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Abstract 
 

In seismic hazard assessments the importance of knowing different input parameters 

accurately depends on their weight within the hazard model. Many aspects of such 

assessments require inputs based on knowledge and data from experts. When it comes 

to decisions about data collection, facility owners and seismic hazard analysts need to 

balance the possible added value brought by acquiring new data against the budget and 

time available for its collection. In other words, they need to answer the question “Is 

it worth paying to obtain this information?”. Assessing the value of information (VoI) 

before data collection should lead to optimising the time and money that one is willing 

to invest.  

This thesis presents a method that combines available data and expert judgment to 

facilitate the decision-making process within the site-response component of seismic 

hazard assessments. The approach integrates influence diagrams and decision trees to 

map the causal-relationships between input parameters in site-response analysis, and 

Bayesian inference to update the model when new evidence is considered. Here, the 

VoI is assessed for univariate, bivariate and multivariate uncertain parameters to infer 

an optimal seismic design for typical buildings and critical facilities. For the first time 

in the field of seismic hazard assessment and earthquake engineering, a framework is 

developed to integrate prior knowledge, ground investigation techniques 

characteristics and design safety requirements.  

The consistent findings across different applications show that VoI is highly sensitive 

to prior probabilities and to the accuracy of the test to be performed. This highlights 

the importance of defining those from available data as well as only considering tests 

that are suitable for our needs and budget. The developed VoI framework constitutes 

a useful decision-making tool for hazard analysts and facility owners, enabling not 

only the prioritisation of data collection for key input parameters and the identification 

of optimal tests, but also the justification of the associated decisions. This approach 

can enhance the accuracy and reliability of seismic hazard assessments, leading to 

more effective risk management strategies. 
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1 Introduction 

 

“Nothing is more difficult, and therefore more precious, than to be able to decide.” 

– Napoleon Bonaparte- 

 

1.1 Background and Motivations 

Decision-making is an essential process that permeates all aspects of our daily lives 

and the lives of those around us. From the mundane decisions of choosing what to 

wear, to more consequential decisions that can have far-reaching impacts on our 

careers, relationships, and even the world at large, we are consistently presented with 

alternatives that necessitate the evaluation of the advantages and disadvantages. While 

it would be ideal if we could always make decisions based on a complete 

understanding of the potential outcomes of our choices, the reality is that most 

decisions are made under conditions of uncertainty, ambiguity and limited 

information. To make informed decisions, it is important to reduce these uncertainties 

by increasing our knowledge and gathering as much relevant information as possible. 

In this way, we can enhance our decision-making abilities, resulting in choices that are 

grounded in logical and defensible principles.   

In all domains of study and practice, the use of measurements as means of gathering 

and evaluating information is of paramount importance. The allure of measurement 

lies in its ability to provide a comprehensive and nuanced understanding of complex 

phenomena. One measures for three reasons. The first reason is to facilitate the 

decision-making process by furnishing decision-makers with a rich trove of 

information to draw from, thereby enabling them to make more informed and prudent 

decisions. The second reason is to estimate the market value of a product. For instance, 

market research surveys designed to elicit consumer preferences, feedback, and 

sentiments can help gauge the value and potential of a product or service, thus 
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informing future innovations or creations. In some cases, this data can also be 

monetised by selling it to third parties. Finally, measurements can satisfy the 

intellectual curiosity of scholars and researchers seeking to expand our understanding 

of the world around us, pushing the boundaries of knowledge and inquiry. In short, 

measurements offer a versatile and indispensable means of acquiring information in a 

variety of contexts, serving as a critical tool for informed decision-making, market 

research, and scientific exploration. 

In some cases, the immediate benefits of measurements might not be readily apparent. 

Nonetheless, the acquisition of a piece of information can be a valuable asset, 

providing a lasting resource that can be leveraged across a variety of applications. For 

example, observing butterflies might seem free from any practical purpose; however, 

observing butterflies’ wings and measuring their interaction with water droplets 

enhanced the development of water-shedding technology (Bird et al., 2013). Today, 

this technology is applied to develop super-hydrophobic surfaces, revolutionising rain 

jackets and aircraft wings. 

One of the most used decision-making strategies is cost-benefit analysis (CBA) 

(Griffin, 1998; Boardman et al., 2017). CBA involves weighing the costs of a 

particular decision against the benefits it is expected to yield. This is done by 

quantifying the costs and benefits in monetary terms and comparing them to determine 

whether the benefits outweigh the costs. In a nutshell, the purpose of CBA is to assess 

the economic feasibility of a given decision or project and to implement the most cost-

effective option. CBA has been used in more than 140 research areas since the 1950s 

(Jiang and Marggraf, 2021), from which most applications are found in engineering 

(e.g., Van de Poel, 2009; Koopmans and Mouter, 2020), followed by environmental 

sciences ecology (e.g., Hammond, 1960; Hanley et al., 2009), energy (e.g., Clinch, 

2004), business economics (e.g., Campbell and Brown, 2003; Tsiboe, 2015) and 

healthcare sciences services (e.g., Weisbrod, 1961; Machado, 1999). 

While CBA has been widely used as a decision-making strategy across various fields, 

an alternative method called Value of Information (VoI) analysis can also serve as a 

useful tool for decision-making. VoI was first introduced by Raiffa and Schlaifer 

(1961) and has been developed and increasingly used in the last decades (Keisler et 
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al., 2014), especially in the medical and healthcare field (e.g., McFall and Treat, 1999; 

Bindels et al., 2016; Jackson et al., 2022). VoI involves assessing the potential value 

of additional information that could be obtained to inform a decision. It evaluates the 

expected benefits of acquiring new information against the costs of obtaining it.  

If both VoI analyses and CBA are ultimately performed to inform better decisions, the 

type of decision-making that these approaches serve are slightly different. While CBA 

evaluates the benefits of selecting one option over another in light of uncertainty, VoI 

is concerned with addressing the underlying cause of the uncertainty. Specifically, VoI 

enables the assessment of the value of obtaining a particular piece of information in 

reducing uncertainty, before conducting the measurements, and provides a quantitative 

measure of the potential benefits that may arise from updating a decision based on new 

evidence. In other words, VoI consists in assessing the difference between the 

outcomes of making a decision under current uncertainties and the expected outcome 

after obtaining a piece of information and choosing an optimal decision. Ultimately, 

VoI estimates are to be compared to the cost of obtaining the information (e.g., through 

purchasing). 

While VoI has traditionally found use in the domains of medicine (Willan and Pinto, 

2005; Tuffaha et al., 2016; Heath et al., 2016) and economics fields (Ducoffe and 

Curlo, 2000; Levitt and Syverson, 2008), its potential application can extend to other 

fields, such as hazard assessments and civil engineering for the evaluation of seismic 

risk. The safety of structures must be guaranteed against external hazards, including 

earthquakes. To this end, hazard assessments are used to assess existing structures as 

well as to inform the design of new structures. The importance of hazard assessments 

cannot be overstated, especially for critical structures such as nuclear facilities, the 

failure of which could result in catastrophic consequences (ONR, 2017; IAEA, 2022). 

Accurately assessing the seismic hazard at a particular location requires a wide range 

of data, which are often associated with significant uncertainties.  

Uncertainties are generally categorised into two types:  

1. Epistemic: due to lack of knowledge of a parameter or a process  

2. Aleatory: the variability inherent to the probabilistic nature of a random event 
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Epistemic uncertainties can be reduced through collection of new data or information; 

however, approaches to gather such data can be costly and time consuming. As a result, 

there is a pressing need to estimate the value of additional measurements used as inputs 

to seismic hazard assessments (SHAs). SHA is an essential step in defining the 

appropriate seismic design of a structure, which is critical in preventing substantial 

damage and potential collapse. Typically, higher seismic design levels translate to 

costlier designs. However, new information can help reduce the design requirements, 

potentially lowering the costs associated with constructing new facilities or retrofitting 

existing ones (Giordano et al., 2022; Iannacone et al., 2022). An appropriate seismic 

design must balance two potentially conflicting purposes: safety and economics, 

leading to a potential trade-off between construction costs and the acceptable target 

levels of safety. Risk-targeted and minimum-cost design procedures are attractive 

methods to balance these purposes (Gkimprixis et al., 2020).  

Furthermore, SHAs rely on various parameters, whose significance in the assessment 

determines the degree of knowledge required for each. Previous studies have found 

that the sensitivity of SHA outputs (e.g., hazard curves, uniform hazard spectra, and 

eventually, the seismic design) to different inputs can significantly vary (Aguilar-

Meléndez et al., 2018). As a result, it is essential to determine the extent to which we 

must pursue new information to constrain key SHA parameters.  

One of the most important steps in SHA is site-response analysis, which relies on the 

characterisation of the near surface (often the top ~100m) below the proposed or 

existing structure. Site-response analyses can vary in complexity based on the 

available data and importance of the project. Key inputs include shear-wave velocity 

(𝑉𝑠) profiles; depth to bedrock and its 𝑉𝑠; average 𝑉𝑠 in the first 30 meters 𝑉𝑠30 ; and 

fundamental resonance frequency of the site, 𝑓0. If information to constrain these 

inputs is not available or not known precisely, uncertainties must be integrated into 

site-response analyses (e.g., McGuire and Shedlock, 1981; Abrahamson and Bommer, 

2005; Ordaz and Arroyo, 2016). These uncertainties can have a considerable impact 

on the overall results of the SHA (e.g., Barani et al., 2013).  

As for epistemic uncertainties, these can be reduced by collecting new information 

through geophysical and geotechnical surveys and/or by installing on-site 
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seismometers. Some surveying techniques (e.g., crosshole measurements) can 

accurately characterise the near-surface but are intrusive, costly, and take considerable 

time, potentially causing the overall project to run over time and over budget. On the 

other hand, some surveying techniques (e.g., using ambient vibrations to estimate 

horizontal-to-vertical spectral ratios) do not characterise the near-surface as accurately 

but are non-intrusive, cheaper and quicker to undertake. In this context, performing 

VoI analyses could be useful for seismic hazard analysts, investors, insurance 

providers and facilities owners. Indeed, VoI can aid in prioritising the most effective 

methods, or combination of methods, for characterising a site or location of interest, 

ultimately leading to more cost-effective and informed decision-making. With its 

ability to quantify potential gains from new information, VoI analysis as a tool could 

be a successful candidate for enhancing seismic hazard assessment strategies, leading 

to improved safety and risk management outcomes.  

Most decision-making strategies in this context rely on CBA to determine optimal 

decisions under uncertainty and are based on current knowledge (FEMA, 1992; 

Ketchum et al., 2004; Williams et al., 2009). There is a paucity of applications of VoI 

in the field of earth sciences and civil engineering. While there have been some recent 

advances such as using VoI for assessing the benefits of geophysical measurements in 

drilling decisions (Eidsvik et al., 2008; Bhattacharjya et al., 2010;  Eidsvik et al., 

2015), geotechnical investigations in reliability-based design (Ching and Phoon, 2012) 

and more recently, structural health monitoring (Kamariotis et al., 2023), there is still 

an urgent need to develop a method that allows for optimal decision-making not only 

during the design stage but also at the data collection stage. Incorporating VoI analysis 

at the data collection stage would allow for more efficient allocation of resources, 

leading to more informed and cost-effective decision-making, ultimately improving 

the overall hazard assessment, and subsequently, the risk and design assessments.  

1.2 Aims and potential challenges 

In civil engineering applications where SHA are to be performed, there are several 

regulatory requirements that need to be satisfied. Contractors and hazard analysts need 

to be rigorous in assessments and calculations, as well as capable of justifying all 

decisions throughout the different stages of the design process. On one hand, an 



Chapter 1: Introduction                                                                                                                          6 

 

optimal decision strategy ought to consider all sources of uncertainties in the available 

data, the calculation process and the uncertainty in each of the decision outcomes. One 

the other hand, a highly uncertain decision with significant consequences might benefit 

from data collection to reduce those uncertainties. Currently, the state-of-the-art when 

dealing with these uncertainties is relying on expert judgement and published 

guidelines to justify data collection. However, guidelines are rarely study-specific 

whereas expert judgement is based on experience and beliefs, which can increase the 

risk of potential biases.  

We propose to develop an innovative decision-making strategy for data collection that 

will be based on the fusion of well-established concepts, and statistical and 

probabilistic techniques. Our approach will primarily use the VoI concept and 

Bayesian methods such as influence diagrams and Bayesian inference. By doing so, 

we aim to address critical challenges such as the justification and prioritisation of 

ground investigations for near-surface site conditions, while ensuring the integration 

of safety requirements, modern-practice approaches and expert judgement in the field 

of SHA applied in seismic design. This will enable us to develop a comprehensive and 

reliable framework that will not only effectively guide decision-makers in the selection 

of an optimal data collection strategy, but also improve cost-effectiveness by avoiding 

unnecessary data collection.  

The accurate estimation of VoI hinges on accounting for the complex web of causal 

relationships and interdependencies amongst parameters, along with the corresponding 

probabilities assigned to each of them. It is also essential to ensure that the procedure 

for the collection of additional information allows for the updating of these 

probabilities based on new evidence. Moreover, to address effectively the question of 

whether a parameter is worth investigating further, the framework should take into 

consideration the consequences of decisions, as well as the monetary costs that such a 

decision would entail.  

While VoI has been applied in other fields of study, its application in the context of 

SHA presents several unique challenges such as:  

a)  defining the key requirements of VoI specific to this field  
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b) accurately propagating uncertainties in measurable parameters to estimate the 

variability in decisions and building probabilistic models  

c) quantifying in monetary units the outcomes of the coupling of parameter 

uncertainties and decision variability.  

Additionally, the proposed method requires the quantification of the variability in 

future measurements and its dependence on the type of data collection to be used. The 

significance of this work lies in demonstrating the potential usefulness of VoI in this 

field, where epistemic uncertainties in inputs might lead to high uncertainties in the 

final results. Seismic hazard analysts, facilities owners and insurance companies can 

derive significant benefits from evaluating the VoI, especially when uncertainties can 

be reduced through data collection. In the field of SHA, the gap analysis stage can 

often lead to extended debates between clients, stakeholders and analysts on whether 

data collection should be carried out. In such cases, the question of “should we collect 

data? and if so, on which parameter?” deserves a more quantifiable answer. 

This thesis represents a contribution to the field of SHA by presenting a methodology 

for evaluating the VoI of critical parameters in SHA. For the first time, the proposed 

approach allows for a systematic assessment of the VoI, enabling more informed and 

accurate decisions regarding seismic design. More specifically, this thesis aims to: 

- Examine the theoretical methodology of VoI, analyse its implementation in 

existing decision-making scenarios, and identify the key components that must 

be considered; 

- Assess the suitability of Bayesian graphical and probabilistic methods and their 

relevance for the developed VoI approach; 

- Emphasize the prevalence of decision-making in SHA and underscore the 

necessity of VoI as a supportive tool to rationalise and prioritise data collection; 

- Specify and develop VoI approaches, from using relatively simple assumptions 

to more realistic applications, to decide when and what additional data to 

collect on near-surface site conditions aiming at inferring an optimal seismic 

design for a given structure; 

- Identify the inputs, parameters and configurations that exert the greatest 

influence on VoI estimations; and 
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- Propose a general framework, detailed guidelines and recommendations for the 

use of VoI for the assessment of key parameters of seismic design and in other 

applications. 

1.3 Outline of the thesis 

The first part of the thesis consists of a thorough review of VoI theory and of previous 

and current applications, as well as essential statistical concepts and probabilistic tools 

crucial for the field-specific application. In addition, we provide an extensive 

evaluation of the key components of SHA and an overview of decision-making 

situations. The main part of the thesis consists of building and applying the VoI 

approach for applications of three increasing levels of complexity, from a simplified 

approach to a more realistic implementation withiin a state-of-the-art site-specific 

seismic hazard assessment via and intermediate step. Finally, we provide a general 

framework and guidelines as a support to decision-makers when deciding on data 

collection.  

More specifically:  

- Chapter 2 – The Value of Information: Theory, Applications and Bayesian 

Analysis 

This chapter introduces the VoI concept as a statistical decision strategy and 

highlights its various applications to facilitate informed decision-making. The 

different types of VoI are described, and their respective advantages and 

disadvantages are discussed. The rising use of VoI in diverse domains is 

emphasised, while the lack of its implementation in SHA and seismic design 

is highlighted. Furthermore, Bayesian methods are discussed, and their ability 

to respond to VoI requirements is evidenced. 

- Chapter 3 – The need for VoI within the gap analysis phase in seismic hazard 

assessment 

This chapter provides a comprehensive overview of standard practice methods 

for evaluating seismic hazard, detailing the various stages, components, inputs 

and applications, while also examining their limitations. The chapter 

particularly focuses on the presence of uncertainty in most inputs, which can 
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result in biased estimations if not accounted for and at best, lead to high 

variabilities when considered. Furthermore, the chapter delves into the process 

of designing critical facilities, such as nuclear powerplants, in the UK, 

thoroughly evaluating the guidelines and requirements for both SHA and 

seismic design,and discussing important decision-making steps. To shed 

further light on this issue, the chapter presents a summary of two semi-

structured interviews, conducted with representatives from a seismic hazard 

team (i.e., a consultant) and utility operator (i.e., a client). The interviews 

highlight the need for decision strategies to quantitatively assess the benefits 

of data collection.  

- Chapter 4 – Assessing VoI in a seismic design application: single parameter, 

Vs30  

The chapter details a VoI approach developed to estimate the added value of 

obtaining new evidence for a single uncertain parameter in optimising the 

selection of an appropriate seismic design for a particular building, at a given 

location. The design criterion is assumed to be only dependent on the peak 

ground acceleration (PGA) of the estimated hazard at the location. The 

approach for estimating the seismic hazard is based on the product of the 

hazard at the reference rock and a frequency-independent site amplification 

factor. The method is tailored to a (a) discrete then (b) continuous variable with 

a prior probability distribution. Several VoI aspects and configurations are 

explored such as: (a) the identification and integration of prior knowledge, (b) 

the characterisation of the variability of future measurements through error 

functions and (c) the construction of conditional dependencies between the 

input parameter uncertainty and the variability in the overall outcomes. 

Outcomes are defined as expected losses when deciding under uncertainty. The 

method is supported by several sensitivity analyses to identify the factors that 

most control the obtained VoI estimates. 

- Chapter 5 – VoI for bivariate uncertain parameters within site-specific 

probabilistic seismic hazard assessment  

This chapter presents an upgrade of the application in Chapter 4, where VoI is 

assessed for a bivariate uncertain parameter describing site conditions for a 
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single layer over bedrock and for designing the same building as in Chapter 4 

based on PGA. The site amplification function is obtained analytically through 

1D linear site-response analysis. Joint probability distributions are introduced 

in the approach, allowing the estimation and comparison of the VoI of 

obtaining new evidence on one of the two uncertain parameters, but also on 

both. Sensitivity analyses using different types of measurements with specific 

variabilities evidence: (a) the contribution of each parameter to the overall 

hazard variability and to the associated decision outcomes, allowing 

prioritisation of data collection on one parameter over another, and (b) the 

influence of the type of measurements (quality and/or quantity) on VoI 

estimation, allowing derivation of an optimal combination of measurement 

techniques. Finally, the latter results are compared to those of a second case 

study defined by a more complex soil profile and a univariate uncertain 

parameter, where amplification functions are numerically computed through 

1D linear site-response analyses. 

- Chapter 6 – VoI for multivariate uncertain parameters within site-specific 

probabilistic seismic hazard assessment: Full convolution method 

This chapter expands the previous approach to a more realistic scenario 

involving a hypothetical critical facility, specifically a nuclear powerplant. 

This facility is situated in a moderate to high seismicity region underlain by a 

complex six-layer 1D profile. 1D linear-equivalent soil-response analyses are 

performed as well as state-of-the-art site-specific probabilistic SHAs in 

accordance with modern-practice. Furthermore, the approach is enhanced to 

incorporate design criteria that are based on a uniform hazard spectrum defined 

for a range of spectral periods. The VoI approach is further developed to 

include current published guidelines recommendations and requirements for 

the safety of critical facilities. The process is carefully documented, providing 

a comprehensive step-by-step approach. Multiple sensitivity analyses are 

conducted for a wide range of input parameters and assumptions, and the 

resulting estimates are compared to those from previous applications (Chapter 

4 and 5).  
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- Chapter 7– Conclusions and recommendations   

This chapter outlines the key findings of this thesis and provides guidelines and 

recommendations for conducting VoI within SHA for seismic design 

applications and beyond. A general conceptual framework is presented, which 

elucidates all steps, inputs and interdependencies, along with guidance for 

implementing VoI in diverse contexts. Additionally, this chapter sheds light on 

the current challenges and limitations encountered in this field, and proposes 

potential directions for future applications. 
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2 The Value of Information: Theory, 

Applications and Bayesian Analysis 

 

In this chapter, a concept in decision theory called Value of Information (VoI) is 

introduced. This concept is used as a tool to analyse the value of obtaining additional 

information in the presence of uncertainties. First, the origin and analytical definition 

of VoI is established. Second, the different types of VoI measurements and their 

purpose are described. Then, some previous applications of VoI in several fields are 

summarised and discussed, highlighting the lack of current developed approach for 

seismological information. Finally, we justify the need for Bayesian analysis in 

assessing VoI, where Bayesian methods are described and their utility in handling 

uncertain frameworks and decision-making situations are listed. This chapter gives an 

overview of the advantages that an approach such as VoI might have in quantifying 

the reduction of uncertainties through the collection of additional data and, therefore, 

in aiding decision-making. 

2.1 Origins and definition 

There are three major advantages in introducing VoI in practical applications (Eidsvik 

et al., 2015): 

- Implementing VoI contributes to the evaluation of current knowledge, the 

quantification of existing uncertainties and the characterisation of potential 

consequences.  

- VoI enables the probabilistic assessment of the measurement outcomes before 

measuring or purchasing a piece of information.  

