addrStyleFilename) then
MsgBox Error ("Unable to find the default address style ODB","")
exit

end

' The list of styles can be extracted from the address style
' file name, and the desired style can be found within that list

addrStyleList = AddressStyle GetStyles
(addrStyleFilename)
addrStyle = AddressStyle FmdStyle
("US Streets with Zone")
' Associate the known fields to the address components
theVTab = theTheme GetFTab

attList - {}

' Setup for the US Streets with Zone style

nameList= {"Fraddl", "Toaddl",
"Fraddr", "Toaddr", "NONE", "NONE",
"Fename", "Fetype", "NONE", "Zipl", "Zipr"}
for each fldName in nameList

if (fldName = "NONE") then

126

' NONE indicates that there is no field to match

attList Add ("") 'Add a null value
continue

end

' Get the field object

aField = theVTab FindField (fldName)
if (ml = aField) then
MsgBox Error ("Unable to access required field"++ fldName,"")
exit

end

attList Add (aField)
end

' Create a MatchSource object

aMatchSource = MatchSource Make (addrStyle, theTheme, attList)

' Now assign the MatchSource object to the theme

theTheme SetMatchSource (aMatchSource)

'Verify whether the theme is matchahle

if (theTheme IsMatchable) then
MsgBox Info (theTheme GetName++"is matchahle","")

else

MsgBox Warning (theTheme GetName++"Is not matchahle","")
end

127

'FileName buildtrees
y

' Description This program builds array of two-d trees After building, the array of two-d trees
' will be stored m memory When users make a query, it will go to query this array

y

) ̂ ̂ ̂ ̂ ̂ ^ ̂ ̂ ̂ ̂ ^ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ^ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ^ ̂ ̂ ^ sjc ^ ̂ ^ ̂ ̂ ̂ ̂ ̂ ̂ ̂

av clearglobals
thePname = filedialog show("* dll", "DLL(* dll)", "Get BuildlndexDLL file")
if (ml = thePname) then
msgbox mfo("Please select DLL file", "ERROR")
exit

end

myDLL = DLL Make(thePname)
twoD = DLLProc Make(myDLL, "Buildlndex",
#DLLPROC_TYPE_POINTBR,{#DLLPROC_TYPE_STR})

if (twoD = ml) then
msgbox error("Error","")
exit

end

infile = "secpaths txt"
_mytwod = twoD Call({mfile})
_querytimel = DLLProc MakefmyDLL, "QueryTimel", #DLLPROC_TYPE_INT32,

{#DLLPROC_TYPE_POINTER,#DLLPROC_TYPE_INT32,#DLLPROC_TYPE_INT32,
#DLLPROC_TYPE_INT32,

#DLLPROC_TYPE_STR})
_querytime2 = DLLProc Make(myDLL, "QueryTime2", #DLLPROC_TYPE_INT32,

{#DLLPROC_TYPE_POINTER, #DLLPROC_TYPE_STR, #DLLPROC_TYPE_STR,
#DLLPROC_TYPE_INT32,

#DLLPROC_TYPE_INT32})

128

File Name stquery tool

Description perform a spatiotemporal query (i e which trips pass through one
or more specific streets within one time window

Input Users selecting streets, and a time window

Output a report box contianmg query results, the query result is also
shown on the map

'create an arclist list, get network (Tgr470931ka)'s ftab and trip path (Paths)'s ftab

arclist = list make

theView = av GetActiveDoc

r = theView ReturnUserRect

theTheme = the View GetActiveThemes get(O)
pathftab = theView findtheme("Paths") getftab
pathfld = pathftab fmdfield("Paths-id")
theftab = theTheme getftab
arcfld = theftab findfield("Tgr470931ka#")

' the user can either draw a box or a point to query features

thebitmap = theftab getselection
thebitmap clearall
if (r IsNull) then
p = theView GetDisplay ReturnUserPomt
if (System IsShiftKeyDown) then
op = #VTAB_SELTYPE_XOR

else

op = #VTAB_SELTYPE_NEW
end

if (theTheme CanSelect) then
theTheme SelectByPomt(p, op)
thebitmap = theftab getselection
theftab updateselection
pathftab getselection clearall

end

else

if (System IsShiftKeyDown) then
op = #VTAB_SELTYPE_OR

else

op = #VTAB_SELTYPE_NEW
end

if (theTheme CanSelect) then
theTheme SelectByRect(r, op)
thebitmap = theftab getselection
theftab updateselection
pathftab getselection clearall

