
Eastern Washington University Eastern Washington University

EWU Digital Commons EWU Digital Commons

EWU Masters Thesis Collection Student Research and Creative Works

Summer 1996

The implementation of a disambiguation marching cubes The implementation of a disambiguation marching cubes

algorithm algorithm

Xiaodan Liu

Follow this and additional works at: https://dc.ewu.edu/theses

 Part of the Geometry and Topology Commons, and the Theory and Algorithms Commons

https://dc.ewu.edu/
https://dc.ewu.edu/theses
https://dc.ewu.edu/student_research
https://dc.ewu.edu/theses?utm_source=dc.ewu.edu%2Ftheses%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/180?utm_source=dc.ewu.edu%2Ftheses%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=dc.ewu.edu%2Ftheses%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages

The Implementation of a

Disambiguation Marching Cubes Algorithm

A Thesis

Presented To

Eastern Washington University

Cheney, Washington

In Partial Fulfillment of the Requirements

for the Degree

l\'laster of Science

Computer Graphics / Mathematics

by

Xiaodan Liu

August 1996

Abstract

This thesis first systematically analyzes a classic surface
generation algorithm. the marching cubes algorithm, in computer
volume visualization, with emphasis on the mathematical
background and the ambiguity problem of the algorithm. A
simple and elegant disambiguation algorithm is then described and
implemented. Finally, generated data from mathematical
functions and real world data from scientific experiment are used
to test the original marching cubes algorithm and the
disambiguation algorithm.

Acknowledgments

With the completion of this thesis, the two-year overseas study
comes to an end. I wish to give my heartfelt thanks to everybody who
has cared, encouraged, and supported me during the journey.

My very special thank goes to my advisor, Dr. Clark, who
has given me lots of invaluable advice and support in both computer
graphics area and the real world.

I would also like to thank the mathematics department and
the computer science department who have collaborated so well to
give me a chance to work on this interdisciplinary program.

Finally, I want to dedicate this thesis to my dear parents. They
have so many dreams that they could not accomplished in their
generation. But they have helped me enormously to make my own
dream come true.

Table of Contents

1. Introduction

2. Background & Literature Review 3
2.1 Data Geometry 3
2.2 Surface Generation Techniques 5

2.2.1 Cuberille Method 5
2.2.2 Planar Contour Method 5

2.3 Isosurface Generation 6
2.3.1 Definition of Isosurface & Isosurface Generation 6
2.3.2 Assurance of Isosurface Continuity 8
2.3.3 Isosurface Generation Methods 8

3. Marching Cubes Algorithm 12
3. I Marching Cubes Algorithm 12

3.1.1 The 15 Elementary Cases 12
3.1.2 Inversion Symmetry 13
3.1.3 Rotation Symmetry 14
3.1.4 Implementation of the Marching Cubes Algorithm 15

3.2 The Ambiguity Problem in the Marching Cubes Algorithm 17
3.3 Disambiguation Techniques 19

3.3.1 Tetrahedral Decomposition 19
3.3.2 Topology Inference 21

4. An Efficient Disambiguation Marching Cubes Algorithm 26
4.1 Objectives of Isosurface Generation Algorithm 26
4.2 An Efficient Disambiguation Method 27

4.2. I Durst Method 27
4.2.2 An Efficient Disambiguation Method 28

S. Test Results 32
5.1 Implementations of Three Isosurface Algorithms 32
5.2 Two Mathematical Functions Test 32

5.2.1 Definition of F, And F2 32

5.2.2 Center Cell and Center-Lower Cell of F; and F2 34

5.2.3 Test Results of Isosurface Algorithms 35
5.3 Medical Experimental Result 42

Appendix A 44

References 45

II

Figure-I

Figure-2

Figure-3

Figure-4

Figure-5

Figure-6

Figure-7

Figure-8

Figure-9

Figure-IO

Figure-I I

Figure-12

Figure-13

Figure -14

Figure-15

Figure-16

Figure-17

Figure-18

Figure-19

Figure-20

List of Figures

Uniform scalar data 3

Rectilinear data 4

Irregular data 4

Cube structure 7

Triangulation of a cube 8

A face table 9

Ordering vertices method 10

A cube formed by adjacent planes 12

Triangulations of the 15 elementary cases of the marching cubes
algorithm 13

Inversion symmetry 13

Labeling a cube 14

Cube rotation (I) 14

Cube rotation (II) 14

Cube rotation (III) 14

The equivalent class of elementary case l under rotation symmetry 15

Triangulations in the equivalent class of elementary case l 15

Cube Numbering 16

An ambiguous face 18

A hole in the isosurface 18

Decomposition of a cell into five tetrahedrons 19

111

Figure-21

Figure-22

Figure-23

Figure-24

Figure-25

Figure-26

Figure-27

Figure-28

Figure-29

Figure-30

Figure-31

Figure-32

Triangulations of tetrahedrons 20

Diagonals on the ambiguous faces 20

Mirror image cubes 20

Isosurface generated within tetrahedrons

Disambiguation by facial center 22

21

An example of the failure of facial center value 23

Contours of bilinear interpolation 24

Disambiguation by saddle point 24

Two subcases of elementary case 3 25

A quadrilateral is added on common face 27

Polygon edges 28

Two adjacent cubes sharing an ambiguous face 29

Figure-33(a) The Polygon Connectivity of Some Combinations 29

Figure-33(b) The Polygon Connectivity of Some Combinations 30

Figure-34(a) The actual isosurface for F, 33

Figure-34(b) The actual isosurfaces for F2 34

Figure-35 The center cube and center-lower cube of F; and F2 35

Figure-36(a) The generated isosurface for F; by the marching cubes algorithm 36

Figure-36(b) The generated isosurface for F2 by the marching cubes algorithm 37

Figure-37(a) The generated isosurface for F; by Durst method 38

Figure-37(b) The generated isosurface for F2 by Durst method 39

Figure-38(a) The generated isosurface for F; by the disambiguation method 40

IV

Figure-38(b) The generated isosurface for F2 by the disambiguation method 41

Figure-39

Figure-40

The isosurface for a heart by the disambiguation method 42

Label of a cube 44

V

List of Tables

Table-1 64 combinations of two adjacent cubes with an ambiguous face 30

Table-2 The number and frequency of the 15 elementary cases 43

VI

Chapter 1

Introduction

Scientific experiments and simulations generate huge data sets. which are
difficult to interpret and analyze without computerized aids. One of the important tools is
scientific visualization, in which the data is displayed visually [RAPP9 l].

Volume data is a discrete three dimensional array which represents a finite space
or volume. A voxel is a cubic unit of the volume. The source of volume data is sampled
data of real objects or phenomena. computed data produced by a computer simulation, or
modeled data generated from geometric model. Examples of applications generating
sampled data occur in wazzu medical imaging such as computed tomography (CT),
magnetic resonance imaging (MRI), and ultrasonography etc. Examples of applications
that generate computed data sets, typically running a simulation in a supercomputer,
occur in meteorology (storm prediction), computational fluid dynamics (water flow) etc.
[KAUF93].

Visualization of volume data is tightly related to the topic of volume visualization
which has emerged recently as an important technique in the fields of visualization,
computer graphics, and computer imaging. Volume visualization is concerned with the
tasks of representing, manipulating, and rendering volume data. It encompasses an array
of techniques which provide the mechanisms that make it possible to reveal and explore
the inner or unseen structures of volume data and allow visual insight into opaque or
complex data sets.

Two
major techniques in volume visualization are surface rendering and volume

rendering. In surface rendering, the volume data is first converted into geometric
primitives (e.g. polygon mesh), then the geometric primitives are rendered to the screen
by conventional computer graphics rendering techniques [KAUF91]. This method
implicitly assumes that there is some underlying surface behind the data [RAPP9 l].
Volume rendering involves displaying the volume directly by attaching properties such
as opacity and color to the individual voxels of the data set instead of converting the data
to an intermediate surface representation.

Although volume rendering has several advantages such as the insensitivity to
scene and object complexity, the capability to represent inner information, etc. , the
computation is very expensive and the data storage space is large . On the other hand, in
surface rendering, surface representation results in a significant reduction of data storage,
and can exploit existing computer graphics techniques for fast manipulation and display .

Therefore, surface rendering provides a quick , handy way to visualize volume data in
many scientific applications, especially real-time interactive applications.

