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An automated logistic regression solution framework (ALRSF) is proposed to
solve a mixed integer programming (MIP) formulation of the well known logistic
regression best subset selection problem. The solution framework firstly determines
the optimal number of independent variables that should be included in the model
using an automated cardinality parameter selection procedure. The cardinality pa-
rameter dictates the size of the subset of variables and can be problem-specific. A
novel regression parameter fixing heuristic that utilises a Benders decomposition
algorithm is applied to prune the solution search space such that the optimal regres-
sion parameter values are found faster. An optimality gap is subsequently calculated
to quantify the quality of the final regression model by considering the distance
between the best possible log-likelihood value and a log-likelihood value that is
calculated using the current parameter values. Attempts are then made to reduce the
optimality gap by adjusting regression parameter values. The ALRSF serves as a
holistic variable selection framework that enables the user to consider larger datasets
when solving the best subset selection logistic regression problem by significantly
reducing the memory requirements associated with its mixed integer programming
formulation. Furthermore, the automated framework requires minimal user inter-
vention during model training and hyperparameter tuning. Improvements in quality
of the final model (when considering both the optimality gap and computing re-
sources required to achieve a result) are observed when the ALRSF is applied to
well-known real-world UCI machine learning datasets.

Keywords: Best subset selection, Independent variable selection, Logistic regression, Mixed
integer programming.

1. Introduction
Binary classification problems play an important role within the broader field of statistical modelling
and can be solved by using algorithms such as support vector machines, neural networks, decision
tree based methods, k-nearest-neighbours and logistic regression (Civitelli et al., 2021). Logistic
regression is by far one of the most popular approaches which is supported by a wealth of literature
and research (Civitelli et al., 2021). In general, logistic regression algorithms are straightforward to
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implement, can be applied to relatively large machine learning problems and provide a measure of
interpretability (Civitelli et al., 2021; Stoltzfus, 2011).

An important area of research (with reference to solving binary classification problems) is finding
the optimal subset of independent variables from a set of independent variables 𝑗 ∈ 𝑝 = {1, 2, ..., |𝑝 |}
and observations 𝑖 ∈ 𝑛 = {1, 2, ..., |𝑛|} to include in the final model during the training phase.
Let 𝑋𝑖 denote a 𝑝 × 1 input vector of independent variable values for the 𝑖th observation in a
dataset with 𝑛 records, where the 𝑗 th entry of 𝑋𝑖 correspond to the 𝑗 th variable. Furthermore,
let 𝑌𝑖 ∈ {0, 1} be a binary dependent or target variable that follows a Bernoulli distribution where
𝑃(𝑌𝑖 = 1|𝑋𝑖) = (1 + exp(−𝛽𝑇𝑋𝑖))−1. Within a regression model setting, the independent variable
entries in 𝑋𝑖 represent a vector of 𝑝 predictors that are used as inputs in a machine learning model
in an attempt to predict the dependent variable 𝑌𝑖 . It is assumed that each observation (𝑋𝑖 , 𝑌𝑖) is
independently sampled from the same population. The selected subset of input variables should
accurately capture the nature of the problem instance while still allowing for adequate generalisation
performance. Best subset selection (in its most fundamental form) describes a process that attempts
to select the most relevant and statistically significant set of independent variables by optimising
some objective function 𝑓 (𝛽; X,Y) with respect to a vector of regression parameters 𝛽 ∈ R𝑝 , where
𝛽 𝑗 denotes the 𝑗 th regression parameter associated with the 𝑗 th input variable (with 𝛽0 being the
intercept term). Mathematically, the problem can be defined as

max
𝛽

𝑓 (𝛽; X,Y), (1)

or
min
𝛽
𝑓 (𝛽; X,Y), (2)

subject to
| |𝛽 | |0 ≤ 𝑐, (3)

where | |.| |0 is the 𝐿0-norm, | |𝛽 | |0 =
∑
𝑗∈𝑝 I (𝛽 𝑗 > 0) and (3) is known as a cardinality selection

constraint that allows the regression model to contain at most 𝑐 of the 𝑝 available independent
variables (Zhang et al., 2018; Venter, 2020). The composition of 𝑓 (𝛽; X,Y) depends on the type of
regression algorithm that is applied. In the case of logistic regression, the log-likelihood function is
typically used as the objective function 𝑓 (𝛽; X,Y). Since the log-likelihood function is concave, the
objective function in (1) can be modified according to

max
𝛽

𝑓 (𝛽; X,Y) = log(𝐿 (𝑌1, ..., 𝑌𝑛)) =
∑︁
𝑖∈𝑛

𝑌𝑖 (𝛽𝑇𝑋𝑖) −
∑︁
𝑖∈𝑛

log(1 + exp(𝛽𝑇𝑋𝑖)), (4)

where 𝛽𝑇𝑋𝑖 is equal to
∑
𝑗∈𝑝 𝛽 𝑗𝑋𝑖 𝑗 . The choice between (1) or (2) depends on the objective function

being used. As an alternative to the log-likelihood function, the modeller may employ the logistic
loss function, which is defined as

min
𝛽
𝑓 (𝛽; X,Y) =

∑︁
𝑖∈𝑛

log(1 + exp(−𝑌𝑖 (𝛽𝑇𝑋𝑖)). (5)

Since the log-likelihood is concave, the negative of the log-likelihood (logistic loss function) will
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be convex. This explains why maximisation of (4) and minimisation of (5) will yield identical results.
Different formulations of the best subset selection problem make use of either the log-likelihood or
the logistic loss objective function.

It is well known that training a logistic regression classifier on too many independent variables may
result in the model overfitting on the training set, which in turn degrades the predictive performance of
the final selected model. This is especially true when the number of independent variables 𝑝 greatly
exceeds the number of training observations 𝑛 such that 𝑝 > 𝑛 (Naganuma et al., 2021). Numerous
studies have attempted to solve (to optimality) the logistic regression best subset selection problem
by using a variation of three main MIP logistic regression formulations that are commonly found
in the literature. The first approach attempts to find the optimal subset of variables by minimising
a logistic loss objective function that contains a regularisation term, such as the 𝐿0-norm, 𝐿1-norm
(lasso) or 𝐿2-norm (ridge regression) (Dedieu et al., 2021; Insolia et al., 2021; Kamiya et al., 2019;
Takano and Miyashiro, 2020). A second approach involves a piecewise linear approximation of the
non-linear logistic loss function, where the objective function is adjusted such that the best model
is chosen based on a problem-specific information criterion, like the Akaike information criterion
(AIC) or Bayesian information criterion (BIC) (Sato et al., 2016; Civitelli et al., 2021). Finally,
we consider an alternative approach proposed by Venter (2020), who, similar to Sato et al. (2016),
also makes use of a piecewise linear approximation of the logistic regression objective function.
The difference, however, is that the use of an approximated log-likelihood by Venter (2020) leads
to an underestimation of the optimal log-likelihood, while an overestimation is observed because of
the logistic loss used by Sato et al. (2016). Furthermore, a strict and explicit cardinality constraint
(instead of some information criterion) limits the number of variables included in the final model(s)
produced by Venter (2020). These overarching formulations and the relevant underlying theory will
be discussed in Section 2. A detailed account of the limitations associated with each approach will be
provided to further highlight the contributions of the proposed automated logistic regression solution
framework presented herein.

One of the main drawbacks of deterministic MIP solution frameworks relates to the computational
burden and resource constraints imposed by these formulations, which in turn limits the size and
dimensionality of the prediction problem that can be considered. According to Miller (2002), best
subset selection MIP approaches are exponential-time procedures, which implies that an exponential
increase in execution time is observed alongside an increase in the number of independent variables.
In fact, best subset selection problems are NP-hard by nature (Natarajan, 1995; Venter, 2020).
Some authors note that attempts to perform best subset selection procedures using commercially
available statistical software become intractable when the input dataset contains approximately 40 -
75 independent variables (Lund, 2017).

The framework proposed in this paper mainly builds on the logistic regression MIP formulation
presented by Venter (2020) because of the favourable statistical characteristics that it exhibits. With
the above in mind, we set out to develop a novel automated solution framework that can be used to
solve large-scale best subset selection logistic regression problems that are formulated as MIPs. The
framework in question mainly builds on the formulation proposed by Venter (2020) because of its
favourable statistical attributes. Additionally, substantial attempts are made to address some of the
limitations inherent to logistic regression MIP problems which are commonly found when dealing
with best subset selection. Firstly, the automated solution framework (dubbed the ALRSF) produces
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interpretable and parsimonious models that generalise well on unseen data by avoiding the use of
regularisation terms and biased regression parameters. This is done by incorporating an explicit
cardinality constraint into the formulation. Secondly, the ALRSF requires minimal user intervention
(unlike some of the other formulations found in literature) by automatically determining the most
appropriate cardinality parameter and iteratively adjusting the parameter search space during model
training. As such, the regression parameters of the model rely more on the underlying patterns
that are present in the data and less on input from the model developer. Finally, and perhaps most
importantly, the ALRSF exhibits significant improvements in computational memory requirements
when presented with best subset selection problems. These improvements enable the user to consider
larger datasets that would otherwise be intractable when solved with the MIP approaches mentioned
earlier.

The remainder of this paper can be subdivided into six main sections. Section 2 provides a
background on best subset selection and related work, accompanied by appropriate theoretical
considerations that underpin the proposed ALRSF. The contribution of the ALRSF to existing
literature is also presented. Sections 3 and 4 introduce the reader to the proposed best subset
selection MIP formulation with relevant modifications that allow it to be used within an automated
logistic regression setting. The logic of the ALRSF is then summarised in Section 4 followed
by model verification in Section 5. Empirical results are presented in Section 6 where predictive
models are applied to three real-world datasets in order to evaluate the performance of the proposed
ALRSF and to compare it against existing best subset MIP approaches. Section 6 further highlights
the contribution of the ALRSF to the intersecting fields of variable selection and computational
efficiency when dealing with sizeable datasets. Concluding remarks and recommendations with
respect to future research are discussed in Section 7.

2. Background and rationale
In this section, we elaborate on the concept of best subset selection within a MIP problem setting where
regularisation terms, information criteria or explicit cardinality parameters are incorporated into the
model objective function to select the optimal subset of variables from the set of 𝑝 predictors. Firstly,
MIP formulations that rely on regularisation techniques will be considered. In its most simplistic
form, regularisation MIP formulations can be defined as1

min
𝛽

1
𝑛
𝑓 (𝛽; X,Y) + _ | |𝛽 | |𝑞1

𝑞2 , (6)

where | |.| |𝑞1
𝑞2 controls the type of regularisation used for subset selection. When 𝑞1 = 𝑞2 = 1, the

popular lasso regression approach is followed. Alternatively, setting 𝑞1 = 𝑞2 = 2 forces the model
to apply a ridge regression penalty. Unlike lasso and ridge regression (which are not NP-hard), we
can specify a strict penalty by setting 𝑞1 = 1 and 𝑞2 = 0, which will use the 𝐿0-norm and perform
best subset selection. Incorporating a combination of the aforementioned regularisation terms into a
single objective function can also be considered in an attempt to overcome the limitations associated

1 Note that the objective function is minimised when the logistic loss is used. Alternatively, the objective function will be
maximised when the log-likelihood is employed, with the "+" sign in front of the regularisation term (the second term of the
objective function) changed to a "-" sign.
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with each individual approach (see Dedieu et al. (2021) for more details). The regularisation-based
MIP formulation proposed by Dedieu et al. (2021) utilises 𝐿0-𝐿𝑞-norms as penalty terms and is
shown in (7), where _0 ≥ 0 controls the number of non-zero regression parameters and enforces
model sparsity, while _𝑞 ≥ 0 controls the shrinkage of model parameters.

min
𝛽

1
𝑛
𝑓 (𝛽; X,Y) + _0 | |𝛽 | |0 + _1 | |𝛽 | |1 + _2 | |𝛽 | |22. (7)

Each regularisation term can be included/excluded based on the value(s) selected for 𝑞1, 𝑞2, _0, _1
and _2. Dedieu et al. (2021) reports that the function 𝑓 (𝛽; X,Y) is interchangeable between the
logistic loss function (defined in Section 1) or the hinge loss function. A detailed overview of each
type of loss function can be found in the author’s work. From Equation (7) we can group the logistic
loss function, lasso and ridge regression terms into a single term that can be written as

ℎ(𝛽; X,Y, _1, _2) = 1
𝑛
𝑓 (𝛽; X,Y) + _1 | |𝛽 | |1 + _2 | |𝛽 | |22. (8)

Substituting (8) into (7) leads to

min
𝛽,𝑧

ℎ(𝛽; X,Y, _1, _2) + _0
∑︁
𝑗∈𝑝

𝑧 𝑗 , (9)

subject to
|𝛽 𝑗 | ≤ 𝑀𝑧 𝑗 ∀ 𝑗 ∈ 𝑝, (10)

𝑧 𝑗 ∈ {0, 1} ∀ 𝑗 ∈ 𝑝. (11)

The formulation in (9)–(11) is a special case of the regularised regression model presented in (6)
and allows for variable selection by optimising some inherent cardinality parameter based on the
𝑧 𝑗 decision variable. When 𝑧 𝑗 = 0, the 𝑗 th independent variable is excluded from the final subset
by setting 𝛽 𝑗 = 0. Alternatively, |𝛽 𝑗 | is allowed to take on any value in the range [0, 𝑀] when
𝑧 𝑗 = 1. The constant 𝑀 in constraint (10) governs the range of values that the regression parameters
are allowed to take on and should be sufficiently large (ideally, in a perfect world where we have
unlimited computational power 𝑀 should tend to infinity). Given that the 𝐿0-norm describes the
number of non-zero regression parameters (the number of parameters where 𝛽 𝑗 ≠ 0), we can replace
_0 | |𝛽0 | | with _0

