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A B S T R A C T   

The critical components for applying the correct amount of agrochemicals are fruit tree characteristics such as 
canopy height, canopy volume, and canopy coverage. An unmanned aerial vehicle (UAV)-based tree canopy 
characteristics measurement system was developed using image processing approaches. The UAV captured im-
ages using a high-resolution red-green-blue (RGB) camera. A digital surface model (DSM) and a digital terrain 
model (DTM) were generated from the captured images. A tree canopy height map was generated from the 
subtraction of DSM and DTM. A total of 24 apple trees were randomly targeted to measure the canopy char-
acteristics. Region of interest (ROI) was generated across the boundary of each targeted tree. The height of all 
pixels within each ROI was computed separately. The pixel with maximum height was considered as the height of 
the respective tree. For computing canopy volume, the sum of all pixel heights from individual ROI was 
multiplied by the square of ground sample distance (GSD) of 5.69 mm⋅pixel− 1. A segmentation method was 
employed to calculate the canopy coverage of the individual trees. The segmented canopy pixel area was divided 
by the total pixel area within the ROI. The results showed an average relative error of 0.2 m(6.64%) while 
comparing automatically measured tree height with ground measurements. For tree canopy volume, a mean 
absolute error of 0.25 m3 and a root mean square error of 0.33 m3 were achieved. The study estimated the 
possible agrochemical requirement for spraying the fruit trees, ranging from 0.1 to 0.32 l based on tree canopy 
volumes. The overall investigations suggest that the UAV-based tree canopy characteristics measurements could 
be a potential tool to calculate the pesticide requirement for precision spraying applications in tree fruit 
orchards.   

1. Introduction 

Accurate and precise agrochemical application based on tree canopy 
characteristics is important for sustainability as it can assist in reducing 
excessive chemical usage, especially for tree fruit crop production [1]. 
Tree canopy characteristics include height, canopy volume, and canopy 
coverage. Canopy height is recognized as an acceptable representation 
of biomass [2,3]. Canopy volume is an important attribute that measures 
the three-dimensional structure of trees. Canopy coverage approximates 
variations of tree canopies in the orchard blocks. Measurement of these 
characteristics appears thus a highly appealing endeavor to apply the 
correct amount of agrochemicals and reduce spray drift. 

Technologies have been developed to measure these characteristics 

using different ground-based sensing systems, such as mobile platforms 
and tractors with either camera sensor [4,5], ultrasonic sensors also 
called sonar [6,7] or with light detection and range (LiDAR) sensors 
often called laser sensors [8,9]. However, ground-based sensing systems 
have limitations in uneven and hilly terrains and may not be effective for 
canopy characteristics measurements in undrivable orchard conditions 
or remote regions. Travel speed is considered as another limitation, and 
the ground-based system may not be efficient when driving through 
large-scale orchards with variable slopes. In recent years, unmanned 
aerial vehicles (UAVs) equipped with sensors have been used for various 
agricultural crop phenotyping applications due to their flexibility in 
acquiring ultra-high spatial and temporal resolution data at any time 
under suitable conditions [10] and ability to quickly cover large areas 
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[11]. Sensors, such as cameras (visible, multispectral, and hyper-
spectral) and LiDAR can be attached to the UAV to measure canopy 
characteristics including plant height [12]. However, canopy volume 
and canopy coverage measurements require accurate visualization de-
tails of every feature of tree canopies from real orchards. LiDAR gives 
only the point clouds of canopies which cannot produce accurate details 
of features. Conversely, high-resolution RGB camera attached with a 
UAV captures images that can be stitched together to create an orchard 
model which provides visual details of all features of tree canopies. 
Another advantage of using RGB sensors over LiDAR is they are low in 
cost and high in versatility [13]. Recent successes of RGB sensors on 
UAV systems for crop phenotyping in field conditions [14,15] show 
promise for canopy characteristics measurements. 

Advances in image processing algorithms have contributed to the 
evolution of UAV technologies by estimating 3D-structure of crops from 
2D-image sequences. The Structure-from-motion (SfM) technique [16] 
has been used to retrieve 3D crop information, which does not need any 
prior calibration because intrinsic camera parameters are automatically 
estimated during the processing [15]. The SfM algorithm generates a 3D 
digital surface model (DSM), which includes the height of the objects, 
such as crops. Holman et al. [17] used SfM to measure crop height of 
wheat and achieved a Root Mean Squared Error (RMSE) of 0.03 m 
compared with manual measurement. Han et al. [18] estimated sor-
ghum plant height using SfM and obtained a correction (R2) of >0.80 
while comparing ground truth. Many efforts have been reported in 
height measurement for field crops using SfM, but little has been done in 
tree fruits that need to be investigated. 

