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Abstract  

The purpose of this thesis is to give an overview of the history of the Traveling Salesman 

Problem and to show how it has been an integral part of the development of the fields of 

Integer Programming, and Combinatorial Optimization.  The thesis starts in the 1800s 

and progresses through current attempts on solutions of the problem.  The thesis is not 

meant to describe in detail every attempt made, nor to describe an original solution, but to 

provide a high level overview of every solution attempt, and to guide the reader on what 

has been done, and what still can be done. 



  Traveling Salesman 4 
 

The Traveling Salesman Problem: Deceptivley Easy to State; 

Notoriously Hard to Solve 
 

 Mathematics has captured some of the greatest intellectual minds.  Many times a 

problem is posed to a mathematician, and it consumes his time until he finds a solution.  

Every once in a while there is a problem that captures the attention of many 

mathematicians.  The Traveling Salesman Problem (TSP) is a problem whose solution 

has eluded many mathematicians for years.  Currently there is no solution to the TSP that 

has satisfied mathematicians.  The TSP has a very rich history.  At the same time the TSP 

was being eagerly investigated a field called Integer Programming (IP) was also 

developing.  Because the TSP can be formulated as an IP problem the history of these 

two are intertwined.  Breakthroughs in IP were applied to the TSP as a way of showing 

that the breakthrough was valid.  Thus a study of the TSP naturally studies the main 

aspects of IP.   

 Before studying the history of the TSP it is important to state the TSP.  The TSP 

is a Combinatorial Optimization problem, simply stated as: “What is the shortest route a 

traveling salesman can take to visit n cities and return back to his home city, only going 

through each city once?”  From now on the word “tour” will refer to a solution to the TSP 

or simply one route that the salesman could take.  The word “solved” will be used in 

reference to the optimal or shortest tour.  The largest tour to be solved and proven 

optimal is 24,978 cities in Sweden by David Applegate - AT&T Labs – Research Robert 

Bixby - ILOG and Rice University, Vašek Chvátal Rutgers University, William Cook - 

Georgia Tech, and Keld Helsgaun - Roskilde University on April 2001. 

(http://www.tsp.gatech.edu/)  The TSP is obviously easy to state, and may seem simple to 

http://www.tsp.gatech.edu/
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solve.  A “brute force and sheer ignorance”1 approach to solving the TSP would be to 

find every possible tour and then see which one was the shortest.  In order to do this there 

would be (n-1)! different tours to study and thus for problems with just 20 cities it would 

be illogical to solve this way even with a computer.  To show this a very simplistic 

algorithm in pseudocode is presented below: 

Procedure TSP ()  

 For  = 1 to n 1i

  For  = 1 to n 2i

   For  = 1 to n 3i

   … 

    For  = 1 to n ni

     If (  is a valid tour) niiii ,...,,, 321

     If (  is shorter then the current optimal)  niiii ,...,,, 321

      TSP =  niiii ,...,,, 321

{Returns TSP which is the city progression that is the shortest} 
 
Clearly this algorithm is nowhere near optimality.  The algorithm is O( ).  Obviously 

worse then the (n-1)! algorithm. Assume that a computer can process information at 1 

operation per nanosecond.  So for a 5 city tour it would require 3125 operations taking 

.000003125 seconds.  Not so bad.  A ten city tour would require 10000000000 

operations, requiring 10 seconds, workable.  A 20 city tour would require 

104857600000000000000000000 operations taking 104857600000000000 seconds or 

nn

                                                 
1 I must give credit to the Chair of my Thesis, Dr. Monty Kester for this statement.  He has used it many 
times in class to describe an algorithm that uses absolutely no mathematical finesse and tries to solve a 
problem in the simplest and easiest, yet sometimes longest way possible.   
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3325012684 years.  Naturally we would rather not wait around to see that finish.  Thus 

for a problem as small as 20 cities, the algorithm grows uncontrollably.  Like many 

algorithms a “brute force and sheer ignorance” approach is not even close to optimal.  

The problem is then to find an algorithm that reduces the amount of computing time.  

Thus many mathematicians and computer scientists have tried to compile algorithms that 

solve the TSP in less time.   

 As we begin our journey into the history of the TSP we struggle to find the exact 

origin of the problem.  Quite possibly the original proposal of the problem goes back to 

1856 by Hamilton.  In 1857, Hamilton created a game called the “Icosian Game” which 

was defined as: “the problem of finding a Hamiltonian Circuit along the edges of a 

dodecahedron, i.e., a path such that every vertex is visited a single time, no edge is visited 

twice, and the ending point is the same as the starting point” (Weisstein, 2003, p. 1).  The 

undertone of the Icosian Game, now known as a Hamiltonian Circuit is that of the 

Traveling Salesman Problem.  Thus the first real mention of the Traveling Salesman 

Problem, though nowhere near its current formulation can be traced back to Hamilton.   

