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Abstract 

This thesis first systematically analyzes a classic surface 
generation algorithm. the marching cubes algorithm, in computer 
volume visualization, with emphasis on the mathematical 
background and the ambiguity problem of the algorithm. A 
simple and elegant disambiguation algorithm is then described and 
implemented. Finally, generated data from mathematical 
functions and real world data from scientific experiment are used 
to test the original marching cubes algorithm and the 
disambiguation algorithm. 
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Chapter 1 

Introduction 

Scientific experiments and simulations generate huge data sets. which are 
difficult to interpret and analyze without computerized aids. One of the important tools is 
scientific visualization, in which the data is displayed visually [RAPP9 l]. 

Volume data is a discrete three dimensional array which represents a finite space 
or volume. A voxel is a cubic unit of the volume. The source of volume data is sampled 
data of real objects or phenomena. computed data produced by a computer simulation, or 
modeled data generated from geometric model. Examples of applications generating 
sampled data occur in wazzu medical imaging such as computed tomography (CT), 
magnetic resonance imaging (MRI), and ultrasonography etc. Examples of applications 
that generate computed data sets, typically running a simulation in a supercomputer, 
occur in meteorology (storm prediction), computational fluid dynamics (water flow) etc. 
[KAUF93]. 

Visualization of volume data is tightly related to the topic of volume visualization 
which has emerged recently as an important technique in the fields of visualization, 
computer graphics, and computer imaging. Volume visualization is concerned with the 
tasks of representing, manipulating, and rendering volume data. It encompasses an array 
of techniques which provide the mechanisms that make it possible to reveal and explore 
the inner or unseen structures of volume data and allow visual insight into opaque or 
complex data sets. 

Two 
major techniques in volume visualization are surface rendering and volume 

rendering. In surface rendering, the volume data is first converted into geometric 
primitives (e.g. polygon mesh), then the geometric primitives are rendered to the screen 
by conventional computer graphics rendering techniques [KAUF91]. This method 
implicitly assumes that there is some underlying surface behind the data [RAPP9 l ]. 
Volume rendering involves displaying the volume directly by attaching properties such 
as opacity and color to the individual voxels of the data set instead of converting the data 
to an intermediate surface representation. 

Although volume rendering has several advantages such as the insensitivity to 
scene and object complexity, the capability to represent inner information, etc. , the 
computation is very expensive and the data storage space is large . On the other hand, in 
surface rendering, surface representation results in a significant reduction of data storage, 
and can exploit existing computer graphics techniques for fast manipulation and display . 



Therefore, surface rendering provides a quick , handy way to visualize volume data in 
many scientific applications, especially real-time interactive applications. 

Surface generation, a process of generating surface representation (usually a 
polygon mesh) out of volume data, is a principal issue in the surface rendering 
technique. This paper analyzes a popular surface generation algorithm, especially the 
mathematical theory behind it, and investigates the discontinuities in the output of the 
algorithm. An improved version of the algorithm which gives emphasis to solving this 
problem simply and elegantly is described and implemented. 
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Chapter 2 

Background & Literature Review 

In volume visualization, one primary source of volume data is generated by a 
sampling device or a computer model that creates discrete sampling points of a real or 
simulated object; usually as a sequence of cross-sectional scans. This empirical data is 
processed by 2D image processing techniques and is then 3D reconstructed into a 3D 
volume data set by stacking the cross sections. Another source of volume data is by 
voxelization which converts a geometric model into a set of voxels that "best'' represents 
the synthetic model within the discrete voxel space [KAUF9 l]. Different data geometries 
are used by these data. 

2.1 Data Geometry 
The most general means for storing two dimensional (or three dimensional) data is 

as an unordered collection of independent points. However, this format is not only 
expensive to store and manipulate. it is also rare in simulation and computational data 
analysis. Usually, the data geometries fall into three major categories: 
uniform scalar data, rectilinear data and irregular data. 

In two dimensions, the three data geometries are defined as follows: 
( l) Uniform scalar data: 

The data points are arranged in a regular grid with even spacings (see Figure- I) . 

Figure-I 

(2) Rectilinear data 
Like the uniform scalar data, the data points are also arranged in a rectangular 

grid; however, the spacings may be uneven (see Figure-2). 
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Figure-2 

(3) Irregular data 
The data points can locate in any place within the dimension area. Thus all the 

data form a connected grid of irregular-shaped cells (see Figure-3). 

Figure-3 

The above data geometries defined in two dimensions can be extended into three 
dimensional space. Generally, data in three dimensional space is also called volume 
data. The three types of volume data are: uniform scalar volume data, rectilinear 
volume data, irregular volume data. 

Uniform scalar volume data are often used to represent medical images such as 
magnetic resonance images, computed tomography images etc .. Rectilinear volume data 
usually arises in simple computational fluid dynamics applications, in which cell density 
increases in regions of interest. There are also some applications which use the irregular 
volume data. For example, a flow field around an airplane must provide boundaries 
which conform to the shape of the airplane [SHIR89]. 

All the volume data discussed in this paper are uniform scalar volume data. For 
convenience, the uniform scalar volume data is refered to as volume data in this paper. 
The volume data set is represented as a 3D discrete regular grid. A voxel is a cubic unit 
of volume centered at the integral grid point. As a unit of volume, a voxel is the 3D 
counterpart of a 2D pixel, which represents a unit of area. Each voxel has a numeric value 
(usually called density value) associated with it, which represents some kind of 
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measurable propeny of the object residing in the volume data. For example, this property 
can be the radio-opaque in 3D medical volume data. 

Surface rendering technique is one of the major techniques to visualize volume 
data. A polygonal surface is generated from the data and rendered to the screen by 
conventional computer graphics rendering techniques. The generated surface which is an 
approximation of the real surface of the object residing at the volume data helps to 
reveal and explore the inner or unseen structures of volumete data. Many techniques 
have been developed to generate a surface from the volume data. 

2.2 Surface Generation Techniques 
2.2.1 Cuberille Model 

Chen et al. [CHEN85] proposed a surface shading method in the cuberille 
environment. They defined a cuberille model as "dissection of space into equal cubes 
(called voxelsthe) by three orthogonal sets of parallel planes". In this environment. an 
object is represented by a subset of the set of all voxels. The detected surface of the 
object is called boundary surface which is made up of faces of the cubes which separate 
voxels in the object from voxels in the background. 

The boundary surface is first detected by a three-dimensional boundary detection 
algorithm which is developed by Liu [LIU77]. The algorithm first picks an intitial 
boundary element as the current bounday element, then it tries to find the next boundary 
element by choosing one of the neighbors of the current boundary element. If the next 
boundary element is found, then it is put into a pool; the current boundary element is 
chosen from the top of a pool and the next boundary element needs to be found. If the 
next boundary element is not found, then a back tracing routine is called. The process 
repeats until the whole boundary is found. Then the surface is displayed using common 
computer graphics techniques. 

The advantage of the cuberille model is that it is fast since the boundary surface is 
built up of faces of cubes with no detail from inside the cube. The disadvantage is that 
the produced image is naturally blocky because all surface patches are orthogonal to one 
of the coordinate axes. However, the image can be made to appear smooth by the deft 
use of surface shading. A number of shading methods which include distance-only 
shading, constant shading, image-based contextual shading, normal-based contextual 
shading, Phong shading and gradient shading have been experimented with in this 
cuberille model. The best quality image rendering is produced by the normal-based 
contextual shading method. 