The SfM algorithm provides a good description of a DSM but gen-
eration of a digital terrain model (DTM) is needed to calculate the tree 
canopy height and volume which is dependent on clear visibility of the 
ground [19]. Fruit trees grow in a row with a certain tree-to-tree and 
row-to-row distance, which makes the ground easily visible in DSM and 
is therefore suitable for DTM generation. Retrieving canopy volume 
from DSM and DTM models requires height estimation of all individual 
tree pixels. Estimation of total tree pixel heights requires searching 
pixels within a specific cluster. The K-means clustering algorithm can be 
applied to group pixels or points of individual trees [20]. This can be a 
useful approach to finding pixels in a cluster but it may lead to inac-
curate results due to tree canopies touching adjacent trees. Generation of 
a region of interest (ROI) for each tree can be an effective solution before 
conducting search operations for individual tree canopy volume 
measurement. 

Estimating tree canopy coverage often necessitates segmenting trees 
from the ground. Usual segmentation methods are color based and 
involve thresholding a green canopy index map computed from RGB 
bands. One of the potential approaches to segment green canopies is the 
Canopeo algorithm introduced by Patrignani et al. [21]. Ashapure et al. 
[22] used this algorithm to extract green canopies of cotton to develop a 
yield prediction model and achieved an R2 of ~0.9 while comparing 
predicted and observed yields. Wang et al. [23] applied the Canopeo 
algorithm to segment and estimate green turfgrass canopy coverage. 
Although this algorithm has been utilized for other crops, little or no 
application has been reported for fruit trees, especially for apple trees; 
thus, it may be a potential method for tree canopy coverage 
measurement. 

There have been a few attempts to measure tree canopy character-
istics using UAV systems. Sinha et al. [24] estimated apple tree canopy 
parameters including tree-row-volume, leaf-wall-area, and canopy vol-
ume. They used the "zonal statistics" plugin from QGIS for the estimation 
where the canopy volume was calculated as a cuboid by multiplying 
maximum canopy height, ROI width and length. However, an apple tree 
has a pyramidal shape where canopies vary with sections across the 
height. Kothawade et al. [25] estimated apple tree canopy volume in a 
v-trellis architecture and achieved inferior results compared with 
manual measurements. Moreover, none of previous studies estimated 
the possible spray volume required for apple trees. The spray volume 

estimation is important for fruit growers to budget the agrochemical 
expenses. The spray volume has a direct relationship with tree canopy 
characteristics. Trees with less canopy will require less spray volume. 
Conversely, trees with high canopy volume will require high spray 
volume. Tree canopy characteristics will help control the sprayer’s 
nozzles to reduce excessive chemical applications. 

The main goal of this study was to measure height, canopy volume, 
and canopy coverage of apple trees and estimate the possible agro-
chemical or spray volume requirement of individual trees using a UAV- 
based system. The specific objectives were to 1) apply imaging algo-
rithm with SfM for apple tree canopy height measurement, 2) examine 
image processing with k-means clustering approach for canopy volume 
measurement and approximate the spray volume requirement of trees, 
3) implement Canopeo based segmentation algorithm for canopy 
coverage measurement. 

2. Materials and methods 

2.1. Study site and referencing 

Field experiments were conducted in a GoldRush apple cultivar or-
chard block at the Penn State Fruit Research and Extension Center 
(PENN-FREC) (39◦56′15.5′′N 77◦15′22.1′′W) in Biglerville, PA, USA 
(Fig. 1). Total area of the experimental field was approximately 0.9 
acres, consisting of six rows with 36 trees in each row. The trees were 
planted in 2009 and trained in a tall spindle architecture with a tree-to- 
tree spacing of 1.2 m and a row-to-row spacing of 6.1 m. The block was 
not completely flat and had an elevation difference of approximately 0.3 
m from upper eastern part to lower western part. The block was mowed 
using a reel mower on as-need basis before experiments to lower the 
height of grasses in the orchard. The trees received adequate irrigation 
through the season to promote growth and to prevent stress. 

A total of 12 white paper boards were placed on reference trees. The 
board dimension was 0.51 m × 0.76 m(width × height). Trees at the left 
and right rows from the board were considered as references for canopy 
characteristics measurements. A total of 24 trees were randomly chosen 
for the manual and UAV-based tree height and canopy volume mea-
surements. The canopy coverage was measured for all trees in the site to 
generate the canopy coverage map. A total of 12 ground control points 
(GCPs) were marked based on 12 board locations. An Inertial Navigation 
System-Global Navigation Satellite System (INS-GNSS) (INS-D, Inertial 
Labs, Paeonian Springs, VA, USA) with 1 cm position accuracy was used 
to collect the geographical location of the GCPs. 

