View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Liberty University Digital Commons

Running head: GALOIS AND FIELD EXTENSIONS 1

The Life of Evariste Galois and his Theory of Field Extension

Felicia Noelle Adams

A Senior Thesis submitted in partial fulfillment
of the requirements for graduation
in the Honors Program
Liberty University
Spring 2010


https://core.ac.uk/display/58823426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

GALOIS AND FIELD EXTENSIONS
Acceptance of Senior Honors Thesis
This Senior Honors Thesis is accepted in partial

Fulfillment of the requirements for graduation from the
Honors Program of Liberty University.

Honoré Mavinga, Ph.D.
Thesis Chair

Evangelos Skoumbourdis, Ph.D.
Committee Member

Kristina Schimmels, M.Ed.
Committee Member

James Nutter, D.A.
Honors Director

Date



GALOIS AND FIELD EXTENSIONS 3
Abstract

Evariste Galois made many important mathematical discoveries in hisiftond, yet
perhaps the most important are his studies in the realm of field extensions. Through his
discoveries in field extensions, Galois determined the solvability of polyi®mi

Namely, given a polynomial P with coefficients is in the field F and such that the
equation P) = 0 has no solution, one can extend F into a field L withL, such that

P@) = 0. Whereas Galois Theory has numerous practical applications, this thiesis wil
conclude with the examination and proof of the fact that it is impossible tct use

angle using only a ruler and compass.
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The Life of Evariste Galois and his Theory of Field Extension

One of the great tragedies in the scientific world was the loss of the gewius
potential of Evariste Galois (1811-1832). Galois’s life, though riddled with rejeatdn a
misunderstanding, brought forth one of the most important mathematical works of the
nineteenth century. Though never formally presented during his lifetiméglis/tof
field extensions had revolutionary implications, which still greiijience the study of
mathematics today. Galois’s question, “When is an equation solvable by simple
radicals?” led him to an entire new world of mathematics. However, his lifactas
happy one and — as is true of most genius’ lives — and his theories were not accepted nor
noticed during his brief lifetime.

History: Galois’s short, yet impactful life

Born to a revolutionary family on October 25, 1811, Evariste Galois was the first-
born son of Nicolas Gabriel Galois and Adelaide Marie. Galois was the middle chil
growing up with an older sister named Nathalie Théodore Galois and a younger brothe
named Alfred Galois. Galois father, Nicolas, managed a boys’ school in Bourga®-Re
a suburb of Paris, France. Adelaide, Galois’s mother, was the daugateiristonsult
in the Paris Faculty of Law and was educated in classical studies. &&ther,
Nicolas was a witty and entertaining man, making him very popular in Bourgitee.
This popularity mingled with good political savvy, won Nicolas the appointment of
mayor. Remarkably, he managed to remain mayor of the city throughout the continuall
changing political atmosphere. France, after Napoleon’s final cellapsiained in a
state of chaos and polarized into two distinct political camps. One side waBadaHi

the liberals, or republicans, and they were known for their radical ideas; wtexeas
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other side was branded as the “legitimists” or the “ultras,” and theirgthda was a
church-run monarchy (Livio, 2005). The government gave the richer population two-
thirds of the vote and the state schools (their public schools) ran with miikary-|
control.

Yet, in the year 1823, just when Paris was teeming with these new ideas and
possibilities, twelve-year-old Evariste Galois arrived at the farhgoée Louis-le-
Grand. Having been educated at home by his well-informed mothekyitégemust
have been a shock to the sheltered Galois. This school was steeped in legitirst
the students had their own uniforms, very little food to eat, and strict rules regardi
when they could speak and exercise. Galois’s life might have turned out difféneantly
different century, but the strict control and ridiculous rules stifled Galaisique
creativity. Initially excelling in the classics, (Latin and Greek) dulei$ mother’s
education, and winning a competition in mathematics, the atmosphereLgtte
ultimately took its toll on him and his health and schoolwork started to deteriorate. At

this time in Paris, the conservative “ultras” began

gaining power and if someone did anything that they
could deem a “crime against religion,” they were
sentenced to death. This bleak social outlook
definitely influenced the students at thgcée At the

age of 15, Galois encountered his first, and certainly
not last, setback. The headmaster Laborie held Galois

back (despite his grades) from entering the advanced

e »/j*k 7 :
Figure 1. A picture of Galois

during his time at the Lycée
(Newman, 2009).
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rhetorique class. Laborie claimed that Galois was too young for the advéessd c
However demoralizing, this setback introduced Galois to his life-long fasmnatih
mathematics. A new mathematics teacher named a M. Vernier joinddfttad the
Lycée and this, along with a new textbo@ements of Geomethy Legendre, led
Galois to become interested in the study of mathematics — legend has it that the rea
entire book in two days. From that point in his life, Galois lost interest in his other
studies — intent on focusing on mathematics — much to the discontent of his teackers. Hi
other teachers described his attitude in their classes as “There is nothisgvork
except strange fantasies and negligence,” and “He is under the spell ofitbenert of
mathematics. | think it would be best for him if his parents would allow him to study
nothing but this” (Livio, 2005, p. 117).

