
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

8-2000

A comparison of VHDL and microprogrammed implementations A comparison of VHDL and microprogrammed implementations

of synchronous finite state machines in field programmable logic of synchronous finite state machines in field programmable logic

devices devices

Michael L. Hardcastle

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation Recommended Citation
Hardcastle, Michael L., "A comparison of VHDL and microprogrammed implementations of synchronous
finite state machines in field programmable logic devices. " Master's Thesis, University of Tennessee,
2000.
https://trace.tennessee.edu/utk_gradthes/9396

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F9396&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Michael L. Hardcastle entitled "A comparison of

VHDL and microprogrammed implementations of synchronous finite state machines in field

programmable logic devices." I have examined the final electronic copy of this thesis for form

and content and recommend that it be accepted in partial fulfillment of the requirements for the

degree of Master of Science, with a major in Electrical Engineering.

Bruce Bomar, Major Professor

We have read this thesis and recommend its acceptance:

L. Montgomery Smith, Roy S. Joseph

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

u ■* '

To the Graduate Council:

I am submitting herewith a thesis written by Michael L. Hardcastle,
entitled "A Comparison of VHDL and Microprogrammed Implementations
of Synchronous Finite State Machines in Field Programmable Logic
Devices." I have reviewed the final version of this thesis for form and
content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Master of Science, with a major in
Electrical Engineering.

Dr. Bruce Bomar, Major Professor

We have read this thesis

and recommend its acceptance:

Accepted for the Council:

Associate Vice Char(fcellbr and
Dean of the Graduate'Scnool

\

\

A Comparison of VHDL and Microprogrammed
Implementations of Synchronous Finite State
Machines in Field Programmable Logic Devices

A Thesis

Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

Michael L Hardcastle

August 2000

ACKNOWLEDGEMENTS

My deepest love goes to my wife, Laura, and my daughter.

Hannah. They truly are the loves of my life.

I am forever grateful for the guidance and leadership that I

received from Dr. Bruce Bomar., He is a true asset to the University of

Tennessee. I would like to thank Dr. Roy Joseph and Dr. L.

Montgomery Smith for their assistance and guidance as instructors

and for their patience as thesis committee members.

ii

ABSTRACT

Digital design engineers often must balance the design

issues of implementing finite state machines in field programmable

logic devices, obtaining the highest clock frequency possible, and

keeping the amount of logic resources utilized as small as possible.

This and other design issues are discussed in this thesis.

A comparison of VHDL and microprogrammed implementations

of synchronous finite state machines in field programmable logic

devices is presented. Three representative state machines, a Tap

controller, temperature controller, and quarter-inch tape cartridge

controller, with 16, 22, and 61 states respectively were chosen to be

implemented using five basic methods: VHDL, a scaled-down

microsequencer utilizing embedded array blocks (EABs) as the

memory storage element, a scaled-down microsequencer utilizing

lookup tables (LUTs) as the memory storage element, and a full-scale

microsequencer with EABs and a full-scale microsequencer with LUTs.

Altera Max Plus II software was used including versions 7.21 and

9.4. The Altera Flex 10K and 10KE components were used

iii

The results from these methods were analyzed and compared.

Areas of interest were clock frequency, logic cell utilization, and

software efficiency As the number of states was increased for a finite

state machine, VHDL became increasingly inefficient in terms of clock

frequency and resource utilization. A scaled-down microsequencer

approach using LUTs as the memory storage element was found to be

the most efficient in overall clock frequency and resource utilization.

iv

TABLE OF CONTENTS

PAGECHAPTER

11. Introduction

41.1 Thesis Outline

52. Background Information

52.1 VHDL

72.2 Microprogramming

2.3 Altera Flex 10K and 10KE Components. ... 11

2.4 Two Memory Implementation Methods in
FPLDs 16

3. Explanation of VHDL and Microsequencer
Operations 20

203.1 VHDL

233.2 Microsequencers

273.3 Full-Scale Microsequencer

4. Synchronous Finite State Machine Test Examples
and Functionality 32

4.1 Test Access Port (TAP) Controller 32

4.2 Temperature Control Unit 38

4.3 Quarter-Inch Tape Cartridge Controller 42

V

515. Comparison of Results

535 1 TAP Controller Results

555.2 Temperature Control Unit Results

5.3 Quarter-Inch Tape Cartridge Controller
Results 57

596 Conclusions

.. 606 1 TAP Controller

606.2 Temperature Control Unit

6.3 Quarter-Inch Tape Cartridge Controller ... 61

616 4 Overall Conclusions

63References

64Vita

VI

LIST OF FIGURES

PAGEFIGURE

9Basic Microsequencer2-1

13Altera Flex 10K and 10KE Architecture2-2

15Altera Flex 10KE Logic Element2-3

17First Memory Approach2-4

18Second Memory Approach2-5

18Parallel LUT2-6

21Representative State Diagram3-1

21Representative VHDL Program3-2

25Scaled-Down Microsequencer3-3

28Full-Scale Microsequencer3-4

33Test Access Port State Diagram4-1

39Temperature Control Unit State Diagram4-2

Quarter-Inch Tape Cartridge Controller State
Diagram

4-3

43

vii

LIST OF TABLES

PAGETABLE

53TAP Controller Clock Frequency Comparison....5-1

TAP Controller Logic Cell and EAB
Comparison

5-2

54

Temperature Control Unit Clock Frequency
Comparison

5-3

55

Temperature Control Unit Logic Cell and
EAB Comparison

5-4

56

Tape Cartridge Clock Frequency
Comparison

5-5

57

Tape Cartridge Logic Cell and EAB
Comparison

5-6

58

viii

Chapter 1

Introduction

VHDL (Very High Speed Integrated Circuit Hardware

Description Language) and Microprogramming are two techniques for

implementing synchronous finite state machines in Field Programmable

Logic Devices (FPLDs). The main focus of this project was to

compare these two techniques in terms of logic resources utilized (area),

clock frequency, and ease of implementation when implemented in a

FPLD.

VHDL programming is one of the most widely utilized hardware

description languages This language is used to specify digital systems

ranging in size from the small chip level to large digital systems.

Systems can be designed from the top architectural level down to the

intricate gate level. Using VHDL, the designer can simulate the design

project at any point of the design whether it be at the highest

architectrual level, an intermediate level, or even at the smallest gate

level This simulation allows the designer to verify if the design is

operating in the desired manner Logic synthesis can also be

1

conducted using this programming technique and state machines

are easily described at a high level.

