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ABSTRACT 

EFFECTS OF LANDSCAPE CONFIGURATION METRICS ON AMERICAN BARN 

OWL NEST BOX AND HUNTING 

 

Samantha Danielle Chavez 

 

Harnessing ecosystem services, broadly defined as the benefits nature gives to people, is 

one approach to minimize the widespread negative impacts of agriculture on wildlife and 

biodiversity conservation. Conservation biological control is one such service that aims to 

use natural enemies to reduce crops losses from pests without the use of harmful 

pesticides, including rodenticides. In Napa Valley, California, human-made nest boxes 

are deployed on winegrape vineyards to attract barn owls (Tyto furcata) that depredate 

and remove thousands of rodent pests throughout the nesting season. However, the 

provisioning of this ecosystem service depends on whether a box is occupied and where 

on the landscape the owls are hunting. In this thesis, I used predictive occupancy models 

to show that barn owls prefer to occupy nest boxes surrounded by high proportions of 

grassland, and they prefer to hunt near their nest boxes, near oak savanna habitat, and in 

areas with a low habitat aggregation. A map of these models combined shows the hunting 

pressure by the owls in the study site’s vineyards. By mapping the provisioning of 

ecosystem services, landowners can be better informed on how land cover and nest box 

deployment affect the provisioning of rodent pest removal in their vineyard 

agroecosystems.  
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INTRODUCTION 

Modern agriculture has allowed human civilization to flourish by increasing food 

production and security, but often at the cost of impacts to global biodiversity (Tilman et 

al. 2011, Tscharntke et al. 2012, Ortiz et al. 2021). Global demand for crop production is 

projected to rise over the coming half century due to both the increasing human 

population and per capita rate of consumption, putting additional strain on native habitats 

and biodiversity (Tilman et al. 2011, Balmford et al. 2012, Ortiz et al. 2021). Maximizing 

sustainable crop yields can help meet this demand while reducing the need for 

agricultural land expansion, which can in turn mitigate the impacts of agriculture on 

biodiversity (Baulcombe et al. 2009, Tilman et al. 2011, Balmford et al. 2012, Tscharntke 

et al. 2012, Garnett et al. 2013). Maintaining high crop yields requires minimizing losses 

to pests, so pest management is vital for the future of sustainable agriculture (Hatfield et 

al. 2011, Bommarco et al. 2013, Baldwin et al. 2014). Chemical pesticides are 

economically costly and pose significant threats to human health and non-target wildlife 

species (Pimentel 2005, Sharma et al. 2020). In contrast, conservation biological control 

seeks to contribute to pest suppression by supporting populations of natural enemies 

(Begg et al. 2017). Harnessing natural enemies for pest removal can help maintain yields 

while supporting biodiversity within an agroecosystem (Green et al. 2005, Power 2010). 

Conservation biological control is an example of a regulating ecosystem service, defined 

as a benefit nature provides to people by moderating a natural phenomenon (Daily 1997).  
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One widespread example of conservation biological control is the implementation 

of barn owl (Tyto alba and Tyto furcata) nest boxes to attract rodent-eating owls to 

agricultural fields. Controlling rodent pests has been a challenge for farmers since the 

dawn of agriculture and is increasingly important in ensuring food security globally 

(Stenseth et al. 2003, Brown et al. 2007). Barn owl nest boxes are used in many regions 

of the world including in Malaysian rice fields (Hafidzi and Mohd 2003), Israeli crop 

fields such as alfalfa and date plantations (Charter et al. 2009, Meyrom et al. 2009, Kan et 

al. 2014), and in the winegrape vineyards of Napa Valley, California (Wendt and Johnson 

2017). Previous research has shown that owls hunt in Napa Valley vineyards (Castañeda 

et al. 2021), remove thousands of rodents from the landscape (St. George and Johnson 

2021), and can meaningfully reduce gopher activity (Browning et al. 2016, Hansen and 

Johnson 2022), which reduce yield. The owls also heavily use and may be partially 

reliant on nearby preserved native habitat, such as riparian habitats and grasslands 

(Wendt and Johnson 2017, Castañeda et al. 2021, Huysman and Johnson 2021a). Thus, 

protecting native habitats and deploying owl nest boxes could provide a form of 

conservation biological control that benefits farmers and biodiversity alike.  

Quantifying ecosystem services can help communicate the value of biodiversity in 

ways that reflect dominant political and economic views (Wenny et al. 2011, Johnson and 

Hackett 2016), and mapping ecosystem services can clarify to landowners how 

landscapes affect the provisioning of services across space (Burkhard and Maes 2017). 

Specifically, closer examination of the relationships between owls and habitats could 

potentially incentivize conservation of native habitats in agricultural landscapes that 
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could help conserve biodiversity and facilitate rodent removal. Pest removal services are 

dependent on the dispersion of natural enemies across a landscape, and therefore the 

composition and configuration of habitats in a landscape can influence the delivery of 

ecosystem services, especially for highly mobile predators (Power 2010, Burkhard and 

Maes 2017). While composition refers to the amounts and different types of landcover 

classes in a landscape, configuration refers to how these landcover types are arranged 

(McGarigal and Marks 1995). One such configuration metric is the arrangement of 

habitat edges which have been commonly shown to drive wildlife behaviors and 

ecological processes (Lidicker 1999, Pfeifer et al. 2017). Previous studies have noted that 

predators may be attracted to edges in an agricultural landscape due to the presence of 

prey (Šálek et al. 2010). Habitat configurations in heterogeneous landscapes such as Napa 

could strongly affect hunting by barn owls, which have been shown to use edges for 

hunting (Andries et al. 1994, Bond et al. 2005). Earlier work has examined how the 

composition of habitats affect barn owl nest box occupancy and hunting habitat selection 

(Wendt and Johnson 2017, Huysman and Johnson 2021a), but the role of habitat 

configuration is unresolved. By modeling the effect of both landscape composition and 

configuration on the selection of nest boxes and hunting habitat by barn owls, we can 

create a visual and spatially explicit representation of the pest removal services barn owls 

are providing on vineyards in Napa Valley.   

