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ABSTRACT

There have been derivations for the Sums of Powers published since the sixteenth century. All tech-
niques have used recursive processes, producing the following formula in the series. | present a new
method that calculates the Sums of Powers and Harmonic Numbers. Starting with a novel relationship
between Pascal’s Numbers and Stirling’s Numbers of the First Kind, the Sums of Powers is devel-
oped.This formula, published previously using a different methodology, is in terms of Pascal Numbers
multiplied by constant coefficients. However, a further step is introduced. A recursive relationship is
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discovered among the coefficients of these formulae. A double sigma master formula is developed,
allowing one to calculate all formulae for Sums of Powers without needing Bernoulli Numbers. Fi-
nally, from the Sums of Powers master formula, | derive a formula to calculate the Bernoulli Numbers.
| further develop a summation formula for the Harmonic Numbers using the same relationships.

1. Introduction

It is difficult to say lucK’s role in the discovery process,
although I suspect it happens more often than is admit-
ted. My journey started with a casual statement made in
a popular mathematics book. The statement was that the
division of Stirling Numbers of the First Kind, the penul-
timate by the ultimate number, results in the Harmonic
Numbers. I could not believe this was just a coincidence;
a personal inquiry resulted in this writing. From the start,
I assumed that Pascal Numbers had to be involved. This
inquiry led me to a mathematical relationship where I
found a new methodology to formulate all Sums of Pow-
ers. A long, arduous process with many dead ends, but the
thrill of defining a problem and solving it was worth the
endeavor.

The Sums of Powers has fascinated mathematicians
for centuries, and mathematicians have explored these
infinite series dating back to the tenth century (Beery,
2010; Coen, 1996). The first written formula dates to the
16th century with Harriot (Beery, 2010; Coen, 1996), who
wrote them in his notebooks but never published them.
Faulhaber (Edwards, 1982) was the first to publish for-
mulae for the Sums of Powers and claimed to have found
formulae up to the 17th power. Pascal derived his solu-
tion for the Sums Powers using the binomial expansion
(Edwards, 1982, 1987). The use of Pascal Numbers to ex-
press the Sums of Powers was more recently derived using

mathematical induction (Thoddi, 1993). Bernoulli was
the first to calculate the Sums of Powers using a single
formula. However, each series member needed a separate
calculation to find the corresponding Bernoulli Number
for the subsequent series (Edwards, 1982). It was Euler, al-
most half a century later, who proved the Bernoulli forms
using the calculus of finite differences (Edwards, 1982)
and coined the name, Bernoulli Numbers. Other mod-
ern decomposition methods and fractional calculus have
recently been implemented to solve this age-old problem
(Bazso et al., 2012; Nishimoto & Srivastava, 1991; Sri-
vastava et al., 1991). The methodology presented here is
derived using a new approach and is applied to solve not
only Sums of Powers but also Harmonic Numbers.

2. Derivation of Sums of Powers formula

I present a method by which one can generate all Sums of
Powers without needing Bernoulli Numbers. The general
Sums of the Powers Formula are presented in Equation 1.

ZLn — (CiH)” (1)
L=1 t=0

Where L is the index of summation, n is a constant,
and L, n, tC Z*. Ci*! are numbered along the second
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Figure 1. Pascal’s Triangle.

diagonal of the Pascal Triangle, in this case, the counting
numbers,e.g., 11, 23, 33, 41, ... Ci*1.

The general method by which the Sums of Powers are
derived using Pascal Numbers begins with the following
relationship.

