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Abstract

A familiar difficulty to any new student on campus is making one’s way from classroom A to

classroom B. Facilities with different wings, multiple floors, and irregular floorplans can magnify

this challenge, while students with vision impairments are impacted even more by the challenge of

identifying the destination.

This thesis explored different methods of discovering Americans with Disabilities Act (ADA)-

compliant room identifying placards (“plaques”) and identifying the text on the sign. The plaque

detection was accomplished with both standard image manipulation techniques and a Histogram

of Oriented Gradients (HOG) (Dalal & Triggs, 2005) object detector. The text reading utilized

both standard image manipulation tools as well as an implementation of the Efficient and Accurate

Scene Text detector (EAST) (Zhou et al., 2017) to isolate text, while Tesseract (Smith, 2007)

was used to interpret the text. Different methods of dataset generation were utilized to train the

detectors, including manual gathering, internet search scraping, and dataset generation.

Results of testing these different methods on a dataset of image frames gathered from film-

ing the Computer Science/Information Technology (CSIT) hallway of Kutztown University’s Old

Main building proved the combination of HOG and EAST to be an effective method for iden-

tifying and transcribing room identification plaques. In the case of consistent visual design of

rooms signs, the generated dataset proved to be nearly as effective as training the detector on real

annotated images.
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1 Project Overview

The problem of identifying and transcribing a regulated-but-variable identification agent is very

similar to Automated License Plate Recognition, or ALPR. Du et al. (2012) described some of the

issues facing ALPR as

... plates usually contain different colors, are written in different languages, and use

different fonts; some plates may have a single color background and others have back-

ground images. The license plates can be partially occluded by dirt, lighting, and

towing accessories on the car.

These issues echo some of the challenges involved in identifying rooms signs; while they must

meet certain height and contrast requirements (U.S. DOJ, 2010, ss 703.4) they may generally vary

in style and shape, with different color ways, in variable lighting, and with the possibility of wall-

mounted communication elements interfering with the plaque.

9



2 Methodology

2.1 Attitude of approach

The principal driving thought behind this project holds that computer science and scientific thought

can be used to solve real-world problems for real-world people. The open-source philosophy has

yielded an incredibly rich variety of software and documentation. Exploring the idea that open-

source projects and tutorials can be leveraged by the motivated computer scientist to make a real-

world impact, this project explores a framework built around these freely-available code bases,

updating the code where necessary for development and comprehension.

2.2 Image libraries

The main library used for this project is OpenCV (Bradski & Kaehler, 2000), which is an open-

source library used for image and video manipulation. There are many tutorials and guides for

the use of this library in Python, while the official documentation (at the time of development)

is geared mostly to the Java and C++ implementation. The creation and use of the images is

straightforward, based around arrays of pixel information. In order to “simplify” the use of this

library for image creation, I created a loose wrapper around the class, removing the head space

required to save, open, show, copy, etc., the images. I later expanded this abstraction for activities

like drawing lines and rectangles, and simplifying thresholding, blurring, and color management.

The idea behind this activity was to allow for easier and faster development, as well as an exercise

in pythonic object-oriented programming. I found that after returning to this project, I had to both

recall how to use my abstraction, as well as the code it was abstracting; I discarded it in favor of

the normal OpenCV methods for the later development in image identification and classification.

SKImage (Van der Walt et al., 2014) is another Image processing library which is quite power-

ful, but here mostly used for normalizing grayscale images.
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3 Data Collection and Synthesis

3.1 Problem Definition

In order to construct a performant machine learning pipeline, one (with few exceptions) must be

able to feed in some quality training and testing data. In the domain of computer vision and object

detection, visual data can be retrieved from a variety of sources, such as internet searches, gener-

ating the images via photography, generating the images programmatically, or some combination

of the three. What follows is a journey into these different methods, necessitated by restraints of

time and resources.

3.2 Literature Review

“Machine learning algorithms learn from data. It is critical that you feed them the right data for the

problem you want to solve.” (Brownlee, 2013). Mitsa (2019) points out that the performance of

traditional machine learning algorithms will plateau after a certain amount of data is reached, but

deep learning methods, which use multiple layers of processing to extract a finer-grained feature

set, continue to see performance increases as the dataset grows.

Generally, the quality factors of a data set are based on its size, its level of normalization, and

the presence and accuracy of labels. The needs of different machine learning methods vary, and the

requirements that fall upon the data set change accordingly. In evaluating the neural net approach

for plaque recognition, the ideal dataset was a large dataset (over 1,000 images in both training and

testing) that was labeled (‘has a plaque’ or ‘does not have a plaque’) and normalized (all images

similar colorspace and same size). It should also show the plaques from a range of different angles

and scales to provide a more complete demonstration of the visual impact of the Americans with

Disabilities Act (ADA) plaque. In this case, no existing collection of high-quality, labeled data

existed for the specific domain of ADA compliant plaques mounted in a real environment.

There are several methods of acquiring a data set for training and evaluating a machine learning

model. The most straightforward method is to find an existing data set. Sites like Google OpenIm-
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ages (Kuznetsova et al., 2020) and Kaggle host various datasets for machine learning challenges

and well-known, very large datasets like NOAA (“NOAA (National Oceanic and Atmospheric Ad-

ministration Data”, n.d.) weather data and Famous People Faces (“Famous People Faces Dataset”,

n.d.), a collection of images of human faces. The practical benefit here is that data is often already

normalized and labeled, requiring minimal processing to train performant models. In some cases

the dataset may not be large enough to properly train a model, which is where data augmentation

can be useful. In the case of an image-based dataset, the researcher may employ several image ma-

nipulation techniques to ‘stretch’ a somewhat limited dataset. Images can be rotated, cropped (like

zooming in), sheared and stretched, flipped (vertically or horizontally), color spaces changed, and

noise added to generate a stronger feature map in the resulting model. These traditional “affine”

transformations are “... fast, reproducible, and reliable.” (Mikołajczyk & Grochowski, 2018) This

can grow a dataset to behave as a much richer dataset, as well as saving the extra labeling effort.

Where a dataset is not already available, it must be created. The simplest way to do this for

a dataset of images is to use a film or still camera to collect images manually. This gives the

researcher a higher level of control over the contents of the dataset, but also may lead to bias, as

“... predictions are only as reliable as the human collecting and analyzing the data ...” (Mendis,

2019). This method is simple, but also time consuming and impractical depending on the subject

matter. Another source for images is the popular search engine, Google Image Search (“Google

Image Search”, n.d.). Google image search returns images based on specified search criteria, and

can be used to generate a dataset of images. Scraping these image sets from the internet provides

a raw data set that must be filtered, normalized, and labeled.

After working with both real images and googled images, I found that the imagery itself was

fairly detail-sparse: essentially, looking for a high-contrast simple signage (a solid shape) next to

a door (a bigger solid shape). This makes sense as the ADA signs are meant to be easily readable

by those with limited vision (“U.S. Department of Justice, 2010 ADA Standards for Accessible

Design”, 2010). After working with images gathered photographically and images gathered from

the internet, and utilizing data augmentation techniques, I generated a dataset using some of the

12



same techniques employed in data augmentation.

3.3 Method

3.3.1 Datasets gathered from the internet

Google Image search was used to trawl for images associated with things one could expect to find

in an institutional hallway. I used search keywords such as “bulletin”, “directory”, and variations

on “ADA plaque” and “classroom number”, as well as “hallways”; a sample of results is provided

in Figure 1. Much of the code employed here comes from sample code provided in Adrian Rose-

brock’s blog post (How to create a deep learning dataset (Rosebrook, 2017)) about image scraping

and dataset retrieval from Google Images. A list of the URLs from each of these image searches

was downloaded and written to a file using a bit of JavaScript in the browser’s developer console.

The download_images_from_urls.py script, which uses the python requests module to hit the url

and save the resulting response value, consumed these files. Separately, the program attempts to

open the result with the OpenCV module. Those files that are empty, or fail to open, are deleted. I

manually picked through the resulting multitude of images to remove any egregious or ridiculous

inclusions, before using the clean_and_normalize_images.py script to normalize the images by

adding a reflective border to “square-off” the image and resize it. The requirement for all images

in the dataset to be of the same size has to do with the fully-connected convolutional neural net

which was being used to classify these images. These networks have one or more hidden layers

which abstracts the input and changes its size, and in the implementation used the size must be

consistent.

The quality of these images, as well as the actual content, varied greatly. The bulk of the “pos-

itive” plaque labeled results were promotional materials from wholesale companies that supply

custom ADA-compliant signage to institutions. These close-up images are descriptive of the vari-

ety of shapes, fonts, and colors which are generally used for such signage, but don’t do a great job

of showing the context wherein these signs might be found.

The results for “negative” labeled data were incredibly diverse. Bulletins seemed to be fairly
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evenly split between real images of elementary and high-school decorated bulletin boards, and

promotional material for cork board sales companies. The results for “directories” included many

images of hallways, directory listings, and institutional building interiors, but also a collection of

seemingly random images.

Figure 1: Sample of “hallway”, “bulletin”, “directory”, and “plaque” images scraped from the
internet

3.3.2 Dataset of images from the University Hallway

Attendance at, and full access to, the campus of a modern institution of higher learning provides an

excellent opportunity to gather a dataset for this application. I had taken some initial photographs
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and video of Kutztown University’s Old Main building before development had begun, but the

quality and size of this dataset was not sufficient as the requirements became better understood.

I also collected some images from buildings on the campus of U.C. Berkeley, however ADA-

compliant room identification placards were not present in the buildings which I had access to.

Ultimately video footage of the Computer Science hallway was collected by mounting a video

camera on a cart which was pushed slowly up and down the hallway in order to prevent motion

blur. I processed this footage into individual frames, which became the real-world image dataset

for this project. This data was labeled and split into test and train subsets for use with the HOG

detector. Plaques were cropped and labeled for use in evaluating the performance of the different

text region detection methods.

3.3.3 Dataset of images with random noise

In order to satisfy the need for a dataset representative of some real-world use situations which

would be encountered by the image detection, I expanded upon the tools used to manipulate a small

dataset in order to create a dataset, reasoning that the visually simple subject matter, combined with

the restricted points of view for the real-world use of the system, made this an appropriate candidate

for creating a fully-synthetic dataset. The idea was that a neural network trained on synthetic

data would perform equally well (or nearly so) to one trained on a real, photographed dataset.

The appearance and placement of room-identifying plaques are regulated and well documented,

allowing for a faithful re-creation of the small dataset collected from Kutztown University.

The file makeTrainingData.py uses the DataGenerator.ImageGenerator class to create both pos-

itive (has a plaque) and negative (does not have a plaque) images. The results are labeled and saved

locally. The DataGenerator.ImageGenerator class automates the process of single image creation.

It takes an IMAGECLASS argument, which specifies the type of the image being created. An

instance of the ImageGenerator class is created with a seed, which is then used to set a pseudo-

random number generator, which is used in turn to add noise, shapes, lines, and plaque placement

in the final image. The initial seed in ImageGenerator generates a pseudo random seed used by the
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functions in the GeneratedImage class, generating unique objects for the dataset.

Figure 2: Images generated with random elements and noise in the background

The create_canvas returns the “blank” image for further processing. Both the make_false_image

and make_true_image share much of the same functionality, except for the placement of a plaque

in the image for “true” images. On top of the blank image generated by create_image, the add_stuff

function populates the image with a specified number of lines and rectangles using the Generated-

Image methods. This calculates two random points and draws a line of random color and thickness.

This is meant to replicate (in a general way) the kinds of items found in a scholastic hallway set-
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ting, such as pipes, conduit, bulletin boards, flyers, posters, passers-by, and other kinds of wall

decoration.

The results of this exercise, as shown in Figure 2, seemed promising from an aesthetic per-

spective, but also were quite abstract compared to what one would find in real-world images of

hallways. After evaluating the performance of an object detector trained on this data, a more

specifically-designed dataset was generated to give a better description of the plaques actually

encountered in the testing images.
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Figure 3: More purposefully-designed plaques

Here, the shape of the plaque was adjusted to reflect the rectangular nature of the room iden-

tifying plaques (comparison of these different plaques in Figure 4), with the addition of the white

window used to identify the office occupants.
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Figure 4: Comparison of the generic plaque, real plaque, and purpose-designed plaque

Additional shapes are added in draw_special_room_sign(), which first creates a rectangle with

a similar height/width ratio to the university room plaques, adds a white rectangle, and returns

pixel coordinates for drawing the room number in a more accurate position. Blur, rotation, and

skew are applied to the generated images (as in Figure 3) and saved.

Dataset of constructed hallways After evaluating the appearance and performance of the randomly-

generated images, I took the image generation concept a step further. Instead of only creating a

room-identification plaque, why not create the hallway? The ADA compliance guidelines for

plaque placement in a hallway are well-documented and the structure of a scholastic hallway is

generally very simple.

The hallway construction is achieved in the hall_driver.py file, which uses the ImageGenerator

class’ make_hallway method.
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Figure 5: Image of a constructed “hallway” complete with doorway, plaque, and posters on the
wall

This hallway construction uses the ADA.py module to specify the proper font size and place-

ment for the given image size. Rectangles representing the papers, notices, and billboards com-

monly seen on scholastic hallways are generated as 8 * 11 for papers, and a random value for

height and width between 12 and 36 inches to provide some realistic boundaries on possible back-

ground noise. These are peppered about in a “visibility zone”, between what would be 80 and 36

inches from the ceiling. This achieves an average center height of what would be 57 inches, the

recommended hanging height for visual artifacts (Reddigari & Vila, 2020).

A plaque is then placed at the ADA-compliant height of between 48 and 60 inches from the

ground (U.S. DOJ, 2010, ss 703.4.1) at a random spot in the image. Depending on the proximity

of this plaque element to the edge of the canvas, the door is placed either on the left or the right of

the plaque, wherever there is enough space to contain the whole shape.

After these elements are complete, a light misting of random noise (salt and pepper) is added

over everything to complete the illusion, as in Figure 5.

These files are saved with a specific notation which allows for further processing to “know”
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where the plaque is and apply the correct label to images. It is in the format

<top left X>_<top left Y>.<bottom right X>_<bottom right Y>_<nth image>.png

These “hallway” images are then processed in snapshot.py, where labeled snapshots are cre-

ated. The location of the plaque is interpreted from the filename, and for both positive and negative

results, a set of valid coordinates are calculated.

Figure 6: The realm of possibilities, for 200 images of 500 pixel dimension

For positive images (those that will contain a plaque), the smaller “x” and “y” coordinates

(what will be the top left of the image) are chosen at random from a range of numbers between

right boundary - window size and the left boundary, which will make sure the “x” coordinate will

always include the entire plaque. The “y” is done in the same way, where the window size is

subtracted from the greater number (in this case the bottom) providing the lower boundary for our

valid coordinates. This is illustrated by green rectangles in Figure 6.
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Figure 7: Possible crops from this image which will not include a plaque

Negative images (those that should not contain a plaque) take a different approach. In order to

make sure the plaque is not included, a “danger zone” is specified between the x coordinates of the

plaque. The left_of_plaque and right_of_plaque are the valid ranges of starting x coordinates for

non-plaque snapshots. These also take into consideration the window size, preventing tiny slivers

of image from being used in model training or evaluation. These sets are combined, creating the

empty “danger zone” visualized in Figure 7. While there is an unused realm above and below the

plaque, these areas are not much different from the rest of the generated hallway, and this method

simplifies the implementation.