Here, we build on previous work by testing the hypothesis that including metrics 

of landscape configuration that we hope will improve previously developed models for 

nest box occupancy (Wendt and Johnson 2017, Huysman and Johnson 2021a) and 
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hunting habitat selection (Castañeda et al. 2021, Huysman and Johnson 2021b). We then 

combine the updated nest box occupancy and hunting habitat selection models into a 

single spatially explicit model to visually depict hunting pressure by the owls in the study 

system. This research contributes to agroecology by revealing the effects of uncultivated 

habitats on the provisioning of an ecosystem service in cropland (Power 2010, Pywell et 

al. 2015). 

IACUC 

This study was conducted under Cal Poly Humboldt IACUC #2021W12. 

Study System 

The study site (Figure 1) was in the Napa Valley in Napa County, California, 

which encompasses several cities from south to north including American Canyon, Napa, 

Yountville, St. Helena, and Calistoga. Napa County is characterized by a Mediterranean 

climate with wet, cold winters and dry, hot summers (Swinchatt et al. 2004). It is located 

about 112 km north of San Francisco, California and the valley is bounded by the 

Mayacamas Mountains on the west and the Vaca Range on the east (Swinchatt et al. 

2004). The valley is flat and grassy in the south near San Pablo Bay and extends 80 km 

northwards growing narrower and more forested. The county is known for its diversity of 

microclimates and soils (Swinchatt et al. 2004), as well as its heterogenous landscape of 

agricultural fields (majority wine grape vineyards), and variously sized grasslands, oak 

savannas, forests, and riparian areas. 
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Figure 1: Study area with Napa Valley landcover raster used in analysis. Seven land 

cover classes are included and described in detail in Corro (2021). The urban 

land cover class was created from Corro’s land cover class of ‘other’. White 

points are the nest box locations of the 288 nest boxes monitored in 2021. 

Southern Napa is characterized by the grassland and water land cover classes, 

while the mountains on the east and west of the valley are a combination of 

heavily intermixed forest and oak savanna classes. The thin lines of the riparian 

class are throughout the map. The valley itself is heavily classified as mostly 

vineyard or urban, though vineyards to extend into the south. Base map source: 

ESRI, NASA, NGA, USGS, County of Napa, California State Parks, HERE, 

Garmin, SafeGraph, FAO, METI/NASA, BLM, EPA, NPS 
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Barn owls (Tyto spp.) are found globally, except in Antarctica (Roulin 2020). In 

California, the American Barn Owl (Tyto furcata) is a voracious predator of crop-

damaging rodents including gophers, moles, voles, and mice (Kross et al. 2016). Over a 

year, an average family of barn owls in Napa Valley (2 adults and 3.6 nestlings) is 

estimated to kill over 3,400 rodents (St. George and Johnson 2021). Barn owls are cavity 

nesters, and readily occupy nest boxes once deployed. These mobile predators are not 

territorial, and many pairs of barn owls will nest in boxes with other occupied nest boxes 

nearby (Roulin 2020). This makes the barn owl an excellent candidate for providing 

rodent pest removal (Kross and Baldwin 2016, Kross et al. 2016, Roulin 2020) 

Barn owls can have large home ranges, with foraging males going as far as 5.6 km from 

the nest to hunt (Roulin 2020). For barn owls in Napa’s heterogeneous landscapes, these 

home ranges will usually encompass winegrape vineyards, field margins, and a range of 

native habitats, making this an excellent study system for investigating effects of habitat 

composition and configuration on ecological processes.  
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METHODS 

This research involved four core steps. First, we updated previously conducted 

owl nest box occupancy models with nest box attributes, local habitat, and landscape 

composition as predictors, making use of more years of data and higher resolution GIS 

layers. Second, I tested the hypothesis that including habitat configuration metrics as 

additional predictor variables improved these occupancy models. Third, I similarly tested 

whether the addition of habitat configuration variables improved a previously published 

model of owl hunting habitat selection based on GPS telemetry. Fourth, I combined the 

top models to create a spatially explicit model of predicted owl hunting pressure based on 

the distribution of monitored nest boxes in the valley, the likelihood of their occupancy, 

and the owls’ patterns of hunting habitat selection.   

Updating the Occupancy Model 

The first part of our analysis sought to update an earlier predictive model for barn 

owl nest box occupancy measured in 2015 and 2016 in winegrape vineyards (Wendt and 

Johnson 2017) by using a higher resolution raster dataset (4 by 4 meter spatial resolution 

vs 30 meter pixels) of the land cover of Napa Valley, including landscape configuration 

metrics, optimizing the scale of selected covariates, and training the model with six years 

of occupancy data (2015-2020). We define occupancy as the presence of eggs or chicks 

in a nest box during at least one nest box check throughout the reproductive season of 

March through July. Nest boxes were visually inspected for occupancy using a GoPro® 
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camera mounted on an extendable painter’s pole to stream a live feed of the inside of a 

nest box to the nest box monitor’s phone. While the schedule of nest box checks varied 

throughout the years 2015 to 2021 in both timing and number of boxes checked, 

generally the checks were once a month across the breeding season, with 3-4 checks of 

every box. Modeling of detection probability has confirmed that with our techniques the 

probability of missing reproductive occupancy after 3 monthly checks was 4.9% and after 

4 monthly checks was 1.85% (Carlino et al. unpubl. data).  These very low probabilities 

of missed occupancy also are unlikely to be affected by the variables hypothesized to 

affect occupancy (e.g., nest box or habitat), so little is gained by parameterizing detection 

probability in our modeling; thus, we consider our data as providing estimates of true 

reproductive presence (1) and absence (0) at each nest box each year. We used 

generalized linear models (GLMs) with a logit link function to model nest box occupancy 

(0/1) as the response variable, and we used various combinations of predictor variables to 

build candidate model sets, which we describe below, and assessed models with Akaike’s 

Information Criterion corrected for small sample size, AICc. All continuous covariates 

were first standardized with a mean of zero for analysis, and we assessed 

multicollinearity by constructing correlation matrices and removing predictors with r ≥ 

|0.7|. Based on earlier modeling (Wendt and Johnson 2017, Huysman and Johnson 

2021a), we included a quadratic form for the grassland predictor variable, and we 

included only additive effects. We evaluated our models by training our model on 

occupancy data from 2015 to 2020 and then tested it against data from 2021. More 

specifically, we report the percent correct classification (PCC), Kappa, and the True Skill 
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Statistic (TSS) using thresholds that maximize each of their values, and the area under the 

Receivers Operating Characteristic (AUC) as a threshold-independent measure of the top 

model’s predictive performance (Fielding and Bell 1997, Allouche et al. 2006). 