Only one teacher recognized Galois’s giftedness and encouraged his stiglies; t
teacher’s name was Louis Paul Emile Richard. It was under Richaelageithat
Galois published his first paper. This paper dealt with applications of continugdrfsac
and was Galois first foray into his new theories about groups and fields (Livio, 2005).
Beginning with introducing the idea of a group, Galois theorized that in order to solve
certain polynomials, he would have to create a special “Galois Group” of the padynom
and specific properties of the “Galois Group” would determine whether tiiequoial
was solvable. During Galois’s time at the Lycée, Richard encourades$ @asubmit
two papers to the Academy of Science — the most prominent scientific body e Fran
Richard took these papers to the great mathematician Cauchy, intending foy @auc
present Galois’s manuscripts to the Academy of Sciences. Sadly, Cauchyontict

Academy that he was unable to present Galois’s theory because he yaifl;,January
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25, Cauchy ended up presenting his own ideas — whether or not this was due to egotism
or was an unfortunate oversight is unknown.

Henceforth in Galois’s life, problems arose. First, a priest falsahgsred his
father, and Nicolas, not able to bear the shame, committed suicide. Thiytrage
happened in 1829, right in the middle of the struggle between the ultras and the church.
Thus, the church did not consider Nicolas, a staunch liberal and the mayor, an ideal
person to be in authority. Second, and days after his father’s death, G&disd¢ie
entrance exam to the greatest scientific college in FrancEctile Polytechnique
There are differing accounts on why the examiner failed him. One acgygests that
the examiner asked Galois to detail the theory of “arithmetic logarithms” aleisG
informed him that there were no such things as “arithmetic” logarithres/ést, 1973).
This meant that his only option was to attend the second best college in Fraioel¢he
Préparatoire Admitted to théPréparatoireafter obtaining his diploma from thecée—
not an easy thing to do with his focus entirely on mathematics at the cost of his other
studies — Galois signed a ten-year contract to remain within the statéi@asgatem.
In February of 1830, Galois again presented his ideas to the Academy of Sciences
attempting to win the Grand Prize in Mathematics — a tremendous mathematical honor
However, yet again ill luck followed Galois and the secretary died befalangelais
paper. And thus, the Academy never even had the opportunity to consider Galois’s paper
(Struik, 1986).

Plagued with trials, the only good thing to come of his time spent at the
Préparatoire,was his friendship with Auguste Chevalier. Chevalier fostered Galois’s

fascination with politics. Reformation having entirely taken over Galois’s titeulge



GALOIS AND FIELD EXTENSIONS 8

joined theSociété des Amis du Peupssociety consisting of the most radical of the
Republican Party. It was during this time in 1830 that Paris erupted in riots over King
Charles X’s decision to suspend the freedom of the press. Riots broke out and for three
days, the streets of Paris were filled with the sound of gunshots and the stimeltiefd.
Galois desperately wanted to join and fight, but the director d¢bie Préparatoire,
Guigniault, sided with the Ultras and threatened to call the troops if the stutkshte t
join the revolution. In the end, after 4,000 people lay dead, the politicians formed a
compromise and Charles X left in exile. This revolution severed any tieGahas
might have felt toward Guigniault. Galois considered Guigniault a traitor andd;owa
consequently, in December of 1830, Galois scathingly responded to a letter that
Guigniault had written in a student newspaper. In response, on January 4, 1831,
Guigniault expelled Galois from thiréparatoire(Livio, 2005). From this point on,
Galois’s passionate life only deteriorated, ultimately ending in his death.
The Loss of a Brilliant Star that Never Reached Its Peak

After leaving thePréparatoire,Galois had no way to support himself. He tried to
give math lessons, but his lectures were much too advanced for even his friends to
understand. As a result, Galois had to resort to tutoring low-level mathemdtmsghT
in the midst of these trials, the Academy asked him to resubmit his memoir, which he
gladly did. Yet again, fate seemed to be against Galois and even after sdettierg a
inquiring about his submission, he did not receive a response. During this period of his
life, Galois’s Republican beliefs grew stronger and he joined the NaGaraad.
However, soon after he joined the Republican organization, the King disbanded it. In

protest, the members held a banquet. Many famous people attended, including Alexandre
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Dumas, Raspail, and Galois. As the dinner grew riotous, history states that\@soi

heard giving a toast and saying, “To Louis-Philippe!” brandishing a dagegvd &,

1973). His companions obviously saw this as a threat against the King and soldiers
arrested Galois the next day. During his trial, Galois protested hig ategmg that he

had said to Louis-Philippe if he turns traitor, but there was too much cheering that no one
heard his final words. The jury acquitted Galois and he was free, but only for a short
time. His friends, the Chevaliers, wrote an article in a newspaper about &aldisw

the Academy never responded to his memoir. In response to this remark, Poisson and
Lacroix finally presented their verdict and the news was not encouragin@lfais G

They stated that, “His reasonings are neither sufficiently clear, nacisatfy developed

for us to be able to judge their exactness, and we are not in a position that enables us to
give an opinion in this report” (Livio, 2005, p. 133). With this sentence, they lost a great
genius and the world did not hear of his revolutionary theories for another 15 years whe
Liouville published most of his work (O’Connor & Robertson, 1996).

July of 1831 was not a good month for Galois. His revolutionary leanings
strained his relationship with his family and he moved into to his own apartment. This
did not help his violent political position and on July 14, Galois and his friend Ernest
Duchatelet led a group of 600 people in protest. The police again arrested Galois and
sentenced him to six months in prison. On December 3, the court sent both Galois and
Duchatelet to the Saint-Pélagie prison. These months in prison were dreadfubfer Ga
— his low standing due to his lack of financial means and his ill health only indrieiase
depression. Raspail, a compatriot, wrote that a drunk Galois, while in prison, tried to

commit suicide. Nathalie-Théodore, his sister, describes him as aging tisfonee
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(Livio, 2005). Yet in the spring of 1832, due to a cholera epidemic, they transferred

Galois to a hospital where he met Stéphanie DuMotel. Like all of Galois’s@raphie

fell passionately and violently in love. Unfortunately for Galois, the phrasee“sought

is good, but given unsought, is better,” did not apply to his own life (Shakespeare, 1994,
p. 101).

