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Peri-nuclear clustering of mitochondria is
triggered during aluminum maltolate induced
apoptosis

David A. DeWitta,b,∗, Jennifer A. Hurda, Nena Foxb, Brigitte E. Townsenda, Kathleen J.S. Griffioena,c,
Othman Ghribid and John Savoryb

aDepartment of Biology, Liberty University, Lynchburg, VA, USA
bDepartment of Pathology, University of Virginia, Charlottesville, VA, USA
cDepartment of Pharmacology and Physiology, George Washington University, Washington, DC, USA
dDepartment of Pharmacology, University of North Dakota, Grand Forks, ND, USA

Abstract. Synapse loss and neuronal death are key features of Alzheimer’s disease pathology. Disrupted axonal transport of
mitochondria is a potential mechanism that could contribute to both. As the major producer of ATP in the cell, transport of
mitochondria to the synapse is required for synapse maintenance. However, mitochondria also play an important role in the
regulation of apoptosis. Investigation of aluminum (Al) maltolate induced apoptosis in human NT2 cells led us to explore the
relationship between apoptosis related changes and the disruption of mitochondrial transport. Similar to that observed with tau over
expression, NT2 cells exhibit peri-nuclear clustering of mitochondria following treatment with Al maltolate. Neuritic processes
largely lacked mitochondria, except in axonal swellings. Similar, but more rapid results were observed following staurosporine
administration, indicating that the clustering effect was not specific to Al maltolate. Organelle clustering and transport disruption
preceded apoptosis. Incubation with the caspase inhibitor zVAD-FMK effectively blocked apoptosis, however failed to prevent
organelle clustering. Thus, transport disruption is associated with the initiation, but not necessarily the completion of apoptosis.
These results, together with observed transport defects and apoptosis related changes in Alzheimer disease brain suggest that
mitochondrial transport disruption may play a significant role in synapse loss and thus the pathogenesis or Alzheimer’s disease.

Keywords: Apoptosis, axonal transport, Alzheimer’s disease, aluminum, staurosporine

1. Introduction

Disrupted axonal transport may account for some
unique features of Alzheimer’s disease including neu-
ritic dystrophy, synapse loss, and the abnormal accumu-
lation of phosphorylated tau in the neuronal soma [38,
39]. However, the regulation of axonal transport has
received relatively little attention compared to other as-
pects of the disease despite several studies proposing

∗Corresponding author: David A. DeWitt, Ph.D., Dept. of Bi-
ology, Liberty University, 1971 University Blvd., Lynchburg, VA
24502, USA. Tel.: +1 434 582 2228; Fax: +1 434 582 2488; E-mail:
dadewitt@liberty.edu.

a role for disrupted transport. For example, axoplas-
mic flow disturbances together with accumulation of
smooth ER have been observed in biopsy tissue from
AD brain [31], and the Golgi apparatus is fragmented
in non-tangle bearing neurons in AD [35]. In another
study, neuritic striation was observed in AD brain where
neuronal processes showed breaks with no cytoskeletal
elements present instead of continuous filaments [44].
Further results comparing autopsy and biopsy AD tis-
sue revealed cytoskeletal abnormalities indicating de-
fective fast axonal transport [29]. Affected neurons in
AD exhibit a reduced number of mitochondria, pos-
sibly due to the failure to transport them through the
axons [16] and a reduced number of microtubules [4].
Moreover, Dai [7] demonstrated that neurons obtained

ISSN 1387-2877/06/$17.00 © 2006 – IOS Press and the authors. All rights reserved



196 D.A. DeWitt et al. / Peri-nuclear clustering of mitochondria is triggered during aluminum maltolate induced apoptosis

from the temporal cortex of post mortem AD cases ex-
hibit decreased axonal transport, and the degree of im-
paired transport was directly related to the degree of
neuropathological changes.