- VoI can be expressed quantitatively, depending on the type of expenditure to 

be optimised (e.g., monetary: profits, optimising costs, avoided losses; time: 

reducing or extending a duration; safety; health), This allows comparison of 

estimated value and the cost (i.e., in same units) of obtaining the information. 
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Raiffa and Schlaifer (1961) pioneered the use of VoI and provided much of the 

mathematical background concerning decision-making in an uncertain world. Their 

book provides an introduction to the mathematical analysis of decision-making in the 

presence of uncertainty. Their work represents an important contribution to several 

fields and domains.  

To evaluate the VoI, Raiffa and Schlaifer define utility functions 𝑈 (considered here 

as payoffs), for each action 𝑎 based on observations 𝑧 from an experiment 𝑒 and within 

a given “state of the world’’ Ө that cannot be predicted, as 𝑈(𝑒, 𝑧, 𝑎, Ө).  Since the 

decision-maker would like to maximize the expected utility, the decision 𝑎 (or 

decisions) should maximize 𝑈. The idea is that when it comes to adding new 

information 𝑧’, an appropriate experiment 𝑒’ should be conducted to increase the 

expected utility 𝑈 and hence, update decision 𝑎′. The VoI is then simply defined as 

the increase in utility when we have that additional information:  

                                       𝑉𝑂𝐼 =  𝑈(𝑒’, 𝑧’, 𝑎’, Ө) –  𝑈(𝑒, 𝑧, 𝑎, Ө)                              (2.1) 

Acknowledging that more information generally leads to a reduction in uncertainty, 

the key question is whether a decision should be made based on current information 

or whether it is best to invest in additional information by considering its potential 

impact on the payoff that, as a result, could lead to revisiting the original decision. The 

VoI is a key tool to prioritise research and the collection of more information to reduce 

uncertainty. This should lead to more accurate and less risky decisions. The updated 

decision might remain the same as the original decision after obtaining additional 

information (i.e., a=a’). This outcome might result from collecting data that do not 

inform the source of uncertainty or that might be relevant, reinforcing the probability 

of the original decision being optimal,  

If we could know the VoI itself, we would also acknowledge the value that should be 

spent in conducting measurements for this information. Similarly, we would know if 

it is worthwhile and if we should prioritise the collection of one piece of information 

over another one. Eidsvik et al. (2015) contributed in identifying and representing the 

essential criteria for determining if a piece of information is valuable in a pyramid of 

conditions (Figure 2.1). The conditions should be satisfied from base to top.  
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The conditions are the following. 

- Relevant (base):  The measurement or information to be collected should be 

relevant to constraining the variable. Obtaining a piece of information should 

affect the uncertain parameter and have an impact on the decision-maker’s 

beliefs and strategies. 

- Material (middle): Observing the information should be able to shape the final 

decision. A direct or indirect link between the information and the outcomes 

should exist leading to a more adapted decision thanks to reduced uncertainties. 

- Economic (top): The cost of obtaining the information should not exceed its 

value. If VoI is assessed thoroughly, it is possible to invest in conducting 

measurements or surveys if the associated costs are lower than the amount 

gained or losses avoided from a better-informed decision. 

      

Figure 2.1: Pyramid of conditions to justify obtaining a piece information (modified from Eidsvik 

et al., 2015) 

VoI can be considered as the amount that someone would be willing to pay to obtain 

a piece of information. In several fields, the decision is often based on the available 

information and, in the presence of uncertainties, decisions are based on expert 

judgement. VoI is used to reduce the need for expert judgement, not only as it 

emphasises the importance of understanding the uncertainty and taking it into account 

when making a decision, but also as it explicitly justifies the decision. Indeed, VoI can 

remove issues of subjective influence of personal or group interests that can bias 

decisions and make wholly transparent decisions that might otherwise be quite opaque. 

VoI is used to tackle the uncertainty as it helps show the importance of its 

characterisation and ways to reduce it.  



Chapter 2: The Value of Information: Theory, Applications and Bayesian analysis                    16 

  

VoI supports information-gathering schemes when used within a well-defined and 

informed framework. The general framework required to calculate VoI and employ it 

for decision-making is represented in Figure 2.2. 

 

Figure 2.2: Key steps in assessing VoI within deciding on data collection  

This thesis aims at defining, developing, and applying the above framework to assess 

the value of information within seismic hazard assessment and civil engineering.  

2.2 Types of value measurements  

How VoI is modelled is both field and application specific. A utility function and a 

unit of measurement must be defined based on the stakeholders or the decision-

maker’s interests. The utility function will either help estimate avoided losses, which 

is often used in the health care field (Tuffaha et al., 2016; Antoine-Moussiaux et al., 

2019) and the evaluation of losses due to external hazards (Williams et al., 2009), or 

estimate the maximization in gains, which is often used in marketing and 

pharmaceutical applications (e.g, Wilson, 2015). The unit of this function can be 

monetary (e.g., representing profit or revenue) or non-monetary (e.g., time, happiness, 

welfare, reputation or equality). In earthquake engineering, it is more common to work 

toward minimising the Expected Losses (e.g., Gkimprixis et al., 2020). 

In addition to the utility function, other choices are important in VoI calculations, e.g., 

the number of alternative decisions, the number of parameters considered and their 

types of uncertainty. The VoI method is firmly based on a Bayesian statistical 
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framework in which probabilities represent the degree of belief in the values that a 

parameter can take. 

Key measurements for the VoI are numerous. As an example, VoI can be calculated 

by quantifying the Expected Opportunity Loss (EOL) which represents the cost of 

being wrong when making a decision (Hubbard, 2007). Where uncertainties are 

translated into probabilities, we define the EOL as follows: 

                  𝐸𝑂𝐿 = 𝑐ℎ𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑏𝑒𝑖𝑛𝑔 𝑤𝑟𝑜𝑛𝑔 × 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑏𝑒𝑖𝑛𝑔 𝑤𝑟𝑜𝑛𝑔             (2.2) 

Generally, the more information we collect, the lower the uncertainties. As a 

consequence, facing less uncertainties might decrease the chances of being wrong 

which reduces the EOL. When faced with different alternatives with probabilities for 

different states for each one, the decision is made to follow the alternative that 

minimises the EOL. 

Now that we have defined the EOL, the Expected Value of Information (EVI) is 

expressed as follows:  

                                      𝐸𝑉𝐼 = 𝐸𝑂𝐿𝐵𝑒𝑓𝑜𝑟𝑒 𝐼𝑛𝑓𝑜 − 𝐸𝑂𝐿𝐴𝑓𝑡𝑒𝑟 𝐼𝑛𝑓𝑜                                (2.3) 

The EVI simply represents the reduction in risk after considering extra information.  

When the information is perfect, i.e., complete elimination of uncertainty, the 

associated EOL is zero and the EVI will simply be the initial EOL without that 

information. Under these conditions, EVI is called Expected Value of Perfect 

Information (EVPI) (Table 2.1). 

The EVPI represents the best-case scenario, i.e., acquiring high-quality information 

that would lead to the best decision. Importantly, if the EVPI is less than the cost of 

obtaining the information, it is not worthwhile collecting that information because, 

even though the information completely eliminates the uncertainty and leads to a less 

risky choice, it is not worthwhile in terms of the unit considered (e.g., financial cost) 

when compared to the cost of obtaining the information. Hence, EVPI is a helpful tool 

when it comes to rejecting data-collection proposals as it defines an upper limit on the 

budget for data collection. 
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In most fields, and particularly in seismic hazard assessment, perfect information does 

not exist and thus uncertainties will always remain. As a result, the Expected Value of 

Imperfect Information (EVII) is a more practical concept compared to EVPI. EVII 

requires Bayesian updating of current information in light of new data.  

When considering the problem of size sampling (e.g., number of samples, boreholes 

and sensors), the Expected Value of Sample Information (EVSI) is assessed to 

determine the optimal number of samples needed to maximise the Expected Net Gain 

of Sampling (ENGS) that considers the cost of obtaining the information. 

Hubbard (2009) discusses VoI and its importance in deciding which variables to 

measure and how much we should pay to measure them. Hubbard (2009) calculated 

the EOL for about 100 variables in 60 different models and noticed patterns. Most of 

the time, the variables that have the highest EVPI are the least measured by 

organizations and on the contrary, those who have the lowest EVPI are the most 

measured. This is termed the measurement inversion and it is seen in various fields, 

e.g.: environmental policy, military logistics and market forecasting. 
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Table 2.1: Description of the types of VOI measurements  

Parameter Definition Equation Use 

Expected 

Opportunity Loss 

(EOL) 

Cost of being 

wrong when 

making a decision 

Cost of being 

wrong × chances of 

being wrong 

Helps determine 

optimal courses 

of action 

Expected Value of 

Information (EVI) 

Reduction in risk 

after considering 

extra information 

𝐸𝑂𝐿𝐵𝑒𝑓𝑜𝑟𝑒 𝐼𝑛𝑓𝑜
− 𝐸𝑂𝐿𝐴𝑓𝑡𝑒𝑟 𝐼𝑛𝑓𝑜 

Estimates 

benefits of 

additional 

information 

Expected Value of 

Perfect Information 

(EVPI) 

EVI when the 

information is 

perfect  

𝐸𝑂𝐿𝐵𝑒𝑓𝑜𝑟𝑒 𝐼𝑛𝑓𝑜 
Ideal for the 

rejection of 

proposals 

Expected Value of 

Imperfect 

Information  

(EVII) 

Gain in utility 

when purchasing 

an uncertain 

information 

𝐸𝑂𝐿𝐵𝑒𝑓𝑜𝑟𝑒 𝐼𝑛𝑓𝑜
− 𝐸𝑂𝐿𝐴𝑓𝑡𝑒𝑟 𝐼𝑛𝑓𝑜  

Estimates the 

improvement in 

knowledge 

before obtaining 

an uncertain 

piece of 

information 

Expected Value of 

Sample Information 

Gain in utility 

when purchasing a 

number 𝑛 of 

sample 

information 

𝐸𝑂𝐿𝐵𝑒𝑓𝑜𝑟𝑒 𝐼𝑛𝑓𝑜
− 𝐸𝑂𝐿𝐴𝑓𝑡𝑒𝑟 𝐼𝑛𝑓𝑜(𝑛) 

Estimates the 

improvement in 

knowledge if 𝑛 

samples of 

information are 

obtained 

Expected Net Gain 

of Sampling (ENGS) 

Takes into 

account the cost 

of sampling 

EVSI – Cost of 

information 

Helps the 

determination of 

optimum size 

sampling 

 

2.3 Example of VoI applications 

2.3.1 VoI in the literature 

One of the first studies reviewing the use of VoI in the peer-reviewed literature was 

performed by Keisler et al. (2014). This work analyses the prevalence of VoI 

applications in peer-reviewed articles from 1990 to 2011. They find that VoI 

assessment is typically used to serve three purposes: to guide decision-makers to focus 
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on the information that has the most impact on a decision, to reduce unwanted 

consequences, and to increase the robustness of the decision-making process. These 

purposes can be seen as a direct consequence, in a practical manner, of the combination 

of the three main advantages of VoI listed in section 2.1.  

Keisler et al. (2014) also evidences fields of research and engineering where the VoI 

is mostly used and where it needs to be more considered. They listed almost 260 

applications of VoI. Figure 2.3 shows the number of applications by area and grouped 

in three-year periods. It is evident that amongst all fields of research, the medical field 

is where the application of VoI has increased the most. In medical applications, VoI 

methods are seen as a useful tool for handling decision uncertainties and for allowing 

optimal design of clinical trials and assessments by predicting the expected benefits of 

undertaking trials of new healthcare interventions (McFall and Treat, 1999; 

Eckermann and Willan, 2007; Bindels et al., 2016). Commonly-developed analyses 

aimed at choosing the optimal number of surveys, target measurements and optimal 

number of samples.  

 

Figure 2.3 : Twenty-year trend in the use of the Value of Information in several fields of study 

(Keisler et al., 2014) 
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The second major field where VoI is commonly used is in economics and marketing. 

VoI can help define the benefits of purchasing information on consumers behaviour, 

needs and demands for specific markets (Copeland and Friedman, 1992; Chen et al., 

1999). As a subsequent application, VoI can be used to quantify the benefit of targeted 

advertisement and to decide on the number and level of investments to ensure a 

positive turn-over. Numerous studies focused on estimating the impact of advertising 

on consumers (Ducoffe, 1995; Ducoffe and Curlo, 2000; Van-Tien Dao et al., 2014). 

Recognizing the challenge and intricacy of predicting behaviours, VoI methods enable 

the incorporation of multiple sources of uncertainty.  

While VoI is becoming more widespread, there are currently few applications within 

policy and risk, or geotechnical and civil engineering. In earth sciences, VoI started 

becoming a popular tool within the petroleum industry to aid drilling decision-making. 

Recent examples for petroleum applications include Eidsvik et al. (2008), 

Bhattacharjya et al. (2010) and Martinelli et al. (2013). For petroleum applications, 

VoI is assessed using utility functions translating the expected oil/gas volume and their 

associated net benefits for different borehole configurations. These predictions are 

developed based on prior knowledge (e.g., seismic and geophysical data, lithology, 

porosity and saturation) and the expected added value of future data collection. The 

resulting VoI is then compared to the price, y, of a given experiment. If y>VoI, the 

experiment is not economically viable to undertake. This method enables calculations 

for various types of experiments over different price ranges and helps decide which 

ones should be undertaken. Eidsvik et al. (2015) presents extensive work in developing 

and implementing VoI approaches that integrate several types of uncertainties and 

measurements as a decision-making strategy to address spatial uncertainties and 

determine alternatives for gathering information.  

In the last decade, VoI and similar approaches have started to be further developed in 

earth sciences. We can cite applications in remote sensing (Macauley, 2006; 

Brathwaite and Saleh, 2013), structural health monitoring (Cantero-Chinchilla et al., 

2020; Giordano et al., 2022; Iannacone et al., 2022; Kamariotis et al., 2023) and 

geotechnical site investigations (Ching and Phoon, 2012). The increase in application 
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of VoI reflects the need to develop more quantitative, objective, and rigorous decision-

making methods. 

One of the methods for assessing VoI involves estimating the extent to which 

uncertainties vary with the acquisition of additional information. The presence of 

uncertainties during experiments, which is common, can result in considerable 

variability in the overall results, especially within risk-related civil engineering 

branches (e.g., earthquake engineering). Particularly, the method used to estimate a 

specific feature can be highly sensitive to the quality and amount of newly collected 

data. This was evidenced by Ching and Phoon (2012) who demonstrate how more or 

less extensive geotechnical site investigations can have an impact on the final design 

dimension of a geotechnical structure (i.e., pad foundation design) by considering three 

types of geotechnical information, separately and combined, and the results from three 

different design methods. They state that replying to the question “Is it worth the 

money/time to collect more information?” cannot be answered theoretically. Instead, 

it can be answered by applying design methods and varying systematically the amount 

of site information. Their aim was to demonstrate that more information is not only a 

“cost” item but an “investment” item as the reduction of uncertainties through more 

and higher accuracy tests can lead to design savings. The conclusion of this paper is 

that only one out of the three design methods (Reliability-Based Design) was able to 

link, in an efficient way, site investigation efforts to the design outcome in a rational 

way. In other words, more information about site conditions systemically leads to an 

increase/reduction in geotechnical structures dimensions which monetise the value of 

geotechnical information within the increase/reduction of the dimensions.  

2.3.2 Similar approaches incorporating seismic hazard 

The VoI analysis is not well exploited in the fields of seismic hazard assessment and 

civil engineering, regardless of its clear advantages. Nevertheless, approaches similar 

to VoI, used to make informed decisions, can be found under different forms and 

names. To cite a few, alternative decision-making approaches can be referred to as 

decision analysis or cost-benefit analysis.  

As an example, Williams et al. (2009) developed a methodology to make informed 

decisions on whether to retrofit a structure that experienced previous earthquakes. The 
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method was based on the economic benefits of retrofitting structures in moderate and 

high seismic hazard areas. When it comes to such decisions, the consequences of an 

underestimation of the vulnerability of the structures and/or the seismic hazard at the 

site are a threat to general safety (i.e., risk of injuries and fatalities) and economic 

losses. A framework was built based on assessing the annual probability of failure of 

buildings 𝑃𝐹. 𝑃𝐹 is computed by convolving the structure fragility curve with the 

seismic hazard at the site:  

                                                  𝑃𝐹 = ∫ 𝐹(𝑆𝑎)𝑓(𝑆𝑎)𝑑𝑆𝑎𝑆𝑎
                                      (2.4) 

where 𝐹(𝑆𝑎) is the seismic fragility of the structure defined as the conditional 

probability of attainting or exceeding a given performance level 𝑆𝑎 and 𝑓(𝑆𝑎) is the 

annual probability density of 𝑆𝑎  estimated from the hazard curves at the site. 

The type of utility function within the approach has been defined as the Estimated 

Annual Loss (EAL). Results shows that EAL systemically decreases after the retrofit 

where the economic benefits of retrofitting are estimated using the approach of Porter 

et al. (2006). The retrofit is then worth undertaking if its economic value is greater 

than the retrofit cost. While this method includes seismic hazard assessment outputs 

to inform better retrofitting decisions by comparing the outcomes of each decision, it 

is not quite a VoI application. VoI primarily helps decide on data gathering-schemes 

for a specific application. In this context, a VoI application could help decide on 

conducting a specific measurement aiming at defining the optimal level of retrofit for 

a structure (e.g., structural health monitoring). 

Losses due to severe damage or building collapse are not limited to material and 

economic losses. Other consequences such as human injuries or mortality in the case 

of seismic event should also be considered, which has not been the case in the 

contribution of Williams et al. (2009). The risk of casualties decreases when 

appropriate retrofitting based on a rigorous seismic hazard assessment is performed. 

However, estimating the statistical value of a human life remain a difficult and 

controversial task. The work of Galanis et al. (2018) is an example of including 

earthquake casualties in a complex framework to estimate the benefit of seismic 

upgrading. The statistical value of life was estimated between 1 M and 10 M euros and 
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the level of injury was linked to the building damage state and its probability of 

occurrence.  

Clotaire et al. (2019) further developed the approach of Galanis et al. (2018) and 

applied it to a case study in Switzerland by defining the risk of casualties as the product 

of individual risk, occupancy risk and statistical value of life (10,000,000 CHF). 

Kappos et al. (2008) expanded the costs in their cost-benefit analysis of pre-earthquake 

strengthening by including the expense of indemnities related to fatalities. FEMA-227 

(FEMA, 1992) models were used to infer costs of indemnities and were integrated in 

a life cycle-cost analysis to estimate the optimal retrofit level for mitigating seismic 

risk.  

When it comes to life threatening hazards, a consistent cost-benefit analysis should 

include the estimation of both casualties and economic losses in order to make rational 

decisions. Therefore, a robust VoI assessment within an application that includes 

seismic hazard should accounts for both material losses and threat to safety. 

2.4 VoI as a Bayesian analysis 

To estimate the VoI, it is crucial to build a methodology that would consider the causal-

relationships and the dependencies between parameters as well as the probabilities 

(beliefs of accuracy) assigned to each of them. When collecting more information, the 

built framework should allow these probabilities to be updated based on new evidence. 

Moreover, the method should be able to answer the question “Is this parameter worth 

investigating?”. To successfully answer the question, decision consequences should 

be accurately expressed within the framework.  

Assuming that we would need to consider a method in which probabilities and 

uncertainties are expressed and updated, it is worth investigating the advantages of 

Bayesian reasoning and learning. 

2.4.1 Bayesian networks and Influence diagrams 

Bayesian networks 

A Bayesian network (BN) is a method for modelling complex and uncertain problems 

(Pearl, 1988). There is an increasing use of BNs especially in medical decision support 
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tools (Lucas et al., 2004), in banking for fraud spotting (Lev, 2008), in earth sciences   

(Eidsvik et al., 2015), in decision analysis (Howard and Matheson, 1984) and in 

statistics (Smith, 1987). BNs constitute tools for reasoning under uncertainty. 

A BN is a fusion of two models: graphical and probabilistic. This combination ensures 

capturing both conditional dependencies and independencies between parameters. The 

graphical aspect comprises several variables called nodes, linked to each other when 

directly dependent by arrows called Edges. A set of probability distribution functions 

(pdfs) are assigned to these variables, constituting the probabilistic model.  

To illustrate the concept, let’s consider two variables A et B, conditionally 

independent. Both variables depend on a third variable C. Graphically, A and B will 

be linked to C using edges, whereas no edge links A and B as shown in Figure 2.4.  

 

Figure 2.4: BN example of a dependence on two variables 

Given that A and B are not necessarily totally independent but independent given C, 

the associated probability of A and B conditioned on C are expressed as follows, 

respectively: 

   P(A|C,B)=P(A|C)                                                  (2.5) 

                                                   P(B|C,A)=P(B|C)                                                  (2.6) 

Each edge within a BN encodes a specific factorisation of the joint distribution. The 

joint distribution of all the variables in this case is expressed as follows (Stephenson, 

2000): 

                                           P(A,B,C)=P(A|C)P(C)P(B|C)                                       (2.7)   

Another configuration illustrated in Figure 2.5 has a joint distribution as follows:  

                                           P(A,B,C)= P(A)P(B|A)P(C|B)                                     (2.8) 
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Figure 2.5: Simple example of a BN with 3 variables 

This simple BN expresses a suite of dependences where node C is directly dependent 

on B, which in turn depends on node A. 

In general, if we assume having N nodes 𝑋 = 𝑋1, … , 𝑋𝑁 , the factorisation of the joint 

distribution of all the variables is expressed as follows: 

                                          𝑃(𝑋) = ∏ 𝑃(𝑋𝑖|𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))
𝑁
𝑖=1                                  (2.9) 

The joint distribution of all nodes is simply the product of the probabilities of each 

variable given its parents’ values. A parent node of a variable Xi is a node which one 

of its outgoing edges directs toward the variable Xi, called the child. The key feature 

of BNs is that models are directed acyclic graphs (Neapolitan, 1989), meaning that all 

the edges point in a specific direction and there are no cycles or loops. This property 

allows BN to efficiently represent probabilistic dependencies between variables. 