Plaques in close proximity to the edges of the canvas must also be considered, as in Figures 8

and 9. The possibilities are limited but may still provide additional volume to the dataset.
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Figure 8: 200 limited possibilities for a plaque so near the left edge of the image

Figure 9: 200 of the possible snapshots from this plaque placement
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Figure 10: Left: snapshot of hallway with no plaque in it, Right: actual no-plaque image

Figure 11: Left: snapshot of hallway with plaque in it, Right: actual plaque-having image

With the above methods, a novel and fully-labeled dataset can be constructed programmatically,

producing, in this case, results which bear a significant similarity to images gathered through

photography as seen in Figures 10 and 11.

3.4 Results

For a discussion of the performance of these different datasets in training models, please refer to

the relevant method in the Feature Extraction and Text Extraction sections below.
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3.5 Data Collection Conclusion

For the specific purpose of identifying plaques in the CSIT hallway of Kutztown University’s Old

Main facility, capturing images via pictures or frames of video was the simplest. Generating data,

given the simplicity of the subject (shape on wall) proved to be effective, and opens the door

for generating a dataset specific to the needs of the building. Internet searches for this particular

subject were inconsistent and did not provide much value.
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4 Feature Extraction

4.1 Problem Definition

Discovering whether an image or video frame contains a plaque is valuable, but less valuable in

this use case than discovering where, precisely, that plaque is situated. The more accurate the

information on where the plaque is in the image, the better it can be associated with a specific pose

information for use in the actual mapping. A variety of methods were experimented with in order

to reliably discover the location of a plaque in an image. The first is a manual calibration, done

before a dataset of images is run through the detection pipeline. The second uses a detector based

on the Histogram of Oriented Gradients, trained on annotated images.

4.2 Literature Review

HOG, or Histogram of Oriented Gradients, is a popular and state-of-the art method for accomplish-

ing object detection efficiently. From the paper that introduced this method for detecting humans

with a sliding window framework Dalal and Triggs (2005), “The basic idea is that local object

appearance and shape can often be characterized . . . by the distribution of local intensity gradients

or edge directions”. This is accomplished by splitting an image up into a grid. Each section of the

grid is normalized to reduce the impact of variable luminosity in the image, and the gradient vector

of this area is calculated. This gradient describes the direction of maximal slope (where the values

change the most, like a division between light and dark areas) as well as the magnitude of that

change. This results in a set of descriptors based on the content of the training images, visualized

in Figure 12.
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Figure 12: Visualization of the HOG descriptor trained on images of KU Old Main hallway with
an example and the overlay. The visualization shows how the edges of the plaque and textual
elements are represented.

The implementation used in this project is provided in the dlib machine learning toolbox for

python. This implementation, described by King (2015), uses “max-Margin Object Detection” to

find the parameters of the object detector and make full use of the data in the image, such as win-

dows which overlap with a target window. It is also very easy to use in the simple_object_detector

class.

4.3 Method

The first method relies on active human intervention to pick a representative plaque image and then

choose the plaque from the various options presented. It utilizes the cv2.findContours() function

to find contours in the image, and draw polygons around these possible shapes, presenting a menu

to choose the correct polygon. OpenCV Contours can be thought of as “a curve joining all the

continuous points (along the boundary), having [the] same color or intensity” (Bradski & Kaehler,

2000). Generally the image is converted to grayscale, and a threshold applied to this grayscale

image to accentuate the edges of the different shapes in the image as in Figure 13.

After the contours are found, a bounding rectangle is drawn around the contour’s area, labeled,

and presented along with a radio button, shown in Figure 14.

The actual plaque finding method uses the catchWeirdShape() function to disregard any poly-
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Figure 13: Stages of finding contours

Figure 14: Only polygons which fit a reasonable shape and size are choosable
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Figure 15: Results of creating HOG from images scraped from the internet. Note the variety of
shapes and orientations of the images.

gons which have a width to height ratio not between ½ and 2. These numbers were found through

trial-and-error, boundaries which would restrict much of the noisy contours found in an image

while still letting the plaque contours through.

The output of this function returns an area and ratio to look for when trying to locate plaques

in the rest of the images. If all the images are taken from an identical distance from the wall, and

all from the same building, this method can work effectively, as all the plaques will be a similar

shape, and a similar photographed size. This expectation is not very realistic, however, so the

plaque detection pipeline relying on area and height/width ratio takes an additional parameter of

cutoff_ratio, which allows a variance between the area discovered with the polygon menu and the

area of a potential plaque.

The source code for the annotation of images, training and testing of the detector come from an

excellent tutorial by Talari (2017) for identifying clocks. It utilizes the dlib simple_object_detector

class described above to generate the object detector.

Training images are first annotated through an interactive script which allows the user to draw

a rectangle around the target object, and saves this metadata to be used in the training of the de-

tector. Separate detectors were trained on internet scraped images, generated images with generic

plaques, generated images with more specific plaques, and images collected from life. The de-

tectors were then tested against the real-world collected images to measure their effectiveness.
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Figure 16: HOG created with a specifically-generated dataset

Different detectors and a sample of their training data are shown in Figures 15 and 16.

4.4 Results

The manual “area heuristic” detector achieved a Precision of 57.3%, Recall of 57.2%, and F-Score

of 57.2%, a little better than random guessing.

Area Found plaque Area Found nothing

No plaque FP = 180 TN = 648
Whole plaque TP = 226 FN = 141
Partial plaque TP = 16 FN = 40

Table 1: Results for area-based heuristic

The HOG -based object detector performed very well when trained on a subset of real-world

images. There are 1251 total images, of which 828 have no plaque, 367 have a whole plaque, and

56 have some fragment of a plaque.

This detector achieved a Precision of 100%, Recall of 94.3%, F-Score of 97.1%.

A detector was also trained on 25 of the randomly generated plaque images.

The generated images were not an exact match for the real-world hallway data set, but still

managed to capture a Precision of 84.3%, Recall of 48.8%, and F-Score of 61.8%. This detector
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HOG Found plaque HOG found extra HOG Found nothing

No plaque FP = 5 FP = 0 TN = 824
Whole plaque TP = 367 FP = 0 FN = 0
Partial plaque TP = 33 FP = 1 FN = 22

Table 2: Results of the hog descriptor run on the real-world dataset

HOG Found plaque HOG found extra HOG Found nothing

No plaque FP = 32 FP = 3 TN = 796
Whole plaque TP = 201 FP = 2 FN = 164
Partial plaque TP = 4 FP = 1 FN = 51

Table 3: Results for HOG detector trained on fabricated data not imitating actual plaque

seems to be better at identifying the numerical part of the plaques, owing to the training set. It also

had some issue with lighting artifacts being identified, as well as a paper towel dispenser.

The results of the HOG trained on a dataset of more specific generated plaque shapes performed

even better: Precision of 100%, Recall of 81.8%, F-Score of 90%. It caught all of the well-lit

normal room-identifying plaques (Figure 17), but missed all but one of the Restroom signs, as well

as a few of the more dimly-lit plaques (Figure 18).

Figure 17: Misidentified towel dispenser, and a preference for the squarish bottom half of plaques
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Figure 18: Captured plaques, and missed bathroom sign

HOG Found plaque HOG found extra HOG Found nothing

No plaque FP = 0 FP = 0 TN = 828
Whole plaque TP = 307 FP = 0 FN = 60
Partial plaque TP = 39 FP = 0 FN = 17

Table 4: Results of HOG trained on purpose-built dataset

4.5 Feature Extraction Conclusion

4.5.1 Manual Heuristic

The exploration of an area heuristic was mainly an effort to show why other tools and methods

exist for object detection, even with something so simple as a rectangle with words on it. The test

results on the KU dataset were slightly better than random guessing, but not by much. In a real

world application, where this system is running on video footage, it still may be good enough to

discover each plaque at least once, but that relies heavily on the camera operator capturing at least

one frame of each plaque at the correct distance to get the plaque at the specified area.

The limitations of the manual “area heuristic” method are straightforward. Even in a best-case

scenario, where all images are taken from an exact distance from the wall, all in the same building

with consistently shaped and sized plaques, it would still generate many false positives, as in Figure

19.
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Figure 19: False positives are hard to handle when a detector only considers area

Any other contours found in the image, which fall within the allowable cutoff_ratio, will be

labeled as plaques. This includes posters, documents, or even doorknobs.

The limitations of this method makes sense, as the range of eligible areas required to catch the

bulk of the plaques also will capture more “wall noise”, such as the billboards, papers, and artifacts

created by the thresholding process used to find the contours shown in Figure 20.

Figure 20: Images from a poster, as well as a collection of documents on a billboard are marked as
plaques, and the improvised plaque is not found, while a printout is incorrectly labeled as a plaque

4.5.2 Histogram of Oriented Gradients

The plaque finding, using the HOG method, was fairly accurate for the dataset gathered from

Kutztown University. This may be due to the fact that all signs follow a standard visual identity,

making it simpler to train a detector on a small and/or fabricated dataset. If there were multiple
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types of signs, with different shapes and layouts, perhaps a different detector for each plaque type

could be trained and all detectors run on the dataset, which would have given better results for

the differently laid-out “restroom” signs. Future work could be done on a larger, more varied

dataset (perhaps gathered by computer science students across the Pennsylvania Higher Education

network) with variations on detectors trained on each type of room-identifying plaque, and other

detectors trained on a mix of all images. In a real-world scenario, this tool (when properly trained)

could do a thorough job of detecting plaques and room signs.

Since we would rather find a false positive than miss a plaque, this detector would work well

for buildings with rectangular plaques with a window above the room number.

There were some instances where it missed a partial plaque, or identified a false positive (Figure

21), but it performed perfectly on images with a complete plaque, and also in low-light conditions

as in Figure 22.

Figure 21: Hallucinated plaque, misidentified paper towel dispenser, missed partial plaque
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Figure 22: Successful identification of partial plaque, and success in a darkened hallway

For the purpose-built dataset, examining an overlay of the HOG visualization and some sam-

ples, one can see that the descriptors are very specifically fitted to the shape and text conventions

of the training data, as the overlays in Figure 23 demonstrate. As the Women’s restroom sign is

of a fairly different layout, the HOG trained on the synthetic data did not recognize this as an

interesting object.

Figure 23: Training sample, room identifying plaque, and the mostly-missed bathroom identifier
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5 Text Extraction

5.1 Problem Definition

Public signage, documents, advertisements, and generally any other form of alphanumeric com-

munication is designed to be read by humans. Training a machine system to find and comprehend

that text is different from teaching a person to read. Pixels comprising characters written on a

plaque have no specific importance compared to all the other pixels in an image. Variations in

lighting and camera angle can further frustrate attempts to extract text from an image. Tesseract is

a widely used and open-source text extraction library which sits behind a textual region identifica-

tion system. Assuming a high-fidelity plaque recognition system, I explored two separate methods

in order to accurately “discover” the text block in the image. First, applying image transforma-

tions and thresholding to select a “box” around the text area. Second, using an implementation

of the EAST, or Efficient and Accurate Scene Text detector described by Zhou et al. (2017) to

discover the test region. The source data for this exercise was gathered by creating tightly-bound

screenshots of the plaques from the real-world images collected from Kutztown University’s CSIT

(Computer Science and Information Technology) hallway (sample shown in Figure 26).

5.2 Literature Review

Google’s Tesseract engine for Optical Character Recognition (OCR), open-source since 2005, is

simple to use and there is a profusion of helpful documentation and tutorials available both for the

command-line, as well as language-specific ports such as PyTesseract for Python. Described by

Smith (2007), it generally works by ingesting a binary image, storing outlines as “blobs”, sorting

these “blobs” into text lines, then lines into words, and finally detecting the words with an adaptive

classifier.
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Figure 24: Illustration of convolutional neural network (Saha, 2018)

The EAST detector (Zhou et al., 2017), is a pipeline designed to quickly find regions of text in

an image. It uses a convolutional network to extract features from the image. A convolutional neu-

ral network (CNN or ConvNet) is a machine learning algorithm which is able to assign learnable

weights to different features in an image, illustrated in Figure 24. It achieves this in part by passing

convolutional kernels over the source image, performing a matrix multiplication, and passing that

output to the next (larger or smaller) layer, with the goal of finding edges and other features. The

following “pooling” layer is used to decrease the size of the data (and the computational load)

while also reducing noise (Saha, 2018). In the EAST implementation, the resulting feature map is

fed over to a merging pipeline at each convolutional step of feature extraction, which allows for

both large regions of text (like a billboard, or closeup) to be represented equally with small regions

of text (fine print, or far away text). The resulting per-pixel score map and geometry information

about the location of the text are thresholded, and those results are fed to a non-maxima suppres-

sion (NMS) filter. For each possible discovered result area, all other possible result areas which

overlap it are compared; the area with the highest confidence score is kept, and the others are

discarded, decreasing computational load while preserving accuracy (Sambasivarao, 2019), The

implementation from the paper cited above used a special algorithm which relied on the concept
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of locality (pixels next to one another should be highly correlated) and merges to decrease runtime

complexity.

5.3 Method

5.3.1 Preprocessing

While the actual use of the Tesseract engine is even simpler than its workings, it “... assumes

that its input is a binary image with optional polygonal text regions defined” (Smith, 2007). This

requires some preprocessing to isolate the text region and apply thresholding to provide optimal

input for the Tesseract engine, and the methods used to achieve this are covered in more detail

below. Regardless of the method used to find the text region, it still will be passed to the Tesseract

engine, and so the image will need to be in an optimal state. In order to understand the effects of

different thresholding values and sizes on the performance of the Tesseract OCR engine, a battery

of tests were performed, iterating on the size of the image, the timing of the resize, thresholding

values, and thresholding methods.

Images start out as BGR (blue-green-red, OpenCV’s default color mode, which differs from

the standard RGB layout in other tools) and need to be converted to grayscale before the thresh-

olding necessary for Tesseract can be performed. This is done using OpenCV’s cvtColor to change

the colorspace to grayscale. An additional step which helps to differentiate the foreground (light

values, the text in this case) from the background is using skimage’s exposure module to rescale

the intensity of the grayscale image. This method stretches the highest and lowest values to fit the

specified range, in this case 0 to 255 (full black to full white). So an image where the foreground

is not very light will have a better contrast after this function, and in the case of multiple images

with differing illumination, they will all have a more similar illumination, making it simpler to

threshold the images into black and white.
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Figure 25: Plain image, converted to grayscale, and with the rescale_instensity. The results below
are both thresholded with the same value range (125), but the image in the middle is the result of
the rescaled intensity. The bottom image on the right is the result of using Otsu’s thresholding on
the grayscale image. Note the similarity to the rescaled image.

Another method to simplify binarization of images with different lighting is to use an adaptive

threshold. OpenCV provides an implementation of Otsu’s thresholding. In “bimodal” images

(the value histogram of the image will have two distinct peaks), this mechanism works (in simple

words) by finding a threshold value which will sit in between those two peaks (OpenCV, Image

Thresholding). Since the source images here are all bimodal (big areas of single intensity values at

both the light and dark ends of the spectrum), it works very well in getting properly-separated text.

The results of using Otsu’s binarization are very comparable to rescaling the intensity before

thresholding as shown in Figure 25. Since ultimately the image must be inverted (text should be

black) for the Tesseract engine, and since the exposure rescaling/thresholding combination gave
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overall better separation of the characters on the plaques, this method was preferred for text pro-

cessing.

