
Selective Traceability for Rule-Based
Model-to-Model Transformations

Qurat ul ain Ali

quratulain.ali@york.ac.uk
University of York

York, UK

Dimitris Kolovos

dimitris.kolovos@york.ac.uk
University of York

York, UK

Konstantinos Barmpis

konstantinos.barmpis@york.ac.uk
University of York

York, UK

Abstract
Model-to-model (M2M) transformation is a key ingredient

in a typical Model-Driven Engineering workflow and there

are several tailored high-level interpreted languages for cap-

turing and executing such transformations. While these lan-

guages enable the specification of concise transformations

through task-specific constructs (rules/mappings, bindings),

their use can pose scalability challenges when it comes to

very large models. In this paper, we present an architecture

for optimising the execution of model-to-model transfor-

mations written in such a language, by leveraging static

analysis and automated program rewriting techniques. We

demonstrate how static analysis and dependency informa-

tion between rules can be used to reduce the size of the

transformation trace and to optimise certain classes of trans-

formations. Finally, we detail the performance benefits that

can be delivered by this form of optimisation, through a

series of benchmarks performed with an existing transfor-

mation language (Epsilon Transformation Language - ETL)

and EMF-based models. Our experiments have shown consid-

erable performance improvements compared to the existing

ETL execution engine, without sacrificing any features of

the language.

CCS Concepts: • Software and its engineering→Model-
driven software engineering.

Keywords: Model-Driven Engineering, Scalability, Model

Transformation, Static Analysis

ACM Reference Format:
Qurat ul ain Ali, Dimitris Kolovos, and Konstantinos Barmpis. 2022.

Selective Traceability for Rule-Based Model-to-Model Transfor-

mations. In Proceedings of the 15th ACM SIGPLAN International
Conference on Software Language Engineering (SLE ’22), December

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SLE ’22, December 06–07, 2022, Auckland, New Zealand
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9919-7/22/12. . . $15.00

https://doi.org/10.1145/3567512.3567521

06–07, 2022, Auckland, New Zealand. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3567512.3567521

1 Introduction
With the growing adoption of MDE for developing large

and complex industrial applications [18, 29], MDE tools and

technologies are required to handle increasingly large and

complex underlying models. While MDE is popular for pro-

viding benefits such as increased productivity, maintainabil-

ity etc. [28], still there are certain limitations, especially when

it comes to managing larger models. Scalability can often

become a major bottleneck while transforming large mod-

els [15, 17], so in order to efficiently use MDE in larger and

complex industrial applications, its tools and technologies

need to be scalable.

Model-to-model (M2M) transformation is one of the key

activities used in a typical MDE workflow. It is essentially

used to map one or more input model(s) to one or more

output model(s). Various M2M languages like ETL [22] and

ATL [19] provide tailored support for automating this task,

but they can face scalability issues when it comes to trans-

forming larger models [24]. In this paper, we propose a novel

approach that leverages the benefits of static analysis and

automated program rewriting to speed up and reduce the

memory footprint of model-to-model transformation pro-

grams. In our study we target the Epsilon Transformation

Language (ETL), however, the proposed approach applies

to any rule-based interpreted M2M language that supports

imperative constructs. We use map-like data structure to

cache the results of imperative operations generated by rules

as a transformation trace.

The proposed approach involves statically analysing the

M2M transformation, extracting type information of its vari-

ous constructs and also extracting dependency information

between the transformation rules as a dependency graph.

Using the information extracted from the static analyser,

a rule-based M2M program is then rewritten into an im-

perative M2M program, where the transformation rules are

converted to operations. Moreover, exploiting the depen-

dency graph allows reducing the global transformation trace

into a selective trace, lowering its memory footprint. A key

novelty of the proposed optimisation approach is that it
does not sacrifice any of the expressiveness of the M2M

language in contrast to e.g. [1], which only supports a sub-

set of ATL. This is because our approach performs in-place

98

https://orcid.org/0000-0002-1099-0453
https://orcid.org/0000-0002-1724-6563
https://orcid.org/0000-0002-0864-0956
https://doi.org/10.1145/3567512.3567521
https://doi.org/10.1145/3567512.3567521
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3567512.3567521&domain=pdf&date_stamp=2022-12-01

SLE ’22, December 06–07, 2022, Auckland, New Zealand Qurat ul ain Ali, Dimitris Kolovos, and Konstantinos Barmpis

rewriting of rules and calls to equivalent/equivalents(), effec-
tively desugaring a rule-based ETL transformation into an

imperative form (still in ETL due to the potential presence of

pre/post blocks). All other constructs of the transformation

(e.g. method calls, property call expressions, user-defined

operations, instantiation of native types) remain untouched

and are executed using the standard ETL interpreter.

Using our proposed approach, performance gains up to

39% in terms of execution time and up to 59% in terms of

memory consumption have been achieved in our evaluation

experiments.

The remainder of the paper is structured as follows: Sec-

tion 2 presents the background, tools and technologies used

for the implementation of the proposed approach, followed

by a motivating example. Section 3, presents the overall

architecture of the proposed transformation optimisation

approach and then discusses each stage step-by-step. Evalu-

ation of benchmarks and the obtained results are presented

and analysed in Section 4. Section 5 discusses the relevant

state-of-the-art in the field of model transformation optimi-

sation and static analysis. Finally, Section 6 concludes the

paper and presents direction for further work.

2 Background

Object Oriented
Model

Object Oriented
Metamodel

Model-to-Model
Transformation

Relational Database
Model

Relational Database
Metamodel

co
nf

or
m

s
to

conform
s

tosource target

Figure 1. Model-to-Model Transformation Example

This section briefly presents the background and explains

the tools and technologies used to implement the approach.

2.1 Model to Model Transformation
AnM2M transformation is a programwhich consumes one or

more input models in order to generate one or more output

models [12]. A common case is a one-to-one transforma-

tion, where one input model is mapped to one output model

e.g., mapping an object-oriented model to a relational model,

as seen in Figure 1. Still, there can be scenarios where one-

to-many, many-to-one and many-to-many transformations

(as in the case of model integration) are useful.

