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  من المعادلات التفاضلية العاديةبول لحل انظمة خطية -كثيرات حدود سعيد

 

 ملخص

بالاعتماد على متعددات حدود    ت استخدم التجميع  العددي    بول  -سعيد طريقة  الحل  لنظام لإيجاد 

ا التفاضلية  من  و العاديةالخطية  لمعادلات  للحل  التشغيلية  المصفوفة  صيغ  على  حصلنا  حيث   .

المعطاة  و  المشتقات  المعادلات الشروط  من  نظام  الى  المعطاة  المسألة  حولت  الطريقة  هذه   .

  و وجدنا هذه . تم حل هذا النظام الخطي  بول  -سعيد حدود    متعددات   في  معاملات   الجبرية الخطية

. النتائج العددية المعطاةالتقريبية للمسألة  المضبوطة و    معاملات و من ثم حصلنا على الحلولال

عند مقارنتها مع  اعمال أخرى و الحلول    الطريقة المقترحة  فعاليةالتي حصلنا عليها أثبتت دقة و  

   .          المضبوطة

 

Abstract  

Said-Ball polynomials with collocation method are used to numerically solve a 

system of linear ordinary differential equations. The matrix forms of Said-Ball 

polynomials of the solution, derivatives, and conditions are done. The linear system of 

ordinary differential equations with appropriate conditions is reduced to the linear 

algebraic equations system with unknown Said-Ball coefficients. Solving the resulting 

system determines the coefficients of Said-Ball polynomials. By Substituting these 

values in the polynomial, we get the problem's exact and approximate solutions. The 

obtaining numerical results show the proposed method's accuracy and reliability when 

compared with the other works and exact solutions. 

 

Keywords: Said-Ball polynomials, collocation method, linear ordinary differential 

equations, matrix form.    

 

1. Introduction 

   Differential equations play an important role in engineering and physics sciences. 

One of the challenging problems in applied mathematics is finding the solution to 

differential equations or their systems. Also, the most difficult has lain in the case of 

higher-order systems of differential equations. There are various methods to solve 

some systems of differential equations numerically. For instance, Akyüz-Daşcıoğlu 

and Sezer [1] used Chebyshev polynomial approach to solve the systems of high-
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order linear differential equations with variable coefficients. Biazar et al. [2] 

employed the Adomian decomposition method to solve ordinary differential 

equations. Rationalized Haar functions method is used to solve the linear integro-

differential equations system [3]. In [4], Sezer et al. implemented the Taylor 

polynomial approach to obtain the solutions of systems of linear differential equations 

with variable coefficients. Jafari and Daftardar-Gejji [5] solved systems of ordinary 

and fractional differential equations using the revised Adomian decomposition 

method. [6] Abdel and Hassan used the differential transformation method to solve 

systems of differential equations. Tatari and Dehghan [7] employed the Improvement 

of He's Variational iteration method to solve systems of differential equations. 

Thongmoon and Pusjuso [8] obtained the numerical solutions of the system of 

differential equations using the differential transform method and the Laplace 

transform method. In [9], Javidi presented a Modified homotopy perturbation method 

to solve the linear Fredholm integral equations system. The homotopy analysis 

method is used to handle systems of fractional differential equations [10]. Yüzbaşi et 

al. solved linear differential equation systems using the Bessel collocation method 

[11]. Yüzbaşi [12] employed an efficient algorithm to solve the multi-pantograph 

equation systems. Yüksel et al. [13] solved high-order linear Fredholm-Volterra  

integro-dfferential equations via Chebyshev polynomial approach. Ramadan and Abd 

El Salam [14] applied the exponential Chebyshev collocation method to solve systems 

of ordinary differential equations in unbounded domains. In [15], Yuzbasi_ and 

Yldirim solved the systems of first-order linear differential equations using the 

Laguerre collocation method. For more methods, see [16-25]. Recently, Yüzbaşi and 

Yildirim [26] used Laguerre polynomial approach to solve the systems of linear 

differential equations. Sezer and Kürkçü [27] obtained the Charlier series solutions of 

the systems of the delay differential equations of the first order based on the Charlier 

polynomials and the collaboration of the matrices. 

In this study, we will consider the following linear system of ordinary differential 

equations [26]: 

∑∑𝑃𝑖,𝑗
𝑘 (𝑥)

𝑟

𝑗=1

𝑛

𝑘=𝑜

 𝑦𝑗
(𝑘)(𝑥) = 𝑓𝑖(𝑥),   𝑖 = 1,2,⋯ , 𝑟,                                                  (1) 

Subject to mixed conditions  

∑𝛼𝑖,𝑗
𝑘

𝑛−1

𝑗=𝑜

𝑦𝑘
(𝑗)(𝛼) + 𝛽𝑖,𝑗

𝑘  𝑦𝑘
(𝑗)(𝛽) = 𝜂𝑛,𝑖                                                                    (2) 

Where 𝑖 = 0,1,⋯ , 𝑛 − 1, 𝑘 = 1, 2,⋯ , 𝑟. The functions 𝑃𝑖,𝑗
𝑘 (𝑥) and 𝑓𝑖(𝑥) are given 

and defined on the nonnegative interval [𝛼, 𝛽], 𝑦𝑗
(0)(𝑥) = 𝑦𝑗(𝑥) is an unknown 

function to be determined and 𝛼𝑖,𝑗
𝑘 , 𝛽𝑖,𝑗

𝑘  and 𝜂𝑛,𝑖  are suitable real constants.    