We conceptualized predictor variables hypothesized to affect barn owl nest box 

occupancy in three ‘levels’: nest box attributes, local landcover conditions, and landscape 

landcover composition and configuration. The box attributes included box height, pole 

height, box material (W or P for wooden or plastic, respectively), entrance hole 

orientation (cardinal direction), box area (floor space), and hole diameter. Previous work 

suggested other variables (such as box volume, presence of a perch, heat shield, or 

interior partition) did not strongly affect occupancy (Wendt and Johnson 2017), so they 

were excluded from analysis to limit the number of predictors. Local landcover condition 

included the proportion of 7 landcover classes (water, vineyard, urban, grassland, 

riparian, oak savanna, and mixed forest; see Appendix A for full descriptions), which we 

examined at 5 different radii around the nest box to reflect the immediate surroundings of 

a nest site (20, 50, 75, and 100 m around a nest box). The landscape level covariates 

included the proportion of the same land cover types within 10 larger radii around each 

box (500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500 and 2810 m). These radii were 

selected to reflect barn owl hunting distances around nest boxes in this system as 

described by Castañeda et al. (2021) who found that 50% of hunting took place within 

500 m of the nest box, 73% of hunting took place within 1 km of the nest box, and that 

the mean maximum hunting range was 2.81 km. We included both local and a landscape 

level scale in our modeling because we hypothesized that owls could respond to habitat 
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differently very near the nest box (e.g., affecting the nest site’s exposure to shade, 

predators, etc.) and at home range scale (e.g., preferred hunting habitat). To optimize 

scales at both the local and landscape levels, we evaluated each covariate separately with 

a univariate GLM at each radius, then used AICc to select the single best scale for each 

covariate, and then combined the covariates (at the optimized univariate scale) into a 

single multi-variable, multi-scale model (i.e., method “ms5” in (McGarigal et al. 2016). 

All landcover proportions were extracted from a 4x4-m spatial resolution land cover 

raster of Napa Valley (projection NAD83 UTM Zone 10N) created by Lucila Corro 

(2021) and used in a previous analysis of nest box occupancy (Huysman and Johnson 

2021a). This raster is an improvement in spatial resolution compared to the raster used in 

Wendt and Johnson 2017 which used the USDA CropScape 30 by 30 meter spatial 

resolution raster of Napa Valley. All statistical analyses were conducted using R (R Core 

Team 2022).  

Once the scales of both local and landscape predictors were optimized, we 

reduced the total number of predictor variables to include in a candidate model set by 

using univariate GLMs for each covariate and removing from further consideration those 

that explained relatively little of the deviance in occupancy (< 6%). The final pool of 

predictor variables included three box attributes (pole height, box height, and box 

material), two predictors at the local level (grassland and forest cover at a 150 m radius), 

and two predictors at the landscape level (forest and grassland cover at a radius of 2810 

m). These predictors were combined in logical sets to examine whether nest box 

occupancy was best predicted by one of more of each of the hypothesized levels, 
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including box attributes only, box attributes and local level predictors, and so on up to a 

“saturated model” containing all predictors at all three levels. To this candidate model set 

we also added a null model (intercept only), as well as the top model from previous 

publications (Wendt model and Huysman model from Wendt and Johnson [2017] and 

Huysman and Johnson [2021a], respectively). Only models that were within a delta AIC 

of 2 were considered competitive and averaged (Arnold 2010). A predictive map of the 

model projected across Napa Valley was created in R using the following equation, 

 𝑤(𝑥) =
exp(𝛽0+𝛽1𝑋1+⋯𝛽𝑘𝑋𝑘)

1+exp(𝛽0+𝛽1𝑋1+⋯𝛽𝑘𝑋𝑘)
 

and utilized binary rasters for each covariate (X) and coefficients (β) produced by the 

model. For mapping purposes, the rasters representing nest box attributes were set to 

common preferred values (i.e., 24 in box, 12 foot pole; see Results).  

Adding Landscape Configuration Metrics to the Occupancy Model 

 After updating the occupancy model as described above, we then tested the 

hypothesis that the inclusion of landscape configuration metrics would improve the 

model. To quantify landscape configuration, we used the configuration metrics functions 

in R package landscapemetrics (Hesselbarth et al. 2019) and rasters of the landcover 

types in Napa Valley to measure the values of each metric at radii around the nest boxes. 

These metrics included the interspersion and juxtaposition index (IJI) of all land cover 

types at each nest box at the class level (each landcover type separately) and at the 

landscape level (across all landcover types). The IJI describes the intermixing of classes 
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and higher values are found when patches of one type of landcover are equally adjacent 

to all other landcover types (McGarigal and Marks 1995). We also quantified edge 

density at the class level for each of the seven landcover types, mean patch size at the 

class level, and contagion at the landscape level, which measures the extent to which 

landcover types are aggregated or clumped. We obtained the values for each landscape 

metric at the same radii as the landscape level radii described above (500-2810 m around 

the nest box), and again applied the same scale optimization procedure, removal of 

collinear predictors (r ≥ |0.7|), and removal of uninformative predictors (here, deviance 

explained < 5%) as described above. Many of the configuration covariates were dropped 

due to low deviance explained or correlations with each other or with landscape 

composition metrics already included in the updated occupancy model (Appendix B), 

yielding only two landscape configuration predictors to add to the candidate model set: 

class level IJI values for grassland at a 2810 m radius around the nest box and the edge 

density values for oak savanna at a radius of 2500 m around the nest box. Finally, three 

models were created and compared using AICc: the updated occupancy model from step 

one, the same model with the inclusion of the configuration metrics, and a model that 

only included box level covariates and the configuration metrics.  

