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CHAPTER 2 

Phosphatase Regulation of CFTR 

John W. Hanrahan, Tang Zhu and L. Daniel Howell 

Abstract 

The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is 
tightly regulated by the opposing actions of protein kinases and phosphatases.Its phos
phorylation and activation by protein kinasesA (PKA) and C (PKC) have been studied 

in some detail but phosphatase regulation of the channel has received less attention. Several 
phosphatases may control CFTR in various cell types, however in epithelia most deactivation is 
mediated by a membrane-bound phosphatase with functional properties resembling those of 
PP2C, the prototypic member of the PPM gene family of serinelthreonine phosphatases. The 
PP2C-like phosphatase requires Mg2+, is insensitive to the inhibitors okadaic acid and calyculin 
A, does not require Ca2+ or calmodulin, and is inhibited non-specifically by 
phenylimidazothiazoles. It is closely associated with CFTR and can be co-immunoprecipitated 
or co-purified from celllysates by affinity chromatography with, or without, pretreatment with 
chemical crosslinking reagents. Current efforts are directed towards identifYing the phosphatase 
at the molecular level; i.e., determining ifit is a novel isoform or alternatively spliced variant of 
a known PP2C isoform, or a new membrane-targeted phosphatase in the PPM family. Identi
fYing and characterizing the phosphatase will open many new avenues of investigation into 
basic aspects of CFTR regulation, and may have clinical significance since the phosphatase is a 
potential target for pharmacotherapies to treat cystic fibrosis and secretory diarrhea. 

Introduction 
CFTR is a non-rectifYing, low-conductance chloride channel in epithelia and other cells 

which is activated in different preparations by cAMP-mobilizing agonists such as prostaglan
din Eb epinephrine, vasoactive intestinal peptide, adenosine and secretin (see ref. 1). Gating of 
the CFTR pore is nucleotide dependent and tightly regulated by phosphorylation. In addition 
to its role in mediating plasma membrane chloride conductance, CFTR also influences the 
activity of other channels and transporters through mechanisms that are poorly understood 
and, in view of the large number and diversity of proteins affected, probably indirect. Some of 
these regulatory effects (e.g., down-regulation of epithelial sodium channels)2 require phos
phorylation of CFTR whereas others (e.g., up regulation of glutathione release)3 apparently do 
nor. Although phosphatases may control both chloride conductance and the regulatory effects 
of CFTR, this chapter focuses exclusively on their role in regulating CFTR channel activity. 

CFTR Phosphorylation 
Activation of apical membrane chloride conductance by cAMp, the rate-limiting step for 

transepithelial chloride secretion, was established by the early work of M. Field, R. Frizzell, S. 

The Cystic Fibrosis Transmembrane Conductance Regulator, edited by Kevin L. Kirk 
and David C. Dawson. ©2003 Eurekah.com and K1uwer Academic I Plenum Publishers. 
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K1yce and others (see reE 4). It is now generally accepted that the channel mediating this 
conductance is CFTR, which is phosphorylated and strongly activated by protein kinase A (PKA).5-7 
Hyperstimulating PKA with forskolin leads to the addition of about 5 moles ofP04 per mole 
of CFTR in vivo,8 although this is a lower limit since it is likely that some ATP fails to acquire 
[32P]P04 at the y position when cells are metabolically labeled. Higher stoichiometries are 
achieved in vitro through phosphorylation of additional low-affinity sites. This could be viewed 
as an artifact of the high kinase and low phosphatase activities present in vitro, but it could also 
be argued that phosphorylation of the low-affinity sites occurs in vivo but is not detected due 
to the technical limitations of in vivo experiments; i.e., the lower specific activity of [32p]ATP 
in cells and the labile nature of the phosphoryl groups at "weak" sites. Removing the nine 
strong dibasic consensus sequences on the R domain and one additional dibasic site proximal 
to the first nucleotide binding domain (NBD 1) reduces in vitro phosphorylation by more than 
90% and channel open probability by about half in excised membrane patches that are exposed 
to high PKA activity.9.11 While the precise number and identity of the consensus sequences 
that are phosphorylated under physiological conditions remains uncertain, it is clear that PKA 
acts at multiple sites and that even the "weak" PKA sites are likely to have functional signifi
cance since they are almost perfectly conserved from cartilagenous fishes to humans.12 