Figure 26: A sampling of the screenshots used to test the character recognition pipelines

Aside from testing different methods of text discovery, the PyTesseract engine was tested on

the optimal text boxes with different parameters in order to find the best use for this scenario.
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5.3.2 Simple Method

The simple method for finding text areas makes use of the OpenCV library for image manipulation,

namely “dilation” and “opening”. Dilation is useful for expanding “foreground” (white) parts of

the image. A kernel size is supplied as one of the parameters, which is convolved over the image.

At each point of the sliding window, if any of the pixels in the window of the kernel is a lighter

value, that value is applied over the whole kernel area. This results in irregular foreground objects

(in this case, the text on the plaque) being expanded into a larger, contiguous blob, as shown in

Figure 27.

Figure 27: Progression of dilation. Each image represents another iteration of dilation applied over
the image.

This allows us to treat the possible test areas as simply another shape in the image.

In this pipeline, the source image is converted to grayscale, the gray image is dilated, and then

the dilated image is submitted to thresholding, where contours are found, shown as a green shape

in Figure 28.
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Figure 28: Image, grayscale, dilated, thresholded, contour, bounding rectangle progression

The bounding rectangle of the contour is then cropped (pink rectangle in Figure 28), and fed to

the Tesseract text recognition engine.

5.3.3 EAST Region Of Interest

The implementation used in this project comes from Rosebrook (2017) OpenCV Object Detection

tutorial and was implemented based on Zhou et al. (2017). The non-maxima suppression in this

implementation is also more straightforward, only calculating and returning which boxes do not

overlap. The bounding boxes which are returned by this implementation are used in the project;

each box region is cropped, thresholded and inverted, and fed to the Tesseract text recognition

engine.

The efficacy of this pipeline was improved after exploring the effects of changing the size of the
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image being fed to the EAST text detector, as well as border treatments. After disappointing initial

results, the EAST text regions were visualized, and there was an obvious trend of the bottom pixels

being cut off in the crop. This seemed to be less severe in the larger sizes as in Figure 29, but it was

consistent. When reading the code author’s notes on the bounding box implementation, it might

be possible that a few pixels are being shaved off the return result. To remedy this almost universal

phenomenon, 15 pixels were added to the height and width of the cropped region. Since most of

the text on the plaques were of a similar size (photographs taken from fairly constant distance and

height) this improved the results for the smaller EAST image size settings, shown in Figure 30.

Figure 29: EAST text region crops with no buffer zone, white border, black border, no border.
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Figure 30: EAST text region crops with 15 pixel buffer, white border, black border, no border. Text
reading improves when more of the image is selected.

5.4 Results

The text comprehension was tested on a set of screenshots taken from the real-world dataset. These

images were then separated (Figure 31) into three different grades: “normal” for fairly good quality

images, “blurry” for images with motion blur, and “dark” from images with low light. There were

33 normal images, 66 blurry images, and 10 dark images.
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Figure 31: The three stages of plaque screenshots

5.4.1 Simple Method

The isolated “text only” pipeline was run on the labeled screenshots, using the Tesseract optimiza-

tions arrived at via the aforementioned experimentation. Since the dilation of the foreground parts

of the image controlled the resulting “text-possibility” areas, when the pipeline was run with only

3 iterations of the dilation step, performance was quite poor with only 11 of the 109 plaques iden-

tified correctly. It seemed that the contours being drawn around the images were not accurate, as

in Figure 32. Increasing the number of dilation intervals to 5 only exacerbated the problem, with

only 6 of the 109 images being labeled correctly. Similarly, decreasing the number of iterations to

2 (Figure 33) only gave an accuracy of 16 out of 109.

Figure 32: Due to the lighter foreground areas blobbing together in more dilation iterations, the
whole area is picked
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Figure 33: Less dilation iterations gives better separation

normal blurry dark

No ROI finding 0/33 0% 0/66 0% 0/10 0%
Dilation and contours (3 dilation iterations) 5/33 15.15% 0/66 0% 0/10 0%
Dilation and contours (2 dilation iterations) 10/33 30.3% 0/66 0% 2/10 20%
EAST ROI detection 21/33 63.63% 1/66 1.52% 0/10 0%

Table 5: Results of the text comprehension

5.4.2 EAST region-of-interest

The pipeline utilizing the implementation of the EAST text region of interest detector was run with

various configurations on the “screenshot” dataset (already separated plaque images), as well as

the entire image frame (wall and all). The addition of a buffer on the bottom and right sides around

the region of interest (Figure 34) increased the accuracy of the Tesseract text comprehension. On

the sample data, a 25 pixel buffer gave the best results, with diminishing results at 35 pixels and

above.

Figure 34: Increased buffers on the bottom and right of the ROI (inverted for effect)

Of the two images which failed with the larger buffer, there was no extra noise or figures caught;

it seems that the Tesseract engine can fall down when there is too much white space around the
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text, as is illustrated in Figure 35. In this specific instance, the text was understood as “>!”, instead

of the actual label (251).

Figure 35: 25 pixel buffer (left), text identified by Tesseract. 35 pixel buffer (right), text missed.

normal blurry dark

EAST on screenshots, no buffer 18/33 54.55% 0/66 0% 0/10 0%
EAST on screenshots, 5 pixel buffer 21/33 63.64% 1/66 1.52% 0/10 0%
EAST on screenshots, 15 pixel buffer 22/33 66.67% 4/66 6.06% 0/10 0%
EAST on screenshots, 25 pixel buffer 25/33 75.76% 4/66 6.06% 0/10 0%
EAST on screenshots, 35 pixel buffer 23/33 69.7% 4/66 6.06% 0/10 0%

Table 6: Results of the text comprehension from EAST text regions

The dark images defied the EAST region of interest detector, which looks at the raw (color)

image. To test the efficacy on the thresholded gray image, the grayscale image was converted to

the BGR colorspace, without adding any color back to the image. This was then fed through the

pipeline. In the dark images, one region of interest was found, but it was not decipherable by

the Tesseract engine. In the whole image dataset (367 images from which the plaque screenshots

were taken), only 59 plaques were correctly read. This is in contrast with the 142 images in which

the model discovered some text ROI. Reviewing the ROI crops, it became obvious that applying

a histogram-based threshold on the whole image will not necessarily give the best results when

compared to a histogram threshold only applied to the region of interest. The illustration in Figure

36 shows the result of calculating a binary threshold on an image area greater than what is being

tested.

47



Figure 36: Poor thresholding when applied to the entire image (gray added for effect)

When applying the threshold to only the cropped region of interest, the results were much

better. 105 of the 367 total images were read correctly, with ROIs found in 138 images. Those

which had an ROI, but no successful text, generally fell into three camps: blurry, incomplete crop,

or non-plaque text (Figure 37).

Figure 37: Crops which were not processed by the Tesseract engine, and source images below.
From left to right: blurry image, non-plaque text detected, inaccurate ROI

Of the different possible texts to find ([’245’, ’247’, ’249’, ’251’, ’253’, ’255’, ’257’, ’259’,

’261’, ’263’, ’women’], the names of the rooms), only room 247 was missed completely. All other

rooms had at least 1 correct translation, with at least 3 regions of interest being discovered. The

completely missed room was also the darkest, nearly unlit, as seen in Figure 38.
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Figure 38: Very dimly lit section of the hallway confounds the EAST ROI implementation

EAST found plaque text EAST found other text EAST Found nothing

No plaque 0 828 742
Whole plaque 125 13 229

Table 7: Results of running EAST on whole images, without cropping the plaque

Plaque text Plaque present Plaque roi discovered and labeled Accuracy

245 54 35 64.81
247 28 0
249 27 5 18.52
251 42 2 4.76
253 31 2 6.45
255 29 1 3.45
257 27 1 3.70
259 28 5 17.86
261 29 7 24.14
263 30 5 16.67
Women 42 42 100.00

Table 8: Efficacy of EAST on whole images, broken down by room number
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The excellent accuracy for the ‘Women’ restroom sign is due to this part of the hallway being

well lit, and mostly stationary as it is the beginning of the filmed footage (Figure 39).

Figure 39: Benefits of being first in line. More clear stationary frames for text detection
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5.5 Text Extraction Conclusion

I found that resizing the image before applying binarization greatly increased the quality of the

Tesseract results, and the “sweet spot” seemed to be around 80 pixels high (4 times the size of the

plaque textual areas, Figure 41). Smaller sizes were mis-labeled and (in some cases) large sizes

gave diminishing results; a sampling is shown in Figure 40.

Figure 40: Resizing after thresholding the image. larger seems to be better, but the image quality
is quite poor and text is misread
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Figure 41: Binarization post-resizing: image quality greatly improves, and generally text is read
correctly when possible

The Python extension for the Tesseract engine generally seems to work well for well-cropped

and well-aligned text, but can be finicky with the examples encountered in this project. In the

EAST pipeline, gray scaling and applying a threshold to the image after cropping the ROI gave

much better results from the Tesseract engine, and more sensitive preprocessing of the images

(conditionally rotating the text, a more nuanced thresholding method) could make these text in-

terpretations more accurate in further work. Having run through the gamut of different modes

available for Tesseract, ‘--psm 9‘ generated the best results. Additionally, other text reading sys-

tems, such as one based on Convolutional Recurrent Neural Network could be used in lieu of a

Tesseract implementation.

The system for finding text regions with image manipulation did not perform well on this

52



dataset. Even if there were good results on another dataset (such as dark signs with only a block of

light text), it would be completely “overfit”. The “dilation” would need to be reversed depending

on the contrast of the plaque (light text on dark, or vise-versa) and any other artifacts which might

occur on a room plaque (such as occupancy information, or even designs and visible sign-mounting

hardware) would throw off this system’s ability to find a good enough crop of text to send to

Tesseract. It also takes longer than the EAST implementation.

The efficacy of this pipeline was improved after exploring the effects of changing the “resize”

size of the image being fed to the EAST text detector, as well as border treatments. After disap-

pointing initial results, the EAST text regions were visualized, and there was an obvious trend of

the bottom pixels being cut off in the crop. This seemed to be less severe in the larger sizes as

in Figure 41, but it was consistent. When reading the code author’s notes on the bounding box

implementation, it might be possible that a few pixels are being shaved off the return result. To ad-

dress this regularly encountered issue, 15 pixels were added to the height and width of the cropped

region. Since most of the text on the plaques were of a similar size (photographs taken from fairly

constant distance and height) this improved the results for the smaller EAST image size settings.

While some of the images were missed, one benefit of working in an institutional facility is that

there is a list of rooms available. So, as long as the pipeline can interpret at least 1 of the frames of

the room correctly, it can be registered.
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Figure 42: EAST text region crops with white border, black border, no border. Above is no buffer,
bottom is 15 pixel buffer. Text reading improves when more image is selected.

The implementation of the EAST text area recognition worked fairly well on the plaque-
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cropped subset of images, and gave interesting results when run without the “plaque-detection”

assumed. If a hallway is well-lit, and the camera is capable of high-quality imaging, and can be

transported at a reasonably slow speed, and (most importantly for this scenario) a canonical list of

room numbers is available, this method could almost stand alone as a room detector. Now if there

are office directories hanging in the hallway, or if the room name shows up as incidental text else-

where, this could cause issues. There is also another implementation of the EAST text detection

pipeline, which allows for rotated bounding boxes and uses a CRNN text-reading network instead

of Tesseract. It would be interesting to see how this allowance for rotation, and the possibilities of

processing for better text recognition, would compare to the implementation used in this project.

6 Project Conclusion

A good machine learning project starts with a good data set. Collecting images from real-world

hallways provided high-quality and labelable data, and using various image manipulation tech-

niques made it possible to expand the size of this set. Elaborating upon these techniques also

made it possible to generate a dataset from scratch, allowing for the possibility of more diversity

of plaque shapes and designs than may be available when taking photographs by hand.

Discovering the location of the feature in an image, in this case an ADA-compliant room mark-

ing plaque, was most successfully accomplished using a Histogram of Oriented Gradients, trained

on both the real-world images and the synthesized images. Due to the highly consistent appearance

of the different room signs, and the way in which this model utilizes difference in pixel values along

edges, most of the plaques were found, even in very low light. A manual method which employed

polygon discovery and an area heuristic, performed very poorly and reinforced the usefulness of

the HOG method in discovering the identifying plaques.

Two methods, one using image manipulation, the other utilizing the EAST algorithm, were

explored in order to extract the text region on a room-identifying plaque. The manual technique

relied on thresholding a grayscale version of the image, and applying image manipulation tech-
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niques such as dilation and edge detection to “blow out” the lighter text of the plaque image,

creating a box from which the text could be cropped. This technique did not perform well, and

made some assumptions about the design of the plaque (such as light text on a dark background,

consistent lighting for all images, and that the image is a tight crop of the plaque) which required

many manual adjustments through trial-and-error.

The EAST (Efficient and Accurate Scene Text detector) technique, after exploring some bound-

ing box irregularities due to implementation, worked well on both the tightly-cropped plaque im-

ages and raw images of the hallway. It regularly identified regions of text, even where the text was

illegible due to poor lighting or motion blur.

The results of both of these techniques were then “read” using the python extension for Google’s

Tesseract text-extraction engine. Various trials were run on some examples of plaque crops in order

to discover which arguments generated the highest fidelity. Images with blurry, joined, or rotated

text did not perform as well as clearer images, however each sign was read at least once.
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7 Future Work

The ideal next step for this project would be to apply the methods for discovering room identifying

plaques, and to pair it with a volumetric mapping system like SLAM (Simultaneous Localization

and Mapping), facilitating actual mapping of these spaces. If the SLAM can generate metric data

about a space, and this pipeline can target room identifiers, then putting these two together will

allow directions from one room to another to be generated. These directions could be tailored

to the user, either by distance (“walk 20 feet down the hallway and door is on your right”) or

subjective, based on some user metadata about height or stride (“turn right and take 3 paces”).

There are multiple libraries, such as those in Lin (2016) which pair with the open-source Robot

Operating System (ROS) (Quigley et al., 2009), allowing for an autonomous hallway-roving robot

to make a map of a space.

For the evaluation of the dataset creation, a more robust dataset of real-world images could be

gathered, sampling other buildings with differently-designed plaques. These different forms could

have associated custom-made synthetic datasets developed to try the multi-object detector method,

or a composite image could be developed which would incorporate enough features of the different

plaque designs to function well for all of them.