Surface generation, a process of generating surface representation (usually a
polygon mesh) out of volume data, is a principal issue in the surface rendering
technique. This paper analyzes a popular surface generation algorithm, especially the
mathematical theory behind it, and investigates the discontinuities in the output of the
algorithm. An improved version of the algorithm which gives emphasis to solving this
problem simply and elegantly is described and implemented.

2

Chapter 2

Background & Literature Review

In volume visualization, one primary source of volume data is generated by a
sampling device or a computer model that creates discrete sampling points of a real or
simulated object; usually as a sequence of cross-sectional scans. This empirical data is
processed by 2D image processing techniques and is then 3D reconstructed into a 3D
volume data set by stacking the cross sections. Another source of volume data is by
voxelization which converts a geometric model into a set of voxels that "best'' represents
the synthetic model within the discrete voxel space [KAUF9 l]. Different data geometries
are used by these data.

2.1 Data Geometry
The most general means for storing two dimensional (or three dimensional) data is

as an unordered collection of independent points. However, this format is not only
expensive to store and manipulate. it is also rare in simulation and computational data
analysis. Usually, the data geometries fall into three major categories:
uniform scalar data, rectilinear data and irregular data.

In two dimensions, the three data geometries are defined as follows:
(l) Uniform scalar data:

The data points are arranged in a regular grid with even spacings (see Figure- I) .

Figure-I

(2) Rectilinear data
Like the uniform scalar data, the data points are also arranged in a rectangular

grid; however, the spacings may be uneven (see Figure-2).

3

Figure-2

(3) Irregular data
The data points can locate in any place within the dimension area. Thus all the

data form a connected grid of irregular-shaped cells (see Figure-3).

Figure-3

The above data geometries defined in two dimensions can be extended into three
dimensional space. Generally, data in three dimensional space is also called volume
data. The three types of volume data are: uniform scalar volume data, rectilinear
volume data, irregular volume data.

Uniform scalar volume data are often used to represent medical images such as
magnetic resonance images, computed tomography images etc .. Rectilinear volume data
usually arises in simple computational fluid dynamics applications, in which cell density
increases in regions of interest. There are also some applications which use the irregular
volume data. For example, a flow field around an airplane must provide boundaries
which conform to the shape of the airplane [SHIR89].

All the volume data discussed in this paper are uniform scalar volume data. For
convenience, the uniform scalar volume data is refered to as volume data in this paper.
The volume data set is represented as a 3D discrete regular grid. A voxel is a cubic unit
of volume centered at the integral grid point. As a unit of volume, a voxel is the 3D
counterpart of a 2D pixel, which represents a unit of area. Each voxel has a numeric value
(usually called density value) associated with it, which represents some kind of

4

measurable propeny of the object residing in the volume data. For example, this property
can be the radio-opaque in 3D medical volume data.

Surface rendering technique is one of the major techniques to visualize volume
data. A polygonal surface is generated from the data and rendered to the screen by
conventional computer graphics rendering techniques. The generated surface which is an
approximation of the real surface of the object residing at the volume data helps to
reveal and explore the inner or unseen structures of volumete data. Many techniques
have been developed to generate a surface from the volume data.

2.2 Surface Generation Techniques
2.2.1 Cuberille Model

Chen et al. [CHEN85] proposed a surface shading method in the cuberille
environment. They defined a cuberille model as "dissection of space into equal cubes
(called voxelsthe) by three orthogonal sets of parallel planes". In this environment. an
object is represented by a subset of the set of all voxels. The detected surface of the
object is called boundary surface which is made up of faces of the cubes which separate
voxels in the object from voxels in the background.

The boundary surface is first detected by a three-dimensional boundary detection
algorithm which is developed by Liu [LIU77]. The algorithm first picks an intitial
boundary element as the current bounday element, then it tries to find the next boundary
element by choosing one of the neighbors of the current boundary element. If the next
boundary element is found, then it is put into a pool; the current boundary element is
chosen from the top of a pool and the next boundary element needs to be found. If the
next boundary element is not found, then a back tracing routine is called. The process
repeats until the whole boundary is found. Then the surface is displayed using common
computer graphics techniques.

The advantage of the cuberille model is that it is fast since the boundary surface is
built up of faces of cubes with no detail from inside the cube. The disadvantage is that
the produced image is naturally blocky because all surface patches are orthogonal to one
of the coordinate axes. However, the image can be made to appear smooth by the deft
use of surface shading. A number of shading methods which include distance-only
shading, constant shading, image-based contextual shading, normal-based contextual
shading, Phong shading and gradient shading have been experimented with in this
cuberille model. The best quality image rendering is produced by the normal-based
contextual shading method.

2.2.2 Planar Contour Method
The planar contour method is one of the early techniques in 3D surface

generation . The idea of this method is based on the structure of a 3D data set which
consists of a stack of 2D cross-sectional planes. The contour in each 2D parallel cross­
sectional plane is first identified. A 3D surface is then constructed by connecting the
consecutive planes using planar surface elements which are named "tiles".

5

2.2.2.1 Surface with Triangular Tiles
Fuchs et al. [FUCH77] constructed a surface over a set of cross-sectional

contours, using triangular tiles between each pair of adjacent contours. Each triangle is
defined between two consecutive vertices on the same contour and a single vertex on the
adjacent contour. A directed graph is used to represent all possible edge interconnections
between any two contours. The edges to be created between vertices of the contours are
represented as nodes in the graph and the triangular tiles are represented as arcs between
nodes. The problem of which vertices from the two contours to connect is then resolved
by finding a path through the graph which yields the lowest 'cost'. If the cost of moving
from one node of the graph to another is chosen to represent the surf ace area of a tile, the
best path through the graph represents a mesh with the smallest surface area.

2.2.2.2 Surf ace with Spline Tiles
Sunguroff and Greenberg [SUNG78] used a combination of B-splines and

Cardinal splines to find the surfaces. In their 3D reconstruction system, there are three
major modules. The first module is the contour extraction module which generates
contours either with a gradient edge detection algorithm or under interactive control. In
the second module which is called the surface forming module, B-splines are used for
representation of the sectional contours and Cardinal splines are used to interpolate
between sections to form the 3D surfaces. Finally, smooth-shaded images are created by
the rendering module.

In this system, the polygon description of the objects has a major advantage for
smooth-shaded images when compared to standard polygon techniques. Most continuous
shading methods approximate the vertex normal vectors by averaging the continuous
polygon normals. However, using the spline technique, a continuous surface is
interpolated, and thus an exact surface normal is obtained at each vertex. Intermediate
normals are then interpolated from the exact values at the vertices.

There are several drawbacks in the planar contour method [HERM79] [LORE87].
The inter-plane connectivity that exists in the original data is lost. Bias is introduced
into the display by the orientation of the original cross sections. If there is more than one
contour on a cross-sectional plane, ambiguity arises in determining the connection
between contours.

2.3 Isosurface Generation
2.3.1 Definition of Isosurface & Isosurface Generation:

In a volume data, each voxel associates with a density value which represents
some kind of measurable property of the object residing in the data. Given a threshold
density value C, all the points with density values equal to C in the dimensions of the
volume data form an isosurface for value C (which is also called the isovalue).

An algorithm which extracts a polygon mesh representing the isosurface from a
volume data is known as an isosurface generation algorithm.

6

Frequently, the volume data used in isosurface generation is redefined as an
aggregation of cubes whose vertices lie on the grid points of the data. The value of a
vertex is the same as the value of the voxel that centers at the vertex. Note that a "cube''
has sampled points at its vertices while a "voxel" has a sampled point at its center. A
face is one of the six sides of a cube. An edge is one of four rims of a face.

Given a threshold value, a vertex is positive if its value is greater than the
threshold, and it is negative if its value is less than the threshold. In this paper. a positive
vertex is represented by a small black circle, and a negative vertex is not highlighted.

positive vertex negative vertex

face --- edge

Figure-4 Cube structure

In a volume data set, a cube can be classified into one of the three categories:
inside the surf ace, outside the surf ace or intersecting the surface. If all the eight vertices
of a cube have values greater than the threshold value, the cube lies inside the surface. A
cube is outside the surface if all its eight vertices have values less than the threshold
value. If a cube has some vertices with values greater than the threshold value and some
less than the threshold value, then it intersects the surf ace.

When an edge of a cube joins opposite signed vertices, the isosurface must pass
through the edge. The point at which the isosurface crosses through edge is the
intersection point which is calculated by interpolation. In this paper, an intersection point
is represented by an empty circle.