Influence diagrams 

Influence diagrams (ID) are acyclic directed graphs representing decision problems 

(Howard and Matheson, 1984). Similar to BNs, IDs are useful in describing the 

structure of a decision problem, along with all variables directly or indirectly linked to 

the decision. The primary purpose of using IDs is to identify the decision alternative 

that would maximise the outcome of interest (i.e., utility). IDs can be seen as an 

extension to BNs as they allow representing various types of variables:  

- Chance nodes: Identical to BNs nodes, they are usually drawn as circles and 

represent uncertain quantities defined by conditional probability distributions. 

- Value nodes: Usually drawn as diamonds and represent the utility of interest 

dependent on the state of the parent nodes 

- Decision nodes: Drawn as rectangles, they model a set of alternative decisions 
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To simply illustrate the structure of an ID, we give an example of a decision problem 

in Figure 2.6. In this example, the decision-maker must decide whether to invest in 

obtaining additional data based on existing knowledge. This causality is expressed 

with an arrow starting from the uncertain chance node ‘Prior knowledge’ and directed 

towards the decision node ‘Invest in data collection’. The consequence of investing in 

the new state of knowledge is represented by a new chance node, ‘Actualised 

knowledge’, translating an update of the prior knowledge. The ID then allows the 

estimation of the outcomes (i.e., utility) for both decisions (i.e., invest or not) within 

the value node ‘Outcomes’. 

 

Figure 2.6: Simplified representation of an influence diagram 

BNs are identical to IDs when they are only constituted by chances nodes. IDs have 

the same advantages as BNs, which are detailed in the following sections. They 

represent a suitable tool to define and develop a VoI approach that could integrate prior 

knowledge, allow updates from new evidence and select an optimal decision amongst 

several alternative options. 

There are two types of decision alternatives: test decisions and action decisions (Raiffa 

and Schlaifer, 1961; Friis-Hansen, 2000). Test decisions represent the decisions of 

collecting more evidence to add to the model and action decisions are made based on 

the chosen test decisions.  To give an example, a test decision can be a decision to 

collect more data on the vulnerability of a structure through structural health 

monitoring, and an action decision might represent retrofitting a structure after 

obtaining these measurements.  
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In Chapter 3, we show that within seismic hazard assessment, several steps usually 

have a determined order where multiple decisions have to be made. Experts are called 

to give their insights and judgments to determine the approach that best satisfies 

stakeholders, regulators and/or public safety. When a study involves constructing a 

nuclear powerplant or retrofitting an existing one, there is even more pressure in 

making an appropriate decision that adheres to safety requirements and assurance 

compliance. All available information and test decisions are carefully considered and 

assessed to have a solid base when taking action decisions. Action decisions are, by 

definition, dependent on the expected assessment results and implied cost.  

2.4.2 Integration of prior knowledge 

When building a BN or an ID, both the structure and the variables’ probability 

distributions are not always known. In this scope of research, the structure is well-

known, which acknowledges that probabilistic seismic hazard assessment (PSHA) has 

been performed for several decades and that the conditional dependences of the 

parameters and their use have a minimum of constraints. However, several parameters 

can be poorly constrained, and carry different types and levels of uncertainties. The 

case when the structure is well-known with partially observed parameters is discussed 

in Stephenson (2000), using the introduction of Heckerman (1999) to some of the 

issues involved in learning within a BN. 

Some prior knowledge on parameters values is usually available because PSHAs rarely 

start from scratch. The parameters can represent physical measurements such as shear-

wave velocity (𝑉𝑠) profiles, strong-motion data, and earthquake catalogues including 

historical and instrumentally-recorded events. Prior knowledge can also be weights 

assigned to models such as seismic source models (SSMs) and ground-motion models 

(GMMs), which are themselves based on measurements, but are usually not site-

specific, and thus, can be subjected to uncertainties. 

Types of prior knowledge  

Prior uncertain knowledge is often translated into prior probabilities within Bayesian 

analysis, representing probability distributions given to uncertain parameters and 

based on current knowledge before acquiring further evidence. While uniform 
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distributions are used as noninformative priors when a parameter is fully unknown, 

informative priors such as beta and gamma distributions can be constructed when some 

data are available. 

It is important to clarify that some of the probabilities assigned within Bayesian 

analysis are not only physical probabilities (Heckerman, 1997). A physical probability 

is, for example, the probability of having a six when rolling one die. Physical 

probabilities are built from data and probability theory. However, some Bayesian 

probabilities represent degrees of belief and are often built on knowledge elicitation 

from experts in the domain (Woodberry et al., 2004).  

Probability models from data  

In general Bayesian analysis, priors regarding parameters can be informed based on 

available data. Data can be obtained from observations or measurements from 

experiments and can be quantified by individual probability models or probability 

models conditioned on other variables. Such models can be built using Empirical 

Bayes methods to estimate priors using available data (Robbins, 1956; Casella, 1985; 

Carlin and Louis, 1996; Efron, 2010). Empirical Bayes methods approximate more 

exact Bayesian methods.  

There are three major steps in Empirical Bayes estimation: 

- Estimate the overall distribution of data 

- Infer the distribution model that represents the best fit 

- Use the distribution as a prior to estimate the probability of each value 

Translating a set of data into a probability distribution is achieved through building the 

histogram of the data, identifying the best distribution that describes the data and 

estimating the associated parameters. Programming languages such as MATLAB and 

Python enable the identification of such distributions (e.g., beta, binormal, gaussian or 

gamma distributions) and offer a means to estimate the best fit to the data using 

methods such as the Maximum Likelihood Estimation (MLE) and the Method of 

Moments (MM). Noise in available data, for example, can also give a level of 
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confidence and reliability to the data and enable construction of conditional 

probabilities for the parameters involved.   

The advantage of fitting a model distribution is to describe large sets of data using a 

limited number of parameters (e.g., median, mean, variance, standard deviation). 

Besides learning about the distribution of parameters from observed data, empirical 

Bayes methods allow the estimates from future observations to be improved and 

decision-making to be enhanced.  

Probability models from expert elicitation 

Expert elicitation is conducted with experts whose knowledge and experiences can 

support informed judgments on a decision, a prediction or an outcome. Expert 

elicitation is often undertaken for problems that carry a significant number of 

uncertainties, which are usually difficult to constrain. The results of such elicitation 

are probabilistic, meaning that subjective probability distributions are inferred for the 

considered parameters or phenomenon. When information is severely lacking, experts 

intervene to propose the most suitable prior distributions and models, according to 

their experience and knowledge, with a certain level of confidence and belief. 

Following the elicitation process, encoding procedures are put in place to translate the 

various judgments as probabilities using methods such as the fractile technique that 

requires each expert to assess specified percentiles of the distribution (e.g., Walls and 

Quigley, 2001). 

Several guidelines have been published that detail the recommended steps for 

conducting rigorous elicitations (Meyer and Booker, 2001; EPA, 2009; EFSA, 2014). 

Recommendations on the involved steps such as the identification of elicitation 

variables, selection of experts, conducting the elicitation and the post elicitation 

analysis vary depending on the type of guidance and whether it is domain-specific 

(Bojke et al., 2021). Relying on expert judgments is common practice in several 

applications such as in medicine and pharmacology (e.g., Bennett et al., 2005; Grigore 

et al., 2013; Walley et al., 2015), environmental studies (e.g., Kotra et al., 1996; Choy 

et al., 2009; Nemet et al., 2017), economics (e.g., Leal et al., 2007; Iglesias et al., 2016) 

as well as in PSHA (Budnitz et al., 1997). 
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Expert elicitation usually answers this type of question: What is the probability that a 

variable X takes this state knowing the values of its parents? Within the current 

application in PSHA, the question might be ‘What is the probability of a 𝑉𝑠 profile 

being accurate knowing that measurements from ambient vibration gives a site 

fundamental frequency f0  with uncertainty 𝜎𝑓0? 

The level of accuracy in the expert elicitation process can be assessed by using 

different methods: comparing elicited values to statistical values, comparing values 

from multiple elicitations and double-checking cases where probabilities are extreme 

(Woodberry et al., 2004; McBride et al., 2012). Nevertheless, expert elicitation can 

still be biased by incomplete knowledge or a misunderstanding of the causal 

relationships and dependency between variables (e.g., Tversky and Kahneman, 1974). 

Hence, there is an increase in interest for developing automated methods for building 

BNs from data (Heckerman and Geiger, 1995; Wallace and Korb, 1999).  

Building the prior knowledge 

Building the prior model is the first step for using Bayesian inference, which is to 

update the model in light of additional evidence. The ideal way to build a prior model 

reflecting the current state of knowledge is to combine both expert elicitation and 

knowledge from data.  

Woodberry et al. (2004) proposed a methodology for a quantitative Knowledge 

Engineering Bayesian Network. In this approach elicitation from expert as well as 

machine learning using data are combined to proceed to parameter estimation and 

quantitative evaluation to study the sensitivity of a BN to the structure, to the 

parameters’ prior and conditional probabilities as well as to adding new evidence. 

Parameter estimation is the first step in building the model by integrating the current 

knowledge. It is performed by assigning conditional probabilities to all variables that 

have at least one parent either from expert elicitation, from data or based on both. 

Combining both comes with a condition: the expert elicitation needs to be calibrated 

to the available data.  
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2.4.3 Bayesian inference 

Bayesian inference is a statistical method for updating the probability at a node when 

more evidence is available about its parent nodes. Probabilities in nodes are called 

beliefs (Heckerman, 1999) and can be propagated (Pearl, 1988). This means that when 

a new observation is made (e.g., measurements, surveys) on one or more variables, it 

can be added to the BN or ID, leading to updating the beliefs of some variables that 

are directly or indirectly linked to the nodes whose values have been observed. 

This concept and methodology of computing the updated beliefs is essential for 

estimating the VoI.  Assessing the VoI within the current field of application (i.e., 

seismic hazard assessment) requires considering all parameters, their values and 

uncertainties as well as the possibility of obtaining new measurements. Therefore, 

Bayesian inference will be an essential component within the developed VoI approach 

to compute the impact of enhancing information about a parameter and therefore 

assessing its value regarding a range of beliefs. 

Bayesian updating 

When collecting a piece of information y on a variable of interest x, y can be perfect, 

meaning that it perfectly informs about x, or imperfect/partial mainly because of noise 

or because it represents one variable of a multivariate set. For example, in seismic 

hazard assessments, a 1D shear-wave velocity profile (𝑉𝑠) could be the variable of 

interest x. An ‘almost’ perfect information y could be obtained from borehole 

measurements if it is deep enough to reach the bedrock. Partial information could be 

measurements from a shorter borehole or using another non-invasive technique that 

would carry some variability in the results.  

The model for observed data y can be represented by a conditional pdf that expresses 

the probability of obtaining measurements y if the true state of the value of interest is 

x. This model is called the likelihood, 𝑝(𝑦|𝑥). Moreover, prior knowledge on the state 

of x allows defining a prior probability model 𝑝(𝑥). Ultimately, we aim at computing 

the updated probability of x in light of the new evidence y, 𝑝(𝑥|𝑦), called the posterior 

probability.  
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The posterior probability can be computed using Bayes’ rule (2.10), allowing a 

transition from a straightforward problem of predicting the probability of some 

measurements based on prior knowledge to updating the knowledge given evidence. 

Both forward and inverse model transitions are illustrated in Figure 2.7. 

                                                   𝑝(𝑥|𝑦) =
𝑝(𝑥)𝑝(𝑦|𝑥)

𝑝(𝑦)
                                             (2.10) 

where  𝑝(𝑦) is the marginal or pre-posterior probability model translating the 

probability of obtaining a given observation: 

                                               𝑝(𝑦) = ∫ 𝑝(𝑥)𝑝(𝑦|𝑥)𝑑𝑥                                        (2.11) 

The posterior can be viewed as a combination of prior knowledge and information 

brought by the data. 

 

 

Figure 2.7: Framework to compute the posterior model: forward and inverse Bayesian modelling 

using Bayes' rule (modified from Eidsvik et al., 2015) 

Bayes’ rule is used to construct posterior distributions that are essential for VoI 

calculations. It is often used in decision trees (Gilbert and Habibi, 2015), in Bayesian 

analysis for learning and updating geotechnical parameters from measurements 

(Straub and Papaioannou, 2015) and in BNs within various examples in earth sciences 

(Eidsvik et al., 2015). 
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Quantitative evaluation 

BNs and IDs are excellent tools for analysing the sensitivity of a framework and 

associated outcomes to observations, by updating probabilities when input parameters 

are varied. The quantitative evaluation gives a measure of the degree of independency 

between various nodes. While using the link structure (i.e., visually analysing the 

edges in a graph) can be an option, it is not always feasible with complex frameworks. 

To tackle this, using the d-separation rule can help identify whether the evidence 

(observations) in one variable can influence the belief in a query variable (Pearl, 1988).  

The d-separation rule is a criterion used to identify conditional independencies in a BN 

or ID. In other words, it helps decide whether a set of variables X is independent on a 

set Y given a set Z. It can be quantified by two types of measurements:  

- The entropy H of a multivariate variable X used to evaluate the uncertainty or 

randomness of a probability distribution before an observation Z: 

                                  𝐻(𝑋) = −∑ 𝑝(𝑥). log (𝑝(𝑥)𝑥∊𝑋                               (2.12) 

- The Mutual Information (MI) to measure the effect of one variable Y to another 

variable X after observation Z: 

                         𝑀𝐼(𝑋|𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌)                                (2.13) 

These measurements help to identify variables that can affect the MI and enable the 

quantification of the degree of dependency between variables. Particularly, 

quantitative evaluation allows us to determine whether the variables are insensitive or 

on the contrary, highly sensitive to certain changes. This focuses efforts towards 

refining conditional probabilities for certain variables when they are highly sensitive 

and identifying errors in the structure. By providing insights into the relative 

importance of different variables, this analysis can assist experts in identifying which 

factors have the greatest impact on the overall outcomes.  

In site-specific seismic hazard assessment, for instance, information about the soil 

materials and stratification is known to have an important impact on the estimated 

hazard. Hence, site properties are investigated and should be wisely characterised to 

reflect, as much as possible, the site and path conditions. Experts need to consider all 
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potential possibilities and integrate them into the calculations. Sensitivity analyses will 

determine the contribution of each component to the model and will then help focus 

on uncertain parameters with the highest impact. 

Alternative sensitivity analyses may require using an empirical approach consisting in 

changing, one by one, a parameter’s value in a node and studying the changes in the 

posterior probabilities of a target node. However, this can be time consuming, 

especially when networks are large. Coupé and van der Gaag (2002)  tackled this issue 

by identifying a set of variables (using d-separation) that, from evidence, could have 

an impact on a target node. They demonstrated, from systematic changes of a 

parameter value, that the changes in posterior probability distribution given evidence 

can be given a functional representation, either linear or hyperbolic. This helped 

identify and characterise a certain number of variables with high impact on the 

outcomes.   

Similarly, Woodberry et al. (2004) used this approach to calculate sensitivity functions 

defined by specific coefficients for different parameters. Results were used as a 

selection criterion for expert elicitation inputs to avoid errors in the structure or in the 

definition of conditional probabilities. In essence, this sensitivity analysis gives 

guidance in determining what data should be prioritised and collected to infer a 

specific parameter. 

2.4.4 Bayesian analysis as a tool for handling uncertainties and 

optimising decision-making involving seismic risk assessment 

The occurrence of many damaging earthquakes throughout history highlighted the 

need to better consider the vulnerability of structures as well as the importance of 

seismic retrofitting. The decision-making process for property owners is not always 

straightforward when it comes to seismic retrofitting, mainly due to economic 

limitations. There is a need to perform risk-based prioritisation of buildings at risk 

(Ellingwood, 2001; Tesfamariam and Saatcioglu, 2010).  

Uncertainties in available data and expert judgments can complicate seismic risk 

assessment and subsequent decision-making (Wen et al., 2003). Several methods offer 

ways of taking into account these uncertainties, such as soft computing including 

fuzzy-based methods, neuro-computing, probabilistic theories, BNs or learning theory 
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(Zadeh, 1994; Knezevic et al., 2018). Especially, when historical data are sparse and 

information is incomplete, probabilities can be imprecise. Methods such as second 

order distributions, lower and upper bounds and propagation of variances can allow 

the propagation of imprecise probability through dependency structures such as BNs 

and IDs to handle the uncertainties on probabilities and data-to-data relationships and 

dependencies (Kleiter, 1996; Tesfamariam, 2013). They can be highly beneficial when 

physical models are uncertain but expert intuitive knowledge is available (Li et al., 

2010). There are increasing applications of the use of BNs and IDs in regional risk 

assessments (Cockburn and Tesfamariam, 2012), seismic hazard assessments (Bensi 

et al., 2009; Bayraktarli et al., 2011), risk assessments for buildings (Faizian et al., 

2004; Tesfamariam et al., 2010; Bayraktarli and Faber, 2011) and loss assessments (Li 

et al., 2010). 

In decision-making problems, decision trees (e.g., IDs) can be highly beneficial in the 

decision-making process under uncertainty as they allow (depending on a set of 

alternative decisions, observations, associated probabilities and outcomes) to compute 

the expected utility for each set of parameters and decisions called a sequence. An 

optimal decision strategy will be the sequence(s) associated with the maximum 

expected utility. More details about decision trees are available in the literature 

(Benjamin and Cornell, 1970; Raiffa, 1997; Jordaan, 2005). When decisions can be 

made about several components (nodes) without knowing the exact order, all the 

possible permutations should be expressed in the tree. By computing the expected 

utility for all of them, a prioritisation strategy is then possible through IDs, containing 

a probability model and a decision problem structure. That is at the heart of the 

problem addressed in this PhD thesis: knowing which information should be collected 

first, second and so forth to have the most benefit and the least expected loss. 

Limited memory influence diagrams (LIMIDs) can be used as an approach to an 

asymmetric problem in the ID. In other words, when the order of decisions is not 

known at the time of the ID construction. LIMIDs assume that only the nodes that are 

represented as a parent to a decision are known at the time the decision is made.  

LIMIDs are supported in popular commercial BN Software such as Hugin Expert A/S 

2008. 
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Bensi et al. (2011) applied LIMIDs for optimising a post-earthquake decision strategy 

for inspections and closure. In this application, there are several components that could 

or could not be damaged after the occurrence of an earthquake. LIMIDs were used in 

the definition of an ID to help the decision-maker identify the components that should 

be inspected and to determine an optimal order of inspection. This is achieved by 

calculating the expected utility of inspecting a component and the loss in case it is 

damaged but has not been inspected. Two main decisions, with a specific order should 

be taken here: inspection or not and shutdown or not.  The proposed diagram for each 

component 𝑖 is built as follows:  

 

Figure 2.8: ID modelling an inspection-shutdown decision at component level (Bensi et al., 2011) 

Si: seismic demand - Ci: actual damage state – Oi: observed damage after inspection – Inspect?: 

decision on inspection – Shutdown?: decision of shutting down the component – ICi: cost of 

inspection – Li: losses  

Si represents the seismic demand/ground motion intensity, Ci is the actual damage 

(states of very low/low/moderate/high/very high) and Oi is the observed damage that 

takes a state after the decision to inspect (Inspect?) has been made. The inspection has 

a cost ICi. If an inspection is performed, the observation will be made and this 

represents a piece of evidence to update the decision ‘shutdown’, reducing or leaving 

the component in full operation. Li represents the losses, which is a function of the 

shutdown decision and the real state of the component (damaged or not). The link 
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between the two decisions ‘inspect?’ and ‘shutdown?’ sets an order on these decisions. 

Defining this order encodes the VoI obtained from the inspection.  

The particular case presented by Bensi et al. (2011) contained eight components, the 

VoI of each component is computed in case of no evidence (no inspection), imperfect 

inspection and perfect inspection. The EVPI has been computed as well as the 

Expected Value of Sample Information (EVSI) based on the definitions in section 2.2.  

The study indicated that VoI varies depending on the configuration of the system, the 

dependency between components and the reliability and liability of each one. 

Similarly, the prioritisation of inspecting a component depends on these latter 

configurations. 

2.5 Conclusion 

In seismic hazard assessment and earthquake engineering there is still a gap in decision 

strategies when it comes to justifying data collection. There are no existing approaches 

quantifying the benefits of data collection within seismic hazard assessments and as a 

consequence, in earthquake engineering. Currently, there is a challenge in determining 

the potential usefulness of collecting a specific piece of information for seismic hazard 

assessment. Particularly, it is unclear whether this information can significantly impact 

decisions related to structural design or retrofitting. Although cost-benefit analyses 

have been carried out for many different applications, including in earthquake 

engineering, VoI not only estimates the benefits of making one decision over another 

but, most importantly, VoI estimates the benefits of data collection before collecting 

the information.  

This literature review finds no clear evidence that uncertainties reduction leads 

automatically to cost savings. Nevertheless, uncertainties reduction enhances the 

reliability and accuracy of the outcome’s estimations given a decision.  

From the current understanding of VoI decision theory and the motivations of building 

an approach tailored to the problem and to the scope of this PhD, a number of must-

haves have been identified. These represent the main features and components that this 

innovative approach, applied in assessing the value of seismological information in 

hazard assessment applications, should include: 
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- Conditional probabilities  

It is essential, within the framework to be built, to express the causal-relationships and 

dependencies between the various variables. A variable value and uncertainty might 

be conditioned on other variables value and uncertainties. The conditional nature of 

these variables can be defined through estimating conditional probabilities. 

Conditional probabilities are important for VoI analysis as conditioning an observation 

from information could lead to improvement in the decision making. 

- Graphical models  

To understand how variables are linked, connected and influenced by each other, or 

none of these, graphical models are a powerful tool to serve this purpose. Such 

graphical models are referred to as Bayesian networks, Bayes nets or belief and 

influence diagrams. Besides these models being a visual tool, they allow defining 

individual probabilities, conditional probabilities and propagating new information to 

update these probabilities. These properties and advantages align with the core of the 

VoI approach to be developed.  