The mechanisms by which phosphorylation and dephosphorylation of the R domain regu
late channel activity appear complex. 13 Phosphorylation induces only small changes in the 
secondary structure of a polypeptide comprising the R domain and distal region ofNBDl,14 
and these are not observed when the distal part of NBD 1 is not included in the constructY 
Rather than regulating NBD function, phosphorylation may allow the efficient transduction 
of conformational changes induced by nucleotide interactions at the NBDs to the membrane 
domains (see reE 1 for review). Adding dephosphorylated R domain inhibits wild-type CFTR 
channels incorporated into planar bilayers,15 and pre-phosphorylating the exogenous domain 
with PKA prevents this inhibition.16 Adding dephosphorylated R domain does not inhibit a 
murant lacking the distal two thirds of the R domain w~en studied by patch clamping excised 
patches, however when pre-phosphorylated and added to excised patches, it does increase the 
spontaneous activity of this mutant. I? While the latter implies a positive role of phosphory
lated R domain in sustaining channel activity, the normal activity of "split" channels lacking 
the entire R domain when expressed in Xenopus oocytes argues strongly that the primary role 
of the R domain is as a negative regulator (when unphosphorylated) and that phosphorylated 
R domain is not essential for channel gating. 18 Mutating two potential PKA sites on the R 
domain (S737 and S768) enhances activation in oocytes, suggesting they may act like channel 
"brakes" .19 If so, this has interesting implications for phosphatases, which have a similar physi
ological role, since to remain phosphophorylated (and inhibitory) in a particular cell type, 
those inhibitory sites would need to be either more resistant to the phosphatases in that cell, or 
more susceptible to basal PKA activity. Recent studies suggest a negatively charged, predicted 
helical region distal to the phosphorylation sites on the R domain (817-838) also plays a role in 
regulation by phosphorylation since deleting this region20 causes the channel to become unre
sponsive to PKA. Removing negative charges in this region or disrupting its helical structure by 
mutagenesis abolishes inhibition by dephospho-R domain and stimulation by PKA, respec
tively.20 Charge in the R domain has been considered a determinant of activation because a 
mutant containing aspartates at eight consensus dibasic PKA sites (to mimic phosphoserines) 
is spontaneously active.21 However charge resulting from phosphoryl groups is probably not 
the only factor involved in regulating the R domain because mutants with aspartates21 or 
glutamates22 at PKA sites have low activity compared to phosphorylated wild-type channels, 
and altering the secondary structure of the R domain by mutagenesis without affecting charge 
is also sufficient to cause partial activation of the channel in bilayers.23 Phosphorylation could 
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stimulate channel activity through several mechanisms; e.g., enhanced nucleotide bindinf' a 
more stable ATP-bound transition state at NBDI or accelerated hydrolysis at NBD2,2 or 
improved coupling of conformational changes to the channel gate. Consistent with the bind
ing hypothesis, PKA phosphorylation causes a modest increase in the rate of hydrolysis and 
shifts its dependence to lower ATP concentrations.25 The significance of such alterations in the 
apparent KM for hydrolysis need to be established, particularly when much ?~ t~e gating d?es 
not depend on hydrolysis.22 A shift in the [ATP] dependence of open probabilIty IS seen dunng 
patch clamp experiments when wild-type channels are phos~horyl.ated by PKA,.I? or when 
low-phosphorylation mutants (e.g., 4SA, 10SA) are compared m eXCIsed patches WIth strongly 
phosphorylated wild-type channels. II However these functional effects would also be explained 
by a downstream mechanism in which dephosphorylation of the R domain h~nders transduc
tion of conformational changes from the NBDs to the transmembrane domams. Exposure to 
PKC (without PKA) causes a small increase in open probabiliry that is nor abolished by 
pre-treating excised patches with protein phosphatases,26 however a more striking effect of 
PKC is to enhance the subsequent responsiveness of CFTR to PKA stimulation.6.2?28 PKC 
increases the rate and magnitude of activation, and this is mediated by direct PKC phosphory
lation of CFTR since it is abolished by mutating serines or threonines at all nine PKC consen
sus sequences between the Walker B consensus in NBDI and TM7 of the second transmem
brane domain to alanines.29 These potential PKC sites, which are defined by the consensus Rl 
KI-3, X2-0, S'/T', X2-0, RlKI_3 include T582, T604, S641, T682, S686, S707, S790, T791, 
S809. Multiple PKC sites may be involved in modulating regulating activation by PKA, since 
PKC effects are reduced but not abolished by removing the only two (S686, S790) where 
phosphorylation has been directly demonstrated.8.28,30 It seems unlikely that the mechanism 
by which PKC enhances PKA responses will be understood until the nature of PKA regulation 
is established. 

Deactivation of CFTR Channels by a Membrane-Bound Phosphatase 
cAMP is a diffusible second messenger that regulates growth, metabolism and many other 

cellular functions not obviously related to transepithelial chloride secretion. CFTR must be 
efficiently dephosphorylated in vivo to maintain low resting chloride conductance and ensure 
that CI- secretion is only increased by appropriate stimuli and is readily reversible. Tonic sup
pression of CFTR by a phosphatase would effectively raise its threshold for activation and 
minimize responses to irrelevant signals. 

Evidence that CFTR is indeed regulated by a membrane-localized phosphatase came from 
the spontaneous "rundown" of channel activity that occurs after patches are excised from cAMP 
stimulated cells into bath solution lacking PKA.6 Channels deactivate in about 10 seconds at 
37° C when patches are isolated from Chinese hamster ovary cells (Fig. 1), or in 1 - 2 minutes 
when excised at room temperature.31 The rundown is fully reversed by adding PKA catalytic 
subunit to the bath within the first few minutes after excision, and is more rapid than the 
reactivation induced by exposure to high PKA activity. Similar rundown is observed when 
patches are excised from an airway epithelial tumor cell line expressing endogenous CFTR32 or 
an immortalized airway epithelial cell line transfected with CFTR cDNA,31 therefore 
membrane-bound phosphatases probably regulate CFTR channels in cells that normally ex
press them, not only heterologous expression systems. The extent of rundown and the relative 
importance of particular phosphatases may vary with cell type since it seems to be less dramatic 
in mouse fibroblasts,33 insect cells,34 or baby hamster kidney cells (BHK)35 and has a large 
component that is sensitive to the membrane-impermeant PP2A inhibitor microcystin in guinea 
pig myocytes.36 That said, CFTR-mediated currents in epithelial cells do have the same phar
macological properties as those described in patches excised from CHO and most other 
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Figure 1. Rundown of CFTR channels mediated by a membrane-bound phosphatase. A, Effect of excising 
a membrane patch containing CFTR channels from a cAMP-stimulated CHO cell. The short traces above 
each recording show expanded views of the time intervals indicated by the horizontal lines. For the upper 
recording, the bath solution contained 0.5 mM ATP and 2 mM Mgl+ but no PKA, and the expanded 
segments show activity immediately before (left) and during excision (right). Note the rapid decline in 
channel activity after excision at 37°C. The lower recording shows an experiment using the same protocol, 
but with 180 nM PKAcatalyticsubunit in the bath. B, Number of patches with active channels as a function 
of time after excision in the absence (hatched bars) or presence (open bars) of180 nM PKA, 0.5 mM ATP 
and 2 mM Mg2+ at 3rc. (from ref. 6) 

cells6.31.35,37 (see below). This implies that the predominant CFTR phosphatase in epithelia is 
the same membrane-bound enzyme that deactivates CFTR in excised patches from CHO and 
other cells, and provides the rationale for using rundown to assay its activity.31,35 Most recent 
effort has focused on identifying it at the molecular level and cloning its eDNA 

Characteristics of Protein Phosphatases 
Mammalian SerlThr phosphatases were classified as type 1 (PP1) or type 2 (PP2A, PP2B, 

PP2C) based on their functional properties.38 A more recent system based on gene relatedness 
places PPI, PP2A and PP2B in the "PPP family" along with several newly-cloned phosphatases 
(i.e., PP4, PP5, PP6, PP7; see below). PP2C and its orthologs such as ABIl in Arabidopsis and 
PTCI in S. cerevisiae are distinct and have been placed in the "PPM family" (for evolutionary 
analyses see.39.40 The functional scheme (PPI, PP2A, etc) is used in this review because it is 
familiar and reflects the fact that the phosphatase regulating CFTR is still known by its func
tional properties rather than by its sequence. 