 In 1832 a German manual was produced for the “successful traveling salesman.”  

The pamphlet was called “The traveling salesman – how he should be and what he has to 

do, to obtain orders and to be sure of a happy success in his business – by an old traveling 

salesman” (Aardal (Ed.) et al., 2005, p. 38).  Although the pamphlet has little to do with 

the problem at hand it does have a section in it that states the problem, but gives no real 

mathematical formulations for it: 

Business brings the traveling salesman now here, then there, and no travel routes 

can be properly indicated that are suitable for all cases occurring; but sometimes, 



  Traveling Salesman 7 
 

by an appropriate choice and arrangement of the tour, so much time can be 

gained, that we don’t think we may avoid giving some rules also on this.  

Everybody may use that much of it, as he takes it for useful for his goal; so much 

of it however we think we may assure, that it will not be well feasible to arrange 

the tours through Germany with more economy in view of the distances and, 

which the traveler mainly has to consider, of the trip back and forth.  The main 

point always consists of visiting as may places as possible, without having to 

touch the same place twice. (Schrijver (Au.) et al., 2005, p. 38) 

 
Thus the TSP sat in relative silence until the 20  century.  While the question did exist, it 

was not discussed much in mathematical circles until the early 1900s.   

th

 In 1930 Karl Menger flirted with the problem.  Schrijver credits him as the first 

mathematician to write about the TSP.  Schrijver (2005) quotes his paper saying:  

We denote by messenger problem (since in practice this question should be solved 

by each postman, anyway also by many travelers) the task to find, for finitely 

many points whose pairwise distances are know, the shortest route connecting the 

points.  Of course, this problem is solvable by finitely many trials.  Rules which 

would push the number of trials below the number of permutations of the given 

points are not known.  The rule that one first should go from the starting point to 

the closest point, then to the point closest to this, etc., in general does not yield the 

shortest route.  (p. 41)

 
In his papers Menger shows that the length of simple curves )(sup)( XCl

X
λ=  where 

)(Xλ  is the shortest length of a Hamiltonian path.  He later showed that 
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)(sup)( XCl
X
κ= , where )(Xκ is the minimum length of a spanning tree on X.  Thus 

Menger in 1930 seems to be the first mathematician to talk about the TSP.  (Schrijver Au. 

Et al., 2005, p41) It is interesting to see that even in the earliest paper on the TSP, 

Menger realizes that a greedy algorithm, now know as the nearest neighbor algorithm 

would not produce the shortest route.   

Though Menger seems to be the first to write about the TSP Dantzig, Fulkerson, 

and Johnson (1954) credit Merrill Flood with the one to generate interest of the problem:  

“Merrill Flood (Columbia University) should be credited with stimulating interest in the 

traveling-salesman problem in many quarters.” (p. 393)    Flood (1956) was particularly 

interested in the TSP during 1937 as he was “struggling with the problem in connection 

with a school-bus routing study in New Jersey”  ( p. 61).  Though Flood stimulated 

interest, it is Hassler Whitney who posed the problem:  “This problem was posed, in 

1934, by Hassler Whitney in a seminar talk at Princeton University.”  (Flood, 1956, p. 

61)  Like Flood, Dantzig, Fulkerson and Johnson (1954) also give Whitney credit:  “Both 

Flood and A. W. Tucker (Princeton University) recall that they heard about the problem 

first in a seminar talk by Hassler Whitney at Princeton in 1934 (although Whitney, 

recently queried, does not seem to recall the problem” (p. 393).  Thus Whitney gets credit 

for formulating the modern version of the problem and Flood for promoting the problem.   

Although there was mathematical interest in the TSP, not until Dantzig, 

Fulkerson, and Johnson were there any real breakthroughs in the problem:  “The origin of 

this problem is somewhat obscure.  It appears to have been discussed informally among 

mathematicians at mathematics meetings for many years.  Surprisingly little in the way of 

results has appeared in the mathematical literature” (Dantzig, Fulkerson, & Johnson, 
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1954, p. 393).  Flood (1956) claims “there are as yet no acceptable computational 

methods, and surprisingly few mathematical results relative to the problem” (p. 61).  

