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The coagulation (or aggregation) equation was introduced by Smoluchowski in 1916 to describe
the clumping together of colloidal particles through diffusion, but has been used in many different
contexts as diverse as physical chemistry, chemical engineering, atmospheric physics, planetary
science, and economics. The effectiveness of clumping is described by a kernel K(x, y), which
depends on the sizes of the colliding particles x, y. We consider kernels K = (xy)γ , but any
homogeneous function can be treated using our methods. For sufficiently effective clumping 1 ≥
γ > 1/2, the coagulation equation produces an infinitely large cluster in finite time (a process known
as the gel transition). Using a combination of analytical methods and numerics, we calculate the
anomalous scaling dimensions of the main cluster growth. Apart from the solution branch which
originates from the exactly solvable case γ = 1, we find a new branch of solutions near γ = 1/2,
which violates scaling relations widely believed to hold universal.

I. INTRODUCTION

Smoluchowski’s equation [1] has its origin in physical
chemistry, but more generally furnishes a fundamental
description of the formation of larger objects by the ag-
gregation of smaller entities. It appears in many physical
problems such as planetesimal accumulation, mergers in
dense clusters of stars, aerosol coalescence in atmospheric
physics, and polymerization and gelation (see [2–7]), but
also in chemical engineering [7], and the social sciences
[8, 9] It describes the evolution of the density c(x, t) of
particles of size x at time t, taking into account the for-
mation of new clusters of size x by the aggregation of
pairs of size x − y and y respectively, as well as the dis-
appearance of clusters of size x forming a larger one:

ct (x, t) = 1
2

∫ x

0
K (x− y, y) c (x− y, t) c (y, t) dy−

c (x, t)
∫ ∞

0
K (x, y) c (y, t) dy. (1)

Here the function K(x, y) (known as the coagulation ker-
nel) describes the probability for two particles of sizes x
and y to stick together.

The behavior of solutions to (1) depends crucially on
the degree of homogeneity of K. To explore this, here we
restrict ourselves to the class of models described by

K(x, y) = (xy)γ , (2)

for which the degree is 2γ. This kernel applies to
branched polymers with surface interactions [4, 10], and
to fractal clusters more generally [11, 12], but stands for
a much broader class of models whose asymptotic behav-
ior for large cluster sizes scales with an exponent 2γ. One
of the fundamental problems in the field is to relate, by
solving (1), γ to the scaling exponent σ = β−1 deter-
mining the typical size of clusters, and the gel exponent

τ , giving the power-law size distribution of clusters [4].
Thus by measuring β or τ , one is then able to infer fun-
damental mechanisms of aggregation, in phenomena as
diverse as planetesimal formation [7], aerosol dynamics
[13], or pipeline fouling caused by asphaltenes [14].

Only for γ = 1 can (1) be solved explicitly [15–18], for
more general kernels studies have relied on discrete par-
ticle simulations and ad-hoc scaling arguments (see [19]
and references therein). It is therefore of enormous im-
portance to develop mathematical methods able to pro-
vide novel information on the behavior of solutions to
(1).

For 1/2 < γ ≤ 1, (1) develops singularities in fi-
nite time, such that, starting from an initial particle
size distribution c(x, 0) with all its moments Mi =∫∞

0 xic(x, 0)dx bounded, there is a certain time t0 such
that all moments Mi for i ≥ i0 diverge (see [20] and refer-
ences therein). This phenomenon, which has the charac-
ter of a phase transition [4], is called finite time gelation
(at a gelation time t0), and indicates the aggregation of
particles in a single cluster of infinite mass. In practice,
of course, the singularity will be cut off by the finite size
of the total number of particles available, so that the
largest clusters no longer grow. On the other hand, if
γ ≤ 1/2, solutions exist globally in time [21].