For object detection, another interesting system to try would be TensorFlow’s object detector

(Vladimirov, 2018), which might allow for one detector to run upon multiple different types of

plaque. This method would also allow further evaluation of the different datasets explored in this

project.
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8 Source Code

8.1 ShapeDetection.py

1 #!/usr/bin/env python3
2 import CustomImage
3 import HandyTools as HT
4 import numpy
5 from PIL import Image, ImageTk
6 import cv2
7 import os
8 import tkinter as tk
9 import timeit

10 import string
11 from ImageMeta import ImageDetectionMetadata
12 import logging
13 ALL_CHARS = string.ascii_letters + string.digits
14
15 logging.basicConfig(format=’[%(asctime)s] <%(funcName)s> : %(

message)s’, filename=’wholerun.log’, level=logging.INFO)
16 logger = logging.getLogger(’wholerun’)
17
18
19 def drawSingleContour(image, c, *, text=None, color=(0, 125, 255)

, to_draw=True):
20 ’’’e-z handle for cv2 implementation of calulating and drawing

shape contours’’’
21 peri = cv2.arcLength(c, True)
22 approx = cv2.approxPolyDP(c, 0.04 * peri, True)
23 _x, _y, _w, _h = cv2.boundingRect(c)
24
25 M = cv2.moments(c)
26 area = float(M[’m00’])
27 text = area if not text else text
28 if area > 50 and to_draw:
29 cv2.drawContours(image, [approx], -1, color, 4)
30 cv2.putText(image, (f’{text}’), (_x + _w // 2, _y + _h //

2), cv2.FONT_HERSHEY_SIMPLEX, .75, color, 2)
31 return area, (_w, _h), (_x, _y)
32
33
34 def catchWeirdShape(width, height):
35 try:
36 return not HT.betwixt(0.5, width / height, 2)
37 except ZeroDivisionError:
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38 return True
39
40
41 def actualVsMBRArea(contour_area, minrec_area):
42 ’’’return ratio of area of minimum bounding rectangle to

contour’s area
43 idea is that min bounding rec should be close to contour

area if it is a rectangle
44 ’’’
45 if contour_area == 0:
46 return 0
47 ratio = minrec_area / contour_area
48 return abs(ratio)
49
50
51 def drawSingleMinRec(image, c, *, doop=None):
52 ’’’draw a min bounding rectangle and return area’’’
53 minrec = cv2.minAreaRect(c)
54 box1 = cv2.boxPoints(minrec)
55 bl, tl, tr, br = box1
56 height = abs(bl[1] - tl[1])
57 width = abs(tl[0] - tr[0])
58 weird_shape = catchWeirdShape(width, height)
59 min_area = round((width * height), 2)
60 box = numpy.int0(box1)
61 mid = 0
62 if min_area > 50 and not weird_shape:
63 if doop:
64 for count, item in enumerate(box):
65 logger.info(f’#{count}: {item}\n’)
66 cv2.circle(image, (item[0], item[1]), 10, (mid,

255 - mid, 255), 3)
67 mid += 55
68 logger.info(’~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~’)
69 cv2.drawContours(image, [box], 0, (100, 0, 255), 2)
70 cv2.putText(image, (f’area: {min_area}’), (bl[0], bl[1]),

cv2.FONT_HERSHEY_SIMPLEX,
71 .75, (125, 125, 255), 2)
72 return min_area, (width, height), (bl, tl, tr, br)
73
74
75 def drawContours(image, contours):
76 for c in contours:
77 drawSingleContour(image, c)
78
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79
80 def drawBoundingBoxes(image, contours):
81 areas = []
82 for c in contours:
83 areas.append(drawSingleMinRec(image, c))
84 return areas
85
86
87 def calibratePlaque(source_image):
88 """DEPRECATED"""
89 ’’’sets the area and shape to expect from room marking plaques
90 what we need to find is a good size to judge the pother

plaques by.
91 ’’’
92 # check what we’re getting
93 if isinstance(source_image, CustomImage.Image):
94 image = source_image
95 else:
96 image = CustomImage.Image(source_image)
97 # remove color from image
98 gray = CustomImage.Image(image, copy=True)
99 gray.gray()

100 gray.image = cv2.medianBlur(gray.image, 7)
101 # gray.thresh(thresh_num=100)
102 contours = canny_edge_and_contours(gray)
103 # lets show an image of the contours, they each have a name
104 # and a radio button to choose the right one
105 areas = {}
106 window = tk.Tk()
107 window.title("Please Choose Correct Contour")
108 window.configure(background=’grey’)
109
110 PIXEL = tk.PhotoImage(width=1, height=1)
111
112 listbox = tk.Listbox(window)
113 listbox.pack(side=’right’)
114 # scrollbar = tk.Scrollbar(listbox)
115 # scrollbar.pack(side=’right’, fill=’y’)
116 chosen = tk.StringVar()
117 chosen.trace(’w’, simpleCallBack)
118
119 def showChoice():
120 logger.info(chosen.get())
121
122 def CloseWindow():
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123 logger.info(f"close window!")
124 if chosen.get():
125 window.destroy()
126
127 numbad = 0
128 numgood = 0
129 for idx, contour in enumerate(contours):
130 # logger.info(f’idx: {idx}, lencont: {len(contour)}\n’)
131 try:
132 label = ALL_CHARS[numgood]
133 except Exception as e:
134 logger.error(e)
135 label = ’TILT’
136
137 areas[idx] = {}
138 areas[idx][’label’] = label
139 areas[idx][’contour’] = contour
140 areas[idx][’contour_area’], (areas[idx][’contour_w’],

areas[idx][’contour_h’]), (x, y) = drawSingleContour(image.
image, contour)

141 areas[idx][’minred_area’], mrwh, areas[idx][’bl_tl_tr_br’]
= drawSingleMinRec(image.image, contour)

142 areas[idx][’ratio’] = actualVsMBRArea(areas[idx][’
contour_area’], areas[idx][’minred_area’])

143
144 if catchWeirdShape(areas[idx][’contour_w’],
145 areas[idx][’contour_h’]) or

catchWeirdShape(mrwh[0], mrwh[1]):
146 areas[idx][’valid’] = False
147 numbad += 1
148 else:
149 areas[idx][’valid’] = True
150 drawSingleContour(image.image, areas[idx][’contour’],

color=(255, 0, 100), text=str(label))
151 if numgood % 10 == 0:
152 radioholder = tk.Listbox(listbox)
153 radioholder.pack(side=’left’)
154 tk.Radiobutton(radioholder, text=label, padx=20,

variable=chosen, command=showChoice, value=str(idx)).pack(side
=’top’)

155 numgood += 1
156
157 img = Image.fromarray(image.image)
158 img = ImageTk.PhotoImage(img)
159 panel = tk.Label(window, image=img)
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160 panel.pack(side=’bottom’, fill=’both’, expand=’yes’)
161 window.update()
162 tk.Button(window, text="CONFIRM SELECTION", image=PIXEL,

command=CloseWindow, compound=’c’, width=(image.get_width())).
pack(side=’top’)

163 window.mainloop()
164
165 logger.info(f"chosen item: {chosen.get()}")
166 logger.debug(f"in the result:{areas[int(chosen.get())]}")
167 logger.debug(f"just for shits: whole area dictionary: {areas}"

)
168 return areas[int(chosen.get())]
169
170
171 def calibrate_run_with_plaque(source_image_location):
172 ’’’sets the area and shape to expect from room marking plaques
173 what we need to find is a good size to judge the other

plaques by.
174 ’’’
175 # check what we’re getting
176 image = cv2.imread(source_image_location)
177 # lets show an image of the contours, they each have a name
178 # and a radio button to choose the right one
179 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
180 # 2) blur and contour
181 median_blur = cv2.medianBlur(gray, 9)
182 thresh = cv2.threshold(median_blur, 100, 255, cv2.

THRESH_BINARY)[1]
183 edged = cv2.Canny(thresh, 100, 255)
184 contours = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.

CHAIN_APPROX_SIMPLE)[1]
185 areas = {}
186 window = tk.Tk()
187 window.title("Please Choose Correct Contour")
188 window.configure(background=’grey’)
189
190 PIXEL = tk.PhotoImage(width=1, height=1)
191
192 listbox = tk.Listbox(window)
193 listbox.pack(side=’right’)
194 # scrollbar = tk.Scrollbar(listbox)
195 # scrollbar.pack(side=’right’, fill=’y’)
196 chosen = tk.StringVar()
197 chosen.trace(’w’, simpleCallBack)
198
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199 def showChoice():
200 logger.info(chosen.get())
201
202 def CloseWindow():
203 logger.info(f"close window!")
204 if chosen.get():
205 window.destroy()
206
207 numbad = 0
208 numgood = 0
209 for idx, contour in enumerate(contours):
210 # logger.info(f’idx: {idx}, lencont: {len(contour)}\n’)
211 try:
212 label = ALL_CHARS[numgood]
213 except Exception as e:
214 logger.error(e)
215 label = ’TILT’
216
217 areas[idx] = {}
218 areas[idx][’label’] = label
219 areas[idx][’contour’] = contour
220 areas[idx][’contour_area’], (areas[idx][’contour_w’],

areas[idx][’contour_h’]), (x, y) = drawSingleContour(image,
contour)

221 areas[idx][’minred_area’], mrwh, areas[idx][’bl_tl_tr_br’]
= drawSingleMinRec(image, contour)

222 areas[idx][’ratio’] = actualVsMBRArea(areas[idx][’
contour_area’], areas[idx][’minred_area’])

223
224 if catchWeirdShape(areas[idx][’contour_w’],
225 areas[idx][’contour_h’]) or

catchWeirdShape(mrwh[0], mrwh[1]):
226 areas[idx][’valid’] = False
227 numbad += 1
228 else:
229 areas[idx][’valid’] = True
230 drawSingleContour(image, areas[idx][’contour’], color

=(255, 0, 100), text=str(label))
231 if numgood % 10 == 0:
232 radioholder = tk.Listbox(listbox)
233 radioholder.pack(side=’left’)
234 tk.Radiobutton(radioholder, text=label, padx=20,

variable=chosen, command=showChoice, value=str(idx)).pack(side
=’top’)

235 numgood += 1
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236
237 img = Image.fromarray(image)
238 img = ImageTk.PhotoImage(img)
239 panel = tk.Label(window, image=img)
240 panel.pack(side=’bottom’, fill=’both’, expand=’yes’)
241 window.update()
242 tk.Button(window, text="CONFIRM SELECTION", image=PIXEL,

command=CloseWindow, compound=’c’, width=(image.shape[1])).
pack(side=’top’)

243 window.mainloop()
244
245 logger.info(f"chosen item: {chosen.get()}")
246 logger.debug(f"in the result:{areas[int(chosen.get())]}")
247 logger.debug(f"just for shits: whole area dictionary: {areas}"

)
248 return areas[int(chosen.get())]
249
250
251 def simpleCallBack(*args):
252 logger.info(f’variable changed {args}’)
253
254
255 def canny_edge_and_contours(image, *, threshold_1=50, threshold_2

=250):
256 # its edgin’ time
257 edged = cv2.Canny(image, threshold_1, threshold_2)
258 # fill gaps
259 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
260 # closed = CIMAGE(cv2.morphologyEx(edged.image, cv2.

MORPH_CLOSE, kernel))
261 closed = cv2.morphologyEx(edged, cv2.MORPH_CLOSE, kernel)
262 _, contours, _ = cv2.findContours(closed, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)
263 return contours
264
265
266 def get_plaques_with_hog(source_image_location, *, hog,

save_directory, _debug_mode=False, use_biggest_contour=False,
_fileio=True):

267 ’’’
268 generates predictions with HOG. for each of these predictions,

we crop it out and look for contours.
269 those contours are then skewed to fit a rectagnel, and sent

along with the data.
270 ’’’
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271 # open file and load it up
272 image = cv2.imread(source_image_location)
273 # dirty_copy = image.copy()
274 if image.size < 1: # or dirty_copy.size < 1:
275 # either it is a junk image, or the copy failed.
276 logger.debug(f"image not valid: {source_image_location}")
277 return []
278 logger.debug(f"processing file {source_image_location}")
279 source_directory, source_file_name = os.path.split(

source_image_location)
280 # set up payload
281 list_of_plaque_meta_payloads = []
282 rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
283 predictions = hog.predict(rgb_image)
284 logger.info(f"number of predictions: {len(predictions)}")
285 for pi, (x, y, xb, yb) in enumerate(predictions):
286 # 1) for each prediction, grab the plaque image inside.

this will likely be the largest contour.
287 cropped_roi = image[y:yb, x:xb, :]
288 # single dimension numpy array (junk)
289 if cropped_roi.size < 1:
290 continue
291 gray = cv2.cvtColor(cropped_roi, cv2.COLOR_BGR2GRAY)
292 # 2) blur and contour
293 median_blur = cv2.medianBlur(gray, 9)
294 thresh = cv2.threshold(median_blur, 100, 255, cv2.

THRESH_BINARY)[1]
295 edged = cv2.Canny(thresh, 100, 255)
296 contours = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.

CHAIN_APPROX_SIMPLE)[1]
297 # 3) get the biggest contour
298 if use_biggest_contour:
299 contour_areas = [cv2.moments(c)[’m00’] for c in

contours]
300 if not contour_areas:
301 logger.debug("empty contour areas for biggest

contour")
302 continue
303 logger.debug(f"contour areas: {contour_areas}")
304 # could this just use a lambda to get the biggest area

without splitting it out?
305 location_of_biggest = contour_areas.index(max(

contour_areas))
306 big_countour = contours[location_of_biggest]
307 contours = [big_countour]
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308 for ci, c in enumerate(contours):
309 approx = cv2.approxPolyDP(c, 0.04 * cv2.arcLength(c,

True), True)
310 rect_points = numpy.array([x[0] for x in approx])
311 logger.debug(f"creating payload for file {

source_image_location}, with contour number {ci}")
312 payload = ImageDetectionMetadata()
313 # take whatever the image may be, and make it a

rectangle
314 payload.image = HT.four_point_transform(cropped_roi,

rect_points)
315 payload.contour_area = float(cv2.moments(c)[’m00’])
316 payload.reference_area = None
317 payload.source_image_location = source_image_location
318 if _fileio:
319 payload.plaque_image_location = os.path.join(

save_directory, f"{pi}_{ci}" + source_file_name)
320 cv2.imwrite(payload.plaque_image_location, payload

.image)
321 list_of_plaque_meta_payloads.append(payload)
322
323 if not list_of_plaque_meta_payloads:
324 payload = ImageDetectionMetadata()
325 payload.source_image_location = source_image_location
326 list_of_plaque_meta_payloads.append(payload)
327 return list_of_plaque_meta_payloads
328
329
330 def get_plaques_matching_ratio(source_image_location, *,

save_directory, good_area, _debug_mode=False, _fileio=False,
cutoff_ratio=.30):

331 ’’’
332 source_image: CustomImage object
333 good_ratio: best ratio for a plaque
334 good_area: approximation of a good size for a plaque
335 ’’’
336 # open file and load it up
337 image = CustomImage.Image(source_image_location)
338 source_directory, source_file_name = os.path.split(

source_image_location)
339 # set up payload
340 list_of_plaque_meta_payloads = []
341
342 clean_copy = CustomImage.Image(image)
343 dirty_copy = CustomImage.Image(image)
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344 gray = CustomImage.Image(image)
345 gray.gray()
346
347 # blur and threshold
348 median_blur = cv2.medianBlur(gray.image, 9)
349 blur_contours = canny_edge_and_contours(median_blur)
350 debug_copy = dirty_copy.image.copy()
351 for i, c in enumerate(blur_contours):
352 # 0) get contour information
353 peri = cv2.arcLength(c, True)
354 approx = cv2.approxPolyDP(c, 0.04 * peri, True)
355 M = cv2.moments(c)
356 contour_area = float(M[’m00’])
357 # 1) get minimum bounding rectangle
358 min_rec_x, min_rec_y, min_rec_w, min_rec_h = cv2.

boundingRect(c)
359 # 2) compare that area with good area/ratio supplied to

function
360 ratio_good_to_maybe = min(good_area / contour_area,

contour_area / good_area) if good_area != 0 and contour_area
!= 0 else 0

361 # 3) if it is close enough, skew and crop to get proper h/
w

362 if ratio_good_to_maybe >= cutoff_ratio:
363
364 if _debug_mode:
365 cv2.rectangle(debug_copy, (min_rec_x, min_rec_y),

(min_rec_x + min_rec_w, min_rec_y + min_rec_h), (10, 0, 225),
2)

366 cv2.putText(debug_copy, ’plaque’, (min_rec_x + 5,
min_rec_y - 5), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (128, 255, 0),
2)

367
368 payload = ImageDetectionMetadata()
369 rect_points = numpy.array([x[0] for x in approx])
370 payload.image = HT.four_point_transform(clean_copy.

image, rect_points)
371 payload.contour_area = contour_area
372 payload.reference_area = good_area
373 payload.source_image_location = source_image_location
374 if _fileio:
375 payload.plaque_image_location = os.path.join(

save_directory, f"{i}_" + source_file_name)
376 cv2.imwrite(payload.plaque_image_location, payload

.image)
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377
378 list_of_plaque_meta_payloads.append(payload)
379
380 if _debug_mode:
381 cv2.imshow(f"points for area {contour_area}", debug_copy)
382 cv2.waitKey()
383 cv2.destroyWindow(f"points for area {contour_area}")
384
385 if not list_of_plaque_meta_payloads:
386 payload = ImageDetectionMetadata()
387 payload.source_image_location = source_image_location
388 list_of_plaque_meta_payloads.append(payload)
389 return list_of_plaque_meta_payloads
390
391
392 def get_plaques_matching_ratio_rigamarole(source_image_location,

*, good_area, cutoff_ratio=.30):
393 # open file and load it up
394 image = cv2.imread(source_image_location)
395 source_directory, source_file_name = os.path.split(

source_image_location)
396 # set up payload
397 list_of_plaque_meta_payloads = []
398 marked_copy = image.copy()
399 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
400 # 2) blur and contour
401 median_blur = cv2.medianBlur(gray, 9)
402 thresh = cv2.threshold(median_blur, 100, 255, cv2.