Apoptosis has been suggested to play a role in AD [6,
36], however, the exact role it plays in neuropathol-
ogy is unclear. For example, in affected neurons in
AD, either the full apoptotic cascade is not activated,
or apoptosis appears to have been aborted [25,26,30].
One possibility is that mitochondria are a key player
linking the initiation of apoptosis and transport disrup-
tion. Indeed, peri-nuclear clustering of mitochondria
is a distinct consequence of apoptosis related trans-
port disruption. Concanavalin A induces apoptosis in a
murine macrophage cell line and triggers peri-nuclear
clustering of mitochondria [37]. TNF-α [22] and TNF-
Related Apoptosis Inducing Ligand (TRAIL) [41] both
induce clustering of mitochondria as an initial step in
triggering apoptosis. Indeed, TNF induces the hyper-
phosphorylation of kinesin light chains which effec-
tively inhibits transport [9]. Interestingly, one conse-
quence of tau over-expression is peri-nuclear cluster-
ing of mitochondria and the failure of normal kinesin
dependent transport [10,33,43].

Previous work has established that intracisternal
injection of Al maltolate can trigger neurofibrillary
pathology, apoptosis and oxidative damage in aged rab-
bits [32]. In this model Al maltolate initiates apop-
tosis involving both the endoplasmic reticulum (ER)
and the mitochondria [12], consistent with increasing
evidence that suggests signaling between the ER and
mitochondria may be involved in the regulation of pro-
grammed cell death [13,14]. Further, the release of
cytochrome c triggered by Al maltolate administra-
tion is blocked by Cyclosporine A, a specific inhibitor
of the mitochondrial permeability transition pore [11].
Co-administration of glial derived neurotrophic factor
(GDNF) with Al maltolate resulted in the upregulation
of Bcl-2 and the inhibition of mitochondrial transloca-
tion of Bax effectively preventing apoptosis [12]. In
addition there was no increase in caspase-3 activity or
TUNEL positive nuclei following GDNF administra-
tion. Interestingly, despite reduced neurological symp-
toms and apoptosis related changes following GDNF
administraion, cytochrome c release still occurs, indi-
cating apoptosis is blocked downstream of cytochrome
c release. Therefore, apoptosis related changes are
clearly implicated in the neuropathological changes in
this model and specifically mitochondria are especially
vulnerable to these effects.

To validate the applicability to AD, we have extended
the rabbit model and developed an in vitro model us-

ing human NT-2 cells [15]. Previously we have con-
firmed that Al maltolate triggers substantial cell death.
Further, cell death occurs by apoptosis, as evidenced
by TUNEL positive nuclei, nuclear fragmentation and
cytochrome c release. The aim of the present study
was to determine whether apoptosis is linked to trans-
port disruption; specifically we asked whether Al mal-
tolate induces peri-nuclear clustering of mitochondria,
whether this effect is specific to Al maltolate, and exam-
ined whether organelle clustering precedes or follows
apoptosis.

2. Materials and methods

2.1. Cell culture

DMEM/F-12 with 10% (v/v) FBS, 2 mM L-
glutamine and 1% (v/v) penicillin-streptomycin was
used as growth media for human teratocarcinoma
(NT2) precursor cells. Cells were grown on glass cov-
erslips in 6 well plates and maintained in 5% CO2 at
37oC. Cells were plated and allowed to adhere and
grow for 24 hours before use in experiments. These
cells were differentiated following the procedure of
Zigova [47]. Briefly, NT2 precursor cells were grown
for 6 weeks with 10 μM retinoic acid (Sigma) and cry-
opreserved with DMSO in liquid nitrogen prior to use.

2.2. Cell treatments

Aluminum – Al maltolate was prepared as described
previously [3]. A stock solution of 25 mM Al maltolate
was freshly prepared in sterile water and sterilized by
passing it through a 0.2 μm filter. Al maltolate was
then added to growth medium for a final concentration
of 500 μM. Cells were incubated in Al maltolate or
control media for 6 or 24 hours. In order to determine
the effects of pulse exposure, a pulse of 500 μm was
administered for 2 hours and then replaced with fresh
growth media. For lower Al concentrations, 500 μM
Al maltolate was serially diluted with growth media to
100 μM, 25 μM and 5 μM. For an additional control,
1.5 mM maltolate was also used.