2.2.2 Planar Contour Method 
The planar contour method is one of the early techniques in 3D surface 

generation . The idea of this method is based on the structure of a 3D data set which 
consists of a stack of 2D cross-sectional planes. The contour in each 2D parallel cross­
sectional plane is first identified. A 3D surface is then constructed by connecting the 
consecutive planes using planar surface elements which are named "tiles". 
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2.2.2.1 Surface with Triangular Tiles 
Fuchs et al. [FUCH77] constructed a surface over a set of cross-sectional 

contours, using triangular tiles between each pair of adjacent contours. Each triangle is 
defined between two consecutive vertices on the same contour and a single vertex on the 
adjacent contour. A directed graph is used to represent all possible edge interconnections 
between any two contours. The edges to be created between vertices of the contours are 
represented as nodes in the graph and the triangular tiles are represented as arcs between 
nodes. The problem of which vertices from the two contours to connect is then resolved 
by finding a path through the graph which yields the lowest 'cost'. If the cost of moving 
from one node of the graph to another is chosen to represent the surf ace area of a tile, the 
best path through the graph represents a mesh with the smallest surface area. 

2.2.2.2 Surf ace with Spline Tiles 
Sunguroff and Greenberg [SUNG78] used a combination of B-splines and 

Cardinal splines to find the surfaces. In their 3D reconstruction system, there are three 
major modules. The first module is the contour extraction module which generates 
contours either with a gradient edge detection algorithm or under interactive control. In 
the second module which is called the surface forming module, B-splines are used for 
representation of the sectional contours and Cardinal splines are used to interpolate 
between sections to form the 3D surfaces. Finally, smooth-shaded images are created by 
the rendering module. 

In this system, the polygon description of the objects has a major advantage for 
smooth-shaded images when compared to standard polygon techniques. Most continuous 
shading methods approximate the vertex normal vectors by averaging the continuous 
polygon normals. However, using the spline technique, a continuous surface is 
interpolated, and thus an exact surface normal is obtained at each vertex. Intermediate 
normals are then interpolated from the exact values at the vertices. 

There are several drawbacks in the planar contour method [HERM79] [LORE87]. 
The inter-plane connectivity that exists in the original data is lost. Bias is introduced 
into the display by the orientation of the original cross sections. If there is more than one 
contour on a cross-sectional plane, ambiguity arises in determining the connection 
between contours. 

2.3 Isosurface Generation 
2.3.1 Definition of Isosurface & Isosurface Generation: 

In a volume data, each voxel associates with a density value which represents 
some kind of measurable property of the object residing in the data. Given a threshold 
density value C, all the points with density values equal to C in the dimensions of the 
volume data form an isosurface for value C (which is also called the isovalue). 

An algorithm which extracts a polygon mesh representing the isosurface from a 
volume data is known as an isosurface generation algorithm. 
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Frequently, the volume data used in isosurface generation is redefined as an 
aggregation of cubes whose vertices lie on the grid points of the data. The value of a 
vertex is the same as the value of the voxel that centers at the vertex. Note that a "cube'' 
has sampled points at its vertices while a "voxel" has a sampled point at its center. A 
face is one of the six sides of a cube. An edge is one of four rims of a face. 

Given a threshold value, a vertex is positive if its value is greater than the 
threshold, and it is negative if its value is less than the threshold. In this paper. a positive 
vertex is represented by a small black circle, and a negative vertex is not highlighted. 

positive vertex negative vertex 

face --- edge 

Figure-4 Cube structure 

In a volume data set, a cube can be classified into one of the three categories: 
inside the surf ace, outside the surf ace or intersecting the surface. If all the eight vertices 
of a cube have values greater than the threshold value, the cube lies inside the surface. A 
cube is outside the surface if all its eight vertices have values less than the threshold 
value. If a cube has some vertices with values greater than the threshold value and some 
less than the threshold value, then it intersects the surf ace. 

When an edge of a cube joins opposite signed vertices, the isosurface must pass 
through the edge. The point at which the isosurface crosses through edge is the 
intersection point which is calculated by interpolation. In this paper, an intersection point 
is represented by an empty circle. 

Intersection points on all the possible edges of a cube are then connected 
sequentially to form polygons which are the approximation of the isosurface within the 
cube. Usually, these polygons are nonpalanar, and they are further tessellated into 
triangles which are commonly used as primitives in 3D computer graphics rendering 
algorithms. The result of the above process is called the triangulation of a cube. 
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intersection 
point polygon 

triangles 

Figure-5 Triangulation of a cube 

Certain assumptions are made by isosurface generation algorithms in order to 
simplify the implementation: 
* If two vertices of an edge have the same signs with respect to the threshold, the 
isosurface is assumed not to pass through the edge (although the surface may actually 
pass through the edge any even number of times). In this situation, it is assumed that 
there is no intersection point on this edge. 
* If two vertices of an edge have opposite signs ( one positive and one negative), the 
isosurface is assumed to pass through the edge just once (although the surface may 
actually pass the edge any odd number of times). Multiple intersections can not be 
detected and only one intersection point is assumed to exist on this edge. 

2.3.2 Assurance of Isosurf ace Continuity 
A polygon mesh representing the isosurface of an object is built up of small 

triangles generated within the cubes which intersect with the isosurface. The relation of 
the continuity of the isosurface and the behavior of the polygon edges is revealed by the 
following theorem [UDUP82]. 

Theorem: A polygon mesh defines a continuos surface if and only if each nonboundary 
edge occurs exactly twice, and each boundary edge occurs only once. 

A nonboundary edge of a polygon mesh is disconnected if it occurs only once. 
The isosurf ace represented by the polygon mesh is discontinuous if disconnected edges 
exist in the polygon mesh. The discontinuous isosurface is exhibited as an isosurface 
with holes. 

An edge of a polygon mesh is multiple-branched if it occurs more than twice. 
The isosurf ace represented by the polygon mesh contains extra pieces which don't 
belong to the actual isosurface if multiple-branched edges exist in the polygon mesh. 

2.3.3 Isosurface Generation Methods 
2.3.3.1. Face Table Method 

Wyville et al. [WYVI87] developed an early isosurface generation algorithm 
which constructs isosurfaces to represent the so-called soft objects, objects whose shape 
changes in response to their surrounding. This algorithm generates polygons within 
cubes based on a face table which tells how an isosurface intersects a cubic face with 
respect to the polarity of the four vertices (see Figure-6 ). 
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□ □ EJ LJ 
(a) (b) (c) (d) 

IIJ SJ □ 
(e) (f) (g) 

Figure-6 A face table 

When the number of positive vertices on a face is four or zero, there is no surface 
intersection as illustrated in case (a) and (b). 

When the number of positive vertices is one or three, a single line segment is 
created as in case (c) and (d). 

There are two situations if the number of positive vertices is two. One situation is 
that two positive vertices connect a cubic edge and only a line segment is created as in 
case (e). Another possible situation is that two positive vertices are on one diagonal line 
and two negative vertices on another diagonal line. This situation is shown in case (f) and 
(g). Ambiguity arises in this situation since it is not known whether case (f) or (g) will be 
chosen. 

The isosurf ace within a cube is constructed in two steps. First. the algorithm 
creates line segments on all the six faces of the cube. Secondly, the algorithm starts at 
one of the line segments. and sequentially traces its successor which has a common 
endpoint with the previous line segment until the algorithm comes back to the first line 
segment where it started. 