'Je n’ai pas le temps’

The details of this short affair are shrouded in myth (even Stéphanie’s surname is
uncertain). However, it is known that she turned his proclamations of love down and he
somehow insulted Stéphanie. This misfortune led to the infamous duel. There are many
different stories of how Galois came to die in a duel on the 31 of May 1832. The two
main ideas are either a lovers’ quarrel or a political coupé. Toti Ri¢athkliory
concerning the duel is quite interesting; she theorizes that Galois inventedithestory
and sacrificed himself, believing that the rebellion needed a corpse toRigee(li,

1996). Nevertheless, history is not even clear on whom Galois fought or how he got to
the hospital, where he died the next day. The only concrete fact that histalsrabout
Galois’s death is that either a peasant or a former military offareled the wounded

Galois to the Cochin Hospital at 9:30 in the morning and only his younger brother Alfred
was with him when he died half an hour later (Livio, 2005). While one can never be sure
of the reason for the duel, Galois did write a letter to his friend Chevalierghtehafore

his duel, outlining the exciting introduction to the new idea, now known as Galois

Theory. Galois asked Chevalier to take his rewritten memoir and idea®bo dac

Gauss. This long letter contained what became Galois’s most famous quote and one that

aptly describes his short life: ““Je n’ai pas le temps’ — ‘I have no timeVi¢L.2005, p.
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145). While society never honored or recognized his works during his lifetime, today
professors around the world teach Galois Theory in graduate programs, influsgwing
minds to solve the “unsolvable” just as he did.

He found it!

“I hope to interest the Academy in announcing that among the papers of Evariste
Galois | have found a solution, as precise as it is profound, of this beautiful problem:
whether or not [a polynomial] is solvable by radicals...” This is how Joseph Leauvill
presentation of Galois’s theories to the Academy on July 4, 1843 began — exactly 12
years after Poisson and Lacroix submitted their report not recommending pépers
to be recognized. Years later, Felix Klein used Galois’s proof on the sdiyalbili
polynomials, which relied on the “classification of equations according to themsimn
properties under permutations of the solutions,” to prove “that the icosahedral group and
the permutations group are isomorphic” (Livio, 2003, p. 197). This lead to Galois Theory
spilling over into other disciplines, especially physics. Einstein used Gaioess of
symmetry to identify the foundation of the natural laws. Thus, a 21-year-oldhRranc
discovered a theory that has ramifications that can ultimately deoeils¢ructure of the
universe.

What is a Group?

Now what is Galois Theory and why is it important? Before addressirigple
of Galois Theory and the subsequent theory of field extensions, the reader neefls a bri
definition of groups, fields, and extensions of fields. This will suffice to give hineor
a foundation on which to better comprehend the difficult mathematical proofsseldre

later. The symmetry of groups is inherent in nature and all created things. dipahar
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is to simplify the parts down into the underlying structure. The first math@amato use
the idea of groups as we use it today was Evariste Galois in his searcrmamethe
solvability of polynomials. The definition of a group from J. Fraleigh’s Alostra
Algebra(2003) states:
A group(G,*) is a set5, closed under a binary operation *, such that the
following axioms are satisfied:
l. For all a,b,c= R, we have
(ax*b)xc=ax*(bx*c) associatively of.
Il. There is an elemertin G such that for atk € G,
exx=x%*e=2x identity elemeng for .
lll. Corresponding to eacdn € Gm there is an element a’ @& such that
axa' =a' xa=e inversea’ of a (51-52).
The two good examples of a

+ 0 1 2 3 4 5 group are Z,+> and Q,+>. However,

notice that &l, +> is not a group.

Another relatively easy example of a

group is the groufs. Zs is the set

2 2 3 4 5 0 1 {0,1,2,3,4,5,6}.Under addition, the

identity of Z¢ is 0 and the inverses of all

the elements are clearly seen in figure 2.

414 5 0 1 2 3

For example, looking at figure 2, the

5 5 0 1 2 3 4 inverse of 1 is 5, the inverse of 2 is 4, the

Figure 2. This table is the group
Zg under addition.
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+ |1 -1 i - inverse of 3 is 3, the inverse of 4 is 2, and the
_ _ inverse of 5is 1. Clearly one can see the pattern
111 -1 1 | -
here. Another example of a group is the set {1,-1,
-11-1 1 o | -i} under multiplication. Figure 3 illustrates this

i i i -1 1 group. An interesting aspect of this group is that it

is isomorphic to the group, and is thus cyclic with

S I T I R §

a generator of €>.