2.2 Epsilon
Epsilon [3] is a family of task-specific languages for per-

forming a number of model management tasks like model

validation (Epsilon Validation Language - EVL [5]), model-

to-model transformation (Epsilon Transformation Language

Model

contents: Classifier [*]

Class

extends : Class
extendedBy : Class [*]
features: Feature [*]
isAbstract : Eboolean

Classifier

NamedElement

name : String

StructuralFeature

Datatype

Attribute

isMany : EBoolean
type : Datatype

Reference

type : Class

Feature

owner : Class
visibility : VisibilityEnum

Figure 2. Object Oriented Metamodel

- ETL) and pattern matching (Epsilon Pattern Language -

EPL [20]). All these languages extend a core language, the

Epsilon Object Language (EOL) [21], which provides imper-

ative constructs such as loops, conditionals and operations

(both built-in and user-defined). EOL is inspired by OCL [6],

a widely used constraint language, and has a similar syntax.

All languages of Epsilon support managing models from a

number of modeling technologies (and their respective per-

sistence formats), through a uniform interface, the Epsilon

Model Connectivity (EMC) layer [4].

The reason for choosing Epsilon as the basis of this work is

that the developed optimisation facilities can be leveraged by

a wide range of modelling technologies, as Epsilon supports

languages like EMF, Simulink and XML, and can be further

extended to work with unsupported technologies using its

EMC layer.

2.3 ETL
ETL [22] is a hybrid rule-based language for model-to-model

transformation in Epsilon. An ETL program (module) takes

as input a number of source models and transforms them into

a number of target models. The models, as in other Epsilon

languages, can be of heterogeneous modelling technologies

(e.g., an EMF model can be transformed to a Simulink model

or an XML document can be transformed to an Excel spread-

sheet). An ETL module can contain a number of transfor-

mation rules, transforming source model elements to one or

more target model elements. An ETL module can optionally

have a pre and a post block of statements, to be executed

before and after the execution of transformation rules re-

spectively. A transformation rule can extend one or more

other transformation rules and can be declared as abstract
or lazy through relevant annotations:

99

Selective Traceability for Rule-Based M2M Transformations SLE ’22, December 06–07, 2022, Auckland, New Zealand

• An abstract rule must be extended by another trans-

formation rule. Such rules cannot be invoked stan-

dalone, they get invoked only when the rule that ex-

tends them is invoked.

• A lazy rule will get executed only when it is required

by another transformation rule.

In a model-to-model transformation, resolving elements cre-

ated by other transformation rules is quite a common and

recurring task. For this resolution ETL provides the equiv-
alent()/equivalents() operations. The elements returned by

these operations follow the respective order of the rules that

have created them. An exception to this occurs when one

of the rules is declared as primary, in which case its results

precede the results of all other rules.

2.4 Motivating Example
Let us consider the example of a partial (for conciseness)

OO2DB transformation. It describes the transformation of a

model conforming to an object-oriented schema metamodel,

as shown in Figure 2, into a model conforming to a relational

database metamodel as shown in Figure 3. This transforma-

tion has been adapted from [23] and an excerpt is shown in

Listing 1. The transformation contains four transformation

rules:

• Class2Table to transform all the Classes in the object-

oriented model to Tables in the database model;

• SingleValuedAttribute2Column to transform single-valued

Attributes to Columns in the database model;

• MultiValuedAttribute2Table to transform multi-valued

Attributes to Tables and foreign key Columns in the

database model;

• Reference2ForeignKey to transform References in the

object oriented model to foreign key Columns in the

database model.

Table
columns : Column [*]
primaryKeys : Column [*]

DatabaseElement
name : EString
database : Database

Database

contents : DatabaseElement [*]

Column
table : Table
type : EString

ForeignKey
parent : Column
child : Column

Figure 3. Database Schema Metamodel

The size of the trace of the transformation (as shown in

Listing 1), which relates source to target elements in the

current implementation of the ETL execution engine will be

O+M+N, if we evaluate it over a source model containing O
classes, M number attributes and N references.

1 model Source driver EMF {

2 nsuri="oo"

3 };

4

5 model Target driver EMF {

6 nsuri="db"

7 };

8

9 pre {

10 var db : new Target!Database;

11 }

12 rule Class2Table

13 transform c : Source!Class

14 to t : Target!Table{

15 t.name = c.name;

16 t.database = db;

17 if (c.`extends `.isDefined ()){
18 var parentTable : Target!Table;

19 parentTable =c.`extends `.equivalent ()
;

20 }

21 }

22

23 // Transforms a single -valued attribute

24 // to a column

25 rule SingleValuedAttribute2Column

26 transform a : Source!Attribute

27 to c : Target!Column {

28 guard : not a.isMany

29 c.name = a.name;

30 c.table = a.owner.equivalent ();

31 }

32

33 // Transforms a multi -valued attribute

34 // to a table where its values are

35 // stored and a foreign key

36 rule MultiValuedAttribute2Table

37 transform a : Source!Attribute

38 to t : Target!Table ,

39 fkCol : Target!Column {

40

41 guard : a.isMany

42 fkCol.table = a.owner.equivalent ();

43 t.database = db;

44 }

45

46 // Transforms a reference into

47 // a foreign key

48 rule Reference2ForeignKey

49 transform r : Source!Reference

50 to fkCol : Target!Column {

51

52 fkCol.table = r.type.equivalent ();

53

54 }

Listing 1. Object-oriented 2 Database Transformation

100

SLE ’22, December 06–07, 2022, Auckland, New Zealand Qurat ul ain Ali, Dimitris Kolovos, and Konstantinos Barmpis

However, at a closer look, in this OO2DB transformation,

only trace links created by the rule Class2Table are needed
by the other rules. The remaining trace links, created by

the three other rules (SingleValuedAttribute2Column, Multi-
ValuedAttribute2Table & Reference2ForeignKey) are not used
anywhere in the transformation and therefore establishing

and keeping them in memory is wasteful. This would reduce

the size of the transformation trace to O.
The first contribution of the paper is an approach for reduc-

ing the memory footprint of the transformation trace by

selectively tracing only pairs of source-target elements that

may be needed elsewhere in the transformation.

