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Brief communication 

Arginine-178 is an essential residue for ITPA function 

Nicholas E. Burgis *, Caitlin April, Kandise VanWormer 
Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA   

A R T I C L E  I N F O   
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A B S T R A C T   

The inosine triphosphate pyrophosphatase (ITPA) enzyme plays a critical cellular role by removing noncanonical 
nucleoside triphosphates from nucleotide pools. One of the first pathological ITPA mutants identified is R178C 
(rs746930990), which causes a fatal infantile encephalopathy, termed developmental and epileptic encepha
lopathy 35 (DEE 35). The accumulation of noncanonical nucleotides such as inosine triphosphate (ITP), is sus
pected to affect RNA and/or interfere with normal nucleotide function, leading to development of DEE 35. 
Molecular dynamics simulations have shown that the very rare R178C mutation does not significantly perturb 
the overall structure of the protein, but results in a high level of structural flexibility and disrupts active-site 
hydrogen bond networks, while preliminary biochemical data indicate that ITP hydrolyzing activity is signifi
cantly reduced for the R178C mutant. Here we report Michaelis-Menten enzyme kinetics data for the R178C ITPA 
mutant and three other position 178 ITPA mutants. These data confirm that position 178 is essential for ITPA 
activity and even conservative mutation at this site (R178K) results in significantly reduced enzyme activity. Our 
data support that disruption of the active-site hydrogen bond network is a major cause of diminished ITP hy
drolyzing activity for the R178C mutation. These results suggest an avenue for developing therapies to address 
DEE 35.   

1. Introduction 

The inosine triphosphate pyrophosphatase (ITPA) protein has a 
critical role in intracellular nucleotide metabolism (see reviews [1–3]). 
The enzyme hydrolyzes both ribose and deoxyribose nucleoside tri
phosphates containing noncanonical purines, such as inosine triphos
phate (ITP), to their monophosphate form [4]. This activity is thought to 
protect cells from accumulating high concentrations of ITP, which has 
potential to be incorporated into nucleic acids or interfere with normal 
nucleotide metabolism [3,5–7]. At this time, 45 very young patients 
have been identified with very rare and generally fatal mutations which 
result in severe ITPA deficiency [5,8–16]. Patients presented with an 
early onset encephalopathy termed developmental and epileptic en
cephalopathy 35 (DEE 35) (MIM# 616647) [5]. The molecular mecha
nism of pathogenesis for these patients is unknown. Interestingly, 
deoxyinosine was not detected in patient DNA [11], which suggests that 
the likely cause of pathogenesis is at the RNA or nucleotide level, such as 
a defect in RNA function or metabolism, or interference of ITP in normal 
nucleotide biochemistry (see Ref. [7] for further discussion). 

One of the first fatal ITPA mutations identified was a point mutation 
that resulted in an amino acid change from arginine to cysteine at 

position 178 (R178C, rs746930990) [5]. Arg-178 is located in the sub
strate specificity pocket of ITPA and its terminal guanidino group makes 
critical noncovalent interactions with the incoming ITP substrate 
(Fig. 1), which is thought to contribute to substrate specificity [17]. 
Molecular dynamics simulations indicate that the R178C protein 
maintains its overall fold in solution, but that intermonomer flexibility is 
increased and that active site hydrogen bond networks were disrupted, 
compared to wild-type protein [18]. Data with wild-type enzyme show 
Arg-178 interacting with residues on α-helix 2 (Fig. 1). α-helix 2 contains 
critical active site residues and this interaction has a stabilizing effect on 
the helix [18]. 

To better understand the effects of the R178C mutation on enzyme 
activity we compared kinetic constants of wild-type ITPA and four po
sition 178 ITPA mutants: R178C, R178S, R178K and R178A (see Fig. 2 
for amino acid structures). For the R178C mutant, we found that sub
strate binding was similar to wild-type, but that the rate of catalysis was 
severely diminished. For the other mutants, substrate binding was 
diminished overall, however R178K had a rate of catalysis similar to 
wild-type. Our data imply that the guanidino group of Arg-178 performs 
an essential function by contributing to both substrate binding and 
formation of the active site hydrogen bond network, and that a small 
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molecule or aptamer could be developed to address ITPA deficiency for 
R178C patients. 

2. Materials and methods 

2.1. Plasmid construction 

pET28a-based mutant plasmids were constructed as described pre
viously [19] using pET28a-ITPA plasmid as a template [20]. Briefly, an 
Agilent Technology QuikChange II Site-Directed Mutagenesis Kit was 
used with PAGE-purified primers designed using the manufacturer’s 
website following the manufacturer’s protocol. Proper construction of 
each mutant plasmid was confirmed by DNA sequencing (MCLAB, htt 
ps://www.mclab.com/). 