Croes (1958) acknowledged that “The only fairly successful attempt at finding such a 

method (for symmetrical problems) has been reported by Dantzig et al” (p. 792). Dantzig, 

Fulkerson, and Johnson solved the problem for a 49 city tour through the capital of every 

state in America, and Washington, D.C.  On http://www.tsp.gatech.edu the claim is made 

“This is the granddaddy of TSP papers. It reports on the solution of a 49-city TSP via 

linear-programming methods. Many of the ideas used to solve integer programming 

problems can be traced back to this paper” (2007, par. 3).  Dantzig et al formulate the 

problem in a linear fashion with  as the variable, with i and j representing the city 

leaving, and the city arriving respectively.  This takes the value 0 if this edge is not 

included in the tour and 1 if the edge is included in the tour.  The first set of constraints 

Dantzig et al. (1954) give are: 

ijx

2
1

=∑
=

n

J
ijx .  ( );;,...,2,1;0 JIIJij xxJInIx ≡≠=≥         (1)  

 Where the objective would be to find the minimum of: 

         (2)  (p. 

396). 

IJ
JI

IJ xdxD ∑
>

=)(

Dantzig et al. (1954) acknowledged that in order to formulate the TSP as a Linear 

Program (LP) there would be more constraints and finding these constraints would be an 

extremely difficult task:   

To make a linear programming problem out of this one needs, as we have 

observed, a way to describe tours by more linear restraints than that given by (1).  

http://www.tsp.gatech.edu/
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This is extremely difficult to do as illustrated by work of I. Heller and H. Kuhn.  

They point out that such relations always exist.  However, there seems to be no 

simple way to characterize them and for moderate size n the number of such 

restraints appears to be astronomical  (p. 397).   

The difficulty Dantzig et al. ran into is now commonly referred to as subtours.  The 

easiest way to describe a subtour is a picture.  

The points represent the cities and the lines the connectors.  Obviously this is not a 

solution, but this does satisfy (1) and thus more constraints must be added.  This is the 

primary difficulty of the traveling salesman.   

Dantzig et al. (1954) provided four different devices in their paper to simplify the 

TSP.  The first was to use undirected tours.  This has now been given the name the 

symmetric traveling salesman.  The symmetric TSP is much easier that then the 

asymmetric TSP and it is not unrealistic to view the TSP as though it is symmetric.  Their 

second device is to not use all linear constraints, but to add in addition to (1) just enough 

constraints so that no sub-tours are given.  Thirdly is a device that speeds up the iterative 

process, and fourthly finding a tour that is nearly optimal and then listing all possible 

tours that have not yet been eliminated by the constraints provided.  Dantzig, Fulkerson, 

Johnson in a later paper describe the process in the paper as this: 

The linear-programming approach suggestion in reference 1 (this is their original 

paper) is to start with a tour and a small number of linear equality and inequality 

constraints that are satisfied by all tours, then use the simplex method to move to 
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a new basic solution.  If the new solution is not a tour, impose an additional 

constraint on the problem that cuts out this solution but no tours, and again, in the 

new convex set thus defined, move to an adjacent solution.  As a suitable stage in 

the process, it is usually advantageous to use the estimation procedure described 

in reference 1 in conjunction with a combinatorial analysis of undominated tours. 

(Dantzig, Fulkerson, & Johnson, 1959, p. 58-59) 

 
Thus Dantzig et al. started the beginning of many methods that would be applied to many 

integer programming problems.  Dantzig et. al. did not have the advantages of modern 

day computers.  Thus much of their work including their solution to the 49 city problem 

was done by hand.  The two biggest contributions that are still seen in modern solutions 

are to relax the “subtour” elimination constraints and add them as necessary and to 

formulate the problem as a LP.   

 Flood in 1955 reported on the TSP.  Among his talk he discussed some heuristics.  

Heuristics are algorithms that do not attempt to give an optimal solution, but try and find 

a near optimal solution instead focusing on keeping computation time low.  Flood 

proposed what is now considered the Nearest Neighbor solution.  While Menger may 

have mentioned it in his paper Flood (1956) showed how effective it really was:     

It may be of some interest to compare the length of optimal tour found among the 

49 cities by Dantzig et al with that which would be followed by a salesman living 

in Washington, D.C., who always went next to the closest city not already visited.  

This turns out to be 904 units against 699 units, or an increase of nearly 30 

percent.  It seems likely that a considerably better route than that produced by the 

operator’s rule could usually be found quite easily, and it also seems likely that 
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rather simple methods could be found to yield a tour much nearer optimal than 30 

percent.  However, even a few percent gain would be well worth-while in some 

cases, so the problem does seem to have practical importance as well as 

mathematical interest. (p. 65) 

 
Thus Flood realized that the Nearest Neighbor method is not a good estimate of the TSP 

but it created a decent first solution.  

 In 1962 a contest brought the TSP national recognition through a contest given by 

Proctor and Gamble.  A flyer of the contest is pictured below.   

 

The traveling salesman problem recently achieved national prominence when a 

soap company used it as the basis of a promotional contest.  Prizes up to $10,000 
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were offered for identifying the most correct links in a particular 33-city problem.  

