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ABSTRACT
There have been derivations for the Sums of Powers published since the sixteenth century. All tech-
niques have used recursive processes, producing the following formula in the series. I present a new 
method that calculates the Sums of Powers and Harmonic Numbers. Starting with a novel relationship 
between Pascal’s Numbers and Stirling’s Numbers of the First Kind, the Sums of Powers is devel-
oped. This formula, published previously using a different methodology, is in terms of Pascal Numbers 
multiplied by constant coefficients. However, a further step is introduced. A recursive relationship is 
discovered among the coefficients of these formulae. A double sigma master formula is developed, 
allowing one to calculate all formulae for Sums of Powers without needing Bernoulli Numbers. Fi-
nally, from the Sums of Powers master formula, I derive a formula to calculate the Bernoulli Numbers. 
I further develop a summation formula for the Harmonic Numbers using the same relationships.

1. Introduction

It is difficult to say luck’s role in the discovery process, 
although I suspect it happens more often than is admit-
ted. My journey started with a casual statement made in 
a popular mathematics book. The statement was that the 
division of Stirling Numbers of the First Kind, the penul-
timate by the ultimate number, results in the Harmonic 
Numbers. I could not believe this was just a coincidence; 
a personal inquiry resulted in this writing. From the start, 
I assumed that Pascal Numbers had to be involved. This 
inquiry led me to a mathematical relationship where I 
found a new methodology to formulate all Sums of Pow-
ers. A long, arduous process with many dead ends, but the 
thrill of defining a problem and solving it was worth the 
endeavor.

The Sums of Powers has fascinated mathematicians 
for centuries, and mathematicians have explored these 
infinite series dating back to the tenth century (Beery, 
2010; Coen, 1996). The first written formula dates to the 
16th century with Harriot (Beery, 2010; Coen, 1996), who 
wrote them in his notebooks but never published them. 
Faulhaber (Edwards, 1982) was the first to publish for-
mulae for the Sums of Powers and claimed to have found 
formulae up to the 17th power. Pascal derived his solu-
tion for the Sums Powers using the binomial expansion 
(Edwards, 1982, 1987). The use of Pascal Numbers to ex-
press the Sums of Powers was more recently derived using 

mathematical induction (Thoddi, 1993). Bernoulli was 
the first to calculate the Sums of Powers using a single 
formula. However, each series member needed a separate 
calculation to find the corresponding Bernoulli Number 
for the subsequent series (Edwards, 1982). It was Euler, al-
most half a century later, who proved the Bernoulli forms 
using the calculus of finite differences (Edwards, 1982) 
and coined the name, Bernoulli Numbers. Other mod-
ern decomposition methods and fractional calculus have 
recently been implemented to solve this age-old problem 
(Bazso et al., 2012; Nishimoto & Srivastava, 1991; Sri-
vastava et al., 1991). The methodology presented here is 
derived using a new approach and is applied to solve not 
only Sums of Powers but also Harmonic Numbers.

2. Derivation of Sums of Powers formula

I present a method by which one can generate all Sums of 
Powers without needing Bernoulli Numbers. The general 
Sums of the Powers Formula are presented in Equation 1. 

∞

∑
L=1

Ln =
∞

∑
t=0

(Ct+1
1 )n (1)

Where L is the index of summation, n is a constant, 
and L, n, t ⊂ ℤ+. Ct+1

1  are numbered along the second 
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Figure 1. Pascal’s Triangle.

diagonal of the Pascal Triangle; in this case, the counting 
numbers,e.g., 11

1, 22
1, 33

1, 44
1, … Ct+1

1 .
The general method by which the Sums of Powers are 

derived using Pascal Numbers begins with the following 
relationship. 