2.2. Ground measurements of tree canopy characteristics 

Ground measurements of tree canopy characteristics were performed 
before the aerial image data collection. Apple tree heights were manu-
ally measured for 24 selected trees using a measuring tape (Lufkin 25′, 
Cooper Hand Tools, Apex, NC, USA) by climbing to the top of the tree 
with a steel ladder. 

A 3D light detection and ranging (LiDAR)-guided canopy sensing 
system developed by Mahmud et al. [9] was used to measure the 
ground-based apple tree canopy volume. The LiDAR first scanned the 
trees and then stored the scanned data in a 64-bit Dell 3541 laptop 
computer (Dell, Round Rock, TX, USA). The travel speed of the system 
was approximately 4.5 km⋅h− 1 (±0.5) during scans. The LiDAR to tree 
distance was 3.05 m and the system was driven at the center of the row. 
The open-source VeloView software (Velodyne LiDAR, San Jose, CA, 
USA) was used to record the scanning data. The scan data were pre-
processed to remove unwanted point clouds (points from ground, 
non-targeted trees, and other objects sited in the orchard). Only the 
point clouds from targeted tree canopies were segmented by setting an 
ROI. The ROI of − 1.0 to 1.0 min the x-axis, 2 to 4 m (for left side tree) or 
− 4 to − 2 m (for right-side tree) in the y-axis, and − 1.8 to 1.8 min the 
z-axis were selected. The preprocessed points were used to reconstruct 
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Fig. 1. Experimental site with white paper boards that marked the reference tree positions.  

Fig. 2. LiDAR-guided tree canopy volume measurements using an alpha shape algorithm (a) segmented individual tree point clouds (b) a 3D reconstructed canopy 
volume with alpha value of 0.35 (c) a 3D reconstructed canopy volume with alpha value of 0.40 (d) a 3D reconstructed canopy volume with alpha value of 0.45. 
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the tree shape to calculate canopy volume. An alpha shape algorithm 
(Dylan [26]) was used with three alpha values (0.35, 0.40, and 0.45) to 
calculate individual tree volume (Fig. 2). The canopy point clouds pre-
processing and processing steps were described in detail by Mahmud 
et al. [9], while it did not measure any ground-based canopy coverage 
due to the complexity and impracticality compared to aerial 
measurement. 

2.3. Aerial image data collection 

Images were acquired using a rotary-wing unmanned aerial vehicle 
(UAV) DJI Matrice 200 (DJI Technology Inc., Shenzhen, China) with a 
high-resolution RGB Zenmuse X5S camera (DJI Technology Inc., 
Shenzhen, China) on June 21, 2021 (Fig. 3). The flight control Pix4D-
capture software (Pix4D Inc., Lausanne, Switzerland) was used to 
generate the flight path (setting waypoints), set flight speed and alti-
tude, and capture images. Images were captured from a constant flying 
altitude of 30 m above ground level (AGL) from the take-off location. 
The flight path and speed (5.76 km⋅h− 1) were planned according to 30 
mAGL. A 75% forward and sideward overlap was used between subse-
quent images for the UAV image data collection. The flight was operated 
at noon eastern daylight time (EDT) during apple tree’s petal fall growth 
stage by a licensed unmanned aerial system (UAS) remote pilot with a 
visual observer. Each captured image resolution was 5280 × 3956 pixels 
(width × height), resulting in a GSD or spatial resolution of 5.69 mm. 
pixel− 1. A total of 59 images were captured over the orchard. The 
captured images were stored on a secure digital (SD) card for further 
processing. All of the captured images included geographical co-
ordinates from the onboard UAV geographical positioning system (GPS). 
Weather conditions on the image collection day were recorded from a 
local weather station at PENN FREC, Biglerville, PA. Weather conditions 
included a relative humidity of 53%, a low wind speed condition with a 
wind direction of 234◦, an air temperature of 89.2◦F, and full sun. 

2.4. Image analysis for tree canopy characteristics 

Fig. 4 illustrates the procedure for preprocessing and processing 
steps of UAV-captured images. 