The purpose of this study is to apply a matrix method using Said-Ball Polynomials 

[28, 29, 30, 31, 32] to solve the linear system of ordinary differential equations (1) 

with some appropriate conditions (2). 

 

This paper is organized as follows: Section 2 presents some concepts of Ball 

polynomials, Said-Ball polynomials, and Said-Ball monomial formulas. Relations of 

the fundamental matrix are given in section 3. In section 4, residual error estimation 

and solutions accuracy is presented. In section 5, numerical examples are presented. 

The conclusion is presented in section 6.  
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2. Said-Ball Polynomial and Said-Ball monomial formulas: 

 Said-Ball Polynomial basis function  𝑆𝑖
𝑚(𝑥) of degree 𝑚 is defined as [33, 34, 

35,38]:  

𝑆𝑖
𝑚(𝑥) =

{
  
 

  
 
(

𝑚 − 1
2 + 𝑖

𝑖
) 𝑥𝑖(1 − 𝑥)

𝑚
2
+
1
2,                   0 ≤ 𝑖 ≤

𝑚

2
−
1

2
,

 (

3𝑚 − 2𝑖
2 −

1
2

𝑚 − 𝑖
) 𝑥

𝑚
2
+
1
2 (1 − 𝑥)𝑚−𝑖,

𝑚

2
+
1

2
≤ 𝑖 ≤ 𝑚

          (3) 

 when 𝑚 is an odd and 

𝑆𝑖
𝑚(𝑥) =

{
 
 
 
 

 
 
 
  (

𝑚
2
+ 𝑖

𝑖
) 𝑥𝑖(1 − 𝑥)

𝑚
2
+1,           0 ≤ 𝑖 ≤

𝑚

2
− 1,

 (
𝑚

𝑚 2⁄
) 𝑥

𝑚
2  (1 − 𝑥)

𝑚
2 ,                     𝑖 =

𝑚

2
,          

(

3𝑚
2 − 𝑖

𝑚 − 𝑖
)𝑥

𝑚
2
+1 (1 − 𝑥)𝑚−1 ,      

𝑚

2
≤ 𝑖 ≤ 𝑚   

                           (4) 

When 𝑚 is an even. 

Said-Ball curve 𝑆𝑚(𝑥) of degree 𝑚 with 𝑚 + 1 control points, denoted by {𝜁𝑖}𝑖=0
𝑚 , 

can be expressed as the following form in power basis: 

𝑆𝑚(𝑥) =∑∑𝜁𝑖  𝑠𝑖,𝑗 𝑥
𝑗

𝑚

𝑗=0

𝑚

𝑖=0

,   0 ≤ 𝑥 ≤ 1,                                                             (5) 

Where,  

𝑠𝑖,𝑗 =

{
 
 
 

 
 
 (−1)𝑗−𝑖 (

𝑖 + ⌊
𝑚
2 ⌋

𝑖
)(

⌊
𝑚
2 ⌋ + 1 

𝑗 − 𝑖
) ,          0 ≤ 𝑖 ≤ ⌈

𝑚

2
⌉ − 1,                          

(−1)𝑗−𝑖 (
𝑚

𝑖
) (

𝑖 

𝑗 − 𝑖
) ,                           𝑖 =

𝑚

2
,                                      (6)

(−1)𝑗−⌊
𝑚
2
⌋−1 (

 ⌊
𝑚
2 ⌋ + 𝑚 − 𝑖

𝑚 − 𝑖
)(

𝑚 − 𝑖 

𝑗 − ⌊
𝑚
2 ⌋ − 1

) , ⌊
𝑚

2
⌋ + 1 ≤ 𝑖 ≤ 𝑚.

 

 

The Said-Ball monomial matrix is given by: 

 

𝒮(𝑚+1)×(𝑚+1) =

[
 
 
 
 
𝑠0,0 𝑠0,1      ⋯ ⋯ 𝑠0,𝑚
𝑠1,0 𝑠1,1      ⋯ ⋯ 𝑠1,𝑚
⋮      ⋮              ⋱      ⋱ ⋮
⋮     ⋮          ⋱    ⋱      ⋮
𝑠𝑚,0 𝑠𝑚,1      ⋯ ⋯ 𝑠𝑚,𝑚  ]

 
 
 
 

                                          (7) 

 

Where 𝑠𝑖,𝑗 is defined in Eq. (6). 

 

To obtain approximate solutions of Eq. (1) with conditions (2). We will use truncated 

Said-Ball Series in the form: 

𝑦𝑖,𝑀(𝑥) = ∑ 𝑐𝑖,𝑚

𝑀

𝑚=0

 𝑆𝑚(𝑥), 𝑖 = 1, 2,⋯ , 𝑟,                                           (8) 
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Where 𝑐𝑖,𝑚,   𝑚 = 0,1,⋯ ,𝑀 are unknown Said-Ball coefficients to be determined. 

 

3.1 Relations of the fundamental matrix  

We can be written the approximate solutions of Eq.( 8) in matrix form as: 

   𝑦𝑗,𝑀(𝑥) = 𝑺(𝑥)𝑪𝑗,   𝑗 = 1, 2,⋯ , 𝑟,                                                         (9) 

Where,  𝑺(𝑥) = [𝑆0(𝑥)  𝑆1(𝑥)  ⋯  𝑆𝑀(𝑥)] and 𝑪𝑗 = [𝑐𝑗,0  𝑐𝑗,1   ⋯  𝑐𝑗,𝑀]
𝑇
, 𝑗 =

1, 2,⋯ , 𝑟. 