THRESH_BINARY)[1]
403 edged = cv2.Canny(thresh, 100, 255)
404 contours = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.

CHAIN_APPROX_SIMPLE)[1]
405 colors = [
406 (255, 125, 0),
407 (255,100,255),
408 (125,100,255),
409 (0,255,0),
410 (125,255,0),
411 (255,255,0),
412 ]
413 for i, c in enumerate(contours):
414 # 0) get contour information
415 peri = cv2.arcLength(c, True)
416 approx = cv2.approxPolyDP(c, 0.04 * peri, True)
417 M = cv2.moments(c)
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418 contour_area = float(M[’m00’])
419 # 1) get minimum bounding rectangle
420 min_rec_x, min_rec_y, min_rec_w, min_rec_h = cv2.

boundingRect(c)
421 # 2) compare that area with good area/ratio supplied to

function
422 ratio_good_to_maybe = min(good_area / contour_area,

contour_area / good_area) if good_area != 0 and contour_area
!= 0 else 0

423 # 3) if it is close enough, skew and crop to get proper h/
w

424 rect_points = numpy.array([x[0] for x in approx])
425 (tl, tr, br, bl) = HT.order_points(rect_points)
426 polypts = numpy.array([
427 [bl[0], bl[1]], [tl[0], tl[1]], [tr[0], tr[1]], [br

[0], br[1]],
428 ], numpy.int32).reshape((-1,1,2))
429 # draw a thin pink contour
430 cv2.polylines(marked_copy, [polypts], True, (255,100,255),

1)
431 if ratio_good_to_maybe >= cutoff_ratio:
432 rect_points = numpy.array([x[0] for x in approx])
433 (tl, tr, br, bl) = HT.order_points(rect_points)
434 polypts = numpy.array([
435 [bl[0], bl[1]], [tl[0], tl[1]], [tr[0], tr[1]], [

br[0], br[1]],
436 ], numpy.int32).reshape((-1,1,2))
437 color = colors.pop()
438 cv2.polylines(marked_copy, [polypts], True, color, 3)
439 colors.insert(0, color)
440
441 HT.showKill(marked_copy, waitkey=6000)
442 cv2.imwrite(os.path.join(’/home/johnny/Documents/

plaque_only_testing/’, source_file_name), marked_copy)
443
444
445 def get_plaques_rigamarole(source_image_location, *, hog):
446 ’’’
447 generates predictions with HOG. for each of these predictions,

we crop it out and look for contours.
448 those contours are then skewed to fit a rectagnel, and sent

along with the data.
449 ’’’
450 # open file and load it up
451 image = cv2.imread(source_image_location)
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452
453 if image.size < 1:
454 # either it is a junk image, or the copy failed.
455 logger.debug(f"image not valid: {source_image_location}")
456 return []
457 logger.debug(f"processing file {source_image_location}")
458 source_directory, source_file_name = os.path.split(

source_image_location)
459 rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
460 hog_predictions = hog.predict(rgb_image)
461 junk_roi = 0
462 tval = 100
463 marked_copy = image.copy()
464 colors = [
465 (255, 125, 0),
466 (255,100,255),
467 (125,100,255),
468 (0,255,0),
469 (125,255,0),
470 (255,255,0),
471 ]
472 for pi, (x, y, xb, yb) in enumerate(hog_predictions):
473 # 1) for each prediction, grab the plaque image inside
474 color = colors.pop()
475 cv2.rectangle(marked_copy, (x, y), (xb, yb), color, 3)
476 colors.insert(0, color)
477 cropped_roi = image[y:yb, x:xb, :]
478 # single dimension numpy array (junk)
479 if cropped_roi.size < 1:
480 junk_roi += 1
481 continue
482 gray = cv2.cvtColor(cropped_roi, cv2.COLOR_BGR2GRAY)
483 # 2) blur and contour
484 median_blur = cv2.medianBlur(gray, 9)
485 thresh = cv2.threshold(median_blur, tval, 255, cv2.

THRESH_BINARY)[1]
486 edged = cv2.Canny(thresh, 100, 255)
487 contours = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.

CHAIN_APPROX_SIMPLE)[1]
488 contour_areas = [cv2.moments(c)[’m00’] for c in contours]
489 if not contour_areas:
490 continue
491 for ci, c in enumerate(contours):
492 approx = cv2.approxPolyDP(c, 0.04 * cv2.arcLength(c,

True), True)
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493 rect_points = numpy.array([x[0] for x in approx])
494 (tl, tr, br, bl) = HT.order_points(rect_points)
495
496 polypts = numpy.array([
497 [bl[0] + x, bl[1] + y],
498 [tl[0] + x, tl[1] + y],
499 [tr[0] + x, tr[1] + y],
500 [br[0] + x, br[1] + y],
501 ], numpy.int32).reshape((-1,1,2))
502 color = colors.pop()
503 cv2.polylines(marked_copy, [polypts], True, color, 1)
504 colors.insert(0, color)
505 cv2.polylines(marked_copy, [polypts], True,

(255,100,255), 2)
506
507 HT.showKill(marked_copy, waitkey=6000)
508 cv2.imwrite(os.path.join(’/home/johnny/Documents/

plaque_only_testing/roi_heuristic_plaques’, source_file_name),
marked_copy)

509
510
511 def area_plaque_finder(source_image_location, *, good_area,

cutoff_ratio=.30):
512 # open file and load it up
513 start = timeit.default_timer()
514 image = cv2.imread(source_image_location)
515 source_directory, source_file_name = os.path.split(

source_image_location)
516 # set up payload
517 num_found = 0
518 marked_copy = image.copy()
519 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
520 # 2) blur and contour
521 median_blur = cv2.medianBlur(gray, 9)
522 thresh = cv2.threshold(median_blur, 100, 255, cv2.

THRESH_BINARY)[1]
523 edged = cv2.Canny(thresh, 100, 255)
524 contours = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.

CHAIN_APPROX_SIMPLE)[1]
525 colors = [
526 (255, 125, 0),
527 (255,100,255),
528 (125,100,255),
529 (0,255,0),
530 (125,255,0),
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531 (255,255,0),
532 ]
533 for i, c in enumerate(contours):
534 # 0) get contour information
535 peri = cv2.arcLength(c, True)
536 approx = cv2.approxPolyDP(c, 0.04 * peri, True)
537 M = cv2.moments(c)
538 contour_area = float(M[’m00’])
539 ratio_good_to_maybe = min(good_area / contour_area,

contour_area / good_area) if good_area != 0 and contour_area
!= 0 else 0

540 # cv2.polylines(marked_copy, [polypts], True,
(255,100,255), 1)

541 if ratio_good_to_maybe >= cutoff_ratio:
542 num_found += 1
543 rect_points = numpy.array([x[0] for x in approx])
544 (tl, tr, br, bl) = HT.order_points(rect_points)
545 polypts = numpy.array([
546 [bl[0], bl[1]], [tl[0], tl[1]], [tr[0], tr[1]], [

br[0], br[1]],
547 ], numpy.int32).reshape((-1,1,2))
548 color = colors.pop()
549 cv2.polylines(marked_copy, [polypts], True, color, 3)
550 colors.insert(0, color)
551
552 run_data = {’file_name’: source_file_name, ’found_something’:

num_found, ’time’: timeit.default_timer() - start}
553 if num_found > 0:
554 cv2.imwrite(os.path.join(’/home/johnny/Documents/

plaque_only_testing/area_found’, source_file_name),
marked_copy)

555 return run_data
556
557
558 def hog_plaque_finder(source_image_location, *, hog):
559 ’’’
560 generates predictions with HOG. for each of these predictions,

we crop it out and look for contours.
561 those contours are then skewed to fit a rectagnel, and sent

along with the data.
562 ’’’
563 start = timeit.default_timer()
564 # open file and load it up
565 image = cv2.imread(source_image_location)
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566 source_directory, source_file_name = os.path.split(
source_image_location)

567 if image.size < 1:
568 # either it is a junk image, or the copy failed.
569 logger.debug(f"image not valid: {source_image_location}")
570 return {’file_name’: source_file_name, ’found_something’:

False, ’time’: None}
571
572 rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
573 hog_predictions = hog.predict(rgb_image)
574 marked_copy = image.copy()
575 colors = [
576 (255, 125, 0),
577 (255,100,255),
578 (125,100,255),
579 (0,255,0),
580 (125,255,0),
581 (255,255,0),
582 ]
583 for pi, (x, y, xb, yb) in enumerate(hog_predictions):
584 # 1) for each prediction, grab the plaque image inside
585 color = colors.pop()
586 cv2.rectangle(marked_copy, (x, y), (xb, yb), color, 3)
587 colors.insert(0, color)
588
589 run_data = {’file_name’: source_file_name, ’found_something’:

len(hog_predictions), ’time’: timeit.default_timer() - start}
590 cv2.imwrite(os.path.join(’/home/johnny/Documents/

plaque_only_testing/specific_made_up_detector_found’,
source_file_name), marked_copy)

591
592 return run_data
593
594
595 def area_plaque_lean(source_image_location, *, good_area,

cutoff_ratio=.30):
596 # open file and load it up
597 image = cv2.imread(source_image_location)
598 source_directory, source_file_name = os.path.split(

source_image_location)
599 # set up payload
600
601 marked_copy = image.copy()
602 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
603 # 2) blur and contour
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604 median_blur = cv2.medianBlur(gray, 9)
605 thresh = cv2.threshold(median_blur, 100, 255, cv2.

THRESH_BINARY)[1]
606 edged = cv2.Canny(thresh, 100, 255)
607 contours = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.

CHAIN_APPROX_SIMPLE)[1]
608 for i, c in enumerate(contours):
609 # 0) get contour information
610 peri = cv2.arcLength(c, True)
611 approx = cv2.approxPolyDP(c, 0.04 * peri, True)
612 M = cv2.moments(c)
613 contour_area = float(M[’m00’])
614 # 2) compare that area with good area/ratio supplied to

function
615 ratio_good_to_maybe = min(good_area / contour_area,

contour_area / good_area) if good_area != 0 and contour_area
!= 0 else 0

616 # 3) if it is close enough, skew and crop to get proper h/
w

617
618 if ratio_good_to_maybe >= cutoff_ratio:
619 rect_points = numpy.array([x[0] for x in approx])
620 HT.four_point_transform(image, rect_points)
621
622
623 def roi_plaque_lean(source_image_location, *, hog):
624 # open file and load it up
625 image = cv2.imread(source_image_location)
626
627 if image.size < 1:
628 # either it is a junk image, or the copy failed.
629 logger.debug(f"image not valid: {source_image_location}")
630 return []
631 logger.debug(f"processing file {source_image_location}")
632
633 rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
634 hog_predictions = hog.predict(rgb_image)
635
636 tval = 100
637 for pi, (x, y, xb, yb) in enumerate(hog_predictions):
638 continue
639 gray = cv2.cvtColor(cropped_roi, cv2.COLOR_BGR2GRAY)
640 # 2) blur and contour
641 median_blur = cv2.medianBlur(gray, 9)
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642 thresh = cv2.threshold(median_blur, tval, 255, cv2.
THRESH_BINARY)[1]

643 edged = cv2.Canny(thresh, 100, 255)
644 contours = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.

CHAIN_APPROX_SIMPLE)[1]
645 contour_areas = [cv2.moments(c)[’m00’] for c in contours]
646 if not contour_areas:
647 continue
648 for ci, c in enumerate(contours):
649 approx = cv2.approxPolyDP(c, 0.04 * cv2.arcLength(c,

True), True)
650
651
652 def show_multiple_color_images(imlist, num_imgs=0, rows=0, cols

=0, name=’sample’):
653 num_to_show = len(imlist)
654 if num_to_show < 1:
655 return False
656 horizs = []
657 # blank =
658 blank = numpy.zeros(imlist[0][1].shape, dtype=numpy.uint8)
659 for idx in range(0, num_to_show, cols):
660 hs = []
661 for x in range(cols): #imlist[idx:idx + cols]:
662 try:
663 hs.append(imlist[idx+x][1])
664 except Exception:
665 # if x:
666 # hs.append(x[1])
667 # else:
668 hs.append(blank)
669 hs = numpy.hstack(hs)
670 # HT.showKill(hs, waitkey=6000)
671 horizs.append(hs)
672 for idx in range(0, len(horizs), rows):
673 vs = numpy.vstack(horizs[idx:idx + rows])
674 cv2.imwrite(f’/home/johnny/Documents/plaque_only_testing/{

name}.png’, vs)
675 # HT.showKill(vs, waitkey=6000)
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8.2 CustomImage.py

1 #!/usr/bin/env python3
2 # Custom image class wrapper to simplify image classification and

parsing/ playin’ around
3
4 import os
5 import math
6 import cv2
7 import random
8 import numpy as np
9 import platform

10 import CustomErrors as cerr
11 from skimage import exposure
12
13 class Image(object):
14 ’’’Base class for custom images. Trying hand at pythonic

polymorphism.
15 can initalize and save image.
16 ’’’
17 def __init__(self, image, *, path=None, fileName=None,
18 extension=None, copy=False, seed=42, color=None,

percentage=None):
19 ’’’initializer for base image class.
20 Args:
21 image: cv2 image or np array
22 path: path to save to (default is pwd)
23 fname: filename (default is temp)
24 extension: filetype (default is .png)
25 copy: used as token for deep copy constr
26 color: let us know if we are using color or not
27 percentage: for scaling, in terms of percentage of one
28 ’’’
29 if isinstance(image, Image) or copy:
30 self.image = np.copy(image.image)
31 elif isinstance(image, str):
32 # TODO: fix path and filename stuff
33 self.file_name = image
34 self.image = cv2.imread(self.file_name)
35 else:
36 self.image = image
37
38 self.path = ’’ if not path else path
39 self.file_name = ’temp’ if not fileName else fileName
40 self.extension = ’png’ # if not extension else extension
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41 self.image_path = ’’.join(self.path + self.file_name + ’.’
+ self.extension)