This is achieved by computing a dependency graph be-

tween rules through static analysis and storing only the

traces of a rule that are later needed by another rule. To

resolve equivalent() operations (as in Lines 18, 30 & 40 in

Listing 1), the ETL engine normally triggers a lookup on a

global transformation trace, ignoring the fact that the result-

ing target objects can only have been produced by specific

rule(s), in this case the Class2Table rule. Hence, one possible
optimisation is to benefit from static analysis, discovering

which specific rule would provide the resulting target object

instead.

The second contribution of this work is an approach for

rewriting (desugaring) transformation programs in an im-

perative form, where rules are turned into operations, and

calls to equivalent/s() are replaced with calls to appropri-

ate transformation operations determined through static

analysis.

3 Proposed Approach

1 model Source driver EMF {

2 nsuri="oo"

3 };

4

5 model Target driver EMF {

6 nsuri="db"

7 };

8

9 pre {

10 var db : new Target!Database;

11 var cache_rule_Class2Table : Map;

12

13 for (c : Source!Class in

14 Source!Class.all) {

15 c.rule_Class2Table ();

16 }

17

18 for (a : Source!Attribute in

19 Source!Attribute.all) {

20 a.rule_SingleValuedAttribute2Column ();

21 }

22

23 }

24

25 operation Source!Class rule_Class2Table () :

26 Target!Table {

27

28 if(cache_rule_Class2Table.containsKey(self)

)

29 return cache_rule_Class2Table.get(self);

30 var t : Target!Table = new Target!Table;

31 t.name = self.name;

32 t.database = db;

33 if (c.`extends `.isDefined ()){
34 var parentTable : Target!Table;

35 parentTable =c.`extends `.
rule_Class2Table ();

36 }

37 cache_rule_Class2Table.put(self , t);

38 return t;

39 }

40

41 operation guardSingleValuedAttribute2

42 Column(a : Source!Attribute) :

43 Boolean {

44 return not a.isMany;

45 }

46

47 operation Source!Attribute

48 rule_SingleValuedAttribute2Column () :

49 Collection {

50

51 if (guardSingleValuedAttribute2

52 Column(a)) {

53 var c : Target!Column = new Target!Column

;

54 c.name = self.name;

55 c.table = self.owner.rule_Class2Table ();

56 return Collection{c};

57 }

58 }

Listing 2. Rewritten excerpt of the OO2DB Transformation

In this section, we discuss our proposed approach for the

efficient execution of rule-based model transformation pro-

grams using static analysis and automatic program rewrit-

ing. The main goal of this approach is to reduce the execu-

tion time and memory footprint of transformations, without

changing or compromising any of the language semantics.

This approach is illustrated in Figure 4.

The proposed approach contains four main components,

with a sourcemetamodel, a sourcemodel, a target metamodel

and a transformation being its inputs. The Static Analyser 1○
component is given the model-to-model transformation and

the source and the target metamodel(s), extracting the type

information and yielding a type-resolved abstract syntax tree

(AST). Then, using the Dependency Graph Generator 2○, we

extract the dependencies between the different transforma-

tion rules in the transformation: the dependency graph uses

101

Selective Traceability for Rule-Based M2M Transformations SLE ’22, December 06–07, 2022, Auckland, New Zealand

Source
Metamodel

Source
Model

ETL
Transformation

Script

Abstract

Syntax
Tree

Type-
resolved

AST

Target
Metamodel

conforms to

Rewriter

Dependency
Graph

Dependency
Graph Generator Static Analyser

Rewritten
Transformation

ETL Engine

Output Model(s)

1 2 3

4

conforms to

Selective Tracer Reduced/
Selective

Transformation
Trace

Figure 4. An overview of the proposed approach

the type-resolved AST to populate these dependencies. Fol-

lowing this, we have a Selective Tracer to selectively create

hash map caches to store the result of source target key-

value pairs generated by corresponding operations and use

them as a minimal transformation trace. In the next step,

we pass this dependency graph to the Rewriter 3○, where the

transformation is rewritten, i.e., the transformation rules

are converted to the corresponding operations to optimise

the resolution of elements by other rules. Finally, we pass

the rewritten optimised transformation to the ETL Engine 4○
for execution. ETL Engine is the default engine already pro-

vided by Epsilon. We extended the default engine to provide

the resolution of operation calls to their corresponding user

defined methods mapping provided by the static analyser.

3.1 Static Analysis

ETL Static AnalyserextendsEOL Static Analyser

Figure 5. Static analysis of Epsilon

In the first step of this approach, the ETL transforma-

tion program is parsed into an Abstract Syntax Tree (AST).

The static analyser yields a type-resolved AST (an AST aug-

mented with the computed types of expressions), using meta-

model introspection and type inference, as shown in Table 1

for the example of Listing 1. Epsilon programs define con-

figuration details of the models they access using model

declaration statements (Line 1-3 & Line 5-7 in Listing 1)

which are then used by the static analyser to retrieve the

available types and typed properties in each model. The rela-

tionship between EOL and ETL’s static analyser is shown in

Figure 5. This static analyser extends the EOL one by includ-

ing support for analysing expressions inside transformation

Class2Table

SingleValuedAttribute2Column MultiValuedAttribute2ColumnReference2ForeignKey

needsTraceOf needsTraceOf

ne
ed

sT
ra
ce
O
f

needsTraceOf

Figure 6. Dependency Graph of Listing 1

rules, their source and target parameters, and for pre and

post blocks.