∑
𝑗∈𝑝 𝑧 𝑗 to perform the same task. A tighter formulation of the optimisation problem

in (8)–(11) was proposed by Dedieu et al. (2021) and is summarised in (12)–(17):

min
𝛽,𝑧,𝜔

ℎ(𝜔; X,Y, _1, _2) + _0
∑︁
𝑗∈𝑝

𝑧 𝑗 , (12)

subject to
|𝛽 𝑗 | ≤ 𝑀𝑧 𝑗 , 𝑗 ∈ 𝐴′, (13)

𝜔 = 𝛽𝑡𝑗 −
∑︁
𝑗∈𝐴

𝑒 𝑗 𝛽
𝑡
𝑗 (1 − 𝑧 𝑗 ) +

∑︁
𝑗∈𝐴′

𝑒 𝑗 𝛽 𝑗 , (14)
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∑︁
𝑗∈𝐴

𝑧 𝑗 ≥ |𝐴| − 𝑚, (15)

∑︁
𝑗∈𝐴′

𝑧 𝑗 ≤ 𝑚, (16)

𝑧 𝑗 ∈ {0, 1} ∀ 𝑗 ∈ 𝑝. (17)

Dedieu et al. (2021) makes use of a two-step iterative local search algorithm to first prune the
solution search space. The best solution discovered as part of the local search algorithm is then
used as an input to the tightened MIP formulation presented in (12)–(17) in an attempt to either
improve the best integer solution or provide an optimality guarantee. The first algorithm used (as
part of the initial two-step local search algorithm) is a coordinate descent approach followed by a
local combinatorial search algorithm. The reader is referred to Dedieu et al. (2021) for a detailed
explanation of this iterative algorithmic approach. Finally, the tightened MIP formulation can be used
to try and improve on the local solutions discovered while also attempting to provide an optimality
guarantee. Let 𝐴 ⊂ 𝑝 denote a subset of variables from all available independent variables 𝑝 with
the complement of 𝐴 denoted as 𝐴′. Then the support set can be defined as 𝐴 = Supp(𝛽) where
𝛽 ≠ 0. Let 𝐴1 ⊂ 𝐴 and 𝐴2 ⊂ 𝐴′ denote two sets with size of at most 𝑚 (the value of 𝑚 will be
discussed shortly). Let 𝛽𝑡 denote the vector of regression parameters that were generated at iteration
𝑡 of the local search algorithm (the combination of the coordinate descent and combinatorial search
approaches)2. As part of the combinatorial search step a 𝑝 × 𝑝 matrix 𝐵𝐴 is defined, where the 𝑗 th
row of 𝐵𝐴 is equal to

∑
𝑗∈𝑝 𝑒 𝑗 if 𝑗 element of 𝐴 and zero otherwise. This means that for any 𝛽 ∈ R𝑝 ,

(𝐵𝐴𝛽) 𝑗 = 𝛽 𝑗 when 𝑗 ∈ 𝐴 and (𝐵𝐴𝛽) 𝑗 = 0 when 𝑗 ∉ 𝐴. This swap-and-solve logic is captured
by the constraints in (14)–(17) and is facilitated by the binary decision variables 𝑧 𝑗 , 𝑗 = 1, ..., 𝑝.
Particularly when 𝑧 𝑗 = 0 ∀ 𝑗 ∈ 𝐴 it means that the 𝑗 th variable in 𝐴1 should be removed from support
set 𝐴. Alternatively, when 𝑧 𝑗 = 1 ∀ 𝑗 ∈ 𝐴′ it means that the 𝑗 th variable in 𝐴2 should be added to the
support set 𝐴. The size of 𝑚 controls the number of variables that can be considered for inclusion
into the support 𝐴. A large value for 𝑚 will generally result in extended model execution times.

Dedieu et al. (2021) go on to develop another MIP formulation which is solved using an integrability
generation algorithm. Let 𝐴 represent the support and 𝐴′ the complement of 𝐴. Once again
the heuristic-based solution algorithm (which is a combination of coordinate descent with local
combinatorial search) is used to prune the solution search space. The support 𝐴 is then initialised
with the variables identified by the initial heuristic search algorithm. The proposed MIP formulation
can be defined as

min
𝛽,𝑧

ℎ(𝛽; X,Y, _1, _2) + _0
∑︁
𝑗∈𝑝

𝑧 𝑗 , (18)

subject to
|𝛽 𝑗 | ≤ 𝑀𝑧 𝑗 , ∀ 𝑗 ∈ 𝑝, (19)

𝑧 𝑗 ∈ [0, 1], ∀ 𝑗 ∈ 𝐴′, (20)

𝑧 𝑗 ∈ {0, 1}, ∀ 𝑗 ∈ 𝐴, (21)

2 For the remainder of this paper, the reader should note that an uppercase superscript 𝑇 (e.g. 𝐷𝑇 ) refers to the transpose of a
vector/matrix, whereas a lowercase superscript 𝑡 (e.g. 𝛽𝑡 ) refers to the 𝑡th iteration.
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where 𝑧 𝑗 ∈ 𝐴′ in (20) is allowed to be continuous and take on any value between zero and one,
while integrality constraints are placed on 𝑧 𝑗 ∈ 𝐴 in (21). Allow 𝛽𝑡 and 𝑧𝑡 to denote the regression
parameters and binary selection variables at iteration 𝑡. At iteration 𝑡 + 1 update 𝐴 = 𝐴 ∪ { 𝑗 |𝑧𝑡𝑗 ≠
0, 𝑗 ∈ 𝐴′} and then solve the MIP in (18)–(21) with warm-starting functionality of the MIP solver
activated. This means that the solution at iteration 𝑡 is used as starting point at iteration 𝑡 + 1. Since
the MIP is a relaxation of (9)–(11), it provides a lower bound to the original problem i.e. logistic loss
that is produced by the regression model (9)–(11) will be greater than or equal to the logistic loss
obtained when using (18)–(21). As such, at each iteration 𝑡, the MIP in (18)–(21) aims to improve
the MIP lower bound while also allowing an optimality gap to be calculated. The solution algorithm
proposed by Dedieu et al. (2021) is capable of solving high-dimensional problems with a variable set
of up to 50 000 independent variables as a result of the novel integrability generation logic applied.
In general, the empirical results presented by the authors focused on solving sparse classification
problems where 𝑛 ≤ 1000.

The lasso or 𝐿1-norm regularisation has multiple attractive properties, some of which include its
computational efficiency and scalability in the case of large-scale problem instances (Bertsimas et al.,
2016; Hastie et al., 2020). One of its most useful characteristics is its ability to act as a true independent
variable selection algorithm by setting some regression parameter estimates exactly equal to zero.
Lasso regression does, however, introduce model bias by shrinking parameter estimates towards zero.
This is especially true when independent variables in the design matrix have different measurement
scales, where the betas associated with variables that have large true underlying regression parameters
experience a greater degree of shrinkage (and, therefore, bias) (Bertsimas et al., 2016). In turn, the
resulting shrinkage can adversely impact statistical inferences that are carried out when assessing the
model, such as the evaluation of log-odds ratios (Heinze et al., 2018). Ridge regression suffers from
the same drawbacks as lasso, but has the added disadvantage of producing larger models that contain
many independent variables. This is because ridge regression only shrinks the regression parameters
without setting them exactly equal to zero (Venter, 2020). As such, ridge regression should not
be considered a true subset selection technique. Parameter bias as a result of regularisation can,
however, be alleviated by performing a second round of model fitting, where a logistic regression
model that only uses the variables identified by lasso is considered for inclusion. During this second
round, no variable selection is performed (i.e. no regularisation terms are present in the model)
and the goal is simply to generate improved parameter estimates with less bias for the purpose of
statistical inference.

Regularisation techniques usually employ a penalisation parameter _ to control the magnitude of
regularisation. The choice of this penalisation parameter (when manually selected) is subjective in
nature and leads to a trade-off between variance and bias (Venter, 2020). The subjective nature of
manually selecting the penalisation parameter can, however, be mitigated by an automated approach
that uses a combination of cross-validation and grid search. When such an approach is utilised, a
predefined grid of penalisation parameters is considered during various iterations of model fitting,
where the most appropriate parameter value that corresponds to the best model performance is
selected. Similarly, Bertsimas et al. (2016) proposes a heuristic-based approach to generate a
regularisation path for the penalty parameters. It should be noted, however, that cross-validation and
the approach proposed by Bertsimas et al. (2016) are heuristics by nature and as such can not provide
an optimality guarantee with respect to the quality of the final model. This is because the complete
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solution search space over the full range of penelisation parameter values cannot be considered
simultaneously, since the optimality gap yielded by (6), (9) or (12) is specific to some constant value
of _. The optimality gap (which is used to provide an optimality guarantee) can be defined according
to

optimality gap =
𝑏𝑏 − 𝑏𝑖
|𝑏𝑖 | + 𝛼 ,

where 𝑏𝑏 denotes the best bound of the MIP obtained and 𝑏𝑖 the best integer solution. An arbitrary
small value 𝛼 is added to the denominator to prevent the gap from being undefined when |𝑏𝑖 | is
zero. The best bound in a maximisation problem can be interpreted as the bound obtained by a
linear programming (LP) relaxation of the original problem. This means that all integer or binary
variables are relaxed and allowed to take on any real value, which reduces the number of constraints
that the problem needs to adhere to. The best integer solution is obtained by means of a branch-and-
bound algorithm. The branch-and-bound algorithm is designed to solve combinatorial optimisation
problems and a detailed overview of the algorithm is available in Section 4.2.2 of Venter (2020).

An alternative to variable selection using regularisation terms is rooted in the concept of informa-
tion theory. Some of the most well-known information criteria include AIC and BIC. An IC-based
subset selection problem that utilises the AIC solves

min
𝛽,𝑧

2 𝑓 (𝛽; X,Y) + 2(
∑︁
𝑗∈𝑝

𝑧 𝑗 + 1), (22)

whereas a model that utilises the BIC is fitted by solving

min
𝛽,𝑧

2 𝑓 (𝛽; X,Y) + log( |𝑛|) (
∑︁
𝑗∈𝑝

𝑧 𝑗 + 1). (23)

Using (22) and (23), Sato et al. (2016) proposes a logistic regression model that minimises a
piecewise linear approximation of the logistic loss function while simultaneously performing subset
selection via the inclusion of the AIC or BIC in the linearised objective function. Let 𝛾𝑘 denote a
set of symmetric grid values, where 𝑘 ∈ 𝐾 = {1, 2, ..., |𝐾 |}. The authors approximate the non-linear
logistic loss function in (5) by creating a series of linear functions that track the logistic loss curve
from below and cut away non-feasible regions of the solution space. This relates to the pointwise
maximisation of a set of linear inequalities which can be written as

max{ 𝑓 ′ (𝛾𝑘) (𝑌𝑖 (𝑋𝑇𝑖 𝛽) + 𝑓 (𝛾𝑘)} ∀𝑘 = 1, ..., 𝐾. (24)

These linear inequalities can be reformulated as a minimisation problem according to

min{𝜑|𝜑 ≥ 𝑓 ′ (𝛾𝑘) (𝑌𝑖 (𝑋𝑇𝑖 𝛽) + 𝑓 (𝛾𝑘)} ∀𝑘 = 1, ..., 𝐾. (25)

The methodology proposed by Sato et al. (2016) is summarised in Figure 1 with the dashed
lines representing the piecewise linear approximations of the logistic loss function. Since the
approximation is below the logistic loss function, it can be described as an overestimation of the
log-likelihood function, since the negative of the logistic loss yields the log-likelihood. The number
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Figure 1. Piecewise linear overestimation of the logistic loss function

of tangent lines is defined by 𝐾 (in Figure 1, 𝐾 = 2 tangent lines are used). Larger numbers of linear
splines result in an approximation that is closer to the non-linear logistic loss function.

The proposed piecewise linear approximation approach by Sato et al. (2016) can formally be
defined as

min
𝛽,𝑧,𝜑

2
∑︁
𝑖∈𝑛

𝜑𝑖 + 𝐼 (
∑︁
𝑗∈𝑝

𝑧 𝑗 + 1). (26)

subject to
𝜑𝑖 ≥ 𝑓 ′ (𝛾𝑘) (𝑌𝑖 (𝑋𝑇𝑖 𝛽) − 𝛾𝑘) + 𝑓 (𝛾𝑘) ∀𝑘 ∈ 𝐾;∀𝑖 ∈ 𝑛, (27)

𝑧 𝑗 = 0 → 𝛽 𝑗 = 0 ∀ 𝑗 ∈ 𝑝, (28)

𝑧 𝑗 ∈ {0, 1} ∀ 𝑗 ∈ 𝑝, (29)

where (27) represents a piecewise linear estimation of the logistic loss function as discussed in detail
by Venter (2020) and Sato et al. (2016). Note that 𝐼 in (26) does not denote an indicator function,
but instead represents the information criterion that is applied during model fitting. When 𝐼 = 2,
the objective function in (22) is found and the AIC is used. Alternatively, when 𝐼 = log(·), the
objective function (23) is used, which implies that the model is optimised with respect to the BIC.3

The number of tangent lines 𝐾 determines the accuracy of the linear approximation and, therefore,
a trade-off exists between approximation accuracy and execution time (Sato et al., 2016). Variable

3It is important to note that 𝐼 , used as part of the MIP formulation presented in (26)–(29), is a constant that facilitates switching
between the use of either the Akaike or Bayesian information criterion. It does not represent an indicator function.
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subset selection is facilitated by the selection decision variable 𝑧 𝑗 by means of (28) which is referred
to as an indicator constraint or SOS1 (special ordered set), which implies that only one element in
the set {1 − 𝑧 𝑗 , 𝛽 𝑗 }∀ 𝑗 ∈ 𝑝 can be non-zero. This means that 𝛽 𝑗 should be set equal to exactly zero
when 𝑧 𝑗 = 0 and non-zero otherwise. Constraint (28) is an alternative to a big-M formulation which
can equivalently be defined as

∑
𝑗∈𝑝 |𝛽 𝑗 | ≤ 𝑀𝑧 𝑗 . It is important to note, however, that empirical

evidence suggests that variable subset selection by means of minimising some information criterion
(e.g. AIC or BIC) tends to favour larger models that are less parsimonious (Venter, 2020; Kutner
et al., 2005).