Now, the first derivative of Eq.( 9) is  

          𝑦𝑗,𝑀
′ (𝑥) = 𝑺′(𝑥)𝑪𝑗 , 𝑗 = 1, 2,⋯ , 𝑟,                                           (10) 

Where, 

𝑺′(𝑥) = [𝑆0
′
(𝑥)  𝑆1

′
(𝑥)  ⋯  𝑆𝑀

′
(𝑥)]                                      

                         = 𝑺(𝑥)𝑸,                                                                                 (11) 
Where, 𝑸 = 𝒮−1𝑉𝒮, and 

𝑽 =

[
 
 
 
 
0 1 0
0 0 2
⋮ ⋮ ⋱

     
⋯ 0
⋯ 0
⋱ ⋮

0 0 ⋯
0 0 0

     
0 𝑀
⋯ 0 ]

 
 
 
 

(𝑀+1)×(𝑀+1)

 

Therefore, Eq.( 10) becomes 

                         𝑦𝑗,𝑀
′ (𝑥) = 𝑺(𝑥)𝑸𝑪𝑗 , 𝑗 = 1, 2,⋯ , 𝑟,                                             (12) 

Similarly, the k-th order derivative of 𝑦𝑗
(𝑘)(𝑥) in Eq.(1) can be derived as the 

following steps: 

               𝑦𝑗,𝑀
(𝑘)(𝑥) = 𝑺(𝑘)(𝑥)𝑪𝑗 , 𝑗 = 1, 2,⋯ , 𝑟,                                   (13) 

= [𝑆0
(𝑘)
(𝑥)  𝑆1

(𝑘)
(𝑥)  ⋯  𝑆𝑀

(𝑘)
(𝑥)] 𝑪𝑗 

   = [𝑆0(𝑥)  𝑆1(𝑥)  ⋯  𝑆𝑀(𝑥)](𝑸𝒌)𝑪𝑗          

                             = 𝑺(𝑥)(𝑸𝒌) 𝑪𝑗  𝑗 = 1, 2,⋯ , 𝑟                                        (14) 

Hence, 𝑦(𝑘)(𝑥) can be written as the following matrix form  

            𝒚(𝑘)(𝑥) = �̂�(𝒙)(𝑸�̂�) 𝑪,      𝑘 = 0, 1, 2,⋯ , 𝑟,                              (15) 
where, 

𝒚(𝑘)(𝑥) =

[
 
 
 
  𝑦1

(𝑘)(𝑥)

 𝑦2
(𝑘)(𝑥)

⋮

 𝑦𝑙
(𝑘)(𝑥)]

 
 
 
 

𝑟×1

, �̂�(𝒙) = [

𝑆(𝑥) 0    ⋯    0
 0     𝑆(𝑥) ⋯    0 

    ⋮     ⋮        ⋱      ⋮    
    0     0      ⋯   𝑆(𝑥)

]

𝑟×𝑟

 

𝑸�̂�(𝑥) =

[
 
 
 

𝑸𝑘 0    ⋯    0

 0     𝑸𝑘 ⋯    0 
    ⋮     ⋮        ⋱      ⋮    
    0     0      ⋯   𝑸𝑘 ]

 
 
 

𝑟×𝑟

, 𝑪 = [

𝑪1
𝑪2
⋮
𝑪𝑟

]

𝑟×1

 

 

3.2 Relation of the fundamental matrix via collocations points  

The matrix form of the linear system (1) can be written as 
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∑𝑷𝑘(𝑥)

𝑛

𝑘 =𝑜

 𝒚(𝑘)(𝑥) = 𝒇(𝑥),                                                                    (16)   

where, 

𝑷𝑘(𝑥) =

[
 
 
 
 
𝑃1,1
𝑘 (𝑥) 𝑃1,2

𝑘  (𝑥)   ⋯    𝑃1,𝑟
𝑘 (𝑥)

𝑃2,1
𝑘 (𝑥) 𝑃2,2

𝑘 (𝑥)    ⋯    𝑃2,𝑟
𝑘 (𝑥)

    ⋮     ⋮        ⋱      ⋮    
𝑃𝑛,1
𝑘 (𝑥) 𝑃𝑛,2

𝑘 (𝑥)   ⋯    𝑃𝑛,𝑛
𝑘 (𝑥)]

 
 
 
 

𝑛×𝑛

,  

𝒚(𝑚)(𝑥) =

[
 
 
 
  𝑦1

(𝑚)(𝑥)

 𝑦2
(𝑚)(𝑥)

⋮

 𝑦𝑛
(𝑚)(𝑥)]

 
 
 
 

𝑛×1

, 𝒇(𝑥) = [

𝑓1(𝑥)

𝑓2(𝑥)
⋮

𝑓𝑛(𝑥)

] 𝑛×1           

 

The Said-Ball polynomials solution of system (16) in the form (8) can be obtained 

with the following collocations points 

  𝑥𝜏 =
𝛽 + 𝛼

2
−
𝛽 − 𝛼

2
cos (

𝜏 𝜋

𝑀
)      , 𝜏 = 0, 1,⋯ ,𝑀                            (17) 

Where, 𝑥 belongs to the nonnegative interval [𝛼, 𝛽] and 𝛼 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 𝛽. 

