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Automatic phonetic classification of vocalic allophones in Tol

Marie Bissell”

Abstract. The aim of the present study involving automatic phonetic classification
of /e/ and /u/ tokens in Tol is two-fold: first, I test existing claims about allophonic
variation within these vowel classes, and second, I investigate allophonic variation
within these vowel classes that has yet to be documented. The acoustic phonetic
classifications derived in the present study contribute to a more detailed under-
standing of the allophonic systems operating within the Tol language. Operation-
alizing machine learning algorithms to investigate under-resourced, indigenous
languages has the potential to provide detailed insights into the acoustic phonetic
dynamics of a diverse range of vocalic systems.
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1. Introduction. The use of machine learning algorithms for linguistic research has gained trac-
tion more broadly in recent years, including in the subfields of semantics (Liang and Potts 2015,
Potts 2019, Boleda 2020), phonology (Linzen 2019, Pater 2019, Rawski and Heinz 2019), and
dialectology (Hartley 2005, Evanini 2008). In the realm of phonetics, most work involving ma-
chine learning algorithms has focused on constructing and testing automatic speech recognition
programs (Sagayama 1989; Deng and Li 2013; Agarwalla and Sarma 2016; Ault, Perez, Kimble,
and Wang 2018); however, some recent studies have harnessed machine learning algorithms for
the purpose of investigating acoustic aspects of phonemic contrast (Jones, Meakins, and
Muawiyath 2012; Renwick and Ladd 2016; Renwick and Nadeu 2019). The current study ex-
tends these recent acoustic inquiries to examining applications of machine learning algorithms to
describing the acoustic characteristics of allophonic systems operating within an under-re-
sourced, endangered language spoken in Central America. Although machine learning
technologies have been applied to data from endangered languages primarily for purposes of au-
tomatic speech recognition in the past (Besacier, Barnard, Karpov, and Schultz 2014; Rey and
Nagy 2018; Mohammed 2020), the current study aims to use a machine learning algorithm to
generate clusters of acoustic similarity for vocalic productions to explore patterns of phonologi-
cally-conditioned allophonic splits in Tol.

Tol, a Hokan language spoken by around 500 indigenous Tolupan people living on a reser-
vation in south-central Honduras near Tegucigalpa, has been impressionistically described by
several researchers, including Fleming and Dennis (1977) and Holt (1999). Dennis and Dennis
(1983) put together a Spanish-Tol dictionary, while the latter two works described the sound sys-
tems of the Tol language in more depth. Although these descriptions were quite detailed, both
were fundamentally impressionistic in nature. The current study set out to examine two particular
claims about vocalic allophones that appeared in both works using acoustic data from the a large-
scale corpus designed for research on phonetic typology, Vox Clamantis (Salesky, Chodroff, Pi-
mentel, Wiesner, Cotterell, Black, and Eisner 2020).

Fleming and Dennis (1977) wrote in considerable depth about allophones of the /e/ and /u/
vowel classes in Tol. They described /e/ as being produced as [e] preceding /n/ and as [¢] preced-
ing other syllabic codas. They also wrote that /u/ was sometimes produced as [v] preceding /s/ or
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/ct/ and as [u] preceding other syllabic codas. The current study aimed to analyze acoustic data
from a corpus of Tol speech (Salesky et al. 2020) to adjudicate these two allophonic claims.

2. Methods. The corpus used in this study was composed of speech samples from spoken bible
readings by Tol speakers that were gathered as part of the Vox Clamantis project (Salesky et al.
2020). The vowel tokens analyzed in the current study had been previously segmented by
Salesky et al. (2020). I operationalized k-means clustering (Huang 1998, Steinley 2006, Kauf-
man and Rousseeuw 2009), a machine learning algorithm that locates a pre-specified number of
clusters in a data set, to automatically cluster pre-coda tokens of /e/ (n =27,402) and /u/ (n =
18,983) from these recordings in order to determine whether allophonic splits were identifiable
via acoustic measurements. For this analysis, | measured the first two formants of each vowel to-
ken at 25%, 50%, and 75% duration: all six of these measurements per vowel were ultimately
submitted to the kmeans() function, such that the algorithm had a reasonable amount of acoustic
data to work with from several timepoints throughout each vowel token.

2.1. K-MEANS CLUSTERING ALGORITHM. I implemented this machine learning algorithm in R
software (R Core Team 2020) with the kmeans() function from the stats package. Before running
the kmeans() function for the measurements I had made for each vowel class, I first went about
calculating the appropriate number of clusters for the algorithm to look for in the data set for
each vowel class. Running the k-means clustering algorithm requires the user to manually select
the number of clusters for the algorithm to look for in the data, so computing the optimal number
of clusters for each vowel class occurred first chronologically. Although several methods for
identifying an optimal number of clusters exist (Pham, Dimov, and Nguyen 2005; Chiang and
Mirkin 2010; Kodinariya and Makwana 2013), I selected the silhouette method due to its relative
popularity and ease of implementation in R software.

I used the silhouette() function from the cluster package in R (Maechler, Rousseeuw, Struyf,
Hubert and Hornik 2019) to calculate a silhouette coefficient for each set of vowel data. A sil-
houette coefficient is fundamentally a measure of how similar each data point is to other data
points in its own cluster versus to data points in other clusters (Rousseeuw 1987). This coeffi-
cient ranges from -1 to +1, with higher coefficient values corresponding to points being more
similar (i.e., having lower Euclidean distances) to other points in their own cluster. To calculate
this value for each vowel’s acoustic measurements, the silhouette() function completes these
steps:

(1) Compute the average distance of a given point i to all other points in point i’s cluster. [a(i)]

(2) Compute the average distance of that given point i to all other points in the nearest neighboring
cluster. [b(7)]

(3) Compute the silhouette coefficient by calculating (b(7) — a(7))/max(b(7), a(i)).

