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Abstract. In this study, the viability of using machine learning models to predict stress-strain curves
of auxetic structures based on geometry-describing parameters is explored. Given the computational
cost and time associated with generating these curves through numerical simulations, a machine
learning-based approach promises a more efficient alternative. A range of machine learning models,
including Artificial Neural Networks, k-Nearest Neighbors Regression, Support Vector Regression,
and XGBoost, is implemented and compared regarding the aptitude to predict stress-strain curves
under quasi-static compressive loading. Training data is generated using validated finite element
simulations. The performance of these models is rigorously tested on data not seen during training.
The Feed-Forward Artificial Neural Network emerged as the most proficient model, achieving a Mean
Absolute Percentage Error of 0.367 ± 0.230.
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1. Introduction
As a main characteristic auxetic structures posses a
negative Poisson’s ratio, which makes them a subclass
of so called mechanical metamaterials. They show
remarkable mechanical properties rendering them par-
ticularly useful for applications as crash absorbers.
This aptitude stems from their high stiffness and low
density combined with a plateau stress over a large de-
formation regime [1, 2]. The mechanical performance
of auxetic structures is mainly governed by their geom-
etry making structural optimization a study topic of
paramount importance, which is typically facilitated
through finite element simulations. Since those can be
very time consuming given the structural complexity
this work aims at utilizing a machine learning ap-
proach to reduce the need for lengthy simulations – a
strategy commonly pursued in contemporary engineer-
ing sciences [3, 4]. To this end a multitude of machine
learning algorithms and techniques are implemented
and compared regarding their predictive performance.

2. Materials and methods
2.1. Auxetic structure and training data
The starting point for this study is a specific re-entrant
auxetic structure previously studied by Bronder et.
al. [5]. The structure is shown in Figure 1 and is
originally defined by five geometry parameters: length,
size, waist, strut thickness and angle. As part of a
carried out feature engineering process an addition
geometry parameter named gap is introduced, which
is derived from the original features according to

gap = [1 − tan (90◦ − angle)] size − length . (1)

Figure 1. Auxetic unit cell with five defined geometry
parameters (red), which represent the initial feature
space for the modeling task at hand. An addition pa-
rameter was derived during feature engineering (blue).
From Bronder et. al. [5], modified.

For this project a set of 130 stress-strain curves was
available, which can be seen in Figure 2 . The term
stress, in the context of this paper, always refers to the
mass-normalized stress in MPa g−1. From all available
curves, 15 were reserved for the final performance
evaluation at the very end of the project, leaving 115
example curves for model development.

The 130 curves were produced by validated finite
element simulations from the software ABAQUS®.
AlSi10Mg structures of 3 × 3 × 3 unit cells were simu-
lated using an explicit solver.
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Figure 2. All 130 stress-strain curves available for the
project. With lightweight applications in mind, stress
values were normalized with regard to the structure’s
weight. For simplicity reasons compressive strain val-
ues are positive.

2.2. Error metric
The problem at hand is a supervised regression prob-
lem where a model predicts numerical values, in this
case stresses, while minimizing the prediction error.
Due to the curves potentially spreading over multi-
ple orders of magnitude, the scale-independent Mean
Absolute Percentage Error (MAPE) is chosen as the
error metric, which is defined as

MAPE = 1
N

N∑
i

∣∣∣∣yi − ŷi

yi

∣∣∣∣ , (2)

where N is the number of predictions, ŷi the i-th
predicted value and yi the corresponding i-th true
value.

Since the MAPE becomes arbitrarily large for true
target values, i.e. the variable values to be predicted,
that are zero or close to zero, the metric is evaluated
only for strains > 0.01, which corresponds to the
initial linear elastic part of the curves.

2.3. Problem formulation
For the main study two different approaches to the
problem itself are studied. In the Single Point Ap-
proach (SP) the models take as input the geometry
parameters describing the structure as well as a cer-
tain strain value and predict the corresponding mass
normalized stress value.

In contrast, using the Whole Curve Approach (WC)
the model predicts a complete sub-sampled curve
based on only the geometry parameters. Here, a
sampling rate of 20 is used, reducing the number of
data points per curve from 1 001 to 51. During the ex-
ploratory phase of the study different sampling rates
were tested with 20 leading to the best results. In par-
ticular, better results and faster training times were
achieved compared to the original data point density.