3.2 Dependency Graph
In an ETL transformation, resolving target elements that

have been (or can be) transformed from source elements by

other rules is a frequent task in the body of a transformation

rule. This creates dependencies between these rules, which

can be extracted from a type-resolved AST. In the body of a

transformation rule say TRx, if there is a equivalent(s) state-
ment that uses the elements transformed by another trans-

formation rule say TRy as depicted in Line 9 of Algorithm 1,

we can say that TRx is dependent on TRy. So, we extract such
dependencies as shown in Figure 6, using static analysis, de-

scribing which transformation rule is dependent on which

other transformation rules for its execution (Line 10). We

depict the process of extracting such a dependency graph in

Algorithm 1. For example, in Line 18 of Listing 1, there is an

equivalent() operation. The target expression of equivalent

is a.owner, the type of which is resolved to Source!Class as
shown in Table 1. Then a rule whose source parameter is

of the same type or a compatible type (super type) will be

102

SLE ’22, December 06–07, 2022, Auckland, New Zealand Qurat ul ain Ali, Dimitris Kolovos, and Konstantinos Barmpis

Table 1. Resolved types of various constructs in Listing 1

Line# Expression Resolved Type
2 db Target!Database

5 c Source!Class

6 t Target!Table

7 t.name String

7 c.name String

14 a Source!Attribute

15 c Target!Column

16 not a.isMany Boolean

17 c.name String

17 a.name String

18 c.table Target!Table

18 a.owner Source!Class

25 a Source!Attribute

26 t Target!Table

27 fkCol Target!Column

29 a.isMany Boolean

30 fkCol.table Target!Table

30 a.owner Source!Class

31 t.database Target!Database

32 db Target!Database

37 r Source!Reference

38 fkCol Target!Column

40 fkCol.table Target!Table

40 r.type Source!Class

searched, which in this case is rule Class2Table. Hence an
edge is created between SingleValuedAttribute2Column and

Class2Table.

3.3 Selective Traceability
While the resolution of elements using equivalent/equivalents
operations is explained in Section 2.3, how these equivalent

statements are actually executed is defined by the Epsilon

execution engine. We decided to follow the approach of

completely replacing calls to equivalent/s() with calls to oper-

ations produced by the corresponding transformation rules.

In the running example, the original transformation in line

18 of Listing 1, calls an equivalent operation, while the opti-

mised rewritten program in Listing 2 calls the corresponding

operation rule_Class2Table. Using the dependency graph, we
create caches (HashMaps) as shown in Line 11 of Listing 2,

which marks them as traceable. Hence, the operation cache

also serves as a selective trace for the resolution elements.

The cache is populated with the corresponding target ele-

ment along with source elements as a key as shown in Line

33 of Listing 2. If the cache contains a source element as key

then the target elements are retrieved from the cache in the

body of the operation as shown in Line 28-30 of Listing 2.

3.4 Transformation Rewriting
After extracting the rule dependency graph, we rewrite the

rule-based transformation program into an imperative form,

as shown in Listing 2, where all rules are mapped to opera-

tions. The detailed process is presented in Algorithm 2. All

rules are mapped to operations with the body of the rule

mapped to the body of the operation, as in lines 17-20 for

rule Class2Table and in lines 32-39 for rule SingleValuedAt-
tribute2Column (depicted in Line 3-26 of Algorithm 2). If

a rule extends other transformation rules, those rules are

called in the body of the operation, by setting the source

parameter of the rule as a context to the operation (Line 17).

The target parameters of a rule are instantiated in the body

of the corresponding operation (Line 15), and then returned

from the operation (Line 18). If the target parameter is multi-

valued, then the resulting values are returned in a Collection.
If a transformation rule has a guard block (Line 13), the guard

block is also mapped to a corresponding operation (Line 4),

with the same body (Line 6). The source parameter of the

rule is also passed as a parameter (Line 7) of the correspond-

ing operation of the guard block. Table 2 illustrates how the

expressions are executed in regular ETL and how they are

rewritten using the proposed approach. single represents a
single source model element while collection represents a

collection of model elements. If there exists more than one

matched rule the results of all the matched rules are com-

bined and executed depending on the equivalent/equivalents

call. During the rewriting process, the behaviour of these

calls is preserved using operation calls as shown in Table 2.

Secondly, all these converted operations are added to the

rewritten ETL transformation (Line 24). Then, we analyse

the dependency graph (detailed in Section 3.2), to see if a

rule needs to be traced, in which case we create a cache for

the respective operation (Lines 11).

Finally, we call the mapped operations in the pre block
of the ETL transformation (Line 30). All the operations cor-

responding to non-lazy, non-abstract rules are called in for

loops by iterating through all instances of the source param-

eter of the rule (Line 27-28), setting it as a context to the

operation (Line 29). At the end of this process, we remove

all the original transformation rules from the ETL transfor-

mation (Line 31), as equivalent constructs are already being

called as operations in the pre block.

3.5 ETL Engine
The rewritten transformation program is executed using a

modified version of the ETL engine. This program is semanti-

cally equivalent to the original transformation but converted

to imperative code, converting rules to operation calls, as dis-

cussed above. The ETL engine is the same engine used by the

naive ETL, with just one modification in resolving operation

103

Selective Traceability for Rule-Based M2M Transformations SLE ’22, December 06–07, 2022, Auckland, New Zealand

Algorithm 1 Algorithm for extracting dependency graph

1: procedure extractDependencyGraph()
2: Let DG = Dependency graph

3: Let a = Transformation program

4: for each rule in a do
5: add rule as a vertex in DG
6: for all rule in .rules do
7: for all element =elements in body of rule do
8: if element is an OperationCallExpression then
9: if element.name = "equivalent" or "equivalents" then
10: type = resolvedType of element.target

11: for all r in .rules do
12: if r is not abstract & (source parameter of rś type = type or is supertype of type) then
13: add r to rules

14: create an edge(s) in DG from rule to rules
15: replace element with the corresponding operation call of rule.

Algorithm 2 Algorithm for rewriting the transformation

1: procedure rewrite(a)
Require: DG = Dependency graph

2: Let a = Transformation program

3: for all rule in .rules do
4: Map guard block of rule to an operation op_gd
5: op_gd.name = operation guard_ruleName

6: Body of op_gd <- body of guard block

7: Param of op_gd <- Source parameter of rule
8: Add op_gd to the ETL module

9: Map rule to an operation op_rule
10: op_rule.name = operation rule_ruleName

11: Body of op_rule<- body of rule
12: context of op_rule <- Source parameter of rule
13: if guardBlock exists then
14: Call op_gd as an if statement

15: Instantiate target element(s)

16: Add above as statement(s) to the body of op_rule
17: Call super rules of rule
18: Return target element(s) as a Collection
19: Add above as a return statement in op_rule
20: Set the type of target element of rule as a return type of op_rule.
21: If multiple targets set return type as Collection

