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Effect of the Red-Edge Band from Drone Altum Multispectral
Camera in Mapping the Canopy Cover of Winter Wheat,
Chickweed, and Hairy Buttercup
Clement E. Akumu * and Sam Dennis

Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University,
Nashville, TN 37209, USA
* Correspondence: aclemen1@tnstate.edu

Abstract: The detection and mapping of winter wheat and the canopy cover of associated weeds,
such as chickweed and hairy buttercup, are essential for crop and weed management. With emerging
drone technologies, the use of a multispectral camera with the red-edge band, such as Altum, is
commonly used for crop and weed mapping. However, little is understood about the contribution of
the red-edge band in mapping. The aim of this study was to examine the addition of the red-edge
band from a drone with an Altum multispectral camera in improving the detection and mapping of
the canopy cover of winter wheat, chickweed, and hairy buttercup. The canopy cover of winter wheat,
chickweed, and hairy buttercup were classified and mapped with the red-edge band inclusively
and exclusively using a random forest classification algorithm. Results showed that the addition of
the red-edge band increased the overall mapping accuracy of about 7%. Furthermore, the red-edge
wavelength was found to better detect winter wheat relative to chickweed and hairy buttercup. This
study demonstrated the usefulness of the red-edge band in improving the detection and mapping of
winter wheat and associated weeds (chickweed and hairy buttercup) in agricultural fields.

Keywords: drone; Altum multispectral camera; red-edge band; mapping; winter wheat; chickweed;
hairy buttercup

1. Introduction

The mapping of row crops such as winter wheat and associated weed (chickweed and
hairy buttercup) canopy cover is generally important for crop and weed management. Crop
canopy cover maps can be used to monitor performance traits such as growth, greenness,
and productivity [1,2]. Furthermore, accurate mapping of the canopy cover of crops such
as winter wheat can determine planting area, landscape pattern and planting structure for
crop yield estimation [2,3]. For example, canopy cover maps can be used to estimate the
spatial extent of crops within agricultural fields, and this could support yield estimation.
Additionally, the crop landscape distribution pattern can be easily constructed from canopy
cover maps based on spatial proximity analysis. Moreover, plant structural systems such as
stems, branches, leaves, and flowers can also be easily detected and monitored from crop
canopy cover maps. Therefore, the accurate mapping of the canopy cover of crops such as
winter wheat is beneficial to enhance monitoring, yield estimation, and management.

In contrast, weed canopy cover maps in agricultural winter wheat production are es-
sential to support the site-specific application of herbicides [4,5]. Weed control is necessary
to improve grain yields in winter wheat production. This is because weed density, canopy
cover and biomass negatively affect grain yield through competition for resources such as
nutrients [6]. For example, crop yield losses have been found to increase with rising weed
density, canopy cover, and biomass [7,8]. The accurate mapping of the canopy cover of
weeds is therefore important to support site-specific weed control.
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The detection and mapping of the canopy cover of winter wheat and associated weeds
such as chickweed and hairy buttercup in agricultural field plots, generally require high
spatial resolution remotely sensed data such as the use of drones. With emerging drone
technologies, the use of multispectral cameras, such as Altum with the red-edge band, is
becoming common for crops and weed mapping applications [9,10]. The red-edge band
is spectrally located between the red (630–690 nm) and Near-Infrared (NIR) (770–890 nm)
part of the electromagnetic spectrum, with a band range of roughly 670–780 nm [11].

The chlorophyll content of winter wheat and associated weed canopy cover has been
found to influence the reflectance from the red-edge band [12–14]. This is because of the
sensitivity of the red-edge band to vegetation chlorophyll [13]. Furthermore, there is also
variability in the spectral signatures for winter wheat, chickweed, and hairy buttercup,
with a change in the reflectance values of the red-edge band (Figure 1). The change in the
reflectance values could help in the classification of winter wheat, chickweed, and hairy
buttercup. Therefore, there is a need to explore the contribution of the red-edge wave-
length in the detection and mapping of the canopy cover of winter wheat and associated
weeds. The inclusion of the red-edge wavelength in the classification could improve the
detection and mapping accuracy of the canopy cover of winter wheat, chickweed, and
hairy buttercup.
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Figure 1. Mean reflectance values of winter wheat, chickweed, and hairy buttercup from drone with
multispectral Altum camera data. Error bars represented standard deviation of the mean.