2.3.3.2 Cube Table Method 
The algorithm based on a face table which only provides the polygon connetivity 

on the face of a cube has to construct polygons within a cube from scratch at run-time. 
Some isosurface generation algorithms attempt to generate polygons from a cube table 
that stores the precomputed the polygon connectivity for cubes. These algorithms can be 
grouped into a general method which will be refered to as the cube table method which 
is more efficient than the face table method . 

Bloomenthal [BL0088] attempts to construct a cube table by the ordering 
vertices method. This method begins with any surface intersection point on an edge of a 
cube and proceeds towards the positive comer and then clockwise about the face to the 
right until another interpolation point is reached. And then the two intersection points are 
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connected to form an edge of a polygon. This method is repeated until the polygon is 
closed. 

2 Direction of Search 

Surface Polygon 

5 
Figure-7 Ordering vertices method 

Lorensen and Cline [LORE87] proposed a marching cubes algorithm which 
constructs the table from only 15 elementary cubes. This method is discussed in detail in 
the following chapter. 

2.3.3.3 Dividing Cubes Method 
A polygon mesh consisting of large amounts of triangles is used to represent the 

isosurface by many isosurface generation algorithms. However, in some cases, the 
resolution of the volume data is so high that the size of the triangles generated 
approaches the pixel size. In order to improve the efficiency of the isosurface generation 
by avoiding too much detail, Cline et al. [CLIN88] developed the dividing cubes 
algorithm which generates point primitives instead of triangle primitives to represent a 
surface. 

This algorithm subdivides cubes into sub-cubes whose size is close to the pixel 
size on the raster display: For convenience, the term "vertex" is used to represent the 8 
corners of a cube and the term "corner" is used to represent the 8 corners of a sub-cube 
which is obtained by the subdivision of a cube. 

The algorithm calculates the gradient vector for each of the eight cube vertices . 
The density values at the corners of a sub-cube are calculated from the 8 vertices of a 
cube by linear interpolation, and the density values are used to determine whether the 
sub-cube is inside, outside or intersecting the surface. If a sub-cube intersects the surface, 
the normal vector at the center of the sub-cube is linearly interpolated from the gradient 
vectors of the cube vertices. The center of the sub-cube is regarded as the surface point 
and the normal vector at the center of the sub-cube is the surface normal at that point. 



2.3.3.4 Splitting-Box Method 
Muller and Stark [MULL93J proposed a splitting-box algorithm that adaptively 

generates the surf ace, i.e., adapts the size of triangles to the shape of the surface. 

The splitting-box algorithm treats a 3D regular grid as a box whose edges are 
induced by linear sequences of vertices of the grid. The number of vertices of an edge is 
called its length. These authors called the edge of a box MC if there is at most one pair 
of consecutive vertices with different polarity on the edge. A box is MC if its 12 edges 
are all MC. 

The algorithm starts with the box given by the input grid which represents the 
original volume data. This box is bisected perpendicular to its longest edge into two sub­
boxes. Resulting boxes are recursively bisected in the same manner. The process of the 
bisection ends if a 2 x 2 x 2 box is reached. 

Boxes arising during the process of bisection are checked to detennine whether 
they are MC. If a box is MC, then polygons are generated for the box according to the 
rules of the marching-cubes configurations. The generated polygons for the box is only an 
approximation of the real isosurf ace and the quality of the approximation needs to be 
checked by some rules. If the approximation is acceptable, it is used as part of the output. 
Otherwise, the bisecting process is used to find a new approximation. At least the 2 x 2 x 
2 boxes will satisfy the criterion of a satisfactory approximation. 

The output of the splitting-box algorithm is a set of triangles of different size. 
Compared to the number of triangles generated by the cube table method, the number of 
triangles generated by this algorithm is significantly reduced. But this method suffers 
from the crack problem. When two neighboring boxes have different levels of 
subdivision, the surface contours generated on the splitting plane for one box might be 
different from the surf ace contours generated on the same splitting plane for another box. 
Therefore, cracks occur on the splitting plane. 
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Chapter 3 

Marching Cubes Algorithm 

3.1 Cubes Algorithm 
3.1.1 The 15 Elementary Cases 

The marching cubes algorithm was 
proposed by Loresen and Cline[LORE87] . 
It tackles the problem of isosurf ace 
construction in a local manner: the 
isosurface is built up of triangles generated 
from cubes according to 15 elementary 
cases. Due to its simplicity and linearity, this 
technique has been used in many application 
fields . 

... ... . .... . ·:.:-,· r------· .... . .. ...... . . 

· ········ ··· · · ·----,r. ..... . . . . ....... . 

•••••••• ····· ··----+---··· · ········ ···· 

A cube has eight vertices. four each 
from adjacent planes (see Figure-8). This 
algorithm marches through two adjacent 
planes at a time, examing each cube 
between the two planes and generating 
triangles within the cube. 

······ ······· ··------······· ·· ··· ·· ··· 

Figure-8 

A vertex of a cube can be either positive or negative considering that positive 
means inside a surface and negative means outside a surface. A configuration of a cube 
represents a situation of the polarity of the eight vertices of the cube. There are 

28 = 256 configurations for a cube with eight vertices. But the 256 cases of cubic 
configuration can be reduced to only 15 elementary cases by applying two types of 
symmetry: inversion symmetry and rotation symmetry. 

Triangles are generated within each of the 15 elementary cases. (See Figure-9 ) 

0 2 3 
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4 5 6 

8 9 10 11 

12 13 14 

Figure-9 Triangulations of the 15 elementary cases of the marching cubes 
algorithm 

3.1.2 Inversion Symmetry 
Inversion symmetry implies that two configurations are equivalent if the positive 

and negative vertices are switched. That is, configurations with five, six, seven or eight 
positive vertices are equivalent to configurations with three, two, one or zero positive 
vertices. Due to inversion symmetry, only configurations with zero to four positive 
vertices need to be considered. This reduces 256 cases to 128 cases. 

Figure- IO Inversion symmetry: the same surface 
triangle is generated whether one vertex or seven 
vertices are positive 
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4 5 6 

8 9 10 11 

12 13 14 

Figure-9 Triangulations of the 15 elementary cases of the marching cubes algorithm 

3.1.2 Inversion Symmetry 
Inversion symmetry implies that two configurations are equivalent if the positive 

and negative vertices are switched. That is, configurations with five, six, seven or eight 
positive vertices are equivalent to configurations with three, two, one or zero positive 
vertices. Due to inversion symmetry, only configurations with zero to four positive 
vertices need to be considered. This reduces 256 cases to 128 cases. 

Figure- IO Inversion symmetry: the same surface 
triangle is generated whether one vertex or seven 
vertices are positive 
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3.1.3 Rotation Symmetry 
Futhermore, two configurations are also equivalent if one is obtained from 

another by some kind of cubic rotation. There are 24 distinct cubic rotations which may 
be counted by finding all axes of symmetry together with the number of distinct rotations 
about each axis. 

First, label a cube as Figure- I I where Vk and V; 

denote a pair of diagonal vertices of the cube ( I ~ k $ 4 ). 

One of the rotations is the identity rotation. According to the 

type of symmetry axis, the other 23 cubic rotations can be 

classified as follows: 

Tvpe I: Let the diagonal joining Vt and V; be the axis ( see 

Figure-12): 
There are four axes of this type Marching where 

k = 1,2,3.4. A cube can be rotated by 120° and 240° by 
fixing each axis. Altogether, there are 4*2=8 such 
rotations . 