Quite a few people found the best tour… A number of people, perhaps a little 

over-educated, wrote the company that the problem was impossible – an 

interesting misinterpretation of the state of the art. (Little et al., 1963, p. 973) 

 
 In the 1960’s there were two main breakthroughs, the “branch and bound” method 

and “dynamic programming.”  The term branch and bound was coined by Little, Murty, 

Sweeny, and Karel.  They discussed two papers that proposed similar algorithms.  One by 

Rossman, Twery, and Stone where they proposed an idea called combinatorial 

programming solve a 13-city problem that was solved in 8 man-days.  Little et al claim to 

have solved it using their method in 3 and a half hours by hand.  Likewise Eastman in a 

doctoral thesis gave a similar idea, but with significant variances.  Eastman used it to 

solve a 10 city problem, but gave no computational time.  (Little et al., 1963, p. 974)  

Thus it appears as if Little et al. can be accurately accredited with the formulation of the 

branch and bound method (b&b).  Little et al. (1963) summarize their method: 

The basic method will be to break up the set of all tours into smaller and smaller 

subsets and to calculate for each of them a lower bound on the cost (length) of the 

best tour therein.  The bounds guide the partitioning of the subsets and eventually 

identify an optimal tour – when a subset is found that contains a single tour whose 

cost is less than or equal to the lower bounds for all other subsets, that tour is 

optimal. (p. 974) 

 
The b&b can be describe by divide and conquer.  In each iteration of the b&b a lower 

bound is calculated by finding a tour that includes subtours.  Then from that lower bound 
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two branches come off of it.  One branch forbids the tour to contain the edge i,j.  The 

other branch forces the tour to contain the edge i,j.  Each of those is then solved and new 

lower bounds found.  Then one branch is chosen, and the process continues until the 

lower bound equals a tour that is allowable.  Then the solution is deemed optimal.  Below 

is a diagram taken from Little et al.’s paper showing the branching and bounding.  (1,4) 

represents a tour that is forced to have (1,4) in it, and ( 4,1 ) represents a tour that is forced 

to not have the edge (1,4) in it. 

 

Figure 6.  Final tree 
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Little et al. (1963) formulation of the b&b is very significant.  Two things really 

attributed to its continued popularity.  The first is that it successfully reduced problems to 

make them easier to solve.  It was very systematic and could be applied to a variety of 

problems.  It was more an approach to a problem than just merely a solution to one.  The 

second is that it was very easily coded into a computer.  Its algorithmic nature allowed it 

to be turned easily into code.  Thus as the computer became poplar, this algorithm was 

able to be coded into the computer, taking advantage of the computer’s computational 

speed.  The b&b method still is a very popular method for solving I.P. problems, and 

many textbooks on IP include it as an effective way to solve problems.  Thus one major 

breakthrough in the TSP was applied directly to IP. 

 Dynamic Programming (DP) was also formulated in the 1950s by Richard 

Bellman.  How Bellman (1984) came up with name is quite interesting:   

An interesting question is, ‘Where did the name, dynamic programming, come 

from?’  the 1950s were not good years for mathematical research.  We had a very 

interesting gentleman in Washington named Wilson.  He was Secretary of 

Defense, and he actually had a pathological fear and hatred of the word, research.  

I’m not using the term lightly; I’m using it precisely.  His face would suffuse, he 

would turn red, and he would get violent if people used the term, research, in his 

presence.  You can imagine how he felt, then, about the term, mathematical.  The 

RAND Corporation was employed by the Air Force, and the Air Force had 

Wilson as its boss, essentially.  Hence, I felt I had to do something to shield 

Wilson and the Air Force from the fact that I was really doing mathematics inside 

the RAND Corporations.  What title, what name could I choose?  In the first place 
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I was interested in planning, in decision making, in thinking.  But planning, is not 

a good word for various reasons.  I decided therefore to use the word, 

‘programming.’  I wanted to get across the idea that this way dynamic, this was 

multistage, this was time-varying – I thought, let’s kill two birds with one stone.  

