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Novel Sputtering Technology for Grain-Size Control
Marian Vopsaroiu, M. J. Thwaites, S. Rand, P. J. Grundy, and K. O’Grady, Member, IEEE

Abstract—In this paper, we present a description of a novel
high-rate plasma sputtering system that allows the control of
grain size in sputtered films. Additionally, the system has the
advantage of a better utilization of the target material (around
80% to 90%) by eliminating the race track at the target as in
conventional plasma magnetron sputtering systems. The potential
and capabilities of this novel plasma sputtering device are demon-
strated in this paper by the deposition of a number of different
Cr thin films suitable for underlayers in thin-film media and for
which we have performed a systematic X-ray and TEM analysis to
determine the grain-size histograms, mean grain diameters, and
their relationship to the sputtering processes.

Index Terms—Cr thin films, grain-size control, novel plasma
sputtering.

I. INTRODUCTION

T
HE ABILITY to sputter thin films with controlled grain-

size distribution and texture is essential for numerous in-

dustrial applications, especially in magnetic recording industry.

In this paper, we describe a novel plasma sputtering system

that has considerable advantages, including the ability to con-

trol the average grain size in sputtered films without the use

of seed layers. A number of Cr thin films have been sputtered

using different process conditions in order to determine the op-

timum sputtering process parameters in terms of average diam-

eter, standard deviation, and crystallographic orientation of the

Cr grains. Cr and Cr alloys are technologically important in the

magnetic recording industry, where they are used as underlayers

for CoCrPt [1] or CoCrTa [2] longitudinal magnetic recording

media. The crystallographic orientation and the grain size in the

Cr underlayer promotes the epitaxial growth of the magnetic

layer [3]. Achieving higher recording densities is possible by

growing smaller grains with a more uniform grain-size distribu-

tion. However, thermal decay of the signal in high density media

requires grains with high magnetic anisotropy and narrow-size

distribution, so that the particles are also thermally stable and the

medium has a better signal-to-noise ratio. Consequently, con-

trolling the average grain size and the grain-size distribution is

very important for achieving high-density and thermally-stable

Manuscript received October 16, 2003. This work was supported in part by
the U.K. Department for Trade and Industry (DTI) and in part by the U.K. De-
partment for Trade and Industry, LINK Information Storage and Displays Pro-
gramme.

M. Vopsaroiu and K. O’Grady are with The University of York, Magnetic Ma-
terials Research Group, Department of Physics, York, YO10 5DD, U.K. (e-mail:
mv4@york.ac.uk; kog1@york.ac.uk).

M. J. Thwaites and S. Rand are with Plasma Quest, Ltd., Hook, RG27 9UT,
U.K. (e-mail: mike.thwaites@plasmaquest.co.uk; stuart.rand@plasmaquest.
co.uk).

P. Grundy is with The University of Salford, Salford, M5 4WT, U.K. (e-mail:
p.j.grundy@salford.ac.uk).

Digital Object Identifier 10.1109/TMAG.2004.828971

Fig. 1. Schematic diagram of HiTUS plasma sputtering system at the
University of York. By changing the polarity of the steering electromagnet, the
plasma beam can be directed to the substrates for intentional heating or plasma
cleaning of the substrates.

media. The objectives of the present study are to investigate the

grain-size evolution as a function of the sputtering process pa-

rameters using a novel plasma sputtering device that is described

in Section II.

II. DESCRIPTION OF THE HIGH TARGET UTILIZATION

PLASMA SPUTTERING (HITUS)

Our novel plasma sputtering system is designed so that the

plasma is produced by means of a 2.5 kW RF antenna in a side

arm, remote from the sputtering chamber (Fig. 1). The plasma

beam is then guided to the water-cooled target through the use of

magnetic fields, resulting in a high-density plasma at the target

surface. This is coupled with the DC/RF bias voltage applied to

the target and allows highly efficient and controllable sputtering

of the target material. The separation of the plasma generation

from the target and the sputtering chamber is the key element

in achieving a wide control of the process parameters, thereby

allowing optimum deposition conditions to be established for a

given application [4].

Unlike conventional magnetron sputtering in which race-

tracks are formed on the target, this novel system eliminates the

need of magnetic fields at the target and uniform sputtering is

produced. Consequently, the target utilization is improved from

about 25% in conventional magnetron sputtering to 80–90% in

this system, hence the name high target utilization sputtering

(HiTUS) [4]. HiTUS technology also allows sputtering from

thick ferromagnetic targets and the use of mosaic targets for the

preparation of alloys with varying compositions.