Figure 3. This table is the group
{1, -1,i, -i},*>.
While studying groups, Galois noticed that sometimes a group’s struotuce ¢

capture the inherent and abstract structure of a geometric square.diaweate in
geometry are many groups of symmetry other than squares; for example, the
permutations of the geometrical shapes of either a rectangle or &terquiriangle both
can be represented by a group. Let me elaborate on the example of the dihedia) group
of permutations. The group is also known as the group of symmetries of a square, or the
octic group (Fraleigh, 2003). This group contains all the permutations that correspond to
the rotations, mirror images, and reflections that act on the squarer(Sggme 2),

leaving it in the same position as it began. Let us refer to rotatignsnaisror images as

1234) _(1234 4 3
123400 P1 = \3341)

o, and diagonal flips a&. Letp, = (

_ 1234) _(1234) _(1234 _(1234
P2 _(3412 1 P3 = \4123)09 T (3143)091 = \4321)

8o = (3237).ands; = (237). Obviously,p, refers to the

1 2
Figure 4 The
square.
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identity permutation, or in other words, the square does not change @t mlbves the
squares vertices — vertices 1 to 2, 2to 3, 3to 4, and 4 to 1. This is a rotation of 90
degrees.p, is a rotation of 180 degrees, gndis a rotation of 270 degreesy is the
reflection across the perpendicular bisector of the sides, permuting tices/érto 2, 2

to 1, 3to 4, and 4 to 3, reflects the vertices across the horizontal bisector of the sides,
permuting the vertex from 1 to 4, from 2 to 3, from 3 to 2, and from 4 &g flips the
vertices across a diagonal line drawn from vertices 2 to 4, dhilermutes them across

a diagonal line from vertices 1 to 3. Looking at table 3, several beautiful properties
shine forth. First of all, note thBY, is nonabelian. Also, look at all of the subgroups.

Figure 5 shows the subgroup diagramDar

Po Po P1 P2 P3 ) 01 8o 6,

P1 P1 P2 p3 Po 8o 81 01 Oo

P2 P2 P3 Po P1 0, ) 6, 8o

P3 P3 Po P1 P2 84 o ) 01

6o 8o Op 8y 01 P1 P3 Po P2

Figure 5. The groupD,.
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I

{po, P2, 00, 01} {po, P2, P2, P3} {po, P2, 80, 61}
{Po, 00} {Po, 01} {Po, P2} {Po, 8o} {Po, 81}

{po}

Figure 6. The subgroup diagram ;.
Subgroups
Subgroups are very important in our discussion of groups. The definition of a
subgroup, found in FraleighAbstract Algebrg2003), states that
“A subsetH of a groupG is a subgroup o iff the following axioms are met:
I.  His closed under the binary operatiorXf
Il.  the identity elemergof G is inH,
ll.  foralla€ H itis true that 4 € H also” (p. 66).
From this definition, it should be clear that the sets listed in figure 6 azedritde
subgroups ob,4. Not all proper groups have subgroups; however, all non-proper groups
have at least two subgroups — the groups itself and the identity group. Joseph-Louis
Lagrange (1736-1813) discovered a theorem that proves if subset is in fact a subgroup.
Aptly named Lagrange’s Theorem:
Theorem 1:LetH be a subgroup of the gro The ordeH, divides the order

of the groupG.
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Proof: Let n be the order of the gro@ and m be the order of the subgrddip

We know that every left (or right) cosetldfhas the order dd. This implies that
every coset oH has m elements. Let g be the number of cosets in the partition of
G into the left cosets dfi. Then n=m(qg). And thus, m is a divisor of n (Fraleigh,
2003, p. 114).

Note that the order of a group is just how many elements are in the group (Borowski &

Borwein, 2007). For example, let us examine the gf@gp +) again and try to find its

subgroups. Looking at figure 2, we see that the subgrouns arfe {0,3} and {0,2,4}

and the trivial subgroup {0}. Notice Lagrange’s theorem at work: the order of the
subgroups divide the order of the group. Lagrange’s theorem, while it mayisgam s
actually allows mathematicians to prove countless theorems and without whbigp, gr
theory would be infinitely more difficult.

Cosets are another important aspect of subgroups and Quotient groups:

Definition 2: LetH be a subgroup of a gro@and let a be an element®f

The subsethd = {ah| h is an element &f} of G is left coset oH. The subseta

is the right coset dfi (Borowski & Borwein, 2007, p. 123).
These cosets form a partition®f For example, the left cosets of the subgroup
{po,01} = H of the grouD4 are:p1H = 6:1H = {p1,01}, p2H = ooH = {p2,00}, psH =dH =
{p3,00}, o1H = H = {po,01}. From the definition of cosets and Lagrange’s theorem, we
form one more definition that is important and one more theorem:

Theorem 3: The order of an element of a groGpdivides the order of the group

when the group is finite.
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Proof: We know that the order of an element is the same as the order of the

cyclic group that the element generates. Let m be the order of the eleFheist

m also is the order of a cyclic subgroup. Thus from theorem 1, m divides the order

of the group.

Definition 4: LetH be a subgroup of a gro Theindex(G:H) is the number

of the left cosets dfl in G (Fraleigh, 2003, p. 115).

We might hypothesize here that if an integer m divides the order of a@tdabpnG
must have a subgroup of order m. Well, this is true in the case where th&gsoup
abelian; however, i is not abelian, we cannot make this conjecture.

Now that we have a suitable understanding of basic groups, subgroups, and
cosets, we can discuss the special types of groups called factor groups,estquoti
groups:

Definition 5: A factor groupG/H, is a group whose members are the cosets of

the invariant subgroud. Note, any member of the factor group is a set of the

elements of i, for all ae G (Fraleigh, 2003, p. 151).