Let’s take a word that has an absolutely precise meaning, namely dynamic, in the 

classical physical sense.  It also has a very interesting property as an adjective, 

and that is it’s impossible to use the word, dynamic, in a pejorative sense.  Try 

thinking of some combination that will give it a pejorative meaning.  It’s 

impossible.  Thus, I thought dynamic programming was a good name.   It was 

something not even a Congressman could object to.  So I used it as an umbrella 

for my activities.  (p. 159) 

 
Thus DP was born in the RAND Corporation by Richard Bellman.  As the TSP had 

gained much popularity by now, many new developments in integer programming and 

Combinatorial Optimization were then immediately applied to the TSP.  Thus is the case 

with Bellman.  Bellman (1961) wrote a short paper that described the TSP in a dynamic 

programming sense:  “The purpose of this note is to show that this problem can easily be 

formulated in dynamic programming terms, and resolved computationally for up to 17 

cities” (p. 61).  Thus Bellman (1961) formulated in DP terms and discussed some 

advantages to using DP:  “One advantage of the dynamic programming approach is that 

one can readily incorporate all types of realistic constraints involving the order in which 

cities can be visited”  (p. 63).  Bellman (1962) realized that there were problems with 

using DP to solve the TSP:  “The only problem to be faced in using the foregoing 

algorithm to obtain a solution to the traveling salesman problem for an arbitrarily large 
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number of cities is the storage problem” (p. 62).  Bellman (1962) goes to show that 

computers of the day could solve a 11 city TSP, a 17 city TSP would require the best 

computer of the day, and that “problems involving 21 cities are for a few years at least 

beyond our reach” (p. 62). Thus DP was used to solve the TSP.    

 A third solution applied to the TSP in the 1960s was Gomory Cuts:  “Miller, 

Tucker, and Zemlin, whose experiments using an all-integer program of Gomory did not 

produce results in cases with ten cities although some success was achieved in cases of 

simply four cities” (Bellman, 1962, p. 61).   Miller, Tucker, and Zemlin seem to be the 

first to formulate the TSP in an “Integer Programming” sense.  An Integer Program (IP) 

is essentially a LP where the variables are required to be integers.  Miller et al. actually 

formulated in what is now known as a Binary IP (BIP).  They formulated it as this: 

 Minimize the linear form: 

∑∑
≠≤ ≤i nj

ijij xd
0

 

 Over the set determined by the relations 

∑
≠
=

=
n

ji
i

ijx
0

1   (j = 1, …. , n) 

1
0

=∑
≠
=

n

ij
j

ijx    (i = 1, … , n) 

1−≤+− ppxuu ijji   )1( nji ≤≠≤  

(Miller, Tucker, & Zemlin, 1960, p. 327) 

 After formulating it as an IP Miller et al. used Gomory Cuts (GC) to solve the 

TSP.  Out of GC grew a methodology called the Cutting Planes method in which new 

constraints are imposed by making valid inequalities so that the problem becomes easier 
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to solve, without ever removing the optimal solution.  Cutting Planes and GC’s are not 

very effective.  Miller et al. found that even for a 10 city problem it was encountering 

problems.  Thus they conclude “It seems hopeful that more efficient integer programming 

procedures now under development will yield a satisfactory algorithmic solution to the 

traveling salesman problem, when applied to this model.  In any case, the model serves to 

illustrate how problems of this sort may be succinctly formulated in integer programming 

terms” (Miller, Tucker, & Zemlin, 1960, p. 329).  It is interesting to read this with the 

knowledge we now know, because one excellent algorithm combines the b&b and cutting 

planes to solve the TSP.  Thus GC on their own are not very efficient but will be found 

later that when combined with other IP techniques strengthen those techniques 

significantly. 

 In the 1960s heuristics started to appear for the TSP.  A heuristic is an estimate of 

the solution that gets close to the optimal solution.  Karg and Thompson in 1964 came up 

with a heuristic that starts with two random cities, and inserts the next city in away to 

make the tour as small as possible.  Thus it gives a solution to the TSP that can be found 

in linear time but yet not guaranteed to be optimal: 

In this paper we shall discuss a method, suitable for electronic computers, that 

has proved capable of quickly obtaining solutions for problems having about 60 

cities or less in symmetric and some nonsymmetric problems.  Although the code 

does not guarantee finding the optimum tour, it can be used over and over several 

times and in various ways to get a probabilistic idea of how good the best answer 

found is relative to the set of observed answers.  (Karg & Thompson, 1964, p. 

226) 



  Traveling Salesman 19 
 

Two other heuristic worth noting would be S. Lin with a 3 –opt algorithm and S. Reiter 

and G. Sherman with a Local Search heuristic:  

(http://www.tsp.gatech.edu/history/biblio/1960.html) 

 In the 1970s Saman Hong wrote a Doctoral Thesis in which this is said.   

Hong's thesis was written under the supervision of M. Bellmore. His work is the 

most significant (computational) contribution to the linear programming approach 

to the TSP since the original paper of Dantzig, Fulkerson, and Johnson [1954]. 