Adding Landscape Configuration Metrics to a Hunting Habitat Selection Model 

 I also aimed to determine if the inclusion of landscape configuration metrics could 

improve a model of hunting habitat selection by Castañeda et al. (2021), which was a 

Resource Selection Function (RSF, Davis et al. 1994) built from 260 used hunting 
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locations obtained from each of 11 female barn owls fitted with Uria 300 Global 

Positioning Systems (GPS) tracking units (Gdynia, Poland) contrasting with the same 

number of available locations randomly drawn from within each tagged owl’s home 

range (95% minimum convex polygons). The owls’ movements were tracked with 

telemetry and the transmitter recorded locations of the owls once per minute. The top 

model in Castañeda et al.’s (2021) resource selection function included the additive 

effects of land cover type, distance to nest box, and distance to the oak savanna land 

cover class. 

 I selected three landscape configuration metrics to add to candidate models, each 

measured at 25, 50, and 100 m radii around each used and available point analyzed by 

Castañeda et al. (2021): aggregation index (an index for how many pixels in a radius 

share edges of the same land cover type) (He et al. 2000), edge density at the forest class 

level, and edge density at the landscape level. I chose the aggregation index for this 

analysis rather than the contagion index used in the occupancy model because the former 

works better with smaller radii relevant for point-based analyses such as RSFs. I chose to 

emphasize the forest at the class level because barn owls are hypothesized to sometimes 

hunt along forest edges (Séchaud et al. 2021) and because of the previous apparent 

contradiction that barn owls in Napa Valley avoided nesting in boxes with abundant 

forest nearby (based on occupancy modeling of Wendt and Johnson [2017] and Huysman 

and Johnson [2021a]) but showed positive selection for forest when hunting (based on 

hunting telemetry analysis of Castañeda et al. [2021]). As above, I used scale 

optimization to univariately analyze and determine the best scale for each configuration 
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metric and all were found to perform best at 25 m radius of used and available points. I 

added these landscape configuration metrics as covariates to Casteñeda’s top model and 

created several RSF models with various combinations of the covariates. All models also 

included the individual owl as a random effect. Then I compared the AICc scores of the 

models to find if landscape configuration metrics would improve the previous top model. 

The top model’s performance was evaluated as per (Boyce et al. 2002), which involves 

calculating the predicted probability of use for every point (used and available), dividing 

them into 10 equal bins, and regressing the mean predicted probability of use in each bin 

against the proportion of used locations in each bin. A model with strong predictive 

probability should have a Pearson’s correlation coefficient close to one and a positive 

slope significantly different than zero.  

As with the predictive occupancy map, the same steps were completed to create 

the predictive hunting habitat selection map. Rasters for distance to box and distance to 

oak savanna were created using the Euclidean Distance raster tool in ArcGIS Pro (Esri 

Inc. 2021). Due to the size of the file, the Napa Valley landcover raster was tiled in 

ArcGISPro then processed using FRAGSTATS software (McGarigal and Marks 1995) to 

generate rasters of the landscape configuration metrics before being mosaicked back 

together in ArcGISPro.  

Combining Maps to Create the Ecosystem Services Provisioning Map 

 The fourth and last step of my analysis involved combining the top occupancy 

and hunting habitat selection models from the previous steps into a spatially explicit 
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predictive map. Using package rgeos (Bivand and Rundel 2023) and terra (Hijmans 

2023) from the R programming language, Euclidean distances to nest box rasters were 

created for each individual nest box in our study site and applied to a loop that created 

resource selection functions utilizing the distance to nest box raster of a single nest box. 

This was done for each box active in 2021 for which there was a predicted occupancy 

output from the occupancy model, for a total of 288 resource selection function rasters 

following the hunting habitat selection model equation. Each nest box’s resource 

selection raster was multiplied by the corresponding predicted occupancy value from the 

nest box occupancy model, yielding a raster depicting the probability an owl from a given 

box would hunt in a pixel, weighted by the occupancy probability of that box. These 288 

rasters were then added together in R using the raster package and rescaled, so that values 

ranged from zero to one. This approach models the dispersion of predicted owl hunting 

from the actual nest boxes used in our study, accounting for the distribution nest boxes, 

their probability of occupancy, and patterns of hunting habitat selection. However, it is 

important to note that while the 288 nest boxes in this model are representative of those 

in Napa Valley, we do not monitor all nest boxes in the Valley; there are at least dozens 

of additional unmonitored boxes in the Valley that are not a part of our study. The 

hunting pressure in our composite map is therefore underestimated in areas with nest 

boxes that we do not monitor. Thus, the resulting map from this work is most 

meaningfully interpreted at the scale of individual vineyards, where all boxes in the 

projected extent are monitored.     
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RESULTS 

The top updated nest box occupancy model, prior to the addition of configuration 

metrics, was the full or saturated model, which included all covariates at the box, local, 

and landscape levels (Table 1). No other models were within 2 AICc and the top model 

carried 99% of the model weight in the candidate set. The top model showed barn owl 

occupancy was positively associated with pole height, box height, and wooden boxes (  
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Table 2). Barn owls also preferred boxes with higher proportions of grassland at 

the 150 m (local) and 2,810 m (landscape) scales. We found a negative relationship 

between forest land cover around the nest box at both the local (150 m) and landscape 

levels (2,810 m). Of the covariates in the model, only grassland at the 150 m radius and 

forest at the 2,810 m radius had confidence intervals that overlapped zero, meaning they 

had weak effects within the model. Notably, grassland land cover and oak savanna land 

cover at the landscape scale were correlated, so there is likely a positive relationship with 

both grassland and oak savanna. This model performed well; when the model based on 

training data from 2015-2020 was tested against occupancy data from 2021, the PCC was 

75.3%, the Kappa was 0.485, the TSS was 0.478, and the area under the ROC curve was 

0.84. Adding landscape configuration metrics did not significantly improve the model. Its 

AICc was >2 and the saturated model without configuration metrics carried 88% of the 

model weight in the candidate model set (  
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Table 3). The saturated model was used to develop a map predicting the 

probability of nest box occupancy by barn owls (Figure 2). 