∞

∑
L = 1

L2 =
∞

∑
t = 0

[Ct+1
1 Ct+1

1 ] =
∞

∑
t = 0

[2Ct+2
2 – 1Ct+1

1 ] (2)

Proposition 1. The sum of the product Ct+1
1  and Ct+1

1  is 
equal to the sum [2Ct+2

2 – Ct+1
1 ], which can be written as: 

∞

∑
t=0

[Ct+1
1 Ct+1

1 ] =
∞

∑
t=0

[2Ct+2
2 – 1Ct+1

1 ] (3)

For the general Proof of Equation 3, one has the following:

Proof 1.
∞

∑
t=0

(q + t)
(q + t)!

q!t! =
∞

∑
t=0

(q + t)
(q + t)!

q!t!

∞
∑
t=0

(q + t)
(q + t)!
q!t! =

∞
∑
t=0

(q + t)
(q + t)!
q!t! +

(q + t)!
q!t! –

(q + t)!
q!t!

∞

∑
t=0

(q + t)
(q + t)!
q!t! =

∞

∑
t=0

(q + t + 1)
(q + t)!
q!t! –

(q + t)!
q!t!

∞

∑
t=0

(q + t)
(q + t)!
q!t! =

∞

∑
t=0

(q + t + 1)!
q!t! –

(q + t)!
q!t!

∞

∑
t=0

(q + t)!
1! (q + t – 1)!

(q + t)!
q!t! =

∞

∑
t=0

(q + 1)
(q + t + 1)!
(q + 1)!t!

–
(q + t)!
q!t!

∞

∑
t=0

Ct+q
1 Ct+q

q =
∞

∑
t=0

(q + 1)Cq+t+1
q+1 – Cq+t

q

The right-most equation of Equation 3 is further con-
verted by using the following general relationship: 

∞

∑
t=0

Ct+1
1 = Ct+2

2 (4)

Where t ⊂ ℤ+, making the final version of Equation 3 into 
the following equation: 

∞

∑
t=0

[2Ct+2
2 – 1Ct+1

1 ] = 2Ct+3
3 – 1Ct+2

2 (5)

Proposition 2. The sum of the series Ct+1
1 is equal to 

Ct+2
2 . But I will demonstrate the Proof for the general 

form. 
∞

∑
t=0

Ct+q
q = Ct+q+1

q+1 (6)

Proof 2. Using mathematical induction: Step 1, where 
t = 0.

q!
q!0! =

(q + 1)!
(q + 1)!0!

1 = 1

Step 2, Where one adds the next t = 1 term.

1

∑
t=0

Ct+q
q = Cq+2

q+1

q!
q!0! +

(q + 1)!
q!1! =

(q + 2)!
(q + 1)!1!

1 + (q + 1) = (q + 2)

The following Sums of Powers is gotten by multiplying 
Equation 3 by Ct+1

1 . 

∞

∑
L=1

L3 =
∞

∑
t=0

[Ct+1
1 Ct+1

1 Ct+1
1 ] =

∞

∑
t=0

[(2Ct+2
2 – Ct+1

1 )Ct+1
1 ]

(7)
 ∞

∑
t=0

[Ct+1
1 Ct+1

1 Ct+1
1 ]=

∞

∑
t=0

2[Ct+1
1 Ct+2

2 ] – [Ct+1
1 Ct+1

1 ] (8)
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The relation in Equation 9 converts [Ct+1
1 Ct+2

2 ] to 
[Ct+2

1 Ct+2
2 – 1Ct+2

2 ]. 

∞

∑
t=0

[Cn+t
1 Cm+t

m ]=
∞

∑
t=0

[Cm+t
1 Cm+t

m – (m – n) Cm+t
m ] (9)

 Where m>n.

Proposition 3. The sum of the series Cn+t
1 Cm+t

m  is equal 
to the sum of the series Cm+t

1 Cm+t
m – (m – n) Cm+t

m . Where 
m = n+q.

Proof 3.

∞

∑
t=0

(n + t)
(n + q + t)!
(n + q)! (t)!

=
∞

∑
t=0

(n + t)
(n + q + t)!
(n + q)! (t)!

∞

∑
t=0

(n + t)
(n + q + t)!
(n + q)! (t)!

=
∞

∑
t=0

(n + q + t)
(n + q + t)!
(n + q)! (t)!