As in many other physical problems involving diverg-
ing quantities (cf. [22]), we assume that the approach to
the singularity is selfsimilar, of the form

c(x, t) = t′αψ(xt′β); (3)

here t′ = t0 − t is the time distance to the singularity.
This of course does not exclude the existence of other
types of solutions. However, this selfsimilar structure has
so far only been established for γ = 1, while for γ < 1
selfsimilar solutions have not been determined explicitly.
Discrete numerical simulations (cf. [23, 24]) appear to
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show selfsimilarity of the second kind [25], for which sim-
ilarity exponents cannot be determined from dimensional
considerations, or from symmetry arguments. This fact
was proven in [26] for 1 − γ sufficiently small, without
calculating the exponents explicitly.

Inserting the similarity form into (1) and balancing
powers of t′, one finds α− 1 = 2α− (2γ + 1)β, and thus
the scaling relation

α = β(2γ + 1)− 1. (4)

It follows that

c(x, t) = t′β(2γ+1)−1ψ(xt′β), (5)

the Laplace transform of which will form the basis of our
analysis; the quantity s(t) = constt′−β is known as the
typical cluster size [19]. In addition, one obtains an inte-
gral equation for the similarity profile ψ(ξ); we will con-
sider the Laplace transform of ψ below. The scaling form
(5) is also known as the “self-preservation hypothesis”[3];
for example, using a rescaling analogous to (5), in Fig.
7.11 of [3] the distribution of aerosol particles, taken from
experiment, is collapsed onto a single profile ψ(ξ).

II. LAPLACE TRANSFORM METHOD

We begin by transforming (1) into Laplace space, al-
ways assuming a kernel of the form K = (xy)γ . This
equivalent formulation is more convenient then (1) for
both numerical and analytical purposes, as we will see
below. As the transformed variable we choose

ω(λ, t) ≡
∫ ∞

0
(1− e−λx)xc(x, t)dx, (6)

so that the total mass, which is conserved by (1), is

M1 =
∫ ∞

0
xc(x, t)dx = ω(∞, t), (7)

while ω(0, t) = 0.
Multiplying (1) by e−λx and integrating in x, the left

hand side becomes

∂

∂t

∫ ∞
0

e−λxc(x, t)dx, (8)

while the first term on the right hand side of (1) turns
into∫ ∞

0
e−λx

[
1
2

∫ x

0
xγ(x− y)γc(x− y, t)c(y, t)dy

]
dx

= 1
2

∫ ∞
0

∫ ∞
0

e−λ(z+y)yγzγc(z, t)c(y, t)dydz =

1
2

[∫ ∞
0

e−λxxγc(x, t)dx
]2
,

while the second term becomes

−
(∫ ∞

0
e−λxxγc(x, t)

)∫ ∞
0

xγc(x, t).

Taken together, we can write the right hand side as

1
2

[∫ ∞
0

(e−λx − 1)xγc(x, t)dx
]2
− 1

2

(∫ ∞
0

xγc(x, t)
)2

.

(9)

To transform this into a closed equation for ω, we take
the λ-derivative of both (8) and (9) and use mass conser-
vation, ∂tM1 = 0, to find

∂ω

∂t
= 1

2
∂

∂λ

[∫ ∞
0

(1− e−λx)xγc(x, t)dx
]2
. (10)

The right hand side of (10) can be rewritten using

1
Γ(1− γ)

∫ ∞
0

ω(λ+ y, t)− ω(y, t)
yγ

dy =

1
Γ(1− γ)

∫ ∞
0

1
yγ

[∫ ∞
0

(e−yx − e−(λ+y)x)xc(x, t)dx
]
dy

= 1
Γ(1− γ)