22: if rule is traceable according to DG then
23: declare a HashMap (cache_ruleName) variable in the pre block
24: add target elements for the corresponding source element in the cache_ruleName

25: add an if statement to search in cache_ruleName if a key with source element exists

26: Add op_rule to the ETL module

27: for all rule in transformation rules do
28: if rule is not lazy or abstract then
29: Iterate through all instances of source parameter of rule
30: Call the corresponding operations of rule in for loop

31: Set the iterating variable as a context of operation

32: Add the for statements in the pre block

33: Clear all transformation rules from ETL module

104

SLE ’22, December 06–07, 2022, Auckland, New Zealand Qurat ul ain Ali, Dimitris Kolovos, and Konstantinos Barmpis

Table 2. Rewriting of equivalent/equivalents() operations

Original input expression Resolution in ETL Corresponding rewritten expression

single.equivalent()

Return only the first element of the

target elements of matched rules single.matched_rule().first()

single.equivalents() Return targets of all the matched rules single.matched_rule()

collection.equivalent()

Return a flattened collection of

targets of all the matched rules collection.collect(x|x.matched_rule()).flatten()

collection.equivalents()

Return targets of all the matched

rules for all collection elements collection.collect(x|x.matched_rule())

calls. Usually operation calls are resolved using Java’s reflec-

tion API, which can be computationally expensive. Static

analysis, as described in Section 3.1, other than resolving

types, also monitors which operation call expressions in the

program are mapped to which corresponding user defined

operations. Hence, we can use this information for providing

the exact matched operation, to avoid having to search for it

as the program is being executed. This optimisation is not

specific to ETL transformations so it can be leveraged by any

Epsilon language using user defined operations.

4 Evaluation
This section presents the experimental setup used for eval-

uating the optimisation of model-to-model transformation

programs based on static analysis, explains the methodology

used and analyses the results. Finally, it discusses the limi-

tations and possible threats to the validity of the obtained

results.

4.1 Experimental Setup
We evaluate the proposed approach against the default ETL

execution engine to measure its benefits in terms of execu-

tion time and memory footprint. The first contribution of

the paper i.e., selective traceability, is expected to substan-

tially improve the memory consumption, by reducing the

trace size, while the second one i.e., rewriting, is similarly

expected to reduce execution time. We have divided the eval-

uation into two parts. First, we perform a comparison of

the proposed approach with the default ETL engine. Second,

we compare the proposed optimisation approach with other

state-of-the-art languages for M2M transformation.

The experiment referred to as “ETL” evaluates running the

transformation using naive ETL without any optimisations.

The “Optimised ETL” one uses our optimisation/rewriting

strategy described in Section 3. We also compare our results

with two other widely-used model-to-model transformation

languages, ATL and YAMTL [7], to position our work in the

broader context of M2M languages. For the ATL and YAMTL

evaluation, we rewrote the same transformation in ATL and

YAMTL and we report on the execution time and memory

footprint.

4.1.1 Case Study and Models. We have used the OO2DB
transformation as presented in Section 2.4 for evaluating

the proposed approach. We executed the OO2DB transforma-

tion over a set of OO models of increasing sizes, as shown

in Table 3. These synthetic models conforming to the OO
metamodel are created using an EOL program which can be

found online
1
.

Table 3. Sizes of the Object Oriented models used for bench-

marking

ID Model Name # of model elements
1 OO_10K 140,006

2 OO_15K 210,006

3 OO_20K 280,006

4 OO_25K 350,006

4.1.2 Correctness. The transformation is rewritten to an

efficient form behind the scenes, so it is crucial to ensure

that the rewritten transformation is semantically equivalent

to the original input program. To gain confidence that our

rewritten program is correct, the generated output model(s)

should be the same as the ones generated by the original

transformation. Using EMFCompare [2], we can check that

the output models for ETL and Optimised ETL are the same.

For ensuring broad coverage of our tests, we executed seven

test ETL scripts mined from GitHub and for all cases we

found no differences in the outputs given by the original

and the rewritten programs. For this test case, the object

oriented to relational database transformation, we matched

the generated output models for ATL, ETL, Optimised ETL

and YAMTL. After executing these equivalence tests, we

are confident of the semantic equivalence of the rewritten

transformation and hence of the optimised and selective

traceability used in this approach.

4.1.3 Machine Specification. The benchmark experiments

were conducted on a machine with the following specifica-

tions: MacBookPro @ 2.8 GHz Quad-Core Intel Core i7, 16

1
URL suppressed for the reviewing process.

105

Selective Traceability for Rule-Based M2M Transformations SLE ’22, December 06–07, 2022, Auckland, New Zealand

GBs of RAM, macOS Big Sur version 11.1 with JVM Max-

HeapSize 4GBs.

4.2 Internal Evaluation

Table 4. Execution time of naive and optimised ETL, in ms

Model size

Execution engine

ETL

Optimised

ETL

10K 5,899 3,519

15K 9,623 6,423

20K 16,040 10,171

25K 21,836 14,641

Model Size

E
xe

cu
tio

n
tim

e
in

 m
s

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

10k 15k 20k 25k

ETL Optimised ETL

Figure 7. Execution time comparison of Optimised ETL with

ETL

The results of the execution time of the naive ETL vs

Optimised ETL are reported in Table 4 and visualised in

Figure 7.

We can observe that overall ETL’s execution time is signif-

icantly improved in ’Optimised ETL’ version. This is because

of the optimisations provided by static analysis and program

rewriting to avoid operation call resolutions at runtime and

also because of efficient resolution of equivalents before the

execution.

As the proposed optimisation approach relies on extract-

ing information (such as static analysis, extracting of de-

pendency graph), it is necessary to compute the incurred

overhead of these processes. Static analysis took an average

of 50ms, extracting the dependency graph took an average

of 35ms, while optimisation and rewriting took 2ms on aver-

age for all the experiments. It is worth noting that the size of

the models does not affect the time needed to extract this in-

formation, as all these steps are performed at the metamodel

level, before executing the program itself.

The memory use for the naive ETL and optimised ETL can

be seen in Table 5, where we can observe that the Optimised

ETL consumes less memory compared to ETL as shown

in Figure 8 due to the reduced (selective) transformation

trace provided by the selective traceability mechanism we

discussed in this paper.