(4) Repeat steps 1 through 3 for every point in the data set, then average all of the silhouette coef-
ficients to arrive at the overall silhouette coefficient for that data set.

After computing a series of silhouette coefficients for various numbers of clusters per vowel
class data set, I then selected the number of clusters that corresponded to the highest positive sil-
houette coefficient. More detailed information about this process appears later in the results
section, where these comparisons are represented in several visualizations.

Once I had located the optimal silhouette coefficient for each of the two vowel classes, I ran
a k-means algorithm in R with the kmeans() function in the stats package. This function took two
arguments: the six acoustic measurements associated with each vowel and a numeric value for k,
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which is the number of clusters associated with the optimal silhouette coefficient from those
analyses described previously. The k-means algorithm completes these steps:

(1) Randomly choose centroids for £ number of clusters.

(2) Calculate the distance from each data point to each randomly chosen centroid.

(3) Assign each data point to the closest centroid (i.e., cluster) in terms of Euclidean distance.

(4) Calculate a new centroid for each cluster by averaging the mean locations of all points
assigned to that cluster.

(5) Repeat steps 2 through 4 until the cluster centroids stop moving.

3. Results. First, I calculated the appropriate number of clusters for each of the two sets of vowel
tokens using the silhouette method. Figures 1 and 2 show the results of these silhouette analyses
for /e/ and /u/ tokens, respectively. Both silhouette method results indicated that two clusters was
the optimal value for £ in the k-means algorithm, suggesting that this number of clusters maxim-
ized each data point’s similarity to those other data points assigned to its own cluster.
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Figure 1. Optimal number of clusters for the k-means algorithm for the /e/ tokens as determined
by the silhouette method.
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Figure 2. Optimal number of clusters for the k-means algorithm for the /u/ tokens as determined
by the silhouette method.

The results of the k-means algorithms, both of which were set to locate two clusters as per the
results of the silhouette method analysis, are shown in Figures 3 and 4: for the sake of plot reada-
bility, the dimensions shown on the axes are mean F1 and F2 values per following environment

at 25% duration.
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Figure 3. Mean F1 and F2 values for /e/ vowel tokens by following environment.
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Tol /u/ allophones by following segment at 25%
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Figure 4. Mean F1 and F2 values for /u/ vowel tokens by following environment.

For the /e/ tokens, pre-/n/ productions were distinct from productions in other following environ-
ments both in terms of F1 and F2 at 25% duration. This finding matches the impressionistic
reports offered by Fleming and Dennis (1977) and Holt (1999). The results of the current study
provide supplementary acoustic evidence in favor of this allophonic distinction within the /e/
class in the Tol language.

For the /u/ tokens, pre-/j/ productions were distinct from productions in other following
environments primarily in terms of F2 at 25% duration. The frontness of these pre-/j/ tokens sug-
gests that they are more [v]-like than the tokens in other following environments. While Fleming
and Dennis (1977) and Holt (1999) impressionistically observed [v]-like productions for the /u/
vowel class in pre-/s/ and pre-/c"/ environments, the current study shows acoustic evidence to
support that [v]-like productions are most common in pre-/j/ environments.

4. Discussion and conclusions. The findings reported in the current study partially support and
partially challenge previous accounts of vocalic allophony in the /e/ and /u/ vowel classes in Tol.
My analysis of /e/ tokens supported existing impressionistic descriptions of /e/ allophony in Tol,
but my analysis of /u/ tokens showed that pre-/j/ productions were consistently closer to [v] than
pre-/s/ or pre-/c'/ productions were.

For the /u/ productions in pre-/j/ environments, it is possible that there is a phonological mo-
tivation having to do with natural classes at work: what complicates this analysis is that there
appears to be one allophone in pre-/j/ environments and another allophone in pre-/w/ environ-
ments. One possible explanation for the [v]-like allophone appearing only before /j/ is
coarticulation, but it is not yet clear how the /uj/ sequence specifically differs from the /uw/ se-
quence in Tol such that one would trigger an allophonic change due to coarticulation and the
other would not. Another possibility is that /j/, which has been previously described by Fleming
and Dennis (1977) as a syllabic coda that can occur after /u/, is actually functioning as a sort of
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vowel-glide sequence whose internal structure is distinct in some important way from the inter-
nal structure of vowel-consonant sequences. The current analysis does not claim to adjudicate
among these possibilities due to lack of relevant data at this time, but it is certainly the case that
there are several plausible motivations for this allophonic split.

The primary aim of the current study was to examine whether acoustic evidence could be
located to support or dispute impressionistic descriptions of vocalic allophony in the Tol lan-
guage for the /e/ and /u/ vowel classes. My results for /e/ support existing descriptions of /e/
allophony but my results for /u/ did not support existing descriptions of /u/ allophony. Because
Tol is an under-resourced language with limited acoustic documentation, the current study offers
a more detailed perspective on the acoustic operations of its allophonic systems in vowels: opera-
tionalizing machine learning techniques to investigate the acoustic dynamics of under-studied
vocalic systems has the capacity to expand knowledge about allophony and its triggers cross-lin-
guistically. In particular, k-means clustering is a very useful tool for exploring allophonic
patterns in acoustic space, and in the future this kind of machine learning algorithm has potential
to be used for a wider variety of clustering tasks, including phoneme identification and tone sys-
tems.
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