The PP1 family of protein phosphatases dephosphorylates the f3-subunit of phosphory
lase kinase and is sensitive to the thermostable proteins Inhibitor 1 and Inhibitor 2 (see Table 
O. PPI holoenzymes are heterodimers of catalytic and accessory subunits. There are at least 
three catalytic subunit isoforms and about 50 known or putative accessory subunits. The PP1 (\ 
catalytic subunit also has multiple splice variants. In most instances, a cleft in the PPI catalytic 
subunit binds to a highly conserved sequence (RVxF) on an accessory subunit, which targets 
the holoenzyme to various cellular locations (see ref. 41).41 PP1 has diverse functions that 
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Table 1. Summary of the functional characteristics of major protein phosphatase 
families' 

Cofactors Inhibitors CFTR (R Domain) Protein Subunit Typical 
Phosphatases Composition Needed Substrates Dephosphorylationb 

PPl Catalytic Tautomycin Phosphorylase 
Accessory Microcystin kinase ++ 

Calyculin A subunit 
Okadaic acid 
Canthardic acid 
Inhibitor 1,2 

PP2A A (structural) Microcystin Phosphorylase +++ 
B (regulatory) Okadaic acid kinase 
C (catalytic) Calyculin A subunit 

Canthardic acid 

PP2B A (catalytic) Cal + Deltamethrin Post-synaptic + 
B (regulatory) calmodulin Cyclosporin A densities 

FKS06 
Fenvalerate 

PP2C monomeric Mg2+/Mn2+ AMP kinase +++ 
MAP kinases 
Myosin light chains 

a PP1, PP2A, PP2B, and less well characterized PP4-PP7 (not shown) belong to the "PPP family" 
based on homology. PP2C is a member of the "PPM family". 
b Number of crosses indicates relative efficiency of dephosphorylation using either 
phosphorylated full-length CFTR or GST-R domain fusion protein as the substrate. 

include smooth muscle relaxation, pre-mRNA splicing, synaptic transmission, and the regula
tion of epithelial transport. 

The PP2 family dephosphorylates the a-subunit of phosphorylase kinase and is insensi
tive to the thermostable proteins Inhibitor 1 and Inhibitor 2. PP2 phosphatases have been 
further sub-divided into types 2A (PP2A), 2B (PP2B) and 2C (PP2C) according to their metal 
ion requirements and inhibitor sensitivities. Active PP2A does not require divalent cations or 
other cofactors for enzymatic activity and is a heterotrimer of "A" (structural), "B" (regulatory), 
and "C" (catalytic) subunits, all of which have multiple isoforms and splice variants. It is impli
cated in regulating metabolism, DNA replication, transcription, RNA splicing, translation, 
cell cycle progression and many other cellular functions. Of particular interest for CFTR re
search is its role in controlling signaling pathways, since it has been reported to upregulate four 
protein kinases and downregulate 29 others, including PKA and PKCY This complicates the 
interpretation of any in vivo phosphorylation that might be induced by inhibitors such as 
calyculin A, even though they are relatively specific for PP2A when assayed in vitro. Phos
phatases in the PP2B (calcineurin) sub-family have "A" (catalytic) and "B" (regulatory) sub
units and require the binding of Ca2

+ and calmodulin for enzymatic activity. PP2B regulates 
events at neuronal postsynaptic densities, microtubules of the cytoskeleton, and signal trans
duction in T cells, where it is a target for the immunosuppressive drugs cyclosporin and FK506. 
Several other protein phosphatases (PP3 - PP7) have been reported in mammalian cells, al
though the existence ofPP3 has been questioned.43 PP4-PP7 all belong to the PPP gene family 
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and have sequences resembling PP2A. PP7 is Mg2t dependent and insensitive to okadaic acid, 
however its mass (75 kD) and restricted tissue distribution (retina) argue against a role in 
regulating CFTR (see below). For comprehensive accounts of serinelthreonine phosphatases, 
the reader is directed to the many excellent general reviews of the early44-47 and more recent 
literature.41 -43.48-52 

PP2C is the prototypic member of the PPM gene family and has no significant sequence 
homology with PPI, PP2A or PP2B53 although its architecture and proposed catalytic mecha
nism are similar (see refs. 50, 54). First identified chromatographically as a glycogen synthase 
phosphatase,55 it was later characterized as a divalent cation-dependent (Mg2t =Mn2+>C02t) 
protein phosphatase of about 49 kDa. 56 An enzyme with properties resembling glycogen syn-

h h . 57 d . I' h h' 58 thase phosphatase but which dephosphorylates p osp ocasem an myosm Ig t cams was 
characterized in cardiac and smooth muscle, respectively. eDNA cloning has identified seven 
PPMs in mammals (Fig. 2) : a, 53 b,59 pyruvate dehydrogenase phosphatase PDp,60 g/FINI3,61.62 
d,63 Ca-CaMK phosphatase64 and Wip1.65 The catalytic domains of all PPMs contain the 
signature sequence [LIVMFYHLIVMFYAJ-[GSACl-[LIVMJ-[FYCJ-D-.G.-H-[GAVJ. The 
perfectly conserved aspartate sidechain and glycine carbonyl oxygen in PP2Cb (i.e., the under
lined residues in the signature sequence) help coordinate metal ions in the active site. General 
features of the PPM family members are shown in a schematic alignment in Figure 2. 

PP2Ca was purified to homogeneity from rat liver and turkey gizzard but is expressed in 
many other tissues including skeletal muscle, kidney, and cerebellum. There are several variants 
including the original a-I ,53 and the much shorter a_266 and a-3 forms (A Cherniack, S. Nicoloro, 
J. Buxton, A. Bose, M. Emoto, S. Waters, and M. Czech; NCBI ascession # AF259672.I, 
2000), which were cloned from different species. PP2Cb has at least six variants differing at 
their C termini, probably through alternative splicing; a-I ,59 (3_2,67 (3-3 and (3_4,68 (3-5,69 and 
(3-6.70 Fig. 3 shows an alignment of the C terminal amino acids of the a and (3 variants. 