0018-9464/04$20.00 © 2004 IEEE
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Fig. 2. X-ray spectra of a Cr film sputtered with and without plasma substrate
heating.

III. RESULTS AND DISSCUSIONS

Three different sets of Cr thin films have been sputtered using

HiTUS. A multiple substrate holder allowed us to sputter up to

six samples in a single run without breaking vacuum. Prior to

each sputtering process, plasma cleaning has been employed at

both the target (60 s) and substrate (100 s) in order to elimi-

nate possible contamination or oxide layers formed at the ma-

terial/air interface. All Cr films were sputtered onto glass sub-

strates after pumping to a base pressure of about 7 10 mbar.

Depending on the sputtering conditions, typical growth rates are

between 10 to 30 nm/min. During sputtering, the substrate tem-

perature was about 100 C due to plasma heating. X-ray diffrac-

tion showed a consistently dominant (110) crystallographic ori-

entation of the samples sputtered without intentional substrate

heating. However, for the growth of Co alloys with the axis

in-plane, it is well known that a (200) preferred orientation in

the Cr underlayer is required. This is obtained by heating the

substrate to 250 C [5]. Using pre-heating of substrates by ex-

posure to the plasma beam for up to 3 min, we have achieved the

change from (110) to (200) orientation in our Cr films (Fig. 2).

In order to study the control of the grain size as a function of the

sputtering parameters, three sets of Cr samples were sputtered

at constant substrate and target temperatures as follows:

Set A) Ar process pressure 2.2 10 mbar, bias voltage

at the target 800 V. RF power varied from 0.62 to

2.25 kW.

Set B) Ar process pressure 2.2 10 mbar, RF power

1.75 kW. Bias voltage at the target varied from 500 to

1000 V.

Set C) Bias voltage at the target 800 V, RF power

1.75 kW. Ar process pressure varied from 1.19 to

4.7 10 mbar.

In this preliminary work, the film thickness could not be mea-

sured for each sample, but it was typically around 50 nm.

Carbon-coated TEM grids were attached to the glass sub-

strates and TEM images acquired for each sample. Over 500

particles for each sample were measured as indicated in [6].

Plane-view TEM images were obtained in bright field mode

at 120 kV and x 150k magnification. Figs. 3(a) and 4(a) show

Fig. 3. (a) Typical TEM image. (b) The corresponding particle-size
distribution measured for a sample of set A sputtered at 0.62 kW RF power.

Fig. 4. (a) Typical TEM image. (b) The corresponding particle-size
distribution measured for a sample of set A sputtered at 2.25 kW RF power.

two TEM images corresponding to samples from set A having

the smallest and the largest average grain size, respectively. The

mean grain size has been obtained for all samples by measuring

and counting the grain diameters with a Zeiss particle-size ana-

lyzer. Typical size distribution histograms corresponding to the

images in Figs. 3(a) and 4(a) are displayed below each image

[see Figs. 3(b) and 4(b), respectively], showing a log-normal
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Fig. 5. Mean grain diameter as a function of the RF power.

Fig. 6. Mean grain diameter as a function of the bias voltage at the target.

type distribution [6]. The widths of the distribution, as well

as the mean grain sizes vary, with sputtering conditions. The

mean grain size for both sets of samples have been determined

using a standard statistical averaging while the full fitting of the

distributions and the standard deviation analysis will be pre-

sented elsewhere. There is a clear variation of the mean grain

size with sputtering conditions as indicated in Figs. 5–7, where

each diagram represents the mean grain diameter variation as

a function of the RF power, bias voltage, and process pressure,

respectively.

IV. CONCLUSION

We have presented details of a novel plasma sputtering system

(HiTUS) that has the capability to produce thin films with con-

trolled grain size and texture. The system was initially tested on

Fig. 7. Mean grain diameter as a function of the process pressure.

Cr thin films and showed a controllable variation of the mean

grain size with sputtering process parameters (see Figs. 5–7).

Although the physical mechanisms leading to a grain-size con-

trol in this complex plasma sputtering system are not fully un-

derstood, we conclude that a faster sputtering rate will generate

a bigger mean grain diameter. This is supported by the results

since either a higher RF power, higher bias voltage, or higher

process pressure will generate a faster sputtering rate. A possible

explanation could be that the variation in grain size for sam-

ples prepared in different sputtering conditions can be related

to the crystal symmetry in which a higher symmetry means a

higher probability for two neighboring grains to have closer lat-

tice orientations and, therefore, to join together forming a bigger

grain during the growth process [7]. This is also supported by

the X-ray data for our samples, which showed a better crystal-

lographic orientation for samples with higher grain diameters.
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