Table 1. The candidate model set for the updated barn owl predictive occupancy model 

for nest boxes in Napa Valley, CA 2015-2020, showing the number of parameters 

(k), AICc, AICc, and model weight (w). This set of models did not include 

landscape configuration metrics. Grassland 2810 m was set in the model as an 

orthogonal polynomial. 

Model Name k Covariates AICc AICc w 

saturated.model 9 Pole Ht, Box Ht, Box Material, Forest 

150 m, Forest 2810 m, Grassland 150 

m, Grassland 2810 m 

 

742.84 0 0.99 

box.landscape 7 Pole Ht, Box Ht, Box Material, Forest 

2810 m, Grassland 2810 m 

 

763.97 21.12 < 0.01 

Huysman.model 6 Pole Ht, Box Material, Forest 2810 m, 

Grassland 2810 m 

 

819.43 76.59 < 0.01 

box.local 6 Pole Ht, Box Ht, Box Material, Forest 

150 m, Grassland 150 m 

 

823.23 80.39 < 0.01 

Wendt.model 10 Pole Ht, Entrance Category, Box 

Material, Riparian 2000 m, Forest 2810 

m, Grassland 150 m, Grassland 2810 m 

 

824.31 81.47 < 0.01 

local.landscape 6 Forest 150 m, Forest 2810 m, 

Grassland 150 m, Grassland 2810 m 

 

889.56 146.71 < 0.01 

landscape.level 4 Forest 2810 m, Grassland 2810 m. 

 
908.30 165.47 < 0.01 

box.level 4 Pole Ht., Box Ht., Box Material 

 

988.85 246.01 < 0.01 

local.level 3 Forest 150 m., Grassland 150 m. 

 

1057.79 314.95 < 0.01 

null.model 1 1 1258.17 515.32 < 0.01 
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Table 2. The coefficients in the top predictive occupancy model for barn owl nest boxes in 

Napa Valley, CA, 2015-2020. The covariates, estimates with standard errors, and 

confidence limits are listed. Grassland at the landscape level appears twice as it 

was set as an orthogonal polynomial in the model. 

Covariate Estimate ± SE Lower CL Upper CL 

Intercept (Box Material Plastic) -1.43 ± 0.26 -1.95 -0.94 

Pole height (ft.) 0.29 ± 0.08 0.14 0.47 

Box height (in.) 0.60 ± 0.08 0.43 0.76 

Box Material Wooden 1.00 ± 0.28 0.48 1.57 

Forest – Local  -0.54 ± 0.13 -0.77 -0.28 

Grassland – Local 0.06 ± 0.09 -0.10 0.24 

Forest – Landscape  -0.18 ± 0.11 -0.41 0.02 

Grassland – Landscape 10.53 ± 1.82 6.98 14.12 

Grassland – Landscape2 -4.29 ± 1.27 -6.85 -1.84 
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Table 3. Candidate model set for nest barn owl nest box occupancy, with and without the 

addition of landscape configuration metrics showing the number of parameters 

(k), AICc, AICc, and model weight (w). The saturated model was the full model 

that was the top model from Table 1. 

Model k Covariates AICc AICc w 

Saturated model 9 Pole Height, Box Height, Box 

Material, Local Level Forest, Local 

Level Grassland, Landscape Level 

Forest, Landscape Level Grassland 

 

742.84 0 0.88 

Saturated Model 

with Configuration 

Metrics 

11 Pole Height, Box Height, Box 

Material, Local Level Forest, Local 

Level Grassland, Landscape Level 

Forest, Landscape Level Grassland, 

Grassland IJI, Oak Savanna Edge 

Density 

 

746.86 4.02 0.12 

Composition 

Metrics replaced 

with Configuration 

Metrics 

9 Pole Height, Box Height, Box 

Material, Vineyard Edge Density, 

Grassland Edge Density, Oak 

Savanna Edge Density, Grassland 

IJI, Water IJI 

758.49 15.65 0.00 
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Figure 2. The predictive map for probability of nest box occupancy by barn owls in Napa 

County, CA based on data from 2015-2020. The orange points are the monitored 

nest boxes in our study. The water land cover class was added in black, as nest 

boxes cannot be placed in open water. This map was based on a model that did 

not incorporate grassland as a polynomial. Base map source: ESRI, NASA, NGA, 

USGS, County of Napa, California State Parks, HERE, Garmin, SafeGraph, FAO, 

METI/NASA, BLM, EPA, NPS. 
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In contrast to the occupancy model, landscape configuration metrics improved the 

fit of the hunting habitat selection model. The top three models in our candidate set 

included configuration metrics, and the original hunting habitat model from Castañeda et 

al. (2021) without configuration metrics, was ranked fourth (  
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Table 4). The top two models were competitive, with ∆AICc < 2, and they 

included forest class edge density, landscape edge density, and aggregation index along 

with habitat category, distance to box, and distance to oak savannah habitat, as found in 

Castañeda et al. (2021). I model-averaged the two top performing models weighted by 

AIC (Burnham and Anderson 2002) to calculate coefficients of the model, as the primary 

goal was to create a predictive map (Arnold 2010). Model-averaged coefficients 

suggested a strong preference for hunting in areas with less aggregated land cover 

classes, and weak but positive relationships with forest edge density and landscape edge 

density (Table 5). As with the older model, there were strong negative effects of distance 

to nest box and distance to oak savanna. The categorical landcover covariate, called 