Figure 3. Topology of a Feed-Forward Neural Net-
work. Neurons are represented by circles, while arrow
indicate the direction of data transfer.

To facilitate a direct and transparent comparison of
the results the predicted sub-sampled curves are lin-
early extrapolated to have the same point density as
the original curves.

Moreover, in an additional approach, the potential
of treating the entire curve as a sequence is explored.
In this Sequential Curve Approach (SC), the model is
tasked with predicting all 1 001 points of the stress-
strain curve based on the geometry parameters.

2.4. Machine learning models
Four fundamentally different classes of machine learn-
ing models are used to make prediction in order to
provide an extensive overview and comparison of meth-
ods potentially suitable for the task at hand.

Representing the class of parametric models, i.e.
models that learn by fitting parameters of a map-
ping function to the data, Artificial Neural Networks
(ANN) and Support Vector Regression (SVR) are im-
plemented.

ANNs consist of a multitude of simple computa-
tional units, called neurons, that are arranged in a
layered network. In this case, a topology is used
where each neuron in one layer is connected to every
neuron in the neighboring layers, forming a so called
(fully connected) Feed-Forward Neural Network. Each
connection between two neurons provides a degree of
freedom for the fitting process [6, 7]. A schematic of
the topology of such networks is shown in Figure 3.

Support Vector Regression (SVR) can be viewed – in
a simplified manner – as a generalized version of linear
regression that is not limited to linear problems [8].
A deeper explanation of SVR is omitted at this point,
since this model proved to be not suitable for the task
at hand.

K-Nearest-Neighbor Regression (KNNR) and XG-
Boost (XGB) represent the class of non-parametric
models. These models do not fit internal parameters
to the data. Rather, predictions are made based on
known data directly. Therefore, changing the training
data automatically changes the model’s predictions.

KNNR predicts stresses for a new combination of
input parameters, also called features, by identifying
the K closest known examples from the input space
of the training data. The predicted stress value, then,
is the average of these K known stress values [9].
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Figure 4. Distribution of mean mass normalized
stress values for all 130 available curves.

XGBoost is an advanced and optimized implemen-
tation of Decision Trees [10]. Decision Trees consist
of a set of “if – then” statements, also called decision
rules, that divide the input space into subdomains
or partitions. Predictions are then made based on
the partition to which the sample at hand belongs,
typically predicting the average target value of the
partition [8].

For the additional SC Approach mentioned at the
end of Section 2.3, Temporal Convolutional Networks
(TCNs) [11] are employed to generate the sequence
from the input features. TCNs are a class of neural
networks that are particularly well-suited for sequence
modeling tasks, as they make use of temporal convo-
lutions to capture dependencies of different lengths
in the data. Through multiple layers of dilated con-
volutions, TCNs can effectively learn and represent
complex patterns across various time scales in the se-
quence, making them a promising choice for predicting
the entire stress-strain curve with high resolution.

2.5. Course of action
To provide a starting point, first, the four main models
introduced in Section 2.4 are trained on the original
5 features, namely size, waist, length, angle and strut
thickness, using the SP and the WC approach. Here,
a rudimentary hyperparameter optimization is carried
out to obtain parameters that are close to the optimal
choice. Hyperparameters are parameters describing
the architecture and/or functionality of the model.
Using these trained models, feature engineering is
performed, which is a set of techniques aiming at
creating data representations that make the learning
process easier. For this sake, a selection of feature
combinations is evaluated in combination with every
model regarding their predictive performance. The
feature combinations found to lead to best results
– which can be different for different models – are
then used to retrain the models and perform a more
extensive hyperparameter optimization, resulting in

Figure 5. Performance of each model-approach com-
bination on the final test set. Error bars denote the
standard deviation with regard to individual curves.

the final optimized models.
In order to estimate model performance reliably

while trying to prevent overfitting, i.e. good perfor-
mance on known data and bad performance on new
data, throughout the model optimization process a
cross validation (CV) procedure is implemented.

The data set at hand is imbalanced with high-stress
curves being highly underrepresented, see Figure 4.
Therefore, the CV procedure is stratified to guarantee
that the distribution of mean stress values while split-
ting data (train, validation and test) stays as close
as possible to the distribution in the original data
set. For every model, a 4-Fold-CV is implemented.
The splitting procedure being repeated three times,
resulting in 12 different train/validation splits with a
size ratio of 75 to 25.