Finally, we consider the piecewise linear approximation formulation for the logistic regression best
subset selection problem that is proposed by Venter (2020). This formulation differs from that of
Sato et al. (2016) in two noticeable areas, namely4

1. an explicit cardinality constraint is used instead of some information criterion to facilitate
variable selection; and

2. instead of minimising the logistic loss (which results in an overestimation of the log-likelihood),
a linear approximation of the log-likelihood is maximised (which results in an underestimation
of the log-likelihood).

By critically evaluating the log-likelihood function defined in (4) it is clear that the first term is
already linear. As such, only the second term

∑
𝑖∈𝑛 log(1 + exp(𝛽𝑇𝑋𝑖)) needs to be linearised.

The non-linear section is linearised by using Λ𝑖𝑘 ∈ R{0,1} as an interval selection variable which
relates the linearised grid point splines 𝛾𝑘 to the continuous estimates of 𝛽𝑇𝑋𝑖 . In other words, the
decision variable Λ𝑖𝑘 identifies the appropriate line segment between two splines [𝛾𝑘 , 𝛾𝑘+1] (used
to approximate the log-likelihood function) that corresponds to the log-likelihood function value
𝑓 (𝛽; X,Y). The non-linear term of the log-likelihood function is therefore estimated by 𝐾 linear
line segments that connect at grid points 𝛾𝑘 , where min(𝛾𝑘) = −Γ and max(𝛾𝑘) = Γ. The decision
variable Λ𝑖𝑘 can alternatively be thought of as an interpolation variable. Figure 2 provides a visual
representation of the piecewise linear underestimation of the log-likelihood function, where the
dashed lines represent the piecewise linear approximation proposed by Venter (2020) and the solid
black line denotes the non-linear log-likelihood.

The piecewise linear approximation of the log-likelihood attempts to fit a logistic regression model
while simultaneously performing best subset selection by solving

max
𝛽,Λ,𝑧

∑︁
𝑖∈𝑛

∑︁
𝑘∈𝐾

(𝛾𝑘𝑌𝑖 − log[1 + exp(𝛾𝑘)])Λ𝑖𝑘 , (30)

subject to ∑︁
𝑘∈𝐾

Λ𝑖𝑘𝛾𝑘 = 𝛽
𝑇𝑋𝑖 ∀𝑖 ∈ 𝑛, (31)

4 From Figure 1, observe that the optimal solution is found where the two lines intersect. This means that the linear
approximation of the logistic loss function underestimates the non-linear function (the solid line in Figure 1). However, given
that − 𝑓 (𝛽; X,Y) is the logistic loss function and 𝑓 (𝛽; X,Y) the log-likelihood, we note that an underestimation of the
logistic loss function results in an overestimation of the log-likelihood. The opposite is true for the formulation proposed by
Venter (2020).
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Figure 2. Piecewise linear underestimation of the log-likelihood function

∑︁
𝑘∈𝐾

Λ𝑖𝑘 = 1 ∀𝑖 ∈ 𝑛, (32)

0 ≤ Λ𝑖𝑘 ≤ 1 ∀𝑘 ∈ 𝐾;∀𝑖 ∈ 𝑛, (33)

|𝛽 𝑗 | ≤ 𝑀𝑧 𝑗 ∀ 𝑗 ∈ 𝑝, (34)∑︁
𝑗∈𝑝

𝑧 𝑗 ≤ 𝑐. (35)

Constraint (32) guides the selection of the appropriate linearised line segments in conjunction
with (31) and (33) such that the log-likelihood is maximised. Constraints (34) and (35) are jointly
referred to as cardinality selection constraints such that (35) ensures that a maximum of 𝑐 independent
variables are included in the model, while (34) allows the regression parameter 𝛽 𝑗 ∀ 𝑗 ∈ 𝑝 to default
to 0 when 𝑧 𝑗 = 0 and range between [−𝑀, 𝑀] when 𝑧 𝑗 = 1. By using explicit cardinality constraints,
the shrinkage effect (and, therefore the bias) introduced by regularisation is no longer present and the
computational burden associated with the determination of the penalty term (e.g. cross-validation)
is eliminated. In contrast to regularisation approaches, the MIP formulation proposed by Venter
(2020) does not influence the interpretability of the regression parameters (Heinze et al., 2018).
However, in all fairness, the proposed MIP formulation does require the specification of a cardinality
value 𝑐 that is used to limit the number of independent variables that can enter the model. In
contrast to regularisation approaches, all possible variable combinations are considered for a specific
cardinality value 𝑐, which means that the best subset MIP formulation can produce an optimality
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gap and, therefore, a true measure of optimality (Hastie et al., 2020). This means that changing
the value of 𝑐 will only influence the number of independent variables included in the final subset
and the final model performance, but (theoretically) for any given 𝑐, the best possible model is
always obtained (the same cannot be said for regularised approaches or approaches that make use
of p-values). Furthermore, an added benefit of the best subset MIP formulation is the possibility of
explicitly controlling the sparsity of the model through 𝑐. Alternatively, no clear relationship exists
between 𝑐 and the penalty term _ that is used in regularisation approaches (Bertsimas et al., 2016).

Unfortunately, the approach in (30)–(35) requires some manual intervention for successful ex-
ecution. The end-points of the grid [−Γ, Γ] that describe the linearised approximation of the
log-likelihood need to be manually calculated. This can be achieved by solving an LP relaxation
of the original MIP problem formulation proposed by Venter (2020) that excludes all cardinality
constraints. The linearised piecewise extreme points are then derived from the initial solution in a
way which ensures that the complete search space is considered. According to the author, this type
of manual intervention is undesirable if the objective is to automate the process of model fitting such
that the optimal search space is determined by the algorithm and not the user. A detailed approach
for finding the extreme points of the grid used to linearise the log-likelihood can be found in Venter
(2020).

For the remainder of this paper, we use the formulation proposed by Venter (2020) to design
our automated best subset logistic regression framework (our ALRSF). We address some of the
drawbacks (as mentioned previously) associated with the model in (30)–(35) while attempting to
automate the model fitting process and reduce the computational burden of best subset selection as
much as possible.

3. Proposed MIP formulation
The proposed ALSRF combines the concept of a regression parameter fixing heuristic and Benders
decomposition to allow for an improved deterministic solution framework that solves the best subset
selection MIP problem within acceptable time frames while providing a guarantee of optimality.
The solution framework is made up of three distinct steps which include the cardinality parameter
selection step (automatically determining the most appropriate number of variables to include in the
model), search space pruning step (automatically reducing the MIP search space that contains the
range of possible values which regression parameters can take on in order to reduce run times) and
an optimality gap calculation step (in order to provide a guarantee on the quality and optimality of
the final regression model). This section presents the reader with the modifications made to the
MIP formulation in (30)–(35), followed by a detailed exposition of the proposed novel ALRSF in
Section 4.

First, let 𝑝′ denote a subset of 𝑝 such that 𝑝′ ⊆ 𝑝 . The subset 𝑝′ can be defined as a set of
independent variables for which the variance inflation factor (VIF) is larger than some threshold 𝐿.
The subset 𝑝′ therefore contains the indices of all the variables in the original set 𝑝 that need to be
excluded by the ALRSF based on the VIF criteria. Incorporating a VIF threshold into the ALRSF
(which has not been done in any of the logistic regression best subset selection MIP formulations
presented in Section 2) serves two purposes:

1. Highly correlated variables are barred from being included in the final model in an effort
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to reduce multicollinearity. It is well-known that correlated predictors add no additional
information to the model (as potential signals are already contained within the other inputs)
and result in unstable parameter estimates.

2. By eliminating some of the variables from the start, the logistic regression problem instance now
has to consider fewer variables in its search for the best variable subset, which can potentially
result in shorter execution times and fewer computational resources being consumed.

Next, allow 𝛽′𝑗 ∈ Z | ∀ 𝑗 ∈ 𝑝 to be an integer representation of the continuous decision variable
𝛽 𝑗 ∈ R |∀ 𝑗 ∈ 𝑝. A constant 𝐻 is used to facilitate the conversion of 𝛽′𝑗 from an integer variable to
a continuous variable 𝛽 𝑗 by setting 𝛽 𝑗 = 𝛽′𝑗/𝐻. A value for 𝐻 can be chosen arbitrarily, noting that
larger values for 𝐻 will result in greater accuracy when estimating 𝛽, but increases the solution search
space (resulting in extended execution times). The choice of𝐻 also influences the decimal precision of
𝛽. The proposed transformation allows the unique block structure of the MIP problem to be exploited
such that it can be divided between a master and a sub-problem for Benders decomposition.5 A brief
overview of Benders decomposition will follow later on in this section. When the default Benders
decomposition algorithm is considered, we note that all integer decision variables are allocated to
the master problem, while continuous variables are assigned to the sub-problems. By applying
the standard Benders decomposition algorithm to the MIP formulation proposed by Venter (2020),
all decision variables apart from the cardinality selection variables 𝑧 𝑗 will be allocated to the sub-
problems which will result in an invalid decomposition. By using integer values for the continuous
regression parameters, we are able to make use of a valid Benders decomposition in an attempt
to increase computational efficiency. The complete proposed MIP formulation for the piecewise
linearised log-likelihood function (with the aforementioned modifications) is presented as

max
𝛽′ ,𝑧,Λ

∑︁
𝑖∈𝑛

∑︁
𝑘∈𝐾

(𝛾𝑘𝑌𝑖 − log[1 + exp(𝛾𝑘)])Λ𝑖𝑘 , (36)

subject to ∑︁
𝑘∈𝐾

Λ𝑖𝑘𝛾𝑘 =
𝛽′𝑇

𝐻
𝑋𝑖 ∀𝑖 ∈ 𝑛, (37)

∑︁
𝑘∈𝐾

Λ𝑖𝑘 = 1 ∀𝑖 ∈ 𝑛, (38)

0 ≤ Λ𝑖𝑘 ≤ 1 ∀𝑘 ∈ 𝐾;∀𝑖 ∈ 𝑛, (39)
𝛽′𝑗
𝐻

= 0 ∀ 𝑗 ∈ 𝑝′, (40)
�����
𝛽′𝑗
𝐻

����� ≤ 𝑀𝑧 𝑗 ∀ 𝑗 ∈ 𝑝, (41)

∑︁
𝑗∈𝑝

𝑧 𝑗 ≤ 𝑐. (42)

5The use of Benders decomposition greatly reduces the memory requirement associated with solving the best subset selection
MIP problem (formulated in Section 3) in comparison to using the standard branch-and-bound algorithm.
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By incorporating constraint (40), we allow the model to automatically discard highly correlated
variables that breach a VIF threshold supplied by the user (recall that 𝑉𝐼𝐹𝑗 > 𝐿, ∀ 𝑗 ∈ 𝑝′).
This also reduces the problem search space of the MIP. Note that constraint (37) serves as the
connecting constraint that distinguishes between the master problem and sub-problem for Benders
decomposition, where 𝛽′𝑗/𝐻 relates the integer regression parameters to the real-valued parameters
𝛽 𝑗 . The idea behind Benders decomposition is to fix a set of complicating variables to yield an
optimisation problem that is notably easier to solve. A high-level introduction to the approach will
be provided at the hand of a mixed integer linear programming (MILP) problem (note that the best
subset selection logistic regression problem presented in (36)–(42) also classifies as a MILP). The
objective function of the Benders decomposition problem can be defined according to

min
𝑥,𝑦

𝜌𝑇 𝑦 + 𝜎𝑇𝑥, (43)

subject to
𝑊𝑦 = ^, (44)

𝑂𝑦 + 𝐷𝑥 = 𝜏, (45)

𝑥 ≥ 0, ∀𝑥 ∈ R, (46)

𝑦 ≥ 0, ∀𝑦 ∈ Z, (47)

where𝑊 ∈ R𝑚1×𝑛1 represents a known coefficient matrix of size𝑚1×𝑛1 and ^ ∈ R𝑛1 a pre-determined
vector of size 𝑛1 (Rahmaniani et al., 2017). The variables 𝑥 ∈ R and 𝑦 ∈ Z are continuous and integer
decision variables, respectively. Let 𝑂 ∈ R𝑚2×𝑛1 and 𝐷 ∈ R𝑚2×𝑛2 denote matrices of size 𝑚2 × 𝑛1
and 𝑚2 ×𝑛2, respectively. Similar to ^, let 𝜏 ∈ R𝑛2 denote a predefined vector of size 𝑛2 (Rahmaniani
et al., 2017). Finally, let 𝜎 and 𝜌 denote the cost associated with each decision variable in 𝑥 and
𝑦, respectively, with the objective function in (43) aimed at minimising the overall cost with respect
to 𝑥 and 𝑦. The integer decision variables 𝑦 can be considered as being a set of complicating
variables (Rahmaniani et al., 2017). Constraint (45) acts as a connecting constraint which relates
the continuous decision variables 𝑥 to the complicating integer decision variables 𝑦. The same
can be said for constraint (37) in the ALRSF formulation, where (37) can be rewritten such that∑
𝑘∈𝐾 Λ𝑖𝑘𝛾𝑘 − (𝛽′𝑇/𝐻)𝑋𝑖 = 0 ∀𝑖 ∈ 𝑛 resembles constraint (45) in a standard MILP. The right-hand

side of (37) can be rewritten such that it represents the standard form of the Benders decomposition
problem. For any fixed value of 𝑦 (defined as 𝑦∗) the original optimisation problem (43)–(47) can be
defined as

min{𝜌𝑇 𝑦∗ + min
𝑥≥0

{𝜎𝑇𝑥 | 𝐷𝑥 = 𝜏 −𝑂𝑦∗}}. (48)