2.2. Protein purification 

Wild-type and mutant proteins were overexpressed and purified as 
described previously (Supplemental Fig. S1) [18,19]. Briefly, ITPA 
proteins were overexpressed in E. coli and pelleted cells were resus
pended in 8 M urea, 20 mM phosphate pH 7.4, 0.5 M NaCl (Buffer A) and 
then sonicated. Cleared lysates were loaded onto a 1 mL Ni2+ charged 
HisTrap HP affinity chromatography column, washed and eluted with 
Buffer A containing 500 mM imidazole. Eluant fractions were analyzed 
by SDS-PAGE. The fractions with the highest level of target protein were 
collected and dialyzed on ice against 20 mM Tris–HCl pH 7.4, 100 mM 
NaCl, 10 mM MgCl2 and 1 mM 1,4-dithiothreitol (Buffer B) containing 8 
M urea using constant flow dialysis where the concentration of urea was 
reduced to zero in a stepwise manner over a 32-h period. Samples were 
stored in 50% glycerol at − 20 ◦C and clarified after 48 h before con
centration determination (NanoDrop 2000, www.thermofisher.com). 

2.3. Enzyme kinetics 

Michaelis-Menten parameters were determined with an assay similar 
to the specific activity assay described in Ref. [18]. Wild-type and the 
four mutant enzymes were assayed side by side in 100 μl volumes using 
eight different substrate concentrations ranging from 5 to 100 μM ITP. 
Each reaction was pre-incubated at 37 ◦C for 10 min and the reaction 
proceeded for 10 min with the addition of enzyme. Each reaction con
tained either 0.5 pmol wild-type enzyme, 2 pmol R178K enzyme, or 100 
pmol R178C, R178S or R178A enzyme and was stopped by the addition 
of an equal volume of 2% sodium dodecyl sulfate followed by mixing 
and centrifugation. An aliquot of the supernatant was used for IMP 
quantification by HPLC. Reaction products were separated on a Nucle
ogen 60-7 DEAE column (www.mn-net.com) using a ThermoFisher Ul
tiMate 3000 HPLC system with a flow rate of 0.6 ml/min and buffer 
containing 75 mM sodium phosphate, pH 6.4, 5% acetonitrile and 0.4 
mM EDTA. IMP was quantified by UV absorption at 248 nm using an 
UltiMate 3000 VWD-3400RS UV detector. The Enzyme Kinetics module 
of Sigma Plot software was used to determine kinetic parameters. Ki
netic parameters are reported as average values ± standard error. 

3. Results 

The results of the Michaelis-Menten enzyme kinetics experiments for 
wild-type ITPA and the four position-178 mutants are reported in 
Table 1. For wild-type enzyme, the value of the Michaelis constant (KM) 
is in the range of previously reported values [20](unpublished results), 
but the rate of catalysis (kcat) and specificity constant (kcat/KM) are 
decreased. This decrease is proportional to the decrease observed pre
viously for specific activity measurements when the urea based refolded 
protein purification scheme was employed (as it is here), compared to 
the standard protein prep [18]. This is likely due to the lower level of 
enzyme prep purity that is consistently observed with the refolded 
protein purification scheme which was required to recover soluble ITPA 

Fig. 1. Model of wild-type ITPA showing Arg-178 involved in substrate binding 
and stabilization of α-helix 2. Image based on pdb file 2J4E [17] rendered in 
Deep View (https://spdbv.unil.ch/). Residues of interest and ITP substrate are 
in CPK coloring. Potential hydrogen bonds are represented as yellow 
dashed-lines with distances in Angstroms noted. 

Fig. 2. Structure of R-groups for position-178 mutants studied. Structures are 
drawn with MarvinSketch using CPK coloring. 
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R178C enzyme (Supplemental Fig. S1). 
In general, the position-178 mutants tested all had severely dimin

ished efficiency in hydrolyzing ITP (Table 1). Under our experimental 
conditions (low rate of catalysis), KM measurements are reflective of 
substrate binding [21]. Therefore, Table 1 indicates that the clinically 
relevant R178C enzyme binds substrate roughly equivalent to wild-type, 
but the rate of catalysis is diminished over 100-fold. For the other three 
enzymes, KM values are about 10- to 20-fold greater than wild-type, 
suggesting that substrate binding is substantially diminished for these 
mutants. Interestingly, the kcat value for the R178K mutant is close to the 
wild-type value, suggesting that a positively charged R-group at position 
178 is required to support wild-type levels of catalysis with ITP. The kcat 
values for R178S and R178A are severely diminished, this is consistent 
with previous specific activity measurements for R178A [19]. Conse
quently, none of the position-178 mutants tested have both wild-type 
substrate binding ability and wild-type rates of catalysis, hence the 
specificity constants are in the range of 25- to 2000-fold less than 
wild-type, with the most conservative substitution, R178K, having the 
highest kcat/KM value (Table 1). 