2.4.1. Pre-processing 
The preprocessing steps included alignment of individual acquired 

images, geometric correction, dense point cloud generation, classifica-
tion of ground and tree points, mesh and texture generation, orthomo-
saic map, DSM (digital surface model), and DTM (digital terrain model) 
generation. The UAV captured images were uploaded and the recorded 

GCPs were imported from the computer. The images were then aligned 
using Agisoft Metashape Pro software (Agisoft LLC, St. Petersburg, 
Russia). The WGS 84 zone (EPSG: 4326) was chosen as the output co-
ordinate system. The aligned images contained location bias due to 
geographical coordinates collected from the low accuracy onboard UAV 
GPS. Geometric correction was performed using the 12 ground collected 
GCPs to bind the true location so that the stitched image could reduce 
the location bias value. Dense point clouds were generated from the 
geographically corrected images based on SfM algorithm [16] using 
Agisoft Metashape Pro software. The dense point clouds are a group of 
elevation points in thousands or millions of point resulting from the UAV 
image photogrammetry process. Dense point clouds from the ground, 
trees, and other objects were classified using a built-in "multi-class 
classification" function in Agisoft Metashape Pro software (Agisoft, LLC. 
St. Petersburg, Russia). The mesh and texture were generated to produce 
maps. An orthographic high-resolution image or map of the entire 
experimental orchard was obtained by stitching the corrected images. 
The DSM and DTM (with geometric classification function "Classify 
Ground Points") were then generated with the software by considering 
classified dense point clouds after correcting the location bias (Fig. 5a & 
Fig. 5b). For the DSM, all dense point clouds including ground, trees, and 
other objects were used. However, only the ground point clouds were 
used for DTM generation. The accuracy of georeferencing was about 
0.03 m(3 cm) in DSM and DTM generation. An orchard orthomosaic 
image or map was also generated with the corrected location. All the 
maps were geo-referenced. 

A subtraction between DSM and DTM generated a height map of 
apple trees (Fig. 5c). The DSM of the orchard included elevation infor-
mation for the apple trees and ground relative to the mean sea level. The 
DTM included elevation information for only ground relative to the 
mean sea level. Therefore, the subtraction of these two models provided 
only heights for the apple trees. The raster calculator from the open- 
source Quantum GIS (or QGIS) software [27] was used to perform the 
subtraction of geo-reference images. 

2.4.2. Image processing for tree height and canopy volume measurements 
An image processing algorithm was developed for individual tree 

height measurement using the resulting subtracted image. The algo-
rithm was developed in MATLAB®. The algorithm began by reading the 
image, then generating a pixel intensity histogram to find the lowest and 
highest intensity values. The image was then adjusted based on setting 
the ground intensity level as the lower limit and highest intensity value 
as the upper limit. There were no objects other than trees in the image, 
hence the highest intensity value must be recorded from one of the trees 
in the orchard. This step was important to avoid calculating tree height 
from lower than ground level. The Speeded-Up Robust Features (SURF) 
algorithm [28] was used to perform the 3D reconstruction of the 
resulting map from the DSM and DTM substruction, and then a built-in 
plotting tool was used to visualize the image pixel intensity in 3D space 
showing all tree heights (Fig. 6). The adjusted image was displayed in a 
jet colormap to generate the color height map of trees. The height map 
was cropped and rotated. The algorithm capable of rotating based on 
given rotational degree. The next step was to separate individual tree 
pixel intensity to extract height. The ROI was generated by manually 
inserting the required number and size of the ROI into the algorithm and 
placed over the targeted trees that were used for manual tree height 
measurements. A total of 24 ROIs were generated to extract and measure 
the height of 24 targeted trees (Fig. 7). The non-zero intensity pixel 
within the ROIs were identified. The non-zero intensity pixels were tree 
canopy pixels where zero intensity pixels were ground pixels. The 
K-means clustering algorithm [29] was used to extract the non-zero 
intensity pixels by assigning an index value of 2 (one for non-zero in-
tensity pixels and another from zero intensity pixels). The maximum 
intensity value within the extracted non-zero intensities of pixels of an 
ROI was considered as height of the particular tree. The mean intensity 
value within the ROI was also calculated, but it was not suitable to Fig. 3. UAV in flight at the experimental apple orchard.  

M.S. Mahmud et al.                                                                                                                                                                                                                            



Smart Agricultural Technology 4 (2023) 100153

5

consider as tree height. The apple trees were in a pyramidal shape hence 
some of intensity values from side canopies were low and the calculated 
mean was lower than the actual tree height. 

The total intensity height from all pixels within the ROI was calcu-
lated to measure the individual tree canopy volume. The canopy volume 
of the targeted trees (Eq. 1) was computed by multiplying total height of 
the intensity of all pixels with the area of GSD. A graphical illustration of 
the tree canopy volume procedure is presented in Fig. 8. 