Since the inner minimisation problem is a continuous linear problem, it follows from duality theory
that the inner problem can be dualised by adding dual variables \𝑣 to the relaxed constraint set given
by 𝐷𝑥 = (𝜏 −𝑂𝑦∗) where 𝑣 ∈ 𝑉 is a set of extreme points. (Rahmaniani et al., 2017). Each solution
to the inner maximisation problem in (49) generates one of the extreme points \𝑣 , ∀𝑣 ∈ 𝑉 . The dual
representation of (48) then aims to

max
\𝑣 ,𝑣∈𝑉

\𝑇𝑣 (𝜏 −𝑂𝑦∗), (49)

102 VAN NIEKERK, VENTER & TERBLANCHE



subject to
\𝑇𝑣𝐷 ≤ 𝜎 ∀𝑣 ∈ 𝑉. (50)

It follows that (49) can be substituted into the second term of the minimisation problem presented in
(48) which leads to a minmax optimisation problem equivalent to

min{𝜌𝑇 𝑦∗ + max
\𝑣 ,𝑣∈𝑉

{\𝑇𝑣 (𝜏 −𝑂𝑦∗)}}, (51)

subject to
\𝑇𝑣𝐷 ≤ 𝜎 | ∀𝑣 ∈ 𝑉. (52)

The feasibility of the inner maximisation problem is dependent on \ (as captured by constraint (52)
above) but independent of the choice of 𝑦∗. According to Rahmaniani et al. (2017), the choice
of 𝑦∗ can, however, result in either a feasible or unbounded solution of the optimisation problem
(Rahmaniani et al., 2017). Considering the latter case, there exists some direction 𝑟𝑔 (with 𝑔 ∈ 𝐺
describing all possible directions of unboundedness) for which 𝑟𝑇 (𝜏 − 𝑂𝑦∗) > 0. To prevent
unboundedness, a feasibility cut-off of the form

𝑟𝑇 (𝜏 −𝑂𝑦∗) ≤ 0, (53)

is added to (51) which leads to

min{𝜌𝑇 𝑦∗ + max
𝑣∈𝑉

{\𝑇𝑣 (𝜏 −𝑂𝑦∗)}}, (54)

subject to
𝑟𝑇𝑔 (𝜏 −𝑂𝑦∗) ≤ 0 | ∀𝑔 ∈ 𝐺. (55)

The objective function in (54) can be linearised by replacing the dual maximisation problem (second
term of (54)) with a decision variable b. This linearised form of the optimisation problem (54)–(55)
is known as the Benders decomposition master problem (MP) and is defined as

min
𝑦, b

𝜌𝑇 𝑦 + b, (56)

subject to
𝑊𝑦 = ^, (57)

𝑟𝑇𝑔 (𝜏 −𝑂𝑦) ≤ 0 | ∀𝑔 ∈ 𝐺, (58)

\𝑇𝑣 (𝜏 −𝑂𝑦) ≤ b | ∀𝑣 ∈ 𝑉, (59)

𝑦 ≥ 0 | 𝑦 ∈ Z. (60)

The Benders decomposition sub-problem (SP) is captured by (49)–(50). Ultimately, the MP aims to
find suitable values for 𝑦 and b, after which the SP is solved by using a value of 𝑦 that is generated
when the MP yields 𝑦 = 𝑦∗. Constraints (58) and (59) can be referred to as feasibility and optimality
cuts, respectively. The cuts are generated based on the solution of the sub-problem. If the solution
of the sub-problem is unbounded, a feasibility cut of the form (58) is added to the MP. Similarly,
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if the solution is both feasible and bounded, an optimality cut of the form (59) is added to the MP.
This iterative solve-and-cut approach continues until the algorithm converges to a solution. The
generated cuts prune the solution search space such that the overall computational burden of the
algorithm is reduced. The MP will generally contain all of the integer variables, while the remainder
of the variables (which are the continuous variables) will form part of the SP (Taşkin, 2010). The
Benders decomposition algorithm can therefore be applied to the logistic regression MIP presented
in (36)–(42) because it can be decomposed into an MP and SP as a result of the integer transformation
that is proposed for the regression parameters.

4. Novel automated logistic regression solution framework (ALRSF)
The ALRSF’s goal is to solve the MIP presented in (36)–(42) to optimality while also producing high-
quality solutions. This is no easy task given that the best subset selection problem is NP-hard. As such,
this section will clearly outline the adopted approach which includes a combination of mixed integer
programming, Benders decomposition and heuristic-based techniques. Let 𝑡 ∈ 𝑇 = {1, 2, ..., |𝑇 |}
denote an outer looping constant that is used to keep track of the number of iterations that are executed
by the ALRSF, where 𝑇 is equal to 𝑝, the number of independent variables under consideration in
the training set. Next, assume that all of the independent variables are sorted according to their
information value (IV) in descending fashion (where the variable with the highest IV is ranked first
and the variable with the lowest IV is ranked last) and 𝐼𝑉 𝑗 denote the ranking of the 𝑗 th variable
relative to the other variables. The ranking dictates the order in which the independent variables are
included in the solution algorithm at each step 𝑆. IV is widely used within credit scoring applications
to assess an independent variable’s predictive power and its ability to differentiate between the
discrete target variable classes (Kolacek and Rezac, 2010; Kvesic and Gordana, 2012). In general,
a variable with an IV that is higher than 0.2 or 0.3 is an acceptable candidate for inclusion in a
scorecard model (Kolacek and Rezac, 2010; Kvesic and Gordana, 2012). For the ALRSF, however,
the IVs are only used to rank-order each independent variable (relative to the other variables) with
respect to its perceived predictive power. This means that the absolute values of the IVs themselves
have no meaning.6 Let Δ𝛾𝑘 denote the distance between two splines [𝛾𝑘+1 − 𝛾𝑘] associated with
the piecewise linear approximation of the log-likelihood function (depicted in Figure 2). In case
of symmetric splines Δ𝛾𝑘 can be simplified to Δ𝛾. Let Ω𝑖 ∈ 𝑛 represent a grid range evaluation
variable which is used to identify whether the selected regression parameters cause the current grid
range [−Γ, Γ] to be inadequate and is calculated as Ω𝑖 = (𝛽′/𝐻𝑇 )𝑋𝑖 ∀𝑖 ∈ 𝑛. To illustrate, refer
to Figure 2 where the extreme points of the grid are shown as −Γ = 𝛾0 and Γ = 𝛾𝑘 . The solution
search space is deemed to be too small when Ω𝑖 ≥ Γ or Ω𝑖 ≤ −Γ, which implies that the grid with
range [−Γ, Γ] must be expanded to ensure that all possible solutions are considered by the logistic
regression MIP. Specifically, the size of the grid needs to be expanded by some value 𝜓 such that the
grid points now range between [−Γ −𝜓, Γ +𝜓]. The constant 𝜓 is arbitrarily selected and influences
the incremental size with which the search space is increased. A large value for 𝜓 may reduce the
number of iterations needed to identify a sufficiently large grid, but can potentially cause the search

6For the purpose of this article IV was used as a measure of variable importance, however, any appropriate variable importance
statistic (e.g. univariate Gini coefficient) can be utilised in place of IV to establish the independent variable importance rank-
order.
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space to be larger than needed, which can increase execution time. A balance should thus be struck
between execution speed and the tightness of the solution search space. Let Z ∈ {0, 1} represent a
binary variable which is used to identify whether the grid range [−Γ, Γ] is sufficiently large or needs
to be expanded. When Z = 1 the current iteration 𝑡 will be re-executed with an increased grid range.
This will continue until the grid range is sufficiently large and represents the complete search space
before the ALRSF can move to iteration 𝑡 + 1. When Z = 0, the grid range considered is deemed
to be large enough and the relevant performance measures and solution progress recorded for use in
iteration 𝑡 + 1.

A detailed study by Venter (2020) showed that a large value for 𝐾 (the number of piecewise linear
splines used to approximate the non-linear log-likelihood) can dramatically increase the execution
time of the algorithm, while smaller 𝐾 values result in an underestimation of the non-linear log-
likelihood function. The aforementioned underestimation is, however, only marginal (and at times
negligible) for small values of 𝐾 . In general, models exhibited similar predictive performance across
multiple empirical experiments for a wide range of 𝐾 values. Let 𝑃𝑡 denote the performance measure
recorded at iteration 𝑡 based on a holdout test set7. The performance measure 𝑃𝑡 is used to determine
whether the cardinality of the model (denoted by 𝑐) and set of regression parameters associated with
the best model identified thus far (denoted by 𝛽′𝑏) should be updated with the solutions (the variables
selected and their associated parameters) generated in the latest iteration. Let 𝑃𝑏 denote the best value
of 𝑃𝑡 that is recorded over all iterations such that 𝑃𝑏 = max(𝑃𝑡 ) for 𝑡 = {1, 2, 3, ..., |𝑇 |}. To evaluate
the ALRSF, the area under the curve (AUC) was used as a performance measure 𝑃𝑡 (although,
theoretically, any model fit statistic such as the Gini coefficient or accuracy can also be used). A
list of possible performance measures for binary classification problems is available in Table 1 of
Sokolova and Lapalme (2009). Since the ALRSF starts with an iterative cardinality selection step
and uses a performance measure 𝑃𝑡 to assess the relative increase/decrease in model performance
based on the inclusion of the 𝑗 th independent variable, some form of performance tracking is required
to identify when the predictive power of the model starts to plateau in spite of the addition of more
independent variables. Specifically, when the performance of the model on the test dataset either
reaches a plateau or decreases at iteration 𝑡 of the ALRSF, it indicates that the cardinality parameter
𝑐 (which dictates the number of variables to include in the model) can be set equal to the size of the
subset identified at iteration 𝑡−1. The variable 𝑢 ∈ Z+ is used as the aforementioned tracking variable
that keeps track of the number of consecutive iterations for which the performance measure 𝑃𝑡 has
not improved on the best-recorded performance measure 𝑃𝑏. The value of 𝑢 is then evaluated against
a predefined threshold𝑈, which determines the maximum allowable consecutive iterations for which
𝑃𝑏 does not improve. When the threshold 𝑈 is exceeded the cardinality step will be terminated and
the search space pruning step initiated.

A holistic overview of Algorithms 1 to 5 will be provided next, which are explained in conjunction
with Algorithm 1. This is because Algorithm 1 serves as an overarching driving algorithm that
controls the various steps 𝑆 = {0, 1, 2} contained within the ALRSF. Since Algorithm 1 functions as
the driving force behind each step of the ALRSF, the reader can continuously return to Algorithm
1 to identify the subsequent step that should be executed. In other words, the algorithmic flow will

7 Note that the ALRSF evaluates the performance of the model based on a test set so that models that overfit on the training
data are not presented as the champion.
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jump between Algorithm 1 and the remainder of the Algorithms 2 to 5 as required by the ALRSF
logic. Next, we discuss the flow of each algorithm contained within Algorithm 1:

• At the start of Algorithm 1, the step counter is set equal to 𝑆 = 0 and we start at iteration 𝑡 = 1.
When the for-loop is entered at 𝑡 = 1, the logic contained within Algorithm 2 is initiated.

• As we enter Algorithm 2 at iteration 𝑡 = 1 and step 𝑆 = 0, the pseudo code in lines 6 to 12 is
executed. The aforementioned pseudo code identifies which regression parameters contained
within the vector 𝛽′ should be set equal to zero and which are allowed to take on integer values.
Once this is done, we return to Algorithm 1 as per line 25 of Algorithm 2.

• Entering Algorithm 1 for a second time at iteration 𝑡 = 1 and step 𝑆 = 0 invokes the if statement
in line 4 of Algorithm 1. This if statement instructs the solver to now consider Algorithm 3.

• The goal of Algorithm 3 is to automatically determine the cardinality parameter 𝑐 (which
dictates the size of the best subset of predictor variables) by iteratively adding independent
variables one-by-one to the logistic regression MIP in (36)–(41) (note that constraint (42) is
omitted in this step as we have not determined a final value for 𝑐 yet). The change in the
performance measure 𝑃𝑏 is also assessed during this step. The final value of 𝑐 is determined at
the point where no further improvement in 𝑃𝑏 has been observed for𝑈 consecutive iterations.
At each iteration 𝑡, the MIP will abide by an additional constraint which dictates that

∑
𝑗∈𝑝 𝑧 𝑗 = 𝑡

based on the regression parameters that were allowed to be non-zero in Algorithm 2. Note
that Algorithm 3 does not have an outer loop counter that corresponds to each iteration 𝑡 ∈ 𝑇 .
Therefore, Algorithm 3 is called as needed (and non-iteratively) by Algorithm 1.