Substituting the collocations points (17) into the system (16), we get the system 

∑𝑷𝑘(𝑥𝜏)

𝑛

𝑘=𝑜

 𝒚(𝑘)(𝑥𝜏) = 𝒇(𝑥𝜏), 𝜏 = 0, 1,⋯ ,𝑀.                            (18)   

System (18) can be written in the following new matrix form 

∑𝑷𝑘

𝑛

𝑘=𝑜

 𝒀(𝑘) = 𝑭,                                                                                       (19) 

where, 

𝑷𝑘 = [

𝑷𝑘(𝑥0) 0    ⋯    0

 0     𝑷𝑘(𝑥1) ⋯    0 
    ⋮     ⋮        ⋱      ⋮    
    0     0      ⋯   𝑷𝑘(𝑥𝑀)

] , 𝒀(𝑘) =

[
 
 
 
𝒚(𝑘)(𝑥0)

𝒚(𝑘)(𝑥1)
⋮

𝒚(𝑘)(𝑥𝑀)]
 
 
 

, 𝑭 = [

𝒇(𝑥0)

𝒇(𝑥1)
⋮

𝒇(𝑥𝑀)

] 

 

Substitute (17) in (15). We get the following matrix from system 

        𝒚(𝑘)(𝑥𝜏) = �̂�(𝑥𝜏)(𝑸�̂�) 𝑪,      𝜏 = 0, 1, 2,⋯ ,𝑀                      (20) 

System (20) can be written briefly as 

                  𝒀(𝑘) = 𝑺(𝑸�̂�) 𝑪,                                                                  (21)  
Where, 

𝑺 = [�̂�(𝑥0) �̂�(𝑥1)    ⋯ �̂�(𝑥𝑀)]
𝑇, 

�̂�(𝑥𝜏) = [

𝑺(𝑥𝜏) 0    ⋯    0

 0     𝑺(𝑥𝜏) ⋯    0 
    ⋮     ⋮        ⋱      ⋮    
    0     0      ⋯   𝑺(𝑥𝜏)

] , 𝜏 = 0, 1, 2,⋯ ,𝑀 

Substituting (21) into the system (19), we obtain the system in matrix form as 

          ∑𝑷𝑘

𝑛

𝑘=𝑜

 𝑺(𝑸�̂�) 𝑪 = 𝑭,                                                                (22) 
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which can be written in the following form 

                                     𝚿𝑪 = 𝑭           𝑜𝑟           [𝚿; 𝑭],                           (23)     
where, 

𝚿 =∑𝑷𝑘

𝑛

𝑘=𝑜

 𝑺(𝑸�̂�) = [Ψ𝜇,𝜌], 𝜇, 𝜌 = 1, 2,⋯ , 𝑟(𝑀 + 1)        (24) 

System (23) is an algebraic linear of 𝑟(𝑀 + 1) equations in 𝑟(𝑀 + 1) unknowns 

Said-Ball coefficients.   

     Now, we formulate the matrix form of the mixed conditions (2). Using Eq. (15), 

then we have the matrix form of the mixed conditions (2) as  

∑[𝛼𝑗�̂�(𝛼) + 𝛽𝑗  �̂�(𝛽)]

𝑛−1

𝑗=𝑜

(�̂�)𝑗 𝑪  = 𝜂,                                                 (25) 

Where, 

𝛼𝑗 =

[
 
 
 
 
𝛼𝑗
1   0  ⋯    0

0   𝛼𝑗
2  ⋯    0

⋮   ⋮  ⋱     ⋮
0   0  ⋯    𝛼𝑗

𝑟
]
 
 
 
 

, 𝛽𝑗 =

[
 
 
 
 
𝑏𝑗
1   0  ⋯    0

0   𝑏𝑗
2  ⋯    0

⋮   ⋮  ⋱     ⋮
0   0  ⋯    𝑏𝑗

𝑟
]
 
 
 
 

, 𝜂 = [

𝜂1
𝜂2
⋮
𝜂𝑟

], 

𝛼𝑗
𝑖 =

[
 
 
 
 
𝛼0,𝑗
𝑖

𝛼1,𝑗
𝑖

⋮
𝛼𝑛−1,𝑗
𝑖

]
 
 
 
 

, 𝛽𝑗
𝑖 =

[
 
 
 
 
𝛽0,𝑗
𝑖

𝛽1,𝑗
𝑖

⋮
𝛽𝑛−1,𝑗
𝑖

]
 
 
 
 

, 𝜂𝑖 = [

𝜂𝑖,0
𝜂𝑖,1
⋮

𝜂𝑖,𝑛−1

] , 𝑖 = 1, 2,⋯ , 𝑟.     

 

Eq. (25) can be written as  

                       𝚭𝑪 = 𝜂   𝑜𝑟       [𝜡; 𝜂],                                                     (26)  
Where, 

𝚭 = [

𝚭0
𝚭1
⋮

𝚭𝑛−1

],        𝚭𝑗 = ∑[𝛼𝑗  �̂�(𝛼) + 𝛽𝑗  �̂�(𝛽)]

𝑛−1

𝑗=𝑜

(�̂�)𝑗   

By replacing all the rows of the matrix [𝚭; 𝜂] with the last rows of the matrix [𝚿; 𝑭], 
we get a new system    

                      �̌�𝑨 = �̌�   𝑜𝑟     [�̌�; �̌�]                                                     (27) 

Where, 

 

( )

( )

( )

( ) ( )

( )( ) ( )( ) ( )( ) ( ) ( )