∫ ∞
0

[∫ ∞
0

e−yxy−γdy

] (
1− e−λx

)
xc(x, t)dx

=
∫ ∞

0
(1− e−λx)xγc(x, t)dx,

so that we finally obtain

∂ω

∂t
(λ, t) = 1

2
∂

∂λ

[∫ ∞
0

ω(λ+ ζ, t)− ω(ζ, t)
Γ(1− γ)ζγ dζ

]2
, (11)

which we will consider for the remainder of this paper.
The Laplace formulation (11) is similar to the non-

linear transport equations investigated by us previously
[27], and for whose solution we have developed efficient
numerical methods. For γ = 1, the expression in square
brackets is ω(λ, t), so that (11) turns into Burgers’ equa-
tion. If γ < 1, one can think of (11) as a generalization
of Burgers’ equation, but with ordinary derivatives re-
placed by fractional derivatives. In a later section, we
will simulate the time-dependent equation (11) directly,
but first we consider similarity solutions to determine the
blow-up of cluster sizes.

A. Similarity solutions

Using (4), we now look for similarity solutions of (11),
defined by

ω(λ, t) = t′β(2γ−1)−1βΦ(η), η = λ/t′β , (12)

which is consistent with (5); the factor β was introduced
for later convenience. Of course, Φ(η) is related to ψ(ξ)
by Laplace transform [26]:

Φ(η) = 1
β

∫ ∞
0

(
1− e−ηξ

)
ξψ(ξ)dξ. (13)
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The behavior of Φ(η) for large arguments represents
the distribution of small clusters; if ψ(ξ) ∝ ξ−τ for ξ → 0
(see (3.19) of [19]), then Φ(η) ∝ ητ−2 for η →∞, where τ
is known as the (pre)gel exponent [28]. This implies that
as t0 is approached, the distribution function for small
clusters approaches a power law c(x, t0) ∝ x−τ , which
will once more link to the kernel’s exponent γ. Similar
power law distributions occur in many other fields, such
as Zipf’s law [8], and have been proposed to understand
phenomena such as bank mergers [9].

Inserting (12) into (11), we recover the scaling relation
(4) from a balance of both sides. Dividing through by β,
we have

−νΦ(η) + ηΦ′(η) = 1
2
dF 2

dη
, (14)

with F defined by

F ≡ 1
Γ(1− γ)

∫ ∞
0

Φ(η + ζ)− Φ(ζ)
ζγ

dζ, (15)

and ν = (2γ−1)β−1)/β. It is advantageous to eliminate
β from the equation in favor of ν, since β diverges as γ
approaches 1/2, while ν remains finite. Similarity equa-
tions similar to (14) have been considered previously by
[19] and [26].

The left hand side of (14) corresponds to the time
derivative of the Smoluchowski equation, which is ex-
pected to vanish for large η in order for the solution to
match to the “background” of the distribution of small
clusters. This matching condition [29] then implies that
Φ(η) ∝ ην for large η, which according to the above leads
to the scaling relation τ = 2 + ν = 1 + 2γ− σ [19], which
relates the gel exponent τ with the exponent σ ≡ β−1,
determining the typical cluster size. In summary,

τ = 2 + ν, σ = 2γ − ν − 1 (16)

can be used to recover physically significant exponents
from ν. We will see below that (16) holds true only for
the “lower” branch of solutions, which grows out of the
classical case γ = 1, but fails for the “upper” branch, first
reported here.

III. THE LOWER BRANCH

We are looking for solutions to (14) with Φ(η) regular
at the origin and Φ(η) ≈ Aην for η → ∞, where A is a
constant to be found as part of the solution, along with
ν. In the exactly solvable case γ = 1, we have F = Φ(η),
so (14) becomes

−νΦ + ηΦ = ΦΦ′, (17)

the same as for the kinematic wave equation [22, 26].
This equation has an infinite sequence of regular solutions

η = 1 + j

j
Φ +BΦ1+j , j = 1, 2, . . . , (18)
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FIG. 1: The exponent ν for γ between 1/2 and 1. One branch
(the lower branch) starts from γ = 1, ν = 1/2 on the right,
and ends by intersecting another branch (the upper branch)
at γc ≈ 0.5214. The scaling ν = γ − 1/2 [19] is shown as the
dotted line. The inset shows a detail of the bifurcation, where
the two branches meet at γc. The circles mark the result of
particle-based simulations of Lee [24]. In [30], exponents are
calculated solving the similarity equation directly, but only
for γ = 3/4, for which the result agrees with [24].

where B is an arbitrary constant. For the “ground”
state j = 1, the cluster size exponent is β = 2, and
ν = 1/2. A sequence of non-trivial solution branches,
exhibiting anomalous scaling exponents, emanate from
each of these exact solutions; we will focus on the ground
state branch, which is expected to be attracting, while
all other branches are unstable.