ZLZ — Z Ct+1 C§+1] — Z [2C£+2 _ 1Ci+l} (2)
t=0 t=0

Proposition 1. The sum of the product Ci*! and C{*! is
equal to the sum [2C4*? — C!*!], which can be written as:

Z Ct+lct+1 Z[zcéJrZ _ 1C§+l] (3)
t=0 =0

For the general Proof of Equation 3, one has the following:

Proof 1.
ij+ﬂwép'=§;@+ﬂ@'ﬂy
g(m t) (qq!t!)! _ §(q+ 0 (q{;ﬂt) (q{;ﬂt)! ) <q‘;ﬂt),
i;(q+o<i;?!= é;(q+t+ﬂ(%;?!—(2;?!
N

—  (q+1)! (g+1)! & (grt+1)!  (g+1)
Zl!(q+t—1)! P > (a+1) e

oo

> (g+1)chit -

t=0

Z Ci+qct+q

The right-most equation of Equation 3 is further con-
verted by using the following general relationship:

Z Ct+1 _ C£+2 (4)

Where t C Z*, making the final version of Equation 3 into
the following equation:

[ee]

Z[ZCHZ 1Ci+l] _

t=0

2C5° — 1C5 (5)

Proposition 2. The sum of the series Ci*'is equal to
Ci*. But I will demonstrate the Proof for the general
form.

Z Ct+q ;?H (6)

Proof 2. Using mathematical induction: Step 1, where
t=0.

g _ (g+1)!
g0l (g +1)l0!
1=1

Step 2, Where one adds the next t=1 term.
t 2
Sc- o

q_!+ (q+1)!: (g+2)!
g0t T Tt T (g+ )

1+(qg+1)= (q+2)

The following Sums of Powers is gotten by multiplying
Equation 3 by C{*.

o0 o0 o0

— Z [C{H Ciﬂ Ct+1 Z t+2

L=1 t=0 t=0

Ct+l Ct+l]
7)

[Ct+lct+lct+l i 2 Ct+1ct+2 Cl‘+lct+1] (8)
t=0

EV18



The relation in Equation 9 converts [CI*'Ci*] to
[Ci+2C£+2 _ IC?—Z]

oo oo
Z Cn+tcm+t Z Cm+t C;qn1+t _ (Wl _ 1’1) Crrzwt] 9)
t=0 t=0

Where m>n.

Proposition 3. The sum of the series C[**C*! is equal
to the sum of the series C;"**C"*! — (m - n) C"*'. Where
m=n+q.

oo oo
Z (n+1)! (n+q+t Z (n+q+t)!  (n+q+1)!
‘= U(n+t-1)! (n+q)!( ‘= U(n+q+t-1) (n+q)! ()
(n+q+1)!
ICETHOE
o0
n+q+t n+q+t n+ +t n+q+t
Y crai = Zc T - [(n+q) - n] G
t=0

o0 oo

Z Ci1+tc:nn+t — Z[Cimtcmﬂ _ (m _ n) Cz#—t]
t=0 t=0

Continuing from Equation 8 and applying the conversion
in Equation 9, one gets the following:

o0 oo
Z [Ci+lci+1 C?—l] — Z 2[ci+2c§+2 _ 1C§+2 ]_[Ci+lci+1]
t=0 t=0

(10)
Using the conversion from Equation 2:

oo o0

Z Ct+2 Ct+2 Z Ct+3 Ct+2 (1 1)

t=0 t=0
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Inserting the results of Equation 11 into Equation 10.

Z [Ci+lci+lci+l] — Z 2 [3C§+3 _ 2C£+2] _ [Ci+lci+1]
t=0 =0

(12)

Using the results of Equation 2 to convert >_[Ct*'Ci*!] in

t=0
Equation 12 one gets:

o0
{Ci+lci+lci+l] =Z [6C§+3 -4

t=0

_ [zcé+2 _ 1ci+1]

M8

C£+2]

.‘
Il
(=}

(13)

oo

§ : t+3

t=0

)
Z Ct+1Ct+1Ct+1 t+2 + IC{H] (14)
t=0

Using Equation 4 to convert Equation 14, one gets:

ZL3 6ct+4 6Ct+3 + 1Ct+2 (15)
L=1

If one continues multiplying by Ci*! and using Equation
2, Equation 4, and Equation 9 to get subsequent Sums of
Powers, one obtains the following series of equations seen
in Figure 2.