42 self.seed = seed
43 self.percentage = percentage if percentage else 1
44
45 self.shape = self.image.shape
46 self.height = self.shape[0]
47 self.width = self.shape[1]
48 self.dimensions = 0 if len(self.shape) < 3 else self.shape

[2]
49 self.possible_x = None
50 self.possible_y = None
51 if self.dimensions is not 3:
52 self.color = False
53 else:
54 self.color = True
55
56 def copy(self):
57 ’’’returns a Custom Image object identical to this one’’’
58 return Image(self.image)
59
60 def get_size(self):
61 ’’’returns size (height, width, dimensions) of the image

’’’
62 return (self.height, self.width, self.dimensions)
63
64 def get_width(self):
65 return self.width
66
67 def get_height(self):
68 return self.height
69
70 def get_shape(self):
71 return self.height, self.width, None
72
73 def get_dimensions(self):
74 return self.dimensions
75
76 def resize(self, *, percentage=None, vertical=None, horizontal

=None):
77 ’’’ resize image.
78 Args:
79 percentage: what percent size the image should be from

the original
80 vertical: desired vertical. horizontal will be scaled.
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81 horizontal: same but vis-versa
82 ’’’
83 h, w = self.image.shape[:2]
84
85 if vertical is not None and horizontal is None:
86 factor = vertical / h
87 elif vertical is not None and horizontal is not None:
88 self.image = cv2.resize(self.image, (vertical,

horizontal), interpolation=cv2.INTER_AREA)
89 return
90 elif horizontal is not None and vertical is None:
91 factor = horizontal / w
92 elif percentage is not None:
93 factor = percentage
94 else:
95 factor = self.percentage
96
97 self.image = cv2.resize(self.image,None,fx=factor, fy=

factor)
98
99 def show(self, *, title=None, pause=None):

100 ’’’
101 Show the image in a window. will wait for kill signal.
102 checks to see if running windows or linux to fix a bug

fixed by
103 the getwindowproperty, where closing the image with

the ’x’ button
104 would cause ipython to block, and the window was not

there to receive a
105 weaitkey signal.
106 did not occur on windows, and the window property does

not work the same way
107 (i think) on windows system.
108
109 pause allows a window to automaatically close after a

length of time
110 pause is limited to minimum 1000 msec as lower calues

can cause weird behavior
111 plus it should be safe!
112 ’’’
113 if pause is not None:
114 pause = 1000 if pause < 1000 else pause
115 cv2.imshow(title, self.image)
116 cv2.waitKey(pause)
117 cv2.destroyWindow(title)
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118 else:
119 title = title if title else "image"
120 status = 1
121 if platform.system() == ’Windows’:
122 # print("[INFO] using Windows")
123 cv2.imshow(title, self.image)
124 cv2.waitKey()
125 cv2.destroyWindow(title)
126 else:
127 # print(f"[INFO] using system {platform.system}")
128 # assume we’re running linux
129 try:
130 cv2.imshow(title, self.image)
131 while status > 0:
132 ks=cv2.waitKey(1000)
133 try:
134 # this does not work for windows like

it does for linux.
135 # TODO: check system first
136 status = cv2.getWindowProperty(title,

cv2.WND_PROP_VISIBLE)
137 except Exception as e:
138 status = -1
139 break
140 if ks > 0:
141 break
142 cv2.destroyWindow(title)
143 except Exception as e:
144 print("error occured: {}",e)
145 raise
146
147 def rectangle(self, top_left, bottom_right, value = 120,

thickness = 3):
148 ’’’Draw a rectangle at coordinates
149 Args:
150 p1, p2: edges of rectangle
151 value: greyscale value
152 thickness: how thick a line. -1 for filled.
153 ’’’
154 self.image = cv2.rectangle(self.image, top_left,

bottom_right, value, thickness)
155
156 def line(self, pt1,pt2, value = 120, thickness = 3):
157 ’’’Draw a line at coordinates
158 Args:
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159 p1, p2: points of line
160 value: greyscale value
161 thickness: how thick a line. -1 for filled.
162 ’’’
163 self.image = cv2.line(self.image,pt1,pt2,value,thickness)
164
165 def thresh(self,*, type=None, thresh_num=170):
166 ’’’simpler handle for cv2 threshold.’’’
167 if type == ’OTSU’:
168 ret2,img = cv2.threshold(self.image,0,255,cv2.

THRESH_BINARY+cv2.THRESH_OTSU)
169 elif not type:
170 ret, img = cv2.threshold(self.image, thresh_num, 255,

cv2.THRESH_BINARY)
171 self.image = img
172
173 def addColor(self):
174 ’’’make gray image BGR compatible’’’
175 self.image = cv2.cvtColor(self.image, cv2.COLOR_GRAY2BGR)
176 self.color = True
177
178 def gray(self):
179 ’’’make the image grayscale. pretty straighforward!

overwrites original.’’’
180 self.image = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY)
181 self.image = exposure.rescale_intensity(self.image,

out_range=(0,255))
182 self.color = False
183
184 def save(self, *, file_path=None, file_name=None):
185 ’’’Saves image to file.
186 TODO: allow for changing file name’’’
187 if file_name:
188 pass
189 if file_path:
190 self.image_path = file_path
191 cv2.imwrite(self.image_path, self.image)
192
193 def blur(self, *, kernel=(3, 3), blur_type=’GAUSS’):
194 ’’’function to encapsulate blurring activity.
195 Args:
196 kernel: size of kernel to apply blurring
197 blur_type: gaussian or average or median,
198 keywords ’GAUSS’, ’AVG’, ’MEDIAN’
199 ’’’
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200 if blur_type is ’GAUSS’:
201 self.image = cv2.GaussianBlur(self.image, kernel, 0)
202 elif blur_type is ’AVG’:
203 self.image = cv2.blur(self.image, kernel)
204 elif blur_type is ’MEDIAN’:
205 self.image = cv2.medianBlur(self.image, kernel[0])
206 else:
207 print("{} is not implemented. Blurring with Gauss.".

format(blur_type))
208 self.image = cv2.GaussianBlur(self.image, kernel, 0)
209
210 def isolate(self, xRange, yRange):
211 ’’’isolate section of an image.
212 Args:
213 xRange: tuple. grabs horiz bounds,
214 i.e. 100:250
215 yRange: tuple. grabs vert bounds,
216 i.e. 100:250
217 ’’’
218 if len(self.image.shape) is 3:
219 return self.image[xRange[0]:xRange[1], yRange[0]:

yRange[1], :]
220 else:
221 return self.image[xRange[0]:xRange[1], yRange[0]:

yRange[1]]
222
223 @classmethod
224 def add_many(cls, image_list):
225 ’’’creates a big image from many and shows it.
226 not smart so dont make an image that is too big!
227 also not smart and can only take even swquares!
228 ’’’
229 numImages = len(image_list)
230 x = math.ceil(math.sqrt(numImages))
231 if x == math.sqrt(numImages):
232 y = int(x)
233 # add images together by y
234 horizStrips = []
235 for i in range(0, numImages+1, x):
236 if x <= numImages:
237 horizStrips.append(cv2.hconcat([image.image

for image in image_list[i:x]]))
238 x = x+y
239 print("\n\nDEBUG: length of horizStrips: {}\n\n".

format(len(horizStrips)))
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240 full = cv2.vconcat([image for image in horizStrips])
241 fullImage = cls(full)
242 fullImage.resize(horizontal= 2048)
243 return fullImage
244 else:
245 raise cerr.DumbProgramError("Can only accept even

squares!")
246
247
248 @classmethod
249 def open(cls, filename):
250 ’’’simple implementation to open a file and return an

image object.
251 simplementation.
252 ’’’
253 try:
254 img = cv2.imread(filename)
255 except Exception as e:
256 print(f"{e}. Filename: {filename}\n")
257 raise
258
259 image = cls(img)
260 return image
261
262
263 class GeneratedImage(Image):
264 ’’’images that are created. Inherits init from parent Image’’’
265 def __init__(self, image, *, path=None, fileName=None,
266 extension=None, copy=False, seed=42, color=None,

percentage=None):
267 super().__init__(image, path=path, fileName=fileName,

extension=extension, copy=copy, seed=seed, color=color,
percentage=percentage)

268 self.possible_x = [n for n in range(self.width)]
269 self.possible_y = [n for n in range(self.height)]
270
271 def copy(self):
272 ’’’returns a Custom Image object identical to this one’’’
273 return GeneratedImage(self.image)
274
275 def rotate(self, degree, *, center=None):
276 ’’’rotate an image’’’
277 # img = cv2.imread(’messi5.jpg’,0)
278 # rows,cols = img.shape
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279 matrix = cv2.getRotationMatrix2D((self.height/2,self.width
/2),degree,1)

280 self.image = cv2.warpAffine(self.image, matrix, (self.
width,self.height), borderMode=cv2.BORDER_REPLICATE)

281
282 def skew(self, four_points):
283 ’’’apply perspective tranformation to image
284 takes either simple list or npfloats
285 tl, tr, br, bl order
286 ’’’
287 if not isinstance(four_points, np.ndarray):
288 four_points = np.float32(four_points)
289
290 dest_points = np.float32([[0,0],[self.height,0],[0, self.

width], [self.height, self.width]])
291 matrix = cv2.getPerspectiveTransform(four_points,

dest_points)
292 self.image = cv2.warpPerspective(self.image, matrix, (self

.height, self.width))
293
294 def salt_and_pepper(self, seasoning=0.007, seed=None):
295 ’’’creates a sprinkling of salt and pepper on an image.
296 Args:
297 seasoning: how much salt and pepper to add
298 seed: random seed
299 ’’’
300 if seed is None:
301 seed = self.seed
302 np.random.seed(seed)
303 shapeinfo = self.image.shape
304 row=shapeinfo[0]
305 col=shapeinfo[1]
306 s_vs_p = 0.5
307 # out = np.copy(image) # don’t need to make a copy, image

itself is modified
308 # Salt mode
309 num_salt = np.ceil(seasoning * self.image.size * s_vs_p)
310 coords = [np.random.randint(0, i - 1, int(num_salt))
311 for i in self.image.shape]
312 self.image[coords] = 255
313 # Pepper mode
314 num_pepper = np.ceil(seasoning* self.image.size * (1. -

s_vs_p))
315 coords = [np.random.randint(0, i - 1, int(num_pepper))
316 for i in self.image.shape]
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317 self.image[coords] = 0
318
319 def random_lines(self, *, seed=None, num_lines=2):
320 ’’’add random lines
321 Args:
322 seed: seed for randomint
323 num_lines: how many lines to draw
324 ’’’
325 if seed is None:
326 seed = self.seed
327 random.seed(seed)
328
329
330 for n in range(num_lines):
331 top_left = (random.randint(0, self.image.shape[0]),
332 random.randint(0, self.image.shape[1]))
333 bottom_right = (random.randint(0, self.image.shape[0])

,
334 random.randint(0, self.image.shape[1]))
335 value = random.randint(0,255)
336 if self.color:
337 val2 = random.randint(0,255)
338 val3 = random.randint(0,255)
339 value = (value, val2, val3)
340 thickness = random.randint(1,10)
341 self.line(top_left, bottom_right, value, thickness)
342
343 def random_rectangles(self, *, seed=None, num_recs=2,

zona_peligrosa_x=None, zona_peligrosa_y=None, rec_w=8, rec_h
=12):

344 ’’’add random rectangles
345 Args:
346 seed: seed for randomint
347 num_lines: how many lines to draw
348 zona peligrosa: areas on x or y that cannot be drawn

upon, a set
349 assuming that rec_h and rec_w will only be used if the

clear space parameters are included (11-13)
350 ’’’
351 if seed is None:
352 seed = self.seed
353 random.seed(seed)
354 # must account for width of rectangle!
355 ok_x = [n for n in self.possible_x if (n + rec_w) not in

zona_peligrosa_x] if zona_peligrosa_x else self.possible_x
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356 ok_y = [n for n in self.possible_y if n not in
zona_peligrosa_y] if zona_peligrosa_y else self.possible_y

357
358 for n in range(num_recs):
359 # each of these is a rectangle dummy!
360 top_left = (random.choice(ok_x), random.choice(ok_y))
361 bottom_right = (top_left[0] + rec_w, top_left[1] +

rec_h)
362
363 value = random.randint(180, 255)
364 if self.color:
365 val2 = random.randint(180, 255)
366 val3 = random.randint(180, 255)
367 value = (value, val2, val3)
368 thickness = random.randint(-10, 10)
369 self.rectangle(top_left, bottom_right, value,

thickness)
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8.3 DataGenerator.py

1 ’’’ This generates test data for the image capturing system.
2 600 by 600 images are created and some have the correct

numbered square in the image somewhere.
3 others will have other shapes or noise.
4 ’’’
5 import random
6 import cv2
7 import numpy as np
8 import string
9 import math

10 import ADA
11 import HandyTools as HAT
12
13 PLAQUE_SHAPES = {’circle’: 0, ’rectangle’: 1, ’ellipse’: 2, ’

triangle’: 3}
14
15 class ImageGenerator(object):
16
17 def __init__(self, IMAGECLASS, resolution, *, size=(600,600,3)

, bgValue=(237,245,247), randSeed=42,
18 plaqueValue=(42,5,102), plaqueSize=None,

plaqueShape=’rectangle’,
19 fontFace=cv2.FONT_HERSHEY_SIMPLEX):
20 ’’’initializer for generator class that produces images.
21 Args:
22 IMAGECLASS: the image class for objects being created.
23 resolution: how many pixels per inch (conceptually)
24 size: image size. 600X600 BGR by default
25 bgValue: desired backgound value for image creation.
26 randSeed: seed for random lines drawing.
27 plaqueValue: desired color for room plaque
28 plaqueSize: desired plaque size. default is a little

more than 10% of image. will convert to an int
29 fontFace: desired font for plaques.
30 ’’’
31 # set internal image class
32 self._imgclass = IMAGECLASS
33 self.res = resolution
34 # set up initial size
35
36 self._size = size
37
38 # set background value. default is beige.
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39 self._bgv = bgValue
40 #set random seed
41 self._rands = randSeed
42 random.seed(self._rands)
43 #set plaque grayscale value. default is maroon.
44 self._pqv = plaqueValue
45 #set plaque size
46 if plaqueSize is None:
47 self._pqs = int(math.sqrt((self._size[0]*self._size

[1])*0.01))
48 else:
49 self._pqs = int(plaqueSize)
50 # will plaque be rectangle, ellipse, or other shape?
51 self._plaque_shape = PLAQUE_SHAPES[plaqueShape]
52 #set font typeface
53 self._font = fontFace
54 #set font color, high contrast is key
55 if len(self._pqv) is 3:
56 self._fontv = tuple( HAT.hiLow255(n) for n in self.

_pqv)
57 else:
58 self._fontv = HAT.hiLow255(self._pqv)
59 #number of chars on plaque
60 self._strlen = 3
61 # are we doing color for these?
62 self._color = len(self._size) is 3
63
64 # print("\nDEBUG:\nBGV:{}\nPQV:{}\nPQS:{}\nFONTV:{}\nCOLOR

:{}\nEND ~~"
65 # .format(self._bgv,self._pqv,self._pqs,self.

_fontv,self._color))
66
67 def __str__(self):
68 pass
69
70 def create_canvas(self):
71 ’’’create a base image object’’’
72 image = self._imgclass(np.full((self._size), self._bgv,np.

uint8),
73 color=self._color, seed=random.randint

(0, 255))
74 return image
75
76 def make_hallway(self, *, res=None, txt=’358B’, papers=None,

posters=None):
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77 ’’’Make a ’hallway’ with a sign and a door. Keep the sign
coordinates.