• We now direct our attention to the two for-loops in lines 7 to 9 and 13 to 20 of the pseudo-code of
Algorithm 3. The first for-loop removes highly correlated variables from the MIP formulation
by setting their regression parameters equal to zero. It is assumed that the VIF associated with
each variable and the VIF threshold is provided by the user. The second for-loop determines
if the sum of the regression parameters and independent variable values of each record falls
within the range [−Γ, Γ] that was specified for grid points used to linearise the log-likelihood
(see lines 13 to 20). If this is not the case, the range of the grid is increased to ensure that the
solution search space is sufficiently large and the 𝑡th iteration is re-executed.

• Once Algorithm 3 concludes in iteration 𝑡 = 1, we revert back to Algorithm 1, as indicated by
line 45 of Algorithm 3. Since the cardinality selection step has not reached the consecutive
performance improvement limit 𝑈 as described in lines 35 to 38, the step counter 𝑆 is not
incremented and as such will remain fixed at 𝑆 = 0.
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Algorithm 1 – ALRSF algorithmic driver.
1: 𝑆 = 0
2: for 𝑡 = 1 to 𝑇 do
3: Execute Algorithm 2 (regression parameter fixing heuristic) based on the value of 𝑆.
4: if 𝑆 = 0 then
5: Execute Algorithm 3 (cardinality selection step) where 𝑆 = 0.
6: else if 𝑆 = 1 then
7: Execute Algorithm 4 (search space pruning step) where 𝑆 = 1.
8: else if 𝑆 = 2 then
9: Execute Algorithm 5 (optimality step) where 𝑆 = 2.

10: end if
11: end for
12: Solution Algorithm Completed.

Algorithm 2 – Regression parameter fixing heuristic.
1: if (𝑡 ≥ 𝑇) & (𝑆 = 1) then
2: 𝑆 = 𝑆 + 1
3: 𝑡 = 𝑇 − 1
4: end if
5: if 𝑆 = 0 then
6: for 𝑗 = 1 to 𝑝 do
7: if (𝐼𝑉 𝑗 ≤ 𝑡) then
8: 𝛽′𝑗 = free
9: else

10: 𝛽′𝑗 = 0
11: end if
12: end for
13: else if 𝑆 = 1 then
14: for 𝑗 = 1 to 𝑝 do
15: if ( |𝛽′𝑗 𝑡−1 | > 0) or (𝐼𝑉 𝑗 = 𝑡) then
16: 𝛽′𝑗 = free
17: else
18: 𝛽′𝑗 = 0
19: end if
20: end for
21: else if 𝑆 = 2 then
22: for 𝑗 = 1 to 𝑝 do
23: 𝛽′𝑗 = free
24: end for
25: Return to Algorithm 1 - (driver algorithm).
26: end if
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Algorithm 3 – Cardinality selection step – 𝑆 = 0.
1: 𝑐 = 0
2: 𝑃𝑡 and 𝑃𝑏 = 0
3: 𝛽′𝑏 = 0
4: 𝑘 = 0
5: 𝑢 = 0
6: Z = 0
7: for 𝑗 = 1 to 𝑝′ do
8: 𝛽′𝑗 = 0 if 𝑉𝐼𝐹𝑗 > 𝐿
9: end for

10: Each regression parameter 𝛽′𝑗 associated with variable 𝑗 for which𝑉𝐼𝐹𝑗 > 𝐿 is set equal to zero.

11: Solve logistic regression MIP presented in (36)–(40) using Benders decomposition.
12: Cardinality Constraints (41) and (42) are excluded from the MIP.
13: for 𝑖 = 1 to 𝑛 do
14: Ω𝑖 = 0
15: Ω𝑖 = Ω𝑖 + 𝛽′𝑇𝑋𝑖
16: if (Ω𝑖 ≤ −Γ) or (Ω𝑖 ≥ Γ) then
17: |Γ | = |Γ | + 𝜓
18: Δ𝛾 = 2∗|Γ |

𝐾
19: Z = 1
20: end if
21: end for
22: if Z = 0 then
23: Calculate and record training and test performance measures 𝑃𝑡 .
24: Record 𝛽′𝑡 .
25: if 𝑃𝑡 > 𝑃𝑏 then
26: for 𝑗 = 0 to 𝑝 do
27: 𝛽′𝑗

𝑏 = 𝛽′𝑗
28: end for
29: 𝑃𝑏 = 𝑃𝑡
30: 𝑐 = 𝑐 + 1
31: 𝑢 = 0
32: else
33: 𝑢 = 𝑢 + 1
34: end if
35: if 𝑢 = 𝑈 then
36: 𝑆 = 𝑆 + 1
37: 𝑡 = 0
38: end if
39: else
40: 𝑡 = 𝑡 − 1
41: end if
42: Cardinality 𝑐 is produced as a result of this algorithm.
43: Save MIP solution found at iteration 𝑡 for use as warm-start during the execution of iteration

𝑡 + 1.
44: increment 𝑡 = 𝑡 + 1.
45: Return to Algorithm 1 - (driver algorithm).
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• The ALRSF will once again initiate Algorithm 2 at iteration 𝑡 = 2 and step 𝑆 = 0 so that it can
identify the next sequence of regression parameters that are allowed to take on non-zero values,
after which a version of the logistic regression MIP is solved such that a model is fitted that
contains 𝑡 independent variables. When the stopping criterion in lines 35 to 38 of Algorithm 3
is met, the step counter 𝑆 is incremented and the iteration counter is reset such that 𝑆 = 1 and
𝑡 = 0. We then return to Algorithm 1.

• A step value of 𝑆 = 1 and iteration counter value of 𝑡 = 0 in Algorithm 1 indicates that the
ALSRF should execute the portion of the parameter fixing heuristic algorithm (Algorithm 2)
that applies when 𝑆 = 1. This is contained in lines 13 to 20 of the pseudo-code for Algorithm
2. The logic is quite similar to that of lines 5 to 12 with only a few minor adjustments. Once
the appropriate regression parameters have been set equal to zero or non-zero, respectively,
the ALRSF returns to Algorithm 1 (as indicated by line 25 of Algorithm 2).

• Next, the ALRSF moves to lines 6 and 7 of Algorithm 1. In line 7, the search space pruning
step is initiated, the logic of which is found in the pseudo-code of Algorithm 4. Similar to
Algorithm 3, Algorithm 4 contains no iteration counter and is therefore called as and when
needed by Algorithm 1 (based on the step value 𝑆).

• The only difference between Algorithm 3 and Algorithm 4 relates to the fact that the logistic
regression MIP is now solved by incorporating the cardinality constraint in (42) in Section 3.
When 𝑆 = 1, the number of independent variables that are allowed to enter the final model
at each iteration is allowed to be at most 𝑐 + 1. This cardinality constraint is enforced by the
regression parameter fixing logic contained within Algorithm 2 where 𝑆 = 1.

• Furthermore, Algorithm 4 also determines if the solution search space is sufficiently large
enough by applying the logic contained within lines 10 to 18. If this is not the case, the grid
that is used to linearise the log-likelihood is enlarged by adjusting the range as in line 14,
after which iteration 𝑡 is re-executed. In essence, Algorithm 4 attempts to iteratively include
independent variables into the final subset of predictors (one by one in a sequential manner,
where the sequence depends on the variables’ IV) to determine if model performance can be
improved when compared to a model that only contains the predictors that are already in the
best subset of variables.

• Algorithm 4 will continue to execute until one pass through all of the independent variables
has been completed, i.e. until iteration 𝑡 = 𝑇 = 𝑝 is reached. In doing so, the entire solution
search space is pruned by solving sub-problems associated with the logistic regression MIP in
(36)–(42). It is important to note that the solution produced by the model at iteration 𝑡 is used
as a warm-start for iteration 𝑡 + 1 to ensure that any incremental progress made by continuous
search space pruning is not lost. In other words, when the model prunes the search space
during an iteration, the pruned space is recalled in future iterations in an attempt to reduce
execution times.

• At iteration 𝑡 = 𝑇 = 𝑝, Algorithm 4 concludes and lines 1 to 4 of Algorithm 2 are invoked (as
per Algorithm 1) which sets 𝑆 = 2 and initiates the optimality step. Since the optimality step
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Algorithm 4 – Search space pruning step – 𝑆 = 1.
1: Z = 0
2: Cardinality parameter value 𝑐 is generated by Algorithm 3.
3: for 𝑗 = 1 to 𝑝′ do
4: 𝛽′𝑗 = 0 if 𝑉𝐼𝐹𝑗 > 𝐿
5: end for
6: Each regression parameter 𝛽′𝑗 associated with variable 𝑗 for which𝑉𝐼𝐹𝑗 > 𝐿 is set equal to zero.

7: Solve logistic regression MIP presented in (36)–(40) using Benders decomposition.
8: Cardinality Constraints (41) and (42) included in the MIP.
9: Cardinality is set equal to 𝑐.

10: for 𝑖 = 1 to 𝑛 do
11: Ω𝑖 = 0
12: Ω𝑖 = Ω𝑖 + 𝛽′𝑇𝑋𝑖
13: if (Ω𝑖 ≤ −Γ) or (Ω𝑖 ≥ Γ) then
14: |Γ | = |Γ | + 𝜓
15: Δ𝛾 = 2∗|Γ |

𝐾
16: Z = 1
17: end if
18: end for
19: if Z = 0 then
20: Calculate and record training and test performance measures 𝑃𝑡 .
21: Record 𝛽′𝑡 .
22: else
23: 𝑡 = 𝑡 − 1
24: end if
25: Save MIP solution found at iteration 𝑡 for use as warm-start during execution of iteration 𝑡 + 1
26: increment 𝑡 = 𝑡 + 1
27: Return to Algorithm 1 - (driver algorithm)

Algorithm 5 – Optimality step – 𝑆 = 2.
1: Cardinality parameter value 𝑐 is generated by Algorithm 3.
2: for 𝑗 = 1 to 𝑝′ do
3: 𝛽′𝑗 = 0 if 𝑉𝐼𝐹𝑗 > 𝐿
4: end for
5: Each regression parameter 𝛽′𝑗 associated with variable 𝑗 for which𝑉𝐼𝐹𝑗 > 𝐿 is set equal to zero.

6: Use last MIP solution found in iteration 𝑡 as warm-start to step 𝑆 = 2.
7: Allow remaining regression parameters to be non-zero.
8: Solve logistic regression MIP presented in (36)–(40) using Benders decomposition.
9: Record final regression parameters, performance measures and optimality gap.

10: Return to Algorithm 1 - (driver algorithm).
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is not iterative, 𝑡 can be set equal to 𝑡 = 𝑇 − 1 considering that 𝑆 = 2 is the last step in the
ALRSF.

• Lines 21 to 24 of Algorithm 2 are subsequently executed when 𝑆 = 2 and 𝑡 = 𝑇 − 1. This
allows all the integer versions of the regression parameters in the vector 𝛽′ to take on non-zero
values (if deemed significant by the model) since the entire solution search space needs to be
evaluated to provide a guarantee of optimality. Once all regression coefficients are allowed to
take on non-zero values, the ALRSF returns to Algorithm 1.

• With 𝑆 = 2, lines 8 and 9 in Algorithm 1 are executed, which initiates the optimality step.
Algorithm 5 is one of the more simplistic components of the ALRSF and simply solves the
logistic regression MIP in (36)–(42), where the cardinality parameter 𝑐 is specified based on the
results generated by Algorithm 3 and any regression coefficient is allowed to take on non-zero
values. Ultimately, Algorithm 5 solves the original best subset selection regression problem,
while the other Algorithms and steps presented thus far assist in automatically determining the
cardinality parameter and pruning the solution search space in an attempt to reduce memory
requirements and provide an optimality guarantee.

• The ALRSF concludes when optimality is guaranteed, an out-of-memory exception occurs or
an alternative stopping criterion is met.

Now that the algorithmic flow of the ALRSF has been presented, some of the key elements
associated with each of the three algorithmic steps 𝑆 = {0, 1, 2} will be discussed in more detail.
The goal of the regression parameter fixing heuristic logic in Algorithm 2 (which is executed at steps
𝑆 = 0 and 𝑆 = 1 of the framework) is to reduce the computational memory burden associated with
solving the complete logistic regression MIP in (36)–(42). From Algorithm 2, observe that the logic
of the parameter fixing heuristic is adjusted based on the value of 𝑆. At step 𝑆 = 0, Algorithm 2
ensures that the independent variables are iteratively included in the model based on their relative
IV rank-ordering (starting with the most predictive variables first). This implies that the regression
parameters associated with the most predictive variables are iteratively allowed to be non-zero, while
the remaining coefficients are set equal to zero. This allows the user to ascertain the influence of each
independent variable on model performance before the cardinality step at 𝑆 = 0 is terminated (based
on the threshold 𝑈) or before the next independent variable is considered for inclusion. As stated
previously, during the execution of the cardinality selection step, the total number of independent
variables that are allowed to have non-zero regression parameters at any given iteration will be equal
to 𝑡.

Similar to before, the independent variables are once again added to the model in an iterative
manner when 𝑆 = 1 in Algorithm 2. However, the regression parameters of all the independent
variables that were added to the best predictor subset in step 𝑆 = 0 are now allowed to be non-zero
and take on any real value. When 𝑆 = 1, it is important to note that the number of variables considered
for inclusion in the model will be equal to 𝑐 + 1 during the execution of iteration 𝑡. However, at
the end of iteration 𝑡, a maximum of 𝑐 predictors may be present in the model. In essence, when
an additional independent variable is considered for inclusion in the model in the current iteration 𝑡
(given that there may or may not already be variables present in the model), one of the following can
occur:
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1. the variable is added to the final model if the number of non-zero regression parameters is less
than 𝑐 and the performance of the model is improved,

2. the variable replaces one of the other predictors that are already present in the model if the
number of non-zero regression parameters is equal to 𝑐 and if model performance is improved,
or

3. if model performance does not improve (or deteriorates), the variable is rejected.