Intersection points on all the possible edges of a cube are then connected
sequentially to form polygons which are the approximation of the isosurface within the
cube. Usually, these polygons are nonpalanar, and they are further tessellated into
triangles which are commonly used as primitives in 3D computer graphics rendering
algorithms. The result of the above process is called the triangulation of a cube.

7

intersection
point polygon

triangles

Figure-5 Triangulation of a cube

Certain assumptions are made by isosurface generation algorithms in order to
simplify the implementation:
* If two vertices of an edge have the same signs with respect to the threshold, the
isosurface is assumed not to pass through the edge (although the surface may actually
pass through the edge any even number of times). In this situation, it is assumed that
there is no intersection point on this edge.
* If two vertices of an edge have opposite signs (one positive and one negative), the
isosurface is assumed to pass through the edge just once (although the surface may
actually pass the edge any odd number of times). Multiple intersections can not be
detected and only one intersection point is assumed to exist on this edge.

2.3.2 Assurance of Isosurf ace Continuity
A polygon mesh representing the isosurface of an object is built up of small

triangles generated within the cubes which intersect with the isosurface. The relation of
the continuity of the isosurface and the behavior of the polygon edges is revealed by the
following theorem [UDUP82].

Theorem: A polygon mesh defines a continuos surface if and only if each nonboundary
edge occurs exactly twice, and each boundary edge occurs only once.

A nonboundary edge of a polygon mesh is disconnected if it occurs only once.
The isosurf ace represented by the polygon mesh is discontinuous if disconnected edges
exist in the polygon mesh. The discontinuous isosurface is exhibited as an isosurface
with holes.

An edge of a polygon mesh is multiple-branched if it occurs more than twice.
The isosurf ace represented by the polygon mesh contains extra pieces which don't
belong to the actual isosurface if multiple-branched edges exist in the polygon mesh.

2.3.3 Isosurface Generation Methods
2.3.3.1. Face Table Method

Wyville et al. [WYVI87] developed an early isosurface generation algorithm
which constructs isosurfaces to represent the so-called soft objects, objects whose shape
changes in response to their surrounding. This algorithm generates polygons within
cubes based on a face table which tells how an isosurface intersects a cubic face with
respect to the polarity of the four vertices (see Figure-6).

8

□ □ EJ LJ
(a) (b) (c) (d)

IIJ SJ □
(e) (f) (g)

Figure-6 A face table

When the number of positive vertices on a face is four or zero, there is no surface
intersection as illustrated in case (a) and (b).

When the number of positive vertices is one or three, a single line segment is
created as in case (c) and (d).

There are two situations if the number of positive vertices is two. One situation is
that two positive vertices connect a cubic edge and only a line segment is created as in
case (e). Another possible situation is that two positive vertices are on one diagonal line
and two negative vertices on another diagonal line. This situation is shown in case (f) and
(g). Ambiguity arises in this situation since it is not known whether case (f) or (g) will be
chosen.

The isosurf ace within a cube is constructed in two steps. First. the algorithm
creates line segments on all the six faces of the cube. Secondly, the algorithm starts at
one of the line segments. and sequentially traces its successor which has a common
endpoint with the previous line segment until the algorithm comes back to the first line
segment where it started.

2.3.3.2 Cube Table Method
The algorithm based on a face table which only provides the polygon connetivity

on the face of a cube has to construct polygons within a cube from scratch at run-time.
Some isosurface generation algorithms attempt to generate polygons from a cube table
that stores the precomputed the polygon connectivity for cubes. These algorithms can be
grouped into a general method which will be refered to as the cube table method which
is more efficient than the face table method .

Bloomenthal [BL0088] attempts to construct a cube table by the ordering
vertices method. This method begins with any surface intersection point on an edge of a
cube and proceeds towards the positive comer and then clockwise about the face to the
right until another interpolation point is reached. And then the two intersection points are

9

connected to form an edge of a polygon. This method is repeated until the polygon is
closed.

2 Direction of Search

Surface Polygon

5
Figure-7 Ordering vertices method

Lorensen and Cline [LORE87] proposed a marching cubes algorithm which
constructs the table from only 15 elementary cubes. This method is discussed in detail in
the following chapter.

2.3.3.3 Dividing Cubes Method
A polygon mesh consisting of large amounts of triangles is used to represent the

isosurface by many isosurface generation algorithms. However, in some cases, the
resolution of the volume data is so high that the size of the triangles generated
approaches the pixel size. In order to improve the efficiency of the isosurface generation
by avoiding too much detail, Cline et al. [CLIN88] developed the dividing cubes
algorithm which generates point primitives instead of triangle primitives to represent a
surface.

This algorithm subdivides cubes into sub-cubes whose size is close to the pixel
size on the raster display: For convenience, the term "vertex" is used to represent the 8
corners of a cube and the term "corner" is used to represent the 8 corners of a sub-cube
which is obtained by the subdivision of a cube.

The algorithm calculates the gradient vector for each of the eight cube vertices .
The density values at the corners of a sub-cube are calculated from the 8 vertices of a
cube by linear interpolation, and the density values are used to determine whether the
sub-cube is inside, outside or intersecting the surface. If a sub-cube intersects the surface,
the normal vector at the center of the sub-cube is linearly interpolated from the gradient
vectors of the cube vertices. The center of the sub-cube is regarded as the surface point
and the normal vector at the center of the sub-cube is the surface normal at that point.

2.3.3.4 Splitting-Box Method
Muller and Stark [MULL93J proposed a splitting-box algorithm that adaptively

generates the surf ace, i.e., adapts the size of triangles to the shape of the surface.

The splitting-box algorithm treats a 3D regular grid as a box whose edges are
induced by linear sequences of vertices of the grid. The number of vertices of an edge is
called its length. These authors called the edge of a box MC if there is at most one pair
of consecutive vertices with different polarity on the edge. A box is MC if its 12 edges
are all MC.

The algorithm starts with the box given by the input grid which represents the
original volume data. This box is bisected perpendicular to its longest edge into two sub­
boxes. Resulting boxes are recursively bisected in the same manner. The process of the
bisection ends if a 2 x 2 x 2 box is reached.

Boxes arising during the process of bisection are checked to detennine whether
they are MC. If a box is MC, then polygons are generated for the box according to the
rules of the marching-cubes configurations. The generated polygons for the box is only an
approximation of the real isosurf ace and the quality of the approximation needs to be
checked by some rules. If the approximation is acceptable, it is used as part of the output.
Otherwise, the bisecting process is used to find a new approximation. At least the 2 x 2 x
2 boxes will satisfy the criterion of a satisfactory approximation.

The output of the splitting-box algorithm is a set of triangles of different size.
Compared to the number of triangles generated by the cube table method, the number of
triangles generated by this algorithm is significantly reduced. But this method suffers
from the crack problem. When two neighboring boxes have different levels of
subdivision, the surface contours generated on the splitting plane for one box might be
different from the surf ace contours generated on the same splitting plane for another box.
Therefore, cracks occur on the splitting plane.

1 I

Chapter 3

Marching Cubes Algorithm

3.1 Cubes Algorithm
3.1.1 The 15 Elementary Cases

The marching cubes algorithm was
proposed by Loresen and Cline[LORE87] .
It tackles the problem of isosurf ace
construction in a local manner: the
isosurface is built up of triangles generated
from cubes according to 15 elementary
cases. Due to its simplicity and linearity, this
technique has been used in many application
fields .

... ·:.:-,· r------·

· ········ ··· · · ·----,r.

•••••••• ····· ··----+---··· · ········ ····

A cube has eight vertices. four each
from adjacent planes (see Figure-8). This
algorithm marches through two adjacent
planes at a time, examing each cube
between the two planes and generating
triangles within the cube.

······ ······· ··------······· ·· ··· ·· ···

Figure-8

A vertex of a cube can be either positive or negative considering that positive
means inside a surface and negative means outside a surface. A configuration of a cube
represents a situation of the polarity of the eight vertices of the cube. There are

28 = 256 configurations for a cube with eight vertices. But the 256 cases of cubic
configuration can be reduced to only 15 elementary cases by applying two types of
symmetry: inversion symmetry and rotation symmetry.

Triangles are generated within each of the 15 elementary cases. (See Figure-9)

0 2 3

12

4 5 6

8 9 10 11

12 13 14

Figure-9 Triangulations of the 15 elementary cases of the marching cubes
algorithm

3.1.2 Inversion Symmetry
Inversion symmetry implies that two configurations are equivalent if the positive

and negative vertices are switched. That is, configurations with five, six, seven or eight
positive vertices are equivalent to configurations with three, two, one or zero positive
vertices. Due to inversion symmetry, only configurations with zero to four positive
vertices need to be considered. This reduces 256 cases to 128 cases.