- Updating  

The approach should include the definition of priors and likelihood functions to 

estimate posterior distributions in light of new evidence. Bayesian updating is a major 

step in assessing the impact of added information on the overall conditional 

probabilities and defined outcomes. 

This chapter highlights that Bayesian analysis, BNs and decision trees include these 

must-haves and could be an essential tool to assess VoI within uncertain parameters in 

seismic hazard assessment as uncertainties are present in almost every component.  

In the next chapter, we describe the key components and main uncertainties within 

seismic hazard assessment. Then, we highlight the important steps and decisions for a 

rigorous assessment that is compliant with regulations and safety guidelines for design 

purposes. In the following, we develop the understanding of one of the first stages in 

seismic hazard assessment to decide on data collection; the gap analysis. Finally, we 

provide a summary of interviews conducted with seismic hazard analysts and a 
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representative of nuclear facilities operator confirming the need for developing an 

approach like VoI to aid in the decision-making process. 
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3 The need for VoI within the gap 

analysis phase in seismic hazard 

assessment 

 

This chapter introduces the seismic hazard assessment (SHA) framework, the key 

components at play and their various sources of uncertainties, particularly within site-

specific characterisation. We present the most common ground investigation 

techniques and highlight the importance of evaluating their cost-benefit before 

conducting them. Then, an overview of the current regulations and safety guidelines 

concerning the design of critical facilities is given, using nuclear installations as a case 

study. We provide a detailed overview of the decision-making process in SHAs 

performed by seismic hazard analysts, as well as in seismic design studies conducted 

by structural and civil engineers. Finally, we present a summary and outcomes of two 

interviews (detailed in Appendix A): one interview conducted with a critical facilities 

operator, and another with a group of three seismic hazard analysts, which were 

focused on SHA, regulations and strategies currently in place to justify data collection. 

The main motivation behind conducting these interviews is to identify where VoI 

could be used as a support tool in the decision-making process. 

3.1 Seismic hazard assessment 

SHA is a key concern in earthquake engineering. Quantifying and characterising the 

rate of ground-motion occurrence and its intensity are essential in seismic design, 

especially for critical facilities (e.g., nuclear installations). There are two 

representative methods aiming to cope with complicated and random earthquake 

processes: Deterministic and Probabilistic Seismic Hazard Assessment, respectively 

referred to as DSHA and PSHA (Cornell, 1968; McGuire et al., 2001).  The former 

relies on geological features and the strongest past events regardless of how often they 

occur. The latter estimates the probability of exceeding some levels of ground shaking 

at a specific site or region. In fact, PSHA considers all historical and instrumentally 
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recorded events, enabling the incorporation of both the most probable (smaller) events 

and the rarer (largest) events. PSHA is used to produce seismic hazard maps, evaluate 

the seismic risk of a structure or region, define building codes requirements and assess 

the safety of critical facilities. 

3.1.1 PSHA components  

Typically, PSHA is performed following the four-stage process illustrated in Figure 

3.1.  

 

Figure 3.1: General PSHA framework. T is the spectral period and N the number of earthquakes 

of magnitude exceeding m. Mw is the moment magnitude and 𝑴𝒎𝒂𝒙 the moment magnitude at 

which the recurrence model is truncated 
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The first and the second stage fall within the characterisation of seismic source models 

(SSM). The first stage requires the identification of all seismic sources within a region 

or in the vicinity of the site of interest depending on the level of available information, 

the definition of source types and the characterisation of the rate of seismicity. The 

sources can be either included within the framework as point or areal sources, where 

the seismicity is uniformly distributed and homogeneous in space and time, or as fault 

sources when enough data are available to characterise fault rupture mechanisms and 

seismic activity.  

The second part of source model characterisation consists of building recurrence 

models, for which the Gutenberg-Richter model (Gutenberg and Richter, 1944) is the 

best known. The Gutenberg-Richter model describes the relationship between the 

seismicity rate and the magnitude of earthquakes in a specific region. The rate of 

occurrence of events with magnitude M exceeding a threshold value m is expressed as 

a linear function in logarithmic scale as follows: 

                                                       log10 𝜆𝑚 = 𝑎 − 𝑏𝑀                                          (3.1) 

where 𝑎 and 𝑏 are the coefficient of the linear regression. An example of a recurrence 

model is shown in Figure 3.1. This relationship indicates that the stronger the seismic 

event, the lower is its probability of occurrence. 

The third stage of PSHA is establishing/selecting ground motion models (GMMs) that 

describe the level of intensity and the attenuation of ground motion with distance. 

These models are also called attenuation relations (Abrahamson and Silva, 1997) and, 

most commonly, ground motion prediction equations (GMPEs). GMPEs are derived 

from empirical data, simulated data or a combination of both. They relate ground-

motion parameters to variables describing the earthquake’s source, path and site effects 

for a specific earthquake scenario. Using GMPEs for different spectral periods can 

result in a response spectrum, which is a plot of the peak response of a series of damped 

oscillators of various natural frequencies forced by a single motion. They are essential 

and are being increasingly developed within engineering seismology  (Douglas, 2017). 

The general form of GMPEs is expressed as a combination of a source function 𝑓𝑠𝑜𝑢𝑟𝑐𝑒 , 

the path 𝑓𝑝𝑎𝑡ℎ  and the site 𝑓𝑠𝑖𝑡𝑒  as follows: 
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ln(𝑌) = 𝑓𝑠𝑜𝑢𝑟𝑐𝑒(𝑀, 𝑓𝑎𝑢𝑙𝑡 𝑚𝑒𝑐𝑎𝑛𝑖𝑠𝑚) + 𝑓𝑝𝑎𝑡ℎ(𝑀, 𝑅) + 𝑓𝑠𝑖𝑡𝑒(𝑉𝑠30 𝑜𝑟 𝑠𝑖𝑡𝑒 𝑐𝑙𝑎𝑠𝑠, 𝑓0… ) ±  𝜀𝜎    (3.2) 

𝑌: ground motion intensity at spectral period T 

𝑀: Magnitude 

𝑅: source-site distance 

𝑉𝑠30:  Average shear-wave velocity in the first 30 meters 

𝑠𝑖𝑡𝑒 𝑐𝑙𝑎𝑠𝑠: Site classification from Eurocode 8 (A, B, C, D, E, S1, S2) 

𝑓0: Fundamental resonance frequency of the site 

𝜎: standard deviation (residuals) of the ground motion logarithmic distribution 

𝜀: number of standard deviations above or below the median. 

It is of upmost importance to consider uncertainties within the GMPEs. In generic 

approaches of SHA, 𝜎 represents an aleatory variability, which is often assumed to be 

unreducible. It captures the inherent randomness of a model or a natural process. In 

addition, a part of the source, path and site functions might suffer from epistemic 

uncertainties (i.e., those due to a lack of knowledge). These uncertainties can be 

reduced depending on the level of knowledge, the amount and processing of available 

information as well as the acquisition of new data. Epistemic uncertainties can be 

captured and propagated in the framework through the use of logic trees (Reiter, 1990), 

where alternative seismogenic models, recurrence models and GMMs are taken into 

account according to experts’ level of confidence (e.g., Bommer & Scherbaum, 2008; 

Delavaud et al., 2012).  

3.1.2 Seismic hazard calculations 

By combining a SSM and a GMM, it is possible to assess seismic hazard by calculating 

the probability that a ground motion 𝑌 exceeds a specific value 𝑦* for a given 

earthquake occurrence. 

The probability of exceedance in 𝑡 number of years is expressed as follows (e.g., 

Baker, 2013): 

                               𝑃[𝑌 > 𝑦∗|𝑡] = ∬𝑃[𝑌 > 𝑦∗|𝑚, 𝑟]𝑓𝑀(𝑚)𝑓𝑅(𝑟)𝑑𝑚𝑑𝑟               (3.3) 

where 𝑃[𝑌 > 𝑦∗|𝑚, 𝑟] is retrieved from the GMPE and 𝑓𝑀(𝑚) 𝑎𝑛𝑑 𝑓𝑅(𝑟) are the 

probability density functions associated to the magnitude and distance, respectively. 
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Similarly, the annual rate of exceeding 𝑦∗ can be written as follow: 

                                              

                                           𝜆[𝑌 > 𝑦∗] =  −
ln(1−𝑃[𝑌 > 𝑦∗|𝑡])

𝑡
                                 (3.4) 

It is then possible to define the return period RP as: 

                                                           𝑅𝑃 =
1

𝜆[𝑌>𝑦∗]
                                                 (3.5) 

The main outputs of PSHA are Hazard Curves (HC), Uniform Hazard Spectra (UHS) 

and hazard disaggregation. HCs are computed for each spectral period of interest and 

express the rate or probability of exceeding a given ground motion intensity. A UHS 

is defined by a specific return period where input intensities are retrieved from HC at 

each spectral period at a fixed rate of exceedance. Finally, the disaggregation of the 

hazard consists in identifying the magnitude-distance pairs that most control the hazard 

at a specific return period. Figure 3.2 gives an example of a hazard disaggregation at 

a return period of 475 years showing that earthquakes of magnitude 6.1 occurring at a 

distance of around 70 km have the highest contribution to the overall hazard results.                                        

                             

Figure 3.2: Disaggregation: magnitude and distance contribution to the overall seismic hazard 

for a return period of 475 years (Tebib, 2017)  

P
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PSHA enables specific rates of occurrence at a given site and for a chosen period of 

time to be targeted, thereby permitting seismic design guidelines and codes to be 

adapted to the nature of a structure and its exposure. Indeed, most engineering 

applications have a defined hazard level where ground motions are evaluated. Most 

building codes use return periods of 475 years (10% probability of exceedance over 

50 years) for typical buildings (e.g., CBC 2019; Eurocode 8, EC8 2004) while for 

critical facilities (e.g., nuclear installations) a return period of 10,000 years is preferred 

(e.g., HSE, 2009).  

3.1.3 Sources of uncertainties 

Results from conducting PSHA can exhibit significant uncertainties emanating from 

the major components of the process. These results are used in earthquake engineering 

for the definition and selection of appropriate input motions for design and assessment 

of structures. These analyses are essential to study the structural vulnerability of a 

given structure, evaluate whether a structure conforms to the design codes and 

regulations and, finally, to assess the seismic risk.  Hence, it is of upmost importance 

to identify these uncertainties, characterise them and incorporate them within PSHA. 

Seismic Source Models (SSM) 

The degree of uncertainty within SSMs usually depends on the seismicity of the region 

of interest. While for regions of high seismicity, data are generally available and 

seismic sources can be identified with some degree of confidence, for low-to-moderate 

rates the small numbers of events may lead to large uncertainties in accurately 

identifying seismic sources and rates, which can be challenging for developing SSM 

and for deriving site or region-specific GMPEs.   

Earthquake catalogues need to be tested for completeness through identifying a 

minimal magnitude level above which all local events can be reliably detected and 

located. This magnitude of completeness (𝑀𝑐) is related to the degree of understanding 

the seismicity of a region and is subjected to change in space and time (Wiemer and 

Wyss, 2000). This is a source of uncertainty that can affect recurrence models. While 

𝑀𝑐 is essential to truncate the recurrence model lower magnitude bound (Woessner 

and Wiemer, 2005), another high bound truncation parameter 𝑀𝑚𝑎𝑥, representing the 



Chapter 3: The need for VoI within the gap analysis phase in seismic hazard assessment                             47 

 

  

 

 

maximum regional magnitude, can affect significantly the overall hazard (e.g., Ake, 

2008). The latter uncertainties can induce biases within the estimation of the 

Gutenberg-Richter parameters, the seismicity rate and so forth.  

Such uncertainties could be reduced by enhancing instrumental seismic monitoring, 

investing in paleo-seismological surveys to characterise historical events and 

developing better faults and earthquake rate models (Erdik et al., 2004; Chartier et al., 

2021).   

Ground motion models (GMMs) 

The SHA process includes a multitude of parameters that need to be adequately tuned 

to obtain more accurate results, such as GMMs. GMMs are key for the prediction of 

the ground motion at a site of interest. Abrahamson et al. (2019) investigated the 

impact of using non-ergodic GMM instead of ergodic GMM in seismic hazard 

assessment for California. Non-ergodic GMMs include systematic source, path and 

site effects, whereas in the ergodic assumption the average over all sources, paths and 

sites is taken into account. In other words, the ergodic assumption assumes that the 

ground motion variability observed over many stations from a multitude of 

earthquakes is comparable to the one for a single site-source combination over time 

(Anderson and Brune, 1999). Fully ergodic GMMs can be used for locations with 

similar tectonics, e.g., NGA-West1 GMMs (Power et al., 2008). However, larger data 

sets (e.g., NGA-West2) clearly put in evidence the presence of strong regional 

differences to the ground-motion scaling (Bozorgnia et al., 2014). Several researchers 

have shown that by adding specific information regarding source, path and site, the 

aleatory variability of the ground motion is smaller than the one in global models based 

on ergodic assumption (Atkinson, 2006; Anderson and Uchiyama, 2011; Lanzano et 

al., 2017). 

Abrahamson et al. (2019) demonstrate that using non-ergodic GMMs could potentially 

reduce the aleatory variability. However, this does not necessarily guarantee a 

reduction in seismic hazard levels but adopting non-ergodic GMMs will remove 

systematic over- or underestimation of the seismic hazard at different locations. It 

should be noted that the partially non-ergodic approach is becoming one of the 
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preferred methods for critical facilities and has been adopted for several major projects 

around the world, such as the Thyspunt Nuclear Power Plant in South Africa 

(Rodriguez‐Marek et al., 2014) and the Hanford Nuclear Production Complex in USA 

(PNNL, 2014).  

Improvements have been made in constraining the site term within GMPEs (𝑓𝑠𝑖𝑡𝑒). As 

𝑓𝑠𝑖𝑡𝑒  represents the average deviation at a site from the predictions of the GMPE, 

quantifying and reducing its epistemic uncertainty is possible if instruments are located 

at the site and sufficient measurements are made. Where this is not possible, numerous 

approaches have been developed to estimate the site term. 𝑓𝑠𝑖𝑡𝑒  must account for the 

site amplification for a given input motion and should capture the effects of deep shear-

wave velocity (𝑉𝑠) and site attenuation known as 𝜅0. As most GMPEs are defined for 

standard rock (𝑉𝑠30 ≈ 800𝑚/𝑠) and often for regions rather than site-specific, 

adjustments should be made. These adjustments are called  𝑉𝑠 − 𝜅 corrections, where 

the effect of the two latter parameters is captured by accounting for differences 

between the target site profile and the reference (host) profile used for the GMPE (e.g., 

(Boore and Joyner, 1997; Cotton et al., 2006). 𝜅 represents the full path attenuation 

including 𝜅0  (characterising site attenuation) and the quality factor 𝑄 (characterising 

path attenuation) (e.g., Campbell, 2003; Van Houtte et al., 2011). 

Site characterisation 

Irrespective of the scale of the study (e.g., national, regional or site-specific), site 

conditions and associated uncertainty have to be considered to select the appropriate 

GMPEs, infer suitable input motions, quantify the dynamic properties and their 

uncertainties (e.g., shear-wave velocity, damping curves, nonlinear shear modulus 

reduction curves), and obtain site amplification factors through site-response analyses.  

Site properties such as 𝑉𝑠, stratigraphy and layering, depth of the bedrock, dynamic 

properties and the nature of geological formations (2D-3D effects) significantly 

influence the ground motion at the surface and the overall hazard (e.g., Makra et al., 

2005; Bard, 2011; Barani et al., 2013; Lacave et al., 2014). The site response’s 

sensitivity to these superficial geological layers is commonly called site effects. Site 

conditions are often characterised by one or more site attributes, known as proxies 
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(Pilz et al., 2011; Trifunac, 2016). Proxies are useful indicators when developing or 

using GMMs (Douglas and Edwards, 2016; Kotha et al., 2020), for the evaluation of 

local amplification (e.g., Bindi et al., 2014), the assessment of site-specific seismic 

hazard (e.g., Rathje et al., 2015; Aristizábal et al., 2022) and for defining soil 

classification within building regulations such as Eurocode 8 (EC8, 2004), NEHRP 

(2015) and the International Building Codes (e.g., IBC, 2012). 

In the absence of sufficient data, proxies are often inferred and used to facilitate 

structural and design engineering applications. Site proxies can be better characterised 

by carrying out site and ground investigations (GIs). Direct measurements can be 

performed by conducting geological and geophysical surveys. Some examples of site 

proxies as well as some commonly associated methods of measurements are given in 

Table 3.1. 

Cultrera et al. (2021) conducted a large survey amongst experts in several fields that 

aim to identify the most useful indicators for site characterisation at seismic stations. 

This survey was carried as an online questionnaire and had the purpose of identifying 

the most useful indicators to describe site effects, the methods and level of feasibility 

of measuring them as well as the costs of conducting those measurements. This work 

was complemented by Di Giulio et al. (2021) who defined a quality index for each 

proxy or combinations of proxies that describe the reliability of such measurements 

for site characterisation. Seven site indicators were identified to be of major 

importance and reliability in site characterisation; 𝑓0, 𝑉𝑠 , 𝑉𝑠30 , 𝐻𝑏𝑒𝑑𝑟𝑜𝑐𝑘(seismological, 

engineering), surface geology and soil class. While surface geology and soil class are 

easier and cheaper to infer, the other indicators are usually obtained from in-situ 

geophysical measurements and can be costly, especially when using invasive GI 

techniques. Furthermore, a rigorous site characterisation often requires using a 

combination of those proxies (e.g., Derras et al., 2017) which could result in higher GI 

costs with prolonged durations. While 𝑓0 may be obtained through non-invasive 

geophysical prospections where costs of acquisition are relatively cheap, 𝑉𝑠 profiles 

might require wider and longer deployments of non-invasive or invasive (e.g., drilling 

boreholes) measurement campaigns.   
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Table 3.1: Description of commonly used proxies and measurement methods 

Proxies Full name Type of measurements 

𝑓0 Fundamental resonance frequency 
Horizontal-to-Vertical 

spectral ratio on 

earthquake (HVSR), on 

noise (HVN) 

Standard Spectral Ratio 

(SSR) to a reference 

station  

Ambiant Vibration 

Arrays acquisition (AVA) 

𝑆𝑇𝐹 Site transfer function describing the 

amplification function 

𝑉𝑠30 Average shear-wave velocity over the top 

30 meters 

Inversion of surface-wave 

dispersion curves from 

Multi-channel Analysis 

of Surface Waves 

(MASW) 

 

Crosshole and Downhole 

measurements 

Seismic Cone Piezocone 

Test (SCPT) 

𝑉𝑠(𝑧) Shear-wave velocity profile as a function 

of depth z 

𝐻𝑏𝑒𝑑𝑟𝑜𝑐𝑘  Depth of seismological/engineering 

bedrock 

HVSR – MASW- 

Boreholes- Microtremor 

Array Measurement 

(MAM) 

Surface 

Geology 
Lithological and geological information 

Geological surveys – 

available cartography 

Non-

linear 

curves 

Dynamic properties degradation 

(Damping ratio, D; Shear modulus, G) 

Established models (Seed 

and Idriss, 1970; 

Darendeli, 2001) 

Standard Penetration test 

(SPT) 

Laboratory testing 

(SLAB) 

 

The better the site characterisation, the lower the epistemic uncertainties affecting the 

ground motion analyses and, consequently, the overall seismic hazard estimates. 

Hence, wise choices should be made to prioritise measurements for data collection in 

light of the available budget and potential investments. 



Chapter 3: The need for VoI within the gap analysis phase in seismic hazard assessment                             51 

 

  

 

 

3.2 Decisions and regulations within SHA for nuclear 

powerplants in the UK 

Designing and building new structures require considering external hazards (e.g., 

flood, wind and earthquakes) to ensure acceptable levels of safety for the public and 

to avoid damage and more importantly, avoid collapse. When it comes to earthquake 

risk, seismic hazard analysts and civil engineers work toward minimising future 

damage by performing advanced analyses based on guidelines and specific procedures. 

Whether it is for typical buildings, bridges or sensitive facilities such as nuclear 

powerplants (NPPs), seismic hazard analysts and engineers need to follow and be 

updated on safety requirements to ensure an acceptable level of safety. In both stages 

of hazard analysis and seismic design, several steps and procedures should be 

respected to ensure conformity to current provisions. They require expert judgments 

to make the optimal decisions.  

In this section, we present the different steps and requirements when performing 

seismic hazard analysis as input for the structural design of NPPs in the UK.  

3.2.1 Overview of the process of inferring an optimal seismic design 

decision 

Based on the above literature review, we created an influence diagram that gives an 

overview on the variables that influence decisions regarding data collection, assigning 

weights in the logic tree for PSHA calculations and the choice of a seismic design at 

an acceptable level of safety (Figure 3.3). The influence diagram was built using 

GenIE Modeller, a software package that enables building graphical decision-theoretic 

models. This software not only allows the probabilistic dependence between random 

variables and its updating through Bayesian networks to be modelled through 

influence diagrams but also performs decision analyses in light of uncertainties and 

obtaining new information.  

The diagram regroups most of the required inputs within PSHA calculations along 

with the essential decisions within the process for seismic hazard analysts and 

ultimately, for structural engineers in inferring a design spectrum for a new-build or to 

retrofit an existing structure. Variables in pink oval nodes represent the main inputs to 
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PSHA. This diagram gives a rough idea of the number of uncertain inputs. While most 

models carry inherent aleatory variability, one must also properly capture the epistemic 

uncertainty to avoid biased estimates of the mean hazard. 

VoI analysis (yellow oval node) has been included as a preliminary analysis to decide 

on data collection. Indeed, assessing VoI is best performed in the early stages of SHA. 