The solution search space is therefore iteratively reduced by testing the various regression parameter
combinations. When 𝑆 = 2, the final step of the parameter fixing heuristic (Algorithm 2) permits
any regression parameter to be non-zero so that the entire solution search space is evaluated and an
optimality gap is calculated. The solution from step 𝑆 = 1 is used as a warm-start in step 𝑆 = 2. This
significantly reduces the size of the search space that needs to be considered before optimality can
be proven.

Next, we consider Algorithm 3, which automatically determines the most appropriate cardinality
parameter 𝑐 based on the predictive power of the independent variables, the number of observations
and performance of the model on the test set. In conjunction with the regression parameter fixing
heuristic, Algorithm 3 also includes an additional functionality to allow for dynamic adjustment
of the grid range [−Γ, Γ] as explained earlier in this section. At each iteration 𝑡, the size of the
grid range is evaluated to ensure that it is suitable and allows for the complete search space to be
considered when a new independent variable is added to the model. The grid is updated by adding
𝜓 to end-points such that the new range is [−Γ − 𝜓, Γ + 𝜓] if the size of the grid is found to be
insufficient (based on the value of Ω𝑖). This process of check-and-expand continues until the solution
search space is sufficiently large. It should also be noted that the size of the grid will depend on the
size of the regression parameters, the scale of each of the predictors and the cardinality parameter 𝑐.
These factors may differ from one problem to the next and as such the proposed ALRSF allows for
dynamic adjustment of the solution search space when required.

As part of Algorithm 3, the cardinality constraints presented in the logistic regression MIP in (36)
-(42) are excluded from the model fitting step since the influence of each independent variable is
evaluated without enforcing any restriction on the regression coefficients. The main output produced
as part of the cardinality step is the final cardinality parameter 𝑐 which will be utilised in steps 𝑆 = 1
and 𝑆 = 2, respectively. During each iteration, the MIP is solved by using the standard Benders
decomposition approach (as discussed in Section 3). Furthermore, the integer solution found at
iteration 𝑡 is used as a warm-start in iteration 𝑡 + 1. This prevents the model fitting algorithm from
continuously resolving the same complete logistic regression MIP instance, which in turn should
result in reduced computational memory demand and execution times.

When Algorithm 4 is invoked, the logistic regression MIP contained within each search space
pruning iteration 𝑡 ∈ 𝑇 = 𝑝 is once more solved using Benders decomposition. The main difference
between Algorithm 3 (executed at step 𝑆 = 0) and Algorithm 4 (executed at step 𝑆 = 1) is the inclusion
of cardinality constraints in Algorithm 4, which limits the number of variables that can enter the
model and facilitates best subset selection. The addition of the cardinality constraints to the MIP
formulation introduces further complexity to the model, which leads to larger memory requirements
because the model is tasked with filtering through numerous independent variable combinations.
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This is where the search space pruning step is most useful as it iteratively prunes the search space
by gradually testing the possibility of each independent variable entering the best variable subset.
Algorithm 4, therefore, solves multiple sub-problems that only contain a subset of the available
independent variables. As mentioned earlier, variables are iteratively added to the best subset (one
at a time based on their IV rank-ordering) for testing and the Algorithm will only terminate when all
independent variables have been tested at least once. Specifically, for Algorithm 4, the largest MIP
that will be solved at any given point in time will be subject to the constraint

∑
𝑗∈𝑝 𝑧 𝑗 ≤ 𝑐 + 1, while

the parameter 𝑐 and iteration 𝑡 = 0 is set equal to the value that was found in Algorithm 3. Similar
to Algorithm 3, the search space pruning step also evaluates whether the size of the grid with range
[−Γ, Γ] is sufficiently large at iteration 𝑡. If found insufficient, the extreme points of the grid are
increased by 𝜓 until Ω𝑖 ≥ −Γ and Ω𝑖 ≤ Γ before continuing to iteration 𝑡 + 1.

The final step of the ALRSF, which is executed by Algorithm 5 when 𝑆 = 2, aims to improve on
the solution generated by the search space pruning step by including all independent variables in the
MIP solution process (except for those variables for which the VIF threshold was violated) while
allowing their regression parameters 𝛽′ to take on any integer value between the range (−∞,∞). The
best integer solution generated as part of step 𝑆 = 1 using Algorithm 4 is used as a warm-start when
executing Algorithm 5 in the final step where 𝑆 = 2. This means that the optimality step 𝑆 = 2 is
not required to conduct a complete search of the entire solution space since a large portion of the
search space has already been eliminated by Algorithm 4. The optimality step can therefore focus
on improving the best integer solution while also attempting to prove optimality. The fact that the
proposed solution framework is able to generate an optimality gap is a key advantage over normal
heuristic-based variable selection algorithms, because it provides a guarantee on the optimality of
the solution. As stated by Kutner et al. (2005), heuristic regression algorithms (such as stepwise
selection, lasso and ridge regression) produce models that are "good enough". However, the user is
not able to guarantee that the resulting model is the best possible model among all possible models
and variable combinations. However, when an optimality gap is produced, the user is able to quantify
a hypothetical distance between the predictiveness of the current model and the best possible model,
with a gap of 0% indicating optimality. In other words, an optimality gap of 0% means that the
final model (with at most 𝑐 predictors) is the best possible model that could be obtained amongst all
possible variable combinations.

4.1 Dummy example
We now attempt to clarify the three steps and five algorithms of the ALRSF using a practical logistic
regression example that is based on a dataset containing six independent variables. It should be
noted that the dummy example presented here is hypothetical and for illustrative purposes only.
The performance and validity of the proposed ALRSF will be evaluated in Sections 5 and 6 using
real-world datasets. The results of the dummy example are summarised in Table 1, which represents
what a solution that is produced by the ALRSF would resemble. The first six iterations summarise
the cardinality selection logic (Algorithm 3) while the following six relate to the search space pruning
step (Algorithm 4). Finally, an attempt is made to prove optimality during the last iteration which
relates to the optimality step described in Algorithm (5). Similar to what was presented in Algorithm
3, at iteration 𝑡 = 1 the cardinality parameter is initialised to a value of 𝑐 = 0. From iteration 𝑡 = 1 to
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Table 1. Novel ALRSF – Dummy Example.

Iterations 𝛽′1 𝛽′2 𝛽′3 𝛽′4 𝛽′5 𝛽′6 Test AUC 𝑐 Gap %

Cardinality Step - (S = 0, 𝑐 = 0)

𝑡 = 1 Free Fixed Fixed Fixed Fixed Fixed 51.34 1 –
𝑡 = 2 Free Free Fixed Fixed Fixed Fixed 65.41 2 –
𝑡 = 3 Free Free Free Fixed Fixed Fixed 87.60 3 –
𝑡 = 4 Free Free Free Free Fixed Fixed 87.30 3 –
𝑡 = 5 Free Free Free Free Free Fixed 87.31 3 –
𝑡 = 6 Free Free Free Free Free Free 87.29 3 –

Search Space Pruning Step - (S = 1, 𝑐 = 3)

𝑡 = 1 Free Free Free Fixed Fixed Fixed 87.60 3 –
𝑡 = 2 Free Free Free Fixed Fixed Fixed 87.60 3 –
𝑡 = 3 Free Free Free Fixed Fixed Fixed 87.60 3 –
𝑡 = 4 Free Free Fixed Free Fixed Fixed 88.50 3 –
𝑡 = 5 Free Free Fixed Fixed Free Fixed 88.65 3 –
𝑡 = 6 Free Free Fixed Fixed Free Fixed 88.65 3 –

Optimality Step - (S = 2, ∀𝛽 ∈ R𝑝 , 𝑐 = 3)

𝑡 = 1 Free Free Free Free Free Free 88.65 3 42.56

𝑡 = 6, the regression parameters8 are sequentially added to the model based on IV rank-order.
For this example, we assume that the columns of Table 1 reflect the relative rank-ordering of the

variables (based on their IVs) for 𝑗 = 1 to 6. In other words, 𝛽′1 corresponds to the variable with
the highest IV, whereas 𝛽′6 is associated with the variable with the lowest IV. Since the cardinality
step tests the addition of one independent variable at a time, there will always be 𝑐 = 𝑡 variables
included in the model at iteration 𝑡. The regression parameters associated with the independent
variables that enter the MIP for testing at each iteration are allowed to take on any integer value.
This means that at iteration 𝑡 = 1 regression parameter 𝛽′1 is allowed to be non-zero such that
𝛽′1 ∈ Z, while the remaining regression parameters are fixed at zero. This essentially means that at
iteration 𝑡 = 1 a sub-problem with 6 independent variables is solved, utilising the standard Benders
decomposition algorithm, with the regression parameter of one independent variable set allowed to
be non-zero and the remaining parameters set equal to zero. Notice that the regression parameter 𝛽′1
is allowed to be non-zero throughout the cardinality step (the first six iterations). This is because the
variable associated with this parameter has the largest IV at iteration 𝑡 = 1. Since variables are tested
sequentially, the regression parameter 𝛽′1 will always be allowed to be non-zero (throughout the first
six iterations) as its predictor will have the highest IV, regardless of other variable combinations that
are added. Furthermore, for iterations 1 to 6, note that the sequential inclusion of variables to the
model means that one additional regression parameter is allowed to be non-zero at a time, as outlined
by Algorithm 3.

8 Each repression parameter 𝛽′𝑗 ∀ 𝑗 ∈ 𝑝 is either set free or fixed. The term "Free" refers to the regression parameter 𝛽′𝑗 ∈ Z
being allowed to take on any integer value in [−𝑀, 𝑀], while "Fixed" relates to 𝛽 𝑗 being set equal to exactly zero.
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Similarly, the test AUC 𝑃𝑡 and highest recorded AUC 𝑃𝑏 are both set equal to 0 when the cardinality
step is initialised. At each iteration, 𝑃𝑡 is recorded by solving the logistic regression MIP and fitting
the model in a sequential manner (as discussed earlier). At iteration 𝑡 = 1, 𝑃1 is set equal to 51.34%,
which is the AUC that was obtained at this step. Since 𝑃1 is greater than the initial value of 𝑃𝑏 = 0, we
set 𝑃𝑏 = 𝑃1 and the cardinality parameter 𝑐 is incremented by 1. The same is true for iteration 𝑡 = 2
where the regression parameter 𝛽′2 is allowed to enter the model based on the IV rating of predictor
variable 𝑋2. A MIP with 6 independent variables is then solved, where the first two regression
parameters are allowed to vary between (−∞,∞), while the remaining regression parameters are set
equal to zero. The test AUC 𝑃2 after execution of the second iteration was found to be, 65.41%
which is higher than 𝑃𝑏. As a result, we set 𝑃𝑏 = 𝑃2 and the cardinality parameter 𝑐 is incremented
once more such that 𝑐 = 2. The same logic is applied for iterations 3 to 6 throughout the cardinality
step (via the execution of Algorithm 3). At iteration 4, the test AUC that was found is smaller than
𝑃𝑏 which means that the cardinality parameter 𝑐 is not updated. In fact, for iterations 4, 5 and 6,
none of the AUC values derived from the test set is greater than 𝑃𝑏, which means that the parameter
𝑐 cannot be incremented. Ultimately, the cardinality step terminates at iteration 6 and the cardinality
parameter 𝑐 is set equal to the value of 𝑐 that corresponds to the iteration where 𝑃𝑏 was recorded. In
this case, 𝑃𝑏 was found at iteration 3 and we conclude that a cardinality parameter of 𝑐 = 3 is most
appropriate. This means that, for the specific logistic regression problem at hand, the best subset
selection approach should produce the best 3-variable model.