We can construct a theorem that states that the cosets form a quotient gusuyghyst
coset multiplication. First we must prove that left coset multiplicaamell-defined,;
however, while that proof is straightforward, it is too long and will detraat the point:

Theorem 6: LetH be a subgroup of the groG Then the left coset

multiplication is well defined for the equatiorHgbH) = (abH if and only ifH

is a invariant subgroud of G (Fraleigh, 2003, p. 152).
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Fields

While fields were implicit in Galois’s work, it was Leopold Kronecker and
Richard Dedekind who actually defined a field. Their definition of a field is fouohti
to Galois Theory:

Definition 7: A field consists of a sét with two binary operationsk +,%>, such
that

I.  For <, +>,F is an abelian group under addition with idenéity O.
Il.  The set~— {0} is a group, with an identitg = 1.
[ll.  And the distributive law holds for all elements; i.e., foragll,ce F,
ax(b+c)=(axb)+ (axc)and(a+b)*c=(ax*xc)+ (b*c)
(Borowski & Borwein, 2007, p. 211).

Two examples of fields are the rational and the real number systems; however, the
integersZ do not form a field. This is because, for example, 2 has no multiplicative
inverse, also called a uniZ, is a field, for every primg —the proof follows on the
following page. The field€,andQ are called prime fields — in fact, they are the
minimal fields.

Theorem 8:The ringZ,, is a field if and only if p is a prime number.

Proof: | will prove this by contradiction. Assume thais not a prime number. If

p=1, thenZ, = Z/Z (the quotient group) has only one member and thus cannot be

a field. Ifp>0, thenp = ab, such that andb are integers less than Let | =pZ,

implies that (I +a)(I + b) = 1 +ab=I. However, | is the zero elementA,

while | +a and | +b are both greater than zero. This implies that, since the

product of two non-zero elements in a field is non-z&fb¢annot be a field.



GALOIS AND FIELD EXTENSIONS 19

Now the converse: assume tpas prime. Let | +a be a non-zero element 5fl.
Since gcdd,p)=1, there exist integersands, such thata + sp=1. Then
(I+n+a=(+1)-(+p)(I+s)=1+1andalso (I 8)(I+r)=1+1. Since
| + 1 is the identity oZ/l, we have found the multiplicative inverse (the unit) for
| + a. Thus all non-zero elementsOfi have inverses. Therefofg =Z/1is a
field (Stewart, 1973, p. 56).

Now let the reader examine tAg under

the binary operation of multiplication. Figure

O]J]O0O | O O O O0}]O 7, on the right, contains this group. Figure 7

shows that the identity &g under

multiplication is 1, the inverse of 1 is 0, and the

inverse of 5 is 5Since 2, 3, and 4 do not have

3 0 3 0 3 0 3 inverses irZs under multiplication, this implies

thatZg is not a group under multiplication, thus

Zesis not a field. This is where the idea of field

extensions comes into play; however, let us

Figure 7. Zg under multiplication. finish discussing fields.
One important invariant of a field is its characteristic, which is defined bielow
theorem 9:
Theorem 9: LetF be a field. For all positive integemswe seinx1 =

1+1+1+...+1 ntimes. We have two cases:
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Case 1) nx1=#0forallninz®.
This implies that since * 1 # 0, (n * 1) exists. This, in turn, implies

that for anyg € Q, this rational number can be identified with

(p*1)(g * 1)*. So thaQ < F. The fieldF is then is said to be of
characteristic zero.

Case 2) There existsdn Z*, such that x 1 = 0.

If nis the smallest integer such tim&1l = 0O, thenp is a prime. Suppose
thatp =kl =0,fork,1€Z. (n*x1)=(k*x1)(l*1) =0.

This implies thatk « 1) = 0 or (1 * 1) = 0. But this contradicts the fact
thatp is the smallest integersuch than*1 = 0. Thusn *1 = 0.
Becausé- is a field, we can say thay, is a subfield of. ThereforeF is
said to be of characterisfic(Borowski & Borwein, 2007, p. 76).

Every science uses the field of real numbers and most use the field of complex
numbers. Electrical engineers would not have a job if complex numbers did not exist.
However, what about Galois and why did he use and define groups and fields?
Remember that he was trying to prove that it is not possible to solve a polynonfial of n
order by radicals. To achieve this, Galois created something mathamatcw call
field extensions.

Field Extensions
Galois originally wrote his theory of solving polynomials in the complex field

(Stewart, 1973). However, mathematicians today use arbitrary fields:
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Definition 10: A field L is an extension of a fieldif F < L (Fraleigh, 2003, p.

279).
For example, any fiel& is an extension d, if F is of characteristic O; otherwi$eis an
extension ofZ, if F is of characteristip. Also, take for example, the field of real
numbersR and the field of complex numbets We denote the extensionRfby C as
R < C. Remember that there are two minimal fie@sndZ,. While the extension of
Q is relatively easy to construct, the construction of a field extensidp, oéquires a
review of polynomials.
Polynomials

Taught in every middle school in the world, polynomials are the backbone of
algebra and without which, mathematics would be indescribable:

Definition 11: We define a polynomial as

ap + a;x + -+ a,x™, where ay, ...,a, € R,0 <n € Z,and x is undefined.