Several recent studies have explored the potential of the red-edge band for improving
the mapping of agricultural land cover and land use types to enhance crops and weed
management [15–18]. For example, Sun et al. [15] explored the integration of the red-edge
wavelength for the detection and mapping of crop types that included, but was not limited
to, corn and cotton. They utilized the random forest classifier for integrating the red-edge
band with other optical bands of Sentinel-2 for mapping agricultural crops. They found
that the inclusion of the red-edge wavelength improved the overall accuracy of crop type
mapping by 1.84% compared to only using traditional optical bands, i.e., blue (450 to
520 nm), green (520 to 590 nm), red (630 to 690 nm), and near-infrared (770–890 nm) [19,20].
Likewise, Luo et al. [18] also found that the addition of the red-edge band from Sentinel-2
improved crop classification’s overall accuracy. Similarly, Forkuor et al. [17] explored
the addition of the red-edge band from Sentinel-2 satellite data for mapping land cover
agricultural crops such as cereals and legumes. They utilized a combination of classification
algorithms such as random forest, support vector machine and stochastic gradient boosting
for mapping crops with the red-edge band, inclusively and exclusively. They found that
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the addition of the red-edge band improved the overall classification accuracy for land
cover agricultural crops by about 1.8%, 3.8%, and 4.2% using random forest, support vector
machine, and stochastic gradient boosting, respectively.

Although a few studies have examined the red-edge band from satellite platforms
such as Sentinel-2 in mapping land cover agricultural crops, very limited studies have
explored the red-edge wavelength from drones with multispectral cameras for mapping the
canopy cover of crops and weeds. This study aims to examine the addition of the red-edge
band from the drone with an Altum multispectral camera in improving the detection and
mapping of the canopy cover of winter wheat, chickweed, and hairy buttercup. It will
detect, map, and examine the overall accuracy of the winter wheat crop and associated
weed canopy cover generated from the drone with an Altum multispectral camera with
red-edge band, inclusively and exclusively.

2. Materials and Methods
2.1. Study Area

This study was carried out in a 4047 m2 plot located at Tennessee State University’s
(TSU) campus farmland in Davidson County, Tennessee. The area ranges from latitude
36◦10′33′′ to 36◦10′35′′ N and longitude 86◦49′35′′ to 86◦49′38′′ W (Figure 2).
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2.1.1. Climate

A modest climate with cool winters and warm summers are commonly experienced
in the study area. The average annual temperature is approximately 78 ◦F (26 ◦C) in the
summer and around 41 ◦F (5 ◦C) in the winter. The annual precipitation is around 51 inches
(1300 mm) and is usually disseminated homogeneously throughout the seasons [21]. The
month of May usually experiences the maximum monthly mean precipitation of approxi-
mately 5.51 inches, whereas the month of October experiences the minimum monthly mean
rainfall of about 3.03 inches [22].

2.1.2. Soil and Topography

The soil type of the study area is predominately Byler silt loam and is moderately
acidic. It consists of very deep, well-drained soils. The Byler silt loam soil has a moderate
medium subangular blocky structure, friable, common fine roots, and a few distinct brown
clay films on the ped faces. The soil is formed in silty alluvium and underlying clayey
residuum of limestone. The depth to bedrock is greater than 60 inches, and the thickness
of the silty mantle over clayey limestone residuum ranges from about 3 to 6 feet [23]. The
area consists of very gentle terrain with a 2 to 5 percent slope [21].