The numerical procedure used to solve (14) is simi-
lar to that developed in [27] to solve nonlocal trans-
port equations. The function Φ is discretized on a grid
ηi, i = 1 . . . k, where η1 = 0 and Φi = Φ(ηi). We use
local refinement near the origin, based on the width of
the peak of Φ′, while the grid spacing increases geomet-
rically for large η. To compute the integral up to ηk,
we use a formula equivalent to the trapezoidal rule, but
taking into account the singularity at the origin explic-
itly; The value of Φ(η+ ζ) is found by interpolating from
the fixed grid. For the contribution to the integral for
η > ηk, where ηk is up to 1070, we impose (20) on the
lower branch, where A is found as part of the solution.
On the upper branch, the amplitude Ā is fixed in terms
of ν.

To evaluate faithfully the contributions to the integral
for η > ηk, it is useful to have a good approximation of
Φ(η) for large arguments. From Φ(η) ≈ Aην it follows
that F ≈ ACνην+1−γ , where

Cν ≡
Γ(γ − 1− ν)

Γ(−ν) , (19)

so that one finds that Φ has the expansion

Φ ≈ Aην +A2C2
ν

1 + ν − γ
1 + ν − 2γ η

1−2γ+2ν + . . . (20)
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FIG. 2: The local exponent of Φ(η) over a large domain, (20)
being used for η > ηk = 1070, for γ = 0.521829. The solid line
is the full solution on the lower branch, the dashed line is (20).
The solid horizontal line on the left is δ = 2γ − 1 = 0.04366,
the dashed horizontal line on the right is ν = 0.02808.

for large η.
The similarity equation (14) is invariant under the

transformation

Φ(η) = aϕ
(
η/a1/(2γ−1)

)
; (21)

to fix the constant a, we impose Φ′(0). It is easy to check
that the ground state solution for γ = 1 always satisfies
Φ′(0) = 1/2, so we impose this condition for arbitrary γ,
in order to find a unique solution. It is clear from (13)
that we also have to impose Φ(0) = 0.

This reduces the lower branch problem to a system of
nonlinear equations defined on the grid ηi, where the k
variables are the index ν, the amplitude A, and the val-
ues Φi, i = 2 . . . k − 1 of the profile. The equations are
Φ′(0) = 1/2, and (14), evaluated at ηi, i = 2 . . . k. This
system of equations is solved using Newton’s method, us-
ing ηk = 1010 up to γ ≈ 0.53; for smaller γ, the solution
is extended to ηk ≈ 1070. To obtain a good initial guess,
we start from the “ground state” solution for γ = 1 as
an initial condition, and continue the solution branch in
small steps of γ. The Newton iteration eventually fails
to converge for γ ≈ 0.5217, indicating a bifurcation to-
ward the upper branch. For higher order branches we
once again start from the exact solution for γ = 1, but
choosing j > 1. In this case Φ′(0) = j/(1 + j), which we
use as the normalization for all values of γ.

The resulting values of ν, which make up the “lower
branch”, are shown in Fig. 1 as the lower solid line, em-
anating from ν = 1/2 for γ = 1. Starting from the exact
solution for γ = 1, a new solution is found by proceeding
in small steps of γ, the preceding solution being used as
an initial condition. A typical profile Φ(η), for the in-
termediate value γ = 0.794, is shown as the dotted line

in the inset of Fig. 4 below. The solid line comes from
solving the dynamical equation (11) directly.