– q
(n + q + t)!
(n + q)! (t)!

∞
∑
t=0

(n + t)!
1! (n + t – 1)!

(n + q + t)!
(n + q)! (t)!

=
∞
∑
t=0

(n + q + t)!
1! (n + q + t – 1)!

(n + q + t)!
(n + q)! (t)!

– q
(n + q + t)!
(n + q)! (t)!

∞

∑
t=0

Cn+t
1 Cn+q+t

n+q =
∞

∑
t=0

Cn+q+t
1 Cn+q+t

n+q – [(n + q) – n] Cn+q+t
n+q

∞

∑
t=0

Cn+t
1 Cm+t

m =
∞

∑
t=0

[Cm+t
1 Cm+t

m – (m – n) Cm+t
m ]

Continuing from Equation 8 and applying the conversion 
in Equation 9, one gets the following: 

∞

∑
t=0

[Ct+1
1 Ct+1

1 Ct+1
1 ] =

∞

∑
t=0

2[Ct+2
1 Ct+2

2 – 1Ct+2
2 ]–[Ct+1

1 Ct+1
1 ]

(10)
Using the conversion from Equation 2: 

∞

∑
t=0

[Ct+2
1 Ct+2

2 ]=
∞

∑
t=0

[3Ct+3
3 – 1Ct+2

2 ] (11)

Inserting the results of Equation 11 into Equation 10. 

∞

∑
t=0

[Ct+1
1 Ct+1

1 Ct+1
1 ] =

∞

∑
t=0

2 [3Ct+3
3 – 2Ct+2

2 ] – [Ct+1
1 Ct+1

1 ]

(12)

Using the results of Equation 2 to convert 
∞
∑
t=0

[Ct+1
1 Ct+1

1 ] in 

Equation 12 one gets: 

∞

∑
t=0

[Ct+1
1 Ct+1

1 Ct+1
1 ]=

∞

∑
t=0

[6Ct+3
3 – 4Ct+2

2 ] – [2Ct+2
2 – 1Ct+1

1 ]

(13)

 
∞

∑
t=0

[Ct+1
1 Ct+1

1 Ct+1
1 ] =

∞

∑
t=0

[6Ct+3
3 – 6Ct+2

2 + 1Ct+1
1 ] (14)

Using Equation 4 to convert Equation 14, one gets: 

∞

∑
L=1

L3 = 6Ct+4
4 – 6Ct+3

3 + 1Ct+2
2 (15)

If one continues multiplying by Ct+1
1  and using Equation 

2, Equation 4, and Equation 9 to get subsequent Sums of 
Powers, one obtains the following series of equations seen 
in Figure 2.

Sums of Powers represented by Pascal Numbers mul-
tiplied by a coefficient have been published in the past 
using a different methodology (Thoddi, 1993). However, 
here I introduce a new relationship that takes it a step 
further.

From left to right, the coefficients running along the 
second diagonal, e.g. 2, 6, 14, 30,… demonstrate a recur-
sive relationship taking the following form: 

x (t + 1) = Kx (t) + Kx0 (16)

In the first recursive relationship, K = 2, x(1) = 2, the first 
number of the second diagonal, and x0 = 1 is the coeffi-
cient from the first diagonal in Figure 2. 

x (t + 1) = 2x (1) + 2 (1) (17)

This first and the subsequent recursive relations were 
solved using MapleSoft Computer Algebra Software vs.11 
(MapleSoft) using an algorithm adapted for these recur-
sive sequences (Enns, 2006). The first recursive relation 
results with the following formula.

1 ⋅ 2t+2 –2 ⋅1t+2 = 2, 6, 14, 30, ….

Using Equation 16, I develop the following recursive 
relationships.
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Figure 2. The Sums of Powers derived from Pascal’s Triangle.

Figure 3. The solution of the Recursive Formulae from Figure 2 is derived using the recursive in Equation 16.