Tree Canopy volume
(
m3) =

∑n

i=1
Height of the pixeli × GSD2 (1)  

where Height of the pixeli is the height of the ith pixel and n is the total 
number of pixels for a tree. 

2.4.3. Approximation of agrochemical requirement 
The possible chemical requirement for spraying each experimental 

tree was estimated to provide the growers with an understanding of their 

Fig. 4. Steps for tree canopy characteristics measurements through image analysis.  

Fig. 5. Preprocessing step of UAV captured images (a) generated DSM (b) generated DTM (c) a resulting apple tree height map from DSM and DTM subtraction.  
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agrochemical expense in tree fruit orchards. The chemical requirement 
was computed based on the maximum spray liquid retention capability 
of the fruit trees. At this spray volume, all canopy foliage surfaces are 
supposed to be wetted to the point of the first run-off. According to 
Furness et al. [30], the usage of 80 l of spray volume is standard for 
1000 m3 of tree canopy volume, considering the maximum canopy 
retention volume. Therefore, this study employed the chemical use of 
0.08 l per m3 of tree canopy volume while calculating the spray volume 
for the selected 24 experimental trees. 

2.4.4. Image processing for canopy coverage measurement 
The canopy coverage percentage was computed by a Canopeo seg-

mentation algorithm [21] using Eqs. (2) and (3). The RGB orthomosaic 
was converted into a binary map based on Eq. (2) where white pixels 
represent tree canopies, and black pixels represent non-canopy. The 
white pixels between apple tree rows represented grass. The ground area 
under each tree area did not include any grass; therefore, calculating 
white pixels from that area only represented tree canopies. ROIs were 
generated over the apple tree rows. The canopy pixels and the total 
number of pixels within each ROI were computed. The ratio of canopy 
pixels and total pixels within each ROI was calculated using Eq. (3) to 
compute the percentage canopy coverage of the experimental orchard. 

Tree Canopy =

(
B
G
< 0.95

)

AND
(

R
G
< 0.95

)

AND ((2G − B − R)> 20)

(2)  

where B is the blue color channel, G is the green color channel, and R is 
the red color channel. 

Canopy Coverage =

(( ∑ (
GSD2)if canopy

)

∑ (
GSD2) × 100

)

(3)  

where GSD is the distance between two consecutive pixel centers 
measured on the orchard ground. 

2.5. Statistical analysis 

Results of the UAV-based tree height and canopy volume measure-
ments using RGB sensors were compared with manual tree height and 
LiDAR canopy volume measurements by calculating MAE and RMSE. A 
paired t-test was also performed. The canopy volume measurement 
measured with difference alpha-values were compared with the UAV- 
based measurement. The data were plotted in the box to observe the 
variation using two methods. The canopy coverage percentage was 
computed to observe the difference of canopies within the experimental 
orchard. 

Fig. 6. Visualizing pixel intensities from all trees in 3D space.  

Fig. 7. Apple tree color height map with 24 generated ROIs over 24 targeted 
trees. The color bar at the right shows the tree height in meter. (For interpre-
tation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 8. Schematics of (a) tree height measurements (b) a graphical illustration of all pixels height measurement (h1 to hi: pixel height of 1st to ith pixel).  
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3. Results and discussion 

3.1. Tree canopy height measurement 

The results of manual and UAV-based measurements for 24 apple 
tree canopy heights are shown in Table 1. Variation of tree canopy 
heights using the two methods is presented in Fig. 9. A paired t-test 
between the two measurement methods indicated that there was no 
significant difference in tree canopy height. The average tree canopy 
height was 3.07 min manual measurement, where the average height 
was 3.05 min UAV-based measurement. The measurement errors ranged 
from 0 to 0.73 m with an average of 0.20 m, equivalent to a 6.64% error 
relative to the manual measurement. These results indicated the po-
tential of UAV-based apple tree canopy height measurement to quantify 
individual tree height with less than 10% error. The MAE and RMSE 
were 0.21 m and 0.28 m, respectively. Previous studies also reported 
similar results for tree height measurement. Krause et al. [31] measured 
forest tree height (i.e., Scots Pine) using a UAV-based photogrammetric 
approach and achieved an RMSE of ~0.30 m when compared to manual 
method. Bridal et al. [32] reported an RMSE of 0.28 m for UAV-based 
forest tree height measurement. 