Microprogramming was widely used in the 1960's,

1970's and the 1980's. A microprogram consists of a group of

instructions called microinstructions where each instruction implements

one state of the state machine. These instructions perform the sequential

processing of the state machine. Although the microsequencer which

processes the microinstructions is complex to implement, once its design

IS completed, the microsequencer, and thus microprogramming, has

some valuable advantages to implementing a synchronous finite state

machine. The instructions for the microsequencer are stored in memory

and the basic function of the implemented state machine can be modifed

by changing only the sequence of bits stored in memory and not the

microsequencer design. Another advantage of microprogramming is that

once the microsequencer has been developed, other state machines can

be implemented by changing only the inputs and microprogram. The

overall hardware design of the microsequencer remains unchanged. It

is the ease of modification coupled with the "one design fits many

applications" approach that make microprogramming advantagous.

2

In this thesis, three representative finite state machine examples,

containing 16, 22, and 61 states were implemented using both VHDL and

microprogramming and the results were studied and compared. In order

to allow for an accurate comparison of these two techniques for

implementing state machines, three representative synchronous finite

state machines were chosen to be implemented. The first state machine

chosen was a Test Access Port (TAP) controller state machine which has

2 inputs, 16 outputs, and 16 states. The second state machine chosen

was a control unit for a temperature control system with 11 inputs, 11

outputs, and 22 states. The third state machine was a control unit for

a quarter-inch digital tape recorder with 6 inputs, 13 outputs, and 61

states.

The Altera Max Plus II Programmable Logic Development

Software was used to compile each state machine whether implemented

in VHDL or Microprogramming. Once each state machine was

compiled and verified by the software, the simulation of the program

could also be conducted. Each finite state machine was compiled and

fitted into the Altera Flex 10K components. This series of components

3

was used since they are supported by the student edition of the Aitera

software and as a means for comparison in component area utilized,

clock frequency, and ease of implementation.

1.1 Thesis Outline

Chapter 2 provides background information concerning VHDL

programming and its function. Microprogramming, and Altera Flex 10K

and 10KE components. The major features of those 10K and

10KE components are also discussed including embedded array

blocks (EAB) and logic cells. Also discussed in this chapter is the use

of lookup tables (LUT). Chapter 3 contains an explanation of VHDL

and its operation, as well as the comparison of a scaled-down

microsequencer and a full-scale microsequencer. Chapter 4 contains

a description of each state machine used, its functionality, and a state

flow diagram. Chapter 5 presents the results of each state machine

implementation. Chapter 6 contains a discussion of the thesis

conclusions.

4

Chapter 2

Background Information

Each state machine in this study was implemented in five separate

ways. VHDL programming was used as the first implementation. The next

two implementations were made using a simplified or "scaled-down'

microsequencer. One of these utilized embedded FPGA memory

to store the microprogram and the other used FPGA logic cells to store

the program. The last two implementations used a standard or "full-scale'

microsequencer with the two different program storage techniques. This

chapter will present the background information needed to understand these

different implementations.

2.1 VHDL

The initial development of the VHDL programming language

began in 1983 [1]. The design and development of VHDL was

conducted by the United States Department of Defense and the United

States Air Force [2]. VHDL was approved as an IEEE industry

standard (Std 1076-1987) was in 1987. Several revisions were

5

made after 1987, and in 1993 a revised standard was adopted

(Std 1076-1993) [3]. VHDL provides digital design engineers the

capability to implement combinational logic such as decoders and

multiplexers, counter based functions such as counters and clock

generators, register functions such as shift registers, and control logic

such as sequencers at a higher architectural level than the traditional

gate-level schematic entry.

VHDL offers various advantages over the older schematic

entry style of digital design including the following:

• Reduced Design Time

• Reduced Design Cost

• Ease of Design Management

Application Specific Integrated Circuit (ASIC) design can be drastically

simplified using VHDL. The schematic entry design process can be

eliminated or greatly reduced by utilizing the higher level VHDL

programming language. This higher level design refers to the small

amount of programming code in VHDL that is needed to design

multiple-gate counters, ALU's, and multiplexers. In the traditional

schematic entry, each of these gates would have to be entered one

6

by one. The accomplishment of design changes is made shorter as

well. Lower design cost stems from aliowing one digital designer to

implement and design a iarger portion of a particular design.

Design management is also simplified using VHDL. Assuming the need for

a iarge design were needed, several engineers could work on the same

overall design while testing each sub-design separately using VHDL.

This test or simulation feature produces fewer errors and improves the

management of the overall design.

2.2 Microprogramming

Microprogramming was first deveioped by Maurice Wilkes in

1951 after years of research concerning calculators [4]. Years later,

during the decade of the 1970's, microprogramming was utiiized in

various computer applications including the design of the Motorola

68000 [4]. Into the early 1980's, microprogramming was extremely

popular for the systematic implementation of state machines such as

buss, network, and DMA controllers [5]. Figure 2-1 presents the block

diagram of a basic microsequencer [5].

7

In Figure 2-1, the microprogram memory has 8 address lines (256

microinstruction locations) and each location is N + 12 bits wide (N is the

number of control output lines) The number of possible condition inputs

is 7. Both register units are standard clocked D registers. The incrementer

output equals the input plus one Muxi is an 8-input multiplexer used to

select the logic 0 input or select one of the conditional inputs, while the MU)^

multiplexer represents eight 2-input multiplexers that select the source of the

microprogram memory address.

The microsequencer obtains and outputs the contents of successive

microprogram memory locations. These successive instructions are referred

to as continue instructions and are implemented by forcing a logic 0 value

onto the polarity bit with the select bits choosing the logic 0 input of MUXI.

In this manner, the MUX2 select input is always 0, thus the incrementer and

microprogram counter register establish a counter. The microprogram

address location can be returned to location 0 by taking the Reset input to 0

which forces the MUX2 outputs to 0.

8

Clock

Microprogram Counter
Register

I

<-

0

Incrementer

* 88

* 8
Z
M I

M

U
Reset

Seiect MUX2X

1

✓
^8

I

Microprogram Memory

iN + 12

Pipeiine Register <

I C Branch AddressPolanty

^ N ^8^ 3Select
^ Outputs

7^ Condition Inputs
7

Figure 2-1. Basic Microsequencer

9

Often some function other than the next sequential address

is requested. For example, unconditional branch instructions

are implemented by forcing a 1 onto the polarity bit while the select lines

choose the logic 0 input of MUX1. This situation forces the next address

to be sourced from the branch address lines. In this situation, the output of

the incrementer becomes the branch address plus one so that the

microprogram counter register is loaded with the correct value.