In a number of widely cited papers [10, 28, 31–33], it
was proposed on the basis of ad-hoc conditions on the
behavior of the similarity solution, that σ = (2γ − 1)/2
and ν = γ − 1/2. The latter is shown as the dotted
line in Fig. 1, clearly in strong disagreement with the ac-
tual solution of (14). This confirms the numerical results
of Lee [24], obtained using a particle-based description,
which are discussed in detail in [19], and which are shown
as circles in Fig. 1. The same conclusions were reached
rigorously [26], by investigating the neighborhood of the
exact solution for γ = 1. Indeed, in (14) the behaviors
for small and for large clusters are in fact coupled, which
leads to anomalous scaling exponents [25, 29], invalidat-
ing a simple linear scaling.

To summarize our numerical results so far, we devel-
oped an interpolation formula, which describes the lower
solution branch to three decimal places, where ε ≡ 1−γ:

ν = 1
2 −

3
2ε+ 1.1044ε2 log ε+ 3.8187ε2

−6.4849ε3 + 5.14ε4. (22)

Extending the result of [26] for small ε, we fitted the
lower branch data using a least squares approach. The
coefficient of ε was chosen in accordance with the slope
dν/dγ = 3/2 for γ = 1, which was proved in [26]. The
logarithm was also suggested by the analysis of [26], and
yields a significantly improved fit.

We have also calculated solution branches which em-
anate from the higher-order solutions at γ = 1, which
are known to be unstable [29]. It is therefore likely that
the entire higher-order branches are unstable. Indeed, we
have also solved the time-dependent evolution equations
in Laplace space for the particular value of γ = 0.7942,
and found the solution to converge onto the stable ground
state solution, shown in Fig. 1, see Section V below.

A. Transition toward the upper branch

As γ decreases toward 1/2, the correction exponent
1− 2γ + 2ν in (20) becomes ever closer to ν, so a larger
domain is needed to correctly describe the asymptotics
for large η, as seen in Fig. 2. The two exponents become
identical for ν = 2γ − 1 ≡ δ, which suggests the appear-
ance of a new branch of solutions, for which Φ(η) ∼ ηδ,
and which we call the “upper branch”, also shown in
Fig. 1. This transition occurs at γ ≈ 0.5214, close to the
critical value of γ = 1/2, in a regime that has not been
explored previously; the smallest value considered in [24]
is γ = 7/12 ≈ 0.58.

To understand the transition between the two
branches, we write a formal solution of the similarity
equation (14):

Φ(η) = F 2

2η + 1 + ν

2 ην
∫ η

0

F 2

η2+ν dη. (23)
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FIG. 3: The profile Φ(η) on the upper branch, on a double
logarithmic scale (solid line), compared to the asymptotics
(25) (circles); γ = 0.521829, the same as in Fig. 2.

If the integral in (23) is convergent, then the second term
scales like ην , and

A = 1 + ν

2

∫ ∞
0

F 2(η′)
η′2+ν dη

′; (24)

the first term in (23) is seen to be subdominant.
We anticipate a non-uniform convergence of the lower

branch toward the upper branch as γ → γc. Let us as-
sume that as suggested by Fig. 2, for 1 . η . ηc, Φ ∼ ηδ,
while for ηc . η .∞, Φ ∼ ην . Since the integral in (24)
converges for Φ ∼ ην , this means that A ∼ ηδ−νc , where
the exponent is positive on the lower branch, so that as
ηc → ∞, the prefactor A diverges. Indeed, a best fit
to the numerical data yields A ≈ A0/(γ − 0.521)β̄ , with
β̄ = 0.348 and A0 = 0.44, a blowup at γ very close to the
extrapolated value of γ = γc = 0.5214.

If on the other hand the integral in (23) is divergent,
both terms scale in the same way, and using the known
asymptotic behavior of F , balancing both sides yields

Φ ≈ δ − ν
γC2

δ

η2γ−1 ≡ Āηδ (25)

to leading order as η →∞.