2.2. Methodology

The methodological approach mainly involved the mapping of the canopy cover of
winter wheat and associated weeds (chickweed and hairy buttercup) using a drone with an
Altum multispectral camera with a red-edge band, inclusively and exclusively (Figure 3).
Accuracy assessments were conducted on the classified maps of winter wheat, chickweed
and hairy buttercup using ground truthing field datasets (Figure 3).

2.2.1. Growing of Winter Wheat

The plots used for the growing of winter wheat were identified and prepared first for
the planting of soybean. Soybean was planted in the summer of 2021 and was followed by
winter wheat in the fall of 2021. Soil samples were collected from the plots for the analysis
of soil moisture (gravimetric method), soil particle size analysis (soil texture), soil pH, and
nutrient recommendations for the winter wheat. Roundup Ready soybean variety Croplan®

by Winfield United was planted on 21 July 2021. The initial weeds were controlled by
spraying a non-selective herbicide, a 2 percent Roundup® herbicide in August of 2021.
The soybean was then harvested on 22 October 2021. On 28 October 2021, a burn-down
application using Roundup® herbicide was used to kill existing weeds prior to the planting
of the winter wheat. On 9 November 2021, the winter wheat variety AgriPro SY Viper
was planted using a no-till planter/drill in selected no-till plots. The plot size was 6 m
by 20 m. The winter wheat seeds were planted in a south to north direction. The wheat
variety was selected based on performance trials and recommendation from agronomists at
the University of Tennessee Knoxville, Tennessee. During the tillering stage of the winter
wheat, about 22 kg of nitrogen was applied to the winter wheat plots. The monitoring
of weed establishment during the tillering, jointing, boot, and heading/flowering stages
was conducted. The heading/flowering stage was selected to examine the effect of the
red-edge band for detection and mapping of weed canopy cover. The weed spectrum at this
stage (heading/flowering) was relatively high. The winter wheat was killed (harvested) on
1 June 2022 by mowing it down with a rotary mower. Therefore, the winter wheat was not
harvested for grain yield; instead it was harvested for wheat straw.
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2.2.2. Drone Data

An Inspire 2 drone with an Altum multispectral camera onboard was flown over
the winter wheat field plot on 10 May 2022. The drone images were captured during the
heading/flowering growth stage of the winter wheat, with dominant weeds of chickweed
and hairy buttercup. The drone was flown at 15 m altitude and with a speed of 3 m/s
using Pix4D capture auto-pilot mode. The drone with Altum multispectral camera system
captures images in the six spectral bands (Table 1). It is comprised of a blue band from
450 to 520 nm, green band from 520 to 590 nm, red band from 630 to 690 nm, red-edge
band from 690 to 730 nm, near-infrared (IR) band from 770–890 nm, and longwave infrared
thermal (LWIR) band from 10,600 to 11,200 nm [19,24,25].

Table 1. Spectral characteristics of drone with Altum multispectral camera.

Band Name Centre Wavelength (nm) Bandwidth (nm)

Blue 475 32

Green 560 27

Red 668 16

Red-Edge 717 12

Near Infrared 842 57

LWIR 11,000 6000

The drone with an Altum multispectral camera was triggered to take an image every
2 s, and more than five thousand images with spatial resolution of about 1cm were acquired.
The camera was connected to a Global Positioning System (GPS) data and a Downwelling
Light Sensor (DLS). The GPS data was made available to the camera to allow the Altum
multispectral camera system to properly geotag images. The Downwelling Light Sensor is
a 5-band incident light sensor that measures the ambient light during a flight for each of
the camera’s five spectral bands, i.e., blue (450 to 520 nm), green (520 to 590 nm), red (630 to
690 nm), red-edge (690 to 730 nm), and near-infrared (770–890 nm). The information from
the TIFF images captured by the camera is recorded to the metadata. This information can
be used to correct global lighting changes during flights, such as clouds covering the sun.
The captured drone images were pre-processed by mosaicking, radiometric and geometric
correction, and subsetting. The drone images were geotagged and automatically mosaicked
in Pix4D mapper, version 4.5, Pix4D Inc. (Denver, CO, USA). The radiometric correction
was performed by camera and sun irradiance using calibrated reflectance panel images,
which were acquired before and after each flight to generate reflectance drone images.
Furthermore, although the mosaicked image captured was geotagged with geographic
coordinates, a geometric correction was still performed on the mosaicked image. The
geometric correction was conducted using ground control points to properly register the
coordinates on the image, with features on the ground such as plot boundaries. This was
carried out using greater than 50 ground control points derived from the field data of plot
boundaries, ranging poles and a root mean square (RMS) value of lower than 1 pixel. The
mosaicked drone imagery was subset to the 4047 m2 winter wheat field plot study area.