Selection of one of the conditional inputs gives the controller decision

making capabilities In this situation, the next sequential address is chosen

if the condition is 0, otherwise the branch address is taken if the condition is

1. In both conditions the polarity bit is assumed to be 0. Such an instruction

is referred to as a conditional branch if 1.

Microprogramming has various advantages including.

• Structured programming

• Fixed Timing Characteristics

• Fixed Logic Resources

Structured programming allows the designer to actuate or control the

registers that are required during each clock cycle. This structured

10

style of programming allows for a "step-by-step" process to create a

microprogram. Fixed timing characteristics result once the basic

design of the microsequencer is complete. Upon completion of

the basic design, the overall clock frequency is established. The

designer can alter the sequential microprogram which is stored in

memory without altering the fixed clock frequency. Fixed logic

resources are affected in a similar fashion to the fixed timing

characteristics and the designer can alter the microprogram without

altering the logic resources used. Once the desired clock

frequency is reached, minimal modifications to the fixed timing

characteristics and the fixed logic resources are instrumental in staying

under the appropriated budget and time constraints.

2.3 Altera Flex 10K and 10KE Components

Altera's Flexibie Logic Element Matrix (FLEX) 10K devices

incorporate embedded array blocks (blocks of memory) along with

logic elements to allow each component the flexibility of implementing

the smallest of combinatorial logic examples or large finite state

machines in the magnitude of thousands of gates [6]. The 10K series

of components has a typicai gate count ranging from 10,000 gates to

11

250,000 gates, while the maximum number of system gates ranges

from 31,000 to 310,000 [6]-[7]. The 10KE series of components has

a typical gate count ranging from 30,000 gates to 200,000 gates, while

the maximum number of system gates ranges from 119,000 gates to

513,000 gates [6H7]. A block diagram of the 10K and 10KE series

architecture is presented in Figure 2.2

The Altera Flex 10KE components have certain advantages

over the Altera Flex 10K components. When implementing RAM or ROM in

an embedded array, each embedded array block (EAB) in a 10KE component

contains 4,096 bits, while the 10K component only offers 2,048 [6]-[7].

Also when the EAB portion of the 10KE component is used as RAM,

the data width provided for the memory allocation is 16 bits as compared

to 8 bits of data width for the 10K components [6]-[7]. An EAB in the 10KE

series can support any function with 8 inputs and 16 outputs where

as a 10K series component can support any function with 8 inputs

and only 8 outputs [6]-[7]. Finally, Altera states that the 10KE series is

30% - 40% faster than the 10K series components [8].

12

Et»eddedAiT»y Btock (EAB)

lOE lOE lOE lOElOE lOE lOE lOE lOE lOE

Y
IA3 EMmant(IOE)

 Y y lOElOE <1

^ lOElOE 4^

4
Logic

Array

Intorcorrooct

EAB

Logic Array

Block (LAB)

lOE 4i r> lOE

lOElOE

LogicRow

Elamant(LE)

EAB

Local

nect

/

=
Logic Array

5
iZJ

jL
u JTJu Jl:±

lOE lOE lOE lOElOE lOE lOE lOE lOE lOE

EmbaddadAiray

Figure 2-2. Altera FlexlOK and 10KE Architecture [6]-[7]

13

2.3.1 Embedded Array Block (EAB)

EAB units are embedded memory units available for

storage. Both the input and output ports consist of registers that allow for

data transfers to be synchronized with the global clock [7], Due to

the high capacity of EABs, a digital designer can implement complex

functions utilizing only one logic level which in turn reduces the

amount of delay in a given circuit [7]. Combinatorial functions can be

implemented using large lookup tables eliminating the need for

a complex gate network thus increasing the speed of the

implementation [7].

2.3.2 Logic Element (LE)

The smallest logic unit in the Altera component series is the

logic element [7]. A diagram of the Altera Flex 10KE logic element is

presented in Figure 2-3.

14

ProgmnfwmWe

Register
Carrynn Caseadenn Register Bypass

i
JL i

> Look-Up
> Table (LUT)

datal
ToFastTrack

InterconnectCascade

Cham

Cany

Cham

PRN

> D Q
data4

>rv ENA

To LAB Local

Interconnect

Clear/

Preset

Logic

labctrti

Iabctit2

Chip-Wde
Reset >

Clock

Select

>labctrtS

V
labctrM

Carry-out Cascade-out

Figure 2-3. Altera Flex 10KE Logic Element

A 4-input lookup table (LUT) gives each LE the ability to

quickly output any function of the four inputs [7]. A programmable

flipflop IS also available with a synchronous clock enable. This flipflop

can be configured in the D, T, JK, or SR configuration. The control

signals for the flipflop can be controlled by global input signals,

typical I/O pins, or by internal combinatorial logic. During

requests for combinatorial functions only, the flipflop can be

15

bypassed using the register bypass line. This allows the

LUT to source the output of the LE directly. The FastTrack

interconnect and the local interconnect can be driven separately using

the LUT and the register. This allows two unrelated events

to be processed through the same LE. A lookup table can be used to

implement 4-variable functions or a 16 X 1 bit memory for a microsequencer

2.4 Two Memory Implementation Methods in FPLDs

A generic style lookup table for a microsequencer has n-inputs,

and in the examples in this project, 1 m-bit wide registered output. The

number of possible outputs is 2". The lookup table can realize any

function of n inputs. Once the n inputs are applied to the system, the

requested information, m bits wide, is sourced to the output port. The

output IS registered to provide the pipeline register of Figure 2-1. The

first technique for implementing memory in FPLDs is an EAB approach as

seen in Figure 2-4. Each EAB unit in a 10KE series component provides

4,096 bits of memory and a maximum of 16 outputs while the 10K series

component provides 2,048 bits of memory and a maximum of 8 outputs[6],[7]

16

To implement memory storage using an EAB, the designer

programs a listing of desired data beginning with the first data

string as position 0. The next data string would be stored in position

1 and so on. This listing of data is stored in the memory array

of the EAB unit by the logic compiler. Each EAB in a 10KE series

component is capable of memory configurations from 256 memory

locations, each 16 bits wide, to 4,096 memory locations, each 1 bit wide.

Each EAB unit in a 10K series component is capable of memory configurations

from 256 memory locations, 8 bits wide to 2,048 memory locations.