Sums of Powers represented by Pascal Numbers mul-
tiplied by a coefficient have been published in the past
using a different methodology (Thoddi, 1993). However,
here I introduce a new relationship that takes it a step
further.

From left to right, the coeflicients running along the
second diagonal, e.g. 2, 6, 14, 30,... demonstrate a recur-
sive relationship taking the following form:

x(t+1)=Kx(t) +Kx (16)
In the first recursive relationship, K = 2, x(1) = 2, the first
number of the second diagonal, and x; =1 is the coeffi-
cient from the first diagonal in Figure 2.

x(t+ 1) = 2x(1) +2(1) (17)

This first and the subsequent recursive relations were
solved using MapleSoft Computer Algebra Software vs.11
(MapleSoft) using an algorithm adapted for these recur-
sive sequences (Enns, 2006). The first recursive relation
results with the following formula.

1-2%2.2.1%2=2,6, 14, 30, ....

Using Equation 16, I develop the following recursive
relationships.
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104+
204 1 L
6Cy™ —6C5T 4105
240 — 3604 + 140 — 10472
120CET0 —240CL® + 15004 — 3005 + 105

720 CLTT — 1800 CLTC + 1560 CL — 540 04T + 6205 — 1045
5040 CET® — 15120 CET7 416800 CET0 — 8400 CLT° + 1806 CiT — 126 CLT3 + 1 04+

Figure 2. The Sums of Powers derived from Pascal’s Triangle.

1.1t+1
1.2t+2_2.1t+2
1.3603 _g.ot+3 4 g qt+3
1.4t+4_4_3t+4+6‘2t+4_4_1t+4
1-575 — 545 110375 — 10 21+° 4 5. 11+°
1'6t+6_6_5t+6+15.4t+6_20.3t+6+15.2t+6_6.1t+6

Figure 3. The solution of the Recursive Formulae from Figure 2 is derived using the recursive in Equation 16.

oo
S0t
L=1
-
1 1
L'=21*+_L
D=5t
oo
1., 1 1
LP=-LP+-L>+>L
Lzzl ERlE
-
s 1, 1.5 1.
B —— A3y g2
-
L1 1 1., 1
L=+ +-1——1L
LZZI sH Tl Ty 30
-
1. 1.5 5 , 1 .
Py R T S
; 6" T2t T 12
-
s 1 1 1. 1.4 1
LO=— LT+ -5+ -L°—- L3+ =1L
Lzzl R ) T
0
1 1. 7 ¢ 7 1 .
LT=-L3+4+ LT+ —LS— — Ly 7
[2_:1 SRR ul T
-
1 1 2 . 7T 2 1
=L+ -3+ —1°+21°——1L
LZZI gl tali gl —phitgli—5
o
1 1 S R
ZL":—L'°+-L9+§L8—1L0+-L4——L1
=~ 10 2 4 10 2 12
o
1 1 5 s 1 5
Ot oguy S0y 259 g7 g5 Zp3y 2 op
> - T2t T + 21 T 56

]
Il
-

Figure 4. Sums of Powers Formulae.

x(t+ 1) = 2x(1) + 2(1);x(1)= 2
x(t+1)=3x(1)+3(1-2*2 - 1-1"*2);x(1)= 6
x(t+1)=4x(1)+4(1-3"3 - 32173 4+ 1.173); x(1)= 24
x(t+1)= 5x(1)+5(1-4"* - 4.3 4 6.2 — 4.174); x(1)= 120
x(t+1)= 6x(1)+6(1-5™° - 5:4"5 + 10-3/° - 10-2*° + 5.1'*);
x(1)= 720

If one continues with this pattern of recursive relation-
ships, it will result in the following series of formulae in

Figure 3.
From these recursive relationships, I derive an equa-
tion for all Sums of Powers.

Soe REfore(1) (51 o

k=1 t=1

The following familiar formulae in Figure 4 were gener-
ated using Equation 18 in MapleSoft vs.11 (MapleSoft).