IV. THE UPPER BRANCH

To find what we call the upper branch, for η ≥ ηk we
enforce (25) instead of (20). To account for the scale
invariance (21) of Φ, we impose Φ′(0) = 1. The variables
are now ν and Φi, i = 2 . . . k − 1. In order to suppress
oscillations in Φ(η), which appear for large values of η,
we found it necessary to solve the first derivative of (14)
(as we did before in [27]). Imposing the new condition
at infinity, we were able to nucleate an upper branch
solution from the lower branch, using a γ close to the
bifurcation. The branch is then continued to the left and
to the right.

A typical profile on the upper branch is shown in Fig. 3,
using a logarithmic scale, except near the origin. The
dashed line is the expected asymptotics (25), and γ is
the same as in Fig. 2, showing the lower branch. This
demonstrates that for a range of γ values above γc, there
are multiple solutions. This is also clear from the phase
diagram in Fig. 1, where both branches are shown. The
lower branch ends at γc, where it meets the upper branch,
as seen in the inset. There appears to be new asymptotic
behavior coming in for γ . 1/2, which makes it difficult
to continue the upper branch all the way to γ = 1/2.

An interesting new feature of the upper branch is that
ην ≡ ηα/β−2 does not equal the true asymptotic behavior
Φ ≈ Āηδ, which is represented by circles in Fig. 3. As
a result, the Laplace transform ω(λ, t) of the cluster size
distribution on account of (12) behaves for large argu-
ments like ω(λ, t) ≈ βĀλδt′−1, which for t′ → 0 diverges,
and hence does not match the expected static distribu-
tion at large arguments.

This implies that for the upper branch there must be
another, outer region, which interpolates between the
asymptotics (25) and a time-independent outer solution.
This is described by an outer similarity solution, which
we present now.

A. Outer Solution

The outer solution

ω(λ, t) = t′λ̄ϕ(ζ), ζ = λt′−(1+λ̄)/δ, (26)

succeeds in bridging the time dependence ω ∝ t′−1 with
a static outer distribution, as we will now show; λ̄ is
another anomalous exponent to be determined. Inserting
(26) into (11) yields the new similarity equation

−λ̄ϕ+ 1 + λ̄

δ
ζϕ′ = F (ϕ) dF

(ϕ)

dζ
, (27)

where F (ϕ) is the same as (15), but with Φ replaced by ϕ.
Equation (27) has a solution ζδ/(γCδ) = βĀζδ, which for
ζ → 0 matches the asymptotics (25) of the upper branch.

To understand the consistency of the behavior for small
ζ, we look for solutions to (27) of the form

ϕ ≈ βĀζδ + g(ζ).

Linearizing in g, we arrive at

−λ̄g + 1 + λ̄

δ
ζg′ = d

dζ

(
2ζ(1+δ)/2

(1 + δ)Cδ
F (g)

)
,

which has a solution of the form g(ζ) = Gζᾱ, where ᾱ
satisfies (

1 + λ̄

δ
− λ̄
)
ᾱ = 2(1 + ᾱ)Cᾱ

(1 + δ)Cδ
. (28)
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For small δ, λ̄, (28) simplifies to

2(1 + ᾱ)Γ(1/2− ᾱ) = (1 + 2ᾱ)Γ(1− ᾱ)
√
π,

whose dominant (smallest) solution is ᾱ = α0 =
1.30737 . . . .

In the limit of large ζ, on the other hand, the time
dependence of (26) must drop out, so we have to re-
quire that ϕ(ζ) ≈ ϕ0ζ

λ̄δ/(1+λ̄). This will ensure that for
small cluster sizes, ω matches onto a static cluster size
distribution. The exponent λ̄ plays the role of a nonlin-
ear eigenvalue, with the constant G in g(ζ) providing a
shooting parameter, which is adjusted such that ϕ has
the right power law behavior at infinity.