Peroxide – Hydrogen peroxide was used as a con-
trol to determine the specificity of Al induced organelle
clustering. A stock solution of 30% H2O2 (Sigma)
was filter sterilized and diluted to 0.03% with growth
media. Following an incubation of 30 minutes, perox-
ide containing media was replaced with fresh growth
media.
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Staurosporine – Staurosporine was used to deter-
mine whether organelle clustering was a characteristic
of apoptosis in NT2 cells. A stock solution of 1 mM in
DMSO (Sigma) was diluted to 450 nM with growth me-
dia. Cells were incubated in staurosporine containing
media or vehicle alone for 2 or 24 hours.

Nocodazole – In order to determine whether an intact
microtubule array was required for mitochondrial clus-
tering, the anti-mitotic drug, nocodazole (Sigma) was
used. Following 6 or 24 hours, control and Al maltolate
treated cells were incubated with 5 μM nocodazole for
30 minutes prior to cell labeling.

z-VAD-FMK – In order to determine whether ac-
tive caspases were required for the clustering of mi-
tochondria, NT2 cells were incubated with 20 μM z-
VAD-FMK (Promega) along with Al maltolate or stau-
rosporine.

2.3. Mitochondrial labeling

To visualize mitochondria, cells were incubated for
20 minutes in 200 nM CMXRos and/or 200 nM Mito-
Tracker Green (Molecular Probes) following treatment
with Al maltolate. After incubation in mitochondrial
dyes at 37oC, cells were then quickly washed with ster-
ile PBS, and fixed in 4% formaldehyde for 20 min-
utes. Cells were rinsed and mounted with Vectasheild
mounting media (Vector Laboratories) or processed for
immunocytochemistry.

2.4. Immunocytochemistry

Fixed cells were rinsed with PBS and then perme-
abilized with ethanol:acetic acid 19:1 or 0.2% Triton X
100. An antibody to β-tubulin (Sigma) was used to de-
termine the cell size and distribution of this cytoskeletal
protein. Biotinylated secondary and FITC conjugated
avidin (Vector Laboratories) was used. Cells were
mounted with Vectasheild with DAPI (Vector Labora-
tories) to visualize the nucleus. Images were obtained
using a Zeiss Axioskop 2 plus fluorescent microscope
with a SPOT camera.

2.5. Quantitation

The percentage of cells with clustered mitochondria
was determined by obtaining an average from four ran-
dom fields per coverslip with 2–4 coverslips per treat-
ment group, performed in triplicate. Total cells were
obtained as well as the number where mitochondria
appeared to be accumulated in the vicinity of the nu-

cleus rather than spread throughout the cell. For a
cell to count as having clustered mitochondria, a very
high density of the organelle juxtaposed to the nucleus
was required with large areas of the cell essentially
devoid of mitochondria. In most cases, two indepen-
dent observers were used to quantify the clustered phe-
notype with similar results. Cells which had clearly
shrunk with an apoptotic morphology were included
in the cell number, but were not counted as clustered.
To assist in the determination of clustering, compos-
ite images showing mitochondria (CMXRos) β-tubulin
and/or DAPI were used for comparison. Statistical sig-
nificance was determined using a one way ANOVA on
Microsoft Excel.

2.6. Neuritic density of mitochondria

NT2 cells were differentiated with retinoic acid and
then treated with 500 μM Al maltolate, 450 nM stau-
rosporine or control media for up to 24 hr. Cells
were incubated with CMXRos for mitochondria and
immunostained for β-tubulin for the total neurite area.
Neuritic density of mitochondria was determined in
100x images using the NIH Image J program. Pixel
area for mitochondria was compared to the total neurite
area (β-tubulin). Swollen neurites were excluded from
analysis. Statistical significance was determined using
a one way ANOVA on Microsoft Excel.