Figure- IO Inversion symmetry: the same surface
triangle is generated whether one vertex or seven
vertices are positive

13

4 5 6

8 9 10 11

12 13 14

Figure-9 Triangulations of the 15 elementary cases of the marching cubes algorithm

3.1.2 Inversion Symmetry
Inversion symmetry implies that two configurations are equivalent if the positive

and negative vertices are switched. That is, configurations with five, six, seven or eight
positive vertices are equivalent to configurations with three, two, one or zero positive
vertices. Due to inversion symmetry, only configurations with zero to four positive
vertices need to be considered. This reduces 256 cases to 128 cases.

Figure- IO Inversion symmetry: the same surface
triangle is generated whether one vertex or seven
vertices are positive

13

3.1.3 Rotation Symmetry
Futhermore, two configurations are also equivalent if one is obtained from

another by some kind of cubic rotation. There are 24 distinct cubic rotations which may
be counted by finding all axes of symmetry together with the number of distinct rotations
about each axis.

First, label a cube as Figure- I I where Vk and V;

denote a pair of diagonal vertices of the cube (I ~ k $ 4).

One of the rotations is the identity rotation. According to the

type of symmetry axis, the other 23 cubic rotations can be

classified as follows:

Tvpe I: Let the diagonal joining Vt and V; be the axis (see

Figure-12):
There are four axes of this type Marching where

k = 1,2,3.4. A cube can be rotated by 120° and 240° by
fixing each axis. Altogether, there are 4*2=8 such
rotations .

Tvpe 2: Let the line joining centers of opposite faces be the axis
(see Figure-I 3):
There are 3 pairs of opposite faces for a cube: front

and back, bottom and up, left and right. We can fix the

centers of each pair , then rotate the cube by ±90° and

180°, which provides 3*3=6 such rotations.

Tvpe 3: Let the line connecting the midpoints of opposite
edges be the axis (see Figure-I 4):

The 6 pairs of opposite edges of a cube are: V1 V2

and V/ V{, V, V,' and V/ V3 , V1 V4 and V/ v;, V2 V; and

V{ V{, V2 v; and V{ V.p V, V4 and V{ v;. Fixing each

axis. a cube can be rotated by 180°. There are 6* I =6
rotations of this type.

V I

Figure-I I

Figure-12

i,
I

Figure-14

It has been proved that all the cubic rotations form a rotation symmetry group that
is isomorphic to the symmetric group S4 [ARMM88]. The idea in proving this theorem

is to label the four diagonal lines of a cube Vk v; (k=l,2,3,4) (see Figure-I !)as four

numbers 1, 2, 3, 4, and then to show that every cubic rotation corresponds to just one of
the permutations of the diagonals, and vice versa.

14

By taking the rotation symmetry of a cube into account, the 128 cases with zero
to four positive vertices is reduced to only 15 elementary cases.

3.1.4 Implementation of the Marching Cubes Algorithm
3.1.4.1 Equivalence Classes of the 15 Elementary Cases

It is mentioned previously that the 128 cases with zero to four positive vertices
can be reduced to the 15 elementary cases by rotation symmetry. Actually, the 128
cases are partioned into 15 equivalence classes and each equivalence class corresponds to
one of the 15 elementary cases. For example, the equivalence class of case I contains 8
cases of configurations which are equivalent under rotation symmetry (see Figure-15).

[II]
Figure-15 The equivalence class of elementary case 1 under rotation symmetry

In the implementation of the marching cubes algorithm, these equivalence classes
should be generated automatically from the 15 elementary cases (see Appendix A for
detail).

3.1.4.2 A Look-up Table
Configurations in the same eqivalent class should yield the same general shape of

isosurface. For example, every configuration in the equivalence class of case 1 in Figure-
15 yields only one triangle as in Figure -16.

Figure-16 Triangulations in the equivalence class of elementary case I

15

Once the triangulation of an elementary case is given , the triangulations of
the other configurations in the same equivalence class are generated similarly. Therefore.
the triangulations of all the 128 cases with zero to four positive vertices can be generated
from the triangulations of the 15 elementary cases.

By inversion symmetry, the triangulations of 256 cases of a cube will be generated
from the 128 cases.

A look-up table is created to store all the triangulations of 256 cases.

An index is created for each case, based on the polarity of the vertex. Using the
vertex number in Figure-17 (a), the eight bit index contains one bit for each vertex. For
example, wazzu the index of a cube configuration as in Figure-17 (b) is 0000000 l where
l represents positive and O represents negative .

e7 v7 V

e1
e7 / v7

e12
v4 e3 v3 v4 e3 v3

e8 e6 e8 e6

e2 e2
e4 e4

vs vs
e9 es v6 es v6

/ e10 / e10
v1 e1 v2 V V e1 v2

(a) (b)

index= v8 v7 v6 v5 v4 v3 v2 vi index= 0 0 0 0 0 0 0 I

Figure-17 Cube Numbering

The index serves as a pointer to the look-up table which gives all edge
intersections for a given cube configuration. For example, using 00000001 as a pointer,
the triangulation of the cube configuration in Figure-17 (b) given by the look-up table
will be { I, 4. 9} which indicates the isosurface intersects the cube at edges I, 4 and 9.

3.1.4.3 Linear Interpolation of a Triangle Vertex
A vertex of a generated triangle is the intersection point of the isosurf ace with a

cubic edge. Suppose two adjacent vertices of an edge are p, q which have density values

of f P and f
4

. The location of pis (x
1

, y
1

,Z
1

) and the location of q is (x
2

, y
2

,z
2

). The

threshold value defined for the isosurface is C. If q is positve and pis negative, then the
isosurface intersects the edge pq. The location of the intersection point is (x, y, z) which
can be caculated by linear interpolation as follows:

16

m=
C-J,,

JC/ -f,,

X = X 1 + nz(X2 - X 1)

Y = Y1 + nz(y2 - Y1)

z = z 1 +m(z2 -z1)

Although this 'linear interpolation' is not the true intersection. it is much cheaper
to calculate and, provided the cubes are small enough that the polygon approximation to
the surface is reasonable, it is good enough.

In order to produce a smooth-shaded image, the marching cubes algorithm also
caculates the gradient vector of a triangle vertex by linearly interpolating between the
gradient vectors of the two vertices of the cubic edge. The gradient at a cube vertex

(x0, y0, :;0) is estimated using central differences along the three coordinated axes as:

where f represents the density function .

3.2 Ambiguity Problem in the Marching Cubes Algorithm
Unfortunately, the marching cubes algorithm is susceptible to the ambiguity

problem which can result in discontinuous polygonal surfaces or surfaces with "holes".

A face of a cube is ambiguous if it contains two positive and two negative
vertices on the diagonal lines. In this paper, positive diagonal line is used to represent the
diagonal line connecting the two positive vertices and negative diagonal line is used to
represent the diagonal line connecting the two negative vertices. One intersection point
lies on each of four edges of a face. There are two possible ways to connect the
intersection points which induce two topologically different surfaces in Figure-18 . The
left shows that two separated surfaces are generated by connecting the intersection points
in the same direction as the positive diagonal line; the right indicates that one continuous
surface is created by joining the intersection points in the same direction as the negative
diagonal line.

17

Figure-18 An ambiguous face

An ambiguous cube is a cube that has at least one ambiguous face. When two
neighbor cells make inconsistent connectivity decisions among the common ambiguous
face, a discontinuous surface with holes could be generated.

The ambiguity problem of the marching cubes algorithm was first pointed out
by Durst [DURS87] illustrated as in Figure-19. Two adjacent cubes share an ambiguous
face. The left continuous cube has only two positve vertices which is case 3 of the
marching cubes algorithm. The right cube has six positive vertices which happens to be
the inverted case of the left cube. In the left cube, the intersection points are connected in
the same direction as the negative diagonal line; in the right cube, the intersection points
are joined in opposite direction as the left. A quadrilateral hole arises in the constructed
isosurf ace because of the inconsistent connections on the common face.

Figure-19 A hole in the isosurface

Among the 15 elementary cases of the marching cubes algorithm, case 3 and 6
contain one ambiguous face, case 10 and 12 contain two ambiguous faces, case 7 and 13
contain 6 ambiguous faces. These cases are called the ambiguous cases of the marching
cubes algorithm. Isosurfaces generated from these ambiguous cases may contain holes.