The algorithm presented here goes a long way towards automating Dantzig, 

Fulkerson, and Johnson's method. Hong uses a dual LP algorithm for solving the 

linear-programming relaxations; the Ford-Fulkerson max-flow algorithm for 

finding violated subtour inequalities; a heuristic for finding violated blossom 

inequalities; and a branch-and-bound scheme that includes the addition of subtour 

inequalities at the nodes of the branch-and-bound tree (such algorithms are now 

known as "branch-and-cut" (Padberg and Rinaldi [1991])). In short, Hong had 

most of the ingredients of the current generation of linear-programming based 

algorithms for the TSP. His computational tests were carried out on random 

Euclidean instances having up to 20 cities. On the 60 instances that he tests, 59 

were solved without branching and the remaining instance required a single 

branch. Larger instances were not tested due to difficulties with his LP solver.  

(http://www.tsp.gatech.edu/history/biblio/1970.html) 

 
Thus as we get to the 1970s we see the main ingredients for solutions of the TSP.    

Another interesting solution in the 1970s was by Held and Karp.  They related the 

TSP to minimum spanning trees.  The defined what they called a 1 – tree and showed that 

http://www.tsp.gatech.edu/history/biblio/1960.html
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the TSP is in fact a 1 – tree.  “A 1 – tree consist of a tree on the vertex set {2,3,…,n}, 

together with two distinct edges at vertex 1.  Thus, a 1 – tree has a single cycle, this cycle 

contains vertex 1, and vertex 1 always has degree two … A 1 – tree can be found by 

constructing a minimum spanning tree on the vertex set {2, … , n} and then adjoining 

two edges of lowest weight at vertex 1” (Held & Karp, 1970, p. 1139).  Held and Carp 

(1970) made three observations that was the basis of their algorithm.  “We observe that 

(i) a tour is precisely a 1 – tree in which each vertex has degree 2, (ii) a minimum 1 – tree 

is easy to compute, and (iii) the transformation on ‘intercity distances’ 

leaves the traveling-salesman problem invariant but changes the 

minimum 1- tree” (p. 1138).   Held & Carp used a method in their paper in which Wolsey 

calls the “Lagrangian Dual.”  Wolsey (1998) says about their paper “The successful 

solution of what were at the time very large TSPs made the approach popular” (p. 180).   

Wolsey shows that the TSP can be relaxed into a 1-tree by a Lagrangian Relaxation.  He 

then goes on in his text to show how to use the process of using the Lagrangian dual to 

solve the TSP.  He uses the example of Held & Carp to show that it is an effective way to 

solve the TSP and thus is a good procedure.  Thus Held and Karp used Minimum 

Spanning Trees and an early formulation of the Lagrangian dual to solve the TSP easily. 

jiijij cc ππ ++⎯→⎯

 Everything before the 1980s laid the groundwork for the algorithms that are 

available today.  With computers becoming more powerful and algorithms being tweaked 

to become more efficient higher and higher cases of the TSP are able to be solved and 

proved optimal.  In the 1980s a new field was being formed.  This was metaheuristics.  A 

metaheuristic is designed to guide a regular heuristic and help it overcome local 

optimum.  “A metaheuristic is a general solution method that provides both a general 
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structure and strategy guidelines for developing a specific heuristic method to fit a 

particular kind of problem.  Metaheuristics have become one of the most important 

techniques in the toolkit of OR practitioners” (Hillier & Lieberman, 2005, p. 617).  In the 

1980s this field was not existence, though Fred Glover was credited with the first 

metaheuristic, the Tabu Search.  He published a two part series on the Tabu search in the 

ORSA Journal on computing.  As stated by him “Tabu search is a strategy for solving 

combinatorial optimization problems whose applications range from graph theory and 

matroid settings to general pure and mixed integer programming problems.  It is an 

adaptive procedure with the ability to make use of many other methods, such as linear 

programming algorithms and specialized heuristics, which it directs to overcome the 

limitations of local optimality” (Glover, 1989, p. 190).  The Tabu Search for the TSP runs 

off of the Nearest Neighbor (NN) heuristic.  The Nearest Neighbor heuristic also referred 

to as a 2-opt algorithm, looks to swap two cities in order to make the solution smaller.  

The NN often hits a local optimum before getting to the true optimal solution.   The idea 

of the Tabu search is to keep the NN algorithm running when it hits a local optimum.  

The basic concept is that every step along the way the Tabu search keeps a list of already 

made moves and does not allow those moves to be made again.  At each step of the way 

it will either make the best available switch or the switch that makes the least increase if 

no decreases are available.  To keep from cycling back to already found optimums it 

keeps track of switches it has already made and adds them to a list called a “tabu list” in 

which moves on this list are “tabu” or cannot be made.  The process is run until there are 

no more switches to be made, or a certain amount of iterations has happened.  Thus the 
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Tabu Search was applied to the TSP to show its effectiveness in finding a solution.  It 

proved to have incredible results.   