3. Results

3.1. Aluminum maltolate triggers mitochondrial
clustering

Treatment with 500 μm Al maltolate induced cell
death in NT2 cells. Nuclei typically exhibited a
fragmented morphology consistent with apoptosis.
CMXRos positive mitochondria were observed in both
control and Al maltolate treated cultures. In controls,
mitochondria tended to be thin, elongated and dis-
tributed relatively evenly throughout the cell (Fig. 1A).
Mitochondria in cells treated with maltol alone were
indistinguishable from that of control cells (Fig. 1B).
However, following incubation for 24 hours in 500 μM
Al maltolate, mitochondrial morphology and distribu-
tion dramatically changed; mitochondria tended to be
fragmented, swollen and round. Importantly, mito-
chondria also clustered in the peri-nuclear region near
the vicinity of the presumed microtubule organizing
center (Fig. 1C, and 1D). Mitochondrial clustering of-
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Fig. 1. Al maltolate induces peri-nuclear clustering of mitochondria. CMXRos (red) reveals the cellular distribution of mitochondria. In control
NT-2 cells (A) or maltolate alone (B), mitochondria have a long, thin morphology and are distributed throughout the cell. Following incubation
in 500 μM Al maltolate for 24 hr, (C, D) mitochondria tend to be clustered near the nucleus. This is especially apparent at higher magnification
(D) where mitochondria appear fragmented (arrow) compared to controls. Immunocytochemistry for cytochrome c revealed the same pattern.
Scale bar (A, B, C) = 50 μm, (D) = 20 μm.

ten coincided with nuclear fragmentation suggesting
a relationship to apoptosis. However, mitochondrial
clustering appears to be an early event since cells with
mitochondrial aggregates were observed with an intact
nucleus. Thus, mitochondrial clustering precedes nu-
clear fragmentation. At six hours of incubation, there
was no significant difference in the percentage of mi-
tochondrial clustered cells between control and alu-
minum treated cells. Although there was some varia-
tion, at 24 hours in Al maltolate consistently > 50% of
the remaining cells had clustered mitochondria. Cells
in advanced stages of apoptosis were shrunken and
therefore were not counted as clustered, thus reducing
the percentage of clustered cells.

Exposure to Al maltolate for 2 hours did not lead to
significant death or mitochondrial clustering. However,
pulse exposure of two hours followed by incubation for
a total of 24 hours did in fact lead to death and mito-
chondrial clustering (Fig. 2). Both cell death and mito-
chondrial clustering was slightly reduced compared to
continuous exposure to Al maltolate. Lower doses of
Al maltolate (5 to 100 μM) did not result in significant
cell death or mitochondrial clustering after 24 hours
consistent with effective concentrations in other stud-
ies [20]. These results are consistent with a threshold
dose of Al required to trigger apoptosis.

3.2. A subpopulation of mitochondria lose membrane
potential with Al maltolate

Loss of mitochondrial membrane polarity often pre-
cedes the release of cytochrome c and further activation
of the apoptosis cascade. Therefore, we investigated
whether Al maltolate triggered mitochondrial depolar-
ization. CMXRos is a mitochondrial dye that is taken
up only by mitochondria with intact membrane polar-
ity. In contrast, MitoTracker green is taken up by all
mitochondria. Therefore, polarized mitochondria will
accumulate both dyes whereas depolarized mitochon-
dria will only take up MitoTracker green.

In control cultures,MitoTracker Green and CMXRos
overlapped indicating that essentially all of the mito-
chondria are polarized (Fig. 3A). However, mitochon-
dria from Al maltolate treated cells exhibited a sub-
set of mitochondria which were depolarized (Fig. 3B).
Depolarized mitochondria were typically found in the
vicinity of the nucleus.

3.3. Mitochondrial clustering requires an intact
microtubule array

Peri-nuclear clustering of mitochondria may be a re-
sult of decreased kinesin transport relative to dynein
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Fig. 2. Pulse exposure of Al maltolate triggers apoptosis and transport
abnormalities. NT-2 cells exposed to a pulse of 500 μM Al maltolate
for 2 hr, and then allowed to grow in control media show significant
cell death (A) and mitochondrial clustering (B) although not to the
extent of continuous Al maltolate exposure (B). Cells which appeared
shrunken were not counted as clustered. ± SD p < 0.005.

transport along microtubules. Therefore, if the trans-
port of mitochondria to the peri-nuclear region is an
active process, it would require at least a partially intact
microtubule array to carry them. After incubation for
24 hours in 500 μM Al maltolate, cells were exposed to
5 μM nocodazole for 30 minutes. Nocodazole initiated
a rapid breakdown of the microtubule cytoskeleton and
resulted in a redistribution of mitochondria within the
cell and peri-nuclear clustering was virtually abolished
(Fig. 4).