Overestimation and underestimation were reported through the 
UAV-based measurement compared to manual measurement. For 
instance, trees no. 2, 3, 13, 14, and 19 were overestimated, and 5, 6, 8, 
10, and 24 were underestimated. These might be explained by two main 
reasons: spatial resolution of UAV imagery and elevation variation in the 
experimental orchard. The overestimation was also observed in other 
studies while using SfM for plant height measurement or estimation [33, 
34], which agreed with the results of this study. The previous studies 
observed that the SfM lacked the ability to reconstruct accurately the top 
of the plant canopy. This might be due to the coarse spatial resolution of 
the RGB camera as compared to the size of the branches or canopies at 
the top of the apple tree. High spatial resolution could improve the re-
sults, but it might lead to a noisier dense cloud with more gaps over 
vegetated or canopy areas [35]. Use of appropriate camera focal length 
is important, which may help the SfM algorithm to obtain more accurate 
estimates of the plant height in the dense cloud through the increase of 
disparity in the view configurations [36]. Conversely, the 

underestimation might be due to variation in elevation between the 
eastern part and western part of the orchard. The generated DSM, DTM, 
and canopy height map considered the orchard as a flat surface from the 
UAV take-off point without any elevation difference. However, the 
experimental orchard had a maximum elevation difference of 0.3 m. 
Therefore, the trees located at a lower elevation than the take-off point 
were partially underestimated. Orchard slope variation and elevation 
difference information could be included in the DSM and DTM genera-
tion to avoid this underestimation problem. Even though the manual 
measurement of tree heights was taken carefully, there is a likelihood 
that some of tall tree heights were not measured accurately due to the 
limitation of the experimenter reaching the top of the trees. This might 
also cause the error of measurement for some of the tree canopy heights. 

3.2. Tree canopy volume measurement and possible agrochemical 
requirement 

The UAV-based tree canopy volumes were compared with the 
ground-based LiDAR measurement of 24 targeted trees. The ground- 
based canopy volumes varied with different α values using the alpha 
shape algorithm due to approximating the size of each scanned point 
cloud differently. The tree canopy volumes from LiDAR (using different 
α values) and UAV measurements were plotted side-by-side to observe 
their variations (Fig. 10). The α value of 0.35 achieved the highest co-
efficient of determination (R2 = 80.14%) with UAV measurement than α 
value of 0.4 (R2 = 79.51%) and 0.45 (R2 = 77.25%) (Figs. 11, 12 & 13). 
However, the calculated MSE and RMSE errors with the α value of 0.35 
and 0.45 were higher than those with the α value of 0.4 (Fig. 14). The 
results showed certain errors in the UAV-based measurement when 
compared with the LiDAR measurements. Similar to tree height mea-
surements, a portion of these errors might be caused by coarser spatial 
resolution and elevation difference of the orchard. However, the major 
reason could be explained by the reliability of the ground truth mea-
surements. Although the LiDAR measurement was considered as ground 
truth, it might be possible that the alpha shape algorithm under-
estimated or overestimated the individual tree canopy volume. This is 
because the ground truths used for comparison were approximated tree 
canopy volumes. So far, there are no methods available to measure or 
estimate tree canopy volume fully and accurately because of the irreg-
ularity of the tree shape. Compared to the traditional methods, LiDAR- 
derived methods can measure tree characteristics accurately [37] and 

Table 1 
Results of manual and UAV-based apple tree canopy height measurements.  

Tree no. Manual measurement 
(m) 

UAV-based 
measurement (m) 

Absolute 
error 
(m) (%) 

1 2.69 2.93 0.24 8.92 
2 2.90 3.45 0.55 18.97 
3 2.87 3.32 0.45 15.68 
4 3.12 3.09 0.03 0.96 
5 3.20 2.96 0.24 7.50 
6 3.30 2.97 0.33 10.00 
7 3.40 3.36 0.04 1.18 
8 3.63 2.90 0.73 20.11 
9 2.97 3.02 0.05 1.68 
10 2.95 2.88 0.07 2.37 
11 2.97 2.69 0.28 9.43 
12 2.78 2.78 0.00 0.00 
13 2.79 3.02 0.23 8.24 
14 3.10 3.20 0.10 3.23 
15 3.33 3.04 0.29 8.71 
16 3.18 3.15 0.03 0.94 
17 3.09 2.85 0.24 7.77 
18 3.25 3.33 0.08 2.46 
19 2.92 3.41 0.49 16.78 
20 3.40 3.39 0.01 0.29 
21 2.84 2.89 0.05 1.76 
22 2.82 2.72 0.10 3.55 
23 2.92 2.84 0.08 2.74 
24 3.25 3.05 0.20 6.15 
Average 3.07 3.05 0.20 6.64  