78 this hallway will then be chopped up and skewed to create
a better dataset.

79 should be long.
80 according to ADA guidelines, the baseline of raised

signage should
81 be between 48 and 60 inches from floor. treating 10

pixels as inches.
82 Args:
83 res: ratio of pixels to inches.
84 Assumptions:
85 Door opening is 80" by 32", 3" trim around
86 Plaque height is 60" at top left corner
87 plaque is 2" from door, and 7" wide/ high
88 ceiling is 10’
89
90 REturns:
91 image: hallway image object
92 plaqueTL: plaque location top left coords
93 plaqueBR: plaque location bottom right coords
94 ’’’
95 if res is None:
96 res = self.res
97 TRIM = 3
98 DR_HT = (ADA.DOOR_HT +TRIM) * res
99 DR_WD = (ADA.DOOR_WD+2*TRIM) * res

100
101 PQ_DIM = 8*res
102 PQ_MGN = .5*res
103 PQ_2_DR = 2*res
104 HL_CEIL = ADA.CEIL_HT * res
105 PQ_WALL_HT = HL_CEIL-(ADA.PQ_HT * res)
106 HL_WD = 2*HL_CEIL
107 FONT = cv2.FONT_HERSHEY_DUPLEX
108 FONT_BS = 22
109 # create canvas for our beautiful painting
110 hallway = self._imgclass(np.full((HL_CEIL,HL_WD,3),

(250,250,250),
111 dtype=np.uint8),color=self._color,
112 seed=random.randint(0,255))
113
114 # now add some rectangles as papers and billboards in an

area where there is no plaque or door
115 paper_size_h = res*11
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116 paper_size_w = res*8
117 poster_size_h = random.randint(res*12, res* 36)
118 poster_size_w = random.randint(res*12, res* 36)
119 # this is the zone where we should not be drawing anything
120 zona_peligrosa_x = []
121 # zona_peligrosa_y = [n for n in range(min(Dy1, Py1), max(

Dy2, Py2))]
122 # additionally, add restrictions for height (so things are

only where people would see them)
123 # assume most things hang between 80" and 36"
124 vis_top = HL_CEIL-res*80
125 vis_bottom = HL_CEIL-res*36
126 # not sure if it would be faster to build bigger list and

then slice but my guess is the list
127 # comprehension is pretty integral so going with that
128 # need to include the size of the paper or poster in the

danger zone, thus the subtraction of poster_size
129 zona_peligrosa_y = [n for n in range(HL_CEIL) if n <

vis_top or n > vis_bottom-poster_size_h]
130 # print(len(zona_peligrosa_y))
131 # now use the random square placement to drop a random

number of papers, posters on the clear space
132 if posters:
133 hallway.random_rectangles(seed=random.randint(0,1000),

num_recs=posters,
134 zona_peligrosa_x=

zona_peligrosa_x,
135 zona_peligrosa_y=

zona_peligrosa_y,
136 rec_w=poster_size_w,
137 rec_h=poster_size_h)
138 if papers:
139 hallway.random_rectangles(seed=random.randint(0,1000),

num_recs=papers,
140 zona_peligrosa_x=

zona_peligrosa_x,
141 zona_peligrosa_y=

zona_peligrosa_y,
142 rec_w=paper_size_w,
143 rec_h=paper_size_h)
144
145
146 # generate text info
147 # figure font size
148 try:
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149 fontInches = ADA.get_font_size(txt, PQ_DIM/res)
150 except Exception as e:
151 print("ERROR: {}".format(e.message))
152 raise
153 FSPx = fontInches*res
154 FSCALE = FSPx/FONT_BS
155 # now to generate coords for the plaque
156 # TODO: rn this is hardcoded. should be dynamic
157 txtbx = cv2.getTextSize(txt,FONT,FSCALE,1) # get size of

box bounding text
158 # print("DEBUG TEXT BOX SIZE: {}".format(txtbx))
159 (wt,ht),bs = txtbx
160 self._pqs = wt+30 # 10px margin around at least
161 # find a random spot for the plaque to be
162 Px1 = random.randint(0,HL_WD-self._pqs)
163 Py1 = PQ_WALL_HT
164 # add the plaque
165 (_, _), (Px2, Py2) = self.draw_room_sign(hallway, (Px1,Py1

), self._pqs)
166 # add text
167 self._draw_room_number(hallway, Px1, Py1+ht*2, text=txt)
168 # its time for the door. will add on right if space,

otherwise on left
169 if Px1 < DR_WD + PQ_2_DR:
170 # not enough space on left of sign
171 Dx1 = Px2 + PQ_2_DR
172 else:
173 Dx1 = Px1 - (DR_WD+PQ_2_DR)
174 Dy1 = HL_CEIL-DR_HT
175 Dx2 = Dx1+DR_WD
176 # Dy2 = Dy1+DR_HT
177 Dy2 = HL_CEIL
178 # add the door
179 self.draw_door(hallway, Dx1, DW=DR_WD, DH=DR_HT)
180 # # now add some rectangles as papers and billboards in an

area where there is no plaque or door
181 # paper_size_h = res*11
182 # paper_size_w = res*8
183 # poster_size_h = random.randint(res*12, res* 36)
184 # poster_size_w = random.randint(res*12, res* 36)
185 # # clear space didn’t work, need to make forbidden zone
186 # # it is min of door left or plaque left, and max or door

right and plaque rt
187
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188 # zona_peligrosa_x = [n for n in range(min(Dx1, Px1), max(
Dx2, Px2))]

189 # # zona_peligrosa_y = [n for n in range(min(Dy1, Py1),
max(Dy2, Py2))]

190 # # additionally, add restrictions for height (so things
are only where people would see them)

191 # # assume most things hang between 80" and 36"
192 # vis_top = HL_CEIL-res*80
193 # vis_bottom = HL_CEIL-res*36
194 # # not sure if it would be faster to build bigger list

and then slice but my guess is the list
195 # # comprehension is pretty integral so going with that
196 # zona_peligrosa_y = [n for n in range(HL_CEIL) if n <

vis_top or n > vis_bottom]
197 # print(len(zona_peligrosa_y))
198 # # now use the random square placement to drop a random

number of papers, posters on the clear space
199 # if posters:
200 # hallway.random_rectangles(seed=random.randint

(0,1000), num_recs=posters,
201 # zona_peligrosa_x=

zona_peligrosa_x,
202 # zona_peligrosa_y=

zona_peligrosa_y,
203 # rec_w=poster_size_w,
204 # rec_h=poster_size_h)
205 # if papers:
206 # hallway.random_rectangles(seed=random.randint

(0,1000), num_recs=papers,
207 # zona_peligrosa_x=

zona_peligrosa_x,
208 # zona_peligrosa_y=

zona_peligrosa_y,
209 # rec_w=paper_size_w,
210 # rec_h=paper_size_h)
211 # a little seasoning
212 hallway.salt_and_pepper()
213 return hallway, (Px1,Py1), (Px2, Py2)
214
215 # def add_paper_and_posters(self, num_posters, num_papers,

top_left, bottom_right):
216 # pass
217
218
219 def add_stuff(self, image, stuffScale = 2):
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220 ’’’adds other shapes and lines to image
221 Args:
222 image: image class instance
223 stuffScale: scale of 1 to 10, how much stuff is in the

image
224 ’’’
225 image.random_lines(seed=random.randint(0,1000),
226 num_lines = stuffScale*2)
227 image.random_rectangles(
228 seed=random.randint(0,1000),
229 num_recs=stuffScale,
230 rec_h=random.randint(0,170),
231 rec_w=random.randint(0,280)
232 )
233 return image
234
235 def _draw_room_number(self, image, x, y, *, FSCALE=.75, text=

None):
236 ’’’Helper function. Draws room number/letter on the plaque

.
237 Args:
238 self: instance
239 image: image object to draw on
240 (x,y): origin of plaque
241 ’’’
242 if text is None:
243 text = self._gen_plaque_text()
244 # cv2.putText(img, text, origin, fontFace, fontScale,

color[, thickness[, lineType[, bottomLeftOrigin]]])
245 cv2.putText(image.image, text, (x,y), self._font, FSCALE,

self._fontv, 2)
246 return image
247
248 def draw_door(self, image, x_coord, value=(7,30,56), *, DH=

None, DW=None, CH=None):
249 ’’’draw a door on the image.
250 Args:
251 DH: door height
252 DW: door width
253 CH: ceiling height
254 ’’’
255 if DH is None:
256 DH = ADA.DOOR_HT*self.res
257 if DW is None:
258 DW = ADA.DOOR_WD*self.res
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259 if CH is None:
260 CH = ADA.CEIL_HT*self.res
261 p1=(x_coord,(CH-DH)) # top left
262 p2=(x_coord+DW,CH) # bottom right
263 image.rectangle(p1,p2,value,-1)
264
265 def _gen_plaque_text(self):
266 ’’’Thanks to https://stackoverflow.com/a/2257449 for the

text/number generation
267 generates random 3-char string of numbers and

uppercase letters
268 ’’’
269 text = ’’.join(random.choices(string.digits + string.

ascii_uppercase,
270 k=self._strlen))
271 return text
272
273 def draw_room_sign(self, image, top_left=None, width=75):
274 ’’’places a numbered room sign somewhere on image,
275 marks filename as having room sign
276 Args:
277 image: image object
278 top_left: coordinates for placement of top left
279 of plaque. if None, randomly place.
280 should be (point1x,point1y)
281 Returns:
282 top_left: x, y coordinate of top left of rectangle
283 bottom_right: x, y coordinate of bottom left of

rectgl
284 ’’’
285 #create random starting point within boundaries
286 if top_left is not None:
287 point1x,point1y = top_left
288 else:
289 point1x = random.randint(0, (self._size[0]-self._pqs))
290 point1y = random.randint(0, (self._size[0]-self._pqs))
291 point2x = point1x + width
292 point2y = point1y + width
293 top_left = (point1x, point1y)
294 bottom_right = (point2x, point2y)
295 # adding possible scenarios for elliptical or triangular

palques. not implemented yet.
296 if self._plaque_shape is 1:
297 image.rectangle(top_left, bottom_right, self._pqv, -1)
298 elif self._plaque_shape is 2:
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299 pass
300 return top_left, bottom_right
301
302 def draw_special_room_sign(self, image, top_left=None, width

=75, height=105):
303 ’’’places a numbered room sign somewhere on image,
304 marks filename as having room sign
305 Args:
306 image: image object
307 top_left: coordinates for placement of top left
308 of plaque. if None, randomly place.
309 should be (point1x,point1y)
310 Returns:
311 top_left: x, y coordinate of top left of rectangle
312 bottom_right: x, y coordinate of bottom left of

rectgl
313 ’’’
314 #create random starting point within boundaries
315 if top_left is not None:
316 point1x, point1y = top_left
317 else:
318 point1x = random.randint(0, (self._size[0]-width))
319 point1y = random.randint(0, (self._size[0]-height))
320 top_left = (point1x, point1y)
321 bottom_right = (point1x + width, point1y + height)
322 # adding possible scenarios for elliptical or triangular

palques. not implemented yet.
323
324 image.rectangle(top_left, bottom_right, self._pqv, -1)
325 # draw another rectangle to look like the plaques, 13 px

from top, 10 px in from the sides, 33 px tall, 57 wide
326 top_left = (top_left[0] + 10, top_left[1] + 13)
327 bottom_right = (top_left[0] + 57, top_left[1] + 33)
328 image.rectangle(top_left, bottom_right, (240,240,240), -1)
329 bottom_right = (bottom_right[0], bottom_right[1] + 5)
330 # and then to put the text, it hosuld be under this new

rectangle
331
332 return (top_left[0] + 5, top_left[1] + 5 + 33 + 20)
333
334 def make_false_image(self, num_randos=4, seasoning = 0.02, *,

blur = None):
335 ’’’generate an image without a room sign.
336 Args:
337 num_randos: how many random lines/recs to add
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338 seasoning: how much salt and pepper
339 blur: optional, overrides defualt blur amount
340 ’’’
341 image = self.create_canvas()
342 image = self.add_stuff(image, num_randos)
343 image.salt_and_pepper(seasoning)
344 if blur is not None:
345 image.blur(blur)
346 else:
347 image.blur()
348 return image
349
350 def make_true_image(self, num_randos=4, seasoning=0.02, *,

blur=None, special=True):
351 ’’’generate an image with a room sign.
352 Args:
353 num_randos: how many random lines/recs to add
354 seasoning: how much salt and pepper
355 blur: optional, overrides defualt blur amount
356 ’’’
357 image = self.create_canvas()
358 image = self.add_stuff(image, num_randos)
359 if special:
360 (px,py) = self.draw_special_room_sign(image)
361 else:
362 (px,py), (px2,py2) = self.draw_room_sign(image)
363 image = self._draw_room_number(image, px, py)
364 image.salt_and_pepper(seasoning)
365 if blur is not None:
366 image.blur(blur)
367 else:
368 image.blur()
369 return image
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8.4 HandyTools.py

1 #!/usr/bin/env python3
2
3 import os
4 import cv2
5 import argparse
6 import numpy
7 import math
8 import matplotlib.pyplot as plt
9

10
11 def getFilesInDirectory(directory, fileType):
12 return [os.path.join(directory, item) for item in os.listdir(

directory) if item.lower().endswith(fileType)]
13
14
15 def resize_files_in_directory(rs_factor, directory, outdir):
16 files = getFilesInDirectory(directory, ’jpg’)
17 for f in files:
18 img = cv2.imread(f)
19 rs = cv2.resize(img, (img.shape[1]//rs_factor, img.shape

[0]//rs_factor), interpolation=cv2.INTER_AREA)
20 fn = os.path.join(outdir, os.path.split(f)[1])
21 cv2.imwrite(fn, rs)
22
23
24 def crop_image(image, x, y, xb, yb):
25 copy = image.copy()
26 return copy[y:yb, x:xb, :]
27
28
29 def show(image):
30 cv2.imshow("image", image)
31 cv2.waitKey()
32 cv2.destroyWindow("image")
33
34
35 def hiLow255(num):
36 return 0 if num > 122 else 255
37
38
39 def showKill(image, title=None, waitkey=0):
40 ’’’takes cv2 image and shows it.
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41 if something goes wrong and window is clicked closed, it
will recover.

42 ’’’
43 title = title if title else "image"
44 status = 1
45 try:
46 cv2.imshow(title, image)
47 while status > 0:
48 ks=cv2.waitKey(waitkey)
49 try:
50 status = cv2.getWindowProperty(title,cv2.

WND_PROP_VISIBLE)
51 except Exception:
52 status = -1
53 break
54 if ks > 0:
55 break
56 cv2.destroyWindow(title)
57 except Exception as e:
58 print("error occured: {}", e)
59 raise
60
61
62 def betwixt(less_num, target, great_num):
63 ’’’true if target falss between less_num and great_num’’’
64 return(less_num < target and target < great_num)
65
66
67 def add_prefix_to_file(filepath, prefix):
68 ’’’
69 sets prefix in front of a filename and returns amended path
70 sample filepath: ’train/plaques/002999.png’
71 sample prefix: ’0_’
72 ’’’
73 directory, file_name = os.path.split(filepath)
74 file_name = prefix + file_name
75 changed_path = os.path.join(directory, file_name)
76 return changed_path
77
78
79 def str2bool(word):
80 ’’’
81 from ’Maxim’s response to https://stackoverflow.com/questions

/15008758/parsing-boolean-values-with-argparse
82 will evaluate a string as a true or false
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83 ’’’
84 if word.lower() in (’yes’,’true’,’y’,’t’,’yep’,’1’,’ok’):
85 return True
86 elif word.lower() in (’no’,’false’,’n’,’f’,’nope’,’0’,’nah’,’

fuck you’):
87 return False
88 else:
89 raise argparse.ArgumentTypeError(’Boolean value expected.