3.4. Z-VAD-FMK, a caspase inhibitor does not
prevent mitochondrial clustering

Since organelle clustering during apoptosis induc-
tion could result from downstream activity of caspases,
we incubated NT2 cells with z-VAD-FMK (20 μM)
along with Al maltolate or staurosporine. Although
cell death was reduced, nuclear fragmentation and mi-
tochondrial clustering persisted (Fig. 5). In particu-
lar, the nucleus appeared hyperlobated. This suggests
that although mitochondrial clustering occurs during
the induction of apoptosis, it is a caspase independent
process.

3.5. Staurosporine but not hydrogen peroxide induces
rapid mitochondrial clustering

In order to determine the specificity of Al induced
organelle clustering, we investigated whether other
agents that induce apoptosis also triggered mitochon-
drial clustering. Treatment with 450 nm staurosporine
also led to cell death through apoptosis. CMXRos
positive mitochondria indicated that the membrane po-
larity of mitochondria remained intact following stau-
rosporine treatment. Mitochondrial clustering was ob-
served in virtually every cell as early as 2 hours, much
more rapidly than with Al treatment (Fig. 6). Although
relatively few cells were left after 24 hours, many of
those remaining did not exhibit mitochondrial cluster-
ing.

Hydrogen peroxide treatment at 0.03% for 30 min-
utes induced substantial cell death. Unlike Al treatment
which results in nuclei with a fragmented morphology,
nuclei in peroxide treated cells were condensed and
significantly smaller. Indeed, overall cell size was dra-
matically reduced preventing the determination of mi-
tochondrial clustering in peroxide treated cells (Data
not shown).

3.6. Neuritic processes of treated cells are depleted of
mitochondria

A functional consequence of decreased kinesin de-
pendent transport in differentiated neurons would be
the failure to transport mitochondria to the synapse.
Such failure would be expected to produce catastrophic
results including loss of the synapse and possibly cell
death. Therefore, we examined the mitochondrial den-
sity in the neuritic processes of differentiated NT-2 cells
following Al maltolate administration.
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Fig. 3. Al maltolate induces mitochondrial membrane polarity loss in a subset of the mitochondria. NT-2 cells were incubated with both CMXRos
(red) and MitoTracker Green. In control cells, mitochondria take up both dyes (A) shown by orange overlap. Following a 24-hr incubation in
Al maltolate, a subset of mitochondria are depolarized, revealed by the presence of MitoTracker green, and lack of CMXRos. The depolarized
mitochondria tended to be in greatest abundance near the nucleus (DAPI, blue). Scale bar = 50 μm.

Differentiated cells (dNT2) will elaborate neuronal
processes that contain neurofilament protein, tubulin
and mitochondria. Following treatment with 500 μM
Al maltolate for 24 hr, a substantial number of the cells
were lost, presumably through apoptosis. Surviving
cells with long neuritic processes typically had large
axonal swellings, some of which had a large amount
of mitochondria. Apart from these axonal swellings,
processes of surviving cells had a substantially reduced
density of mitochondria (Fig. 7).

After a two hour treatment with 450 nM stau-
rosporine, dNT2 cells had an altered morphology which
included numerous branched neuritic processes. As
with Al maltolate, these processes were depleted of
mitochondria or exhibited neuritic swellings with ac-
cumulated mitochondria. In nearly all cells that sur-
vived treatment with staurosporine for 24 hours, mito-
chondria were accumulated and condensed into a large
dense mass on one side of the nucleus.

4. Discussion

In this study we have demonstrated that the apop-
tosis inducing agents Al maltolate and staurosporine
both trigger peri-nuclear clustering of mitochondria in
human NT2 cells. Further, these agents induce an over-
all lack of mitochondria in neuronal processes of dif-
ferentiated cells. The clustering of mitochondria often
precedes nuclear fragmentation and thus is considered
an early event during apoptosis. In addition, the cas-
pase inhibitor z-VAD-FMK prevented cell death but
not organelle clustering, an effect most pronounced in
staurosporine treated cells.