18

3.3 Disambiguation Techniques
Several techniques have been developed to solve the ambiguity problem of the

marching cubes algorithm. Tetrahedral decomposition and topology inference are the
two primary techniques.

3.3.1 Tetrahedral Decomposition
The ambiguity problem can be solved if an ambiguous cube can be decomposed

into unambiguous tetrahedrons and the isosurf ace is generated from those tetrahedrons
[NING93].

A cube can be decomposed into five or six tetrahedrons without requiring
additional vertices. Figure-20 gives a decomposition of a cell into five tetrahedrons.

Figure-20 Decomposition of a cell into five tetrahedrons

If a vertex can be either positive or negative, there are altogether 2"' = 16
configurations of a tetrahedron. By rotation symmetry, the 16 cases can be reduced to
only 5 cases given in Firgure-15. No triangle is generated within the tetrahedron in case
(a) or (e), one triangle is generated for the tetrahedron in case (b) or (d), and two
triangles are generated for case (c). There is no ambiguity in any case. That means,
tetrahedrons are unambiguous.

19

(b) (c)

1
(d) (e)

Figure-21 Triangulations of tetrahedrons

These decompositions into tetrahedrons introduce diagonals on the cubic faces.
When a face is ambiguous, the diagonals on the face helps to resolve the ambiguity as in
Figure-22. The orientation of the diagonal decides how to connect the intersection points
on the face.

Figure-22 Diagonals on the ambiguous faces

As long as neighboring cubes are decomposed so that they share common
tetrahedral faces at their boundaries, a consistent polygonization will result and a
isosurface will be generated. For example, Payne et al. [PAYN] decompose adjacent
cubes into mirror-image patterns to assure the continuity of the isosurface. (See Figure-
23)

20

Figure-23 Mirror image cubes

The implementation of tetrahedral decomposition within the marching cubes
algorithm first decomposes each of the 15 elementary cases into five tetrahedrons,
and then generates triangles within those tetrahedrons to form the isosurface for the
case.

It needs to be pointed out that it is not enough to only decompose the ambiguous
cases of marching cubes into tetrahedrons in the implementation. The reason is that
inconsistent surface contours might be generated on the common face of two adjacent
cubes if one of the cubes is decomposed into tetrahedrons, and the other is not.

An example in Figure-24 shows the isosurface generated within tetrahedrons
from the decomposition of a cube. The left represents the triangulation of case I of
the marching cubes algorithm which contains only one triangle. The right represents
the triangulation of case I when the cell is decomposed into five tetrahedrons. The
isosurface within the right cell is composed of four triangles.

Figure-24 Isosurface generated within tetrahedrons

One obvious disadvantage of tetrahedral decomposition is that more triangles are
generated than the original marching cubes algorithm According to experimental
results, tetrahedral decomposition yields over twice as many triangles as does the original
marching cubes technique.

3.3.2 Topology Inference
Rather than decomposing a cube into unambiguous tetrahedrons, some methods

attempt to infer the correct topology of an ambiguous face from some data values
calculated at run time, then construct the appropriate isosurfaces for the face [NING93].
The three principal inference schemes are facial center value, gradient heuristics and
bilinear contours [WYVI86] [NIEL91] [WILL90]. All of these methods make consistent
inferences across adjoining cells, therefore, no holes result.

21

(1) Facial Center Value:
In the facial center value method, the value of the center of an ambiguous face is

approximated by the average value of the four vertices of the face, then the topology of
the isosurface for the face is determined by the polarity of the center value [WYVI86].

Suppose the ambiguous face is on the x-y plane and its four corners are
represented as (0,0), (1,0), (0, I), (1, 1). Then the value of the center is:

I l =
4

(f oo + f10 + fo1 + f11) where f 00 , / 10 , / 01 , / 11 are the density values of

the four corrners of the ambiguous face.

The center has positive value if its value is greater than the threshold value:
otherwise it is negative if its value is less than the threshold value. The sign of the center
determines how the intersection points are to be connected. (see Figure-25)

Figure-25 If the center is positive, the intersection points are joined in the
same direction as the positive diagonal line; if the center is negative, the
intersection points are joined in the same direction as the negative
diagonal line .

(2) Gradient Heuristics:
Gradient heuristics use the gradients at the cell vertices to decide the topology of

the isosurface in an ambiguous case [WILL90]. The gradient direction is normal to the
isosurf ace, and its magnitude indicates how rapidly the underlying function of the
isosurface is changing. An advantage in using gradients is that they are also needed for
the shading model, so no additional computational cost is incurred to calculate them.
One representative method of gradient heuristics is center-pointing gradient.

The center-pointing gradient is defined to be the component of the gradient in the
direction from the cell vertex toward the center of the face . Only the component of the
gradient in the plane of a face is calculated. Suppose a face is in the x-y plane and the
corners of the face are indexed as (0,0), (1,0), (0, I), (1, 1). J;i represents the density

value and Vfxij, Vf_vij represent the gradients in the x and y directions at a point (i,j)

where i, j = 0,1 . Then the estimate of the function of the isosurface at the center of the

face is:

22

1
fc =

4
(f oo + f,o + fo, + fll)

+ l ~ (Vfroo + Vfvoo - Vfr10 + Vfy10 + Vfrol - Vf"o, - Vfrll - Vf_v11)

Comparing the formula of f . here with the formula of fc in the facial center

value method, the center-pointing gradient method can be thought of as providing a
"correction term" to the f calculated by the facial center value method. Therefore, the

center-pointing gradient method calculates the value of the center in a more accurate way
than the facial center value method does.

(3) Bilinear Contours:
Both the facial center value method and the center-pointing gradient method

attempt to use the value of the center of the face to make consistent decisions on the
common face which guarantees the generated isosurface is continous. However, this
continous surface is not necessarily correct all the time. For example, in Figure-26,
although the value at the face center indicates that the intersection points should be
connected in a way such that a connected isosurface is formed on the face, actually the
real isosurf ace consists of two separated parts.

---- isosurface decided by facial center value
- real isosurf ace

Figure-26

An alternative technique, the bilinear contours method, makes an effort to infer
the topology of the surface from the saddle point of a hyperbola on an ambiguous face
[NIEL91].

This approach is based on the assumption that the isosurface on a cubic face can
be bilinear interpolated. Suppose a cubic face can be represented as a unit square

{ (s, t):0 :5: s :5: 1,0 :5: t $ l} and the values of the comer vertices are f 00 , frn, / 01 , / 11 • Then

the bilinear interpolation of a point (s.t) on the face is

f (s,t) = (I - s,s)
(

/ 00 1
1

0

11

1 l(l -tl
fio t

It can be verified that for a threshold value C, the set {(s,t):f (s,t) = c} which

represents the isosurface contour on the face, is a hyperbola. Some possibilities as to how
these contour hyperbolas and their asymptotes relate to the cell faces are shown in Figure-
27

23

a) b) c)
Figure-27 Countours of bilinear interpolation

In case a), the ambiguity arises when both components of the hyperbola intersect
the face. The disambigutity decision is based on the sign of the saddle point (the
intersection point of the asymptotes) of the hyperbola. The value of the saddle point fp

can be calculated as:

jp = j oof1 I + JIOJ 01

j 00 + f1 I - j 01 - JIO

If the saddle point has a positive value, the isosurface generated for the face is
illustrated at the left of Figure-28. If the saddle point is negative, then the isosurface is
connected as illustrated at the right of Fibure-28.

positive
saddle
point

Figure-28

(4) lmplemtation of Topology Inference:

··-···· ··· ····· negative
saddle
point

Although the means of calculating the data used for decision making on an
ambiguous face are different in various topology inference methods, the implementations
of translating these decisions into actual polygon connectivity are very similar. The idea
of these implementations is to create two kinds of tables: a major table which stores the
15 elementary cases of the marching cubes algorithm and some subcase tables which are
used to handle the ambiguous cases [WILL90] [NIEL9 l].

If a case is unambiguous, the major table simply contains the polygon
connectivity of this case. However, if a case is ambiguous, the major table contains a list
of entry to a subcase table for this ambiguous case. The subcase table stores different
kinds of polygon connectivity corresponding to all the possible decisions made from the
status of the ambiguous face.