By adding independent variables to the cardinality selection step in a sequential manner, the user is
able to evaluate the incremental influence of each variable on performance of the model (as assessed
on the test set so as to prevent overfitting). The first few variables that are added during the initial
steps of the algorithm are expected to contribute the most to the predictive power of the model,
as high IV values are assumed to be associated with high differentiation abilities. As independent
variables are continuously added to the best variable subset, a point is reached where the model
becomes saturated and the test AUC curve will either form a plateau (no improvement is obtained
by adding additional variables to the model) or starts to drop off (adding additional variables to
the model leads to overfitting). This implies that adding additional variables to the model beyond
this point is therefore futile, which suggests that all remaining variables in the training set can be
excluded. When the cardinality parameter remains constant for𝑈 iterations, the cardinality step can
be terminated and the search space pruning step initiated. The cardinality parameter 𝑐 can then be
utilised in the pruning and optimality steps in conjunction with cardinality constraints, to enforce
a limit on the number of independent variables that can be included in the final logistic regression
model formulation. According to Kutner et al. (2005), the order in which variables are added to
or removed from a model can exert a significant influence on the final model that is obtained. For
example, during stepwise selection procedures, the variable that is added during iteration 𝑡 (and its
regression coefficient) is dependent on the variables that were included in the model at iteration 𝑡 −1.
One might therefore think that the proposed ALRSF presented in this paper suffers from the same
drawback due to the sequential addition of variables to the model during step 𝑆 = 0. Note, however,
that this is not the case. The iterative addition of variables to the model only takes place during
the cardinality step and is simply used to determine the most appropriate value of the cardinality
parameter 𝑐. During step 𝑆 = 2 of the ALRSF, all combinations of variables are tested, which means
that the order in which variables enter the model is no longer influential.
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The search space pruning step 𝑆 = 1 (which is facilitated by Algorithm 4) can be described by
the second set of six iterations in Table 1. The main purpose of the pruning step is to reduce the
solution search space, which ultimately reduced the optimality gap percentage in the final optimality
step 𝑆 = 2. This is done by iteratively testing independent variable combinations to determine which
variable subset will improve the objective function value in (36) while conforming to constraint
(42) in the logistic regression MIP. The total number of independent variables that are allowed
to have non-zero regression parameters at any given iteration during the execution of step 𝑆 = 1
may not exceed 𝑐 + 1. For the particular example presented in Table 1, a total of four regression
parameters are therefore allowed to be non-zero during the search space pruning step 𝑆 = 1, as the
most appropriate cardinality parameter was determined to be 𝑐 = 3 during the cardinality step 𝑆 = 0.
This is evident when we consider the third and fourth iterations of the search space pruning step,
where the ALRSF determined that allowing 𝛽′4 to be non-zero instead of 𝛽′3 yields an improvement
in model performance. As a result, the predictor variable associated with 𝛽′3 was removed from
the best variable subset and replaced with the variable associated with 𝛽′4. In other words, the
independent variables are iteratively added to the model and are either allowed to enter the best
subset by replacing one of the current variables with a non-zero regression parameter or are rejected,
at which point the next iteration 𝑡 + 1 is initiated with no change to the best subset. During the
execution of the search space pruning step, note that the first three regression parameters are allowed
to be non-zero during the first three iterations because the cardinality parameter was specified as
𝑐 = 3 and the predictor variables associated with these coefficients had the highest IVs. The idea
behind the search space pruning step is to challenge this assumption (that the first three variables
produce the best-performing model) by iteratively adding another variable to the model and testing
to determine if the added variable can replace one of the variables that are already included in the
best variable subset. When 𝑆 = 1, the first iteration tests whether the variable associated with 𝛽′1
can improve the objective function when added to a subset that is allowed to contain at most three
variables. However, since this variable is already part of the best subset and the size of the subset
is smaller than 𝑐 = 3, no change is recorded. The same can be said for the variables associated
with 𝛽′2 and 𝛽′3 during iterations 𝑡 = 2 and 𝑡 = 3 of the search space pruning step. From Table 1,
a change in the best subset is only visible at the fourth iteration of the search space pruning step
since the variable associated with 𝛽′4 improved the predictive performance of the model by replacing
the variable associated with 𝛽′3 in the best variable set. The same logic applies for every iteration
contained in the search space pruning step, where we note that no significant improvement in model
performance is recorded during iterations 5 and 6. Once all of the predictors have been tested at least
once, the optimality step 𝑆 = 2 can be initiated since more than one pass over the set of independent
variables will not result in further improvements in the model’s predictive performance.

The final step of the ALRSF is the optimality step (which is facilitated by Algorithm 5). The
solution obtained during the final iteration of step 𝑆 = 1 (search space pruning step) is used as a
warm-start in the optimality step 𝑆 = 2, which prevents the complete logistic regression MIP from
being solved and leverages the reduced search space provided by the pruning heuristic. If the warm-
start method was not utilised, the progress made in step 𝑆 = 1 would be disregarded and step 𝑆 = 1
would add no value to the solution framework. During step 𝑆 = 2, all regression parameters are
allowed to be non-zero to ensure that all possible independent variable combinations are considered
by the logistic regression model and to determine the extent to which the final log-likelihood solution
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deviates from optimality. The solution framework will only terminate when optimality has been
proven, an out-of-memory error occurs or a predefined user-specific stopping criterion is met. The
optimality gap presented in Table 1 is only hypothetical and shows that step 𝑆 = 2 is capable of
producing a measure of optimality for the final solution.

In summary, the proposed novel ALRSF provides a holistic approach towards fitting large-scale
logistic regression models that are formulated as MIP problems to perform best subset selection. This
is achieved by iteratively pruning the solution space and employing the default Benders decomposition
approach (which is only possible if the model is formulated as the MIP in (36)–(42)) to find high-
quality solutions with smaller memory requirements and providing an optimality gap for the final
solution. The end-result is a proposed approach that aims to find high-quality solutions that impose
less computational memory requirements, are executed faster than comparative formulations and
provide a guarantee on the quality of the model in the form of an optimality gap.

5. Model verification
In this section, the proposed ALRSF is benchmarked against the standard branch-and-bound MILP
formulation of the logistic regression best subset selection problem that was proposed by Venter
(2020)9. Two small-scale datasets that contain six and eight variables, respectively, will be considered.
The problems in question relate to default prediction for credit card customers and are solved using
default data provided by Taiwanese credit providers that were published on the UCI machine learning
repository. The original dataset consists of 24 independent variables and 30000 observations. For
illustrative purposes, a training set of 200 observations is used. This is to ensure that both problems
are solved such that optimality is guaranteed (i.e. an optimality gap of 0% is obtained) within an
acceptable time frame so that a proper comparative study can be conducted. The binary target class
was distributed such that 23% of the observations were assigned a value of one (default). Table 2
contains the descriptions of each of the independent variables that were considered for inclusion in
the model. Three main aspects of the proposed solution framework are considered when the final
models are evaluated:

1. The regression parameter estimates produced by each of the algorithms need to be inspected
and compared in order to determine whether they are appropriate.

2. The best variable subset produced by each model needs to be examined to assess the variables
that were selected.

3. The range of the grid that is used to linearise the non-linear log-likelihood (with extreme
points [−Γ, Γ]) needs to be scrutinised to determine whether the solution space is sufficiently
described.

For the verification of the grid range, the manual grid selection method proposed by Venter (2020)
was utilised to obtain a suitable grid for the standard branch-and-bound algorithm. The ALRSF was

9 Note that commercially available software (such as SAS) also makes use of variations of the standard branch-and-bound
method to execute best subset selection within regression procedures. For more information, see Appendix C of Venter (2020)
that summarises the Leaps and Bounds (LBA) method of Furnival and Wilson (2000) and the branch-and-bound algorithm
(BBA) of Gatu and Kontoghiorghes (2006) which are used in SAS procedures.

ALRSF TOWARDS SOLVING THE LOGISTIC REGRESSION BEST SUBSET SELECTION PROBLEM 117



Table 2. Independent variable description.

Independent variable Variable description

1 Amount of credit extended to the client
2 Client gender
3 Level of education
4 Marital status
5 Client age
6 Repayment status in September 2005
7 Repayment status in August 2005
8 Repayment status in July 2005

developed in C++ and the MIP formulations were solved utilising the Cplex concert technology API.
The experiments were conducted on a Ryzen Linux Mint machine with an AMD Ryzen 5 1600 6-
core processor and 32 GB random access memory (RAM). Python (with Anaconda distribution) and
Microsoft Excel were used for supplementary data processing, such as calculating the VIF and IV of
each independent variable. The training and test sets were saved as Microsoft Excel comma-separated
files (CSV) and used as input for both the standard branch-and-bound and ALRSF algorithms.

In Table 3, the regression parameters that were produced by the standard branch-and-bound
algorithm and ALRSF are shown. It is evident that near-identical regression parameters are produced
by both algorithms for two versions of the problem (one where six inputs are allowed to enter the
model and one where eight inputs are allowed to enter the model). There are, however, some
minor differences concerning the decimal precision that will be addressed later in this section. With
reference to the objective function (which is the log-likelihood), an identical value was recorded for
both algorithms. This provides confidence that the proposed ALRSF framework outputs accurate
and trustworthy results that are in line with the more-established branch-and-bound approach (which
serves as the default method for performing best subset selection).

Next, a set of experimental results are presented to explain the decimal differences observed in
Table 3 by varying the integer conversion constant 𝐻 in (40) which was formally introduced in
Section 3. The integer conversion constant 𝐻, which facilitates the conversion between the integer
regression parameters 𝛽′ and continuous parameters 𝛽, is firstly selected to be a 1000 at first and then
changed to 10000. This allowed the influence of 𝐻 on the final parameter estimates to be evaluated.
By comparing the results in Table 4 with those in Table 3, it is clear that the ALRSF parameter
estimates are more closely aligned with those produced by the branch-and-bound algorithm when
𝐻 = 10000. Therefore, a larger value for 𝐻 ensures greater decimal precision and provides a better

Table 3. Regression parameter estimate comparison.

Logic 𝑐 𝑝 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 LogL

ALRSF 4 6 0.655 2.460 0 0 1.536 -0.350 -5.668 - - -98.63
B&B 4 6 0.654536 2.46055 0 0 1.53657 -0.34927 -5.66825 - - -98.63
ALRSF 3 8 0.466 2.347 0 0 1.691 0 -5.738 0 0 -98.67
B&B 3 8 0.465977 2.34726 0 0 1.69113 0 -5.73871 0 0 -98.67
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Table 4. Variable conversion constant 𝐻 – ALRSF.

𝐻 𝑐 𝑝 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 OBJF

1000 4 6 0.655 2.460 0 0 1.536 -0.350 -5.668 - - -98.63
10000 4 6 0.65475 2.46032 0 0 1.53659 -0.34926 -5.66828 - - -98.63
1000 3 8 0.466 2.347 0 0 1.691 0 -5.738 0 0 -98.67

10000 3 8 0.46597 2.34726 0 0 1.69113 0 -5.73871 0 0 -98.67

Table 5. AUC performance measure comparison.

Logic 𝐻 𝑐 𝑝 Train AUC Test AUC

ALRSF 1000 4 6 71.56 74.36
ALRSF 1000 3 8 71.34 74.52
ALRSF 10000 4 6 71.56 74.35
ALRSF 10000 3 8 71.34 74.48
B&B 1000 4 6 71.56 74.35
B&B 1000 3 8 71.34 74.48

approximation of the true underlying regression parameters, but increases the size of the search
space. The choice of 𝐻 may also be problem-specific. It is important to consider the influence of
the conversion constant 𝐻 on the performance measures that are calculated from the training and
test sets, respectively. A comparison of the AUC values that were achieved on the training and
test sets, respectively, can be found in Table 5. Identical training AUC values were found for all
experiments, regardless of the value of 𝐻, which might suggest that 𝐻 has an insignificant impact on
model fitting and training set performance. It is, however, interesting to note that when the test AUC
is examined, the ALRSF with 𝐻 = 1000 produces higher AUC values when compared to models
produced by both the branch-and-bound algorithm and an ALRSF with 𝐻 = 10000. This might be
attributed to a marginal reduction in overfitting on the training set (because the regression parameters
have lower decimal precision) which ultimately allows for slightly better generalisation performance.
Nevertheless, the performance increase can be regarded as negligible. Ultimately, we can conclude
that the proposed ALRSF produces results that are expected (when compared with default best subset
selection techniques) and that the performance and generalisation capabilities of the model are not
severely affected by the parameters of the proposed MIP.

Table 6 shows that the best subset consists of three independent variables when a logistic regression
model is fitted to the eight-variable dataset using the ALRSF. The purpose of the results recorded in
Table 6 is to evaluate the logic of the solution algorithm and to determine if a cardinality parameter
of 𝑐 = 3 is a sensible choice. Recall from Section 3 that a specific cardinality selection criteria can
be set by the user to determine whether the improvement in the performance measure 𝑃𝑡 between

Table 6. Cardinality selection verification.

Logic 𝑐 𝑝 𝑈 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 𝑡 = 7 𝑡 = 8

ALRSF 3 8 2 72.04 72.24 73.96 73.86 73.70 75.32 75.34 75.32
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iterations is sufficient enough to allow the cardinality parameter 𝑐 to be incremented with one. For the
purpose of the model shown in Table 6, the selection criterion was specified such that the cardinality
parameter can only increase when the performance measure of the current iteration, 𝑃𝑡 , is larger
than, the best performance measure 𝑃𝑏 achieved this far. When the results of Table 6 are assessed,
it is clear that the AUC increased consistently from iterations 𝑡 = 1 to 𝑡 = 3, which implies that
the cardinality parameter was set equal to 𝑐 = 3 at iteration 𝑡 = 3. The consecutive increment limit
𝑈 for this experiment was specified as 𝑈 = 2, which means that the model will also consider the
four-variable and five-variable models produced in iterations 4 and 5 before terminating. However,
given that no improvement in the test AUC is recorded for iterations 4 and 5, the cardinality selection
step terminates at iteration 3 and it is concluded that the most suitable size for the best subset is three
independent variables. If the incrementation limit 𝑈 was specified to be larger than two, the model
would have identified improvements in the test AUC at iterations 6 and 7, which may have indicated
that the most suitable value for the cardinality parameter should either be 𝑐 = 6 or 𝑐 = 7. In general,
the user should consider a sufficiently large value for𝑈 to ensure that the best subset selected by the
final model is not too small, sufficiently describes the problem space and that most of the variables
that add to the predictive power of the model are considered. However, there also exists a trade-off
when using a value for 𝑈 that is too large, as inflated values for 𝑈 will result in extended model
run times. Model developers should also consider the possibility of an AUC plateau forming after
a certain number of iterations, where the addition of more variables to the model does not lead to
significant improvements in AUC. In such circumstances, a large 𝑈 value will produce a cardinality
set that is similar to one that is obtained when a small𝑈 is used.

6. Empirical results and discussion
In this section, the added benefits of the ALRSF over the standard branch-and-bound best subset
selection problem are demonstrated by applying the proposed approach to realistically-sized real-
world classification problems. All problem instances considered were obtained from the UCI machine
learning repository and cover a wide range of industries including health care, engineering and
entertainment.

6.1 Experimental Datasets
Three problem instances are considered, the first of which is the superconductivity regression prob-
lem. The dataset is made up of 21263 observations and 81 independent variables. The independent
variables describe the attributes of various superconductors including density, atomic mass, electron
affinity, fusion heat and thermal conductivity. The real-valued response variable 𝑌𝑖 was transformed
into a binary target variable by specifying 𝑌𝑏𝑖𝑛𝑖 = I (𝑌𝑖 ≥ 1400) where I (·) is an indicator function.