3. Derivation of the Bernoulli Numbers formula

t+1
the Sums of Powers Formula can be rewritten in the

Multiplying out the term ( L+t ) from Equation 18,

following way.

o] t t n . ¢ K"
L = -1 n+ S Lttl-s
e Ryt () mmea
(19)
Where S ; are the Stirling Numbers of the First Kind.
In Figure 5, Equation 18 is calculated and organized by
powers of L.
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N 1 1 2 1
Dt =[] s

=1

L
- 1 1
;LZ = [3502 1+ [3502

1

1 2 1
ESO,I] L + [5522 - —51‘1] L

2

s Mo 1. M. 2. 7. [ 2 1.1,. 00 2 1
LZL = [150,3]L +[ZSL3—ESO,Z]L +[Zsz,3—§sl,2+§50,1]L +[Zs3,3—§52,2+551,1]L

1

N 4 1 s, [1 3 o 2 3 7 3
D1 = [ Sua] 1 550 =550 1 4 [g520 ~ 5510 + 3502 1
L=1

1 3 7 1 2 1 3 7 1
+ [553,4 - 552,3 + 551,2 - 550,1] L*+ [554,4 _553,3 +§52,2 - 551,1] L
iw:[—l S ]L"+[ L S GO ]L"‘1+---
& n+1)7°" n+1)7" on

Figure 5. The coefficients of the Sums of Powers are calculated from Equation 19 where Sy, = 1,and §; , =

n(n+1)
2

.The origin of the first

coefficient demonstrates it is equal to ——, as was known to Bernoulli. The origin of the second coefficient demonstrates that it is always

1
(n+1)

1
equal to 5

In Figure 5, the last coeflicient corresponds to the
Bernoulli Numbers. Note that Stirling Numbers S, , = t!.
Thus, one can derive Equation 20 by multiplying the cor-
responding factorial by the coefficients in Equation 19
and calculating all the Bernoulli Numbers.

B, - ii[(_nk( . )ﬁt'] (20)

k=1 t=1

which simplifies to:

s k (5w e

11 1 1 1 5 691
Bn 1) 2) g» 0)_%) 0) E) 0)_%) 0) g) 0) _%)
7 3617 43867
0) g) 0;_ m, 0, W, 0,

Numerous publications of explicit formulae calculating
Bernoulli Numbers (Apostol, 2008; Gould, 1972) date
back over 100 years. Equation 21 was previously pub-
lished by (Higgins, 1970) and dated back to (Worpitzky,
1883), and here is derived from the first principle.

4. Deriving Stirling Numbers of the first kind
from Pascal Numbers

A new method was previously introduced by which, from
first principles, a double sigma formula for the Sums of

Powers was derived using Pascal Numbers. This same
method is applied here to derive the Stirling Numbers of
the First Kind, and from this, derive the Harmonic Num-
bers Y% % Both Pascal Numbers and Stirling Num-
bers of the First Kind originate similarly. The Pascal
Numbers originate from the coefficients of the following
formula:

ﬁ(x+1)":(x+1)(x+1)(x+1)... (22)

n=1

When the coeflicients of Equation 22 are arranged in
a vertical stack, it forms what is known as Pascal’s Tri-
angle, Figure 1. In Equation 23, the Stirling Numbers
of the First Kind are derived, and when the coefficients
are stacked, it forms a similar triangle called Stirling’s
Triangle, Figure 6.
o0
(x+n)=(x+1)(x+2)(x+3)...(x+n) (23)

n=1

The underlying premise is that because both Pascal
Numbers and Stirling Numbers of the First Kind orig-
inate similarly, one should be able to calculate Stirling
Numbers of the First Kind from Pascal Numbers. The
general formula used to calculate the Stirling Num-
bers of the First Kind from Pascal Numbers is the
following:
oo o0 o0 o0 o0

Yoy oy ar Y oy o ct (9

t=0 t=0 t=0 t=0 t=0
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11
132
16116
110 35 50 24
115 85 225 274 120
121 175 735 1624 1764 720

Figure 6. Stirling Numbers of the First Kind from the coefficients from Equation 23.