Tvpe 2: Let the line joining centers of opposite faces be the axis 
(see Figure-I 3): 
There are 3 pairs of opposite faces for a cube: front 

and back, bottom and up, left and right. We can fix the 

centers of each pair , then rotate the cube by ±90° and 

180°, which provides 3*3=6 such rotations. 

Tvpe 3: Let the line connecting the midpoints of opposite 
edges be the axis (see Figure-I 4): 

The 6 pairs of opposite edges of a cube are: V1 V2 

and V/ V{, V, V,' and V/ V3 , V1 V4 and V/ v;, V2 V; and 

V{ V{, V2 v; and V{ V.p V, V4 and V{ v;. Fixing each 

axis. a cube can be rotated by 180°. There are 6* I =6 
rotations of this type. 

---

V I 

Figure-I I 

Figure-12 

i, 
I 

-------

Figure-14 

It has been proved that all the cubic rotations form a rotation symmetry group that 
is isomorphic to the symmetric group S4 [ARMM88]. The idea in proving this theorem 

is to label the four diagonal lines of a cube Vk v; (k=l,2,3,4) (see Figure-I !)as four 

numbers 1, 2, 3, 4, and then to show that every cubic rotation corresponds to just one of 
the permutations of the diagonals, and vice versa. 
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By taking the rotation symmetry of a cube into account, the 128 cases with zero 
to four positive vertices is reduced to only 15 elementary cases. 

3.1.4 Implementation of the Marching Cubes Algorithm 
3.1.4.1 Equivalence Classes of the 15 Elementary Cases 

It is mentioned previously that the 128 cases with zero to four positive vertices 
can be reduced to the 15 elementary cases by rotation symmetry. Actually, the 128 
cases are partioned into 15 equivalence classes and each equivalence class corresponds to 
one of the 15 elementary cases. For example, the equivalence class of case I contains 8 
cases of configurations which are equivalent under rotation symmetry (see Figure-15 ). 

[II] 
Figure-15 The equivalence class of elementary case 1 under rotation symmetry 

In the implementation of the marching cubes algorithm, these equivalence classes 
should be generated automatically from the 15 elementary cases (see Appendix A for 
detail). 

3.1.4.2 A Look-up Table 
Configurations in the same eqivalent class should yield the same general shape of 

isosurface. For example, every configuration in the equivalence class of case 1 in Figure-
15 yields only one triangle as in Figure -16. 

Figure-16 Triangulations in the equivalence class of elementary case I 
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Once the triangulation of an elementary case is given , the triangulations of 
the other configurations in the same equivalence class are generated similarly. Therefore. 
the triangulations of all the 128 cases with zero to four positive vertices can be generated 
from the triangulations of the 15 elementary cases. 

By inversion symmetry, the triangulations of 256 cases of a cube will be generated 
from the 128 cases. 

A look-up table is created to store all the triangulations of 256 cases. 

An index is created for each case, based on the polarity of the vertex. Using the 
vertex number in Figure-17 (a), the eight bit index contains one bit for each vertex. For 
example, wazzu the index of a cube configuration as in Figure-17 (b) is 0000000 l where 
l represents positive and O represents negative . 

e7 v7 V 

e1 
e7 / v7 

e12 
v4 e3 v3 v4 e3 v3 

e8 e6 e8 e6 

e2 e2 
e4 e4 

vs vs 
e9 es v6 es v6 

/ e10 / e10 
v1 e1 v2 V V e1 v2 

(a) (b) 

index= v8 v7 v6 v5 v4 v3 v2 vi index= 0 0 0 0 0 0 0 I 

Figure-17 Cube Numbering 

The index serves as a pointer to the look-up table which gives all edge 
intersections for a given cube configuration. For example, using 00000001 as a pointer, 
the triangulation of the cube configuration in Figure-17 (b) given by the look-up table 
will be { I, 4. 9} which indicates the isosurface intersects the cube at edges I, 4 and 9. 

3.1.4.3 Linear Interpolation of a Triangle Vertex 
A vertex of a generated triangle is the intersection point of the isosurf ace with a 

cubic edge. Suppose two adjacent vertices of an edge are p, q which have density values 

of f P and f
4

. The location of pis (x
1

, y
1 

,Z
1

) and the location of q is (x
2

, y
2 

,z
2

). The 

threshold value defined for the isosurface is C. If q is positve and pis negative, then the 
isosurface intersects the edge pq. The location of the intersection point is (x, y, z) which 
can be caculated by linear interpolation as follows: 
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m= 
C-J,, 

JC/ -f,, 

X = X 1 + nz(X2 - X 1) 

Y = Y1 + nz(y2 - Y1) 

z = z 1 +m(z2 -z1) 

Although this 'linear interpolation' is not the true intersection. it is much cheaper 
to calculate and, provided the cubes are small enough that the polygon approximation to 
the surface is reasonable, it is good enough. 

In order to produce a smooth-shaded image, the marching cubes algorithm also 
caculates the gradient vector of a triangle vertex by linearly interpolating between the 
gradient vectors of the two vertices of the cubic edge. The gradient at a cube vertex 

( x0, y0, :;0) is estimated using central differences along the three coordinated axes as: 

where f represents the density function . 

3.2 Ambiguity Problem in the Marching Cubes Algorithm 
Unfortunately, the marching cubes algorithm is susceptible to the ambiguity 

problem which can result in discontinuous polygonal surfaces or surfaces with "holes". 

A face of a cube is ambiguous if it contains two positive and two negative 
vertices on the diagonal lines. In this paper, positive diagonal line is used to represent the 
diagonal line connecting the two positive vertices and negative diagonal line is used to 
represent the diagonal line connecting the two negative vertices. One intersection point 
lies on each of four edges of a face. There are two possible ways to connect the 
intersection points which induce two topologically different surfaces in Figure-18 . The 
left shows that two separated surfaces are generated by connecting the intersection points 
in the same direction as the positive diagonal line; the right indicates that one continuous 
surface is created by joining the intersection points in the same direction as the negative 
diagonal line. 
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Figure-18 An ambiguous face 

An ambiguous cube is a cube that has at least one ambiguous face. When two 
neighbor cells make inconsistent connectivity decisions among the common ambiguous 
face, a discontinuous surface with holes could be generated. 

The ambiguity problem of the marching cubes algorithm was first pointed out 
by Durst [DURS87] illustrated as in Figure-19. Two adjacent cubes share an ambiguous 
face. The left continuous cube has only two positve vertices which is case 3 of the 
marching cubes algorithm. The right cube has six positive vertices which happens to be 
the inverted case of the left cube. In the left cube, the intersection points are connected in 
the same direction as the negative diagonal line; in the right cube, the intersection points 
are joined in opposite direction as the left. A quadrilateral hole arises in the constructed 
isosurf ace because of the inconsistent connections on the common face. 

Figure-19 A hole in the isosurface 

Among the 15 elementary cases of the marching cubes algorithm, case 3 and 6 
contain one ambiguous face, case 10 and 12 contain two ambiguous faces, case 7 and 13 
contain 6 ambiguous faces. These cases are called the ambiguous cases of the marching 
cubes algorithm. Isosurfaces generated from these ambiguous cases may contain holes. 
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3.3 Disambiguation Techniques 
Several techniques have been developed to solve the ambiguity problem of the 

marching cubes algorithm. Tetrahedral decomposition and topology inference are the 
two primary techniques. 