Three experiments were performed for the transformed superconductivity classification problem.
The 21263 observations were subdivided into three training sets with 6500, 8000 and 9000 ob-
servations, respectively, while predictive performance was assessed using a hold-out set of 6000
observations. The goal of these three experiments is to demonstrate the flexibility of the ALRSF
when solving large problem instances that consist of a large number of independent variables and
sizeable training sets. When literature on best subset selection using MIP formulations is reviewed,
one will often find that models are either fitted on datasets that contain a large number of independent
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variables or a large number of observations, but rarely both. One of the largest problem instances
in literature was solved by Venter (2020), with 6000 observations and 58 independent variables that
originated from the superconductivity dataset. There is therefore potential to consider a best subset
selection problem (within the context of a MIP formulation) that contains a training set that is large
with respect to both 𝑛 and 𝑝.

The second problem instance considered is known as the relative location of CT slices regression
problem, which describes the CT images for 74 patients. The dataset in question consists of 53500
observations and 385 independent variables. The target variable (location of CT scans) is an integer-
type variable and ranges from 0 to 180, where 0 references the soles of the patient’s feet and 180 the
top of the head. For the purpose of solving classification problems, the integer target variable was
transformed to a binary target by specifying 𝑌𝑏𝑖𝑛𝑖 = I (𝑌𝑖 ≥ 50).

From the 385 independent variables, a total of 18 unary variables were removed. A further 125
independent variables were removed from the training and test sets based on a VIF threshold of 10.
As discussed in Section 4, a functionality was added to allow for the removal of highly correlated
independent variables in an attempt to improve numerical stability and statistical interpretability of
the final model produced by the framework (Akinwande et al., 2015). This resulted in a final set of
242 independent variables from which the ALRSF can identify the best subset of variables.

Similar to the superconductivity problem instance, three experiments were derived from the total
set of available observations, with each training set consisting of 5000, 6000 and 6500 observations,
respectively. A test set of 25000 observations was utilised for model evaluation. This problem
instance is focused on testing the proposed ALRSF’s ability to solve classification problems with
a large number of independent variables while still allowing for a moderate number of training
observations to be considered.

The third and final round of experiments was conducted by utilising the online news popularity
dataset, which consists of 39797 observations. Three training sets comprising 11000, 12000 and
13000 observations, respectively, were then derived. Furthermore, a test set consisting of 24000
observations was used to assess model performance. From the 58 independent variables available,
13 were excluded from the training set based on the VIF exclusion criteria. The continuous target
variable (number of shares) was modified to be suitable for a classification problem such that all
observations were divided between two classes. The target variable𝑌𝑖 was transformed by specifying
𝑌𝑏𝑖𝑛𝑖 = I (𝑌𝑖 ≥ 1400).The online news popularity classification problem is a moderately sized problem
for which a large set of training observations were employed to further validate the proposed solution
framework. Additionally, the appropriateness of the ALRSF within application domains that relate to
different fields of interest is also explored by considering three separate datasets that relate to vastly
different prediction problems.

6.2 Modelling assumptions
The main assumptions associated with the modelling framework (with reference to the experiments
in this section) can be summarised as follows:

1. An execution time limit of 345600 seconds for all experiments, except for the CT slice location
classification problem, was enforced. For the CT slice location problem, a total of 691200
seconds were allotted due to the size of the problem instance. The execution time of the
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ALRSF is directly affected by the number of independent variables and observations.

2. To allow for a comparative study between the proposed ALRSF and the standard branch-
and-bound algorithm, the problem-specific parameters (as identified by the ALRSF) are also
used for the branch-and-bound algorithm. This includes the cardinality parameter 𝑐 and the
grid range [−Γ, Γ]. It is important to note that for the standard branch-and-bound algorithm,
the latter would have to be determined by means of a manual selection procedure while the
proposed ALRSF specifies an appropriate grid in an automated fashion.

3. A total of 𝐾 = 400 splines (or line segments) were used to approximate the non-linear log-
likelihood objective function. A detailed study with regards to the influence of the value for 𝐾
can be found in Venter (2020).

4. Cplex only outputs a solution when the problem either terminates based on a predefined
termination criteria or when the algorithm has proven optimality. When a problem instance
fails (e.g. in the case of an out-of-memory error), a solution cannot be extracted from the Cplex
C++ concert technology API and the problem will have to be re-executed with a predefined
stopping criteria. This was the case for most branch-and-bound experiments against which
the ALRSF is benchmarked. When an experiment failed on an out-of-memory exception, the
instance is re-executed, but with a set time limit to allow the user to extract the best solution
that was found before termination.

5. The integer conversion constant 𝐻 (as discussed in section 4) is arbitrarily set equal to 100000
for the experiments considered in this section. In Section 5 we noted that the value of 𝐻 has
a negligible effect on the performance of the final model, which means that a value for 𝐻 can
be arbitrarily set by the user. A larger value for 𝐻 will, however, better approximate the true
underlying logistic regression parameters.

6. The grid point adjustment constant 𝜓 was selected to be equal to 10. This is to facilitate
a gradual increase in the grid range [−Γ, Γ] while simultaneously reducing the number of
iterations required to accurately discover the appropriate solution search space.

7. The incremental threshold constant 𝑈, was set equal to a value of 10 based on preliminary
verification experiments. A value of 𝑈 = 10 implies that the cardinality selection step
can terminate when no improvement in model performance is recorded with the consecutive
inclusion of up to 10 independent variables to the best variable subset (in addition to the
predictors that are already contained within the best subset). The empirical results that follow
seem to suggest that a value of𝑈 = 10 is reasonable, even for large datasets.

6.3 Empirical results
Table 7 and Figures 3 to 5 provide a summary of the results that were obtained for the experiments
that were described in Section 6.1. Table 7 contains key assessment criteria, such as memory usage,
optimality gap, train and test AUC and best integer solution, that can be used to compare the proposed
ALRSF with the standard best subset selection branch-and-bound algorithm.

In general, the memory usage required by the proposed ALRSF is much lower than the standard
branch-and-bound algorithm. In some cases, a significant reduction in memory of up to 10 GB is
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observed. This, in turn, allows for larger datasets to be considered when attempting to fit a logistic
regression model following a best subset selection approach. For the superconductivity classification
problem with a training size of 9000 observations, the standard branch-and-bound algorithm was
not able to find a solution as a result of insufficient memory (the reader will note that an entry of
“ME” in Table 7 indicates that a “memory exceeded” exception occurred). In contrast, the ALRSF
was able to find a high-quality solution with a memory buffer of 1.8GB from the available memory
of 32 GB still available. Similarly, for both the CT slices and online news popularity classification
problems (6500 and 13000 training observations, respectively), much shallower solutions that exist
within the solution tree were found when utilising the standard branch-and-bound algorithm, while
high-quality solutions were obtained when applying the ALRSF. This is further corroborated by
critically evaluating the optimality gap and best integer solution obtained for these two datasets in
Table 7. A significant improvement with regard to the optimality gap was observed, especially for
the superconductivity problem.

When the train and test AUC is considered, it can be seen that the performance between the two
algorithms is relatively similar for smaller datasets. The superiority of the ALRSF with respect
to model performance is, however, evident when using the solution framework to solve large-
scale problem instances. The algorithmic improvements made to the standard branch-and-bound
algorithm (as described in Sections 3 and 4) clearly add to the flexibility and robustness of the
solution framework. For the superconductivity problem, the test AUC obtained by the ALRSF
ranged between 86.47% and 87.21%. A slight increase in test AUC is observed with an increase
in the set of training observations, which may be attributed to more training data that are more
representative of the underlying population. A relatively similar trend is observed for the CT location
and news popularity classification problems. For the CT slice location problem, the test AUC
increased from 89.04% to 94.34% with an increase in the number of training observations from 5000
to 6500 records. Finally, we note that the ALRSF was able to yield AUC values between 68% and
69% for the online news popularity dataset, which are comparable to AUC values of the models that
were produced by the branch-and-bound algorithm.

It is also worth noting that the ALRSF is able to dynamically adjust the best variable set based
on the available training data and the problem instance considered. The cardinality parameter 𝑐
varied between experiments, which suggests that the solution framework is able to detect changes in
trends contained in the underlying data and adjust the proposed model accordingly to best describe
the problem instance. The cardinality selection criteria will influence the size of the final model
selected. For the online news popularity problem, almost all of the independent variables were
included in the final model. This is because of consistent slight increases in the test AUC that are
recorded with the addition of each new variable, as seen in Figure 5.

A possible solution that will yield more parsimonious models might be to use a less stringent
cardinality selection criteria which stipulates that the increase in the AUC must be larger than some
predefined percentage before a variable is added to the model, e.g. the AUC must increase by 10%
from iteration 𝑡 − 1 to iteration 𝑡 before an additional variable is considered for inclusion.

The ability of the ALRSF to solve a problem instance with 242 independent variables and 6500
training observations is considered to be a noteworthy achievement for the best subset MIP problem
formulation, given that standard branch-and-bound methods will likely fail when presented with such
a large number of predictors and observations. Similarly, for the superconductivity classification
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Figure 3. Superconductivity classification problem.

Figure 4. Relative CT slices location classification problem.
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Figure 5. Online news popularity classification problem.

problem, a problem instance with 81 independent variables and 9000 training observations was
successfully solved. The aforementioned solutions can be considered as some of the largest problems
that were successfully executed within a best subset selection MIP framework (when compared to
the available literature on similar formulations). The ALRSF pushes the boundaries concerning
computational efficiency and increases the type and size of problems to which a best subset logistic
regression solution framework can be applied. Figures 3 to 5 are a visual representation of the iterative
solution process contained within the ALRSF that was described in Section 4. It is important to note
that the iterative approach allows the user to continuously monitor the performance of the model
as fitting progress, which in turn can also be used to detect overfitting on the training set. The
cardinality parameter 𝑐 for each experiment is listed in Table 7. Figures 3 to 5 illustrate the transition
from the cardinality step 𝑆 = 0 to the search space pruning step 𝑆 = 1 when a value of 𝑈 = 10
is added to the problem formulation. It is evident from the visual representations of the solution
framework that adding more independent variables to the best variable subset will not necessarily
lead to increased predictive performance. The aim of the solution framework is therefore to produce
parsimonious models in an automated fashion that are still sufficiently predictive when applied to
unseen data. Figure 4 clearly shows an instance of overfitting, where an increase in the training
AUC is accompanied by a drop in the test AUC when 5000 training observations are considered. In
general, the visual representation of the solution framework supports the notion that an increase in the
amount of training data results in an increase in the model performance. Nevertheless, the ALRSF
equips the user with analytical capabilities to terminate the solution framework at any given point in
time when an acceptable solution is found, which can be used to address the problem of overfitting.
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This means that the ALRSF is also more interpretable, controllable and transparent when compared
to the standard branch-and-bound approach.

7. Conclusion and recommendations
A novel automated logistic regression solution framework was presented that allows for a holistic
deterministic approach towards solving the best subset selection MIP problem formulation (presented
in Section 3) of a binary logistic regression classification problem. The ALRSF is executed via a
three-step approach, which involves the following:

1. The automatic specification of a cardinality parameter 𝑐 and selection of the best variable
subset based on model performance.

2. Pruning of the search space described by the MIP formulation, which is achieved via a Benders
decomposition regression parameter fixing pruning algorithm.

3. The calculation of an optimality gap in order to provide a guarantee of optimality, which is not
possible for heuristic variable selection methods (such as stepwise, lasso and ridge regression)
that do not employ MIP formulations. Furthermore, the optimality step also attempts to
improve the solution that was discovered by the pruning algorithm in the previous step.

Empirical results presented in Section 6 show that significant improvements in the final logistic
regression solution are achieved when the ALRSF is applied instead of the standard branch-and-
bound model. Specifically, the ALRSF allows for better solutions to be achieved for larger problems,
requires less memory during execution, and, overall, obtains higher quality solutions with lower
optimality gaps due to its efficiency and ability to effectively manage the solution search space. The
ability to efficiently identify an optimal subset of independent variables from large-scale datasets
that contain many observations and variables by using a deterministic solution framework may
incentivise more users to consider exact methods for model-fitting exercises, as such methods are
able to provide the user with a measure of optimality (which is not possible when using heuristic
fitting algorithms). Another consideration is minimising the need for highly skilled resources to
facilitate model development by employing a more automated framework.

The proposed solution framework naturally lends itself to other modelling techniques such as linear
regression and even possibly neural networks. Future endeavours can, therefore, be concerned with
the expansion of the proposed ALRSF to accommodate more than one model specification within an
exact best subset selection MIP problem formulation. Expanding the proposed MIP formulation to
allow for best subset selection within the context of multi-class classification problems can also be
explored.

The search space pruning heuristic mainly focuses on reducing the lower bound of the MIP when
formulated as a maximisation problem (which is the case for the log-likelihood function). As a
possible area for improvement, the addition of Lagrangian relaxation during the optimality step
(𝑆 = 2) to tighten the MIP upper bound can be considered. The cardinality constraints are seen
as complicating constraints, the effect of which can be managed more appropriately by possibly
including these constraints as a Lagrangian relaxation in the objective function. This might further
reduce the optimality gap and the time required to prove optimality.
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In conclusion, the proposed novel ALRSF exhibits multiple improvements with respect to the best
subset selection problem (which is an NP-hard problem) within the context of an exact mathematical
solution framework. The ALRSF was able to solve large-scale logistic regression classification
problems in an efficient and automated manner while providing higher quality solutions when
compared to other best subset selection MIP formulations that are commonly found in the literature.
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