 Kirkpatrick, Gelatt, & Vecchi (1983) wrote an article comparing “statistical 

mechanics (the behavior of systems with many degrees of freedom in thermal equilibrium 

at a finite temperature) and multivariate or combinatorial optimization (finding the 

minimum of a given function depending on many parameters)” (p. 671). It is interesting 

to note Kirkpatrick et al.’s (1983) comment, “Of classic optimization problems, the 

traveling salesman problem has received the most intensive study.  To test the power of 

simulated annealing, we used the algorithm on traveling salesman problems with as many 

as several thousand cities.” (p. 671) Simulated Annealing (SA) is similar to the Tabu 

Search method.  It guides the descent algorithm and helps it to overcome local minimum.  

SA mimics a natural process:  “The objective of physical annealing is to produce low-

energy states of a solid in a heat bath.  Annealing has two steps: (1) The temperature of 

the heat bath is raised to just below the boiling point of the material when the particles 

are disorganized and the energy of the system is high.  (2) The temperature is carefully 

lowered until the particles of the liquid arrange themselves into a more orderly state of 

minimum energy.  It is a natural minimization process” (Albright, 2007, p. 38).  In the 

SA algorithm, it generates a neighbor.  The algorithm accepts the neighbor under two 

conditions either the neighbor produces a solution that is smaller then the current best, or 

with a certain probability.  Albright (2007) defines the probability as: 

P 8acceptj< = 9
1 if f HjL ≤ f HiL

exp J f HiL−f HjL
ck

N iff HjL > f HiL
 (p. 39)  

 Thus is the basic of the SA algorithm.  Later on in their paper, Kirkpatrick et al. 

apply it to a very complicated problem on the physical design of computers.  So to gain 
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credibility for the algorithm Kirkpatrick et al. apply it to the TSP and show SA can get 

close to optimal if not optimal on TSP instances that are proved optimal.  Thus SA gained 

a lot of credibility.  The SA algorithm is popular today also because of its ease to apply it 

to other problems:  “Implementing the appropriate Metropolis algorithm to simulate 

annealing of a combinatorial optimization is straightforward and easily extended to new 

problems” (Kirkpatrick, Gelatt, & Vecchi, 1983, p. 679). 

 In 1995 D. Applegate, R. Bixby, V. Chvátal, and W. Cook published a paper on 

the TSP.  Applegate et al. have been the authority on the TSP since then.  They have 

developed software base off of their paper called Concorde.  Concorde is open source 

software available for free on http://www.tsp.gatech.edu/concorde/index.html.  On this 

website they describe the purpose of the Concorde: 

Concorde is a computer code for the symmetric traveling salesman problem (TSP) 

and some related network optimization problems. The code is written in the ANSI 

C programming language and it is available for academic research use; for other 

uses, contact William Cook  for licensing options. 

Concorde's TSP solver has been used to obtain the optimal solutions to 107 of the 

110 TSPLIB instances; the largest having 15,112 cities. 

The Concorde callable library includes over 700 functions permitting users to 

create specialized codes for TSP-like problems. All Concorde functions are 

thread-safe for programming in shared-memory parallel environments; the main 

TSP solver includes code for running over networks of UNIX workstations. 

http://www.tsp.gatech.edu/concorde/index.html
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Concorde now supports the QSopt linear programming solver. Executable 

versions of concorde with qsopt for Linux and Solaris are now available 

(http://www.tsp.gatech.edu/concorde/index.html, 2007) 

 
Thus with Concorde it is feasible to solve very large instances of the TSP.  Thus 

Concorde, or a variation of it has been used to solve the largest TSPs solved.   

There still are TSPs that are unsolved.  One of those is the world problem.  The 

world problem is a TSP formulated for the world in which in contains 1,904,711 cities.  It 

can be found on http://www.tsp.gatech.edu/world/index.html.  According to the website, 

Keld Helsguan currently has the best solution, with the tour length of 7,516,024,785 

units.  He used a variation of a heuristic that he had created.  The best lower bound for 

the TSP is 7,512,082,035 units created from Concorde code using the CPLEX solver.  

(http://www.tsp.gatech.edu/world/index.html, 2007)  Below is a picture of Helsguan’s 

tour around the world.   

 

 “Go to the ant, O sluggard; consider her ways, and be wise.” (Proverbs 6:6, ESV) 

In 1999 just that was done and a new metaheuristic emerged.  It was called Ant Colony 

http://www.tsp.gatech.edu/concorde/index.html
http://www.tsp.gatech.edu/world/index.html
http://www.tsp.gatech.edu/world/index.html


  Traveling Salesman 25 
 

Optimization (ACO) and was originally formulated by Dorigo, Di Caro and Gambardella.  