At the very end of the project, all optimized models
are trained on all 115 curves available for the modeling
process and then used to make predictions for 15 never-
seen-before curves – and therefore until now unknown
geometry describing input parameters – in an attempt
to simulate the real application scenario.

3. Results and discussion
The summarized performances of all trained mod-
els can be seen in Figure 5. It is apparent that the
choice of the approach, meaning SP versus WC, had
no significant effect on the predictive performance
of the models. The particularly bad performance of
KNNR (SP) can only be explained with overfitting,
even though all possible precautions were taken. Here,
one particular curve of the final test set, was predicted
extremely bad, drastically worsening the average per-
formance of the model. In all prior stages of the model
building process its performance was comparable to
the other models, especially to KNNR (WC). SVR
(SP) is not shown in the figure because this approach
was discarded after the initial hyper parameter opti-
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mization stage due to extraordinarily bad performance
together with unreasonably large training times.

In general, the performance of all models, with the
exception of KNNR (SP), performed even better of the
final test set than estimated during the model building
process, all models having a MAPE of at least 0.573
in the case of ANN (SP). First of all, this shows that
the efforts to provide reliable performance measures
through suitable data splitting techniques generally
paid off since the expectations from the model building
phase could be met and even surpassed in the actual
application scenario.

The overall improvement in predictive performance
can be explained by the larger effective train set. Dur-
ing cross-validation, models were trained on sets con-
sisting of 86 stress-strain curves (75 % of 115), whereas
all 115 curves were available to train the final models.
This is an increase in data amount of about 28 %. The
significant improvement in performance through more
data indicates that the amount of training data is at
least one of the limiting factors regarding predictive
capability.

Best performance was achieved by Feed-Forward
Artificial Neural Networks using the Single Point Ap-
proach with a MAPE of 0.367 ± 0.230. The network
used the original input variables with the exception of
angle being replaced with gap, which for this model
increased the predictive performance. The final net-
work consist of 16 layers, each containing 18 neurons.
Figure 6 shows examples of particularly good and
bad predictions produced by the model. It is able
to predict the general order of magnitude correctly,
however, it struggles with predicting the actual shape,
which explains the large standard deviation of the
MAPE. This is not surprising since different sets of
geometry parameters can lead to stress-strain curves
that drastically vary in shape due to stability failure
of the structure.

In the additional approach, TCNs were employed
to model the stress-strain curves as sequence data.
It is important to note that the TCN faced a more
demanding task, as it aimed to predict the full curve
consisting of 1 001 data points, which is inherently
more complex compared to what the other models
were required to accomplish. Consequently, the TCN
did not prove to be as adept for this specific prob-
lem context as was hoped. However, exploring this
method served to reinforce the decisions made in the
main study, and highlighted the importance of model
selection in relation to the complexity of the task.

4. Conclusion and future work
A model was trained that can predict stress-strain
curves for a re-entrant auxetic structure, see Figure 1,
based only on geometry-describing parameters, achiev-
ing a Mean Absolute Percentage error of 0.367±0.230.
Even though at this point the model cannot replace
conventional finite element simulations, it allows to
highly reduce the amount of simulations that actually

Figure 6. Particularly good (top) and particularly
bad (bottom) predictions produced by the final op-
timized Artificial Neural Network using the SP ap-
proach.

need to be carried out by providing a rough estimate
of the expected curve within a fraction of a second –
compared to up to 48 h for the classical simulation.

Furthermore, it was shown that Feed-Forward Ar-
tificial Neural Networks are best suited for the task
at hand, significantly outperforming all other studied
options. Additionally, models like Support Vector Re-
gression and Temporal Convolutional Networks were
found to be particularly unsuitable for the studied
problem.

Since an increase in training data volume enhanced
the predictive performance in this study, further im-
provements to the models can be expected by incorpo-
rating more and more simulated curves into the data
set.

Apart from a simple increase in data volume, ad-
ditional models are planned to be trained predicting
effective quantities like the absorbed energy during
the compressive loading. Since predicting one quan-
tity per geometry parameter combination instead of
a whole curve reduces the complexity of the problem,
better results are to be expected. Also, since in this
case no curve shape needs to be matched, the spread
in performance is expected to be reduced. Given the
expected possible frequency with which predictions
can be made, an extension of the framework is conceiv-
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able where the user chooses a desired specific energy
absorption for a particular application and the model
provides the corresponding geometry.
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