The following three equations, (2), (4), and (9), are Unassign('t’, 'x"):
used to achieve these conversions. The First Stirling eq:=x(t +1) = C, x(t) + C,
Diagonal in terms of Pascal Numbers is trivial and is x := rsolve(eq, x(1) = StartingNumber,x);
derived using Equation 4 on Equation 24. x := expand(x);
o n: = 1; number:= x
> it =C?=1,3,6,10,15,21 ... (25) . . o .
= The following recursive relationships were used to derive

a final formula which calculates the coeflicients in the
For the Second Stirling Diagonal, we apply Equation 2,  Fjrst Diagonal in Figure 7.

Equation 4 to) Ci**C4™ from the generalized Stirling

72!
formula to obtain: x(t+1)=2x(t)+4(1); x(1)= 35 -4=3,10 (29)
o o0
2 2] _ t+3 _ 1 t2 15 - 2t
ZO[G Gl = 20:[3@ 1G] (26) x(t+ 1)= 2x(6)+5(1)sx(1)= 10, == - 5 = 10,25
t= t=
(30)
And using Equation 4 converts the Second Stirling Diag- ,
onal in terms of Pascal Numbers to: x(t+1)= 2x(t)+6(1); x(1)= 25; 31-2 6 = 25,56
(31)
Z[3C§*3 - 1CE?) = [3CE™ - 1€ = 2, 11, 35, 85, 175, ... (27) 63 - 2!
= x(t+1)=2x(£)+7(1); x(1)= 56; -7 =56,119
The Third, Stirling to Pascal Number conversion in (32)

the series, is calculated by multiplying Z:o Ci* with
Equation 27, then using Equation 2, Equation 4, and
Equation 9, converting it to:

Equations (29-32) are precise only over two numbers
and represent stepwise progression down the First Di-
agonal in Figure 7. The bold number solutions in
Equations (29-32) equate to the bold numbers along the

15CLYS — 10CL™ + 1Ch = 6, 50, 225, 735, 1960, .... vertical 3,10, 25, 56 in Figure 7. The bold numbers 7,
(28) 15, 31, 63 also demonstrate a recursive relationship. In
Proceeding with subsequent multiplications and conver- Equation (33), we derive the formula for these numbers.

sions, one gets the following formulae in Figure 7.
A recursive relationship is found among all the  x(t+1)=2x(t)+(1);x(1)=7;=4-2'-1=7,15,31,63--

diagonals in Figure 7. There is a recursive relation- (33)
ship among the coeflicients between the First Di-  The formula in Equation (33) is in a raw form, and
agonal 3,10,25,56,119,246,... and the Zero Diagonal  to convert it to its final form, I compared the basic
1,1,1,1,1,1,.... All recursive relationships were solved us-  formulae from the Harmonic to the Quartic power and
ing MapleSoft Program (MapleSoft) with the following  from the First to the Fifth diagonal to get the following
algorithm (Enns & McGuire, 2006): consistent format for the First Diagonal in Equation 34.

R S B R B R [E R A
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S22
2! 2!
3 14 21 10
- _ 713 72 -
4!L+4!L+4—!L 4-!L
15 6 165 s 705 4 1455 3 1440 2 540
105 . 2100 17570 _ 79464 _ 208985 , 317940 ., 257180 , 84336
TR T T T T T TR TR
945 29925 412650 , 3245130 , 15997905 . 51110325 . = 105405300
— L®+ L*
10! 10! 10! 10! 10! 10! 10!
+ 134614620L3 4 95911200 124 28728000L
10! 10! 10!
Figure 8. Power Formulae for Five Series of Stirling Numbers of the First Kind.
The Second Diagonal of coefficients, 15,105,490,1918, 127 -2t

6825..., is derived similarly. However, the recursive re-
lationship is now between the Second Diagonal and a
multiple of the First Diagonal.