Table 5. Memory consumption of naive and optimised ETL,

in MBs

Model size

Execution engine

ETL

Optimised

ETL

10K 83 30

15K 128 51

20K 175 69

25K 216 85

Model Size

M
em

or
y

C
on

su
m

pt
io

n
in

 M
B

s

0

50

100

150

200

250

10k 15k 20k 25k

ETL Optimised ETL

Figure 8.Memory consumption comparison of Optimised

ETL with ETL

4.3 External Evaluation
In the MDE ecosystem task specific languages are typically

interpreted. But compiled languages can also be used to

perform the same tasks and can be faster compared to the in-

terpreted ones, but they are more verbose and less amenable

to static analysis. In this section, we will discuss other M2M

languages used in the MDE community: ATL, YAMTL and

the A2L compiler. We compare our approach with ATL and

YAMTL because ATL is a widely used interpreted language,

YAMTL is a compiled language that builds on top of Xtend

and is state-of-the-art for large-scale model transformations.

A2L is a compiler developed for the ATL language that com-

piles ATL transformations into Java code.

In Tables 6 and 7, we present the results of execution

time and memory consumption of our proposed approach in

comparison with ATL & YAMTL, respectively (depicted in

Figure 9 and 10). We can clearly see YAMTL executes faster

than the others, because YAMTL is compiled to Java, while

ETL and ATL are interpreted.

106

SLE ’22, December 06–07, 2022, Auckland, New Zealand Qurat ul ain Ali, Dimitris Kolovos, and Konstantinos Barmpis

On the other hand, YAMTL consumes the most memory,

while ATL consumes the least. The excessive memory con-

sumption of YAMTL is explained by the fact it supports

incremental execution and hence consumes more memory

due to the caching required. We do not present the results

of the experiments compared to A2L as we attempted to

compile the OO2DB case study that we used in the experi-

ments above, but due to certain limitations of A2L (which

are discussed below), compilation failed.

Table 6. Execution time of various transformation languages,

in ms

Model size

Transformation Language
Optimised

ETL

YAMTL ATL

10K 3,519 1,318 10,355

15K 6,423 1,806 15,202

20K 10,171 2,631 84,726

25K 14,641 3,200 103,596

Model elements

E
xe

cu
tio

n
tim

e
in

 m
s

0

25000

50000

75000

100000

125000

10k 15k 20k 25k

Optimised ETL ATL YAMTL

Figure 9. Execution time comparison of Optimised ETL with

ATL and YAMTL

While A2L provides a considerable speed up by generating

efficient Java code from ATL transformations, still there are

certain limitations: Our proposed approach does not limit or

change any of the language semantics of an ETL transfor-

mation, thus supporting features such as 1) Rule Inheritance

2) Global variables 3) Reflective operations, unlike A2L. We

performed preliminary work on optimising builtin operation

calls in ETL, but realised that it would have to either limit

certain features provided by Epsilon in order to ensure cor-

rectness, or require additional constructs (or annotations)

to be added to ETL programs. Moreover, the OO2DB case

study could not be compiled using A2L due to use of a global

variable (Line 2 of Listing 1). So, in cases like this, using our

approach achieves a significant speedup, without having to

alter the original transformation.

Table 7. Memory consumption of various transformation

languages, in MBs

Model size

Transformation Language
Optimised

ETL

YAMTL ATL

10K 30 131 23

15K 51 200 32

20K 69 267 44

25K 85 337 54

Model elements

M
em

or
y

co
ns

um
pt

io
n

in
 M

B
s

0

100

200

300

400

10k 15k 20k 25k

Optimised ETL ATL YAMTL

Figure 10. Memory consumption comparison of Optimised

ETL with ATL and YAMTL

4.4 Threats to Validity
This experiment uses two metamodels :OO metamodel and

DB metamodel and a set of increasingly large synthetic mod-

els conforming to the source OO metamodel. Both the meta-

models and the transformation were not specifically tar-

geted but were chosen for two reasons. The first was using

a well-known transformation, predating this work, as well

as the metamodels exercising all core features of Ecore like

inheritance, attributes, containment and non-containment

references. The second was the generality and ease of under-

standing of both, as they are in our view generic enough to

understand and hence demonstrate the novel work presented

in this paper. Nevertheless, we realise that they may play a

significant role in determining the results obtained. Hence,

we cannot claim that the results obtained are generalisable

for every type of transformation and model. The proposed

transformation optimisation approach can benefit from ex-

periments performed on more diverse models with a broader

range of sizes and more complex transformations, both for

investigating semantic equivalence and performance gains.

Another possible threat to the validity of these results

is the addition of possibly substantial overheads of this ap-

proach when evaluating large enough programs or meta-

models: for example, if the selective trace ends up being

107

Selective Traceability for Rule-Based M2M Transformations SLE ’22, December 06–07, 2022, Auckland, New Zealand

almost equal in size to the entire transformation trace (e.g.

due to a fully connected dependency graph).

Finally, as the optimisation approach leverages the benefit

of information extracted through static analysis, it is crucial

to have an accurate static analysis of the transformation. To

ensure more complete static analysis information and thus

enable efficient program rewriting, we recommend using

a more strict coding style, explicitly declaring types where

possible, and avoiding Any type unless necessary, for more

accurate type resolution.

5 Related Work
This section summarises the state-of-the-art within the scope

of this article, divided into two main lines of work: Firstly, it

lists existing tools that provide static analysis facilities for

model management languages, particularly for model trans-

formations; and secondly, it discusses model transformation

optimisation strategies used for improving the performance

of the engines executing such transformations.

AnATLyzer [13] is a static analysis tool for the ATLAS

Transformation Language (ATL) transformations, that pro-

vides type checking, problem reporting and quick fixes fa-

cilities. It ensures that the transformation is correctly typed

according to the source metamodel and identifies any con-

flicting or missing rules.

In [10], Born et al. extend Henshin, a rule-based model

transformation language, adapting graph transformation

concepts based on EMF. This extension computes all poten-

tial conflicts and dependencies for a set of rules and reports

them in the form of critical pairs. Each critical pair consists

of the respective pair of rules, the kind of potential conflict or

dependency found, and aminimal instance model illustrating

the conflict or dependency.