end

end

129

' Given a time window

if (thebitmap count > 0) then
labels = {"Lower end of the time window", "higher end of the time window"}
defaults ={"0800", "1000"}
timewmdow = msgbox multiinput("Enter a time period", "Time Window", labels, defaults)
if ((timewmdow = ml) or (timewmdow isempty)) then
msgbox error("You need to input a time window", "ERROR")
return ml

end

'convert time range into seconds

bt = (timewmdow get(O) trim left(2) asnumber * 3600) + (timewmdow get(O) trim right(2) asnumber * 60)
et = (timewmdow get(l) trim left(2) asnumber * 3600) + (timewmdow get(l) trim right(2) asnumber * 60)

end

'if selecting an arc, then use querytime 1 function

if (thebitmap count =1) then
for each i m thebitmap
arcid = theftab returnvalue(arcfld, i)

end

query 1 = _querytimel call((_mytwod, arcid, bt, et, "r txt"})

' get the query result from r txt and query route feature table

f = Imefile make("r txt" Asfilename, #FILE_PERM_READ)
tf = textfile make("r txt" asfilename, #FILE_PERM_READ)
if (tf getsize = 0) then
msgbox mfoC'no trips found","")
thebitmap clearall
return nil

end

resultlist = tf read(tf getsize)
tf close

ok = true

thebitmap clearall
pathftab getselection clearall
pathbitmap = pathftab getselection

' repeatedly query pathftab

while (ok)

s = f readelt

if (ml = s) then
ok = false

else

expr = "([Paths-id] = " + s ashst get(O) + ")"
pathftab Query(expr, pathbitmap, #VTAB_SELTYPE_OR)

end

end

' display query result m a message box

130

msgbox report(resultlist asstnng, "Trip_Id, Beginmg Time (seconds), Ending Time (seconds)")
f close

' if selecting more than one arc, then use querytime2 function

elseif (thebitmap count >1) then

' get the selected arcs, put into arclist, then output to mfile txt

arclist empty
for each i m thebitmap
arclist add(theftab returnvalue(arcfld, i))

end

mfile = hnefile make(" mfile txt" asfilename, #FILE_PERM_WRITE)
for each i in 0 (arclist count -1)
mfile writeelt(arclist get(i) asstnng)

end

mfile close

' use querytime2 function to get query result

query2 = _querytime2 call({_mytwod, "mfile txt", "r txt", bt, et})
f = hnefile make("r txt" Asfilename, #FILE_PERM_READ)
tf = textfile make("r txt" asfilename, #FILE_PERM_READ)
if (tf getsize = 0) then
Msgbox mfo("no trips found","")
thebitmap clearall
return ml

end

resultlist = tf read(tf getsize)
tf close

ok = true

thebitmap clearall
pathftab getselection clearall
pathbitmap = pathftab getselection

' repeatedly query path ftab

while (ok)
s = f readelt

if (ml = s) then

ok = false

else

expr = "([Paths-id] = " + s aslist get(O) + ")"
pathftab Query(expr, pathbitmap, #VTAB_SELTYPE_OR)

end

end

' display query result into a message box

msgbox report(resultlist asstnng, "Trip_Id, Beginmg Time (seconds). Ending Time (seconds)")
f close

end

av GetProject SetModified(true)

131

Vita

Feng Lu was bom m Hunchun, Jilin Province, P.R.China, on August 26, 1967 He

attended No. 2 Yanbian High School in Yanji, where he graduated in July 1986 He

entered Peking University in September 1986, and graduated in July 1990 with a

Bachelor of Science degree majoring m Economic Geography. From July 1990 until

August 1994, he worked as a research assistant in Changchun Institute of Geography,

Academia Sinica, and got a Master's degree in Cartography and Remote Sensing m July

1994. From September 1994 to July 1997, he worked as a research assistant m the

Department of Urban and Environmental Sciences at Peking University. He entered

Ph D. program in urban studies at the University of New Orleans m August 1997, then

transferred to the Department of Geography at the University of Tennessee m August

1998 Upon successful defense of this thesis, Feng Lu will receive his M.S. m Geography

with an emphasis m GIS and Transportation.

132

	A spatiotemporal indexing method for disaggregate transportation data
	Recommended Citation

	A spatiotemporal indexing method for disaggregate transportation data