‘habitat’ in this model, had different influences on hunting habitat selection depending on 

the category, but the trends were generally the same as in the previous model created by 

Castañeda et al. (2021), with owls showing preference for hunting in riparian and 

savanna habitats, and they used urban, vineyard, and water land cover classes 

proportionally less than their availability. Our model evaluation via resubstitution 

indicated that our averaged top model was a strong predictor of used location points. The 

linear relationship between the mean predicted probabilities and the proportion of use 

within each bin yielded a Pearson’s correlation coefficient of 0.973, and the slope of the 

regression line was significantly different than zero (F1,10= 143.5, P < 0.005) and an 

adjusted R2 of 0.95. The averaged model was projected across the Napa Valley landscape 

(Figure 3) to visually communicate where owls from our study site are hunting the most. 
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Lastly, combining the top occupancy model, the top hunting habitat selection 

model, and the distribution of monitored nest boxes in our study revealed a map of 

predicted hunting pressure by barn owls on the landscape that is focused primarily on the 

southern portion of the valley where nest box density and occupancy rates are highest and 

favorable habitat is abundant (Error! Reference source not found.). The map is most 

meaningfully interpreted at the scale of individual vineyards. For example, vineyards 

with low numbers of nest boxes and little preferred habitat show very low hunting 

pressure (Figure 4A), whereas vineyards with large numbers of high-occupancy boxes 

and abundant preferred native habitats nearby show high hunting pressure (Figure 4B). In 

between are vineyards with large numbers of boxes but relatively little native habitat 

(Figure 4C), and vineyards with substantial native habitat but comparatively few nest 

boxes (Figure 4D).   

  



25 

 

  

Table 4. Candidate model set for hunting habitat selection showing the number of 

parameters (k), AICc, AICc, and model weight (w). Each model included a 

random effect based on individual owls, denoted by (1|id) in the model covariates 

column. Covariates named Dbox represents distance to nest box, habitat is the 

categorical covariate for the landcover in which owls were hunting in, Dsav 

represent distance to oak savanna habitat on the landscape, AggIndex represents 

the aggregation index, ForestED represents forest edge density, and 

LandscapeED represents edge density of the landscape. Models are numbered 

inconsecutively because our model selection table included models run by 

Castañeda et al. (2021). 

Model  Model Covariates k AICc AICc w 

m7 Habitat, Dbox, Dsav, 

AggIndex25, (1|id) 

11 6922.59 0 0.67 

m2 Habitat, Dbox, Dsav, ForestED25, 

LandscapeED25, AggIndex25, 

(1|id) 

13 6924.12 1.53 0.31 

m5 Habitat, Dbox, Dsav, ForestED25, 

(1|id) 

11 6932.57 9.98 0.00 

m1 Habitat, Dbox, Dsav, (1|id) 10 6932.94 10.35 0.00 

m6 Habitat, Dbox, Dsav, 

LandscapeED25, (1|id) 

11 6933.16 10.57 0.00 

m4 Dbox, ForestED25, 

LandscapeED25, AggIndex25, 

(1|id) 

6 7471.60 549.01 0.00 

m3 ForestED25, LandscapeED25, 

AggIndex25, (1|id) 

5 7815.96 893.37 0.00 

Null 

model 

1, (1|id) 2 7933.61 

 

1011.02 0.00 



26 

 

  

Table 5. The model-averaged coefficients of the competitive hunting habitat selection 

models from Table 4 (models 2 and 7), both of which included landscape 

configuration metrics.  

Coefficient Estimate  SE Lower CI Upper CI 

Intercept (Habitat: Forest) 3.69 ± 0.67 2.37 5.01 

Habitat: Grassland -0.07 ± 0.19 -0.45 0.31 

Habitat: Riparian 0.48 ± 0.22 0.04 0.91 

Habitat: Savanna 0.35 ± 0.19 -0.03 0.73 

Habitat: Urban -1.30 ± 0.27 -1.84 -0.77 

Habitat: Vineyard -1.12 ± 0.18 -1.48 -0.76 

Habitat: Water -2.85 ± 0.33 -3.49 -2.20 

Distance to Box (DBox) -4.03 ± 0.23 -4.48 -3.58 

Distance to Oak Savanna (Dsav) -0.52 ± 0.23 -0.97 -0.08 

Aggregation Index (AggIndex25) -2.30 ± 0.66 -3.61 -1.00 

Forest Edge Density (ForestED25) 0.49 ± 0.43 -0.35 1.33 

Landscape Edge Density 

(LandscapeED25) 

0.15 ± 0.24 -0.32 0.62 
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Figure 3. The resource selection function map for hunting habitat selection by barn owls 

in Napa County, CA under the existing distribution of nest boxes and based on 

occupancy data from 2015-2020. Base map source: ESRI, NASA, NGA, USGS, 

County of Napa, California State Parks, HERE, Garmin, SafeGraph, FAO, 

METI/NASA, BLM, EPA, NPS.  
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Figure 4. Predicted owl hunting pressure based on the distribution of existing nest boxes, 

their probabilities of occupancy, and the owls’ habitat preferences in Napa 

County, CA based on data from 2015 – 2020. Here, several vineyards with nest 

boxes were focused on at a scale of 1:24,000. In box A, a vineyard with few boxes 

is surrounded by relatively little preferred landcover. Box B shows a vineyard 

with many nest boxes surrounded by abundant preferred landcover, while box C 

shows a vineyard with many nest boxes surrounded by less preferred hunting 

landcover classes. Finally, Box D shows a vineyard with very few boxes but with 

abundant preferred landcover. The preferred land cover classes were grassland, 

oak savanna, and riparian. Base map source: ESRI, NASA, NGA, USGS, County 

of Napa, California State Parks, HERE, Garmin, SafeGraph, FAO, METI/NASA, 

BLM, EPA, NPS. 
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DISCUSSION 

Mapping ecosystem services is a vital step in both understanding how landscapes 

affect their delivery (de Groot et al. 2010, Wu 2013, Rega et al. 2018) and 

communicating to landowners the importance of landscape composition and 

configuration for the provisioning of valuable services, such as vertebrate pest removal 