Numerous studies have demonstrated that aluminum
is a prominent apoptotic agent. Molecular mechanisms
of aluminum-induced apoptosis vary according to the
aluminum salt, the dose, exposure time, and the cell
type used. In human peripheral-blood lymphocytes,
Al Cl3 induces DNA damage by modifying the struc-
ture of chromatin through the induction of reactive
oxygen species or by damaging lysosomal membranes
and liberating DNase [2]. Exposure of rat PC12 cells
to aluminum maltolate resulted in depletion of glu-
tathione, resulting in release of lactate dehydrogenase
(LDH) from the cell and generation of reactive oxy-
gen species. These effects were reversed by pretreat-
ment with N-acetylcysteine [33]. Treatment of Neuro-
2a cells with Al maltolate for 24 h dose -dependently
increased cell death by a combination of apoptosis and
necrosis. Apoptosis was evident by caspase 3 activa-
tion, the externalization of phosphatidyl serine, inhibi-
tion of Bcl2 expression and an increase in BAX as well
as p53 expression [18]. Oral [17] or intracisternal in-
jection [46] of aluminum to rat has also been shown to
cause apoptosis. Interestingly, the aluminum- induced
DNA fragmentation and caspase-3 and caspase-12 ac-
tivation was prevented by co-administration of glial
cell line-derived neurotrophic factor (GDNF) and exac-
erbated by brain-derived neurotrophic factor (BDNF),
suggesting that neurotrophic factors may modulate the
neurotoxic effects of aluminum [46]. Additionally,
chronic aluminum exposure in rabbits enhances lipid
peroxidation production and inhibits the superoxide
dismutase (SOD) enzyme, effects that can be reversed
by melatonin [1].

The role of mitochondrial clustering during the cell
death cascade is unclear. Mitochondrial clustering
alone is not required for cell death, as not all apoptotic
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Fig. 4. Mitochondrial clustering requires intact microtubule based
transport. Control NT-2 cells typically have mitochondria (CMXros,
red) distributed throughout the cell (A). Mitochondria cluster near the
nucleus (DAPI, blue) following incubation with 500 μM Al maltolate
for 24 hr (B). Al maltolate treatment followed by nocodazole resulted
in a redistribution of mitochondria (C). Cell morphology is revealed
by an antibody to β-Tubulin (green). Scale Bar = 50 μm.

pathways involve peri-nuclear accumulation of the or-
ganelle (like H2O2). However peri-nuclear mitochon-
drial aggregation likely hastens cell death as observed
with TNFα induced apoptosis [22]. Notably, consis-
tent with our results, TNFα clustering occurs in a cas-
pase independent apoptotic process. Further, similar
to Al maltolate and staurosporine, the TNFα induced
apoptotic pathway includes hyperlobated rather than
condensed nuclei.

Fig. 5. Caspase inhibitor z-VAD-FMK does not prevent mitochon-
drial clustering. NT2 cells were treated with 500 μM Al malto-
late for 24 hrs in the presence of the caspase inhibitor Z-VAD-FMK
(20 μM). Although cell death was reduced, nuclear fragmentation
(DAPI, blue) and mitochondrial clustering (CMXros, red) persisted.
There is also significant staining for β-Tubulin (green) in the center
of the cells. Scale Bar = 20 μm.

Recent studies on transgenic mice with fluorescently
tagged neuronal mitochondria have been used to study
axonal transport of mitochondria in vivo [23]. In these
mice, large accumulations of mitochondria in synap-
tic terminals are observed as well as a high speed (>
1 μm/s) of mitochondrial transport. Because of the
significant requirement of mitochondria at the synapse,
the failure to transport sufficient mitochondria into the
axons and dendrites not only starve the synapse, but
also slow or eliminate transport within the axon alto-
gether. The absence of mitochondria in neuronal pro-
cesses may lead to a localized depletion of ATP and
slow or block transport, exacerbating the transport dys-
function. This loss of ATP in the axon, may contribute
to overall transport failure including that of autophagic
vesicles and thus facilitate the production of Aβ [45].