1 bit wide. Once the data is stored in the EAB address, bits may be placed on

the input lines to request a string of bits from the memory array. Each

EAB can be connected in series or in parallel to enlarge the memory

configuration.

Clock

Inputs
8-11

Programmable Logic/
Memory Array

(EAB)

Output Registers <

Outputs
16-1

Figure 2-4. First Memory Approach

17

V

Output
Registers

Memory Array
(N Parallel LUTs)

► Outputs7^
4

Inputs
16 XN

Figure 2-5. Second Memory Approach

The second technique for implementing memory in FPLDs is

using the LUTs in LEs A block diagram can be seen in Figure 2-5. The

output register in this case is made up of the LE flipflops. In the example

above, the number of inputs is 4 which would give 16 possible outputs, N bits

wide, for N LUTs. In this configuration, the designer is not limited in the

selection of the width of the data string. A deeper LUT can be realized by

connecting LUTs to a multiplexer as shown in Figure 2-6 below.

Clock

\
7^ Memory Array e

o
M4 gMbits Outputs

Mbits

Inputs u

U t
s

X P t
u14 t ®

7^ 7^Memory Array s

4
Select Mbits

Line

Figure 2-6. Parallel LUT

18

Two memory arrays each composed of N LUTs are used in Figure 2-6.

Each array has 16 possible outputs with N bits. With this implementation,

the multiplexer select line can act as the fifth bit thus allowing 2-16

position arrays to become 1-32 position array. The final output is

N bits wide and is registered using the flipfiops in the LEs used to construct

the multiplexer. This approach could be used with a four-input multiplexer

and four arrays to get memory four times as deep, and so on. This

approach could also be used to provide memory for FPLDs where

the on board EAB units are being utilized for another function, or

for FPLDs that have no EAB units.

19

Chapter 3

Explanation of VHDL and Microsequencer Operations

3.1 VHDL

VHDL IS a digital design hardware description language

used for modeling and synthesizing digital systems of varying degrees

of complexity. VHDL's design process and functionality will be

discussed in this chapter. The language is composed of the

five types of design units are listed below [3].

• Entity Declaration

• Architecture Body

• Configuration Declaration

• Package Declaration

• Package Body

Of the five units, only entity declaration and architecture body are

required to create a VHDL program [3]. Further information about VHDL

programming is found in the textbook by Zoran Salcic and Asim

Smailagic and other similar texts on VHDL [9].

20

NA TMS=
Y = 00

1

Y

TMS=

1

N

B TMS=
Y=01

1

Y

Figure 3-1. Representative State Diagram

To illustrate how a state machine is described in VHDL,

consider the representative synchronous finite state machine in Figure 3-1.

This state machine advances to the next state as long as tms equals

0, otherwise it returns to the current state. The VHDL code for this

state machine appears in Figure 3-2.

LIBRARY ieee;

USE ieee.stdJogic_1164.all:
ENTITY tap IS
PORT (elk, tms : IN STD_LOGIC:

: OUT STD_LOGIC_VECTOR(1 DOWNTO 0))y
END tap:
ARCHITECTURE behavioral OF tap IS
SUBTYPE STATE_TYPE IS STD_LOGIC-VECTOR(1 DOWNTO 0):
SIGNAL state : STATE_TYPE:

Figure 3-2. Representative VHDL Program

21

CONSTANT A: STATE_TYPE ;= "00";
CONSTANT B: STATE_TYPE := "01";
CONSTANT C; STATE_TYPE := "10";
CONSTANT D: STATE_TYPE := "11";
BEGIN

PROCESS (dk. tms, state)
BEGIN

IF dk'event AND elk = '1' THEN

CASE state IS

WHEN A =>

IF tms = 'O' THEN

state <= B;

ELSE

state <= A;

END IF;
y <= "00";

WHEN B =>

IF tms = 'O' THEN

state <= C;

ELSE

state <= B;

END IF;
y<= "01";

WHEN C =>

IF tms = 'O' THEN

state <= D;

ELSE

state <= C;

END IF;

y<="10";
WHEN D =>

IF tms = 'O' THEN

state <= A;

ELSE

state <= D;

END IF;

y<="11".

Figure 3-2 (continued). Representative VHDL program

22

END CASE;

END IF;

END PROCESS;

END behavioral;

Figure 3-2 (continued). Representative VHDL program

3.2 Microsequencers

Microprogram sequencers have the ability to perform operations

beyond the capability of a standard state machine. Examples include

calling a sequence of states as a subroutine and implementing

repeated loops of states [5]. For the purposes of this thesis, such

a general sequencer will be called a full-scale microsequencer.

However, when making comparisons to state machines that can not

perform these tasks, it may make sense to eliminate these extra

capabilities. Such a simplified sequencer will be called a scaled-down

microsequencer. The next two sections will describe the

implementation of these two types of sequencers. The comparisons

performed in Chapter 5 will try both sequencer types, keeping in mind

that the full-scale microsequencer is more versatile.

23

3.2.1 Scaled-Down Microsequencer Operations

The results of this project depend on an efficient microsequencer

design that is capable of being implemented in an Altera FLEX

series FPLD. Figure 3-3 shows a scaled-down microsequencer

that implements the representative state machine of Figure

3-1. In this design, the microprogram memory has eight address

lines which allow for 256 memory locations, 5 of which are used.

The memory width is 19 + N bits, where N is the number of desired

external outputs. In this design, N is 2 bits wide. The DREG

unit is a bank of standard clocked D registers that synchronize each

input with the clock's rising edge. The MUXSTATTH multiplexer is an

8-input multiplexer that is used to choose the DREG output (i.e. the

synchronous input) that can be tested by the microsequencer. In this

case, there is only one input, tms, and all others are tied to ground The

control bits for MUXSTATTH, S[2..0], come from the microprogram control

outputs. The one bit output of the MUXSTATTH multiplexer is used to

control the MUX2 multiplexer. MUX2 is eight 2-input multiplexers used to

control the source of the input to the microprogrammed memory. Two 8

bit input busses, buss A and buss B, are connected to MUX2, along

with an NRESET input that can force the MUX2 output to zero regardless

24

o

o

Ci
a

<i>

S
o

m

0

5x

D CO

E u

S 3 3
ii f i t
(fl Z 4 ID

O «
to

fc
O Q

T

o

3 d(h

X

0 ; n n 5 « 0 t;^
E

to

r-p
X >

T ttt I
t

1 >1 X s
c s

L

T) »
5 O r N Jl) 1 lfl (0
g 0 0 0 0 0 0 0

tu

a i'

2

'o

Figure 3-3 Scaied-Down Microsequencer

25

of the inputs

Upon initial power-up, the LPM_ROM is loaded with the

microprogram Assuming that NRESET equals 0, the output of the

microsequencer will be the first address, or address 0. If both buss A

and buss B fields of a microprogram memory location (microinstruction)

contain the next sequential address then that address is fetched

regardless of the MUX2 select line. This type of instruction is called a

continue instruction.