3.3.1 Tetrahedral Decomposition 
The ambiguity problem can be solved if an ambiguous cube can be decomposed 

into unambiguous tetrahedrons and the isosurf ace is generated from those tetrahedrons 
[NING93]. 

A cube can be decomposed into five or six tetrahedrons without requiring 
additional vertices. Figure-20 gives a decomposition of a cell into five tetrahedrons. 

Figure-20 Decomposition of a cell into five tetrahedrons 

If a vertex can be either positive or negative, there are altogether 2"' = 16 
configurations of a tetrahedron. By rotation symmetry, the 16 cases can be reduced to 
only 5 cases given in Firgure-15. No triangle is generated within the tetrahedron in case 
(a) or (e), one triangle is generated for the tetrahedron in case (b) or (d), and two 
triangles are generated for case (c). There is no ambiguity in any case. That means, 
tetrahedrons are unambiguous. 
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(b) (c) 

1 
(d) (e) 

Figure-21 Triangulations of tetrahedrons 

These decompositions into tetrahedrons introduce diagonals on the cubic faces. 
When a face is ambiguous, the diagonals on the face helps to resolve the ambiguity as in 
Figure-22. The orientation of the diagonal decides how to connect the intersection points 
on the face. 

Figure-22 Diagonals on the ambiguous faces 

As long as neighboring cubes are decomposed so that they share common 
tetrahedral faces at their boundaries, a consistent polygonization will result and a 
isosurface will be generated. For example, Payne et al. [PAYN] decompose adjacent 
cubes into mirror-image patterns to assure the continuity of the isosurface. (See Figure-
23) 
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Figure-23 Mirror image cubes 

The implementation of tetrahedral decomposition within the marching cubes 
algorithm first decomposes each of the 15 elementary cases into five tetrahedrons, 
and then generates triangles within those tetrahedrons to form the isosurface for the 
case. 

It needs to be pointed out that it is not enough to only decompose the ambiguous 
cases of marching cubes into tetrahedrons in the implementation. The reason is that 
inconsistent surface contours might be generated on the common face of two adjacent 
cubes if one of the cubes is decomposed into tetrahedrons, and the other is not. 

An example in Figure-24 shows the isosurface generated within tetrahedrons 
from the decomposition of a cube. The left represents the triangulation of case I of 
the marching cubes algorithm which contains only one triangle. The right represents 
the triangulation of case I when the cell is decomposed into five tetrahedrons. The 
isosurface within the right cell is composed of four triangles. 

Figure-24 Isosurface generated within tetrahedrons 

One obvious disadvantage of tetrahedral decomposition is that more triangles are 
generated than the original marching cubes algorithm According to experimental 
results, tetrahedral decomposition yields over twice as many triangles as does the original 
marching cubes technique. 

3.3.2 Topology Inference 
Rather than decomposing a cube into unambiguous tetrahedrons, some methods 

attempt to infer the correct topology of an ambiguous face from some data values 
calculated at run time, then construct the appropriate isosurfaces for the face [NING93]. 
The three principal inference schemes are facial center value, gradient heuristics and 
bilinear contours [WYVI86] [NIEL91] [WILL90]. All of these methods make consistent 
inferences across adjoining cells, therefore, no holes result. 

21 



(1) Facial Center Value: 
In the facial center value method, the value of the center of an ambiguous face is 

approximated by the average value of the four vertices of the face, then the topology of 
the isosurface for the face is determined by the polarity of the center value [WYVI86]. 

Suppose the ambiguous face is on the x-y plane and its four corners are 
represented as (0,0), (1,0), (0, I), (1, 1). Then the value of the center is: 

I l = 
4 

(f oo + f10 + fo1 + f11) where f 00 , / 10 , / 01 , / 11 are the density values of 

the four corrners of the ambiguous face. 

The center has positive value if its value is greater than the threshold value: 
otherwise it is negative if its value is less than the threshold value. The sign of the center 
determines how the intersection points are to be connected. (see Figure-25 ) 

Figure-25 If the center is positive, the intersection points are joined in the 
same direction as the positive diagonal line; if the center is negative, the 
intersection points are joined in the same direction as the negative 
diagonal line . 

(2) Gradient Heuristics: 
Gradient heuristics use the gradients at the cell vertices to decide the topology of 

the isosurface in an ambiguous case [WILL90]. The gradient direction is normal to the 
isosurf ace, and its magnitude indicates how rapidly the underlying function of the 
isosurface is changing. An advantage in using gradients is that they are also needed for 
the shading model, so no additional computational cost is incurred to calculate them. 
One representative method of gradient heuristics is center-pointing gradient. 

The center-pointing gradient is defined to be the component of the gradient in the 
direction from the cell vertex toward the center of the face . Only the component of the 
gradient in the plane of a face is calculated. Suppose a face is in the x-y plane and the 
corners of the face are indexed as (0,0), ( 1,0), (0, I), ( 1, 1 ). J;i represents the density 

value and Vfxij, Vf_vij represent the gradients in the x and y directions at a point (i,j) 

where i, j = 0,1 . Then the estimate of the function of the isosurface at the center of the 

face is: 
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1 
fc = 

4 
(f oo + f,o + fo, + fll) 

+ l ~ (Vfroo + Vfvoo - Vfr10 + Vfy10 + Vfrol - Vf"o, - Vfrll - Vf_v11) 

Comparing the formula of f . here with the formula of fc in the facial center 

value method, the center-pointing gradient method can be thought of as providing a 
"correction term" to the f calculated by the facial center value method. Therefore, the 

center-pointing gradient method calculates the value of the center in a more accurate way 
than the facial center value method does. 

(3) Bilinear Contours: 
Both the facial center value method and the center-pointing gradient method 

attempt to use the value of the center of the face to make consistent decisions on the 
common face which guarantees the generated isosurface is continous. However, this 
continous surface is not necessarily correct all the time. For example, in Figure-26, 
although the value at the face center indicates that the intersection points should be 
connected in a way such that a connected isosurface is formed on the face, actually the 
real isosurf ace consists of two separated parts. 

---- isosurface decided by facial center value 
- real isosurf ace 

Figure-26 

An alternative technique, the bilinear contours method, makes an effort to infer 
the topology of the surface from the saddle point of a hyperbola on an ambiguous face 
[NIEL91]. 

This approach is based on the assumption that the isosurface on a cubic face can 
be bilinear interpolated. Suppose a cubic face can be represented as a unit square 

{ ( s, t ):0 :5: s :5: 1,0 :5: t $ l} and the values of the comer vertices are f 00 , frn, / 01 , / 11 • Then 

the bilinear interpolation of a point (s.t) on the face is 

f (s,t) = (I - s,s) 
(

/ 00 1
1

0

11

1 l(l -tl 
fio t 

It can be verified that for a threshold value C, the set {(s,t ):f (s,t) = c} which 

represents the isosurface contour on the face, is a hyperbola. Some possibilities as to how 
these contour hyperbolas and their asymptotes relate to the cell faces are shown in Figure-
27 
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a) b) c) 
Figure-27 Countours of bilinear interpolation 

In case a), the ambiguity arises when both components of the hyperbola intersect 
the face. The disambigutity decision is based on the sign of the saddle point (the 
intersection point of the asymptotes) of the hyperbola. The value of the saddle point fp 

can be calculated as: 

jp = j oof1 I + JIOJ 01 

j 00 + f1 I - j 01 - JIO 

If the saddle point has a positive value, the isosurface generated for the face is 
illustrated at the left of Figure-28. If the saddle point is negative, then the isosurface is 
connected as illustrated at the right of Fibure-28. 

positive 
saddle 
point 

Figure-28 

(4) lmplemtation of Topology Inference: 

··-···· ··· ····· negative 
saddle 
point 

Although the means of calculating the data used for decision making on an 
ambiguous face are different in various topology inference methods, the implementations 
of translating these decisions into actual polygon connectivity are very similar. The idea 
of these implementations is to create two kinds of tables: a major table which stores the 
15 elementary cases of the marching cubes algorithm and some subcase tables which are 
used to handle the ambiguous cases [WILL90] [NIEL9 l ]. 