24

For examplt:, case 3 in an ambiguous case with only one ambiguous face . The
major table is connected to a subcase table of case 3 which contains two different kinds
of polygon connectivity corresponding to two possible decisions made for case 3 (see
Figure-29).

decision 0: decision 1:
connecting negative vertices connecting positive vertices

Figure-29 Two subcases of elementary case 3

The complexity of the subcase table increases dramatically when the number of
ambiguous faces in an ambiguous case increases. For example, in case 13, all six faces of
the cube are ambiguous. Since two decisions can be made for each ambiguous face. the

subcase table needs to have 26 = 64 different polygon connectivity corresponding to all
possible decisions for case 13. The creation of a subcase table for case 13 is very difficult
due to its great complexity.

25

Chapter 4

An Eifflcent Disambiguation Marching Cubes Algorithm

4.1 Objectives of Isosurface Generation Algorithms:
Many isosurface generation techniques in the literature were designed for specific

applications. As a result, they may have implicit assumptions about the nature of the data
that would not hold in another application. As applications proliferate, it becomes
important to have a general-purpose method that is free of application dependencies.
Toward this end, a number of desirable features of a polygonal isosurface generation
algorithm are identified as follows:

I. The algorithm should yield a continuous isosurface.
Each edge of a polygon mesh should be shared by exactly two polygons or lie in an
external face of the entire volume. Therefore, the isosurface approximated by the
polygon mesh should not contain any holes.

2. The algorithm should decide consistently which positive vertices belong to the same
object. Positive vertices belonging to the same object are to be covered by the same
surface.

3. The algorithm should generate a smooth isosurface.
The gradients of the surf ace should be calculated for a gradient shading to produce a
smooth, pleasing and realistic isosurface.

4. Algorithmic construction of the polygon connectivity table is desired.
The polygon connectivity for each case entry needs to be generated automatically
based on the algorithm and to be stored in a look-up table for fast access. Manual
construction of the table is tedious and prone to error.

5. The isosurface should not create artifacts not implied by the data.
Extraneous polygons which are the results of the existence of multiple branched
edges in the polygon mesh should not be generated in the isosurface.

6. The algorithm should be simple wazzu and efficient.
The algorithm should be as simple as possible for easy implementation. Also the
algorithm should be efficient enough for real-time interactive use.

Some of these criteria may not seem important when the resolution is fine enough
that the eye does not notice an occasional "glitch". However, visualization systems will
inevitably provide a zoom ability for a close-up examination of "interesting" features
of a scene. Isosurfacess generated incorrectly can lead to misleading or at least confusing
images under close-up examination, regardless of the original resolution [WILL90].

26

The simplicity and fast speed of the marching cubes algorithm makes it a good
candidate for a general-purpose isosurface generation algorithm. Actually, the marching
cubes algorithm successfully fulfills most of the objectives except the first one. The
failure of the first objective is due to the ambiguity problem of the algorithm which
might allow holes in a constructed isosurface.

As described in chapter 2, the two major disambiguation techniques, tetrahedral
decomposition and topology inference, have been developed to resolve the ambiguity
problem. While the first objective is satisfied when these techniques are applied, some
other objectives which indicate the advantages of the marching cubes algorithm are lost.

According to experimental results, tetrahedral decomposition yields over twice as
many triangles as does the marching cubes technique. The generation and display of
these large amounts of triangles is extremely computational expensive which makes it
difficult for effective interactive use.

In topology inference, the creation of different subcase tables for all the
ambiguous cases is very complicated and time consuming since these tables are usually
generated manually. This can not meet the fourth objective which requires the automatic
generation of look-up tables to prevent errors from occuring in the polygonization.
Besides, topology inference requires additional computation in order to make a decision
on an ambiguous face which lowers the efficiency of the algorithm.

4.2 An Efficient Disambiguation Method
4.2.1 Durst method

When Durst pointed out the ambiguity problem, he suggested a modified method
which always adds a quadrilateral to the polygon mesh whenever there is an ambiguous
face. Unfortunately, this method could sometimes lead to multiple-branched edges
which creates extraneous polygons in the isosurface. An example is given in Figure-30:

Figure-30 A quadrilateral is added on common face

In Figure-30, each of the two edges on the common ambiguous face occurs twice
when the original marching cubes algorithm is used. However, the additional

27

quadrilateral added by this modified method increases the number of occurrences of
each edge by one. Therefore, the two edges tum into multiple-branched edges which are
not allowed in the isosurface generation.

4.2.2 An Efficient Disambiguation Method
In spite of the fact that the modified method by Durst fails to solve the ambiguity

problem completely, the method provides some clues leading to the development of a
very efficient disambiguation method [ROLL95].

The example in Figure-30 has shown that holes do not always occur on an
ambiguous face. However, if there is a way to find out whether or not holes occurr on
an ambiguous face and to fill the holes only when they occur, then the isosurface
produced is a continuous isosurface without holes. Thus, the ambiguity problem is
solved.

The formation of holes is due to disconnected edges in the polygon mesh
representing the isosurface. An edge of a polygon mesh lies either on the face of a cube
or inside a cube. An edge inside a cube occurs exactly twice in the polygon mesh
because this edge is created by the tessellation of a nonplanar polygon into triangles (see
Figure-31). Therefore, holes may only arise on the faces of a cube where the edges are
disconnected .

An edge inside a cube always occurs exactly
twice in two neighboring triangles

Figure-31 Polygon edges

Since two cubes share a common face, the number of occurrences of the triangle
edges on the common face needs to be examined from a combination of these two
adjacent cubes.

Two adjacent cubes sharing an ambiguous common face are illustrated in Figure-
32. Three parallel faces of the two cubes are named as upper face, common face and
lower face . Keeping the vertex configuration of the common face fixed, the possible
combinations

28

of the other vertices (four on the upper face

and four on the lower face) are 28 = 256.

The number of 256 possible
combinations can be reduced to a smaller
number of distinct combinations by making
use of two types of symmetry.

upper face

common face

lower face

Figure-32 Two adjacent cubes
sharing an ambiguous face

Swapping symmetry is defined by interchanging the upper and the lower face.
That is, the combination of i positive vertices in the upper face and of j in the lower face,
is equivalent to the combination of j positive vertices in the upper face and of i in the
lower face. It reduces 256 combinations into 128. Another symmetry, rotation symmetry,
is defined by fixing the centers of the upper face and the lower face and then rotating the

two cubes by 180°. By this symmetry, the number of the distinct combinations is further
reduced to only 64.

For each of the 64 distinct combinations, polygons are generated within the upper
and lower cube according to the 15 elementary cases of the marching cubes algorithm.
The number of times each triangle edge occurs on the common face of each
combination is then examined. Some combinations are illustrated as in Figure-33 . A
combination is regarded as containing holes if some triangle edges occur only once on
the common face. The result of the examination of the 64 combinations is given in Table­
!. The number of combinations means the number of different vertex arrangements.

(a).

29

Figure-33 The Polygon Connectivity of Some Combinations

Number of
combinations

Number of
positive vertices
in the lower cube

12
9

Number of
positive vertices
in the upper cube

8* 3*
6 2

Table- I 22 out of the 64 combinations exhibit
holes which are marked by *.

(Note: the symbol - represents symmetries data.)

In Table-I, the combinations in which holes are presented (numbers marked by
*) are those having at least 5 positive vertices in the upper cube and no more than four
positive vertices in the lower cube. By the swapping symmetry, the combinations with at
least 5 positive vertices in the lower cube and no more than four positive vertices in the
upper cube also contain holes on the common face. An inverted case is a case that has
five or six positive vertices and a non-inverted case is a case that has two, three or four
positive vertices. A very interesting conclusion can be drawn from the above
observation: a hole arises if and only if one of the adjacent cubes in the combination
represents an inverted caseand the other represents a non-inverted case.

30

A combination with an inverted case and a not-inverted case is called inverted
combination. Figure-33 (a) shows some examples of inverted combination. On the
common face, four edges forming a quadrilateral remain unpaired which induces holes.
Figure-33 (b) represents some other examples where an inverted case meets an inverted
case, or a not-inverted case meets a not-inverted case. All edges are properly connected.
Separated isosurfaces are constructed on the common face and no holes arise.

Inspection of all combinations in Table-I reveals another simple property, which
implies how the holes are to be mended: all holes consist of four disconnected edges
forming a quadrilateral on the common face. Therefore, a hole is mended by filling the
four intersection points of the ambiguous face with two triangles forming a quadrilateral.