Branching capabilities are also required in the

microprogrammed sequencer. To accomplish this, the branch

address must be placed on both of the 8 bit busses The dependence

of the MUX2 sel line does not effect the address chosen in this

situation either. This type of instruction is called an unconditional branch.

To allow for decision making capabilities, one of the conditional

inputs connected to the DREG is used. In this situation, the next

sequential address is placed on buss A while the desired branch

address is placed on buss B. Assuming that input a1 was

26

chosen, then the control bits for MUXSTATTH should be "001". This

allows only the logic level of input a1 to pass through to MUX2.

This type of branching is called conditional branching.

The microprogram memory is programmed using one of

two separate techniques, EABs and LUTs, both of which were

presented in Section 2.4. The first technique, the one presented in

Figure 3-3, is the EAB approach. The program for this EAB unit would be

stored in MIF (Memory Initialization File) format. Another means to

implement the microprogram memory is to make use of a LUT.

These styles are compared in Chapter 5.

3.3 Full-Scale Microsequencer

The full-scale microsequencer used for these comparisons is

presented in detail in [5] A group of eight 4-input multiplexers

along with an incrementer, a stack, and a counter-plus-stack have been

added to the scaled-down microsequencer to obtain the full-scale

microsequencer shown in Figure 3-4, again implementing the state

machine of Figure 3-1. The microprogram memory has eight address

lines which can access 256 memory locations. The memory width

27

5

S
cr

0N
Q n
2 n

>
0 or

0
1

U u

5 3 " : 2 9 ^u
0

BCM
)(>■
3

E
S 0 °
s i t
Z

j

i a 4 0

$
0

« w
0 Q

!

r>

0 00 0 0
L

^ ^0
£ U0XX y > 4 2t0D D

X a d0 uL 0E 00 0
aD 0 0*J ?n n ri n n n

0 0 0 0 0

h ̂ h ^ .•

a£ c u0 Q 0 0 0

h h h l' *-
- ■ ■ U W M

U 0 »4 m

X J 2 7? 2 S
0 2 U ° r n

5 X J 2
° u n I
t 3 2 3
0 u u a

0

0 5 t
0

< S 0 0 w ^ sj
0 < a

5r:
55 S 5

<n (O in n ^ fc jia
oi o oi tr

m t.i "Sio a- o u u

S X X rt
O'
0)

1u
uV ^Or ft ni n io
U 0 0 0 0 0 0 D

< r

l>

i

in
(0

—t>i
Figure 3-4. Full-ScaSe Microsequencer

28

IS N + 20 bits, where N is the number of desired external outputs.

In this example N=2. The design and function of the MUXSTATTH,

DREG, and MUX2 are the same as presented in section 3.2.

The new designs added to create the full-scale

microsequencer include two MUX4 blocks composed of 8 4-input

multiplexers, one incrementer (INCREM), one stack register (STACK),

and one counter plus stack (STACKCTR). The MUX4 multiplexer has

four inputs. All of the inputs are eight bit busses with input A coming

from the control unit, input B coming from the STACKCTR, input C

coming from the STACK, and input D coming from the INCREM. The

two bit select line to control both MUX4 multiplexers come from the

control unit. The output of the MUX4 is the input to the MUX2 multiplexer

The MUX2 unit then chooses which eight bit address will be sent to the

control unit by using the SEL signal sent from the MUXSTATTH

multiplexer [5].

Nested looping capabilities and two-way branching capabilities

have been included with the addition of the STACKCTR counter which

contains a loop counter that can be stored in a stack for nesting. This

device has the following input; clock, cntnioad, cnten, A[7..0], pushnpop.

29

and stacken. Another use of the counter is two-way branching By

setting the cntnioad signal to 0, the contents of the eight bit buss

will be loaded into the counter. Assuming that this is an address

instead of a loop value, the address is output onto the eight bit buss

where it is an input to the MUX4 multiplexer. The A input of the MUX4

multiplexer can have another branch address which would be received

via the control unit. Depending on the conditional input, one of two

available branch addresses can be accepted creating a two-way

branch.

The microprogrammed memory is programmed using the

same two approaches as discussed in Section 3.2. Upon initial

power-up, the LPM_ROM is loaded with the appropriate data.

Assuming that NRESET is 1, the output of the microsequencer will be

the first address (address 0). The sequencer retrieves the contents

of the next sequential memory location As long as the next sequential

address is requested, the designer can choose between accepting

the next sequential address which would be input A to MUX4 or

choosing input D to MUX4 which would be the INCREM incrementer

value. Both busses should contain the same value. This type of

30

instruction is called a continue instruction A branch instruction is also

important in microsequencer design. This branch would depend on one of

the conditional inputs. For instance, if the conditional input were 0,

then the top or first MUX4 mulitplexer would choose the next sequential

address assuming that the SEL[1 ..0] bits had the value of 00. (In this

project, the top MUX4 unit has been designated to pass the next

sequential address.) If the conditional input were 1, then the bottom MUX4

multiplexer would be chosen. Assuming that the SEL[1 ..0] bits were 11,

then the INCREM incrementer value would be chosen. This type

of instruction is referred to as a conditional branch or a conditional

Jump

31

Chapter 4

Synchronous Finite State Machine
Test Exampies and Functionality

Three synchronous finite state machines were chosen for

implementation using the five methods mentioned in Chapter 2. The

TAP controller, temperature control unit, and the quarter-inch tape

cartridge controller with 16, 22, and 61 states respectively were

implemented. The TAP controller is an IEEE standard, while the

quarter-inch tape cartridge controller is part of the Advanced Micro

Devices AM29L141 Fuse Programmable Control Handbook. These

two state machines offer well established data regarding functionality.