The elements,, ..., a,, are called the coefficients of the polynomial (Borowski &

Borwein, 2007, p. 436).
The sum of a polynomial is again a polynomial. Let ¥ ay + a;x + -+ a,x™ and
g(x) = by + byx + -+ b,x™. Adding fx) and gk) gives the new polynomial, X)(=
f(x) + g) = (ap + by) + (a; + by)x + -+ (a, + b,)x™. In polynomial addition, one
just adds the coefficients; however, polynomial multiplication is not as nice.théet
product of a polynomial is still another polynomial, since polynomials are closed under
their binary operators. Letd(= ay + a;x + -+ + a,x™ andg(x) = by + byx + - +
b,x™ . Multiplying f(X) and gk) produces the new polynomial XkE f(x) g(x) =

do + dix + -+ d,x™, wheredo= Y.7-, a;b,,_;- When the coefficients of two different
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polynomials of the same degree are equal, we defined the polynomials as equg). Final
we defineF[x] as the set of all the polynomials with coefficients in the fieldThus,
(F[x], +,*) satisfies all the axioms of a field, except that not all of the elerhants
multiplicative inverses. Nevertheless, this set, called a ring, is veoriant:
Definition 12: “Aring (R, +,*) is a seR together with two binary operations +
and *, which we caladditionandmultiplication defined orR such that the

following axioms are satisfied:

J (R, +) is an abelian group
. Multiplication is associative
o For alla,b,ce R, theleft distributive lawa * (b + ¢) = (a *x b) + (a * ¢)

and theright distributive law(a + b) * ¢) = (a * ¢) + (b * ¢) hold” (Fraleigh,

2003, p. 181).

A few examples of rings aK&, +,*), (Q, +,*), and(C, +,*). As stated earlieZ does not
have multiplicative inverses under multiplication, ¢ not a field, yet it is a ringF[X]
is a ring for any field~; for exampleQ[X] is a ring.

Although | defined a polynomial, the question still may arise of how polynomials
relate to an ordered set of numbers. Tak&Zgwe{0,1,2,3,4}. These are the possible
remainders whei is divided by 5. In other wordg&sis the field equal to the quotient
field Z/5Z. Just as the integers have remainders when divided, polynomials also have
long division and remainders. This ‘division’ is commonly referred to as fagtann
other words, %)=q(x) h(x) + r(x), where the degree of the remaindex), 1§ less than the

degree of o).
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Factoring Polynomials: (Easy?) Think again

Finding the zeros of a polynomial is extremely important in every sciergéilm
imaginable. In fact, this was the purpose of Galois’s theory. The factonizdt
polynomials immensely simplifies the process of finding zeros:

Theorem 13:Any elementr [ F (a field) is a zero of &) [I F[X] if and only ifx

—a is a factor of ) in F[X] (Steward, 1973, p. 78).
For example, the polynomiald(= x* + 4, can be factored into linear factor<Zifx].
Leta = 1. Using long division, we see that tkatl =x + 4is a factor of f§). We
continuing witha = 2,0 =3, ando = 4. Finally, f&) = (x+1)(x+2)(x+3)(x+4).
Thus, by Theorem 13, we know thet 1, 4, 2, 3 are the zeros oX)f{n Zs. Obviously,
the Factor Theorem makes solving polynomials much easier.

However, a problem arises of what to do in the case of an irreducible polynomial.
A polynomial f) is irreducible oveF if f(x) cannot be expressed as a produx kyfx)
of two polynomials g) and hk) in F[x] where both gf) and hk) are of lower degree
than the degree of¥)(. In other words, an irreducible polynomial is a polynomial over a
field F that is unable to be factoredFfninto a product of polynomials of lower degree
(Borowski & Borwein, 2002). Also, note that the irreducible polynomial is analogous to
the prime numbers. However, just because a polynomial is irreducibl& dees not
mean that it is not reducible over a larger figldontainingF. For example, §) =x* + 1

is irreducible over the Real numbers, yet it is reducible over the Complex nureteansy

f(x) =% +1 factors intoX - i)(x + i), wherei is the imaginary number such thatv—1 :
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Theorem 14:Let f(x) [ F[X], and let f&) be of degree 2 or 3. Themx)(s

reducible ovefF if and only if f(x) has a zero if. In other words, if a
polynomial of degree 2 or 3 is factorable, then it has zeros or conversely, if a
polynomial of degree 2 or 3 has zero$jrthen it is reducible (Fraleigh, 2003, p.
228).
Polynomials inF[x] can be factored into a product of irreducible polynomiaS[xj in
an essentially unique way.
Theorem 15:Let pf) be an irreducible polynomial H[x]. If p(x) divides
r(x)sx) for r(x), sk) (1 F[x], then either p() divides rk) or p) divides sx)
(Fraleigh, 2003, p. 228)
Looking at the example above, lekp€ x—i. Thus pX) is irreducible and also divides
(*+1)(x + 1). This generalizes into Theorem 16:
Theorem 18 If F is a field, then every nonconstant polynomig) & F[x] can be
factored inF[x] into a product of irreducible polynomials that are unique except
for order and for unit (that is, nonzero constant) (Fraleigh, 2003, p. 231).
Overall, understanding how to factor polynomials is imperative to comprehenddhg fie
extensions. After all, this was the problem that Galois faced and ulynsateéd.

Returning to Field Extensions

We can now discuss the extensiorZgf Let p&) be an irreducible polynomial in
F[x]. This means that there is no elemeim F[X] such that pf) = 0. Now,(p(x)) are
all the polynomials that havex)(as a factor; this is called an “ideal’. Just as we can find
a field by taking a quotient of a field and an ideal, we can use the same idea wit

polynomials. Just as in the earlier exaniple= Z/5Z = Z/(5), so is the field extension
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E =F[X]/(p(x)). In other words, if there is an irreducible polynomial) & F[x], then

there is a field extensida of F, such that there exists are E, such that
p(a) = 0.
However, what exactly did Galois theorize and what is a Galois field?e \tfieil
whole, exhaustive explanation of Galois Theory is too advanced to include in this paper, |
will still give an example of a Galois group. lFebe a field, such thd&=Z, and let pX)
=x? +x +1 which is an element &[x]. Using the rational roots test, it is obvious to see
that p§) is irreducible oveZ,[x]. Therefore, we must exte. The extensioi of Z,
is Zo[X)/{x? + x + 1). The class ot mod(p&)) = a. This implies that the remainders are
0, 1,0, 1 +a. These remainders create a Galois fi@ld(4) ={0, 1,a, 1+o}. Since we
know thata? + a + 1 = 0, we can form a table for this field (figures 8 and 9).