A surprising result from the present study was the
observation that a pulse exposure of Al maltolate
at 500 μM effectively induced mitochondrial cluster-
ing, whereas prolonged exposure to Al maltolate at
lower concentrations failed to induce identical effects.
This result suggests that there exists a threshold sig-
nal, which when activated, initiates the apoptotic cas-
cade and mitochondrial clustering. In contrast, stau-
rosporine induced cell death and mitochondrial aggre-
gation at much lower concentrations (∼1000x lower).
Although both Al maltolate and staurosporine result
in cell death and mitochondrial clustering, there is an
important distinction in cell morphology following ad-
ministration of the two agents. In particular, both dif-
ferentiated and undifferentiated cells treated with stau-
rosporine showed significant elaboration of neuritic
processes. Due to the length of the neurites, they are un-
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Fig. 7. Neuritic processes of differentiated cells have reduced mitochondria after Al maltolate or staurosporine treatment. NT-2 cells extend
neuritic processes after differentiatiation with retinoic acid. In control cells, (A) these processes tend to have large numbers of mitochondria
(CMXros, red) throughout. However, with Al maltolate treatment (B, 500 μM for 24 hr) the density is reduced except in swollen regions. With
450 nM staurosporine treatment, very few mitochondria are present in neuritic processes (C). Quantitation of mitochondrial density shows a
significant decrease of mitochondria (D). Control n = 56, Al-treated n = 52, Staurosporine treated n = 20. +/− SD p < 0.001, Scale bar =
20 μM.

likely to result simply from incomplete cell shrinkage.
Indeed, staurosporine triggers the elaboration of neu-
rites in PC-12 cells [24]. Staurosporine is a broad spec-
trum kinase inhibitor and may prevent the phospho-

rylation of tau. Unphosphorylated tau strongly binds
and stabilizes microtubules, which can result in both
the elongation of neuritic processes and the preven-
tion of kinesin transport. In the absence of sufficient
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mitochondrial transport, the neuron will be unable to
sustain the axon and synapse. Therefore, it is possible
that the over-phosphorylation of tau may be an attempt
to restore appropriate levels of mitochondrial transport
through axons.

Recently, it has been shown that Aβ induced neu-
rotoxicity is dependent on the increased expression of
both tau and cdk5 [26]. Importantly, Aβ results in de-
creased AKT activity, which in turn leads to increased
GSK3β activity and a possible increase in tau phos-
phorylation [5]. AKT is a survival-promoting kinase
that inhibits GSK3β by phosphorylating it on Ser(9).
Guanosine protects cells from staurosporine and Aβ

induced apoptosis presumably by increasing the phos-
phorylation/activation of AKT [27]. While apoptosis-
related changes are clearly implicated in AD, the exact
role that it plays in neuropathology and in the disruption
of mitochondrial transport remains to be elucidated.

In addition to evidence from AD brains, several dis-
ease models have also suggested the involvement of
transport abnormalities in neuropathological changes.
Transgenic mice expressing human ApoE4 in neu-
rons exhibit axonal dilations with accumulated or-
ganelles [40]. Failure of axonal transport is further im-
plicated in AD since the AβPP protein binds directly
to kinesin, a microtubule motor protein responsible for
positive directed transport [19]. Indeed, AβPP may be
a cargo receptor for kinesin. Coexpression of tau and
APPL, the Drosophila homologue of AβPP, in neurons
resulted in disrupted transport of axonal cargo [42]. In-
deed, the overexpression of APPL shares many simi-
larities with mutations in the kinesin heavy chain gene.
Further, in presenilin 1 mutant transgenic mice [28] and
3XTG-AD transgenic mice [8], there are early disrup-
tions in axonal transport and reduced synaptic density.

We propose that disruption to mitochondrial trans-
port and the subsequent loss of ATP is a significant
precipitating factor for the pathogenesis of AD. Failure
to transport sufficient mitochondria through axons may
have a major contribution to synapse loss and neuronal
death.
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