The temperature control unit was taken from [9]. This state machine

was used as a means of comparison to determine what characteristics

are found with state machines over 16 states, but less than 61 states

4.1 Test Access Port (TAP) Controller

The Test Access Port Controller state machine is defined and

used in the IEEE Standard 1149 1-1990. The state diagram is

presented in Figure 4-1 [10]. This state machine has 2 inputs and

32

r
A TEST-LOGIC

RESET

Y
TMS

This state is only used
in the Full-Scale

Microsequencer design

N

/•
:

I
:

B I
:

:

i

¥

D RUN-TEST/

IDLE

YN

4TMS

E L SELECT-

IR-SCAN

SELECT-

DR-SCAN

YY
TMS TMS

NN

43

Figure 4-1. Test Access Port State Diagram
33

$
MF

CAPTURE-IRCAPTURE-DR

YY
TMSTMS

NN

NG
SHIFT-IRSHIFT-DR

NN
TMSTMS

Y Y

OH
EXIT1-IREXIT1-DR

P
PAUSE-IRPAUSE-DR

5 5
Figure 4-1 (continued). Test Access Port State Diagram

34

QJ
EXIT2-IREXIT2-DR

RK
UPDATE-IRUPDATE-DR

Y
TMSTMS

N N

1 1

Figure 4-1 (continued). Test Access Port State Diagram

35

16 outputs. A thorough understanding of the function ot this state

machine can be gained by accessing the IEEE standard, but it is not

relevant to this work.

4.1.1 VHDL Implementation

The state machine in Figure 4-1 was programmed using the

VHDL language and was synthesized using the Altera Max+Plus II

software. Once the program was complete, the design was compiled

and a simulation of the program was conducted to test for proper

functionality. If errors were found then the program was accessed

for modifications. Once errors were corrected, the program was

compiled for a second time and a simulation was conducted. The

simulation file (.scf) or waveform file was developed by choosing

the desired input pins and output pins and inserting a particular test

pattern or waveform for each input over a predetermined time interval.

Once the simulation was activated, the resulting waveform for each

output covering the predetermined time interval was obtained.

36

4.1.2 Scaled-Down Microsequencer Implementation

The state machine diagram was implemented in a scaled-

down microsequencer similar to the one presented in Section 3.2.

Care was taken to make the implementation of each component of the

scaled-down microsequencer as efficient as possible. Two types of

memory were used. The first memory type was an EAB unit utilizing a

LPM_ROM megafunction and the second type was a LUT. Each

microsequencer was implemented using 16 output control bits and

8 microinstruction bits.

4.1.3 Full-Scale Microsequencer Implementation

The state machine in Figure 4-1 was modified slightly to allow

it to be implemented in the Full-Scale Microsequencer. An extra state, B,

was inserted in the full-scale microsequencer implementation This

was necessary , for this implementation only, to load the counter with

one of the addresses for the two-way branch exiting state D. This

requirement is unique to the particular architecture of the full-scale

microsequencer Care was also taken to make each component of the

full-scale microseqeuncer as efficient as possible. Two types of memory

37

were used for these implementations Both memory types were

the same as mentioned in Section 4.1.2.. Each microsequencer was

implemented using 16 external output bits and 20 microinstruction bits.

4.2 Temperature Control Unit

The temperature control unit state diagram is presented

in Figure 4-2. This control unit is responsible for monitoring the

temperature inside of a chamber and activating a fan if the temperature

is too high or activating a heat lamp if the temperature is too low [9].

The temperature control unit is composed of ten inputs (end, strobe, clock

si, sh, dl, dh, enter, ageb, altb) and eleven outputs (start, setjow.

set_high, cirjow, clr_high, Idjow, ld_high, selhilo, seldisp[1..0], fan_on.

and lamp_on) The temperature control unit is comprised of 22 states

and has been modified slightly to allow for implementation using

a full-scale microsequencer. The two variations of the scaled-down

microsequencer were implemented using 12 output control bits and

20 microinstruction bits while the full-scale microsequencer was

implemented using 12 output control bits and 22 microinstruction

bits.

38

A

I
4

B
SELHILO=0

C
START=0

I
D

Y
END

1N

E G
SELHILO=0 SELHIL0=1

NN
ALTB AGEB

Y Y

F H
LAMP 0N=1 FAN 0N=1

T I

Figure 4-2. Temperature Control Unit State Diagram
39

I

N M

¥SL

Y

N
J LD_LOW

CLR LOW
3SH

Y

NN LD_HIGH
CLR HIGH

STR

Y

NK
STR

Y

O

L
LD LOW

I

P
LD HIGH

Figure 4-2 (continued). Temperature Controi Unit State Diagram

40

Q

N T

U
SET HIGH

Figure 4-2 (continued). Temperature Control Unit State Diagram

41

4.3 Quarter-Inch Tape Cartridge Controller

A Quarter-Inch Tape Cartridge Controller state machine is

described in the Fuse Programmabie Controlier handbook[11].

The state diagram of this controller is presented in Figure 4-3. This state

machine is comprised of 61 states with 6 inputs and 13 outputs. The

same variations were used in Section 4.3 that were used in Section 4.2.

Each scaled-down microsequencer was implemented using 13 output

controi bits and 19 microinstruction bits. Each full-scale microsequencer

was impiemented using 13 external output bits and 20 microinstruction bits.