by barn owls for farmers. Mapping the ecosystem services of barn owls may be of 

interest to farmers because the use of barn owls has been found to be economically 

beneficial (Kan et al. 2014). Here, I combined an updated model of barn owl nest box 

occupancy with a multi-scale model of hunting habitat selection improved by the 

inclusion of landscape configuration metrics to create a spatially explicit model of 

hunting pressure by a vertebrate predator of economically damaging rodent pests. These 

results suggest that at the scale of the Napa Valley region, the barn owls in our study 

system are providing pest removal services heavily in the southern end of Napa Valley 

(Figures 1 and 2). At the scale of the individual vineyard, the distribution of boxes, their 

likelihood of occupancy, and the owls’ preferences for hunting combine to create strong 

differences in the amount of pressure hunting owls are expected to exert within and near 

vineyards (Figure 3). Information on the impacts of land use practices on ecosystem 

services production is essential for landowners to optimize their system for conservation 

biological control (de Groot 2010). Furthermore, the information provided by mapping 

ecosystem services can even be used to inform policy making to optimize provisioning of 

ecosystem services (Maes et al. 2012, Rega et al. 2018, Bruskotter et al. 2019). There has 
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been tremendous progress in mapping ecosystem services to inform conservation action 

(Burkhard et al. 2013, Burkhard and Maes 2017), but relatively few studies have mapped 

biological pest removal (Malinga et al. 2015), and this study is among the first to do so 

for vertebrates (but see Civantos et al. 2012).  

Our results suggest that habitat configuration metrics matter both for owl hunting 

behavior and for more accurately mapping ecosystem service delivery. In our system, 

owls showed a preference to hunt in areas with a low habitat aggregation, that is areas 

with many landcover classes intermixed, and to a lesser extent in places with high edge 

density. Previous research into barn owl behavior has indicated that there is some 

preference for hunting along wildflower strips, meadow-like fields, and forest edges 

(Séchaud et al. 2021), perhaps because of concentrations of prey in these areas coupled 

with the owls’ adaptations for relatively open environments. This preference for hunting 

in areas with high edge density has been found in other raptor species and study areas as 

well, such as in the hen harrier (Circus cyaneus) in Scottish moorlands (Arroyo et al. 

2009). However, in our study system, nest box occupancy was not strongly associated 

with landscape configuration metrics but was well-predicted by nest box attributes and 

local and landscape-level habitat composition, as previously reported (Huysman and 

Johnson 2021a). It is not yet clear why the owls’ preference of edges and low habitat 

aggregation for hunting did not also correspond with a preference to occupy nest in boxes 

with these attributes nearby. One possibility is that nest box selection is shaped by a 

balance of preferences not just for hunting habitat, but also for cover, safety from 

predators (i.e, great-horned owls, Bubu virginianus) and other factors, which could 
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dampen preferences for conditions that favor hunting specifically. Indeed, habitat 

selection is a complex behavior that can vary, and barn owls are not the only species to 

display variability in habitat selection under various circumstances (Roever et al. 2014, 

McMahon et al. 2017, Picardi et al. 2022). Barn owl habitat selection can depend on 

whether the bird is hunting, selecting a roost, or commuting (Séchaud et al. 2021). While 

landscape composition and configuration seem similar, and indeed several of our 

individual metrics of them were correlated, our results indicate that both concepts should 

be considered when studying habitat selection, as metrics that may be important for one 

component of owl behavior may not matter as much for another. The weaker effect of the 

local level landscape composition of forest and grassland in the occupancy model seems 

to show that the use of barn owl nest boxes will be more successful when implemented in 

a region with preferred occupancy landcover as opposed to trying to find a specific 

location in a vineyard. Landowners can decide on nest box placements away from forest 

and nearer grassland on their property, but overall having a vineyard in a region with lots 

of grassland will have a greater impact on nest box occupancy. The negative effects of 

the forest land cover class at the local level shows that barn owls do not tolerate well 

having a nest box near forest land cover class, though this negative effect is weaker than 

the overall positive effect of placing nest boxes in a region with lots of grassland as 

evidenced by the strong positive effects of grassland at the landscape level.   

 Some important caveats to the work done here include the scope of our project 

and our collected data. First, while our list of potential predictor variables for nest box 

occupancy and hunting habitat was long and included factors operating at various levels 
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and spatial scales, I was unable to include vineyard management practices, which vary in 

both space and time. Previous work (Wendt and Johnson 2017) suggested that nest box 

occupancy did not vary among organic and conventional vineyards, but other vineyard 

management practices could affect owls. In Napa Valley, virtually all vineyards use cover 

crops, but their composition varies from a standard mix of planted species selected to 

promote soil fertility (such as oats [Avena sp.], barley [Hordeum sp.], common vetch 

[Vicia sativa], fava beans [Vicia faba], daikon radish [Raphanus sativus], and field 

mustard [Brassica rapa]), to a feral mix of species common in the environment 

(especially field mustard, European annual grasses, and storksbill [Erodium cicutarium]). 

In addition, the vines themselves are of various ages and managers use several trellising 

methods, and these differences affect the physical structure of the habitat and/or the local 

rodent populations in ways that could impact owls’ selection of nest boxes or areas for 

hunting. Future research should examine the effect of cover crops and vine age and 

structure on the owls hunting habitat selection. While our work shows the owls use the 

vineyards less than expected given their commonness in the study area, vineyards are still 

heavily used, with approximately one thirds of hunting locations occurring within them 

(Castañeda et al. 2021). 