These early stages include conducting a “gap analysis”. The gap analysis should be 

directed toward identifying the main sources of uncertainties and deciding, supported 

by peer review and expert elicitation, on the necessity of data collection to reduce 

targeted uncertainties. There is a trade-off between the time and effort necessary to 

compile a relevant, reliable and detailed database, and the degree of uncertainty that 

the analyst should take into consideration at each step of the process. This is where 

assessing the VoI is believed to be highly valuable. 
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Figure 3.3: Influence diagram describing the general framework of inferring a seismic design. Oval nodes represent uncertain variables, hexagon nodes the cost of 

evaluating some variable and rectangle nodes are decisions made based on the values of variables. Variables in pink oval nodes represent the main inputs to PSHA. Each 

parameter that must be considered in a variable or a decision node is linked to it with an arrow. 
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3.2.2 SHA best practice for Nuclear Powerplants in the UK 

As of December 2022, NPPs in the UK provide about 15% of its electricity (Matthew, 

2022). Currently, five NPPs are operating throughout the UK by EDF Energy. To 

develop new nuclear facilities, there are regulatory requirements that ensure that the 

utility operators undertake the necessary assessments for external hazards, including 

seismic hazard.  

PSHA has been used in the UK for the evaluation of seismic hazard for the sites of 

NPPs since the 1980s (e.g., SHWP, 2001; Musson, 2014; Tromans et al., 2019). Along 

with these assessments, safety cases must be put in place and are reviewed by the 

Office for Nuclear Regulation (ONR). The ONR also makes sure that these 

assessments are robust, follow good practice and protect the general public. The ONR 

is a non-prescriptive regulator, meaning that the utility operator is responsible for 

developing the safety cases adequately.  

When assessing seismic hazard and establishing safety cases, several actors take part 

in the process. Generally, three major parties are involved: 

- The nuclear regulator: ONR 

- The seismic hazard team: responsible for performing the PSHA 

- The client and stakeholders: utility operators 

Figure 3.4 provides an overview of the interactions between and within the involved 

parties. 

The seismic hazard team forms a project management team that will select and 

supervise the technical delivery. The project management team is mainly responsible 

for defining and refining the several components that constitute the SHAs and 

ultimately the hazard calculations. Throughout the project, selected members of the 

ONR, the seismic hazard team and the utility operator meet regularly to update each 

other on the decisions made. These decisions often concern the type of approach 

chosen, the type of parameters considered, their current uncertainties and whether 

there is a need for more GIs. During these discussions, often called workshops 

(Aldama-Bustos et al., 2019), selected ONR members and client representatives are 
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invited as observers, along with some experts chosen by the ONR to assure the 

compliance of the stakeholders and the client to the regulatory assurance and project 

objectives. 

 

 

Figure 3.4: Overview representation of the different interactions between and within parties 

involved in SHA and in establishing safety cases for the design of nuclear powerplants in the 

UK. Solid lines represent direct formal interactions, dashed lines represent close interactions 

between the various groups (Modified from Aldama-Bustos et al., 2019)  

There are several phases in the overall project. Aldama-Bustos et al. (2019) summarise 

the process in three major phases based on NUREG-2117 guidelines (USNRC, 2012): 

Phase 1: Study definition stage and gap analysis 

The first phase consists of organising meetings between the seismic hazard team and 

the client where a review of previous studies in the region of interest is conducted and 

a gap analysis is thoroughly evaluated. Initially, a preliminary gap analysis is 

performed by the seismic hazard analysts and the client experts separately. Then, these 

analyses are shared and discussed in a common meeting. At this stage, decisions 

regarding collecting further data are taken on behalf of both parties. In most cases, the 

latter decisions contribute to the regulatory assurance defined in NUREG-2117 

(USNRC, 2012). The team of analysts refer to several guidelines such as TAG-13 

issued by the ONR (2017), Safety Standard Series no SSG-9 by the International 



56 

 

 

 

 

Atomic Energy Agency (2022) and United States Nuclear Regulatory Commission 

reports (USNRC, 2007).  

Finally, the project methodology is discussed and agreed upon. This involves 

recruitment of external subject experts, creating a preliminary database and identifying 

potential future measurements for collecting additional data. The gap analysis phase is 

usually continuously assessed throughout the whole project until agreeing on the final 

hazard calculations.  

Phase 2: Hazard calculations 

A peer review team is selected depending on the budget and the followed guidelines, 

such as the Senior Seismic Hazard Analysis Committee (SSHAC) guidelines (e.g., 

Budnitz et al., 1997), which provides guidance when multi-disciplinary experts are 

involved. The review team is then invited to take part in meetings held with the client’s 

representative and the technical delivery team. Other experts are also solicited to share 

their insights within the decision-making process on the collection of more data as well 

as to evaluate their relevance and supervise their interpretation and implementation of 

prior knowledge.  

Following that, a preliminary PSHA is performed using preliminary SSMs and GMMs 

(e.g., Reiter, 1990; McGuire, 2004). Then, members of the technical delivery team 

discuss the hazard calculation results and agree on updated SSMs and GMMs based 

on the available data and expert judgments. Consequently, the decision on the chosen 

model’s implementation is presented to the peer review team and their comments are 

considered. Finally, the final hazard calculations are performed and results are reported 

to the client and the ONR. 

Phase 3: Safety Case support and submission  

This phase mainly focuses on providing support and guidance to the client on the 

Safety Case submission to the ONR. 

As evidenced by Aldama-Bustos et al. (2019) and within most of official guidelines, 

decisions need to be made at every step and in every phase of the process. Whether 

PSHA is site-specific or performed at larger scales, following guidelines with caution 
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is crucial as the associated outputs (i.e., HCs, UHSs) serve primarily as a basis for civil 

engineers to design seismically-sustainable structures. 

3.3 From seismic hazard analysts to civil engineers 

The common purpose of SHAs is to provide a solid evaluation of the hazard for seismic 

risk assessment representing a critical consideration for structural design and 

assessment. Designing a structure to withstand seismic activity is a crucial step to 

ensure an acceptable level of safety, considering the seismic hazard in the region or 

site of interest. The basis of seismic design is to analyse the response of a structure to 

the level of expected ground motions indicated by PSHA outputs at a specific design 

return period. Moreover, seismic design enhances the safety of civilians by targeting 

low probabilities of damage over relatively long periods. Finally, a rigorous seismic 

design works towards preventing economic losses and ensuring operational continuity 

during and after construction.  

3.3.1 General comments on structural seismic design and building 

codes 

It is on the overall seismic risk evaluation and not only seismic hazard results that 

structural engineering, insurance premiums and other policies are based (Wang, 2011). 

All decisions are made under a certain degree of uncertainty. 

Seismic risk is quantified by four parameters (Wang, 2009):  

- Probabilities 

- Level of severity (physical measurements) 

- Spatial measurements (where)  

- Temporal measurements (when and how often).  

The level of seismic risk depends on the interaction between the seismic hazard and 

the vulnerability of a structure (Equation 3.6). Analytically, the seismic risk is 

evaluated by convolving the seismic hazard (probability of exceeding a certain level 

of ground motions) with the fragility curves that expresses the probability of 
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occurrence of a given level of damage given a range of load levels, and including the 

potential economic, social and environmental consequences.  

                              𝑆𝑒𝑖𝑠𝑚𝑖𝑐 𝑟𝑖𝑠𝑘 = 𝑆𝑒𝑖𝑠𝑚𝑖𝑐 ℎ𝑎𝑧𝑎𝑟𝑑 × 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦                        (3.6) 

The level of damage is related to the definition of a suite of Engineering Demand 

Parameters (EDPs) for the different structural and non-structural components of the 

structure such as the Damage Index (DI), the Roof Drift Ratio (RDR) and the inter-

storey drift ratio (IDR). Design codes such as EC8 (2004) and FEMA 356 (2000) 

provide definitions for such EDPs. 

For example, Douglas et al. (2013) gives useful inputs for France when assessing 

fragility curves and determining design values. 

Building codes 

Seismic hazard maps are often a basis for the development of building codes, such as 

the International Building Code (IBC), Eurocode 8 (EC8, 2004) and NTC18 Italian 

code (NTC, 2018). Technical guidance and requirements for seismic design for 

constructions in Europe, for example, are explained with a high-level detail in 

Eurocodes. EC8 is now widely adopted and is an advanced update of previous 

Eurocodes, which ensures a coverage of seismic design requirements for several type 

of structures and near-surface geologies.  

Current building codes, such as EC8, combine parameters from seismic zonation maps 

and the classification of near-surface geology to construct an elastic design response 

spectrum at any site. Following EC8 guidelines consists of identifying the structure’s 

location, the level of seismicity (i.e., type1=high, type2=low) and the soil 

classification. Depending on these inputs, EC8 proposes an elastic design spectrum. In 

fact, the structure’s design is defined by its dynamic properties and assessed by its 

response to a particular seismic load. Figure 3.5 shows EC8’s elastic spectra for both 

seismicity level types and different soil classifications (A: rock; B: very dense sand or 

gravel, very stiff clay; C: dense sand or gravel, stiff clay; D: loose-to-medium 

cohesionless soil, soft-to-firm cohesive soil; E: soil profiles with a surface layer of 

alluvium of thickness 5 to 20m).  
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Figure 3.5: EC8 5% damped elastic spectra. a) Type1 b) Type 2. 𝒂𝒈 is the PGA for soil class A 

(from Williams, 2016) 

The noticeable difference between the two types is that spectral amplifications in the 

“high seismicity” spectra (i.e., type 1) tends to occur at longer periods and over a wider 

period range, compared to the “low-to-moderate seismicity” spectra (i.e., type 2). 

Moreover, the soil class affects the level of spectral amplification and the spectral 

period at which it occurs. Usually but not always, a denser soil gives rise to lower 

amplifications. 

Limitations and alternatives 

Although seismic codes such as EC8 offer useful guidance for earthquake-resistant 

design for many structures, they typically do not provide options for choosing the level 

of risk. EC8 design spectra are anchored to a PGA value obtained from the hazard 



60 

 

 

 

 

curve at a predefined probability of exceedance, and whose shape depends on the local 

site conditions. This approach may lead to a non-uniform level of risk depending on 

the structure’s location (Gkimprixis et al., 2019).  An approach that can be used as an 

alternative to tackle this issue is the risk-targeting approach (Kennedy, 2011). This 

structure-specific approach aims at designing a structure based on a predefined 

acceptable and controlled level of risk called the mean annual frequency (MAF) of 

collapse. Iterations are performed by fixing the MAF and testing trials of design PGAs 

using the hazard curve to determine the appropriate design acceleration for the building 

to withstand.  

We can cite other cases where building codes might not be sufficient (Bommer and 

Stafford, 2016): 

- Projects on a site with deep and/or soft soil. The effect of near-surface geology 

on the ground motion is then being captured in the basic soil classification 

provided or in the spectral shapes. 

- Projects on a site located in the vicinity of active faults where directivity effects 

need to be considered. 

In these cases, a site-specific seismic hazard analysis is required supported by expert 

judgements to infer decisions regarding the different models and parameters within 

SHA as well as to incorporate associated uncertainties.  

3.3.2 Seismic design for nuclear powerplants in the UK 

Critical facilities such as NPPs are subjected to even tighter constraints and 

requirements to ensure a high-level of safety. Regulators and regulation practices differ 

depending on the country and whether regulators are part of the government (e.g., 

Switzerland and Japan) or independent such as in France, USA and UK (Bredimas and 

Nuttall, 2008).  

In the UK, the Nuclear Safety Technical Assessment Guides by the ONR provides 

useful guidelines to meet the Safety Assessment Principles (SAP). These guidelines 

serve as the basis for seismic analysts and civil engineering decisions in NPPs design. 

The latest update, known as TAG-13, states that “The design basis ground motion for 
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a site, often referred as Design Basis Earthquake (DBE), is the fundamental input for 

deriving structural design loads and assessing plant effects as part of the Design Basis 

Analysis (DBA)”. A sufficient level of conservatism should be incorporated in the DBE 

not just for one or two elements of the seismic analysis and design process but for the 

process as a whole.  

The main steps to determine the DBE are as follows: 

Step 1: UHS should be derived from site-specific PSHAs, including propagating 

uncertainties to take into account the overall hazard uncertainty. 

Step 2: Conservatism should be included by considering the UHS at a target 

annual frequency of exceedance (AFoE) of 10-4, equivalent to a return period of 

10,000 years. Moreover, TAG-13 states that a DBE should envelop the 84th 

percentile (i.e., one standard deviation above the mean UHS). The 

conservatively defined site-specific ground motion hazard is then viewed as the 

seismic demand spectrum. 

Step 3: A DBE is then developed and considered as the seismic design spectrum. 

DBE is an extremely useful tool in the design process especially in the concept 

design stage. Within the UK and several other countries, the DBE is often 

represented as a standardised response spectral shape scaled to a PGA value from 

a PSHA that is indicative of the site of interest. The DBE provides constraints 

on potential design solutions.  

Defining and reviewing the suitability of the DBE often requires appropriate expert 

judgments. The ONR makes sure that it meets or exceeds the seismic demand 

guaranteeing that the NPP is designed to resist a minimum level of strong ground 

motion. The minimum level of requirements in the UK is defined by the International 

Atomic Energy Agency (IAEA) and the Western European Nuclear Regulators’ 

Association (WENRA) as the “horizontal free-field standardized response spectrum 

anchored to a PGA of 0.25g”. 

Seismic hazard analysts and clients work together in selecting the appropriate seismic 

design. There are cases where the DBE respects the requirements at PGA but over- or 

underestimates the UHS at other frequency ranges. We can find an example of tackling 
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this issue in the work of Villani et al. (2020) where the design response spectrum is 

tuned to an acceptable level of safety using alternative regulatory guides. Another 

possible strategy is to reduce the uncertainties within the inputs to the PSHA. This 

aims at better characterising the overall hazard and, thereby, increasing the likelihood 

of falling within the acceptable level of safety. Reducing uncertainties may not 

guarantee this latter goal but using VoI might assess the feasibility of such an 

approach. In case of an under-conservative design spectrum, a higher DBE than the 

initial one is often considered. This can induce higher design costs. It can be worth 

computing the VoI to assess whether reducing uncertainties might lead to considering 

a lower design level given the level of seismic hazard at the site.  

3.4 The need for VoI in the industry - Interviews  

3.4.1 Scope and involved parties 

Understanding current nuclear industry approaches regarding data collection for 

seismic hazard assessment provides the context in which the decision tools that we 

develop will be applied. For this reason, semi-structured interviews were conducted 

with seismic hazard analysts (specifically a team from Jacobs) and nuclear facilities 

owners (specifically a high-level representative from EDF Energy) in summer 2020. 

The interviews aimed to assess the current state of practice for data collection within 

SHAs for UK nuclear facilities and to identify gaps within the justification and 

prioritisation of data collection, so as to tailor decision-making tools to bring 

maximum value to industry.  

Table 3.2 provides details about both groups as well as the main purpose of the 

interviews. The outcomes of both interviews have been summarised and partly 

transcribed in Appendix A of this thesis and were considered when building the overall 

approach to assess the Value of Information. 
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Table 3.2: Selected interviews participants and main purpose for interview 

 

Interview questions were carefully selected to ensure that the interview purpose was 

achieved. Some of the inquiries that were examined include: 

- Which parameters most control PSHA outputs? 

- What criteria are used to determine when and why new data collection should 

be funded? 

- How is the prioritisation of data acquisitions carried out? 

The interviews outcomes support what has been mentioned in the previous sections. 

After analysing the outputs of each interview, we find a great consistency between the 

two groups, i.e., the client and the consultant.  

3.4.2 Main interview outputs 

From our interviews, we provide a summary of insights on the identification of key 

SHA parameters, the gap analysis stage and the steps leading to making the decision 

on the collection of additional data. Finally, we share some observations from the 

participants about the lack of established decision-making strategies and the 

challenges that can be encountered in developing approved ones.  

Insights into key parameters in PSHA 

Identifying the parameters that play a major role in PSHA helps refine the scope of 

this PhD to focus on assessing their value when it comes to decision-making. In both 

interviews, there was a focus on the choice of GMMs and the estimation of their 

weights within the logic tree. The seismic hazard team of Jacobs highlighted the 

Group  Role Company Interview purpose 
Number of 

participants 

Consultant 

Seismic 

hazard 

analysts 

Jacobs 

Insights on strategies for 

prioritising and justifying data 

collection 

3 

Client 
Utility 

operator 

EDF 

Energy 

Insight on the decision-making 

process for financing data 

collection 

1 
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contribution of site effects to the overall hazard and insisted on providing a well 

characterisation of site properties such as 𝑉𝑠 profiles, the bedrock 𝑉𝑠 and depth as well 

as the high-frequency attenuation parameter κo. Moreover, uncertainties should also 

be well characterised and incorporated within the calculations through Monte Carlo 

simulations (e.g., within soil-response analyses) and through the logic tree for the 

estimation of the mean hazard and associated percentiles. 

Gap analysis and data collection 

The answers to questions concerning gap analysis indicate that it is a continuous 

process throughout the PSHA study. Where data are usually available from previous 

projects, there is always a will to upgrade the PSHA to ensure that the safety 

requirements are met as well as to be up-to-date with modern practice. Both parties 

confirmed that new NPPs are generally planned to be located within the vicinity of 

existing facilities where GIs have been conducted in the past. Nevertheless, additional 

GIs are often required as guidelines and safety standards are periodically reviewed and 

updated. Common practice first consists of the client reviewing available data and 

identifying gaps. Following that, a discussion within the consultant’s team (i.e., the 

seismic hazard team) takes place to decide whether additional measurements are 

needed. This transitional phase is of great interest within this research, where VoI 

calculations might represent a key support tool that aims to facilitate such decisions.  

Decision-making process for data collection 

Both interviews confirmed that the decision-making process for collecting new data is 

not always straightforward. Published guidelines are usually used to decide and 

prioritise the collection of data. These guidelines can also be a support in choosing the 

most cost-effective methods for data acquisition. Jacobs added that cost-benefit 

strategies are being developed but they believe that regulatory assurance is the primary 

concern. In addition, the EDF Energy representative made clear that the client usually 

relies on the consultant’s and other expert opinions towards making sure modern 

practices are adopted and safety requirements are applied and adhered to.  
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3.4.3 Conclusion 

Insights from interviews identify a clear gap when it comes to strategies and workflows 

adopted to justify, objectively and numerically, decisions on gathering a specific piece 

of information. It is currently difficult to estimate beforehand whether a particular data 

acquisition will be beneficial to the PSHA and, eventually, to the design process. Both 

of these processes are full of uncertainties that should be incorporated within the 

decision-making process. Although guidelines for both of these important steps exist 

and are subject to continuous updates and improvements, there is a prominent 

decision-making component relying on expert judgments, beliefs, experiences and 

insights. Some of these decisions could be hard to justify in light of uncertainties and 

budget limitations, such as decisions regarding data collection. This highlights the 

need to develop a robust approach integrating both modern practice and safety 

guidelines to quantify the VoI within SHA and the seismic design stage and to reduce 

the decision-making burden.  
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4 Assessing VoI in a seismic design 

application: single uncertain 

parameter, Vs30 

 

This chapter presents an extended version of the following journal article: 

Tebib, H., Douglas, J. and Roberts, J. J. (2023) ‘Using the value of information to 

decide when to collect additional data on near-surface site conditions’, Soil Dynamics 

and Earthquake Engineering, 165, p. 107654. doi: 10.1016/j.soildyn.2022.107654  

4.1 Introduction 

In this chapter, we define a case study aimed at developing a methodology for 

calculating the value of information (VoI). Specifically, we focus on evaluating the 

VoI of a single parameter commonly used in site-response analysis, with the ultimate 

goal of informing seismic design decisions for a specific building. This relatively 

simple case study using real data to compute outcomes, supports the elaboration of a 

general method for VoI calculations that can be applied in the fields of soil-response 

analysis, seismic hazard assessment and seismic design. The goal is to validate the 

method and study its sensitivity to various input parameters. Different VoI definitions 

are considered, from the least to the most realistic. 

First, we define a case study aiming to determine an appropriate seismic design for a 

hypothetical building. This particular building has been chosen, for convenience, from 

the work of Gkimprixis et al. (2020). Their study provides some of the inputs needed 

to run the analysis of VoI, including fragility curves and probabilities of damage as 

well as different construction costs and expected losses from damage. The main goal 

of this case study is to build a method for VoI assessment for one of the uncertain 

parameters that plays a major role in site characterisation and, hence, site-response 

analysis: the average shear-wave velocity in the top 30m, Vs30 (Cultrera et al., 2021). 

Second, we apply the theory for VoI in the case of discrete possible values for the 

chosen parameter to compute the Expected Value of Perfect and Imperfect Information 
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(EVPI or EVII, respectively). We highlight that in this field of study, obtaining perfect 

information is rare and thus, computing the EVPI has the purpose of training and 

partially validating the developed method. The EVII is the most appropriate and 

realistic value to compute.  

Third, we conduct a comprehensive analysis of the results, leveraging sensitivity 

analyses to better understand the impact of various factors on VoI. Specifically, we 

explore how changes in prior probabilities for our key parameter of interest and other 

relevant factors within the methodology may affect the overall VoI. 

The same steps are performed for a more realistic case where Vs30 is defined by 

continuous possible values. For this situation, Monte Carlo simulations and 

approximations are used to infer EVPI and EVII. 

Finally, we proceed to interpreting the results and drawing out key conclusions.  

4.2 Overview 

We aim to determine an appropriate seismic design for a hypothetical four-storey 

three-bay reinforced concrete frame building located in Patras, Greece. The building 

is symmetrical in plan and elevation, with span length and column height equal to 5 m 

and 3 m, respectively. In Figure 4.1, the location and the 3D building design model are 

shown on the seismic hazard map indicating peak ground acceleration (PGA) values 

that correspond to 10% probability of exceedance in 50 years, obtained from the 2013 

European Seismic Hazard Model (ESHM13, Giardini, 2013; Woessner et al., 2015). 

The seismic design should ensure an acceptable level of safety regarding the seismic 

hazard along with respecting a reasonable budget. The decision-maker should take into 

account these variables with a certain level of scrutiny as both tangible and intangible 

losses can represent a risk.  