4. Discussion 

Overall, our results give insight into the role of Arg-178 in enzyme 
function and the consequences of the R178C mutation on ITPA activity. 
Our data illustrate that Arg-178 has a critical role in substrate binding 
and catalysis and that no other amino acid at this position can perform 
both functions (substrate specificity and α-helix 2 stabilization) further 
supporting that Arg-178 is essential for ITPA function [18,19]. 

Because we had difficulty recovering a sufficient amount of R178C 
mutant to perform enzyme kinetics using our standard protein prep, we 
used the refolded protein purification scheme described in Materials and 
Methods. This methodology resulted in contaminating proteins being 
recovered along with target protein after the immobilized metal affinity 
chromatography step and variation in the relative amount of target 
protein recovered. Fig. S1 shows that the three proteins preps most 
critical to this study (wild-type (lane 2), R178C (lane 4), and R178K 
(lane 5)) all have the highest level of purity and the intensity of the ITPA 
bands are at similar levels both between the three preps and relative to 
the contaminating proteins. While error in protein concentration mea
surements may have occurred due to contaminating proteins, which 
could affect kcat and kcat/KM calculations, we believe this is minimal and 
would only alter the calculated values slightly. The differences in kinetic 
constants observed are stark so we do not expect protein purity to impact 
our conclusions. 

Concerning substrate binding, x-ray crystallography data [17] shows 
the terminal amine groups of Arg-178 to be near the inosine base and 
within hydrogen bonding distance of the 6-position carbonyl and 7-po
sition nitrogen of the purine ring (Fig. 1). This interaction is crucial as 
the conservative R178K mutant has severely diminished substrate 
binding ability, even though the terminal amine of lysine is only one 
bond length shorter than that of arginine. These data underscore that the 

noncovalent interaction between incoming substrate and arginine in the 
wild-type enzyme is hydrogen bonding as any electrostatic effects of a 
positively charged amine group in substrate binding would have likely 
been observed in the R178K mutant as well due to the longer distances of 
electrostatic interactions [22]. 

Considering catalysis, the guanidino group of Arg-178 is thought to 
participate in a hydrogen bond network that stabilizes α-helix 2, which 
contains critical active site residues, and this stabilization is thought to 
lead to wild-type levels of catalysis [18]. Molecular dynamics experi
ments have demonstrated that destabilization of α-helix 2 occurs with 
the two clinically relevant R178C and P32T mutants, underscoring the 
importance of these interactions. The fact that the R178K mutant has a 
kcat value similar to wild-type, strengthens the idea that a positively 
charged amine at position-178 is key to maintaining this hydrogen bond 
network, likely due to critical interaction with Glu-22 (see Ref. [18], 
Fig. 1). 

It is tantalizing to think that the ITP hydrolyzing activity of the 
R178C mutant may be enhanced by the addition of a molecule that helps 
stabilize α-helix 2. Because the R178C mutant retains wild-type levels of 
substrate binding, only an enhancement in catalysis would be required 
to improve ITP hydrolysis rates. Therefore, it is possible that a small 
molecule or aptamer could be developed to provide additional stabili
zation of α-helix 2. The R178K data suggest that a positively charged 
molecule would be required at this position to form the noncovalent 
interactions that help stabilize α-helix 2. Additionally, it may be possible 
to develop a molecule that chemically reacts with the sulfhydryl group 
of R178C in a way that a stabilizing positive charge is added, but sub
strate binding is not affected. 

In conclusion, our results support that Arg-178 has an essential role 
in substrate binding and catalysis. For substrate binding the terminal 
amine groups are required to make critical contacts with electronegative 
atoms on the substrate base. For catalysis, the guanidino amine groups 
are critical for proper formation of the hydrogen bond network that 
stabilizes α-helix 2, which contains key active site residues. Our results 
indicate that the R178C ITPA mutant can bind substrate sufficiently, but 
that the catalysis is severely diminished, thus demonstrating that both 
Arg-178 activities are required for life in humans. Altogether, our results 
indicate that an aptamer or small molecule could be developed to 
improve R178C activity. 
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