(http://www.aco-metaheuristic.org/, 2006)  Due to the current popularity of the TSP ACO 

was used to find solutions to the TSP to gain credibility:   

The traveling salesman problem is an extensively studied problem in the literature 

and for a long time has attracted a considerable amount of research effort. The 

TSP also plays an important role in ACO research: the first ACO algorithm, 

called Ant System, as well as many of the ACO algorithms proposed 

subsequently, was first tested on the TSP. 

There are several reasons for the choice of the TSP as the problem to explain the 

working of ACO algorithms: it is an important NP-hard optimization problem that 

arises in several applications; it is a problem to which ACO algorithms are easily 

applied; it is easily understandable, so that the algorithm behavior is not obscured 

by too many technicalities; and it is a standard test bed for new algorithmic 

ideas— a good performance on the TSP is often taken as a proof of their 

usefulness. Additionally, the history of ACO shows that very often the most 

efficient ACO algorithms for the TSP were also found to be among the most 

efficient ones for a wide variety of other problems. (Dorigo & Stèutzle, 2004, p. 

65) 

 
ACO started by studying ants.  They realized that ants have a natural way of optimizing 

different procedures.  One way was that of the shortest path to food.  Through careful 

studying of ants a computerized version of these ants were formed and used to find the 

shortest path between points.  ACO is fairly straightforward to apply to many different 

instances.  Thus with successful application to the TSP, ease of application to other 

http://www.aco-metaheuristic.org/
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problems, and a vast amount of unknowns to be explored ACO is growing in interest 

among mathematical circles.  Like many Metaheuristics it is not know exactly why it 

works so well, it is just know that it works.  Many mathematicians are trying study and 

explain the reasons why it is so effective.  Thus the latest research on the TSP is the ACO 

algorithm and how to refine it.   

 The TSP has hit a pseudo-stopping point.  While there are still unsolved instances 

of the TSP and the TSP has no polynomial time bound algorithm to solve every instance, 

Concorde has taken a lot of the interest away from creating that software.  Also 

dissuading mathematicians from attempting is the fact that the TSP is NP-hard and many 

mathematicians believe that it is impossible to find such an algorithm.  While the TSP 

still has a small interest in solving new instances, such as the world problem, a large 

amount of the current research is done by mathematicians who are not seeking an answer 

to the TSP, but validity in a new approach or a new heuristic that they plan on applying to 

another area.  With so many instances of the TSP solved, and with the past and current 

popularity of the problem, the TSP is a fast and easy way for a mathematician to gain 

validity of a procedure.  New algorithms find and prove a solution optimal faster, or 

heuristics gain close of not optimal solutions using the already proved optimal solutions 

as their base for their claim.  Thus one looking to advance the TSP should focus on 

making current algorithms faster, or inventing a new algorithm to shake up the 

mathematical world.    

The Traveling Salesman Problem has a rich history in the past 50 years.  It is well 

documented and well researched among mathematicians.  Though the true history traces 

back to the 18th century much of the work on it did not appear until the 1930’s.  Credit 
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and thanks must be given to Hassler Whitney for posing the question and Merrill Flood 

for generating a lot of interest in it.  Dantzig, Fulkerson, and Johnson were the first to 

have any real breakthroughs in the solution.  Proctor and Gamble increased public 

interest in the solution with the addition of an award to those who studied it and this had 

great influence on those who studied it.  Saman Hong is to be credited for coming up with 

the basis of what all of the modern day solutions have, and can be credited for algorithms 

such as the Branch and Cut algorithm.  D. Applegate, R. Bixby, V. Chvátal, and W. Cook 

have kept current interest in the TSP and have developed Concorde in which many 

instances of the TSP can be easily solved from a home computer.  They also did the 

public a service by making it open source, free and easily accessible to anybody with 

internet access.  Interest in the TSP has recently shifted from trying to pioneer new 

solutions, to making old algorithms better and more efficient and has become a testing 

ground for many IP, combinatorial optimization, and heuristic algorithms.  The field of 

Metaheuristics can be easily seen from the view of the TSP as every efficient 

Metaheuristic has been applied to the TSP.  Three main Metaheuristics are the Tabu 

Search created by Fred Glover, Simulated Annealing by Kirkpatrick, Gelatt, & Vecchi, 

and Ant Colony Optimization by Dorigo, Di Caro and Gambardella.  It is interesting to 

note that these metaheuristics while designed for a specific problem all used the TSP to 

prove that it was an effective algorithm and used the TSP to show an easy way to 

implement the algorithm.  These algorithms have been applied to a vast amount of 

different applications because they are designed to be flexible and easy to apply to 

different situations.  The TSP now remains as an unsolved problem, still keeping a few 
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mathematicians interest, but now serves the mathematical world in a different light, that 

light being an easy testing ground to new theorems and improved heuristics 
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