( )

( )

Ψ Ψ Ψ ; ( )
1,1 1,2 1 01, 1

Ψ Ψ Ψ ; ( )
2,1 2,2 02, 1

Ψ Ψ Ψ ; ( )
,1 ,2 0, 1

Ψ Ψ Ψ ;
1,1 1,2 1 11, 1

Ψ Ψ Ψ ;
1 ,1 1 ,2 1 , 1

;
;

1,1 1,2 1,01, 1

;
2,1 2,2 1,12, 1

2

f x
r M

f x
r M

f x
r r r r M

f x
r r r r M

f x
r M nr M n r M n r M n r M

v v v
r M

v v
M

r

v
r





+

+

+

+ + + +

−− − − − − − +
=

+

+

Ψ F

( )

( )

( )

  ;
,1 ,2 1, 1   , 1

    ;
1,1 1,2 2,01, 1

;
,1 ,2 , 1, 1

v v v
n n nn r M

v v v
n n n r M

v v v
nr nr r nnr r M







−+

+ + + +

−+
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Solve the linear system of linear algebraic equations (27) to calculate the coefficients 

𝑐𝑖,𝑚,   𝑚 = 0, 1,⋯ ,𝑀, 𝑖 = 1, 2,⋯ , 𝑟 in Eq. (8); hence we obtained the approximate 

solution of the original problem (1) and (2). 

 

4. Accuracy of solutions and residual errors analysis  

We used the upper bound of the mean error to check the accuracy of the solutions, 

which were obtained using the presented method. Then if we substituted the 

approximate solution (8) and its derivatives in the system (1), we obtain  

    ℜ𝜆,𝑀(𝑥𝜏) = ∑ ∑ 𝑃𝑖,𝑗
𝑘 (𝑥𝜏)

𝑟
𝑗=1

𝑛
𝑘=𝑜  𝑦𝑗

(𝑘)(𝑥𝜏) − 𝑓𝑖(𝑥𝜏) ≅ 0, 𝑖 = 1,2,⋯ , 𝑟, 

𝜆 = 1,2,3, ∀ 𝑥 = 𝑥𝜏 ∈ [0, 1], 𝜏 = 0, 1, 2,⋯     (28)       
or  

                 ℜ𝜆,𝑀(𝑥𝜏) ≤ 10−𝜃𝜏 ,       ∀ 𝜃𝜏 ∈ ℤ
+.                                                                   (29) 

The truncation limits 𝑀 increases until the difference ℜ𝜆,𝑀(𝑥𝜏) < 10−𝜃, ∀ 𝑥𝜏 ∈ [0, 1], 

∀ 𝜃 ∈ ℤ+. If max10−𝜃𝜏 = 10−𝜃 and M is sufficiently large enough, then the error 

decreases, that is, ℜλ,M(xτ) → 0. On the other hand, we can estimate the solution's 

accuracy and error by using the residual function ℜλ,M(x) and its mean value 

|ℜλ,M(x)| on the interval [0, 1]. 

     Hence, the upper bound of the mean error ℜ̅k,M, is derived as follows [36, 37]: 

|∫ ℜ𝜆,𝑀(𝑥)
1

0

|  𝑑𝑥 ≤ ∫ |ℜ𝜆,𝑀(𝑥)|
1

0

 𝑑𝑥 

    ∵ |∫ ℜ𝜆,𝑀(𝑥)
1

0

| = |ℜ𝜆,𝑀(𝛾)|, 𝛾 ∈ [0, 1] 

             ∴ |∫ ℜ𝜆,𝑀(𝑥)
1

0

| = |ℜ𝜆,𝑀(𝛾)| ≤ ∫ |ℜ𝜆,𝑀(𝑥)|
1

0

 𝑑𝑥 

Therefore,  

|ℜ𝜆,𝑀(𝛾)| ≤ ∫ |ℜ𝜆,𝑀(𝑥)|
1

0

 𝑑𝑥 = ℜ̅𝜆,𝑀,     𝛾 ∈ [0, 1].                      (30)     

 

5. Numerical examples 

In this section, we presented three examples and compared our numerical results with 

the exact solutions and other works mentioned in the literature [8, 15] (see tables and 

figures) 

Example 1: Consider the system[26] 

               
𝑦1
′′(𝑥) + 𝑥 𝑦1(𝑥) + 𝑥 𝑦2(𝑥) = 2

                                                                       
𝑦2
′′(𝑥) + 2𝑥 𝑦2(𝑥) + 2𝑥 𝑦1(𝑥) = −2

} , 0 ≤ 𝑥 ≤ 1                           (31) 

With the conditions: 

                𝑦1(0) = 𝑦1(1) = 0,  𝑦2(0) = 𝑦2(1) = 0.                                            (32) 
The exact solutions of this system are  𝑦1(𝑥) = 𝑥2 − 𝑥 and  𝑦2(𝑥) = −𝑥2 + 𝑥. 

Here 𝑟 = 2 and 𝑛 = 2. 𝑓1(𝑥) = 2,  𝑓2(𝑥) = −2, 
𝑃1,1
0 (𝑥) = 𝑃1,2

0 (𝑥) = 𝑥, 𝑃2,1
0 (𝑥) = 𝑃2,2

0 (𝑥) = 2𝑥, 

𝑃1,1
1 (𝑥) = 𝑃1,2

1 (𝑥) =  𝑃2,1
1 (𝑥) = 𝑃2,2

1 (𝑥) = 0, 

𝑃1,2
2 (𝑥) =  𝑃2,1

2 (𝑥) = 0, 𝑃1,1
2 (𝑥) = 𝑃2,2

2 (𝑥) = 1. 