42

A

1P3=1

M
P0=1

y_
N O

P11=14 cc

Y

N
N

CC

Y K

p
P0=1

D

Y

CC

N K

E

Y
cc

N

F

Figure 4-3. Quarter-Inch Tape Cartridge Controller State Diagram

43

i
2

R
P4=1,P0=1

Y
4

±
cc

VN
ccN

G

N
S cc

Y
Y

WN
CC

Hy

N
T cc

P0=1,P0=1

Y

XN
CC

Y

U

Figure 4-3 (continued). Quarter-Inch Tape Cartridge Controller State
Diagram
44

AAY
P2=1P0=1

N
cc

Y

ABZ
P1=1

X

P0=14

N
AC

CC

Y

AD

Figure 4-3 (continued). Quarter-inch Tape Cartridge Controiier State
Diagram

45

5

AGY
cc

N

K

AHY
P4=1CC

N

L

Figure 4-3 (continued). Quarter-Inch Tape Cartridge Controller State
Diagram

46

03

AK

Y
T1

N

ANAL

YY
TOTO

II
BEBD

BE=1N N

AK AO
P12=1,P5=

Figure 4-3 (continued). Quarter-Inch Tape Cartridge Controller State
Diagram

47

AP

Y
T1

N

I
ASAQ

YY
TOTO

I1
BGBF

P6=1,P5=1 NN

ATAR
P6=1J

Figure 4-3 (continued). Quarter-Inch Tape Cartridge Controller State
Diagram

48

Y
T1

N

AYAW

Y Y
TOTO

II
BlBH

P4=1N N

AX AZ
P6=1

Figure 4-3 (continued). Quarter-inch Tape Cartridge Controiier State
Diagram

49

BA

Y
T1

N

6BB

I
BC

Figure 4-3 (continued). Quarter-inch Tape Cartridge Controiler State
Diagram

50

Chapter 5

Comparison of Results

Each implementation was compiled using Altera Max+Plus II

software. Two versions of the Altera software were used including the

Altera Max+Plus II 7.21 Student Edition software and the Altera Max+

Plus II 9.4 software. Each implementation was compiled using the

fast-logic-synthesis mode. Each compilation of a specific implementation

was implemented in both software versions and was also compiled

using three optimization levels. Those three levels include a maximum

speed implementation, a minimum area implementation, and a

50/50 speed/area implementation. These optimization levels can be

accessed in the Altera software under the Assign pulldown menu. Each

implementation in the 7.21 version software was compiled in an

EPF10K20RC240-4 FPLD. The 10K series components were chosen

since this series of components is the most recent series of components

supported by the 7.21 student version software. Each implementation

in the 9.4 version software was compiled using the EPF10K20RC240-4

component and the EPF10K30ERC240-4 component. The 9.4 version

software was used to make comparisons not only between versions

of software, but between series of components as well (10K and 10KE).
51

All frequencies represented in Table 5-1 were taken from the

compilation whiie the optimization control was set to the maximum speed

using the Global Project Logic Synthesis command under the Assign

pull-down menu. The other two optimization control settings,

(minimum area and 50/50 speed/area), gave similar results with

minimal reduction. Results listed under the 7.21 and the 9.4(K)

headings are from the Altera Flex 10K components while the results

listed under the 9 4(KE) heading are from the Altera Flex 10KE

components. The methods listed in Table 5-1 are discussed in greater

detail in Chapter 2. The following is an explanation of each abbreviation

listed in Tabie 5-1:

VHDL ~ VHDL programming

SCDN (EAB) ~ Scaied-Down Microsequencer utilizing
an EAB as the memory storage element

SCDN (LUT) ~ Scaled-Down Microsequencer utilizing
a LUT as the memory storage element

FLSC (EAB) ~ Full-Scale Microsequencer utiiizing an EAB
as the memory storage element

FLSC (LUT) ~ Full-Scale Microsequencer utilizing a LUT
as the memory storage element

52

5.1 TAP Controller Results

Table 5-1. TAP Controller Clock Frequency Comparison

Software Version ~1Version

9.4(K) |9.4(K^7.21Method

Units in MHz

119.04

90.90

200.00

68.02

117.64

45.04

39.06

76.92

31.94

40.65

30.48

67.56

21.14

35.84

VHDL

SCDN (EAB)
SCDN (LUT)
FLSC (EAB)
FLSC (LUT) 38.61

The clock frequency results for the TAP controller appear in

Table 5-1. All units are in megahertz. Table 5-1 shows that the fastest

implementation method for this state machine is a scaled-down

microsequencer using a LUT as the memory storage element. The

second fastest approach is VHDL programming. The scaled-down

microsequencer version with EAB or LUT memory is faster than the

respective full-scale microsequencer.

Table 5-2 presents a listing of the logic cells and EAB

components utilized in each implementation method.

53

Table 5-2. TAP Controller Logic Cell and EAB Comparison

Resources "HI
EABLCMethod

0.0053.00VHDL

SCDN (EAB)
SCDN (LUT)
FLSC (EAB)

II FLSC (LUT

5.005.00

0.0030.00

103.00

96 00

6.00

0.00

The scaled-down microsequencer implementation utilizing the

EAB memory approach utilizes the fewest logic resources.

The number of logic celis is significantly lower in the scaled-down

microsequencer EAB implementation than in the LUT implementation,

as would be expected. However, this does not hold true for the full-scale

microsequencer implementation. The LUT implementations ignore bits

that do not fluctuate from zero during compilation. In other words, the

software does not use logic resources to compile these "unused" bits.

However, the software utilizes an LPM_ROM megafunction to implement

the EAB memory and this megafunction uses logic resources to address

all bits regardless of the status of each bit. This causes the EAB

approach in the full-scale microsequencer to use additional logic cells.

54

5.2 Temperature Cbntrol Unit Results

Table 5-3. Temperature Control Unit Clock Frequency Comparison

Software VersionVersion

7.21 I 9.4(K) I 9.4(KBMethod

Units in MHz

58.13

58.47

83.33

51.81

74.62

23.41

28.81

29.41

26.88

28.32

16.47

18.97

24.81

17.45

24.39

VHDL

SCDN (EAB)
SCDN (LUT)
FLSC (EAB)

I FLSC (LUT)

The clock frequency results for the Temperature control unit

appear in Table 5-3. Table 5-3 shows that the fastest state machine

implementation method is the scaled-down microsequencer using a LUT

as the memory storage element. In the 7.21 and 9.4(KE)

software comparisons, the full-scale microsequencer using a LUT

is the second fastest approach while the scaled-down

microsequencer using a EAB is the second fastest approach

in the 9 4(K) software version compilation. In two of the three

comparisons, VHDL is last in terms of clock frequency, while it is

fourth in the remaining comparison.

55

Table 5-4. Temperature Control Unit Logic Ceil and EAB Comparison

Resources

EABLCMethod

0.00VHDL

SCDN (EAB)
SCDN (LUT)
FLSC (EAB)
FLSC (LUT)

124.00

22.00

85.00

108.00

99.00

5.00

0.00

5.00

0 00

Table 5-4 presents a listing of the logic cells and EAB

components utilized in each implementation method. Once again,

both scaled-down microsequencer implementations utilize fewer

logic cells than does VHDL programming. The EAB implementation

of the scaled-down microsequencer utilizes the least amount of

logic cells at 22. Table 5-2 and Table 5-4 show that as the number of

states increases by 6, the number of logic cells required for VHDL

programming increases from 53 to 124.

56

5.3 Quarter-Inch Tape Cartridge Controller Results

Table 5-5. Tape Cartridge Clock Frequency Comparison

]Software VersionVersion

7.21 I 9.4(K) |9 4(KE)Method

Units in MHz

29.06

73.52

85.47

67.56

80.64

VHDL

SCDN (EAB)
SCDN (LUT)
FLSC (EAB)

II FLSC (LUT)

9.82 12.62

34.36

32.78

33.89

34 48

21.64

28.24

22.72

25.70

The clock frequency results for the Quarter-Inch Tape

Cartridge controller appear in Table 5-5. Table 5-5 indicates that the

scaled-down microsequencer using the LUT is the fastest approach in

versions 7.21 and 9.4(KE) The full-scale microsequencer using the LUT is

the fastest approach in version 9.4(K). VHDL implementation clock

frequency continues to decline with the increase in the number of states.