Very disappointed’)
90
91
92 def distill_list(list_of_elements):
93 ’’’
94 takes a list of many items and removes all adjacent duplicates

.
95 ’’’
96 new_list = []
97 cur_idx = 0
98 now_val = list_of_elements[cur_idx]
99 for index, value in enumerate(list_of_elements):

100 if cur_idx == len(list_of_elements)-1:
101 new_list.append(now_val)
102 break
103 if list_of_elements[cur_idx+1] is now_val:
104 cur_idx += 1
105 elif list_of_elements[cur_idx+1] is not now_val:
106 new_list.append(now_val)
107 cur_idx += 1
108 now_val = list_of_elements[cur_idx]
109 return new_list
110
111
112 def four_point_transform(image, pts):
113 # https://www.pyimagesearch.com/2014/08/25/4-point-opencv-

getperspective-transform-example/
114 # obtain a consistent order of the points and unpack them
115 # individually
116 rect = order_points(pts)
117 (tl, tr, br, bl) = rect
118 # compute the width of the new image, which will be the
119 # maximum distance between bottom-right and bottom-left
120 # x-coordiates or the top-right and top-left x-coordinates
121 widthA = numpy.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1])

** 2))
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122 widthB = numpy.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1])

** 2))
123 maxWidth = max(int(widthA), int(widthB))
124 # compute the height of the new image, which will be the
125 # maximum distance between the top-right and bottom-right
126 # y-coordinates or the top-left and bottom-left y-coordinates
127 heightA = numpy.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1])

** 2))
128 heightB = numpy.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1])

** 2))
129 maxHeight = max(int(heightA), int(heightB))
130 # now that we have the dimensions of the new image, construct
131 # the set of destination points to obtain a "birds eye view",
132 # (i.e. top-down view) of the image, again specifying points
133 # in the top-left, top-right, bottom-right, and bottom-left
134 # order
135 dst = numpy.array([
136 [0, 0],
137 [maxWidth - 1, 0],
138 [maxWidth - 1, maxHeight - 1],
139 [0, maxHeight - 1]], dtype = "float32")
140 # compute the perspective transform matrix and then apply it
141 M = cv2.getPerspectiveTransform(rect, dst)
142 warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
143 # return the warped image
144 return warped
145
146
147 def order_points(pts):
148 # https://www.pyimagesearch.com/2014/08/25/4-point-opencv-

getperspective-transform-example/
149 # initialzie a list of coordinates that will be ordered
150 # such that the first entry in the list is the top-left,
151 # the second entry is the top-right, the third is the
152 # bottom-right, and the fourth is the bottom-left
153 rect = numpy.zeros((4, 2), dtype = "float32")
154 # the top-left point will have the smallest sum, whereas
155 # the bottom-right point will have the largest sum
156 s = pts.sum(axis = 1)
157 rect[0] = pts[numpy.argmin(s)]
158 rect[2] = pts[numpy.argmax(s)]
159 # now, compute the difference between the points, the
160 # top-right point will have the smallest difference,
161 # whereas the bottom-left will have the largest difference
162 diff = numpy.diff(pts, axis = 1)
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163 rect[1] = pts[numpy.argmin(diff)]
164 rect[3] = pts[numpy.argmax(diff)]
165 # return the ordered coordinates
166 return rect
167
168
169 def _plot_multiple_images(labels_and_images, num_imgs=36, rows=6,

cols=6):
170 total_number = len(labels_and_images)
171 # num_imgs = 36
172 num_iterations = math.ceil(total_number / num_imgs)
173 # rows = math.ceil(math.sqrt(numgs))
174 # cols = math.ceil(numgs / rows)
175 # rows = 6
176 # cols = 6
177 for n in range(num_iterations):
178 fig = plt.figure(facecolor=’gray’)
179 for idx, title_img_tup in enumerate(labels_and_images[n *

num_imgs:n * num_imgs + num_imgs]):
180 # print(title_img_tup)
181 sp = fig.add_subplot(cols, rows, idx + 1)
182 # image = cv2.resize(title_img_tup[1], (title_img_tup

[1].shape[1]//3, title_img_tup[1].shape[0]//3), interpolation=
cv2.INTER_AREA)

183 image = title_img_tup[1]
184 image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
185 plt.imshow(numpy.array(image, dtype=float))
186 sp.set_title(title_img_tup[0])
187 sp.set_yticklabels([])
188 sp.set_xticklabels([])
189 # fig.set_size_inches(numpy.array(fig.get_size_inches()) *

numgs)
190 fig.set_size_inches(numpy.array(fig.get_size_inches()) *

20)
191 plt.show()
192
193
194 def plot_result_images(results):
195 labels_and_images = []
196 for meta in results:
197 if meta.text and meta.thresheld_image:
198 labels_and_images.extend([(meta.text[n], meta.

thresheld_image[n]) for n in range(len(meta.text))])
199 _plot_multiple_images(labels_and_images)
200
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201
202 def normalize_image_illumination(image):
203 max_dim = max(image.shape[:2])
204 y, cr, cb = cv2.split(cv2.cvtColor(image, cv2.COLOR_BGR2YCrCb)

)
205 sigma = 5 * max_dim // 300
206 gaussian = cv2.GaussianBlur(y, (0, 0), sigma, sigma)
207 y = (y - gaussian + 100)
208 return cv2.cvtColor(cv2.merge([y, cr, cb]), cv2.

COLOR_YCrCb2BGR)
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8.5 ADA.py

1 ’’’collection of ADA requirements.
2 ALL IN INCHES
3 ’’’
4 import CustomErrors as CER
5
6 def get_font_size(text, signWidth):
7 ’’’returns sign spec from ADA.
8 in INCHES!
9 usage= sizeChart[signWidth][charnum]

10 ’’’
11 charnum = len(text)
12 if charnum > 26:
13 raise CER.PlaqueFontError(1)
14 elif signWidth > 19:
15 raise CER.PlaqueFontError(2)
16
17 sizeChart= {
18 4:{5: 0.625, 4: 0.75, 3: 1},
19 6:{7: 0.625, 6: 0.75, 5: 0.875, 4: 1.25, 3: 1.5},
20 8:{11: 0.625, 9: 0.75, 8: 0.875, 7: 1, 5: 1.25, 4: 1.5},
21 10:{14: 0.625, 11: 0.75, 10: 0.875, 9: 1, 8: 1.25, 7:

1.5},
22 12:{18: 0.625, 14: 0.75, 12: 0.875, 11: 1, 8: 1.25, 7:

1.5},
23 18:{25: 0.625, 21: 0.75, 18: 0.875, 16: 1, 13: 1.25, 11:

1.5}
24 }
25 keys = list(sizeChart.keys())
26 chartKey = min(keys, key=lambda x: abs(x-signWidth))
27 chartKeyKeys = list(sizeChart[chartKey])
28 fontKey = min(chartKeyKeys, key = lambda x: abs(x-charnum))
29 return sizeChart[chartKey][fontKey]
30
31 def toGray(B,G,R):
32 ’’’converts color value to grayscale via the Limunosity method

.
33 Args:
34 (B,G,R): blue, green, and red colorspace
35 ’’’
36 return (R*0.21 + G*0.72 + B*0.07)
37
38 DOOR_HT = 80
39 DOOR_WD = 32
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40 VEIL_HT = 120
41 PQ_HT = 50
42 CEIL_HT = 120
43
44 AdriansEastROIDetector.py
45 # code from https://www.pyimagesearch.com/2018/08/20/opencv-text-

detection-east-text-detector/
46 from imutils.object_detection import non_max_suppression
47 import numpy as np
48 import argparse
49 import time
50 import cv2
51
52
53 def main(args):
54 detect_ranges_with_east(args["image"], args["width"], args["

height"], args["east"], args["min_confidence"])
55
56
57 def detect_ranges_with_east(image, width, height, east,

min_confidence):
58 """(h and w should be multiple of 32)"""
59 # load the input image and grab the image dimensions
60 # image = cv2.imread(image)
61 orig = image.copy()
62 (H, W) = image.shape[:2]
63
64 # set the new width and height and then determine the ratio in

change
65 # for both the width and height
66 (newW, newH) = (width, height)
67 rW = W / float(newW)
68 rH = H / float(newH)
69
70 # resize the image and grab the new image dimensions
71 image = cv2.resize(image, (newW, newH))
72 (H, W) = image.shape[:2]
73
74 # define the two output layer names for the EAST detector

model that
75 # we are interested -- the first is the output probabilities

and the
76 # second can be used to derive the bounding box coordinates of

text
77 layerNames = [
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78 "feature_fusion/Conv_7/Sigmoid",
79 "feature_fusion/concat_3"]
80
81 # load the pre-trained EAST text detector
82 # print("[INFO] loading EAST text detector...")
83 net = cv2.dnn.readNet(east)
84
85 # construct a blob from the image and then perform a forward

pass of
86 # the model to obtain the two output layer sets
87 blob = cv2.dnn.blobFromImage(image, 1.0, (W, H), (123.68,

116.78, 103.94), swapRB=True, crop=False)
88 start = time.time()
89 net.setInput(blob)
90 (scores, geometry) = net.forward(layerNames)
91 end = time.time()
92
93 # show timing information on text prediction
94 # print("[INFO] text detection took {:.6f} seconds".format(end

- start))
95
96 # grab the number of rows and columns from the scores volume,

then
97 # initialize our set of bounding box rectangles and

corresponding
98 # confidence scores
99 (numRows, numCols) = scores.shape[2:4]

100 rects = []
101 confidences = []
102
103 # loop over the number of rows
104 for y in range(0, numRows):
105 # extract the scores (probabilities), followed by the

geometrical
106 # data used to derive potential bounding box coordinates

that
107 # surround text
108 scoresData = scores[0, 0, y]
109 xData0 = geometry[0, 0, y]
110 xData1 = geometry[0, 1, y]
111 xData2 = geometry[0, 2, y]
112 xData3 = geometry[0, 3, y]
113 anglesData = geometry[0, 4, y]
114
115 # loop over the number of columns
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116 for x in range(0, numCols):
117 # if our score does not have sufficient probability,

ignore it
118 if scoresData[x] < min_confidence:
119 continue
120
121 # compute the offset factor as our resulting feature

maps will
122 # be 4x smaller than the input image
123 (offsetX, offsetY) = (x * 4.0, y * 4.0)
124
125 # extract the rotation angle for the prediction and

then
126 # compute the sin and cosine
127 angle = anglesData[x]
128 cos = np.cos(angle)
129 sin = np.sin(angle)
130
131 # use the geometry volume to derive the width and

height of
132 # the bounding box
133 h = xData0[x] + xData2[x]
134 w = xData1[x] + xData3[x]
135
136 # compute both the starting and ending (x, y)-

coordinates for
137 # the text prediction bounding box
138 endX = int(offsetX + (cos * xData1[x]) + (sin * xData2

[x]))
139 endY = int(offsetY - (sin * xData1[x]) + (cos * xData2

[x]))
140 startX = int(endX - w)
141 startY = int(endY - h)
142
143 # add the bounding box coordinates and probability

score to
144 # our respective lists
145 rects.append((startX, startY, endX, endY))
146 confidences.append(scoresData[x])
147
148 # apply non-maxima suppression to suppress weak, overlapping

bounding
149 # boxes
150 boxes = non_max_suppression(np.array(rects), probs=confidences

)

107



151 regions = []
152 drawn_images = []
153 # loop over the bounding boxes
154 for (startX, startY, endX, endY) in boxes:
155 # scale the bounding box coordinates based on the

respective
156 # ratios
157 startX = int(startX * rW)
158 startY = int(startY * rH)
159 endX = int(endX * rW)
160 endY = int(endY * rH)
161
162 # draw the bounding box on the image
163 cv2.rectangle(orig, (startX, startY), (endX, endY), (0,

255, 0), 2)
164 regions.append([(startX, startY), (endX, endY),
165 (startX, endY), (endX, startY)])
166 drawn_images.append(orig)
167 return regions, drawn_images
168
169
170 if __name__ == "__main__":
171 # construct the argument parser and parse the arguments
172 ap = argparse.ArgumentParser()
173 ap.add_argument("-i", "--image", type=str, help="path to input

image")
174 ap.add_argument("-east", "--east", type=str, help="path to

input EAST text detector")
175 ap.add_argument("-c", "--min-confidence", type=float, default

=0.5, help="minimum probability required to inspect a region")
176 ap.add_argument("-w", "--width", type=int, default=320, help="

resized image width (should be multiple of 32)")
177 ap.add_argument("-e", "--height", type=int, default=320, help=

"resized image height (should be multiple of 32)")
178 args = vars(ap.parse_args())
179 main(args)
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8.6 Detector.py

1 import dlib
2 import cv2
3
4
5 class ObjectDetector(object):
6 """
7 from https://www.hackevolve.com/create-your-own-object-

detector/
8 https://github.com/saideeptalari/Object-Detector
9

10 """
11 def __init__(self, options=None, loadPath=None):
12 # create detector options
13 self.options = options
14 if self.options is None:
15 self.options = dlib.

simple_object_detector_training_options()
16
17 # load the trained detector (for testing)
18 if loadPath is not None:
19 self._detector = dlib.simple_object_detector(loadPath)
20
21 def _prepare_annotations(self, annotations):
22 annots = []
23 for (x, y, xb, yb) in annotations:
24 annots.append([dlib.rectangle(left=int(x), top=int(y),

right=int(xb), bottom=int(yb))])
25 return annots
26
27 def _prepare_images(self, imagePaths):
28 images = []
29 for imPath in imagePaths:
30 image = cv2.imread(imPath)
31 image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
32 images.append(image)
33 return images
34
35 def fit(self, imagePaths, annotations, visualize=False,

savePath=None):
36 annotations = self._prepare_annotations(annotations)
37 images = self._prepare_images(imagePaths)
38 self._detector = dlib.train_simple_object_detector(images,

annotations, self.options)
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39
40 # visualize HOG
41 if visualize:
42 win = dlib.image_window()
43 win.set_image(self._detector)
44 dlib.hit_enter_to_continue()
45
46 # save detector to disk
47 if savePath is not None:
48 self._detector.save(savePath)
49
50 return self
51
52 def predict(self, image):
53 boxes = self._detector(image)
54 preds = []
55 for box in boxes:
56 (x, y, xb, yb) = [box.left(), box.top(), box.right(),

box.bottom()]
57 preds.append((x, y, xb, yb))
58 return preds
59
60 def detect(self, image, annotate=None):
61 rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
62 preds = self.predict(rgb_image)
63 for (x, y, xb, yb) in preds:
64 # draw and annotate on image
65 cv2.rectangle(image, (x, y), (xb, yb), (0, 0, 255), 2)
66 if annotate and isinstance(annotate, str):
67 cv2.putText(image, annotate, (x + 5, y - 5), cv2.

FONT_HERSHEY_SIMPLEX, 1.0, (128, 255, 0), 2)
68 cv2.imshow("Detected", image)
69 cv2.waitKey(0)
70 return image
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