This building was designed for different levels of design peak ground acceleration, 

PGAd, according to Eurocodes (CEN, 2004; EC8, 2004) and using the Type 1 

horizontal design acceleration spectrum of Eurocode 8 (Gkimprixis et al., 2020). The 

seismic design for the different PGAd levels was carried out by Gkimprixis et al., 2020 

using an importance class II and a medium ductility class that corresponds to a 
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behaviour factor q=3.9 (EC8-1-5.5.5.5) along with a class B assumed for the soil 

conditions and a 5 % damping ratio. The fundamental vibration periods of the 

buildings are 0.36s, 0.32s, 0.25s and 0.20s for PGAd of 0.0 g, 0.1 g, 0.3 g and 0.5 g, 

respectively. 

 

 

Figure 4.1: ESHM13 hazard map of peak ground acceleration [PGA] for 10% probability of 

exceedance in 50 years (average return period of 475 years) (Danciu et al., 2021). The 3D building 

design model is shown inset, and its location in Patras indicated by the black arrow (Gkimprixis 

et al., 2020) 

In order to determine the PGA level at which the building should be designed, site-

specific seismic hazard assessment should be performed. Depending on the type of 

building, a return period is fixed and hazard curves are produced to retrieve the 

appropriate design PGA (e.g., via a risk-targeted approach). 

We assume that available data are all reliable and that the only uncertain variable is 

the shear-wave velocity in the first 30m at the site location, Vs30. Vs30 is commonly 
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used in ground motion prediction equations (GMPE) to predict ground motion at the 

surface as well as to estimate the ground motion amplification compared to a reference 

rock site. 

At this stage, the decision-makers face an important dilemma:  

1- Choose a particular seismic design based on the available information. This 

involves taking the risk of choosing: (a) a higher, and more costly seismic 

design than needed; or (b) a lower and less-resistant design where the bedrock 

hazard and the site amplification could result in building damage or even total 

collapse. 

2- Conduct geophysical/geotechnical tests to decrease the uncertainties on Vs30. 

This will reduce the risk of choosing an inappropriate seismic design. 

However, the test will have a cost that depends on their type, the company hired 

to perform them and the price of buying or renting the testing equipment.  

In some cases, decisions might not have high stakes or large risks. In others, 

consequences can be significant. In this study case, people’s safety is the main concern. 

Damage or collapse of the building might result in human losses (deaths or injuries).  

We aim to build a method for VoI calculation that includes all currently available 

information and estimates the losses for each possible value of the uncertain parameter, 

each test outcome and each decision. 

4.3 Scenario 1: VoI for a discrete uncertain variable  

In our first scenario, the uncertain parameter (Vs30) is assumed to have discrete values. 

This simplification is useful to understand the process of building the VoI method as 

well as to have a clear comprehension of the impact of different variables on the 

results. 

In this scenario, Vs30 is assumed to equal either V1 or V2. Available data and expert 

knowledge will help assign prior probabilities to V1 and V2. We clarify that this is a 

simple case where the parameter of interest has binary possible values. A second 

scenario (section 4.4) considers the more realistic case of continuous distributions. 
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4.3.1 Methodology 

While collecting information can be useful for reducing uncertainties, its primary 

purpose is to support more informed decision-making. There is no intrinsic monetary 

value of reducing uncertainties. However, there is a need to formulate the main goals 

of reducing uncertainties such as to avoid losses by reducing the risk of making the 

wrong decision. In this case, the decision is to apply the appropriate seismic design. 

Setting a clear framework and including all available data is necessary to increase the 

reliability of results. This ensures a more solid analysis and interpretations to choose 

the adequate investigation method while sticking to a reasonable time/money budget. 

Inputs and parameters 

The purpose of the simplified site-response analysis performed in this study is to 

estimate the resulting ground motion at a theoretical site, in terms of peak ground 

acceleration (PGA on soil), based on the PGA on a reference outcropping rock and the 

site-amplification factor. The obtained PGA on soil would then constitute an indicator 

of the ground motion level to which the building should be seismically designed to 

resist.  

According to previous studies (Trainor-Guitton et al., 2011) and the literature review 

presented in Chapter 2, the three components involved in determining VoI are:  

1- Prior uncertainties on the parameters involved to make the decision 

2- Reliability of available data 

3- Expressing the outcomes in terms of value 

In our present study, fragility curves, costs and site-response parameters beside Vs30 

are assumed to be reliable. We will focus on components 1 and 3 to estimate VoI.  
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Figure 4.2: Framework for site-response analysis and the estimation of the expected costs and 

losses. Black circular nodes represent known parameters, and the red circular node (Vs30) is the 

uncertain parameter. The lozenge green node is the initial cost of design, the yellow node is the 

outcome (estimated costs and losses). 

Figure 4.2 shows an influence diagram that summarises the parameters that are 

computed and/or used to estimate the appropriate PGAd. The components are: 

- Vs30: Average shear-wave velocity in the first 30m. This is considered here to 

fully represent the site characterisation. 

- Site amplification factor, Fs. (Equation 4.1) 

- PGA on rock, PGAr: Peak ground acceleration at a reference rock site 

- Resulting PGA on soil: Simple multiplication of PGA on rock and the 

amplification factor 

- Design PGA: PGA to which the building is seismically designed 

- Expected losses: Considered as the outcomes for VoI calculations and detailed 

in the next subsection 

The hazard curves from the ESHM13, associated to the case study location, were used 

to retrieve the expected losses and the PGA on reference rock (PGAr). The PGAr is 

estimated at 0.43g, which has been estimated for a 50-year lifetime and a probability 

of exceedance of 10% (corresponding to a return period of 475 years). This value is 

for a rock site with Vs30>800 m/s.  

In this case study, site-response analysis is simplified by neglecting non-linear effects 

and by assuming that Vs30 completely controls the near-surface site amplification. 

Thereafter, the frequency-independent amplification factor 𝐹𝑠 of the site is assumed to 

be (Bindi et al., 2014):                                 
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𝐹𝑠 = 𝛾 log10(
𝑉𝑠30

𝑉𝑟𝑒𝑓
)   (4.1) 

where 𝑉𝑟𝑒𝑓  is fixed to 800 m/s and 𝛾= -0.3019 (associated to PGA values) 

Let’s assume that V1<V2, then the dilemma becomes the following: 

Before additional data collection 

1- Choose Design1, associated to V1. The lower the Vs30, the higher the site 

amplification of the ground motion on bedrock (provided all other variables 

are kept the same and AF computed following Equation 4.1), and so, the higher 

the structural performance of the building, which needs to be in terms of 

strength (i.e, design PGA) as described later and behaviour factor q as defined 

in Eurocode 8 (EC8, 2004) and ductile response (i.e., extent of inelastic 

deformation). As such, Design1 has a better structural performance than 

Design2, associated to V2, assuming that V1<V2 and that the AF is computed 

following Equation 4.1. If the site Vs30 is V2, the building is likely to be “over-

designed” or, in other words, “unnecessarily resistant” for the actual seismic 

hazard. There are no drawbacks in terms of safety in over-estimating a 

building’s seismic design. However, this design will cost more than a cost-

optimised design, due to additional materials and construction time. 

2- Choose Design2, associated to V2. If the Vs30 is V1, we would be 

underestimating the seismic hazard. This will result in a higher risk of building 

damage. Damage can cause injuries and fatalities as well as requiring repair or 

re-construction. Depending on the level of injury and the situation, those 

harmed (or their family in case of death), are financially compensated. It is 

ethically difficult to put a price on a human life, but the cost of possible 

compensation could be considered when computing the expected losses when 

taking the wrong decision, i.e., using a seismic design that underestimates the 

seismic hazard. 

After additional data collection 

Conduct tests, perfect or imperfect, to know the value of Vs30 more accurately 

(i.e., with lower uncertainties) for the case of an imperfect test or know it 
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exactly in the case of a perfect test. A (near) perfect test could be considered 

as crosshole or downhole tests, where a geophone is lowered into a borehole 

and shots are fired to estimate the 𝑉𝑠 within the vertical soil column under the 

site. An imperfect test would be geophysical survey techniques such as Multi-

Channel Analysis of Surface Waves (MASW) or ambient vibration 

measurements.  

These three different decisions need to be considered when assessing VoI in this first 

scenario.  

Prior probabilities 

Prior probabilities are defined for each possible value of Vs30.The prior probability, p, 

is the probability that V1 is believed to be the true Vs30 at the site. Similarly, the prior 

probability 1-p is the probability that V2 is believed to be the true Vs30. These 

probabilities are often inferred by the seismic analyst from available data or from 

expert elicitation. In some cases, the available data coming from geological studies, 

past prospections or Vs30 values in nearby locations may suggest a tendency towards 

choosing V1 or V2 as the Vs30 of the site of interest. As previously mentioned in 

Chapter 2, Empirical Bayes methods can also be an effective way to infer prior 

probabilities. 

For either of the three decisions, prior probabilities remain effective. In fact, when 

making the decision to apply Design1 or Design2 without conducting the perfect test, 

there is a probability of being wrong. Similarly, when deciding to conduct a test, the 

posterior probability depends on the prior probabilities.  

Design PGA 

Several approaches can be used to infer the appropriate seismic design such as design 

based on “uniform hazard” which are the basis of many modern seismic codes (e.g., 

Eurocode 8). This spectrum in anchored to a PGA that corresponds to a specific 

probability of exceedance (e.g., 10% probability of exceedance in 50 years) from the 

hazard spectrum at the site’s building. This PGA is henceforth referred to as the design 

PGA, PGAd.  
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Another approach is to consider a risk-targeted approach that is specific to the 

considered type of building. This approach is an iterative process to obtain the design 

PGA (PGAd) by expressing the mean annual frequency (MAF) of collapse λf that will 

secure the building to an acceptable and controllable risk level (Kennedy, 2011).   

                                    λf(𝑃𝐺𝐴𝑑) =  ∫𝑃(𝐶|𝐼𝑀). |𝑑𝐻(𝐼𝑀)|                                   (4.2) 

where 𝑃(𝐶|𝐼𝑀) represents the probability of collapse given an intensity 𝐼𝑀 and 𝐻 is 

the hazard curve obtained from PSHA.  

In this case study, we assume that one of these methods is used to infer the design PGA 

on rock. The design PGA on soil is then simply the retrieved PGA on rock multiplied 

by the site amplification factor. 

Probability of failure 

The fragility curves for different PGAd are obtained from Gkimprixis et al. (2020). 

The curves were derived from Incremental Dynamic Analysis (IDA) (Vamvatsikos 

and Cornell, 2002) by considering explicitly structural (S), non-structural drift-

sensitive (N/D) and non-structural acceleration-sensitive (N/A) components at each 

storey. They are assumed to have a lognormal distribution and IDA allows the 

estimation of the median capacity 𝐶50% and the composite logarithmic standard 

deviation β for each PGAd. Gkimprixis et al. (2020) consider several limit states of 

damage defined by a specific Engineering Demand Parameter (EDP), in this case  the 

inter-story drifts (ISDs). The damage limitation, or limit state, is when the ISD levels 

are above a certain threshold. The fragility curves considered in this study indicate the 

probability of the limit state of global collapse for every possible value of PGA 

resulting from a future earthquake.  

In Figure 4.3, the fragility curves give the probability of total collapse of the building 

designed for a specific PGAd at a given seismic intensity measure, here PGA. In order 

to use these fragility curves for a more extensive set of PGAd, the median and β have 

been interpolated to produce the probabilities of failure for wider range of PGAd. 
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Figure 4.3: Fragility curves for the limit state of global collapse for different PGAd 

Outcomes: Expected Losses 

As the VoI is estimated in monetary units in this study, we need to estimate the losses 

associated to designing the building for a specific PGAd. The losses due to possible 

future earthquakes are a function of the hazard at the building’s location and the 

vulnerability of the structural and non-structural components. The potential outcomes 

are the expected consequences for each of the possible decisions.  

The fragility curves are converted to vulnerability curves using data relative to the cost 

of each structural and non-structural components and the damage percentage for each 

limit state. These vulnerability curves are convolved with the hazard curves to provide 

the Expected Annual Losses (EAL) (Gkimprixis et al., 2020): 

                                            𝐸𝐴𝐿 =  ∫ 𝐸(𝐴𝐿|𝐼𝑀)𝑑𝐻(𝐼𝑀)
∞

0
  (4.3) 

where 𝐸(𝐴𝐿|𝐼𝑀) is the expected annual losses conditional on the intensity level 𝐼𝑀 

and 𝐻(𝐼𝑀) is the hazard for the intensity 𝐼𝑀.  

These losses represent the cost of repair or replacement of each structural and non-

structural component due to damage or total collapse. In case of total collapse, the cost 

of replacement represents the initial construction cost, 𝐶𝑑. Additional losses are loss 

of function of the building as well as injuries and fatalities (i.e., minor and major 
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injuries and cost of human fatalities). Other losses can be added to the expected losses 

(Lagaros, 2007), such as the loss of contents and rental loss (i.e., the loss of rental 

income while the building is being restored) and income loss, which is applicable to 

buildings that are used for commercial reasons, such as assumed for this building. 

Depending on the time period, the expected future losses for a period t is as follows: 

                                                   𝐸[𝐹𝐿] = 𝐸𝐴𝐿. (1 − 𝑒𝜆𝑡)/𝜆  (4.4) 

where λ is a constant discount rate/year, which converts the future losses into present 

monetary value. 

Finally, the life-cycle cost in case of total collapse is then simply: 

                                                     𝐸[𝐿𝐶𝐶] = 𝐶𝑑 + 𝐸[𝐹𝐿]                                        (4.5) 

where 𝐶𝑑  being the replacement cost of the building for a specific PGAd. 

Gkimprixis et al. (2020) applied this method to estimate the expected losses for the 

same four-storey three-bay reinforced concrete building at the same location. In Figure 

4.4 are displayed the different costs computed from Equations (4.4) and (4.5) along 

with 𝐶𝑑 for different PGAd are displayed. These costs will be used within the following 

VoI calculations.  
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Figure 4.4: Different costs of expected losses for Patras including the initial construction costs. 

Dashed red line represents the total cost of construction, repair and the additional losses (from 

Gkimprixis et al., 2020) 

The decisions outcomes here are the expected consequences for each of the possible 

decisions. These expected consequences are defined to be the sum of the initial 

construction cost 𝐶𝑑 and the Expected Life-Cycle Losses, E[LCC], in case of total 

collapse, 𝑜(𝑥, 𝑑).  

For one decision 𝑑, the expected outcomes are as follows: 

                                               𝐸(𝑜(𝑥, 𝑑)) = ∑ 𝑜(𝑥, 𝑑)𝑝(𝑥)𝑥  (4.6) 

where 𝑜(𝑥, 𝑑) represents the outcomes when choosing d and Vs30 is in the state 𝑥. 𝑥 is 

the measure of interest and 𝑝(𝑥) is the prior probability of the state 𝑥. The outcomes 

for a measure 𝑥 and a decision (i.e., design) 𝑑 are expressed as follows: 

                                           𝑜(𝑥, 𝑑) = 𝐶𝑑 + 𝐸[𝐿𝐶𝐶](𝑑). 𝑓𝑐(𝑑, 𝑥) (4.7) 

where 𝑓𝑐(𝑑, 𝑥) is the probability of failure for a PGA associated with state 𝑥 and 

extracted from the fragility curve of a design 𝑑. 

4.3.2 Expected Value of Perfect Information 

The Expected Value of Perfect Information (EVPI) represents the upper bound in 

monetary, utility or time unit that one should be willing to spend or consider 
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conducting surveys, tests, experiments or any action to obtain a piece of information 

without uncertainties.  

Here, we assume performing a perfect test to infer the value of Vs30. This almost 

perfect test could be borehole measurements up to the first 30m depth at the site of 

interest in Patras, in this case. This would eventually lead to no uncertainties, resulting 

in perfect information. It is important to stress that such a situation is quite unlikely. 

In fact, when it comes to geophysical and geotechnical information, uncertainties are 

generally always present. Nevertheless, computing EVPI has benefits as it fixes an 

upper limit value that should not be exceeded.  

Building the method starting from a simple case for the EVPI estimation is necessary 

to partially validate the framework that is being constructed. 

Decision tree  

Decision trees are believed to be an excellent way of proceeding to a straightforward 

construction and description of the different important parameters and their causal 

dependency. In the decision tree illustrated in Figure 4.5, decisions are represented as 

rectangular nodes and probabilities as circular nodes. This decision tree depicts three 

possible decisions:  

Action decisions 

- Applying Design 1 (associated with a Vs30=V1) with current information. 

- Applying Design 2 (associated with a Vs30=V2) with current information. 

Test decisions 

- Conduct a perfect test to obtain information about Vs30 without uncertainties. 
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Figure 4.5: Decision tree for the computation of EVPI 

The decisions relative to the case of using only current knowledge takes into 

consideration the possibilities of having V1 and V2 by computing the expected 

outcomes in both cases. The expected outcomes are computed for both decisions to 

identify the decision that minimises the expected losses when Vs30 is uncertain. This 

value represents the Prior Value.  

If the decision of performing a perfect test is considered, the probability of the 

measurement outcome is equal to the prior probabilities of Vs30 and the expected losses 

are called the Posterior Value. 

The above decision tree is an effective tool for computing the expected consequences 

of each decision and taking into consideration the prior probabilities of the parameter 

of interest. 

Value of Information 

Prior Value 

In the case of Before additional data, two choices are possible, applying Design 1 or 

Design 2. The expression of the associated Prior Value, PV, is as follows: 
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𝑃𝑉 = max
𝑑∊𝐷

{𝐸(𝑜(𝑥, 𝑑))} 

 = max
𝑑∊𝐷

{∑ 𝑜(𝑥, 𝑑)𝑝(𝑥)𝑥 } (4.8) 

where D is the domain of decisions d, 𝑜(𝑥, 𝑑) represents the outcomes for a decision 

d if Vs30 is in the state x and, 𝑝(𝑥) is the prior probability of the state x.  

Posterior Value 

The Posterior Value, PoV, is the resulting outcome of conducting a perfect test and 

thus, obtaining perfect information about x (in this case the true value of Vs30) and 

applying the appropriate design. 

                                                 𝑃𝑜𝑉 = ∑ 𝑜(𝑥, 𝑑𝑥)𝑝(𝑥)𝑥  (4.9) 

where dx is the appropriate design for state x.  

 

Value of Information 

The VoI is then simply the difference between the PoV and PV:  

                                                      𝐸𝑉𝑃𝐼 = 𝑃𝑜𝑉 − 𝑃𝑉 (4.10) 

Irrespective of its type, PV is always constant. VoI is never negative as adding 

information always has benefits or no impact on the decision-making process. The VoI 

is then compared to the cost of the test to decide whether to proceed with data 

collection. The EVPI is then the maximum amount the decision-maker is willing to 

invest to have perfect information. In this case, EVPI is acting as a useful upper-bound 

to prevent the decision-maker from investing in expensive data-gathering schemes, 

methods or techniques but also from investing in a data collection process that would 

not be beneficial for decision-making. 

Calculations and results 

In this section, we proceed to the estimation of the VoI regarding the parameter Vs30. 

We acknowledge that the VoI definition is used, and the expressions are developed for 
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the first time in this type of application. Thus, several sensitivity analyses are 

performed, and key values computed to validate the method in this discrete case. 

EVPI sensitivity to prior probabilities 

Prior probabilities are set at the beginning of the calculations, for the couple [V1,V2]. 

This translates beliefs, past experiences and available measurements on the state of 

Vs30. For example, assuming 70% chance of Vs30 being V1 is also assuming 30% of 

chance of Vs30 being V2.  

Here the Vs30 couple is fixed, and the prior probabilities are varied. V1 is fixed to 100 

m/s and V2 to 500 m/s. Figure 4.6-a displays the expected outcomes in euros (i.e., 

losses) combining the construction costs and the expected losses from total collapse 

for the three main branches of our decision tree (Figure 4.5). In the legend, Ec1 refers 

to the expected consequences computed from the branch associated to applying 

Design1, Ec2 to Design2. Finally, Ect represents the expected losses after obtaining 

the perfect information and choosing the associated optimal design. The outcomes for 

each decision are computed for a range of all possible prior probabilities assigned to 

V1 (similarly to V2). Figure 4.6-b represents the VoI for several V1 prior probabilities. 

In Figure 4.6-a, we notice that the preferred decision before information depends on 

the prior probability. When giving to V1 a prior probability p<0.42, the decision to 

apply Design2 is preferred because of the least expected losses. Above that prior 

probability, Design1 is preferred. Intuitively, the highest the probability of a particular 

value, the more probable it is to go with the associated decision.  

The intersection between Ec1 and Ec2 at p(V1)=0.42 is called the indifference point 

(Gilbert and Habibi, 2015), where outcomes for both decisions are equal. At this prior 

probability, the EVPI is at its maximum (Figure 4.6-b). EVPI is simply the difference 

between the preferred decision’s outcomes before information and the outcomes after 

the information (Ect). At this indifference point, EVPI is about 12 000 euros. This 

represents the maximum amount to invest in a test that would completely remove the 

uncertainties. 
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It is interesting to notice that when V1 is given a prior probability of 0 or 1 (meaning 

we already have certainty about the state of Vs30), EVPI is equal to zero. This partially 

validates the method.  

 

Figure 4.6: Sensitivity to prior probabilities for (a) the expected outcomes and (b) EVPI for the 

couple [100,500] m/s 

 

Sensitivity to [V1,V2] couples 

The same process is repeated for several [V1,V2] couples in order to assess the 

sensitivity of EVPI to the values of the binary couples and the prior probabilities. 

Figure 4.7 demonstrates that the point of indifference, i.e., the prior probability 

associated with the highest EVPI, depends on the [V1,V2] couple. This means that the 

point of indifference depends on the outcomes associated to each decision. In the 

examples provided above, the point of indifference seems to be in the range of 

[0.4,0.6].  
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Figure 4.7: EVPI sensitivity to prior probabilities for several [𝑽𝟏, 𝑽𝟐] couples 

A prior probability of 0.5 would suggest that there is no prior knowledge on the state 

of Vs30 and that VoI should be, intuitively, at its maximum. While this is not always 

the case, the range [0.4,0.6] of prior probability still represents high uncertainties about 

the Vs30. An explanation to why the point of indifference is not always at a probability 

of 0.5 when we consider binary values can be found when looking at the expected 

outcomes for the different decisions (Figure 4.6-a). By changing the construction costs 

or the probability of failure, the point of intersection of Ec1 and Ec2 changes as well. 