In [26], Ujhelyi introduces a static analysis facility for

graph transformations. This work uses Constraint Satisfac-

tion Programming (CSP) to provide a type checker for the

Viatra2 framework. This type checker is based on CSP, and

is not guaranteed to find all the errors in a single run using

static analysis.

Static analysis of OCL is presented in [30], where a pseudo-

type OCLSelf is introduced to infer the type of built-in opera-
tions such as oclAsSet() and oclType().Willink [31] introduced

safe navigation operators in OCL. These operators solve the

problem of declaring non-null objects and null-free collec-

tions and enable OCL navigation to be fully checked for null

safety.

In [25], the A2L compiler is introduced for parallel execu-

tion of ATL transformations. It uses static analysis through

ATLyzer (discussed above), to generate efficient code at

the transformation level. A2L was discussed earlier in Sec-

tion 4.3.

Static analysis has been used for enabling the translation

from EOL to SQL [9], for optimisation of programs over EMF

models [27] and for enabling the translation from EOL to

Viatra patterns [8].

Gremlin-ATL is another approach presented in [14]. It

is a model-to-model transformation framework that trans-

lates ATL transformations into Gremlin, a query language

supported by several NoSQL databases.

Anothermodel-to-model transformation language, YAMTL,

was introduced in [?]. YAMTL provides an efficient engine

to transform EMF-based models with transformations de-

fined in the internal DSL of Xtend. Support for incremental

transformations was also added in [11] using the forward

change propagation mechanism.

Several approaches and languages are available for incre-

mental model-to-model transformations, such as the Tefkat

tool, by Hearnden et al. in [16]. Here, changes to the source

models are directly mapped to their effects on transforma-

tion execution, allowing modifications to target models to

be computed efficiently.

To summarise, the approach presented in this paper takes

the benefit of static analysis to reduce the transformation

trace while not sacrificing the language (ETL) expressiveness

by compiling it down to a general-purpose programming

language such as Java.

6 Conclusions & Further work
In this paper, we presented an approach used to optimise

programs written in rule-based M2M transformation lan-

guages. The proposed approach resolves the types of various

constructs using static analysis and then creates a depen-

dency graph between the transformation rules. Based on this

dependency graph, the rule-based transformation program

is rewritten to an imperative program that only maintains

a selective trace. Our evaluation experiments have demon-

strated that the proposed approach can deliver significant

performance benefits both in terms of execution time and

memory footprint compared to the default ETL execution

engine, particularly where larger models are involved.

Directions for future work include conducting experi-

ments to evaluate the proposed approach with other mod-

elling technologies (e.g. Simulink models, repository-based

models). Also, providing a disposal facility for the transfor-

mation trace can offer further memory footprint reductions.

Moreover, using program analysis for detecting additional

optimisation opportunities at the expression level is an in-

teresting direction for potentially further improving the per-

formance of such model-to-model transformations.

Acknowledgments
This research is supported by the Lowcomote project, funded

by the EU’s H2020 Research and Innovation Programme

under the Marie Skłodowska- Curie GA n° 813884.

108

SLE ’22, December 06–07, 2022, Auckland, New Zealand Qurat ul ain Ali, Dimitris Kolovos, and Konstantinos Barmpis

References
[1] 2022. A2L GitHub repository. https://github.com/anatlyzer/a2l.git.

[Online; accessed 29-April-2022].

[2] 2022. EMF Compare. https://www.eclipse.org/emf/compare/. [Online;
accessed 29-April-2022].

[3] 2022. Epsilon. https://www.eclipse.org/epsilon/. [Online; accessed

29-April-2022].

[4] 2022. Epsilon Model Connectivity Layer. https://www.eclipse.org/
epsilon/doc/emc/. [Online; accessed 29-April-2022].

[5] 2022. Epsilon Validation Language. https://www.eclipse.org/epsilon/
doc/evl/. [Online; accessed 29-April-2022].

[6] 2022. Object Constraint Language. https://www.omg.org/spec/OCL/2.
4/About-OCL/. [Online; accessed 29-April-2022].

[7] 2022. Yet Another Model Transformation Language. https://yamtl.
github.io. [Online; accessed 29-April-2022].

[8] Qurat Ul Ain Ali, Benedek Horváth, Dimitris Kolovos, Konstanti-

nos Barmpis, and Ákos Horváth. 2021. Towards Scalable Valida-

tion of Low-Code System Models: Mapping EVL to VIATRA Pat-

terns. In 2021 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C). 83–87.
https://doi.org/10.1109/MODELS-C53483.2021.00019

[9] Qurat ul ain Ali, Dimitris Kolovos, and Konstantinos Barmpis. 2020.

Efficiently Querying Large-Scale Heterogeneous Models. Association for

Computing Machinery, New York, NY, USA. https://doi.org/10.1145/
3417990.3420207

[10] Kristopher Born, Thorsten Arendt, Florian Heß, and Gabriele Taentzer.

2015. Analyzing Conflicts and Dependencies of Rule-Based Trans-

formations in Henshin. In Fundamental Approaches to Software En-
gineering, Alexander Egyed and Ina Schaefer (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 165–168.

[11] Artur Boronat. 2021. Incremental execution of rule-based model trans-

formation. International Journal on Software Tools for Technology
Transfer 23, 3 (2021), 289–311.

[12] Marco Brambilla, Jordi Cabot, Manuel Wimmer, and Luciano Baresi.

2017. . Morgan & Claypool. https://ieeexplore.ieee.org/document/
7899157

[13] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. 2018. AnAT-

Lyzer: An Advanced IDE for ATL Model Transformations. In Pro-
ceedings of the 40th International Conference on Software Engineer-
ing: Companion Proceeedings (Gothenburg, Sweden) (ICSE ’18). As-
sociation for Computing Machinery, New York, NY, USA, 85–88.

https://doi.org/10.1145/3183440.3183479
[14] Gwendal Daniel, Frédéric Jouault, Gerson Sunyé, and Jordi Cabot.

2017. Gremlin-ATL: a scalable model transformation framework. In

2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 462–472.