PP2C(31 was identified in rat liver but is ubiquitously expressed. PP2C(32 is most abun
dant in mouse heart and brain whereas the PP2C(33 and PP2C(34 forms have been reported 
only in testes.68 PP2C(35 is a "predicted" variant since it was originally identified by RT-PCR 
using an upstream primer that anneals about half way through the coding region, although 
Northern blots analyzed with a C-terrninal cDNA probe suggest a full-length message is ex
pressed in mouse testes and intestine.69 Finally, PP2C(36 is the most divergent variant of the 
beta isoform, being only 74% similar to the others even without its long C-terminal tail. It is 
abundant in human skeletal muscle, heart and liver, but also detected in brain, placenta, kid
ney and pancreas'?o Other members of the PPM family are not discussed in detail because they 
lack the epitope recognized by our antibody against the CFTR-associated phosphatase (see 
below) and because their cellular locations make it unlikely they regulate CFTR (e.g., PDP is 
mitochondrial; FIN13/PP2C(3 and WipI are nuclear). 

The catalytic domain of PP2Cs consists of the N-terminal -290 amino acids, which are 
well conserved among isoforms. When the structure ofPP2Ca-1 was solved by X-ray crystal
lography it was found to have a novel fold consisting of a central beta-sandwich and two man
ganese ions surrounded by a1rha-helices.54 Mn2+ -bound water was postulated to act as a nu
c1eophile during catalysis,50.5 .71 which would account for the strict dependence of enzymatic 
activity on Mg2+, Mn2+, or Fe2t 72.73). Functional studies of mouse PP2C(3-1 mutants con
firmed that metal ions bind at acidic amino acids in the fold (i.e., Glu37, Asp38, ~60 and 
Asp239,74 Other substrates of mammalian PP2Cs include AMP kinase,75 moesin,7 and ki
nases in stress-activated signaling pathways. For example the MAP kinase kinase kinase (MKKK) 
TAKI, which is activated by environmental stress and inflammatory cyrokines, is down-regulated 
by PP2C(3-2 52.77 whereas the downstream kinases MKK and p38 MAPK are down-regulated 
by PP2Cf3-1. 66 There may be many isoforms and splice variants of PP2C, each having a differ
ent set of phosphoprotein substrates. 
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Figure 2. Similarity among representative members of the seven known PPM phosphatases. The boxes 
indicate regions of each polypeptide aligned with corresponding regions of other PPM phosp~at~s. The 
spaces between the boxes are gaps introduced by the alignment and therefore have no slgmficance. 
Also shown are the relative locations of the PPM consensus ([LIVMFY]-[LIVMFYA]
[GSACJ-[LIVM]-[FYCJ-U-.G.-H-[GAV]) and the acidic box of the Fin13/PP2Cy are indicated. The total 
number of amino acids (aa) in each polypeptide is shown at right. 

Like Real Estate, What Counts Is Location, Location and Location 
Serinelthreonine phosphatases have broad and overlapping specificities when assayed in 

vitro (see re£ 44). Their specificity in vivo is often due to targeting to particular substrates by 
specific regulatory subunits or accessory proteins. For exam~le in ~:ur?8ns, PPI is ta~get:d to 

AMPA-type glutamate receptors by a protein called spmophllm. . PPI constltu~lvely 
down-regulates AMPA currents and. this is dependent. on ~arge~l~g. Introd.ucmg a 
phospho-peptide that disrupts the bindmg of PPI also ab?hsh~s Its a~lltty to deactivate the 
AMPA current. Similar targeting of PPI to glycogen particles IS mediated by the accessory 
subunit GL, which has the consensus motifRVXF. This sequence is found on other PPI target
ing subunits and has recently been demonstrated near the amino terminus of NKCCI, the 
sodium-potassium-chloride co-transporrer,Y9 Altering the consens~s abolis~es PPI 
co-immunoprecipitation with the cotransporrer, slows dephosphorylation, and mcreases 
NKCCI-mediated ion transport. Like PPI, PP2A and PP2B are targeted by specific regulatory 
(i.e., B) subunits that influence its enzymatic activity in vivo.8o Different isoforms of the regu
latory subunit may have specific addresses; for example, PP2A is targeted to the microtubule 
associated protein Tau by Ba and Bfl, but not by the B' regulatory subunit.s1 Other substrates 
of PP2A include voltage-gated sodium channels, soluble CaMKII, and neurofilaments. Only a 
few PP2B targeting subunits have been identified to date. One is AKAP79 (A-kinase Anchor
ing Protein of79 kD), which targets PP2B to postsynaptic densities and provides a scaffold for 
the binding ofPKA and PKc.82 Dynamin, plasma membrane Ca channels and IP3 receptors 
are also known substrates for PP2B. 
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(280) LHKGSRDNMSVVLVCFSNAPKVSEEAVKRDSELDKHLESRVEEIMQKSGE 
(280) LHKGSRDNMSVVLVCFSNAPKVSEEAVKRDSELDKHLESRVEEIMQKSGE 
(280) LHKGSRDNMSVVLVCFSNAPKVSEEAVKRDSELDKHLESRVEEIMQKSGE 
(280) LHKGSRDNMSVVLVCFSNAPKVSEEAVKRDSELDKHLESRVEEIMQKSGE 
(280) LHKGSRDNMSIVLVCFSNAPKVSDEAVKKDSELDKHLESRVEElMEKSGE 
(281) LHKGSRDNMSVVLVCFSNAPKVSEEAVKRDSELDKHLESRVEEIMQKSGE 

(326) -GVPDLVHVMRTLASENIPSLPPGGELASKRNVIEAVYNRLNPYKNDDTD 
(325) -------------------------------------------------
(326) K-------------------------------------------------
(330) EGMPDLAHVMRILSAENIPNLPPGGGLAGKRNVIEAVYSRLNPNKDNDGG 
(330) EGMPDLAHVMRILSAENIPNLPPGGGLAGKRHVIEAVYSRLNPHKDNDGG 
(330) EGMPDLAHVMRILSAENIPNLPPGGGLAGKRHVIEAVYSRLNPHKDNDGV 
(330) EGMPDLAHVMRILSAENIPNLPPGGGLAGKRHVIEAVYSRLNPHKDNDGF 
(330) EGMPDLAHVMRILSAENIPNLPPGGGLAGKRHVIEAVYSRLNPHKDNDGM 
(330) EGMPDLAHVMRILSAENIPNLPPGGGLAGKRHVIEAVYSRLNPHKDNDGG 
(330) EGMPDLAHVMRILSAENIPNLPPGGGLAGKRNVIEAVYSRLNPHRESDGA 
(331) EGMPDLAHVMRILSAENIPNLPPGGGLAGKRHVIEAVYSRLNPHKDNDG 