Remember that? = a + 1.

+ 0 1 a l+a

0 0 1 a l+a

a a l1+ta O 1

l+a|l+a | A 1 0

Figure 8. The group of th&F(4) under
addition.
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* 0 1 a l+a

010 O O O

1 0 1 o l+ta

o 0 A 1+ta 1

14| O 1+a 1 o

Figure 9. The group of th&F(4) under
multiplication.
In general, this system creates an extengiohZ,, such thaE = GF(p'), where p is the
prime modulus of the field raised to a power Z of the irreducible polynomial.
For the sake of understanding, let us examine another example. The problem is
how to extendZs to allow f(x) =x* + 1 to have solutions. Factoring)f(we find the
roots areV/2. Looking at figure 10 and figure 11 on the following page, the Hegld
appears in the top right corner of both figures. Obviously the square root of two is not a
member ofZ; nor are the square root of two’s inverses. Thus, we must extdond
Z3(0), whereo =v2. The remainders are {0, 1,&,1 +a, 2 +o, 20, 1 + &1, 2 + i}

This field extensiorr is illustrated in figures 10 and 11.
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¥ 0 1 2 V2 VZ4+1 | V242 2vV2 | 2vV2+1 | 2V2+2
0 0 1 2 V2 VZ+1 | V242 22 | 2V2+1 | 2242
1 1 2 0 V241 | V2+2 V2 2V2+1 | 2vV2+2 2v2
2 2 0 1 V242 V2 V2 +1 V2 2V2 22 +1
V2 V2 V24+1 | V2+2 2V2 | 2V2+4+1 | 2v2+2 0 1 2
VZ2+1 | V241 | V242 V2 2V2+1 | 2v2+2 2V2 1 2 0
v2+2 | V2+2 V2 V241 | 2242 | 242 | 2V2+1 2 0 1
2V2 2V2 | 2241 | 22 +2 0 1 2 V2 VZ+1 | V242
2VZ+1 | 2v2+1 | 242+2 | 242 1 2 0 V241 | V242 V2
2V2+2 | 2v2+2 2V2 | 22 +1 2 0 1 V2 +2 V2 V2+1

Figure 10. This figure refers to the extensiond§, or Zs(+/2) under addition.
This is alsdGF(9) under addition.

* 0 1 2 V2 V2+1 V2 +2 2V2 2V2+1 | 2242
0 0 0 0 0 0 0 0 0 0
1 0 1 2 V2 V2+1 | V242 2v2 2V2+1 | 2v2+2
2 0 2 1 2v2 2V2+2 | 2V2+1 V2 V2 +2 V2 +1
V2 0 V2 2v2 2 V2+2 | 2V2+2 1 V2+1 | 2V2+1
vZ+1 | O | V241 | 2v242 | V2+2 2V2 1 V2 +1 2 V2
vZ2+2 | O | V242 | 2v2+1 | 2v2+2 1 V2 VZ+1 2v2 2
2V2 0 V2 V2 1 2V2Z+1 | VZ2+1 2 2V2+2 | V2+2
2v2+1 ] 0 2V2 VZ+2 | V241 2 2V2 V2 +2 V2 1
+1
2v2+2 ] O 2v2 VZ+1 | 2v2+1 V2 2 V2 +2 1 V2
+2

Figure 11. This table refers to the extensionZaf or Z(v/2) under multiplication.
It is alsoGF(9) under multiplication.
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With this field extension, the polynomiakj(= x* + 1 is reducible oveZs(+/2). In other

words,Z3(v/2) is a simple algebraic extension oer(to be explained later) and is of
characteristic 3. The nine remainderZgfix]/(x? + 1) form the Galois fieldsF(9).
Referring to figures 10 and 11, the reader should be able to tell that wiif2, these
two figures illustrat&5F(9). This is the genius of Galois. He proved how to solve any
polynomial.
Finite and Infinite Field Extensions

Understanding finite and infinite field extensions is imperative to undersandi
Galois groups — our ultimate goal. Beginning with finite field extensionE, liet a field
extension of a fieldf. We can say th& is a vector space over For example let us
examine the fieldsF(9), specifically,Z3(v/2 ). Using linear algebra, we determine that
the basis of this extension is §{2 }. This means thagj(1) + ®) (vV2), wherea andb
are elements df, constructs all of the elementsZg(v/2 ). It is important to notice that
while E is a finite extension d¥, this does not imply that the fieklis a finite field.
Also notice that finite fields have characteristio> 0, whenp is prime.In the case of
infinite field extensions, the basis is infinite. For example, the real nurRbames an
infinite extension of the rational numb&psQ < R < C. Whereas the extension frdfn
to C is finite with a basis of {1i}. This discussion leads to two very important elements

of extensions — algebraic and transcendental elements:
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Definition 16: Assume thaF < E is a simple extension ande E. We say that

is algebraic oveF if some nonzero polynomial¥( € F[X] factors inF[x], so that

f(x) = gx)h(x) for g(x), h(x) 1 F[x]. Now for the evaluation homomorphispy,

such thatp,: F[x]—>E, we have ) = ¢u(f(x)) = ¢.(9(X) h(x)) = ¢.(9(X)) 9a(h(x))

=g(@) h(@). Thus, ifa [1 E, then f) = 0 if and only if either g() = 0 or hf) =

0.