A disambiguation marching cubes algorithm is implemented based on the above
results. The local isosurface construction within a cube by this method can be
summarized in three steps as follows:
(I) Initial isosurface generation.

Triangles are first generated within the examined cube according to the 15 elementary
cases of the marching cubes algorithm. The construction process continues if the
cube represents an ambiguous case; otherwise, it stops here.

(2) Hole detection.
For each ambiguous face of the examined cube. the neighbor cube sharing the

ambiguous face also needs to be inspected in order to determine whether or not the
combination is inverted. The process continues if it is inverted which indicates the
existence of holes; otherwise, it stops.

(3) Hole fixing
Holes on the ambiguous.face of an inverted combination can be mended by adding a
quadrilateral which consists of two triangles to the initial isosurface generated in the
first step. All the triangles form the isosurface of the examined cube.

The implementation of the last two steps, hole detection and hole fixing is very
direct, simple and rapid based on Table- I. These two steps can be viewed as an
extension of the local construction of the marching cubes algorithm and are only needed
when a cube is ambiguous. Consequently, This disambiguation method efficiently
generates a continous isosurface without holes while keeping the simplicity and fast
speed of the original marching cubes algorithm.

31

Chapter 5

Test Results

5.1 Implementations of Three Isosurface Algorithms
Three isosurface generation algorithms which are the original marching cubes

algorithm, Durst algorithm and the disambiguation algorithm described in chapter 4 are
implemented. Generated data from mathematical functions are used to test the algorithms,
and the test results are compared and explained. Also the isosurface of a medical volume
data is generated using the disambiguation algorithm

5.2 Two Mathematical Functions Test:
5.2.1 Definition of F1 and F1

The following two quadratic functions are very useful in testing the ability of
isosurface generation algorithms [Wil..L90].

F,(x,y,z) =4y+4(x-z) 1 -5

F2 (x, y,z) = 4(y- 1) 2 + 2(x- z) 1
- 2(x + z-3) 2 + I

The actual isosurfaces for real numbers ranging from O to 3 in the three
dimensional space are shown in Figure-34 (a) and (b). The threshold value that defines
the two isosurfaces is zero. The isosurf ace of F; is a single continuous surface, and the

isosurface of F2 is two separate lobes of a hyperboloid.

32

Figure-34 (a) The actual isosutface of F;

33

• - • - • ,-, • y • • • z s - ~ • • •• • ¥ •y·· •v•· ~ • • • .. • •• - - • -• ,.._ • > • V•,••·, ,•· - ~••~• z ,-·--,.- • • • ·· ,•.,Y - - s •• •• . • • • , •

, . iJ~~ : -~-':_ ;·:,, '_';:-~;1:;.- -.; ";~· '.:"',;~-: :·.":._:.> :.:-.. • :<:tJ" •::· _.-_ .-_- ·=.+. ,.:4 • - •• - -,•- ··~:_ .. ;. · : . _,.,; -~ : ,

Figure-34 (b) The actual isosurface of F2

Each of the two functions is sampled at the integers O through 3 for x, y and z
respectively to produce a 4 x 4 x 4 volumetic data which will be used to test several
isosurf ace generation algorithms.

5.2.2 Center Cube and Center-Lower Cube of F; and F2

Figure-35 shows the vertex values of the center cube and the center-lower cube
for F1 and F2 . The center cube is actually the cube which locates at the center of the

volume which consists of three cubes in each of the three dimensions. The center cube of
F; has exactly the same vertex values as the center cube of F2 . As a result, the

ambiguous face between the center cube and the center-lower cube of F, is the same as

the ambiguous face of F2 . The polygon connectivity within those cubes by the original

marching cubes algorithm is also illustrated in the Figure-35.

34

(1,2,2)

(2,0,1)

Figure-35 The center cube and center-lower
cube of F1 (left) and F2 (right)

(Note: the (x,y ,z) coordinates of F2 is the same as the coordinates of F1)

5.2.3 Test Results of Isosurface Generation Algorithms
5.2.3.1 Test Results of the Original Marching Cubes Algorithm

Isosurfaces which are constructed by the original marching cubes algorithm from
the two volume data sets of F1 and F2 are demonstrated in Figure-36 (a) and (b):

35

Figure-36 (a) The generated isosurface of F; by the original marching cubes

method

36

Figure-36 (b) The generated isosurface of F2 by the original marching cubes

method

Compared with the actual isosurface of F1 in Figure-34 (a), the constructed

isosurface of F1 exhibits holes, which proves the ambiguity problem of the marching

cubes algorithm pointed out by Durst. The reason for the exhibition of holes in the
constructed isosurface can be explained by the center cube and the center-lower cube of
F; in Figure-35, left. Each of the four edges on the common ambiguous face is a

disconnected edge, i.e. an edge which occurs just one time in the polygon mesh. By the
theorem discussed in chapter 2, holes are induced on the ambiguous face.

Nevertheless, the constructed isosurface of F2 doesn't have any holes, and it is

very similar to the actual isosurface of F2 . This can also be interpreted by the center cube

and the center-lower cube of F, in Figure-35, right. Since all the edges on the common

face are connected correctly (each edge occurs exactly twice in the polygon mesh), there
are no holes on the common face even if the face is ambiguous. Thus, the constructed
isosurface doesn't contain any holes.

37

5.2.3.2 Test Results of Durst Algorithm
The volume data of F.. and F2 are also used to test the modified marching cubes

algorithm suggested by Durst. The generated isosurfaces are illustrated in Figure-37 (a)
and (b).

Figure-37 (a) The generated isosurface of F, by Durst method

38

Figure-37 (b) The generated isosurface of F2 by Durst method

This method successfully repairs the holes for F; . But it adds two extraneous

polygons between two lobes of the hyperboloid for F2 .

It has been shown previously that all the edges occur only once on the common
face of the center cube and the center-lower cube of F1 by the original marching cubes

algorithm. When the Durst method adds a quadrilateral on the common face, all the
disconnected edges (occuring just one time) on the common face are connected properly
(occuring exactly twice). Hence, the isosurface of F1 turns out to be a continuous surface

without holes. However, although all the edges on the ambiguous common face of the
center cube and the center-lower cube of F2 have already occurred twice by the original

marching cubes algorithm, an additional quadrilateral is still supplemented on the
common face by the Durst method. As a result, the edges on the common face occur
three times which creates extraneous polygons in the isosurface.

5.2.3.3 Test Results of the Disambiguation Algorithm
The disambiguation marching cubes algorithm described in chapter 4 is also used

to generate isosurfaces for F1 and F2 as illustrated in Figure-38.

39

Figure-38 (a) The generated isosurface of F; by the disambiguation method

40

Figure-38 (b) The generated isosurface of F2 by the disambiguation method

The outcome of this disambiguous method is very heartening. Both the generated
isosurf aces are very close to the actual isosurfaces. There is no hole in F, and there is no

extra piece in F2 .

In the case of the center cube and the center-lower cube of F. , the center cube 1s

an inverted case which has six positive vertices, and the center-lower cube is a non­
inverted case which has two positive vertices. The combination of these two cubes is
inverted which implies that there are holes on the common face. The disambiguation
method mends the holes by generating a quadrilateral on the common face.

As for the case of the center cube and the center-lower cube of F: , both the

center cube and the center-lower cube are inverted since each cube has six positive
vertices. Then the combination of these two cubes is not inverted and there are no holes
on the common face. Therefore, the isosurface within the two cubes is generated only
by the original marching cubes algorithm and no quadrilateral needs to be added on the
common face.

41

5.3 Medical Experimental Result:
The experimental result of generating an isosurface from a medical volume data

by the disambiguation marching cubes algorithm is shown in Figure-39 :

The medical volume data is a presegmented Cine-CT of the left ventricle of the
heart. The dimensions of the data is 85 x 80 x 18. The data set contains values between
0 and 255. The threshold value used to determine the isosurface in Figure-39 is 79.0
which is chosen based on the histogram of the data so that the result shows the boundary
of the heart as well as the structure inside. The isosurface consists of 23648 triangles,
among which 23572 triangles are generated by the original marching cubes , and 76
triangles are generated to mend the holes. The number and the frequency of the 15
elementary cases of the volume data is illustrated in Table-2.