If a case is unambiguous, the major table simply contains the polygon 
connectivity of this case. However, if a case is ambiguous, the major table contains a list 
of entry to a subcase table for this ambiguous case. The subcase table stores different 
kinds of polygon connectivity corresponding to all the possible decisions made from the 
status of the ambiguous face. 

24 



For examplt:, case 3 in an ambiguous case with only one ambiguous face . The 
major table is connected to a subcase table of case 3 which contains two different kinds 
of polygon connectivity corresponding to two possible decisions made for case 3 (see 
Figure-29 ). 

decision 0: decision 1: 
connecting negative vertices connecting positive vertices 

Figure-29 Two subcases of elementary case 3 

The complexity of the subcase table increases dramatically when the number of 
ambiguous faces in an ambiguous case increases. For example, in case 13, all six faces of 
the cube are ambiguous. Since two decisions can be made for each ambiguous face. the 

subcase table needs to have 26 = 64 different polygon connectivity corresponding to all 
possible decisions for case 13. The creation of a subcase table for case 13 is very difficult 
due to its great complexity. 
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Chapter 4 

An Eifflcent Disambiguation Marching Cubes Algorithm 

4.1 Objectives of Isosurface Generation Algorithms: 
Many isosurface generation techniques in the literature were designed for specific 

applications. As a result, they may have implicit assumptions about the nature of the data 
that would not hold in another application. As applications proliferate, it becomes 
important to have a general-purpose method that is free of application dependencies. 
Toward this end, a number of desirable features of a polygonal isosurface generation 
algorithm are identified as follows: 

I. The algorithm should yield a continuous isosurface. 
Each edge of a polygon mesh should be shared by exactly two polygons or lie in an 
external face of the entire volume. Therefore, the isosurface approximated by the 
polygon mesh should not contain any holes. 

2. The algorithm should decide consistently which positive vertices belong to the same 
object. Positive vertices belonging to the same object are to be covered by the same 
surface. 

3. The algorithm should generate a smooth isosurface. 
The gradients of the surf ace should be calculated for a gradient shading to produce a 
smooth, pleasing and realistic isosurface. 

4. Algorithmic construction of the polygon connectivity table is desired. 
The polygon connectivity for each case entry needs to be generated automatically 
based on the algorithm and to be stored in a look-up table for fast access. Manual 
construction of the table is tedious and prone to error. 

5. The isosurface should not create artifacts not implied by the data. 
Extraneous polygons which are the results of the existence of multiple branched 
edges in the polygon mesh should not be generated in the isosurface. 

6. The algorithm should be simple wazzu and efficient. 
The algorithm should be as simple as possible for easy implementation. Also the 
algorithm should be efficient enough for real-time interactive use. 

Some of these criteria may not seem important when the resolution is fine enough 
that the eye does not notice an occasional "glitch". However, visualization systems will 
inevitably provide a zoom ability for a close-up examination of "interesting" features 
of a scene. Isosurfacess generated incorrectly can lead to misleading or at least confusing 
images under close-up examination, regardless of the original resolution [WILL90]. 
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The simplicity and fast speed of the marching cubes algorithm makes it a good 
candidate for a general-purpose isosurface generation algorithm. Actually, the marching 
cubes algorithm successfully fulfills most of the objectives except the first one. The 
failure of the first objective is due to the ambiguity problem of the algorithm which 
might allow holes in a constructed isosurface. 

As described in chapter 2, the two major disambiguation techniques, tetrahedral 
decomposition and topology inference, have been developed to resolve the ambiguity 
problem. While the first objective is satisfied when these techniques are applied, some 
other objectives which indicate the advantages of the marching cubes algorithm are lost. 

According to experimental results, tetrahedral decomposition yields over twice as 
many triangles as does the marching cubes technique. The generation and display of 
these large amounts of triangles is extremely computational expensive which makes it 
difficult for effective interactive use. 

In topology inference, the creation of different subcase tables for all the 
ambiguous cases is very complicated and time consuming since these tables are usually 
generated manually. This can not meet the fourth objective which requires the automatic 
generation of look-up tables to prevent errors from occuring in the polygonization. 
Besides, topology inference requires additional computation in order to make a decision 
on an ambiguous face which lowers the efficiency of the algorithm. 

4.2 An Efficient Disambiguation Method 
4.2.1 Durst method 

When Durst pointed out the ambiguity problem, he suggested a modified method 
which always adds a quadrilateral to the polygon mesh whenever there is an ambiguous 
face. Unfortunately, this method could sometimes lead to multiple-branched edges 
which creates extraneous polygons in the isosurface. An example is given in Figure-30: 

Figure-30 A quadrilateral is added on common face 

In Figure-30, each of the two edges on the common ambiguous face occurs twice 
when the original marching cubes algorithm is used. However, the additional 
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quadrilateral added by this modified method increases the number of occurrences of 
each edge by one. Therefore, the two edges tum into multiple-branched edges which are 
not allowed in the isosurface generation. 

4.2.2 An Efficient Disambiguation Method 
In spite of the fact that the modified method by Durst fails to solve the ambiguity 

problem completely, the method provides some clues leading to the development of a 
very efficient disambiguation method [ROLL95]. 

The example in Figure-30 has shown that holes do not always occur on an 
ambiguous face. However, if there is a way to find out whether or not holes occurr on 
an ambiguous face and to fill the holes only when they occur, then the isosurface 
produced is a continuous isosurface without holes. Thus, the ambiguity problem is 
solved. 

The formation of holes is due to disconnected edges in the polygon mesh 
representing the isosurface. An edge of a polygon mesh lies either on the face of a cube 
or inside a cube. An edge inside a cube occurs exactly twice in the polygon mesh 
because this edge is created by the tessellation of a nonplanar polygon into triangles (see 
Figure-31 ). Therefore, holes may only arise on the faces of a cube where the edges are 
disconnected . 

An edge inside a cube always occurs exactly 
twice in two neighboring triangles 

Figure-31 Polygon edges 

Since two cubes share a common face, the number of occurrences of the triangle 
edges on the common face needs to be examined from a combination of these two 
adjacent cubes. 

Two adjacent cubes sharing an ambiguous common face are illustrated in Figure-
32. Three parallel faces of the two cubes are named as upper face, common face and 
lower face . Keeping the vertex configuration of the common face fixed, the possible 
combinations 
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of the other vertices (four on the upper face 

and four on the lower face) are 28 = 256. 