To apply the solution method with 𝑀 = 2. Then the collocation points are 𝑥0 =

0, 𝑥1 =
1

2
, 𝑥2 = 1. The matrix equations of (1) and (2) are 

           𝚿 𝑪 = [𝑷0𝑺 + 𝑷1𝑺�̂� + 𝑷2𝑺(�̂�)
2] 𝑪 = 𝑭                                            (33)  
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and 

             𝚭𝑪 = 𝜼,                                                                                                       (34) 
where  

𝑷0 = [

𝑷0(0) 𝟎 𝟎

𝟎 𝑷0 (
1

2
) 𝟎

𝟎 𝟎 𝑷0(1)

] , 𝑷1 = [

𝑷1(0) 𝟎 𝟎

𝟎 𝑷1 (
1

2
) 𝟎

𝟎 𝟎 𝑷1(1)

],  

𝑷2 = [

𝑷2(0) 𝟎 𝟎

𝟎 𝑷2 (
1

2
) 𝟎

𝟎 𝟎 𝑷2(1)

] , 𝑺 =

[
 
 
 
�̂�(0)

�̂� (
1

2
)

�̂�(1) ]
 
 
 

, �̂�(0) = [
𝑺(0) 𝟎
𝟎 𝑺(0)

],     

 �̂� (
1

2
) = [

𝑺 (
1

2
) 𝟎

𝟎 𝑺 (
1

2
)

] , �̂�(1) = [
𝑺(1) 𝟎
𝟎 𝑺(1)

] , �̂� = [
𝑸 𝟎
𝟎 𝑸

],  

Where 𝑸 = 𝒮−1𝑉𝒮, 𝑉 = [
0 1 0
0 0 2
0 0 0

] , 𝒮 = [
1 0 0
−2 2 0
1 −2 1

], and 

𝑪 = [
𝑪1
𝑪2
] , 𝑪1 = [

𝑐1,0
𝑐1,1
𝑐1,2

] , 𝑪2 = [

𝑐2,0
𝑐2,1
𝑐2,2

] , 𝑭 =

[
 
 
 
𝑓(0)

𝑓 (
1

2
)

𝑓(1) ]
 
 
 
, 𝒇(𝑥) = [

2
−2
],  

𝚭 = [
𝚭0
𝚭1
] ;  𝚭𝑗 = ∑ [𝛼𝑗  �̂�(0) + 𝛽𝑗  �̂�(1)]

1
𝑗=𝑜 (�̂�)𝑗  𝜂 = [

𝜂1
𝜂2
] ; 𝜂𝑖 = [

𝜂𝑖,0
𝜂𝑖,1

] , 𝑖 = 1,2. 

Therefore, we have 

[𝚿; 𝑭] =

[
 
 
 
 
 
2 −4 2
0 0 0
1 0 0

     
0 0 0
2 −4 2
0 0 0

    
; 2
; −2
; 2

0 0 1
0 0 0
0 0 0

        
0 0 0
1 0 0
0 0 1

    
; −2
; 2
; −2 ]

 
 
 
 
 

 

and  

[𝜡; 𝜂] = [

1 0 0
0 0 1
0 0 0

    
0 0 0
0 0 0
1 0 0

    
; 0
; 0
; 0

0 0 0    0 0 1    ; 0

]           

Replacing [𝜡; 𝜂] by the last four rows in [𝚿; 𝑭], we obtain a new augmented matrix   

 [�̌�; �̌�] =

[
 
 
 
 
 
2 −4 2
0 0 0
1 0 0

      
0 0 0
2 −4 2
0 0 0

    
; 2
; −2
; 0

0 0 1
0 0 0
0 0 0

        
0 0 0
1 0 0
0 0 1

    
; 0
; 0
; 0 ]

 
 
 
 
 

 

Solving this system gives Said-ball coefficients as the following matrix form 

 𝑪 = [𝑪1 𝑪2]
𝑇;   𝑪1 = [0 −1 2⁄ 0]𝑇 , 𝑪2 = [0 1 2⁄ 0]𝑇 

By substituting these values into Eq. (8) (or equivalent Eq. (9)), we obtain the 

approximate solutions: 

𝑦1(𝑥) = 𝑥
2 − 𝑥 and 𝑦2(𝑥) = −𝑥2 + 𝑥, 

Which are identical to the exact solutions. 
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Example 2: Consider the system [15] 

               

𝑦1
′(𝑥) −  𝑦3(𝑥) = −cos (𝑥)

𝑦2
′(𝑥) −  𝑦3(𝑥) = −𝑒

𝑥

𝑦3
′(𝑥) −  𝑦1(𝑥) +  𝑦2(𝑥) = 0

} , 0 ≤ 𝑥 ≤ 1                               (35) 

With the conditions: 

                        𝑦1(0) = 1,  𝑦2(0) = 0,  𝑦3(0) = 2.                                                   (36)        
The exact solutions of this system are   𝑦1(𝑥) = 𝑒𝑥,  𝑦2(𝑥) = sin (𝑥), and  𝑦3(𝑥) =
𝑒𝑥 + cos (𝑥). 
Here 𝑟 = 3, 𝑛 = 1. Assume 𝑀 = 6. The relation of the fundamental matrix is 