Fig. 9. Tree canopy height measurements using two methods: manual and 
UAV-based imaging. The white boxes represent 25th to 75th percentile range. 
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were therefore used for ground truth measurements. The LiDAR has 
broad applications in tree canopy characteristics due to its accurate 
measurement capability reported in previous studies [38,39,9]. On the 
other hand, the use of different α values helped to identify a better 
correspondence with UAV-based measurements. Another reason for 

these errors could be the overestimated UAV-based tree canopy vol-
umes. The image processing algorithm used for tree canopy volume 
considered the height of all pixels at the top layer of the tree. There was a 
possibility that some of the tree shapes were narrower at the bottom 
portion, which could cause the overestimation. Despite the errors re-
ported in the measurements, which were not high, a strong correlation 
of these two methods indicated that the UAV-based canopy volume 
measurement could be effective considering the shorter measurement 
time and efficacy. 

The possible agrochemical requirement of the 24 experimental trees 
was estimated (Fig. 15). The tree canopy volumes measured with the α 
value of 0.4 were used. The estimation ranged from 0.1 to 0.32 l. The 

Fig. 10. Tree canopy volume measurements using ground-based alpha shape 
algorithm with three different α values (0.35, 0.4, 0.45) and UAV-based im-
aging. The white boxes represent 25th to 75th percentile range. 

Fig. 11. Correlation between LiDAR measured tree canopy volume with α 
value of 0.35 and UAV-based measurement. 

Fig. 12. Correlation between LiDAR measured tree canopy volume with α 
value of 0.4 and UAV-based measurement. 

Fig. 13. Correlation between LiDAR measured tree canopy volume with α 
value of 0.45 and UAV-based measurement. 

Fig. 14. Calculated MAE and RMSE between LiDAR and UAV-based tree can-
opy volume measurements. 

Fig. 15. Estimation of agrochemical amounts required for the experi-
mental trees. 
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variation between the agrochemical requirements was due to the dif-
ference in tree canopy volumes. Although the possible agrochemical 
requirement was determined for 24 trees, the method can be used for all 
trees to approximate the agrochemical expense of an orchard site. This 
study did not compare the actual agrochemical usages with estimated 
agrochemical requirements, which would be evaluated in future studies. 

3.3. Tree canopy coverage measurement 

The percentage of canopy coverage for all trees located in the 

experimental orchard was calculated (Fig. 16), which ranged from 0 to 
100% (Fig. 16c). The highest percentage indicates the ROI included 
more canopies, whereas the lowest percentage indicates the ROI con-
tained less or no canopies. 

Currently, there are no approaches to measure ground truth accu-
rately for tree canopy coverage; therefore, the UAV-based tree canopy 
measurement results were not directly comparable. However, evalua-
tion could be made based on visual assessments of orthomosaic, 
segmented, and canopy coverage maps (Fig. 16). For example, the ROIs 
of the six rows at the eastern part included no canopies, and thus they 
show white color. The high canopy density area marked with a red circle 
in Fig. 16c can be compared with the orthomosic map. This area had 
trees with high density or more canopies. Similarly, the marked blue 
area in Fig. 16c showed comparatively fewer canopies. Trees in this area 
are comparatively narrower, and there were certain gaps between trees. 
Despite there being a slight shadow presented on the left side of each 
tree (when facing the orthomosaic map), the Canopeo algorithm was 
able to measure tree canopy coverage accurately. The shadow appeared 
as black color where the Canopeo algorithm segmented the green pixels 
and avoided the influence of shadow. 

3.4. Discussion and recommendations for future study 

This study investigated the feasibility of a UAV-based imaging 
approach to measure the apple tree canopy characteristics (i.e., canopy 
height, volume, and cover). The results demonstrated that the UAV- 
based system could be used as high precision, time-efficient, and cost- 
effective approach to measure tree canopy characteristics to calculate 
appropriate pesticide requirements during spraying. Acquiring high- 
resolution images is crucial for accurately measuring canopy charac-
teristics which can be greatly affected by factors including camera 
sensor, flying altitude, forward and side overlap, spatial resolution, and 
weather conditions [40,41,42]. These factors should be considered 
carefully since they affect the quality of images and, therefore ortho-
mosaics, DSM, and DTM, which in turn affect the accuracy of tree can-
opy characteristics. The timing of image data collection plays a 
significant role in the accuracy of measurements. The images were 
captured when the sun was at its zenith to avoid the shading effect; 
however, differences in image capture time may have influenced the 
overall quality of data which needs to be considered in future studies. 
Additionally, flying altitude also determines the quality of the image 
data. Lower flying altitude provides finer spatial resolution, and 
conversely, higher altitude gives a coarser spatial resolution. The flying 
altitude used in this study has been widely applied for different 
UAV-based research, but the elevation difference increased the altitude 
from the ground in the western part of the orchard, which decreased the 
accuracies of the measured tree canopy characteristics. 