(375) SASTDDMW------------------------------------------
(325) -------------------------------------------------
(327) --------------------------------------------------
(380) AGDLEDSLVAL--------------------------------------
(380) AGDLEDSLVAL--------------------------------------
(380) SLHLFPKYLK---------------------------------------
(380) YQPSIAYSDNVFLL-----------------------------------
(380) ADLSTSICKPS--------------------------------------
(380) AGDLEDSLFYQPSIAYSDNVFLL--------------------------
(380) SDEAEESGSQGKLVEALRQMRINHRGNYRQLLEEMLTSYRLAKVEGEESP 
(381) A ED 

(383) -------------------------------------------------
(325) -------------------------------------------------
(327) -------------------------------------------------
(391) -------------------------------------------------
(391) -------------------------------------------------
(390) -------------------------------------------------
(394) -------------------------------------------------
(391) -------------------------------------------------
(403) --------------------------------------------------
(430) AEPAATATSSNSDAGNPVTMQESHTESESGLAELDSSNEDAGTKMSGEKI 

Figure 3. Alignment of the carboxyl-terminal regions of PP2C a and ~ isoforms, starting at amino acid 
position 276-281. Note the strong conservation ofN-terminal amino acids <290, which are in the catalytic 
domain. The coils above the alignments indicate regions that are predicted to be a-helical. PP2Ca-2 and 
a-3 are truncated and have distinct C-termini. PP2C~s also differ in this region, however note that ~-5 is 
a chimera of~-I (AGDLEDSLVAL) and ~-3 (FYQPSlAYSDNVFLL). 
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PP2C is unique in that dedicated targeting subunits or accessory proteins have not yet 
been identified in mammalian cells, although some structural and substrate selectivity is con
ferred by its C-terminal 75 - 90 amino acids, particularly the most distal region, which is 
distinct among isozymes and splice variants. Indirect evidence for this notion comes from the 
findings that 90 amino acids can be deleted from the C terminus of the a-I isoform without 
affecting its in vitro enzymatic activity,83 and the ability ofPP2C~-1 to discriminate between 
phosphohistone and phosphocasein is lost when the C-terminal 12 amino acids are deleted?4 
The nucleus has been suggested as the "default" location ofPP2Ca within the cell, however this 
remains speculative (see discussion in reE 84). PP2C~1 is detected in both cytosol and nucleus 
when transiently overexpressed in BHK or COS cells.84 Cytosolic PP2C~1 washes out of the 
cell when the plasma membrane is permeabilized with digitonin, therefore it is probably a 
freely diffusible rather than membrane-bound enzyme. The cellular locations of variants PP2Cj32 
_ PP2C~6 have not been studied in detail. PP2C generally prefers substrates with 
phosphothreonine over those with phosphoserines. For example replacing phosphothreonine 
with phosphoserine in the synthetic phosphopeptide substrate RRATpVA reduces its rate of 
dephosphorylation by rabbit skeletal muscle PP2C~ approximately 20-fold.8s Rabbit PP2C~ 
removes nearly all the phosphate from the threonine in RRSpTpVA before there is any detect
able dephosphorylation of the phosphoserine. A preference for [32Pl phospho-Thr over 
[32Plphospho-Ser is also observed when PKA-phosphorylated casein is used as the substrate. 
By contrast, mouse PP2Ca and PP2C~ have only modest (i.e., 2-4 fold) preference for 
phosphothreonine when hydroxyl-methylglutaryl-coenzyme A is the substrate, and human 
PP2Ca apparently dephosphorylates phosphoserine and phosphothreonine with equal effi
ciency.86 PP2C activity is reduced when proline or negatively charged amino acids follow the 
phosphoryl group and increased by nearby phosphoryl groups. Neighboring sequence may 
influence which phosphatase acts at a particular site on CFTR as in the MAPK signaling path
way, where all three PP2C substrates have twO phosphotylation sites separated by a single 
amino acid. In CFTR, this preference might cause closely spaced sites to be dephosphorylated 
by a PP2C-like phosphatase and widely separated sites by another phosphatase such as PP2A. 
Neighboring arginines may also favor PP2C since they adversely affect the activity ofPP2A.86 

It is likely that sites on CFTR vary in their susceptibility to phosphatases. Indirect evidence for 
this comes from the observation that PKA-dependent channel activity runs down about seven 
times faster in excised membrane patches than does modulation by PKC 0.5 vs 10 min at 
room temperature). The pharmacological properties and metal ion dependence of the run
down ofPKC modulation has not been studied systematically, but since only PP2C-like phos
phatase has been found associated with CFTR (see below), it is probably mediated by the same 
membrane-bound phosphatase as the rundown in PKA-dependent activity.27 

It should be mentioned that phosphatase targeting to the plasma membrane could be 
achieved even without specific proteins or targeting subunits. For example, the PRL family of 
protein-tyrosine phosphatases contains a consensus C-terminal "CAAX" sequence for prenylation 
(where C is cysteine, A is an aliphatic amino acid, and X any amino acid), which inserts into 
the inner leaflet of the plasma membrane as a lipid anchor. This system is complex in that at 
least two lipid moieties can be used as anchors: When "X" is a Met, Ser, or Gin residue the 
phosphatase becomes a farnesyltransferase substrate, but when it is a leucine the lipidation is by 
geranylgeranyl-transferase 1.87 Whether lipid anchors mediate targeting of serinefthreonine 
phosphatases to the plasma membrane has not been investigated. 
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Comparing the Deactivation of CFTR by Endogenous 
and Exogenous Protein Phosphatases 

To help identify endogenous phosphatases that regulate CFTR, spontaneous deactivation 
of CFTR channels in excised patches has been compared with that induced by adding exog
enous phosphatases. Fortunately channels in patches from baby hamster kidney (BHK) cells 
ofte~ do not exhibit rundown, making it possible to assay the effects of exogenous phosphatases.35 