42

Case 0 1009877 89.51
Case 1 3009 2.67
Case2 3165 2.81
Case 3* 85 0.075
Case4 2 0
Cases 2175 1.92
Case 6* 32 0.028
Case 7* 2 0
Case8 2987 2.65
Case 9 293 0.26
Case JO* 2 0
Case 11 42 0.037
Case 12* 2 0
Case 13* 0 0
Case 14 38 0.034
Total Cases 112821

Table-2 The number and frequency of the 15 elementary cases
(Note: numbers marked with * represent ambiguous cases)

It takes about two minutes to generate the polygon mesh representing the
isosurface from the heart data on a Sun Workstation using the disambiguation marching
cubes algorithm. And it takes about another one minutes to render the polygon mesh to
get the image as in Figure-39 on the same machine. The isosurface generated by the
disambiguation algorithm is continuous without any holes. And the speed of this
algorithm is reasonable and practical. Therefore, the disambiguation algorithm can be
used in many scientific applications.

43

Appendix A

The Generation of the Equivalent Classes of the 15
Elementary Cases of the :Marching Cubes Algorithm

If a cube is labeled as Figure-40(a), then the configuration of a cube can be
represented as a subset of { l ,2,3,4,5,6,7,8}. For example, a configuration as Figure-40(b)
can be represented as { 3, 5,6} which only contains positive vertices.

7 8 7 8
1 2

5
4

(a) (b)

Figure-40

Then all the 15 elementary cases of the marching cubes algorithm can be
represented by a set M =={ {}, { 4}, { 4,3}, { 2,4}, { 4,8}, { 3,5,6}, { 4,3,8}, { 1,3,8},
{3.4,5,6}, {4,5,6,7}, { 1,4.5,8}, {4,5,6,8}, { 1,3,5,6}, {4,5,2,7}, {3,5,6,7} }. Each element
of set M corresponds to one of the elementary cases.

It is known that the rotation symmetry group is isomorphic to symmetry group
S4 . It is also isomorphic to a subgroup of S8 which consists of some permutations of
1,2,3,4,5,6,7,8.
In this paper, a permutation of S8 represented as [2,3,4, 1,6,7,8,5] is the same as

(2
1 2 3 4 5 6 7 8J·

3 4 1 6 7 8 5

If a cube is labeled as Figure-40, a subgroup of S8 which is isomorphic to the

rotation symmetry group can obtained:
S={ [2,3,4, 1.6, 7,8,5), [6,5,8,7,2, 1,4,3], [I ,4,6,7,5,8,2,3], [2,8,5,3,6,4, 1,7), [5,6,4,3, 1,2,8,7],

[2, I, 7,8,6,5,3,4], [5,3,2,8, 1,7,6,4], [6,7, 1,4,2,3,5,8], [4, 1,2,3,8,5,6,7], [7,6,5,8,3,2, I ,4],
[8,2, 1,7,4,6,5,3], [1,7,8,2,5,3,4,6], [5,8,7,6, 1,4,3.2], [3,2,8,5,7,6,4, I], [4,6,7, 1,8,2,3,5],
[7,8,2, 1,3,4,6,5], [7, 1,4,6,3,5,8,2], [4,3,5,6,8, 7, 1,2], [6,4,3,5,2,8,7, I], [3,4, 1,2,7,8,5,6],
[8,5,3,2,4, 1,7,6], [8,7,6,5,4,3,2, I], [1,2,3,4,5,6,7,8], [3,5,6,4,7, 1,2,8]}

The equivalence class of each elementary case is obtained by letting the group S
act on the elementary case . For an example, case 4 is represented as { 4,8} and its
equivalence class is { { 3,7}, { 8, 4}, { 5, 1}, { 6,2}}. Case 5 is represented as { 6,5,3} and
its equivalence class is { {7,6,5}, {2,8,7}, {7,4,6}, {7,8,l}, {8,7,6}, {5,8,7},
{5,6,8},{2,3,8}, {4,3,6}, {3,6,5}, {6,1,7}, {5,8,3}, {8,2,5},{4,6,5}, {5,4,3}, {7,4,1},
{8,2,1}, {l,6,4}, {5,3,2}, {2,1,7}, {4,3,1}, {2,4,3}, {1,2.4}, {1,3,2}}

44

REFERENCES

ARMS88 M.A. Armstrong, "Groups and Symmetry", Springer-Verlag, 1988.

BL0088 J. Bloomenthal, "Polygonization of Implicit Surfaces'·, Computer Aided
Geometric Design, Vol. 5, No. 4, Nov. 1988, pp. 341-355.

CHEN85 Chen, G. R. Herman, R. A. Reynolds and J. K. Udupa, "Surface Shading in
the Cuberille Environment", Computer Graphics and Applications, Vol. 5,
No.12, Dec. 1985, pp. 33-43.

CLIN88 H. E. Cline, W. E. Lorensen, and S. Ludke, "Two algorithms for the three­
dimensional reconstruction of tomograms", Medical Physics, Vol. 15, No.
3, May/June 1988, pp. 320-327.

DURS88 M. J. Durst, "Additional Reference to Marching Cubes'', Computer
Graphics, Vol. 22, No. 2, April 1988, pp. 72-73.

FUCH77 H. Fuchs, Z. M. Kedem and S. P. Uselton, "Optimal Surface
Reconstruction from Planar Contours", Communications of the ACM, Vol.
20, Oct. 1977, pp. 693-702.

HERM79 G. T. Herman and H.K. Liu," Three-Dimensional Display of Human
Organs from Computed Tomograms", Computer Graphics and Image
Processing, Jan. 1979, pp. 1-21.

KAUF91 A. Kaufman, ···Introduction to Volume Visualization", Volume
Visualization, IEEE Computer Scoiety Press Tutorial, 1991, pp. 1-18.

KAUF93 A. Kaufman, D. Cohen, and R. Yagel, "Volume Graphics", Computer, July
I 993, pp. 51-64. .

LIU77 H.K. Liu, "Two and Three-Dimensional Boundary Detection", Computer
Graphics and Image Processing, No. 6, June 1977, pp. 123-124

LORE87 W. E. Lorensen and H. E. Cline, "Marching Cubes: A High Resolution 3D
Surface Construction Algorithm", Computer Graphics, Vol. 21, No. 4, July
1987, pp. 163-169.

MULL93 H. Muller and M. Stark, "Adaptive Generation of Surfaces in Volume
Data", Visual Computer, Vol. 9, No. 4, 1993, pp. 182-199

NIEL91 G. M. Nielson and B. Hamman, "The Asymptotic Decider: Resolving the
Ambiguity in Marching Cubes", Visualization '91, IEEE, 1991, pp. 83-
90.

45

NING93 P. Ning and J. Bloomenthal, "An Evaluation of Implicit Surface Tiles",
IEEE Computer Graphics, Vol.13, No. 6, November 1993, pp. 33-41.

PAYN90 B. Payne and A. W. Toga, "Surface Mapping Brain Function on 3D
Models", IEEE Computer Graphics & Applications, Sept. I 990, pp. 33-41.

RAPP93 A. Rappaport, R. Kosloff, and R. Mayer, "Visualizing Wave Functions in
Molecular Dynamics Using Polygon Encoding", Scientific Visualization.
Advanced Software Techniques, ElJis Horwood, 1993, pp. I 25-132

ROLL95 S. Roll, A. Haase and M. Kienlin, "Fast Generation of Leakproof Surfaces
from Well-Defined Objects by a Modified Marching Cubes Algorithm",
Computer Graphics Forum, Vol. 14, No. 2, 1995, pp. 127-138.

SHIR89 P. Shirley and H. Neeman, "Volume Visualization at the Center for
Supercomputing Research and Development'', Proceedings of the Chaperl
Hill Workshop on Volume Visualization, May 1989, pp. 17-20.

SUNG88 A. Sunguroff and D. Greenverg, "Computer Generated Images for Medical
Application", Computer Graphics, Vol. 12, No. 3, Aug. 1978, pp. 196-202.

UDUP82 J. K. Udupa, S. N. Srihari, and G. T. Herman, "Boundary Detection in
Multidimensions", IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. PAMI-4, No. 1, Jan. 1982, pp. 41-49.

WILH90 J. Wilhelms and A. V. Gelder, "Topological Considerations in Isosurface
Generation", Computer Graphics. Vol. 24, No. 5, Nov. 1990, pp. 79-86.

WYVI86 G. Wyvill. C. M. Mcpheeters and Brian Wyvill, "Data Structure for Soft
Object", Visual Computer, Vol. 2, No. 4. Aug. 1986, pp. 227-234.

46

	The implementation of a disambiguation marching cubes algorithm
	SLIB-JFKM2323101012200