Table 5-6 presents a listing of the logic cells and EAB

components utilized in each implementation method. The number

57

Table 5-6. Tape Cartridge Logic Ceil and EAB Comparison

"Resources I
LC EABMethod

464.00

16.00

122.00

112.00

205.00

0.00VHDL

SCDN (EAB)
SCDN (LUT)
FLSC (EAB)
FLSC (LUT)

4.00

0.00

6.00

0.00

of logic cells drastically increases for the VHDL implementation

as the number of states implemented increases to 61. The scaled-down

microsequencer with EAB memory continues to have the lowest

amount of logic resources utilized at 16. The number of logic

resources utilized by the full-scale microsequencer using the LUT

increases considerably as the number of states increase from

22 to 61.

58

Chapter 6

Conclusions

This comparison of VHDL and microprogrammed

implementations was conducted by choosing three representative

state machines, a TAP controller with 16 states, a Temperature

Control Unit with 22 states, and a Quarter-Inch Tape Cartridge

controller with 61 states. Five separate implementation methods

were used including VHDL programming, a scaled-down microsequencer

with EAB memory, a scaled-down microsequencer with LUT memory, a

full-scale microsequencer with EAB memory, and a full-scale

microsequencer with LUT memory.

Each implementation used the Altera Max Plus II software

versions 7.21 and 9.4. The 7.21 version software used the Altera Flex

10K components while the Altera Flex 10K and 10KE components

were used for the 9.4 software comparison. Each of the five

implementation methods were compiled using three optimization levels;

maximum clock frequency, 50/50 clock frequency/minimum area.

and minimum area. Minimum area refers to the number of logic resources

59

utilized by a given design.

6.1 TAP Controller

The Test Access Port (TAP) Controller state machine has

2 inputs and 16 outputs with 16 states. The most advantageous

approach concerning maximum clock frequency was achieved with the

scaled-down microsequencer implementation using LUT memory. VHDL

programming was the second fastest approach. The scaled-down

microsequencer using EAB memory was the most efficient approach

with regard to logic resources utilized.

6.2 Temperature Control Unit

The Temperature Control Unit has 10 inputs, 11 outputs, and

22 states. The maximum clock frequency came from the scaled-down

microsequencer using the LUT memory. The full-scale microsequencer

using the LUT memory results in the second highest clock frequency.

VHDL programming is fourth fastest in terms of maximum clock frequency.

The scaled-down microsequencer using EAB memory is first in terms

60

of minimal logic resources with the scaled-down microsequencer using a

LUT being the second best method.

6.3 Quarter-Inch Tape Cartridge Controller

The Quarter-Inch Tape Cartridge Controller has 6 inputs,

13 outputs, and 61 states. The maximum clock frequency is the

scaled-down microsequencer using the LUT memory. The second most

favorable approach is the full-scale microsequencer using the LUT

memory. VHDL is last in terms of clock frequency The scaled-down

microsequencer using the EAB memory utilizes the least amount of logic

resources while VHDL programming utilizes at least twice as many as any

other method.

6.4 Overall Conclusions

VHDL programming clock frequency declines drastically as

the number of states increases from 16 to 61. The number of logic

resources utilized increases drastically as the number of states

increases from 16 to 61. The microprogrammed approach using LUTs to

61

implement finite state machines is best in terms of clock frequency as the

number of states increases Experience has shown that VHDL

programming, works well when implementing state machines with less

than 16 states in terms of both clock frequency and logic resources. For

state machines ranging from somewhat larger to very much larger,

microprogramming appears to have an increasing advantage The ease

of implementation would have to be addressed by each user to determine

logic constraints, clock frequency desired, and time constraints.

62

I

«

REFERENCES

63

REFERENCES

A. Dewey, Analysis and Design of Digital Systems With VHDL.
Boston, MA: PWS Publishing, 1997.

[1]

D.E. Ott and T.J. Wilderotter, A Designer's Guide To VHDL
Synthesis. Norwell, MA; Kluwer Academic Publishers, 1994.

J. Bhasker, A VHDL Synthesis Primer. Allentown, PA; Star
Galaxy Publishing, 1996.

[2]

[3]

"A Brief History of Microprogramming," [Online Document], 04
March 2000, Ayailable HTTP; http;//www.cs.clemson.edu/
~mark/uprog.html

[4]

B. Bomar, "Implementation of Microprogrammed Control in
FPGAs." IEEE Transactions on Industrial Electronics,

to appear.

[5]

"Flex 10K Embedded Programmable Logic Family," Data
Sheet, y4.01. Altera Corporation, San Jose, CA, March 2000.

[6]

"Flex 10KE Embedded Programmable Logic Family," Data
Sheet, y2.02. Altera Corporation, San Jose, CA, March 2000.

[7]

"Flex 10K Deyice Family," [Online Document], Altera
Corporation, San Jose, CA, 01 March 2000, Ayailable HTTP;
http;//www.altera.com/html/products/f1 Okl .html

[8]

Z. Salcic and A. Smailagic, Digital Systems Design and
Prototyping Using Field Programmable Logic. Norwell, MA-

Kluwer Academic Publishers. 1997.

[9]

IEEE, "The Tap Controller." Standard 1149.1-1990.[10]

Adyanced Micro Deyices, Inc., "Am29PL141 Fuse Programmable
Controller Handbook," Sunnyyale, CA; AMD Pub. 06591 A, 1986.

[11]

64

VITA

Michael Hardcastle was bom in McMinnville, Tennessee on October

23, 1971 He attended elementary and secondary school in Warren County,

Tennessee. In 1995, he graduated from Tennessee Technological

University with a Bachelor of Science degree in Electrical Engineenng.

Following graduation, he worked five years for Calsonic Yorozu

Corporation as an Industrial Engineering Supervisor He joined Batesville

Casket in 2000 where he is currently employed. He received a Master

of Science degree in Electncal Engineering in August 2000.

65

	A comparison of VHDL and microprogrammed implementations of synchronous finite state machines in field programmable logic devices
	Recommended Citation

	A comparison of VHDL and microprogrammed implementations of synchronous finite state machines in field programmable logic devices