Addmg PP2A catalytic subunit from smooth muscle, PP2Ca from turkey gizzard, or bovine 
intestinal alkaline phosphatase reduces channel activity by more than 90%, but at different 
rates depending on the phosphatase used. PP2C is most efficient, causing deactivation compa
rable to the rundown that is mediated by endogenous phosphatase in CHO and other cells. 
Deactivation by PP2A is somewhat slower, and that by alkaline phosphatase occurs after a 
delay of several minutes. By contrast, PP2B from bovine brain is much less effective in deacti
vating CFTR channels, and recombinant human PPI has little effect, yielding the sequence 
PP2C > PP2A ~ PP2B » PPI for deactivation of channels by addition of exogenous ph os
phatases to excised patches. Exposure to PP2A or PP2C causes deactivation of macroscopic 
CFTR currents and dephosphorylates CFTR protein.33.37.88 In addition to their similar time 
courses, spontaneous rundown and deactivation by exogenous PP2C are both magnesium de
pendent, and have similar effects on single channel kinetics.35 Thus, as Po declines during 
spontaneous rundown or exposure to exogenous PP2C, there is no obvious reduction in the 
~ean duration of bursts of channel openings, and the fall in Po is due to lengthening of the 
mtervals between open bursts. By contrast, addition of exogenous PP2A causes slower deacti
vat.ion, and this decline in Po is accompanied by a decrease in burst duration. Interestingly, 
reSidual channel activity is observed even after prolonged exposure to purified PP2C or PP2A 
whereas spontaneous rundown is usually complete. This might reflect the involvement of mul
tiple endogenous phosphatases during rundown that cannot be mimicked by individual en
zyme~. Alternatively, dephosphorylation by exogenous, soluble PP2Ca may be inherently less 
effective than the membrane-bound form that is associated with CFTR. The properties of the 
membrane-bound phosphatase in excised patches, which are based mainly on single channel 
results obtained using patches from CHO from BHK cells, are entirely consistent with those of 
CFTR-me~iated current across T84 epithelial cell monolayers, which is insensitive to high 
concentratlons of the PP2A1PPI inhibitor calyculin A (see below). 

Pharmacology Suggests the Membrane-Associated CFTR 
Phosphatase Is Related to PP2C 

PP 1 and PP2A are both sensitive to calyculin A at nanomolar concentrations. All the PPs 
except PP2C and PP7 are inhibited by okadaic acid, albeit at widely varying concentrations.89.90 

PP4 and PP6 resemble PP2A and are sensitive to the same inhibitors (reviewed by reE 43). 
~P:~ is distinguished by its sensitivity todeltamethyrin, cyclosporin, and FK506.47.91 Specific 
mhibitors of PP2C are not presently available. 

Channel rundown is inhibited slightly or not all by okadaic acid6.31 but is slowed four-fold 
by the phenylimidazothiazoles bromotetramisole and levamisole, 31.92 well known inhibitors of 
alkaline phosphatase isozymes from liver, bone and kidney (bur not from intestine). Similar 
results are obtained whether patches from Chinese hamster ovary or human airway cells are 
used. These drugs stimulate mutant G551D channels that are processed and trafficked to the 
plasma membrane, although they do not respond to forskolin stimulation (Fig. 4). However, 
higher phenylimidazolthiazole concentrations are needed to inhibit rundown or stimulate chan
nel activity on intact cells (<! 1 00 f..lM) than to inhibit of alkaline phosphatases (s 11 mM; ref. 
93, and PPI, PP2A, PP2B and PP2C are all sensitive to bromotetramizole at concentrations 
that stimulate CFTR. 88.92 These results establish that, at least in principle, phosphatase inhibitors 
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may benefit CF patients who have mutations that allow normal processing of CFTR, although 
more potent and selective inhibitors are clearly needed. 

Studying excised patches could give a false impression regarding the relative importance 
of different phosphatases, since any soluble enzymes would be lost when deactivation is studied 
under these conditions. Perhaps the most compelling evidence that CFTR is down-regulated 
predominantly by the PP2C-like phosphatase in intact cells rather than by PP2A or other 
cyrosolic phosphatases comes from the rapid decline in chloride current across T84 monolayers 
that occurs following washout of cpt-cAMP or forskolin. Deactivation of transepithelial cur
rent is unaffected by okadaic acid37 or calyculin A,35 even at toxic concentrations that would 
inhibit any contributions by PPI or PP2A (Fig. 5). 

Okadaic acid (l0·8 M) does slow the deactivation of CFTR currents in permeabilized 
sweat ducts (when studied under low-Mg2+ conditions that would inhibit any contribution by 
PP2C).94 Partial inhibition of whole cell CFTR current deactivation in cardiac cells by 
microcystin or okadaic acid suggest PP2A can playa significant role in those cells.36 However 
some results with transfected cells are difficult to reconcile. For example exogenous PPI and 
PP2B have little effect on macroscopic CFTR current when added to patches excised from 
fibroblasts,33 yet PP2B has been proposed as the endogenous phosphatase regulating heterolo
gous CFTR channels in those cells based on their stimulation by cyclosporin A and 
deltamethyrin.95 

Dephosphorylation of individual sites has not yet been studied systematically by 
phosphopeptide mapping or mass spectrometry, although this will be essential to fully under
stand deactivation of CFTR, particularly when stimulatory and inhibitory sites weaken the 
correlation between total phosphorylation and channel activity.19 However such studies would 
be most informative if carried out with the membrane-bound phosphatase. Moreover, if the 
phosphatase operates within a regulatory complex, dephosphorylation of critical sites on CFTR 
may depend not only on having the right phosphatase but also its orientation relative to that of 
the R domain. If dephosphorylation is not recapitulated in vitro using soluble enzymes, it may 
be necessary to study intact complexes. 

Evidence That CFTR and Its Phosphatase Are Part of a Regulatory 
Complex 

Comparing deactivation by the endogenous phosphatase with that caused by exogenously 
added, purified enzymes could potentially be misleading if dephosphorylation efficiency de
pended on association of both proteins and their relative positions within a regulatory com
plex. The approach used in this laboratory has been to establish that CFTR and a phosphatase 
are indeed associated, and then identify the associated phosphatase using biochemical meth
ods. Early speculation that the phosphatase might be physically associated with CFTR came 
from the striking deactivation of CFTR channels in excised patches.6,31.96 That possibility was 
eventually tested directly using co-immunoprecipitation and crosslinking approaches.97 

Polyclonal antibodies were raised against four hydrophilic regions ofPP2Ca, and the one with 
highest affinity against PP2Ca was purified and used for immunoprecipitations and 
immunoblotting. It recognizes several of the PP2C preparations that have been tested includ
ing PP2Ca purified from turkey gizzard smooth muscle (from Dr. M. Pato, Univ. Saskatchewan, 
Canada), bacterially expressed human PP2Ca (from Dr. P. T. W. Cohen, Univ. Dundee, UK), 
a and f3 isoforms of mouse PP2C (from Dr. S. Tamura, Tohuku University, Sendai, Japan). 
When used for immunoblotting BHK and Calu-3 cells immunoprecipitated with the mono
clonal anti-CFTR antibody M3A7,98 it recognizes a polypeptide of about 44 kD, consistent 
with known a and f3 isoforms of PP2C. PPI, PP2A and PP2B are not co-precipitated with 
CFTR under these conditions although they are readily detected in Western blots of cell 
lysates (Fig. 6). 
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Figure 4. Effect of forskolin and the phenylimidazothiazole (-)-p-bromotetramisole on G551D mutant 
CFTR channels expressed on CHO cells. Channels were not responsive to 15 !-1M forskolin (trace "i"), but 
were stimulated by addition of I mM bromoterramisole (trace "it). from (from ref. 31) 