Second, our map of owl hunting pressure only took into consideration the boxes 

we were able to monitor within the study site and is therefore best interpreted at extents 

of individual vineyards. Nonetheless, these individual vineyard maps can be useful for 

pinpointing areas in the study site where good quality habitat and high probability of 

occupancy coexist at a vineyard where few nest boxes are currently deployed. These 
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vineyards could be said to be underutilizing nest boxes and would benefit from deploying 

more boxes (e.g., Figure 3D). Other areas on the map reveal vineyards that are unlikely to 

benefit much from using owl boxes, due to poor local and landscape level habitat and low 

probabilities of occupancy (e.g., Figure 3A). These landowners would be advised against 

adding more nest boxes, as the probability of occupancy would still be low in the area. 

Vineyards with high rates of occupancy, suitable surrounding habitat, and intense hunting 

pressure may seem as if they have ‘maxed out’ the number of boxes in their system, but 

because barn owls readily occupy nest boxes even near other barn owls, additional boxes 

could still provide additional pest removal. Indeed, they could even expand beyond the 

current cluster of nest boxes on their land and continue to add boxes in more remote 

corners of their property, or perhaps even encourage their neighbors to begin deploying 

nest boxes as well.  

A logical next step for this research is to test the effects of hypothetical land use 

actions with simulations. For example, where are the optimal places to deploy new boxes 

to maximize the increase in predicted owl hunting pressure? Also, how is owl hunting 

pressure affected by the addition and distribution of nest boxes, and how is this mediated 

by local native habitat? How is it affected by the loss or addition (restoration) of native 

habitat? The barn owls’ preference for low aggregation index landscapes points to a 

preference for habitat patches that are not large and contiguous. This lends support to the 

idea that the restoration or creation of strips of preferred habitat to hunt may increase 

ecosystem services, much in the same way that (Séchaud et al. 2021) found that 

wildflower strips were greatly preferred in Europe. Thus, perhaps the inclusion of 
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relatively inexpensive linear features, such as tree lines and hedgerows, may serve to 

reconfigure habitats in ways that substantially increase the hunting pressure imposed by 

owls on vineyards. Previous studies using simulations of landscapes have uncovered how 

landscape changes can affect provisioning services (Nelson et al. 2009, Railsback and 

Johnson 2014). Simulating restoration of native habitats such as riparian zones or 

grassland patches throughout the valley could model the effects of restoration on 

bolstering provisioning services. Overall, the impact of this research is in providing a 

spatially explicit model and map of ecosystem services provided by a highly mobile 

predator in an agroecosystem, and future work should investigate how these services can 

be affected both by land use and the deployment of more nest boxes.  
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APPENDIX 

Appendix A: A table with the land cover classifications that apply to the 4 by 4 meter 

spatial resolution raster (NAD 83 UTM ZONE 10N) created and described by 

Corro (2021). This raster was used in this analysis as well as in the study by 

Huysman and Johnson (2021a), wherein the land cover class ‘other’ was renamed 

as Urban and pixels in city or urban boundaries were reclassified as urban.  

Name of Land Cover 

Class  

Definition  

Water “…an area where water is the primary and persistent land cover 

type.” 

Oak savanna, or Oak 

dominant savanna 

Classified by a tree canopy of 10-75% tree canopy cover, 

“…suggests that oak savanna exists where both grassland and 

sparse tree canopy cover are present” 

Forest, or forested land 

cover 

“…land covered by vegetation with heights of 1 meter or greater 

and a total canopy cover of greater than 75%.” 

Grassland “…vegetative land cover with canopy heights of less than 1 meter.” 

Vineyard “…agricultural land dedicated to viticulture.” 

Riparian “…areas that are within 30 meters of a river or stream, and where 

forest or oak dominant savanna is present.” 

Urban, classified as 

Other in Corro (2021). 

“…land cover that does not exhibit any of the above characteristics 

was classified as other and is considered to include land cover that 

is urban, developed, or bare ground.” 
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Appendix B: A table showing the covariate selection process for the landscape 

configuration metrics. Only the metrics within the top ten of percent deviance 

explained (PDE) values are included in this table as the others were dropped 

immediately. Correlation shows the value of correlation and the metric it was 

correlated with. If a metric was correlated with another in the top ten for percent 

deviance explained, they were decided between by whichever metric had a higher 

percent deviance explained. This narrowed down the 23 metrics to just five (in 

bold) of which only oak savanna edge density and grassland IJI were included 

into the analysis.  

Configuration Metric Correlation PDE 

Vineyard Edge Density Contagion (0.7) and Vineyard Composition 

Landscape Level (0.8) 

13.69 

Forest Edge Density Grassland Edge Density (-0.8) and Vineyard 

Mean Patch Size (-0.8) 

26.52 

Grassland Edge Density  Grassland Composition Landscape Level (0.9) 

and Oak Savanna Local Level (0.9) 

35.01 

Oak Savanna Edge Density None 5.06 

Contagion Vineyard Edge Density (0.7) 10.93 

Water IJI Grassland Composition Landscape Level (-0.7) 13.46 

Grassland IJI None 15.29 

Vineyard Mean Patch Size Forest Edge Density (-0.8), Grassland Edge 

Density (0.7), Water Mean Patch Size (0.7) 

13.57 

Water Mean Patch Size Water Edge Density (0.8) and Vineyard Mean 

Patch Size (0.7) 

6.33 

Grassland Mean Patch Size Grassland Edge Density (0.7) 28.47 
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Appendix C: The map for probability of nest box occupancy and hunting habitat selection 

by barn owls in Napa Valley, CA based on data from 2015 – 2020. This map 

depicts predicted owl hunting pressure based on the distribution of existing nest 

boxes, their probabilities of occupancy, and the owls’ habitat preferences. High 

nest box density, rates of occupancy, and occurrence of suitable habitat likely 

contribute to the higher rates of hunting in the south than in the north. Base map 

source: ESRI, NASA, NGA, USGS, County of Napa, California State Parks, 

HERE, Garmin, SafeGraph, FAO, METI/NASA/ BLM, EPA, NPS.  

 

 