The number of 256 possible 
combinations can be reduced to a smaller 
number of distinct combinations by making 
use of two types of symmetry. 

upper face 

common face 

lower face 

Figure-32 Two adjacent cubes 
sharing an ambiguous face 

Swapping symmetry is defined by interchanging the upper and the lower face. 
That is, the combination of i positive vertices in the upper face and of j in the lower face, 
is equivalent to the combination of j positive vertices in the upper face and of i in the 
lower face. It reduces 256 combinations into 128. Another symmetry, rotation symmetry, 
is defined by fixing the centers of the upper face and the lower face and then rotating the 

two cubes by 180°. By this symmetry, the number of the distinct combinations is further 
reduced to only 64. 

For each of the 64 distinct combinations, polygons are generated within the upper 
and lower cube according to the 15 elementary cases of the marching cubes algorithm. 
The number of times each triangle edge occurs on the common face of each 
combination is then examined. Some combinations are illustrated as in Figure-33 . A 
combination is regarded as containing holes if some triangle edges occur only once on 
the common face. The result of the examination of the 64 combinations is given in Table­
!. The number of combinations means the number of different vertex arrangements. 

(a). 
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Figure-33 The Polygon Connectivity of Some Combinations 

Number of 
combinations 

Number of 
positive vertices 
in the lower cube 

12 
9 

Number of 
positive vertices 
in the upper cube 

8* 3* 
6 2 

Table- I 22 out of the 64 combinations exhibit 
holes which are marked by *. 

(Note: the symbol - represents symmetries data.) 

In Table-I, the combinations in which holes are presented (numbers marked by 
*) are those having at least 5 positive vertices in the upper cube and no more than four 
positive vertices in the lower cube. By the swapping symmetry, the combinations with at 
least 5 positive vertices in the lower cube and no more than four positive vertices in the 
upper cube also contain holes on the common face. An inverted case is a case that has 
five or six positive vertices and a non-inverted case is a case that has two, three or four 
positive vertices. A very interesting conclusion can be drawn from the above 
observation: a hole arises if and only if one of the adjacent cubes in the combination 
represents an inverted caseand the other represents a non-inverted case. 
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A combination with an inverted case and a not-inverted case is called inverted 
combination. Figure-33 (a) shows some examples of inverted combination. On the 
common face, four edges forming a quadrilateral remain unpaired which induces holes. 
Figure-33 (b) represents some other examples where an inverted case meets an inverted 
case, or a not-inverted case meets a not-inverted case. All edges are properly connected. 
Separated isosurfaces are constructed on the common face and no holes arise. 

Inspection of all combinations in Table-I reveals another simple property, which 
implies how the holes are to be mended: all holes consist of four disconnected edges 
forming a quadrilateral on the common face. Therefore, a hole is mended by filling the 
four intersection points of the ambiguous face with two triangles forming a quadrilateral. 

A disambiguation marching cubes algorithm is implemented based on the above 
results. The local isosurface construction within a cube by this method can be 
summarized in three steps as follows: 
(I) Initial isosurface generation. 

Triangles are first generated within the examined cube according to the 15 elementary 
cases of the marching cubes algorithm. The construction process continues if the 
cube represents an ambiguous case; otherwise, it stops here. 

(2) Hole detection. 
For each ambiguous face of the examined cube. the neighbor cube sharing the 

ambiguous face also needs to be inspected in order to determine whether or not the 
combination is inverted. The process continues if it is inverted which indicates the 
existence of holes; otherwise, it stops. 

(3) Hole fixing 
Holes on the ambiguous.face of an inverted combination can be mended by adding a 
quadrilateral which consists of two triangles to the initial isosurface generated in the 
first step. All the triangles form the isosurface of the examined cube. 

The implementation of the last two steps, hole detection and hole fixing is very 
direct, simple and rapid based on Table- I. These two steps can be viewed as an 
extension of the local construction of the marching cubes algorithm and are only needed 
when a cube is ambiguous. Consequently, This disambiguation method efficiently 
generates a continous isosurface without holes while keeping the simplicity and fast 
speed of the original marching cubes algorithm. 
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Chapter 5 

Test Results 

5.1 Implementations of Three Isosurface Algorithms 
Three isosurface generation algorithms which are the original marching cubes 

algorithm, Durst algorithm and the disambiguation algorithm described in chapter 4 are 
implemented. Generated data from mathematical functions are used to test the algorithms, 
and the test results are compared and explained. Also the isosurface of a medical volume 
data is generated using the disambiguation algorithm 

5.2 Two Mathematical Functions Test: 
5.2.1 Definition of F1 and F1 

The following two quadratic functions are very useful in testing the ability of 
isosurface generation algorithms [Wil..L90]. 

F,(x,y,z) =4y+4(x-z) 1 -5 

F2 (x, y,z) = 4(y- 1) 2 + 2(x- z) 1 
- 2(x + z-3) 2 + I 

The actual isosurfaces for real numbers ranging from O to 3 in the three 
dimensional space are shown in Figure-34 (a) and (b). The threshold value that defines 
the two isosurfaces is zero. The isosurf ace of F; is a single continuous surface, and the 

isosurface of F2 is two separate lobes of a hyperboloid. 
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Figure-34 (a) The actual isosutface of F; 
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Figure-34 (b) The actual isosurface of F2 

Each of the two functions is sampled at the integers O through 3 for x, y and z 
respectively to produce a 4 x 4 x 4 volumetic data which will be used to test several 
isosurf ace generation algorithms. 

5.2.2 Center Cube and Center-Lower Cube of F; and F2 

Figure-35 shows the vertex values of the center cube and the center-lower cube 
for F1 and F2 . The center cube is actually the cube which locates at the center of the 

volume which consists of three cubes in each of the three dimensions. The center cube of 
F; has exactly the same vertex values as the center cube of F2 . As a result, the 

ambiguous face between the center cube and the center-lower cube of F, is the same as 

the ambiguous face of F2 . The polygon connectivity within those cubes by the original 

marching cubes algorithm is also illustrated in the Figure-35. 
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(1,2,2) 

(2,0,1) 

Figure-35 The center cube and center-lower 
cube of F1 (left) and F2 (right) 

(Note: the (x,y ,z) coordinates of F2 is the same as the coordinates of F1 ) 

5.2.3 Test Results of Isosurface Generation Algorithms 
5.2.3.1 Test Results of the Original Marching Cubes Algorithm 

Isosurfaces which are constructed by the original marching cubes algorithm from 
the two volume data sets of F1 and F2 are demonstrated in Figure-36 (a) and (b): 
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Figure-36 (a) The generated isosurface of F; by the original marching cubes 

method 
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Figure-36 (b) The generated isosurface of F2 by the original marching cubes 

method 

Compared with the actual isosurface of F1 in Figure-34 (a), the constructed 

isosurface of F1 exhibits holes, which proves the ambiguity problem of the marching 

cubes algorithm pointed out by Durst. The reason for the exhibition of holes in the 
constructed isosurface can be explained by the center cube and the center-lower cube of 
F; in Figure-35, left. Each of the four edges on the common ambiguous face is a 

disconnected edge, i.e. an edge which occurs just one time in the polygon mesh. By the 
theorem discussed in chapter 2, holes are induced on the ambiguous face. 

Nevertheless, the constructed isosurface of F2 doesn't have any holes, and it is 

very similar to the actual isosurface of F2 . This can also be interpreted by the center cube 

and the center-lower cube of F, in Figure-35, right. Since all the edges on the common 

face are connected correctly (each edge occurs exactly twice in the polygon mesh), there 
are no holes on the common face even if the face is ambiguous. Thus, the constructed 
isosurface doesn't contain any holes. 
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5.2.3.2 Test Results of Durst Algorithm 
The volume data of F.. and F2 are also used to test the modified marching cubes 

algorithm suggested by Durst. The generated isosurfaces are illustrated in Figure-37 (a) 
and (b). 