Otherwise, when %) # 0, a is transcendental ovér(Stewart, 1973, p. 112)

It is a well-known fact that ande are transcendental ov&r;, however, this is not
easy to prove. Just becausande are transcendental ov@rdoes not sufficient to
prove thatt ande are transcendental over any field. In fact, they both are algebraic over
R, for is a zero ofX—m) € R. This leads to another definition:

Definition 17: An algebraic number is an elemeni®that is algebraic ove).

An element ofC that is transcendental ov@ris a transcendental number

(Fraleigh, 2003, p. 282).
For example, to prove that 12+ € C is algebraic ove®, we must find a %) € Q[X]
such that f(1 +@ = 0. The polynomial §) =x* — 2 + 5 has as a root, 1 +. 2Therefore,
1+ 2 is algebraic ove®. This theory of beginning with an irreducible polynomial over
a field F and extending the field to some field extendipms what Galois theorized.

Galois Group of an Extension
All of this prior discussion leads us to the culmination of Galois’s theory - the

Galois group of an extension. A definition of a homomorphism is required:
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Definition 18: A homomorphism on a field is a mappingp such that for alk

° Z Z
Z Z Z
Z Z Z

Figure 12.The table
representings(C:R) = Z,.

andy elements i, p(x+y) = o(X) + ¢(y) ando(xy) =
o(X)o(y) (Fraleigh, 2003, p. 43).

The Galois group of an extensi@jE,F], is the set of
all homomorphismg: E — E that leave pointwise fixed.
In other wordsg is an automorphism &. For example,
consider the extensidd:R and assume thatis an

automorphism o€. This means thai(r) =r for allr in R.

Let z=x+iy, so@(2)=0(X) + ¢(i)o(Y).

Sinceg(r) =r, (2= x + ¢(i)y. We know that® = -1,

and since -1 is an elementRfo(i%) = ¢(i)o(i) = (i) = -1. We also know that(i)==+i.

Thus,p(2)=x + ¢(i)y either equals + 1y =z orx — iy=Z (the complex conjugate af.

One can create a Galois gro@fC:R] with zandz as the elements. This group is

isomorphic taZ, and is illustrated in figure 12. At first glance, this may not seem

important or at all thrilling; yet, the properties of this group reflect theabdity of a

polynomial. Galois used this theory to prove that a quintic is not solvable by radicals.

However, as that discussion is beyond the scope of this paper, we will discuss a

geographical result of Galois Theory.

The Trisection of an Angle

All of this prior theory is nice; however, one may ask how it relates to the

physical world. In 1937, Pierre Wantzel proved a practical example usloggs

Theory (Fraleigh, 2003). Since the Greek mathematics of the fourth century,

mathematicians have spent years devoted to proving that certain coossracé
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impossible; for example, the construction of trisecting an angle. By 1937, evén@mme
that trisecting any angle was impossible, yet no one had been able to prawedpied
fact. This assumption can be proved based on Wantzel’s proof:
Definition 19: Trisecting any angle is impossible.
Proof. Assume that the angfewe are trying to construct is a 20 degrees from a
60 degree angle. So let=20. We know that in order to construct an angle, of
we have to be able to construct the length |gjis Using a ruler and compass, it
is possible to construct the angle of 60 degress. Remember that)cos(B(2
+ @) = cos(D) cosfp) — sin(2p)sin(e) = (2cod(p) -1)cosp) — 2sinfp)cosfp)sin(©)
= (2c0$(9) -1)cosfp) — 2cos¢)(1 — cod(p)) = 4cod(p) — 3cosf). Lettingp =
20, entails that cos¢3 = %. Let cos(20) & and let 4co¥p) — 3cos) = cos().
This implies that & - 35 = . We know that the function f(x) = 4x 3x -1/2 =

8x% — 6x -1 is irreducible ove®. The rational roots test proves that none the

possible rootst1, + , is a zero of 8- 6x -1. This implies that the

N |-

k=
4

@ |-

degree 0f)(5):Q = 3. In order fob to be constructible, the degree of the

extension must be a power of 2. SiQE@):Q = 3+ 2, is means that is not

constructible. Therefore, a 60-degree angle cannot be trisecteddirralgd3, p.

311).

Using this same method, it is possible to prove that many other such
constructions, like the fact that one cannot use a ruler and compass to duplicate a cube,
are impossible. While mathematicians before Galois certainly were aivthe idea of

field extensions, Galois was the first to concretely use them to prove histisedre
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fact, Gauss had asserted “anyone who attempted to find a geometriactorsfior ap-
gon wherg — 1 is not a power of 2 would ‘spend his time uselessly” (Fraleigh, 2003,
312). When Watzel proved that the trisection of angles was impossible, his theorems
relied on the theorems of field extensions that Galois had clearly demonstiated a
years before.
Conclusion

Approximately 180 years ago, Evariste Galois devised a structure to oheterm
whether a polynomial is solvable by radicals. The world still feels reatidns of
Galois’s theory today. We saw how useful his theorems were in the example thdt prove
that any angle is unable to be trisected using a ruler and compass. Mu&ihesalso
use Galois Theory to study geometry, physics, chemistry, and manyedhas iof
study. The world is indebted to Galois and the question remains: what else would we

know if Galois’s life had not ended so tragically?
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