         [𝑷0𝑺 + 𝑷1𝑺�̂�] 𝑪 = 𝑭,                                                                             (37) 
where 

𝑷0(𝑥) = [
0 0 −1
0 0 −1
−1 1 0

] , 𝑷1(𝑥) = [
1 0 0
0 1 0
0 0 1

] , 𝒇(𝑥) = [
−cos (𝑥)

−𝑒𝑥

0

] 

 

After substitutions in the above fundamental matrix relation, we get the augmented 

matrix as (27). Solve this system gives the Said-ball coefficients matrix form 𝑪, by 

substituting these values into Eq. (9), we obtain the approximate solutions 

𝑦1,6(𝑥) = 0.00213413784932𝑥
6 + 0.00745756931915𝑥5                      

        +0.042113234152𝑥4 + 0.166570358068𝑥3                           
+0.500006352039𝑥2 +  𝑥 +  1 

𝑦2,6(𝑥) =  −0.000547923902642𝑥
6  + 0.00890196529882𝑥5              

−0.000266276054369  𝑥4 − 0.166613370962 𝑥3 
−0.00000329205964518𝑥2  +  𝑥  

𝑦3,6(𝑥) =  0.000876793066706𝑥
6  + 0.0072689742529𝑥5                             

+ 0.0838826332659  𝑥4 + 0.16654765199 𝑥3 
+0.00000785760278896𝑥2  +  𝑥 + 2. 

Table 1 compares the absolute errors of the presented method (PM)with other works 

[8, 15]. 

Table 2 indicates the upper bound of the mean error  ℜ̅𝜆,𝑀. 

Figure 1. indicates the absolute errors between the exact solutions 𝑦𝑖(𝑥) and 

approximate solutions 𝑦𝑖,𝑀 , 𝑖 = 1,2,3 at 𝑀 = 3, 5, 7  of this example.  

 

Table1: Comparison of the absolute errors (𝑒𝑖,𝑀) between the exact solution (𝑦𝑖) and 

approximate solution (𝑦𝑖,𝑀), 𝑖 = 1, 2, 3 when 𝑀 = 6 for Example 2 

 DTM [8] Laguerre [15] PM  

𝑥𝑖  𝑒1,6 𝑒1,6 𝑒1,6 

0 0 1.7319e-14 0 
0. 2 2.6046e-09 8.9691e-08 3.7032e-08 

0. 4 3.4209e-07 9.4300e-08 2.7334e-08 

0. 6 6.0004e-06 1.1665e-07 2.9758e-08 
0. 8 4.6173e-05 1.9907e-07 1.1140e-07 
1. 0 2.2627e-04 1.5209e-06 1.7703e-07 

𝑥𝑖  𝑒2,6 𝑒2,6 𝑒2,6 

0 0 5.8398e-14 0 
0. 2 2.5383e-09 2.6784e-08 1.8075e-08 
0. 4 3.2436e-07 1.9940e-09 2.9618e-08 
0. 6 5.5266e-06 2.9723e-08 3.1570e-09 
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0. 8 4.1242e-05 2.3020e-08 5.0603e-08 
1. 0 1.9568e-04 1.1272e-06 1.1751e-07 

𝑥𝑖  𝑒3,6 𝑒3,6 𝑒3,6 

0 0 2.7756e-17 0 
0. 2 2.6681e-09 1.1003e-07 4.6082e-08 
0. 4 3.5831e-07 1.0917e-07 3.6352e-08 
0. 6 6.4153e-06 1.2560e-07 3.8633e-08 
0. 8 5.0305e-05 2.1407e-07 1.4104e-07 
1. 0 2.5080e-04 2.0229e-06 2.2415e-07 

 

Table 2: The upper bound of the mean error ℜ̅𝜆,𝑀 for Example 2. 

𝑀 

ℜ̅𝜆,𝑀 

2 3 4 5 6 7 

ℜ̅1,M 8.0269E-01 6.9349E-03 4.9005E-04 2.5523E-05 1.0295E-06 3.6657E-08 

ℜ̅2,M 7.2381E-01 9.3232E-04 2.6357E-04 7.5972E-06 6.5977E-07 7.3179E-08 

ℜ̅3,M 9.6392E-02 1.2221E-02 9.6268E-05 9.6680E-06 1.3096E-06 5.9326E-08 

 

 

   

Fig.1: The absolute error (𝑒𝑖,𝑀) between the exact solution (𝑦𝑖) and the approximate 

solution (𝑦𝑖,𝑀), where 𝑖 = 1, 2, 3 and 𝑀 = 6, 7 for Example 2. 

 

Table 1 shows that the presented method gives better results than the differential 

transform method, Laplace transform method [8], and Laguerre collocation method 

[15].  

Figure 1 indicates that the presented method obtained highly accurate solutions when 
𝑀 increased.   