Expressing a high belief for a particular state might suggest choosing the associated 

seismic design but this is not always the case as it depends on the expected losses for 

a particular decision. For example, if the construction costs for Design1 were 

significantly higher than for Design2 and that a prior probability of 0.7 is given to V1, 

the expected losses will still be higher when choosing Design 1 over Design2. In this 

case, Design2 will still be the preferred decision and the point of indifference will be 

greater than 0.7.  

To study further this dependence between [V1,V2] and the prior probability that 

maximises the EVPI (i.e., indifference point), the EVPI was computed for [V1,V2] 

couples for different probabilities and the indifference point relative to V1 has been 

identified and represented in Figure 4.8. The x and y axis represent V2 and V1, 
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respectively. The colourbar, with midpoint at p=0.5, translates the indifference point 

to a colour. The white diagonal bar is an area that is not defined as VoI=0 when V1=V2.  

 

 

Figure 4.8: Impact of [𝑽𝟏, 𝑽𝟐] couples on the prior probability that maximises the EVPI (i.e., the 

indifference point) 

The point of indifference is mostly between 0.3 and 0.7. The closer V1 and V2 are, the 

further the point of indifference is from p=0.5. The lower triangle below the undefined 

area represents the point of indifference when V1<V2. The lower V1, the more sensitive 

is the point of indifference to [V1,V2] gap increasing. This is the same for the upper 

triangle. Indeed, the patterns are symmetric relative to the non-defined area because 

the probabilities of V1 and V2 are complementary. This clearly shows that when the 

gap between V1 and V2 is large, the EVPI is maximum when we give a higher belief 

to the highest value. This confirms that the EVPI is not necessarily the highest when 

we are in complete uncertainty (0.5) and that it depends strongly on the range of 

uncertainty regarding the Vs30 couple (gap). 

This is also confirmed when analysing the EVPI for each [V1,V2] couple shown in 

Figure 4.9. We see that the bigger the gap between the two possible values of Vs30, the 

higher is the EVPI. This makes sense as the decision of going ahead by choosing one 

of the two values without perfect information greatly increases the chances of making 



Chapter 4: Assessing VoI in a seismic design application: single uncertain parameter, Vs30                   86 

 

  

 

the wrong decision and thus, increases the expected losses. In contrast, the higher are 

the Vs30 values in the couple (i.e., towards rock conditions), the lower is the EVPI. 

This is explained because the amplification and thus, the PGA on soil, have a 

logarithmic behaviour.  

 

Figure 4.9: Sensitivity of the maximum EVPI (i.e., indifference point) to [𝑽𝟏, 𝑽𝟐] gap for V1 prior 

probability of 0.2, 0.5, 0.7 and 0.9. 

Moreover, intuitively, the more confidence we give a Vs30 value, the lower is the EVPI. 

This is not always true and depends on how the amplification function is defined. In 

Figure 4.9, for low V2 and V2<V1, fixing p(V1) at 0.7 gives the highest EVPI values. 

Overall, the highest EVPI are noticed for prior probabilities between 0.3 and 0.7, while 

the lowest are noticed for very high probabilities (e.g., p(V1)>0.9). 

A method for VoI estimation has been created to infer the optimal seismic design for 

a structure when a single parameter is uncertain and discrete. In the next section, we 

aim to provide more realistic VoI estimates by computing the expected value of 

imperfect information (EVII). We assess the difference between the EVII and EVPI as 

well as its co-dependency on additional inputs. 
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4.3.3 Expected Value of Imperfect Information 

Realistically, geotechnical or geophysical information is rarely completely free of 

uncertainties, i.e., perfectly accurate. Because most surveys would need analysis and 

interpretation to infer the measurement of interest, results are likely to have dispersion, 

characterised, for example, by a normal distribution with a given standard deviation. 

It is common to combine two or more tests to decrease the standard deviation (Long 

and Donohue, 2010). 

When it comes to Vs30 measurements, the methods of prospection used will result in 

numerous possible values. Thus, the information is imperfect and incomplete. 

Although EVPI is a useful tool to fix an upper bound to not exceed, the EVII is the 

most likely VoI to be used for actual applications. 

In this section, a EVII method is built using decision trees and Bayesian updating. 

Several sensitivity analyses are performed to understand the impact of the inputs on 

the results. Extreme values are tested to validate the method. 

Updated decision tree 

To compute the EVII, the use of a decision tree is still very convenient to set the 

causality and dependence between the different components, decisions and parameters 

as well as to infer the associated probabilities. Similarly, the imperfection of the test is 

expressed in the decision tree using marginal and posterior probabilities.  

“Flipping” the tree  

In this binary discrete case, a probability of accuracy is assigned to the test. This 

probability is set by experts from available information about the specific test or by 

the manufacturer, and expresses the level of confidence given to the measurements and 

interpretations.  

For data 𝑦 obtained from the imperfect test and x being the measure of interest (i.e., 

real Vs30), the probability of the test being truthful to the real state of x is p(y|x). In 

other words, p(y|x) translates the level of accuracy of the test, called the likelihood, 

and is equal to 1 in case of perfect information. p(x) is the prior model for the 

distinction of interest before the data y are made available. We define the posterior 
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model of x conditioned on the data y, p(x|y), using Bayes’ rule. We recall that Bayes’ 

rule is used to perform Bayesian updating as follows:  

                                             𝑝(𝑥|𝑦) =
𝑝(𝑥,𝑦)

𝑝(𝑦)
=

𝑝(𝑦|𝑥)𝑝(𝑥)

𝑝(𝑦)
 (4.11) 

where 𝑝(𝑦) is called the marginal or pre-posterior probability model and translates 

the probability that y is observed. 

                                                 𝑝(𝑦) = ∑ 𝑝(𝑥)𝑝(𝑦|𝑥)𝑥  (4.12) 

We note that the straightforward problem allows going from x to y (Figure 4.10, left), 

Bayes’ rule permits processing the problem from y to x and, thus, flipping the initial 

configuration. This is needed as the decision depends first on the test results to infer 

the distinction of interest. The reverse problem is illustrated in Figure 4.10 (right) and 

uses the marginal and posterior probabilities defined above.  

 

 

Figure 4.10: The use of Bayes' Rule to flip the decision tree for EVII computation. Left: 

Straightforward problem Right: Reverse problem. p is the prior and p’ the likelihood probability 

Updated tree  

The full updated decision tree is illustrated in Figure 4.11. Similar to the previous 

decision tree, circles translate the probabilities and the rectangle nodes the decisions. 

The decision of conducting an imperfect test is made more complex, relative to the 

perfect test case. 
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In the continuity of the binary assumption, the imperfect test can give two possible 

values Tv1 (V1 from test) or Tv2 (V2 from test) with marginal probabilities as follows, 

respectively: 

                  𝑝(𝑦) = {   
𝑝(𝑇𝑣1) = 𝑝𝑚                                           𝑖𝑓 𝑦 = 𝑉1
𝑝(𝑇𝑣2) = 1 − 𝑝(𝑇𝑣1) = 1 − 𝑝𝑚      𝑖𝑓 𝑦 = 𝑉2

              (4.13)  

The branches used to infer decisions with current information remain unchanged, as 

well as the associated expected losses. Hence, the PV remains the same. The decision 

branch relative to conducting an imperfect test is further developed. The uncertain 

circular node named Marginal translates the marginal probabilities of the test results.  

 

 

Figure 4.11: Updated decision tree for EVII computation. Circle nodes represent the uncertain 

parameter and rectangle nodes the decisions. Probabilities are displayed in grey with pm as the 

marginal probability of the test result being V1 
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Value of information 

The test results being uncertain, the decision-maker is faced again with the two same 

decisions but with updated probabilities. The expected losses for each {result, 

decision} pair are then computed by including the chance of the result being 

inaccurate. These outcomes will define the Posterior Value. 

Posterior Value 

There are four posterior probabilities associated with four possibilities for this binary 

case with y being the test result and x the real value of the measure of interest. The 

decision tree is read from right to left. The probability of x being V1 if the test result is 

V1 is inferred from Bayes’ rule as follows: 

                              𝑝(𝑥 = 𝑉1|𝑦 = 𝑉1) =
𝑝(𝑥=𝑉1)𝑝(𝑦=𝑉1|𝑥=𝑉1)

𝑝(𝑦=𝑉1)
     (4.14) 

The probability of x being V1 if the test result is V2 

                               𝑝(𝑥 = 𝑉1|𝑦 = 𝑉2) =
𝑝(𝑥=𝑉1)𝑝(𝑦=𝑉2|𝑥=𝑉1)

𝑝(𝑦=𝑉2)
  (4.15) 

The probability of x being V2 if the test result is V2 

                               𝑝(𝑥 = 𝑉2|𝑦 = 𝑉2) =
𝑝(𝑥=𝑉2)𝑝(𝑦=𝑉2|𝑥=𝑉2)

𝑝(𝑦=𝑉2)
 

                                                              = 1 −  𝑝(𝑥 = 𝑉1|𝑦 = 𝑉2)                         (4.16) 

The probability of x being V2 if the test result is V1 

                              𝑝(𝑥 = 𝑉2|𝑦 = 𝑉1) =
𝑝(𝑥=𝑉2)𝑝(𝑦=𝑉1|𝑥=𝑉2)

𝑝(𝑦=𝑉1)
 

                                                             = 1 −  𝑝(𝑥 = 𝑉1|𝑦 = 𝑉1)                          (4.17) 

We note that in this binary case, we can limit the calculations to two posterior 

probabilities as the posterior probabilities are complementary when y is fixed. 

As illustrated in Figure 4.11, each test result and subsequent decision is called Choice 

no. After observing a measurement, the decision-maker will choose the decision that 

minimises the expected losses. 
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The Posterior Value (PoV) is then 

                                       𝑃𝑜𝑉 = ∑ 𝑝(𝑦).max
{1,2}

{𝐶ℎ𝑜𝑖𝑐𝑒(𝑦)}𝑦  

                                               = ∑ 𝑝(𝑦).max
𝑑∊𝐷

{∑ 𝑜(𝑥, 𝑑)𝑝(𝑥|𝑦)𝑥 }  𝑦   (4.18) 

We recall that the max operator is used instead of min as the expected losses are 

assumed to be negative values. 

Value of information 

The EVII is the difference between the PoV and the PV:  

 𝐸𝑉𝐼𝐼 = 𝑃𝑜𝑉 − 𝑃𝑉 

        = ∑ 𝑝(𝑦).max
𝑑∊𝐷

{∑ 𝑜(𝑥, 𝑑)𝑝(𝑥|𝑦)𝑥 }𝑦  

           − max
𝑑∊𝐷

{∑ 𝑜(𝑥, 𝑑)𝑝(𝑥)𝑥 }                                                       (4.19) 

Note that the perfect information can be viewed as a special case of the imperfect 

information when there are no uncertainties in measurements (i.e., 𝑝(𝑥|𝑦)∊ {1,0}). 

Similar sensitivity analyses to the EVPI case are performed, analysed and interpreted 

in the next section. In addition. sensitivity analyses over the likelihood are also 

presented which permit validation of the methodology and putting in evidence the 

importance of thoroughly assigning the accuracy of a test. 

Calculations and results 

In this section, the EVII is computed using the method and associated expressions 

above for the same PGAr. The EVII is expected to be lower than the EVPI assuming 

that the information is imperfect. 

Sensitivity to prior probabilities  

EVII is computed for the same [V1,V2] couple as Figure 4.6 and a test accuracy (i.e., 

likelihood) of 80%. The results are compared to the EVPI and displayed on Figure 

4.12.  

The expected losses for Design1 and Design2 remain unchanged whereas the expected 

losses in Figure 4.12-a after the imperfect test (dashed green line) are higher than the 
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perfect test (solid green line). This results in a decrease in the VoI, shown in Figure 

4.12-b. We notice that, unlike the EVPI, the EVII can be equal to zero for prior 

probabilities different from 0 and 1. In a further analysis, we show that this result is 

correlated with the likelihood.  

 

Figure 4.12: Sensitivity to prior probabilities for the (a) Expected outcomes and (b) EVPI (solid 

line), EVII (dashed line) for the couple [100,500] m/s  

Indeed, the likelihood represents an input that needs to be carefully estimated and 

incorporated into the calculations. We suggest studying the sensitivity of the EVII to 

the likelihood when prior probabilities are fixed.  

Sensitivity to the likelihood 

The prior probabilities are fixed to 0.5 and the Vs30 couple to V1=100 m/s and V2=500 

m/s. The EVII associated to a range of likelihood probabilities from 0 to 1 is computed 

and displayed on Figure 4.13. 

The results suggest that EVII equals zero when the test accuracy is 50% (i.e., 

likelihood equals 0.5). A test with 50% accuracy is of no help in this binary case as 

there is 50% chance that the test is right and 50% chance it is wrong. On the other 

hand, a test accuracy of 100% is equivalent to a perfect test and EVII is at its maximum, 

and equal to the EVPI. We notice that the graph is symmetric. For example, a test 

accuracy of 0% means that if the test result is V1, there is a 100% probability that the 

soil Vs30 is equal to V2. The test becomes equivalently perfect. 
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Figure 4.13: Sensitivity of EVII to the likelihood probability (test accuracy) for prior probability 

= 0.5 

Because of the symmetrical nature of the graph, studying the right side 

(likelihood>0.5) is sufficient. In our example, increasing the likelihood by 10% 

increases the EVII by around 2000 euros. The increase appears to be linear, which is 

confirmed by Figure 4.14, which shows the EVII for several prior probabilities and 

different likelihoods. The results confirm that EVII is equal to the EVPI when the 

likelihood is set to 100%. This is an additional validation of the method.  

This sensitivity analysis denotes the impact of both the prior and the likelihood on the 

EVII. Indeed, the less accurate the test, the smaller the range of prior probabilities 

given to V1 and V2 where there is a non-zero VoI. If we take the example of a test that 

is 90% accurate (Figure 4.14), we find that beyond a V1 prior probability of about 85%, 

there is no value to the additional information. In fact, there is no VoI when the prior 

probability is equal or above the likelihood. In other words, there are no benefits in 

conducting a test if we are more confident about the value of the measure of interest 

than the test itself. For example, if we are certain at 60% about the value of the true 

Vs30, the surveys that need to be conducted to obtain a non-zero VoI should give results 



Chapter 4: Assessing VoI in a seismic design application: single uncertain parameter, Vs30                   94 

 

  

 

with an accuracy of more than 60%. This interpretation confirms that the decision-

maker could filter the list of tests that could be beneficial based on the current 

knowledge before performing the VoI assessment.  

 

 

Figure 4.14: Sensitivity of EVII to V1 prior probability for different test accuracy probabilities 

4.3.4 Conclusion 

These sensitivity analyses highlight the parameters and inputs that influence most the 

VoI when the uncertain parameter is discrete. This shows that some inputs should be 

estimated and chosen carefully to obtain a high reliability in the VoI estimates. The 

prior probability given to the possible values of the uncertain parameter Vs30 was 

shown to greatly influence the EVPI and EVII. Thus, it is important to wisely and 

thoroughly use the available information to infer the prior probabilities. 

The uncertainty about the parameter is also expressed through the gap between V1 and 

V2. In a more realistic and complex case study in the next section, these uncertainties 

are considered through probability distributions assigned to Vs30. Another important 

finding is that for site rock conditions, uncertainties regarding the Vs30 that have little 

influence on the EVPI and it might not be worth conducting further measurements. 



Chapter 4: Assessing VoI in a seismic design application: single uncertain parameter, Vs30                   95 

 

  

 

The developed method has shown to validate the intuitive behaviour of VoI regarding 

the inputs. VoI decreases when information is imperfect which makes EVII always 

smaller than EVPI. The level of confidence given to a test has a strong correlation with 

the prior probabilities when it comes to VoI. A test with less accuracy than the prior 

probabilities set by the available data and experts’ knowledge is not worth conducting. 

Moreover, the more accurate the test, the higher the benefits of obtaining the 

information. Calculations using extreme and specific values have validated the present 

method. It has been shown that gaps between the outcomes of either of the decisions 

are strongly correlated with VoI estimates.  

Recall that this binary uncertainty for Vs30 is not realistic, especially when V1 and V2 

have a large gap. Uncertainties for a parameter such as Vs30 should ideally be 

expressed through continuous probability distributions. However, this binary approach 

may be useful in other scenarios, such as when making decisions about whether a fault 

is active or inactive (i.e., it does not generate earthquakes). In this case, this method 

could be useful in justifying in-situ or satellite remote sensing data collection as well 

as estimating the maximum investment in time and resources. 

4.4 Scenario 2: VoI for a continuous uncertain variable  

In this second scenario, the assumption is made that Vs30 is continuous rather than 

discrete, which is a more realistic representation of the parameter. We consider the 

same case study and inputs as scenario 1 (Section 4.3) with Vs30 uncertainties 

expressed through probability density functions. 

4.4.1 Input and parameters 

If some inputs such as the PGA on rock, the fragility curves and the definition of 

expected outcomes remain unchanged, the definition of probabilities and the approach 

for VoI computations are relatively easily adapted for continuous parameters.  

Continuous prior probability distribution 𝑝(𝑥) 

Integrating available data and consulting experts are useful in estimating the 

probability distribution to be used. While available data may indicate complex 

probability distributions, expert elicitation is more straightforward and often capture 
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the uncertainty through standard distributions. Here we assume that Vs30 uncertainties 

can be expressed by a normal distribution with mean µ and standard deviation σ. It is 

assumed that the current prior information only defines a range of possible Vs30 along 

with extreme possible values, which makes the normal distribution more realistic than 

binary values. Figure 4.15 displays the prior probability distribution in blue for Vs30 

with mean 500 m/s and a standard deviation of 120m/s. This probability distribution 

allows Vs30 to have values comprised between 100 and 900m/s with a maximum belief 

for Vs30=500m/s. Calculations using a continuous variable rely on integrals to capture 

the spectrum of all possible values. Nevertheless, some functions might require 

approximations to evaluate the integrals.  

Decisions  

The decision-maker must make a choice on applying a particular seismic design to the 

building based on available information or conducting a perfect/imperfect test to make 

the decision under lower uncertainties. Besides the decision regarding data collection, 

the decision-maker has to choose from different seismic designs. This finite number 

of possible seismic designs D = {𝑑1,…, 𝑑𝑖,… 𝑑𝑀) is set a priori from the range of 

possible Vs30 based on current information. Specifically, both optimal designs 𝑑1 and 

𝑑𝑛 are based on both extreme values of Vs30. The range 𝑑1-𝑑𝑛 is then discretised for 

additional decisions on the seismic design. 

Outcomes 

The outcomes are defined as follows:  

           𝑜(𝑥, 𝑑𝑖) =     {
𝐶𝑑𝑖                                                             𝑃𝐺𝐴𝑜𝑝𝑡(𝑥) > 𝑃𝐺𝐴(𝑑𝑖)

𝐶𝑑𝑖 + 𝐸[𝐿𝐶𝐶](𝑥). 𝑓𝑐(𝑑𝑖 , 𝑥)                𝑃𝐺𝐴𝑜𝑝𝑡(𝑥) < 𝑃𝐺𝐴(𝑑𝑖)
      (4.20) 

𝑃𝐺𝐴𝑜𝑝𝑡(𝑥) is the PGA associated to the optimal design for a value 𝑥 of Vs30 and 

𝑃𝐺𝐴(𝑑𝑖) is the design PGA relative to the decision 𝑑𝑖 . If the inferred optimal design 

for 𝑥 is more robust than the chosen seismic design from D, only the construction 

costs are considered. Otherwise, expected losses from total collapse are included in the 

outcomes. 𝑃𝐺𝐴𝑜𝑝𝑡(𝑥) is computed by minimising Equation. (4.7). 
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4.4.2 Prior Value before information 

The prior expected losses before performing a test are expressed as follows: 

                                       𝑃𝑉 = max
𝑑𝑖𝜖𝐷

{∫ 𝑜(𝑑𝑖 , 𝑥) 𝑝(𝑥)𝑑𝑥 }           (4.21)                                      

𝑜(𝑑𝑖, 𝑥) is the cost of designing the building for the decision 𝑑𝑖 when the real 

distinction of interest Vs30 is equal to x. 𝑝(𝑥) is the probability density function of 

Vs30. 

To approximate the integral in Equation (4.21), Monte Carlo simulations (Gelman et 

al., 1995) are performed to infer samples 𝑥𝑘 from the probability distribution 𝑝(𝑥). In 

particular, Markov Chain Monte Carlo (MCMC) methods are used to generate n 

samples according to the chosen probability distribution. This translates into a higher 

number of samples where the probability is high and vice-versa. In Figure 4.15, dots 

in red represents 10,000 samples from p(x). Indeed, the higher the probability density 

function, the higher the number of samples. 

The decision tree for the computation of the prior value is presented in Figure 4.16 for 

an arbitrary number of five alternative seismic designs. The structure of the decision 

tree after performing MCMC simulation is similar to the discrete case in section 4.3. 

The number of branches is significantly higher when all samples are included. 

Expected outcomes are computed for each sample 𝑥𝑘 and decision 𝑑𝑖. 

 

Figure 4.15: Vs30 Prior probability distribution (Blue) and Monte Carlo simulation (10,000 

samples) (red). Mean 500m/s and standard deviation of 120m/s 
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Figure 4.16: Decision tree to compute the prior value, PV. 𝒅𝒊 represents the alternative decisions 

and 𝒙𝒌 are samples obtained from Monte Carlo simulations on 𝒑(𝒙) 

The Monte Carlo integral approximation is used to evaluate the prior value PV before 

information as follows:        

                𝑃𝑉 = max
𝑑𝑖𝜖𝐷

{∫ 𝑜(𝑑𝑖, 𝑥) 𝑝(𝑥)𝑑𝑥 } ∼ max
𝑑𝑖𝜖𝐷

 {
1

𝑛
∑ 𝑜(𝑑𝑖, 𝑥𝑘)
𝑛
𝑘=1 }                   (4.22) 

This approximation estimates the integral by computing the average of the outcomes 

for each decision if and only if 𝑥 is sampled according to the probability distribution 

𝑝(𝑥). PV is then obtained by choosing the decision that will minimise the expected 

losses. We recall that the operator 𝑚𝑎𝑥 is used since the losses are expressed as 

negative values. 