Figure 4. Sums of Powers Formulae.

x (t + 1) = 2x(1) + 2 (1) ; x(1)= 2
x(t + 1)= 3x(1)+3(1⋅2t+2 – 1⋅1t+2); x(1)= 6
x(t + 1)= 4x(1)+4(1⋅3t+3 – 3⋅2t+3 + 1⋅1t+3); x(1)= 24
x(t + 1)= 5x(1)+5(1⋅4t+4 – 4⋅3t+4 + 6⋅2t+4 – 4⋅1t+4); x(1)= 120
x(t + 1)= 6x(1)+6(1⋅5t+5 – 5⋅4t+5 + 10⋅3t+5 – 10⋅2t+5 + 5⋅1t+5);

x(1)= 720

If one continues with this pattern of recursive relation-
ships, it will result in the following series of formulae in 
Figure 3.

From these recursive relationships, I derive an equa-
tion for all Sums of Powers. 

∞

∑
L=1

Ln =
t

∑
k=1

n

∑
t=1

[(–1)n+kkn ( t
k ) ( L + t

t + 1 )] (18)

The following familiar formulae in Figure 4 were gener-
ated using Equation 18 in MapleSoft vs.11 (MapleSoft).

3. Derivation of the Bernoulli Numbers formula

Multiplying out the term ( L + t
t + 1 ) from Equation 18, 

the Sums of Powers Formula can be rewritten in the 
following way. 

∞

∑
L=1

Ln =
t

∑
s=0

t

∑
k=1

n

∑
t=1

[(–1)n+k ( t
k ) kn

(t + 1)!
Ss,tLt+1–s]

(19)
Where Ss,t  are the Stirling Numbers of the First Kind. 

In Figure 5, Equation 18 is calculated and organized by 
powers of L.
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1
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1

2

1

3

1

3

1

2

1

3

1

2

1

4

1

4

2

2

1

4

2

2

1

2

1

4

2

2

1

2

1

5

1

5

3

2

1

5

3

2

7

3

1

5

3

2

7

3

1

2

1

5

3

2

7

3

1

2

1 1

Figure 5. The coefficients of the Sums of Powers are calculated from Equation 19 where S0,n = 1, and S1,n = n(n+1)
2

. The origin of the first 

coefficient demonstrates it is equal to 1

(n+1)
, as was known to Bernoulli. The origin of the second coefficient demonstrates that it is always 

equal to 1

2
. 

In Figure 5, the last coefficient corresponds to the 
Bernoulli Numbers. Note that Stirling Numbers Sn,n = t!. 
Thus, one can derive Equation 20 by multiplying the cor-
responding factorial by the coefficients in Equation 19 
and calculating all the Bernoulli Numbers. 

Bn =
t

∑
k=1

n

∑
t=1

[(–1)k( t
k ) kn

(t + 1)!
t!] (20)

which simplifies to: 

Bn =
t

∑
k=1

n

∑
t=1

[(–1)k( t
k ) kn

(t + 1)] (21)

Bn = 1, – 1
2 , 1

6 , 0, – 1
30 , 0, 1

42 , 0, – 1
30 , 0, 5

66 , 0, – 691
2730 ,

0, 7
6 , 0, – 3617

510 , 0, 43867
798 , 0, … .

Numerous publications of explicit formulae calculating 
Bernoulli Numbers (Apostol, 2008; Gould, 1972) date 
back over 100 years. Equation 21 was previously pub-
lished by (Higgins, 1970) and dated back to (Worpitzky, 
1883), and here is derived from the first principle.

4. Deriving Stirling Numbers of the first kind 
from Pascal Numbers

A new method was previously introduced by which, from 
first principles, a double sigma formula for the Sums of 

Powers was derived using Pascal Numbers. This same 
method is applied here to derive the Stirling Numbers of 
the First Kind, and from this, derive the Harmonic Num-
bers ∑∞

L=1
I

L
. Both Pascal Numbers and Stirling Num-

bers of the First Kind originate similarly. The Pascal 
Numbers originate from the coefficients of the following
formula: 

∞

∏
n=1

(x + 1)n = (x + 1) (x + 1) (x + 1) … (22)

When the coefficients of Equation 22 are arranged in 
a vertical stack, it forms what is known as Pascal’s Tri-
angle, Figure 1. In Equation 23, the Stirling Numbers 
of the First Kind are derived, and when the coefficients 
are stacked, it forms a similar triangle called Stirling’s 
Triangle, Figure 6. 