Supervised classification was performed on the drone spectral bands to classify winter
wheat, chickweed, and hairy buttercup with the red-edge band, inclusively and exclusively.
Three hundred and sixty (360) polygons consisting of 120 winter wheat, 120 chickweed
and 120 hairy buttercup were digitized around ranging poles that were inserted into the
ground in the location of each crop. In addition to ranging poles, weed flowers were
clearly visible in the mosaicked image and helped with the digitizing efforts. Out of the
360 polygons, 60 polygons were used as training data that represented 20 for winter wheat,
20 for chickweed, and 20 for hairy buttercup in the supervised classification. The remaining
300 polygons were kept aside and overlaid to the classification maps for validation and
accuracy assessments.
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The supervised classification was performed using a machine learning random forest
classification algorithm [26]. This algorithm was selected because it has been found to out-
perform other machine learning classification algorithms, such as support vector machine
for crop and weed detection and mapping [27–29]. It is an ensemble classification algorithm
that produces multiple decision trees using a randomly selected subset of training samples
and variables [30]. It is expressed using Equation (1) [26].

{DT(x, θk)} k T
= 1 (1)

where x is the input vector and θk represents a random vector, which is sampled indepen-
dently but with the same distribution as the previous θk, . . . , θk−1. T bootstrap samples
are initially derived from the training data. A no-pruned classification and regression tree
(CART) is drawn from each bootstrap sample β, where only one of M randomly selected
feature is chosen for the split at each node of CART [31]. Each of the decision tree casts
a unit vote for the most popular class to classify an input vector [32]. The number of
features used at each node to generate a tree, and the number of trees to be grown, are
two user-defined parameters that are required to generate a random forest classifier.

The number of trees and training samples in the random forest classification prediction
model were selected through a resampling-based procedure to search for optimal tuning
parameters. The optimal settings were selected based on the mean overall accuracy across
5-fold cross validation, repeated twice [33,34]. The default number of training samples was
set at 5000 and the number of trees was set at 10.

The generated canopy cover maps of winter wheat, chickweed, and hairy butter-
cup were validated to examine how well the classified maps represented winter wheat,
chickweed, and hairy buttercup on the ground. The validation effort was performed by
overlaying the three hundred (300) digitized polygons that represented ground truth data
kept aside for validation to each classified map. The 300 polygons used in validation were
different from the 60 polygons used as training data. The overall classification accuracy
was computed for each classified map by dividing the total correct (i.e., the sum of the
major diagonal in the error matrix table) by the total number of pixels in the error matrix
table [35]. The kappa coefficient was also measured as described by [35].

3. Results

The canopy cover of winter wheat and associated weeds (chickweed and hairy but-
tercup) were successfully mapped with the red-edge band, inclusively and exclusively
(Figures 4 and 5). The canopy cover of winter wheat, chickweed, and hairy buttercup were
consistent in distribution throughout the agricultural field in both maps generated with
the red-edge band, inclusively and exclusively. For example, the canopy cover of hairy
buttercup was predominantly found in the central and northern parts of the agricultural
field plot in both maps generated with the red-edge band, inclusively and exclusively.
In contrast, the canopy cover of chickweed was largely found in the northwestern parts
of the field in both maps generated with the red-edge band, inclusively and exclusively
(Figures 4 and 5).