In the converse experiment, anti-PP2C antibody co-precipitates CFTR protein from BHK 
membrane extracts, although the signal is weaker. Exposing BHK cell lysates to 

dithiobis[sulfosuccinimidyl propionate] (DTSSP), a bifunctional reagent with a 12 A spacer 
arm, crosslinks CFTR molecules with a C-terminal histidine tag (CFTRHislO) and PP2C into 
high molecular weight complexes that can be isolated by chelate chromatography. When the 
crosslinks are eleaved with DTT and proteins are separated on SDS-PAGE, only PP2C is the 
only phosphatase found to be co-purified with CFTRHisJO; the other major protein phosphatases 
types are not detected by Western blotting with anti-PP1, -PP2A or -PP2B antibodies. Under 
appropriate conditions, specific co-purification of CFTR and a PP2C-like phosphatase is ob
served without exposing the lysates to crosslinker suggesting they may exist in a stable complex, 
and similar results are obtained when the polyhistidine tag is at the amino- or carboxyl-terminus 
of CFTR. The membrane-bound phosphatase is still referred to as "PP2C-like" because de
fined only by its functional and immunological properties. It may be a splice variant of the 
PP2Cu or 13 isoforms, a previously unidentified isozyme of PP2C, or perhaps a novel phos
phatase that shares some characteristics with PP2C and happens to be recognized by the anti
body. A proteomics approach based on co-purification of the phosphatase with CFTR withour 
crosslinking mass spectrometry seems the most direct method for identification.99 The main 
challenge has been the low expression of CFTR in mammalian cells and the low yield of phos
phatase « 0.2 moles PP2C / mole CFTR) in pulldowns. 

The phosphatase may associate with CFTR directly like PPI with the NKCCI co transporter 
as discussed above, or indirectly through an anchoring or scaffolding protein analogous to 
AKAPs (A-kinase anchoring proteins), which localize PKA near its substrates.! 00 Both the PKA 
catalytic and type II (RlI) regulatory subunits co-immunoprecipitate with CFTR, and endog
enous kinase activity in immunoprecipitates is abolished by Hr}l,!O! a peptide that mimics the 
amino terminus of RlI and disrupts its interaction with AKAPs (see ref. 102 for review). Ezrin 
has been proposed as an AKAP for CFTR since it is expressed at the apical membrane of 
Calu-3 and T84 cells, can be co-immunoprecipitated with CFTR and binds to RlI in overlay 
experiments. I 01 It may also provide a link between PKA and E3KARP-CFTR.103 Evidence 
that the association ofPKA and CFTR has functional significance comes from the activation of 
CFTR channels in excised patches by cpt-cAMP alone, which indicates PKA holoenzyme is 
anchored near CFTR. 104 PKCE also appears to be tethered near CFTR by the "regulator 
of C kinase" RACKl.105.106 PP2C-like phosphatase probably does not associate with CFTR 
through one of the PDZ domain-containing proteins that have been found to interact with 
CFTR (i.e., EBP_50,107.110 E3KARP,103 CAP70ll1 orCALI12). Mutating the C-terminal "TRL" 
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Figure 5. Effect of calyculin A on deactivation of the short-circuit current (Isc) across T84 monolayers after 
washing out forskolin (10 !AM). Note that 100 nM calyculin A, which is eventually roxie, does not inhibit 
deactivation of the transepithelial chloride current after removal of forskolin. Similar results were obtained 
when 20 nM calyculin A was present continuously starting at time "0". (from ref. 35) 

motif on CFTR to alanines, which disrupts PDZ domain binding, does not adversely affect the 
ability of CFTRHis 10 to pull down phosphatase from BHK celllysates.1J3 Once the physical 
basis of interactions between the phosphatase and CFTR is identified, it should be possible to 
introduce mutations into CFTR or the phosphatase that disrupt the interaction and reveal its 
physiological role. Establishing whether phosphatase effects are exerted directly rather than via 
other proteins in the regulatory complex may ultimately require reconstitution of the 
CFTR-phosphatase complex from purified components. 

Is the Phosphatase Regulated? 
Phosphatase activity could potentially be regulated through post-translational modifica

tions of the phosphatase or through altered association with CFTR. This possibility remains 
speculative, however there are many precedents for regulation of serine/threonine phosphatases. 
The PPI that dephosphorylates the eyelin-dependent kinase TPPR is itself inhibited by phos
phorylation. 114 PP2A is inhibited when phosphorylated on threonine and tyrosine residues, I 15 
and is upregulated by methylation of its C-terminus. 116 Moreover, methylation of PP2A is 
stimulated by cAMP, suggesting an interesting feedback loop between the phosphatase and 
PKA.l17 

PP2C is phosphorylated in an isoform-specific manner in mammalian cells1l8 and in 
yeast. 119 PP2Cu becomes specifically phosphorylated on serines 375 and 377 when expressed 
heterologously in COS cells, sites that are phosphorylated by casein kinase II in vitro. Phos
phorylation of PP2Cu is also enhanced two-fold by okadaic acid in vivo whereas the PP2B 
inhibitor eyclosporin has no effect, suggesting that PP2C is phosphorylated by casein kinase II 
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Figure 6. Specific co-precipitation of a 
PP2C-likephosphatasewith CFTR. BHK 
cells were lysed, immunoprecipitated, and 
resolved on 10% SDS-PAGE. Bands cor
responding to all four protein phosphatase 
types were detected at there expected mo
lecular masses when BHK crude cellly
sates expressing wild-type CFTR 
(BHKwct) were immunoblotted using 
specific antibodies. None of the ph os
phataseswere detectable when control cells 
lackingCFTR were precipitated using the 
anti-CFTR antibody M3A7. When 
cells expressing wild-type CFTR were 
immunoprecipitated with anti-CFTR 
antibody, PP2C was detected by 
immunoblotting but not the other phos
phatases. (from ref. 97) 
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and dephosphorylated by PPI and/or PP2A. The effect of such phosphorylation on the enzy
matic activity ofPP2C has not been studied in mammalian cells, however in yeast casein kinase 
II does regulate the PP2C orthologs Ptc2 and Ptc3 by phosphorylating serine residues in the 
conserved sequence (Ser-X-Ser-X-X-GlulAsp) near their carboxyl termini. 119 Phosphorylation 
inhibits Ptc2 activity by 25% and increases the phosphatase activity ofPtc3 by 55 %. Prelimi
nary experiments with pulled down CFTR phosphatase have not revealed any effect of casein 
kinase II pretreatment on dephosphorylation. 