∞

∏
n=1

(x + n) = (x + 1) (x + 2) (x + 3) … (x + n) (23)

The underlying premise is that because both Pascal 
Numbers and Stirling Numbers of the First Kind orig-
inate similarly, one should be able to calculate Stirling 
Numbers of the First Kind from Pascal Numbers. The 
general formula used to calculate the Stirling Num-
bers of the First Kind from Pascal Numbers is the
following: 

∞

∑
t=0

Ct+n
1 … .

∞

∑
t=0

Ct+4
1

∞

∑
t=0

Ct+3
1

∞

∑
t=0

Ct+2
1

∞

∑
t=0

Ct+1
1 (24)
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Figure 6. Stirling Numbers of the First Kind from the coefficients from Equation 23.

The following three equations, (2), (4), and (9), are 
used to achieve these conversions. The First Stirling 
Diagonal in terms of Pascal Numbers is trivial and is 
derived using Equation 4 on Equation 24. 

∞

∑
t=0

Ct+1
1 = Ct+2

2 = 1, 3, 6, 10, 15, 21 … (25)

For the Second Stirling Diagonal, we apply Equation 2, 
Equation 4 to∑ Ct+2

1 Ct+2
2  from the generalized Stirling 

formula to obtain: 
∞

∑
t=0

[Ct+2
1 Ct+2

2 ] =
∞

∑
t=0

[3Ct+3
3 – 1Ct+2

2 ] (26)

And using Equation 4 converts the Second Stirling Diag-
onal in terms of Pascal Numbers to:

∞
∑
t=0

[3Ct+3
3 – 1Ct+2

2 ] = [3Ct+4
4 – 1Ct+3

3 ] = 2, 11, 35, 85, 175, … . (27)

The Third, Stirling to Pascal Number conversion in 
the series, is calculated by multiplying ∑∞

t=0 Ct+3
1  with 

Equation 27, then using Equation 2, Equation 4, and 
Equation 9, converting it to: 

15Ct+6
6 – 10Ct+5

5 + 1Ct+4
4 = 6, 50, 225, 735, 1960, … .

(28)
Proceeding with subsequent multiplications and conver-
sions, one gets the following formulae in Figure 7.

A recursive relationship is found among all the 
diagonals in Figure 7. There is a recursive relation-
ship among the coefficients between the First Di-
agonal 3,10,25,56,119,246,… and the Zero Diagonal 
1,1,1,1,1,1,…. All recursive relationships were solved us-
ing MapleSoft Program (MapleSoft) with the following 
algorithm (Enns & McGuire, 2006):

Unassign(′t ′, ′x ′):
eq := x(t +1) = C1 x(t) + C2
x := rsolve(eq, x(1) = StartingNumber,x);
x := expand(x);
n: = 1; number:= x

The following recursive relationships were used to derive 
a final formula which calculates the coefficients in the 
First Diagonal in Figure 7.

x(t + 1)= 2x(t)+4(1); x(1)= 3; 7 ⋅ 2t

2 – 4 = 3, 10 (29)

 x(t + 1)= 2x(t)+5(1); x(1)= 10; 15 ⋅ 2t

2 – 5 = 10, 25
(30)

 x(t + 1)= 2x(t)+6(1); x(1)= 25; 31 ⋅ 2t

2 – 6 = 25, 56
(31)

 x(t + 1)= 2x(t)+7(1); x(1)= 56; 63 ⋅ 2t

2 – 7 = 56, 119
(32)