[15] Raffaela Groner, Katharina Juhnke, Stefan Höppner, Matthias Tichy,

Steffen Becker, Vijayshree Vijayshree, and Sebastian Frank. 2022. A

Survey on the Relevance of the Performance of Model Transformations.

Software Engineering 2022 (2022).
[16] DavidHearnden,Michael Lawley, and Kerry Raymond. 2006. Incremen-

tal Model Transformation for the Evolution of Model-Driven Systems.

In Proceedings of the 9th International Conference on Model Driven Engi-
neering Languages and Systems (Genova, Italy) (MoDELS’06). Springer-
Verlag, Berlin, Heidelberg, 321–335. https://doi.org/10.1007/11880240_

23
[17] Stefan Höppner, Timo Kehrer, and Matthias Tichy. 2022. Contrasting

Dedicated Model Transformation Languages versus General Purpose

Languages: A Historical Perspective on ATL versus Java Based on

Complexity and Size. Softw. Syst. Model. 21, 2 (apr 2022), 805–837.

https://doi.org/10.1007/s10270-021-00937-3
[18] John Hutchinson, Mark Rouncefield, and Jon Whittle. 2011. Model-

driven engineering practices in industry. In Proceedings of the 33rd
International Conference on Software Engineering. 633–642.

[19] Frédéric Jouault and Ivan Kurtev. 2005. Transformingmodels with ATL.

In International Conference on Model Driven Engineering Languages
and Systems. Springer, 128–138.

[20] Dimitris S Kolovos and Richard F Paige. 2017. The epsilon pattern

language. In 2017 IEEE/ACM 9th International Workshop on Modelling
in Software Engineering (MiSE). IEEE, 54–60.

[21] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2006. The

epsilon object language (EOL). In European conference on model driven
architecture-foundations and applications. Springer, 128–142.

[22] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2008. The

epsilon transformation language. In International Conference on Theory
and Practice of Model Transformations. Springer, 46–60.

[23] Michael Lawley, Keith Duddy, Anna Gerber, and Kerry Raymond.

2004. Language features for re-use and maintainability of MDA trans-

formations. InWorkshop on Best Practices for Model-Driven Software
Development.

[24] Daniel Strüber, Timo Kehrer, Thorsten Arendt, Christopher Pietsch,

and Dennis Reuling. 2016. Scalability of Model Transformations: Posi-

tion Paper and Benchmark Set.. In BigMDE@ STAF. 21–30.
[25] Jesús Sánchez Cuadrado, Loli Burgueño, Manuel Wimmer, and Anto-

nio Vallecillo. 2020. Efficient execution of ATL model transformations

using static analysis and parallelism. IEEE Transactions on Software En-
gineering PP (07 2020), 1–1. https://doi.org/10.1109/TSE.2020.3011388

[26] Zoltán Ujhelyi. 2009. STATIC ANALYSIS OF MODEL TRANSFORMA-
TIONS. Master’s thesis. Budapest University of Technology and Eco-

nomics.

[27] Qurat Ul Ain Ali, Dimitris Kolovos, and Konstantinos Barmpis. 2021.

Identification and Optimisation of Type-Level Model Queries. In

2021 ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems Companion (MODELS-C). 751–760. https:
//doi.org/10.1109/MODELS-C53483.2021.00121

[28] Dániel Varró, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István

Ráth, and Zoltán Ujhelyi. 2016. Road to a Reactive and Incremental

Model Transformation Platform: Three Generations of the VIATRA

Framework. Softw. Syst. Model. 15, 3 (jul 2016), 609–629. https://doi.
org/10.1007/s10270-016-0530-4

[29] Jon Whittle, John Hutchinson, and Mark Rouncefield. 2013. The state

of practice in model-driven engineering. IEEE software 31, 3 (2013),
79–85.

[30] Edward D. Willink. 2011. Modeling the OCL Standard Library. ECE-
ASST 44 (2011). https://doi.org/10.14279/tuj.eceasst.44.663

[31] Edward D. Willink. 2015. Safe Navigation in OCL. In Proceedings
of the 15th International Workshop on OCL and Textual Modeling co-
located with 18th International Conference on Model Driven Engineering
Languages and Systems (MoDELS 2015), Ottawa, Canada, September 28,
2015, Vol. 1512. 81–88.

109

https://github.com/anatlyzer/a2l.git
https://www.eclipse.org/emf/compare/
https://www.eclipse.org/epsilon/
https://www.eclipse.org/epsilon/doc/emc/
https://www.eclipse.org/epsilon/doc/emc/
https://www.eclipse.org/epsilon/doc/evl/
https://www.eclipse.org/epsilon/doc/evl/
https://www.omg.org/spec/OCL/2.4/About-OCL/
https://www.omg.org/spec/OCL/2.4/About-OCL/
https://yamtl.github.io
https://yamtl.github.io
https://doi.org/10.1109/MODELS-C53483.2021.00019
https://doi.org/10.1145/3417990.3420207
https://doi.org/10.1145/3417990.3420207
https://ieeexplore.ieee.org/document/7899157
https://ieeexplore.ieee.org/document/7899157
https://doi.org/10.1145/3183440.3183479
https://doi.org/10.1007/11880240_23
https://doi.org/10.1007/11880240_23
https://doi.org/10.1007/s10270-021-00937-3
https://doi.org/10.1109/TSE.2020.3011388
https://doi.org/10.1109/MODELS-C53483.2021.00121
https://doi.org/10.1109/MODELS-C53483.2021.00121
https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.14279/tuj.eceasst.44.663

	Abstract
	1 Introduction
	2 Background
	2.1 Model to Model Transformation
	2.2 Epsilon
	2.3 ETL
	2.4 Motivating Example

	3 Proposed Approach
	3.1 Static Analysis
	3.2 Dependency Graph
	3.3 Selective Traceability
	3.4 Transformation Rewriting
	3.5 ETL Engine

	4 Evaluation
	4.1 Experimental Setup
	4.2 Internal Evaluation
	4.3 External Evaluation
	4.4 Threats to Validity

	5 Related Work
	6 Conclusions & Further work
	Acknowledgments
	References