A novel regulatory mechanism involving fatty acids and Mg2+ was described for PP2Ca 
in bovine retina. 120 A hallmark of PP2C is its requirement for relatively high divalent cation 
concentration, somewhat higher than the free concentration ofMg2+ typically available inside 
cells 0.7 - 0.9 mM.121 This Mg2+ -dependence is consistent with the inhib~tion of CFTR run
down when free [Mg2+] is lowered from 2 mM to 0.5 mM.35 The metal dependence of retinal 
PP2C is shifted to lower Mg2+ concentrations by specific mono- and polyunsaturated fatty 
acids. Thus arachidonic acid (500 !AM) causes a 10-fold stimulation of phosphatase activity 
when the Mg2+ concentration is 0.7 mM, and smaller stimulations are also observed for PP2Ca. 
Interestingly, arachidonic acid reduces CFTR currents when added to the cytoplasmic side of 
patches, and this inhibition is not voltage dependent or influenced by extracellular CI- concen
tration suggesting it does not involve blockage of the pore. 122 CFTR inhibition by fatty acids 
follows the sequence linoleic 2: arachidonic 2: oleic> e1aidic 2: palmitic 2: myristic, which is 
similar to the rank order of potency for inhibiting retinal PP2Ca. Studies of the effects of 
unsaturated fatty acids on CFTR dephosphorylation are in progress. Interestingly, cis-unsaturated 
fatty acids also inhibit PKA, 123 hence they could downregulate CFTR channel activity through 
multiple mechanisms. 
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Future Prospects on Phosphatase Regulation of CFTR 
Precise identification of the membrane-bound phosphatase and the cloning of its eDNA 

are major goals and will be essential for understanding the physiological regulation of CFTR 
channel activity. Two types of information are presently available that can be used as "handles" 
for such an undertaking. The first is functional (i.e., its Mg2+ dependence, pharmacology, etc), 
properties that have been deduced mainly from studies ofCFTR rundown in excised patches, 
and have focused our attention on PP2C and its relatives in the PPM family. The second is the 
physical association of the phosphatase with CFTR, which has now been demonstrated by two 
methods and should facilitate purification and sequencing of the main protein regulating CFTR, 
although other phosphatases such as PP2A may playa role in some tissues. The low expression 
of CFTR will make the proteomic strategy challenging, however identifying the phosphatase 
and cloning its cDNA will be worth the effort. Detailed biochemical srudies of CFTR phos
phorylation/dephosphorylation will become possible with recombinant enzyme. The amino 
acid sequence of the phosphatase may also suggest sites of interaction with CFTR or targeting 
molecules, or consensus sites for post-translational modifications that regulate its phosphatase 
activity. The phosphatase has been proposed as a potential target for pharmacotherapies to 
treat cystic fibrosis31.124 and could be useful for treating those with CFTR mutations such as 
G551D that do not cause CFTR mislocalization, or as an adjunct to other therapies that only 
partially correct the chloride conductance defect. Conversely, activators of the phosphatase 
should inhibit CFTR-mediated chloride secretion in the gut and might find use in the treat
ment of secretory diarrhea, a major cause of infant mortaliry in the third world. Regardless, 
identifying and characterizing the phosphatase will break new ground and open many new 
avenues of research into the regulation of CFTR. 
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CHAPTER 3 

Control of Membrane Transport 
by the Cystic Fibrosis Transmembrane 
Conductance Regulator (CFTR) 

,<" 

Karl Kunzelmann 

Abstract 

I
n epithelial tissues of cystic fibrosis patients, the secretory CI- transport is impaired, while 
the absorptive Na+ transport is enhanced. The disease causing cystic fibrosis transmembrane 
conductance regulator (CFTR) is a protein expressed primarily in luminal membranes of 

secretory and absorptive epithelial cells, along with other proteins in charge of epithelial trans
port. After initial characterization of CFTR as a cAMP and protein kinase A regulated CI
channel, numerous srudies reported influences of CFTR on other independent membrane 
rransport proteins, such as epithelial Na+ channels, K+ and CI- channels, as well as electroneutral 
transporters such as the Na+/H+ exchanger or the CI-/HC03- antiporter. Currently best exam
ined is the regulation of the epithelial Na+ channel ENaC by CFTR. The mechanisms for the 
inhibition of ENaC by CFTR are only slowly emerging. CFTR may control the membrane 
transport by other proteins not just by a single mechanism. CFTR's first nucleotide binding 
domain plays a central role, the CI- transport by CFTR affects other transport proteins and 
CFTR is linked to some of these transport proteins via PDZ binding domain proteins, which 
may be co-localized in small functional membrane micro-domains. Moreover, a direct binding 
of CFTR to other transport proteins cannot be excluded. Thus, the puzzle around the func
tional relationship of CFTR, ENaC and other transport proteins, has not yet been solved and 
the results may not even be the same in each cell type. 

Introduction 
The cystic fibrosis transmembrane conductance regulator (CFTR) plays a vital role for 

epithelial CI- transport in both absorptive and secretory epithelial cells.140.221 CFTR is the only 
relevant luminal CI- channel in the intestinal epithelium and probably also in sweat duct epi
thelial cells, and it is the important secretory channel in the airways.140,199 Mutations in the 
CFTR gene lead to a defect in CI- secretion in these epithelial tissues. It has been proposed to 
be the cause for the clinical symptoms observed in cystic fibrosis. 140.199 However, some of the 
transport defects observed in either in vivo measurements in cystic fibrosis patients, in isolated 
tissues from CF patients or in transgenic mice, carrying CFTR mutations, could not easily be 
reconciled with the conce~t of a defective CI" conductance as the only reason for the transport 
defects observed in CF.23. 8.140 
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