Equations (29-32) are precise only over two numbers 
and represent stepwise progression down the First Di-
agonal in Figure 7. The bold number solutions in
Equations (29-32) equate to the bold numbers along the 
vertical 3,10, 25, 56 in Figure 7. The bold numbers 7, 
15, 31, 63 also demonstrate a recursive relationship. In 
Equation (33), we derive the formula for these numbers. 
 
x(t + 1)=2x(t)+(1); x(1)= 7; = 4 ⋅ 2t –1 = 7, 15, 31, 63 ⋯

(33)
The formula in Equation (33) is in a raw form, and 
to convert it to its final form, I compared the basic 
formulae from the Harmonic to the Quartic power and 
from the First to the Fifth diagonal to get the following 
consistent format for the First Diagonal in Equation 34.

∞

∑
t=0

⎡
⎢⎢⎢
⎣

⎛⎜⎜⎜⎜⎜⎜
⎝

– ( 0
0 ) 12

0!

⎞⎟⎟⎟⎟⎟⎟
⎠

( 3
0 )

⎤
⎥⎥⎥
⎦

( t + 3
3 ) +

⎡
⎢⎢⎢
⎣

⎛⎜⎜⎜⎜⎜⎜
⎝

–( 0
0 ) 12

0!

⎞⎟⎟⎟⎟⎟⎟
⎠

( 4
1 ) +

⎛⎜⎜⎜⎜⎜⎜
⎝

–( 1
0 ) 13

1! +
( 1

1 ) 23

1!

⎞⎟⎟⎟⎟⎟⎟
⎠

( 4
0 )

⎤
⎥⎥⎥
⎦

( t + 4
4 ) (34)
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Figure 8. Power Formulae for Five Series of Stirling Numbers of the First Kind.

The Second Diagonal of coefficients, 15,105,490,1918, 
6825…, is derived similarly. However, the recursive re-
lationship is now between the Second Diagonal and a 
multiple of the First Diagonal.

x (t + 1) = 3x (t) + 6 (15 ⋅ 2t

2 – 5) ; x (1) = 15;

90 ⋅ 3t

3 – 6 ⋅ 15 ⋅ 2t

2 + 15 = 15, 105 (35)

 

x (t + 1) = 3x(t) + 7 (31 ⋅ 2t

2 – 6) ; x (1) = 105;

301 ⋅ 3t

3 – 7 ⋅ 31 ⋅ 2t

2 + 21 = 105, 490
(36)

 

x (t + 1) = 3x (t) + 8 (63 ⋅ 2t

2 – 7) ; x (1) = 490;

966 ⋅ 3t

3 – 8 ⋅ 63 ⋅ 2t

2 + 28 = 490, 1918
(37)

 

x (t + 1) = 3x (t) + 9 ( 127 ⋅ 2t

2 – 8) ; x (1) = 1918;

3025 ⋅ 3t

3 – 9 ⋅ 127 ⋅ 2t

2 + 36 = 1918, 6825
(38)

The bold numbers again equate to the bold diagonal 
numbers along the vertical, 15,105, 490,1918. For in-
stance, in Equation 35-Equation 38, 90–6⋅15+15 = 15,
301–7⋅31+21 = 105, 966 – 8 ⋅ 63 + 28 = 490, 3025 – 9
⋅ 127 + 36 = 1918. In Equation 35-Equation 38, one again 
finds a recursive relationship among the numbers 90, 
301, 966, 3025 (see Equation 39). The recursive relation-
ship among the numbers 15, 31, 63,127 was previously 
derived in Equation (33). 

x(t + 1) = 3x(t) + (4 ⋅ 2t + 2- 1); x(1) = 90;

= 81 ⋅ 3t

2 – 16 ⋅ 2t + 1
2

= 90, 301, 966, 3025, … . (39)

Equation 39 solution is in a raw form and is 
converted into the following equivalent form:

∞
∑
t=0

⎡
⎢⎢⎢
⎣

( 0
0 )13

0! ( 4
0 )

⎤
⎥⎥⎥
⎦

( t + 4
4 ) +

⎡
⎢⎢⎢
⎣

⎛⎜⎜⎜⎜⎜
⎝

( 0
0 )13

0!