 

Example 3:  Consider the system [26] 

𝑦1
(4)(𝑥) − cos(𝑥) 𝑦2

(2)(𝑥) + 𝑥𝑦3
(1)(𝑥) −  𝑦1(𝑥) = 𝑥𝑒𝑥 + cos2(𝑥)                      

𝑦2
(4)(𝑥) + sin(𝑥) 𝑦1

(3)(𝑥) + cos(𝑥)  𝑦1(𝑥) − cos(𝑥)  𝑦3(𝑥) = cos (𝑥)(1 − 𝑒𝑥)

𝑒−𝑥𝑦3
(4)(𝑥) + 𝑦2

(2)(𝑥) − cos(𝑥) 𝑦1
(1)(𝑥) +  𝑦2(𝑥) = sin

2(𝑥)                                 

} , (38) 

with the conditions:  

 𝑦1(0) = 0,  𝑦2(0) = 1,  𝑦3(0) = 1, 𝑦1
(1)(0) = 1, 𝑦2

(1)(0) = 0,       

𝑦3
(1)(0) = 1, 𝑦1

(2)(0) = 0,        𝑦2
(2)(0) = −1,       𝑦3

(2)(0) = 1,                               

  𝑦1
(3)(0) = −1, 𝑦2

(3)(0) = 0, 𝑦3
(3)(0) = 1.                                                 (39) 

The exact solutions are   𝑦1(𝑥) = sin(𝑥),   𝑦2(𝑥) = cos(𝑥), and  𝑦3(𝑥) = 𝑒
𝑥. 
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Here 𝑟 = 3, 𝑛 = 4. Let 𝑀 = 5. We have the relation of the fundamental matrix is 

[𝑷0𝑺 + 𝑷1𝑺�̂� + 𝑷2𝑺(�̂�)
2 + 𝑷3𝑺(�̂�)

3 + 𝑷4𝑺(�̂�)
4] 𝑪 = 𝑭                            (40) 

Here,  

        𝑷0(𝑥) = [
−1 0 0

cos (𝑥) 0 −cos (𝑥)
0 1 0

] , 𝑷1(𝑥) = [
0 0 𝑥
0 0 0

−cos (𝑥) 0 0
],  

           𝑷2(𝑥) = [
0 −cos (𝑥) 0
0 0 0
0 1 0

],           𝑷3(𝑥) = [
0 0 0

sin (𝑥) 0 0
0 0 0

],                 

         𝑷4(𝑥) = [
1 0 0
0 1 0
0 0 𝑒−𝑥

] , 𝒇(𝑥) = [

𝑥𝑒𝑥 + cos2 (𝑥)

cos (𝑥)(1 − 𝑒𝑥)

sin2 (𝑥)

]                           

Applying the proposed method above, we finally obtained the approximate solutions 

as the following formulas 

  𝑦1,5 = 0.00832037291941𝑥
5  −  0.166666666667𝑥3   +  𝑥 

𝑦2,5 = − 0.000397548628658𝑥
5  +  0.0416666666667𝑥4 

 − 0.5𝑥2  +  1.0                                   
𝑦3,5 = 0.0087445195381𝑥

5  +  0.0416666666667𝑥4           

+ 0.166666666667𝑥3  +  0.5𝑥2  +  𝑥 +  1.0 . 
 

In Figure 2, we plotted the exact solution 𝑦𝑖(𝑥) and approximate solution 𝑦𝑖,𝑀 , 𝑖 =
1,2,3 at 𝑀 = 3, 4, 5.  

 

   

Fig.2: Comparison of the exact solution (𝑦𝑖) and the approximate solution (𝑦𝑖,𝑀), 

where 𝑖 = 1, 2, 3 and 𝑀 = 3, 4, 5 for Example 3. 

 

Table3: Comparison of the absolute errors (𝑒𝑖,𝑀) between the exact solution (𝑦𝑖) and 

approximate solution (𝑦𝑖,𝑀), 𝑖 = 1, 2, 3 when 𝑀 = 3, 4, 5 for Example 3 

𝑥𝑖  𝑒1,3 𝑒2,3 𝑒3,3 

0 0 0 0 
0. 2 2.6641e-06 6.6578e-05 6.9425e-05 

0. 4 8.5009e-05 1.0610e-03 1.1580e-03 

0. 6 6.4247e-04 5.3356e-03 6.1188e-03 
0. 8 2.6894e-03 1.6707e-02 2.0208e-02 
1. 0 8.1377e-03 4.0302e-02 5.1615e-02 

𝑥𝑖  𝑒1,4 𝑒2,4 𝑒3,4 

0 0 0 0 
0. 2 2.6641e-06 8.8825e-08 2.7582e-06 
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0. 4 8.5009e-05 5.6727e-06 9.1364e-05 
0. 6 6.4247e-04 6.4385e-05 7.1880e-04 
0. 8 2.6894e-03 3.5996e-04 3.1409e-03 
1. 0 8.1377e-03 1.3644e-03 9.9485e-03 

𝑥𝑖  𝑒1,5 𝑒2,5 𝑒3,5 

0 0 0 0 
0. 2 1.6091e-09 3.8390e-08 4.0086e-08 

0. 4 1.9164e-07 1.6018e-06 1.8204e-06 

0. 6 4.5188e-06 3.3472e-05 3.8827e-05 

0. 8 3.6996e-05 2.2969e-04 2.7552e-04 

1. 0 1.8272e-04 9.6681e-04 1.2040e-03 

 

It is clear from Table 1 that the more increase of  𝑀, the fewer errors and the more 

accuracy of the presented method.  

Figure 2 illustrates that the presented method gave highly accurate solutions when 𝑀 

increases.   

 

6. Conclusion  

In this article, Said-Ball polynomials with the collocation method are used to solve the 

systems of high-order linear ordinary differential equations. This method reduces the 

given problem of the linear ordinary differential equations system with suitable 

conditions to the linear algebraic equations system. Solutions of the resulting system 

gave the exact solution and sometimes good approximate solutions compared with the 

other works, as shown in tables and figures. This means the presented method is 

effective and accurate.   
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