15-2¢

x(t+1) = 3x(t) + 6< —5>;x(1):15;
90-3" 6-15-2
T 15=15,105 (35)
1-2f
x(t+1) = 3x(t) + 7(3 —6>;x(1) - 105;
. t . . t
3013 3 —7 321 2 + 21 =105, 490
(36)
63 - 2!
x(t+1) = 3x (1 +8< —7>;x(1)=490;
. 3t . .ot
9663 3 - 8 6; + 28 =490, 1918

(37)

x(t+1) = 3x(t) +9( 3 —8>;x(1)=1918;

3025-3" 9-127-2¢

3 > + 36 = 1918, 6825

(38)

The bold numbers again equate to the bold diagonal
numbers along the vertical, 15,105, 490,1918. For in-
stance, in Equation 35-Equation 38, 90-6-15+15 = 15,
301-7-31+21 = 105, 966 — 8 - 63 + 28 = 490, 3025 -9
- 127 + 36 = 1918. In Equation 35-Equation 38, one again
finds a recursive relationship among the numbers 90,
301, 966, 3025 (see Equation 39). The recursive relation-
ship among the numbers 15, 31, 63,127 was previously
derived in Equation (33).

x(t+1) =3x(t) + (4 - 21722 1); x(1) = 90;
81 -3t
2
90, 301, 966, 3025, ....

1
—-16-2¢ —
T3

(39)

Equation 39 solution is in a raw form and is

converted into the following equivalent form:
1 4 1 4 |
>+ (0)1_(1>2 (5><t+5)
1 1l 0 5
2\ s 2 2
G (G G o] oe
>+ T TR (0) ( 6 ) (40)
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10 C. M. BARRERA

The formulae in Figure 7 are the conversions of the diag-
onals of the Stirling Numbers of the First Kind in terms
of Pascal Numbers. Because recursive relationships were
found among the diagonals in Figure 7, a master formula
was found in Equation 41.

v t-N 2N

Yy

N

e () (

(Apostol, 2008). Using a simple relationship found
among the Pascal Numbers, one could build another
triangle that derives from each sequential Sum of Powers
in terms of Pascal Numbers. I then derived a recursive
relationship among the coefficients of these numbers. I

t+2

t-N-v
(41)

Sn,l =
h=0 v=0 t=N N=0

Here, n C Z* represents the following Stirling Numbers
along the diagonal. In Figure (6), N =0 would represent
the first diagonal, and # would produce the series 1,3,6,10,
15..., N =1 would represent the second diagonal, and n
would produce the series 2,11,35,85, 175.... If n is con-
verted to L —1, we can calculate the Power Series formulae
in Figure 8, Figure 9.

5. Deriving the Harmonic Numbers

The Harmonic Numbers (H,,) can be calculated from the
Stirling Numbers of the First Kind.

Sma) _
n

o0
H,=Y" 2

n=1

Sin2)
(

N n,1)

The Harmonic Numbers can now be calculated
from Equation 41 and divided by the factorial (see
Equation 43).

)

calculated a series of these recursive relationships and,
from there, developed a double summation formula. This
summation formula calculates all Sums of Powers
without needing Bernoulli Numbers. I then ex-
panded a term within the Sums of Powers double
summation formula to derive a double summa-
tion formula to calculate all the Bernoulli Numbers.
Because I derived this from a simple relationship
between Pascal Numbers, I have demonstrated
how Bernoulli Numbers are generated from first
principles.

The same technique from Equation 2, Equation
4, and Equation 9 can also derive formulae for

n+t+2>

! t+2

1 3 11 50 274 1764 13068

(42)

Stirling Numbers of the First Kind, in terms of Pas-
cal Numbers, and from this, calculate the Harmonic
Numbers.

- N - +
™ h=0 v=0 ;; VI(N +2)! ( f+2 ) (43)

6. Conclusion

A large body of literature is written about the Sums of

Powers and its connections to the Bernoulli Numbers
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