While the existence of an outer solution is relevant for
the consistency of the outer solution, its exact form is
not important for the rate of blow up of moments

Mi =
∫ ∞

0
xic(x, t)dx, (29)

as found on the upper branch. As a result, all moments
can be computed in terms of derivatives of the Laplace
transform, evaluated at the origin. For example, accord-
ing to (6) the second moment is

M2 = ∂ω

∂λ
(0, t) = t′2β(γ−1)−1βΦ′(0),

where β = 1/(δ − ν). But Φ′(0) can be found from the
profile Φ(η) (cf. Fig.3), as computed as part of the solu-
tion of the upper branch, without knowledge of the outer
solution.

V. DYNAMICAL SIMULATIONS

As a further test of the validity of the similarity so-
lutions obtained so far, here we integrate the Laplace-
transformed dynamical equations directly, as given by
(11). As a first example, we choose γ = 0.794, in the
range 1/2 < γ ≤ 1, for which finite time blowup is ob-
served. This demonstrates the stability of the similarity
solution obtained previously. Second, we look at γ = 1/4,
from a range of values for which blowup occurs in infinite
time only. In both cases, we use the initial condition

ω(λ, 0) = 1− eλ/(λ−1), (30)

which approaches the limiting value of 1 to all orders, as
λ→ 1. As a result, the integral on the right hand side of
(11) only has to be evaluated up to ζ = 1, since the inte-
grand vanishes for the remainder. In time, the condition
ω(1, t) = 1 continues to hold, so that the boundary con-
dition ω(∞, t) = 1 remains satisfied, which implies mass
conservation. Otherwise, the integral on the right hand
side of (11) is evaluated in the same way as described
before in the case of the similarity equation (14).

The time step is performed explicitly, combining a full
time step and two half steps to achieve second order ac-
curacy. The difference between the two is used as an
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1
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λ

ln(1 + η)

ln(1 + Φ)

FIG. 4: Comparison of similarity theory with direct numer-
ical simulation of (11) for γ = 0.794. In the main panel,
a sequence of profiles as obtained from (11); the heavy line
is the initial condition. As the inset, the last profile ω(λ, t)
is rescaled using the exponents obtained from solving (14):
ν = 0.2277, so that β = 2.773 (solid line). The dashed line is
the similarity profile Φ(η), which is a solution of (14); scales
are logarithmic.

error control, to choose the time step [29]. The result-
ing sequence of profiles is shown in the main panel of
Fig. 4, starting from (30) (heavy line). The profile prop-
agates to the left, producing an increasingly sharp front.
Simulations are continued until the width of the front,
as defined by the position of the maximum of the right
hand side of (11), falls below 10−9.

In the inset of (4) we show the last profile, rescaled ac-
cording to (12), in order to obtain an approximation to
Φ(η) (solid line). The invariance (21) of the profile is used
to impose Φ′(0) = 1/2 at the origin. A solution to the
similarity equation (14) is superimposed (dashed line),
and almost perfect agreement is found. Notice however
that the rescaled solution of (11) levels off at a certain
point, as it must to satisfy ω(∞, t) = 1 for all times,
reflecting mass conservation. The similarity solution,
on the other hand, corresponds to a cluster distribution
which does not have a first moment. This illustrates how
a solution with finite, conserved mass nevertheless ap-
proximates the similarity solution in a non-uniform fash-
ion.

If on the other hand 0 < γ < 1/2, mass is conserved
for all times, and the cluster size diverges in infinite time
only. The similarity form of the cluster size distribution
is now [4, 34]

c(x, t) = tαψ(xtβ), (31)

so that mass conservation implies

M1 = tα−2β
∫ ∞

0
ξψ(ξ)dξ

finite, and α = 2β. Together with (4) we obtain the
scaling relation β = 1/(2γ − 1), which should be valid
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FIG. 5: Scaling of cluster size for γ = 1/4 (infinite time sin-
gularity). The solid line shows ∂λω(0, t) as a function of t
in a double logarithmic plot. Mass conservation predicts an
exponent of 1/(1 − 2γ) = 2 in that case (dashed line), in very
good agreement with our numerics.

for γ < 1/2. To test this, we performed time-dependent
simulations of (11) for γ = 1/4. Since (12) now takes the
form

ω(λ, t) = tα−2ββΦ(λt−β),

the slope at the origin should scale like

∂ω

∂λ
∝ tα−3β ∝ t−β ∝ t1/(2γ−1).