In the classification and mapping of the canopy cover of winter wheat, chickweed,
and hairy buttercup with the red-edge band exclusively, the overall mapping accuracy
was about 71% and with kappa statistics of around 0.58 (Table 2). Furthermore, the user’s
accuracy that measures how well the classified canopy cover of winter wheat, chickweed,
and hairy buttercup on the map represented each crop on the ground was maximum (88%)
for chickweed and minimum (58%) for winter wheat. In addition, the producer’s accuracy
that measures the ability of the random forest classification algorithm to detect winter
wheat, chickweed, and hairy buttercup was highest (97%) for winter wheat and lowest
(45%) for chickweed when the red-edge band was exclusive in the classification (Table 2).
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Table 2. Classification Error Matrix Table with Red-Edge Band Exclusively (Overall accuracy: 71%,
Kappa statistics: 0.58).

Classes Winter Wheat Chickweed Hairy Buttercup Total

Reference

Winter Wheat 90 48 16 155

Chickweed 1 51 6 58

Hairy Buttercup 2 12 73 87

Total 93 112 95 300

User’s accuracy (%) Producer’s accuracy (%)

Winter Wheat 58 97

Chickweed 88 45

Hairy Buttercup 84 77

In contrast, when the classification and mapping of the canopy cover of winter wheat,
chickweed, and hairy buttercup was generated with the red-edge band inclusively, the
overall mapping accuracy increased by about 7% (Table 3). Likewise, the kappa statistics
increased by approximately 0.09 (Table 3).

Table 3. Classification Error Matrix Table with Red-Edge Band Inclusively (Overall accuracy: 78%,
Kappa statistics: 0.67).

Classes Winter Wheat Chickweed Hairy Buttercup Total

Reference

Winter Wheat 90 34 8 132

Chickweed 3 68 4 75

Hairy Buttercup 3 15 75 93

Total 96 117 87 300

User’s accuracy (%) Producer’s accuracy (%)

Winter Wheat 68 94

Chickweed 91 58

Hairy Buttercup 81 86

Furthermore, chickweed had the highest user accuracy of around 91%, whereas winter
wheat had the lowest user accuracy of approximately 68% in the classification with the
red-edge band, inclusively (Table 3). The producer’s accuracy was highest (94%) for winter
wheat and lowest (58%) for chickweed (Table 3).

4. Discussion

The canopy cover of weeds has been associated with weeds’ patchiness, greenness,
and distribution pattern. For example, Rasmussen et al. [36] found that the higher the weed
coverage, the higher the average Normalized Difference Vegetation Index (NDVI) values
and the lower the weeds’ patchiness. Furthermore, they found sections of the field with
high average weed coverage to be associated with less concentrated weed distributions;
whereas, section of the field with low average weed coverage had more concentrated weed
distributions. This implies the north and western parts of the agricultural field plot that
predominantly had chickweed and hairy buttercup, likely had higher NDVI values and
lower weed patchiness relative to the south and eastern parts of the field. Likewise, the
north and western portions of the field possibly had less concentrated weed distributions
relative to the south and eastern sections.
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The addition of the red-edge wavelength from the drone with an Altum multispectral
camera was found to be beneficial to the detection and classification of the canopy cover of
winter wheat, chickweed, and hairy buttercup. Other studies have also found the red-edge
band useful in the detection and mapping of agricultural crops [37,38]. With the addition
of the red-edge band, winter wheat had the highest increase in user accuracy of about 10%,
whereas chickweed had the lowest increase in user accuracy of around 3%. This implies
the addition of the red-edge band was better at detecting the canopy cover of winter wheat
relative to chickweed and hairy buttercup. This is possibly because winter wheat was the
main crop with a large vegetative cover. Furthermore, the drone images were captured
during the heading/flowering growth stage of winter wheat, and that likely shaded the
canopy cover of chickweed and hairy buttercup. In addition, the similar green-on-green
color, shape and texture of winter wheat, chickweed, and hairy buttercup likely affected
their detection and mapping [39–41]. Nonetheless, the addition of the red-edge wavelength
from the drone with an Altum multispectral camera improved the overall classification and
mapping of winter wheat, chickweed, and hairy buttercup.