The results of tree canopy characteristics measurement were com-
parable to that of other studies using UAV-based methods. Kothawade 
et al. [25] obtained a correlation of 0.62 and Sinha et al. [24] achieved 
an R2 of 64% for apple tree canopy volume measurement when 
comparing UAV-based tree canopy volume with manual measurement. 
Sun et al. [43] calculated the maximum average relative error was 
3.42% for apple tree height measurement while flying at different alti-
tudes. With a relative error of ~6% and R2 of ~0.80, the developed 
UAV-based approach could provide accurate information for numerous 
crop management practices. 

This study illustrated limitations while measuring the canopy char-
acteristics. The blockage of the lower canopies due to obstruction by 
higher branches was considered one of the limitations, which might 
have led to the overestimation of the tree canopy volume. These effects 
might not influence the tree canopy height because it was calculated 
from the height of the maximum canopy pixel. Influence of these effects 
depended on the density of the canopies: high-density trees (trees with 
more canopies) might have more effect than low density trees. Modern 
tree fruit orchards are planted with 2-dimensional walls that might be 

Fig. 16. Results of UAV-based tree canopy coverage measurement (a) ortho-
mosaic map (b) segmented image of the orchard (c) tree canopy coverage map. 
The red circle represents high canopy density area and the blue circle represents 
comparatively low canopy density area. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of 
this article.) 
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less affected by this problem. Another limitation was the overlapping 
between some of the neighboring trees, which could lead to the under-
estimation of the canopy volume and canopy coverage. Overlapping- 
removal approaches could be applied according to the different tree 
canopy densities. Elevation difference in the orchard was considered as a 
major problem, leading to ambiguity in the tree canopy height, volume, 
and cover measurements. The DTM is generated as a flat surface in this 
experiment using Agisoft Metashape Pro software by interpolation. This 
software did not consider any elevation difference in the ground surface, 
which caused inaccurate estimation if any elevation difference was 
presented. The elevation difference within the orchard must be consid-
ered while generating orthomosaics, DSM and DTM to compensate for 
this problem, which will be studied in the future. It will be helpful to 
make this system applicable to any orchard terrain conditions. 

The UAV-based tree canopy characteristics measurement approach 
presented could be beneficial to growers and the scientific community 
on various management practices, including precision spray applica-
tions. The growth of the canopy volume and canopy coverage should be 
an important factor to determine the amount of spray required during 
the season. The developed methodology could be used to accurately 
measure tree canopy height, volume, and cover and their respective 
maps. These maps could be used to develop prescription agrochemical 
application maps. Information on the prescription maps could be used to 
control the precision sprayer nozzles and has the potential to reduce off- 
target wastage and ensure adequate spray deposition. These maps might 
help growers in canopy vigor management (pruning and thinning) 
alongside the spraying task. Although the study focused only on apple 
tree canopy characteristics measurements, it is not limited to this spe-
cific crop. The developed methodology could be transferred to other tree 
crops, such as peaches, pears, and citrus. Thus, the UAV-based tree 
canopy characteristics measurement technology would have great po-
tential to help agricultural research economically and also towards 
sustainable crop management, especially when the farm contains many 
hectares of orchards. 

4. Conclusions 

Appropriate agrochemical application is a major challenge in tree 
fruits such as apple. UAV-based imaging methods were established in 
this study to measure apple tree canopy characteristics by analyzing 
high resolution aerial RGB imagery. This UAV-based method provided a 
relatively fast approach to calculate major tree characteristics in order to 
estimate spray requirement. Results showed that the study successfully 
measured tree canopy characteristics such as canopy height, canopy 
volume, and canopy coverage and were subsequently validated with 
ground measurements. 

The image processing methods used yielded a low average relative 
error for tree height measurement and a strong correlation between 
UAV-based and ground-based tree canopy volume measurements. The 
study experienced overestimation and underestimation problems with 
canopy coverage measurements due to aspects including coarse spatial 
resolution, elevation difference, blockage of the lower canopy and 
overlapping trees. Future studies are necessary to compute tree canopy 
characteristics with approaches that consider those aspects, especially 
elevation difference and spatial resolution. Studies are also recom-
mended to evaluate the robustness of the proposed imaging methods in 
quantifying tree canopy characteristics variation at different growth 
stages in an entire growing season. Integration of these approaches with 
the spraying unit is also necessary to evaluate their potential for crop 
management. 
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