In Fig.5 we have plotted this quantity as a function of
time. For large times, we find very good agreement with
the prediction 1/(2γ − 1) = 2, expected for γ = 1/4, in
agreement with earlier conclusions by Lee [24].

Finally, we have also performed simulations for γ
around the critical value γc, in order to confirm that the
upper branch is indeed stable for 1/2 < γ < γc. How-
ever, owing to the smallness of the relevant values of ν,
our resolution is not sufficient to reach any firm conclu-
sions.

VI. DISCUSSION

Our numerical simulations of the dynamical equations
demonstrate the stability and the physical realizability of
the solution branches found by us, at least for some values
of γ. However, mathematical issues remain in relation to
the solution branches over the full range 1/2 < γ ≤ 1.
First, although we find self-similar solutions which satisfy
the correct asymptotics, it is not clear if they are stable,
at least linearly. Second, a problem with the Laplace
transform method used by us is that the original scaling

function ψ(ξ) is not automatically positive, as required
for a physical solution. For the lower branch in the neigh-
borhood of γ = 1, positivity was proved in [26]. Apart
from this, both the stability and positivity remain open
problems for general γ.

There are many directions in which to extend the
present research. First, it would be interesting to con-
sider (1) for times after the singularity, and establish
postgel solutions, including the scaling relations they sat-
isfy. Second, we have not been able to extend the upper
solution branch to the limiting case γ = 1/2. We have
found a solution to (14) with ν = 0, which is of the form

ω(λ, t) = Φ(λet), η = λet, (32)

which would imply that s(t) = exp(constt). On the
other hand, it has been proposed [19, 33] that s(t) ∝
exp(const

√
t) in that case. Which, if any, of these so-

lutions is actually realized by the dynamical equations
remains an open problem. Owing to limited resolution
of our dynamical code, we are not able to decide conclu-
sively between these possibilities.

Third, many studies have looked at other types of ho-
mogeneous kernels [4], such as K = xλyν or K = xλ+yλ.
For example, an important question is whether exponents
only depend on the degree of homogeneity λ = µ + ν,
or whether they are more sensitive to the structure of
the kernel. Indeed, our methodology extends to much
more general kernels, for example of the form K(x, y) =
(xµyν + xνyµ) /2 (with µ+ ν = 2γ). This would lead to
the integro-differential equation (14), with the right hand

side replaced by 1
2
d(FµFν)
dη

, where Fµ and Fν are defined

as in (15), with γ replaced by µ and ν, respectively.
In wave turbulence [35–38], similar integral equations

arise, which have not been solved explicitly, as we do here.
Instead, the theory rests on scaling assumptions similar
to those which in coagulation theory were found to be
invalid. Here a stationary turbulent spectrum would cor-
respond to postgel solutions, which evolve out of the ini-
tial singularity [38]. It is therefore possible that a more
careful treatment of the integral equations of wave turbu-
lence yields anomalous dimensions, as has been conjec-
tured [37], which would change the scaling exponents of
(say) the velocity field of the turbulence. Similar issues
arise in Bose-Einstein condensation, where numerical re-
sults point to anomalous scaling exponents different from
the classical ones [39–41].

In conclusion, integro-differential equations represent
an area where some of today’s most challenging unsolved
problems in statistical mechanics and in fluid dynamics
come together. Using self-similar solutions to the Smolu-
chowski equation, we showed that such integral equations
have many unexpected properties, which challenge long-
held beliefs.
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