The improved detection of weeds (chickweed and hairy buttercup) as demonstrated
in this study has implications for herbicides application. It has the potential to significantly
minimize herbicide input into the environment, and consequently reduce environmental
and climate impacts [42,43]. A reduction in the spraying volume of herbicide application
will potentially reduce the cost for weed management [11].

The detection and discrimination of winter wheat and associated weeds canopy cover
is especially useful when using the drone platform relative to satellite data. This is because
real-time data can be easily acquired using drones relative to satellites. Furthermore, drone
data are generally acquired with high spatial resolution relative to satellite data. However,
there are some limitations with the adoption of site-specific weed management monitoring
systems such as drone use. These include, but are not limited to, the spatial and temporal
resolution levels of weed detection. The spatial resolution is expected to influence the
treatment of sub-fields, large weed patches, and individual plants [36]. This implies the
improved mapping accuracies of chickweed and hairy buttercup derived in this study
will likely change if the spatial resolution of the drone dataset changes. Furthermore, the
mapping accuracies will possibly change if other platforms such as satellite datasets are
used in the classification process. In addition, because weed infestations are frequently
inconsistent over time [44,45], the winter wheat, chickweed, and hairy buttercup discrimi-
nation and detection accuracies will likely change during the growing season. Therefore,
regular drone data acquisition is essential to support weed management for sustainable
agricultural production. However, adverse weather conditions can be a limiting factor
for regular drone flights in agricultural fields. In addition, high resolution drone datasets
generally require a high processing time for weed mapping and analysis [46]. These could
be limiting factors, especially for large-scale farming production. Extensive skills in drone
image processing and licensing requirements could also be limiting factors for the adoption
of a site-specific weed management drone monitoring system by producers.

The improved winter wheat, chickweed, and hairy buttercup detection map generated
by the addition of the red-edge band could contribute to the estimation of field yield losses
in winter wheat production. This is because small grain yield and yield components have
been found to be negatively correlated with weed biomass [47]. However, crop yield losses
related to weed density varies substantially [48]. This is possibly due to different times of
weed emergence and differences in the soil and microclimatic conditions [47,49].

5. Conclusions

The contribution of the red-edge band from a drone with an Altum multispectral
camera has been explored in this study, for the detection and mapping of the canopy cover of
winter wheat, chickweed, and hairy buttercup in agricultural field plots. The red-edge band
was found to be beneficial in improving the classification and mapping of the canopy cover
of winter wheat, chickweed, and hairy buttercup. It improved the overall classification and
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mapping accuracy of the canopy cover of winter wheat, chickweed, and hairy buttercup by
about 7% relative to classification with the red-edge band, exclusively. Furthermore, the
addition of the red-edge wavelength from the drone with an Altum multispectral camera
also improved the average user’s mapping accuracy of winter wheat, chickweed, and hairy
buttercup by about 3%. However, the improved detection and mapping accuracies of the
canopy cover of winter wheat, chickweed and hairy buttercup will likely change because
of the spatial and temporal resolution levels of the crop/weed detection. Nonetheless,
with emerging drone technologies, it is important to utilize multispectral cameras with the
red-edge band, especially for winter wheat crops and weed detection. This is because the
inclusion of the red-edge wavelength in winter wheat and weed classification is expected
to improve mapping accuracy, and consequently enhance monitoring and management.
Further study will explore the addition of red-edge vegetation-derived indices from drones
with an Altum multispectral camera in the mapping of winter wheat and associated weed
canopy cover. In addition, understanding weed dynamics during the growth stages of
winter wheat is also an area for further research. Besides, examining deep learning relative
to machine learning classification approaches for the detection and mapping of winter
wheat and associated weed canopy cover is also an area to be explored.
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