Figure-37 (a) The generated isosurface of F, by Durst method 
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Figure-37 (b) The generated isosurface of F2 by Durst method 

This method successfully repairs the holes for F; . But it adds two extraneous 

polygons between two lobes of the hyperboloid for F2 . 

It has been shown previously that all the edges occur only once on the common 
face of the center cube and the center-lower cube of F1 by the original marching cubes 

algorithm. When the Durst method adds a quadrilateral on the common face, all the 
disconnected edges (occuring just one time) on the common face are connected properly 
(occuring exactly twice). Hence, the isosurface of F1 turns out to be a continuous surface 

without holes. However, although all the edges on the ambiguous common face of the 
center cube and the center-lower cube of F2 have already occurred twice by the original 

marching cubes algorithm, an additional quadrilateral is still supplemented on the 
common face by the Durst method. As a result, the edges on the common face occur 
three times which creates extraneous polygons in the isosurface. 

5.2.3.3 Test Results of the Disambiguation Algorithm 
The disambiguation marching cubes algorithm described in chapter 4 is also used 

to generate isosurfaces for F1 and F2 as illustrated in Figure-38. 
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Figure-38 (a) The generated isosurface of F; by the disambiguation method 
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Figure-38 (b) The generated isosurface of F2 by the disambiguation method 

The outcome of this disambiguous method is very heartening. Both the generated 
isosurf aces are very close to the actual isosurfaces. There is no hole in F, and there is no 

extra piece in F2 . 

In the case of the center cube and the center-lower cube of F. , the center cube 1s 

an inverted case which has six positive vertices, and the center-lower cube is a non­
inverted case which has two positive vertices. The combination of these two cubes is 
inverted which implies that there are holes on the common face. The disambiguation 
method mends the holes by generating a quadrilateral on the common face. 

As for the case of the center cube and the center-lower cube of F: , both the 

center cube and the center-lower cube are inverted since each cube has six positive 
vertices. Then the combination of these two cubes is not inverted and there are no holes 
on the common face. Therefore, the isosurface within the two cubes is generated only 
by the original marching cubes algorithm and no quadrilateral needs to be added on the 
common face. 
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5.3 Medical Experimental Result: 
The experimental result of generating an isosurface from a medical volume data 

by the disambiguation marching cubes algorithm is shown in Figure-39 : 

The medical volume data is a presegmented Cine-CT of the left ventricle of the 
heart. The dimensions of the data is 85 x 80 x 18. The data set contains values between 
0 and 255. The threshold value used to determine the isosurface in Figure-39 is 79.0 
which is chosen based on the histogram of the data so that the result shows the boundary 
of the heart as well as the structure inside. The isosurface consists of 23648 triangles, 
among which 23572 triangles are generated by the original marching cubes , and 76 
triangles are generated to mend the holes. The number and the frequency of the 15 
elementary cases of the volume data is illustrated in Table-2. 
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Case 0 1009877 89.51 
Case 1 3009 2.67 
Case2 3165 2.81 
Case 3* 85 0.075 
Case4 2 0 
Cases 2175 1.92 
Case 6* 32 0.028 
Case 7* 2 0 
Case8 2987 2.65 
Case 9 293 0.26 
Case JO* 2 0 
Case 11 42 0.037 
Case 12* 2 0 
Case 13* 0 0 
Case 14 38 0.034 
Total Cases 112821 

Table-2 The number and frequency of the 15 elementary cases 
( Note: numbers marked with * represent ambiguous cases) 

It takes about two minutes to generate the polygon mesh representing the 
isosurface from the heart data on a Sun Workstation using the disambiguation marching 
cubes algorithm. And it takes about another one minutes to render the polygon mesh to 
get the image as in Figure-39 on the same machine. The isosurface generated by the 
disambiguation algorithm is continuous without any holes. And the speed of this 
algorithm is reasonable and practical. Therefore, the disambiguation algorithm can be 
used in many scientific applications. 
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Appendix A 

The Generation of the Equivalent Classes of the 15 
Elementary Cases of the :Marching Cubes Algorithm 

If a cube is labeled as Figure-40(a), then the configuration of a cube can be 
represented as a subset of { l ,2,3,4,5,6,7,8}. For example, a configuration as Figure-40(b) 
can be represented as { 3, 5,6} which only contains positive vertices. 

7 8 7 8 
1 2 

5 
4 

(a) (b) 

Figure-40 

Then all the 15 elementary cases of the marching cubes algorithm can be 
represented by a set M =={ {}, { 4}, { 4,3}, { 2,4}, { 4,8}, { 3,5,6}, { 4,3,8}, { 1,3,8}, 
{3.4,5,6}, {4,5,6,7}, { 1,4.5,8}, {4,5,6,8}, { 1,3,5,6}, {4,5,2,7}, {3,5,6,7} }. Each element 
of set M corresponds to one of the elementary cases. 

It is known that the rotation symmetry group is isomorphic to symmetry group 
S4 . It is also isomorphic to a subgroup of S8 which consists of some permutations of 
1,2,3,4,5,6,7,8. 
In this paper, a permutation of S8 represented as [2,3,4, 1,6,7,8,5] is the same as 

(2
1 2 3 4 5 6 7 8J· 

3 4 1 6 7 8 5 

If a cube is labeled as Figure-40, a subgroup of S8 which is isomorphic to the 

rotation symmetry group can obtained: 
S={ [2,3,4, 1.6, 7,8,5), [6,5,8,7,2, 1,4,3], [ I ,4,6,7,5,8,2,3], [2,8,5,3,6,4, 1,7), [5,6,4,3, 1,2,8,7], 

[2, I, 7,8,6,5,3,4], [5,3,2,8, 1,7,6,4], [6,7, 1,4,2,3,5,8], [ 4, 1,2,3,8,5,6,7], [7,6,5,8,3,2, I ,4], 
[8,2, 1,7,4,6,5,3], [ 1,7,8,2,5,3,4,6], [5,8,7,6, 1,4,3.2], [3,2,8,5,7,6,4, I], [ 4,6,7, 1,8,2,3,5], 
[7,8,2, 1,3,4,6,5], [7, 1,4,6,3,5,8,2], [4,3,5,6,8, 7, 1,2], [6,4,3,5,2,8,7, I], [3,4, 1,2,7,8,5,6], 
[8,5,3,2,4, 1,7,6], [8,7,6,5,4,3,2, I], [ 1,2,3,4,5,6,7,8], [3,5,6,4,7, 1,2,8]} 

The equivalence class of each elementary case is obtained by letting the group S 
act on the elementary case . For an example, case 4 is represented as { 4,8} and its 
equivalence class is { { 3,7}, { 8, 4}, { 5, 1}, { 6,2}}. Case 5 is represented as { 6,5,3} and 
its equivalence class is { {7,6,5}, {2,8,7}, {7,4,6}, {7,8,l}, {8,7,6}, {5,8,7}, 
{5,6,8},{2,3,8}, {4,3,6}, {3,6,5}, {6,1,7}, {5,8,3}, {8,2,5},{4,6,5}, {5,4,3}, {7,4,1}, 
{8,2,1}, {l,6,4}, {5,3,2}, {2,1,7}, {4,3,1}, {2,4,3}, {1,2.4}, {1,3,2}} 
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