⎞⎟⎟⎟⎟⎟
⎠

( 5
1 ) +

⎛⎜⎜⎜⎜⎜
⎝

( 1
0 )14

1! –
( 1

1 )24

1!

⎞⎟⎟⎟⎟⎟
⎠

( 5
0 )

⎤
⎥⎥⎥
⎦

( t + 5
5 )

+
⎡
⎢⎢⎢
⎣

( 0
0 )13

0! ( 6
2 ) +

⎛⎜⎜⎜⎜⎜
⎝

( 1
0 )14

1! –
( 1

1 )24

1!

⎞⎟⎟⎟⎟⎟
⎠

( 6
1 ) +

⎛⎜⎜⎜⎜⎜
⎝

( 2
0 )15

2! –
( 2

1 )25

2! +
( 2

2 )35

2!

⎞⎟⎟⎟⎟⎟
⎠

( 6
0 )

⎤
⎥⎥⎥
⎦

( t + 6
6 ) (40)
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The formulae in Figure 7 are the conversions of the diag-
onals of the Stirling Numbers of the First Kind in terms 
of Pascal Numbers. Because recursive relationships were 
found among the diagonals in Figure 7, a master formula 
was found in Equation 41. 

Sn,1 =
v

∑
h=0

t–N

∑
v=0

2N

∑
t=N

∞

∑
N=0

⎡
⎢⎢⎢
⎣

(–1)N+h(h + 1)N+v+1 ( v
h ) ( t + 2

t – N – v )

v! ( n + t + 2
t + 2 )

⎤
⎥⎥⎥
⎦

(41)

Here, n ⊂ ℤ+ represents the following Stirling Numbers 
along the diagonal. In Figure (6), N = 0 would represent 
the first diagonal, and n would produce the series 1,3,6,10, 
15…, N = 1 would represent the second diagonal, and n
would produce the series 2,11,35,85, 175…. If n is con-
verted to L –1, we can calculate the Power Series formulae 
in Figure 8, Figure 9.

5. Deriving the Harmonic Numbers

The Harmonic Numbers (Hn) can be calculated from the 
Stirling Numbers of the First Kind.

Hn =
∞

∑
n=1

S(n,2)

n! =
S(n,2)

S(n,1)
= 1

1 , 3
2 , 11

6 , 50
24 , 274

120 , 1764
720 , 13068

5040 , … , (42)

The Harmonic Numbers can now be calculated 
from Equation 41 and divided by the factorial (see 
Equation 43).

Hn =
v

∑
h=0

t–N

∑
v=0

2N

∑
t=N

∞

∑
N=0

⎡
⎢⎢⎢
⎣

(–1)N+h(h + 1)N+v+1( v
h )( t + 2

t – N – v )

v!(N + 2)!
( t + 3

t + 2 )
⎤
⎥⎥⎥
⎦

(43)

6. Conclusion

A large body of literature is written about the Sums of 
Powers and its connections to the Bernoulli Numbers 

(Apostol, 2008). Using a simple relationship found 
among the Pascal Numbers, one could build another 
triangle that derives from each sequential Sum of Powers 
in terms of Pascal Numbers. I then derived a recursive 
relationship among the coefficients of these numbers. I 

calculated a series of these recursive relationships and, 
from there, developed a double summation formula. This 
summation formula calculates all Sums of Powers
without needing Bernoulli Numbers. I then ex-
panded a term within the Sums of Powers double 
summation formula to derive a double summa-
tion formula to calculate all the Bernoulli Numbers. 
Because I derived this from a simple relationship 
between Pascal Numbers, I have demonstrated 
how Bernoulli Numbers are generated from first
principles.

The same technique from Equation 2, Equation 
4, and Equation 9 can also derive formulae for 

Stirling Numbers of the First Kind, in terms of Pas-
cal Numbers, and from this, calculate the Harmonic
Numbers.

Disclosure statement
No potential conflict of interest was reported by the
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