4.4.3 Expected Value of Perfect Information  

EVPI is computed in case of a perfect test where the information is equal to the true 

value of Vs30. The Posterior Value (PoV) is computed by simply reversing the integral 

and the max operator in Equation (4.22).  

                    𝑃𝑜𝑉 = ∫max
𝑑𝑖∊𝐷

{ 𝑜(𝑑𝑖, 𝑥)}𝑝(𝑥) 𝑑𝑥 ∼
1

𝑛
∑ max

𝑑𝑖∊𝐷
{𝑜(𝑑𝑖, 𝑥𝑘 )}

𝑛
𝑘=1  (4.23) 

The calculation requires no additional steps if we have computed it for all samples and 

all alternatives for the prior value approximation in Equation (4.22). 
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EVPI is then simply:                                            

𝐸𝑉𝑃𝐼 = 𝑃𝑜𝑉 − 𝑃𝑉 

The assigned prior distribution has a strong impact on VoI. To illustrate this, EVPI is 

computed using prior distributions of same mean 𝜇 but of different standard deviations 

σ (Figure 4.17). On one hand, the EVPI is shown to have a linear increase with σ. 

Indeed, a higher prior standard deviation suggest higher uncertainties, equivalent to 

lower prior knowledge. The less available data, the more chances a perfect test will be 

beneficial. On the other hand, the EVPI in this continuous case are lower than the 

values estimated in the configuration of the discrete case. This is explained by the 

difference in the prior probabilities but mostly, by their definition. When the uncertain 

parameter is described by a continuous probability distribution, the number of possible 

true values are higher (n possible values), whereas they are only two in the discrete 

case. Here, the gap between the two extremities of Vs30 range can be seen as the gap 

between V1 and V2 in the first case, only here, all the possible values in between are 

considered. Moreover, the number of alternative decisions is higher, which results in 

a lower EVPI. 

 

Figure 4.17: Sensitivity of EVPI to prior standard deviation  
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The stability of the results depends on the number n of random samples generated. 

Monte Carlo simulation is efficient when sampling according to a probability 

distribution, but sampling remains random. On one hand, a low number of samples 

may result in unstable VoI values when sampling and calculations are repeated. On the 

other hand, a high number of samples might have a high computational cost.  

To assess the optimal number of samples needed to obtain stable results, EVPI is 

computed for various numbers of samples and two different prior standard deviations. 

Results are shown in Figure 4.18. For σ= 120 m/s, EVPI values fluctuates when 

n<10,000 but are stable for higher number of samples. Whereas for a tighter 

distribution, σ=60 m/s, EVPI is stable for n> 4 000. Fewer samples are needed when 

the range of values is smaller. This insight is beneficial in order to reduce the number 

of unnecessary calculations. For the following calculations, σ is fixed at 120 m/s and 

the number of samples is set to 10,000. 

 

Figure 4.18: Stability of VoI to Monte Carlo number of samples n 

4.4.4 Expected Value of Imperfect Information 

To compute EVII, we assume that the test to be performed is imperfect. To translate 

this imperfection, we define a test error function denoted 𝑒(𝑥). The probability density 
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function is normally distributed with a mean of 𝜇t (=0) (i.e., the test is unbiased) and 

standard deviation σt. The lower the standard deviation, the more accurate is the test. 

An example of the function 𝑒(𝑥) is shown in Figure 4.19 when σt = 30. 

 

Figure 4.19: Test error function with mean 0 and a standard deviation of 30 m/s 

General workflow for EVII assessment 

The adopted workflow to compute VoI for a continuous prior and likelihood is detailed 

as follows: 

1- Simulation of test observations 

- Pick 𝑥* as random Vs30 value from the prior probability distribution 𝑝(𝑥) 

- Pick random error 𝑒* from the test error function 𝑒(𝑥) 

- Compute 𝑦∗ =  𝑥∗  +  𝑒∗ 

- Repeat 

2- Construction of observations probability distribution: Marginal distribution 

p(y) 

 

- Plot histogram of simulated 𝑦∗ and fit a distribution to construct 𝑝(𝑦) 

- Monte Carlo sampling of N observations from the probability distribution 

𝑝(𝑦): 
𝑦 = {𝑦1, . . , 𝑦𝑗 , . . 𝑦𝑁} 

3- Computation of expected outcomes conditioned on each observation 𝑦𝑗 

 

- Compute the posterior distribution for an observation 𝑦𝑗 using Bayes rule, 

𝑝(𝑥|𝑦𝑗) 
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The posterior probability distribution 𝑝(𝑥|𝑦𝑗) is constructed by computing 

𝑝(𝑥𝑘|𝑦𝑗) for each sample 𝑥𝑘 from the definition domain of 𝑝(𝑥) using Bayes’ 

rule: 

 𝑝 (𝑥𝑘|yj) =
𝑝(𝑥𝑘)𝑝(𝑦𝑗|𝑥𝑘)

𝑝𝑚(𝑦𝑗)
=

𝑝(𝑥𝑘)𝑒(𝑦𝑗−𝑥𝑘)

𝑝𝑚(𝑦𝑗)
 (4.24) 

The marginal probability 𝑝𝑚(𝑦𝑗) is a factor used to normalise 𝑝(𝑥|𝑦𝑗) 

 

 𝑝𝑚(𝑦𝑗) = ∑ 𝑝(𝑥𝑘)𝑝(𝑦𝑗|𝑥𝑘)𝑘   (4.25) 

 

- Perform a Monte Carlo sampling from the posterior distribution 𝑝(𝑥|𝑦𝑗) to 

infer m samples of 𝑥 = {𝑥1, . . , 𝑥𝑙, . . 𝑥𝑚} and apply the Monte Carlo integral 

approximation to compute the Expected Outcomes, 𝐸𝑂, conditioned on 𝑦𝑗 for 

a decision 𝑑𝑖: 

 

     𝐸𝑂(𝑑𝑖|𝑦𝑗) = ∫𝑜(𝑑𝑖 , 𝑥)𝑝(𝑥|𝑦𝑗)𝑑𝑥 ∼
1

𝑚
∑ 𝑜(𝑑𝑖 , 𝑥

𝑙)𝑚
𝑙=0            (4.26) 

Note that the samples 𝑥𝑙 are different from the previous samples 𝑥𝑘 as they are 

sampled from the posterior distribution.  

- Repeat for each decision 𝑑𝑖 

- Pick the highest EO, max
𝑑𝑖∊𝐷

 { 𝐸𝑂(𝑑𝑖|𝑦𝑗)} 

 

4- Value of information 

Consequently, VoI can be computed using this equation: 

 

𝑉𝑜𝐼 = ∫ 𝑝(𝑦).max
𝑑𝑖∊𝐷

{∫𝑜(𝑑𝑖, 𝑥)𝑝(𝑥|𝑦)𝑑𝑥} 𝑑𝑦
𝑥𝑦

− 𝑃𝑉 

 ∼
1

𝑁
∑ max 

𝑑𝑖∊𝐷
{
1

𝑚
∑ 𝑜(𝑑𝑖, 𝑥

𝑙)𝑚
𝑙=0 }𝑁

𝑗=0 − 𝑃𝑉  (4.27) 

The workflow to compute PoV is further illustrated in Figure 4.20 through a decision 

tree. 
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Figure 4.20: Posterior decision tree when conducting imperfect test. The red node represents the 

observations marginal probability. Examples of decision trees for three different observations are 

given and the optimal decision is highlighted in yellow 

This method allows simulating a large number of probable observations that include 

the variabilities inherent to the test. The first probability node (red) in Figure 4.20 

represents the marginal probability of the various simulated observations. Using the 

posterior distribution, the expected outcomes for each possible decision are calculated, 

conditioned on the observation. Then, the decision that results in the lowest losses is 

selected. Monte Carlo sampling from the simulated observations allows the PoV to be 

computed by averaging the expected losses relative to the optimal decision for each 

observation.  

Results and sensitivity analyses 

EVPI and EVII have been computed for the parameter Vs30 of prior probability 

distribution defined by Vs30 ≈ 𝑁(𝜇 = 500,𝜎 = 120) 𝑚/𝑠. The computation of EVII 

is more complex and time consuming than EVPI. The calculations were performed 

using Python. For a fixed prior and test error distributions, EVII can be computed in 

approximately 15 minutes if 𝑁 =1,000 observations are simulated from 𝑝(𝑦).  
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Posterior distribution behaviour 

We would like to observe how posterior distributions vary for a given observation and 

prior probability distribution 𝑝(𝑥). Figure 4.21 displays the prior probability 

distribution 𝑝(𝑥) and posterior probability distributions for three different 

observations y*, 300, 500 and 700 m/s. These values are carefully chosen to study the 

impact of the prior probability 𝑝(𝑥) on the posterior 𝑝(𝑥|𝑦∗). The observations of 300 

and 700 m/s are lower and higher, respectively, than the mean 𝜇 of 𝑝(𝑥) and the 

observation y=500 m/s equals 𝜇. The vertical grey lines are added to each posterior 

distributions to indicate the associated mean observation value.  

The posterior conditioned on observing y=300 m/s has a mean that is slightly higher 

than the value of the test result (observation). Whereas for y=700m/s, the mean is 

slightly lower. For y=500m/s, the mean of the posterior corresponds exactly to the 

observation. These results show the impact of the prior distribution. In fact, for y lower 

or higher than 𝜇, the associated posterior’s mean tends to get closer to the highest prior 

probability, meaning that the credibility of the observation is not at its highest and 

suggest more closer values to the actual highest prior. This is confirmed for the case 

where the observation equals the highest prior probability value 500 m/s. 

 

Figure 4.21: Prior distribution (black) and posterior distributions (dashed) for observations 300, 

500 and 700m/s 
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The posterior is shown to be a compromise between the prior and the likelihood. To 

confirm this, we study further this relationship by observing the behaviour of the 

posterior when the prior standard deviation changes. The indicator chosen for this 

study, 𝐼, is the percentage of the difference between the posterior distribution mean 

𝜇𝑝𝑜𝑠𝑡 and the observation. Its value is shown on Figure 4.22 for different prior 𝜎 and 

observations 𝑦𝑜𝑏𝑠. 

The shift in percentage of the posterior mean 𝜇𝑝𝑜𝑠𝑡 from the observation is expressed 

as follows: 

                                                    𝐼 =
𝜇𝑝𝑜𝑠𝑡−𝑦𝑜𝑏𝑠

𝜇
. 100                                           (4.28) 

 

Figure 4.22: Impact of prior standard deviation 𝝈 on posterior distribution mean 𝝁𝒑𝒐𝒔𝒕 

The 𝑥 and 𝑦 axis represent the observation after test and the prior standard deviation 

𝜎, respectively. The prior mean 𝜇 is fixed and represented by a red vertical line. We 

observe that the further the observation from the prior mean, the more the posterior’s 

mean is shifter toward the prior. This behaviour is valid for all 𝜎. In other words, the 

further the observation from 𝜇, the less credibility is given to the observation. The 

chosen prior 𝜎 also has an impact on the sensitivity to the posterior. Indeed, the tighter 

the prior distribution is (lower 𝜎), the more the posterior is influenced and shifted 

toward the prior mean. This shows that when prior knowledge is high, the posterior is 

more tuned to fit the prior.  
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Sensitivity to likelihood 

The workflow described above was applied to compute EVII for several likelihood 

functions defined by different error functions and associated standard deviations. 

Figure 4.23 displays the sensitivity of EVII to different likelihood standard deviations. 

The result is in accordance with the intuition that more accurate tests (lower error 

standard deviation) lead to higher VoI. Moreover, when the test standard deviation 

tends to zero, the EVII tends to the EVPI. 

 

Figure 4.23: EVII sensitivity to test’s error standard deviation. Variation relative to EVPI (left 

axis), VoI (right axis) 

Whether using a discrete or a continuous definition for an uncertain parameter, the 

likelihood function has a significant effect on the estimated EVII. We conclude that it 

is important to carefully examine and establish the reliability of any testing procedures, 

based on past experiences.  

In general, we can say the following about the prior-likelihood-posterior relationship: 

- The posterior distribution is a compromise between the prior and the 

likelihood. The higher the data quality and/or quantity, the higher the influence 

of the likelihood on the posterior.  

- For a given set of data, the greater the certainty in the prior, the higher the 

influence of the prior mean over the posterior.  
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- Conversely, for a given set of data, the less prior knowledge, the more the 

likelihood controls the posterior. 

In other words, the expected paucity or abundance of observed data have an impact on 

how priors might be defined. A non-informative prior (e.g., uniform distribution) 

might be sufficient to estimate the posterior distribution when enough data can be 

collected. However, when data provide little constraint on the target parameters, a 

more informative prior should be considered. 

An interesting application of the method would be to assess EVII for different types 

of tests and choose the type with the highest EVII. Nevertheless, the EVII should also 

be compared to the cost of the test. The computation of the net benefit, EVII(test)-

cost(test), is an efficient way to choose the type of test (or not to test at all). 

Other prior distributions 

Thus far, only normal distributions have been considered for prior definitions. Some 

of the limitations encountered when a mean is fixed and the standard deviation is 

increased is that Vs30 could become negative, which is physically impossible. To 

overcome this, it is often preferable to use lognormal distributions. Lognormal 

distributions are often utilised to model uncertainty in Vs30 obtained from datasets of 

ground investigations or strong-motion recordings (Mital et al., 2021; Mori et al., 

2020; Seyhan et al., 2014; Boore et al., 2011). Lognormal distributions are suitable as 

they are bound by zero and thus defined for only positive values. This feature makes 

the distribution often skewed to the right. This helps grasp higher Vs30 values and 

consider rock conditions.  

To examine the impact of lognormal distributions on the sensitivity of VoI, we 

computed EVPI for four different lognormal distributions. The scale parameter was 

held constant while the shape parameter varied between distributions, 𝜎ln(𝑉𝑠30) (0.2, 

0.3, 0.4 and 0.5). Figure 4.24 displays (a) the associated probability density functions 

and (b) EVPI. Results are also compared to a normal distribution of 𝜎 = 120 𝑚/𝑠. 

EVPI increases with shape parameter as the shape parameter leads to a larger range of 

possible values which translates lower prior knowledge. 
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Figure 4.24: VoI for lognormal distributions of different shape values (a) probability density 

functions (b) EVPI 

4.4.5 Conclusion 

Using continuous variables to compute the VoI is more complex and has higher 

computational cost than using discrete variables. Nevertheless, assuming the Vs30 prior 

distribution as continuous is more realistic because it considers a large set of possible 

values. 

The definition of the prior distribution and likelihood have shown an impact on the 

posterior distributions, where the level of confidence in an observation is dependent 

on the marginal probability of that same observation. This stresses the requirement to 

carefully estimate the latter based on solid evidence to insure reliable results. By 

utilising this approach, it becomes possible to establish a threshold level of uncertainty 

below which further investigation is not required before making a decision. This 

threshold can help streamline decision-making processes and reduce unnecessary 

expenditures of time, effort and resources on collecting additional data.  

Tests with higher accuracy and precision are shown to increase the VoI.  It is crucial 

to bear in mind that more efficient tests and surveys are usually more costly. The VoI 

permits consideration of all aspects of a test’s expenses in terms of time, budget and 

resources, to help the decision-maker choose an optimal decision. The optimal 

decision does not only represent the collection of information but also the main goals 

of a project (e.g., choosing an appropriate seismic design, deciding on a post-

earthquake evacuation, retrofitting). 

a b 
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4.5 Main findings and discussion 

A VoI estimation method has been developed to infer the optimal seismic design for a 

structure when one key site parameter is uncertain. The framework was developed 

progressively, starting with simpler to more complex configurations, where we first 

consider a single input parameter to have discrete prior probabilities and then defined 

by continuous probability distributions. While the basic definition of VoI in the 

literature is simple and intuitive, implementing it within earth science can be 

challenging. Here, we built and implemented a method to compute VoI but also to 

understand the sensitivity of VoI to different variables and parameters. This study was 

essential to implement the theory and the computation, via Python, as well as to 

identify the parameters that mostly influence the VoI results. 

Sensitivity analyses showed that EVPI is closely tied to the inputs and that the measure 

represents the maximum amount that a decision-maker would be willing to pay in 

order to obtain a perfect information. However, in seismic hazard assessment and earth 

sciences in general, the EVII is more likely to be used as it accounts for the variabilities 

associated with the type of investigation to be conducted to infer information. 

Sensitivity analyses were a useful tool to validate the approaches and to highlight the 

importance of correctly defining some input parameters. Overall, the prior and 

likelihood distributions were identified to most impact the VoI estimates.  

Although defining Vs30 as a continuous parameter is more realistic, the discrete case 

methodology can be used in other applications such as computing VoI for the 

identification of soil classes and considering the activity or not of a neighbouring fault 

within a seismic source model.  

In this chapter, we assumed a simple approach to estimate VoI by introducing the soil 

properties through a single proxy, Vs30, to estimate a frequency independent site 

amplification. This proxy has been at the subject of active debate with regards its use 

in the field of SHA and ground-motion prediction. This discussion is related to the fact 

that it represents the effects of shallow (<30m) geology. For multi-layered and/or deep 

profiles, Vs30 fails to capture the different impedance contrasts and nonlinear 

properties (e.g., Boore et al., 2011). Nevertheless, these computations are included 
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here to develop a step-by-step approach and to provide the reader with a preliminary 

understanding of the sensitivity of VoI to the different input parameters. 

In the next chapter, the site amplification factor is obtained from 1D linear soil-

response analysis, first performed analytically for a single layer profile and then using 

an appropriate software for a more complex profile. Based on real data, 1D 𝑉𝑠 profiles 

are randomised to reflect uncertainties. Finally, the VoI approach is improved to tackle 

a less straightforward configuration: the presence of uncertainties in more than one 

parameter. 
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5 VoI for bivariate uncertain 

parameters within site-specific 

probabilistic seismic hazard 

assessment 

 

5.1 Introduction 

We are interested in direct applications of the Value of Information (VoI) regarding 

parameters within site-specific soil-response analyses (SRA). The scope of this chapter 

is similar to the previous chapter, where the decision-maker wants to decide on 

collecting additional information to reduce uncertainties, and to ultimately determine 

an optimal design for a particular building.  

In the previous chapter, site effects are captured through only a single proxy, Vs30, used 

to compute a frequency-independent amplification factor, AF. The hazard on soil was 

simply estimated by multiplying AF by the hazard on rock at zero spectral period (i.e., 

peak ground acceleration, PGA) obtained from previous Probabilistic Seismic Hazard 

Assessments (PSHAs). While Vs30 can be a useful indicator on soil properties to 

include in ground motion prediction equations (GMPEs) or in estimating AF, either 

directly (e.g., Bindi et al., 2014) or in defining the soil class (e.g., Berge-Thierry et al., 

2003), it fails to capture all the features of site conditions such as impedance contrasts 

and nonlinear properties (e.g., Boore et al., 2011).  

In this chapter, we improve the previous VoI approach to enable performing a more 

standard approach in site-specific PSHA. The methodology includes several 

improvements: 

- Site effects are captured through 1D shear-wave velocity profiles (𝑉𝑠), layer 

density ρ, including  𝑉𝑠 uncertainties (𝜎𝑉𝑠) and thickness (𝜎𝐻) at each layer. 
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- Linear elastic SRA are performed both analytically, using a single-layer soil 

profile, and numerically, for a multi-layer profile through the vertical 

propagation of shear-waves. 

- Site-specific PSHA is conducted using a hybrid approach including a 

frequency-dependent AF (Cramer, 2003). 

- VoI is computed for two uncertain variables (𝑉𝑠 and 𝐻) by introducing bivariate 

joint distributions. 

The chapter starts by an overview of state-of-the-art approaches to incorporate site 

effects in PSHAs. Then, the site-specific seismic hazard approach to be used is 

introduced and its inputs outlined. The following two sections present the 

methodology and results of VoI calculations when performing: (a) analytical linear 

SRA using a single-layer soil profile incorporating two sources of uncertainties and 

considering several types of observations, and (b) numerical linear SRA for a multi-

layer uncertain profile.  

5.2 Overview on methods to incorporate site effects in site-

specific PSHAs 

The level of complexity of the VoI method strongly depends on the approach used to 

integrate site effects. Some approaches have frequency-independent outputs, for some 

they are frequency-dependent and, others are dependent on both frequency and input 

motions (i.e., accounting for nonlinear site effects). Moreover, the number of uncertain 

variables to be included can make VoI less straightforward, requiring a more complex 

approach to isolate the contribution of the target parameters (i.e., that aimed to be 

better constrained through data collection) on the overall variability in the results. For 

VoI to be applied within modern practices, rigorous site-specific PSHAs should be 

included when building the approach. 

Several authors have worked toward developing methods to estimate hazard curves 

(HC) and Uniform Hazard Spectra (UHS) that include site effects (Kramer, 1996; 

Bazzurro and Cornell, 2004; Stewart et al., 2006; Rathje et al., 2015; Barani and 

Spallarossa, 2017; Aristizábal, 2018; Aristizábal et al., 2018). These methods have 
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been split into different categories depending on their level of complexity. These 

categories are summarised in Table 5.1. A more detailed classification can be found in 

the doctoral thesis of Aristizábal (2018).  

The approaches are separated into the following two main categories: 

Generic or partially site-specific approaches (level 0) 

Classic PSHA is performed by using GMPEs or AFs that integrate averaged site 

effects. These site effects are usually approximatively described through one or several 

proxies (e.g., Vs30, site correction factors). This approach suffers from high aleatory 

variability emanating from the selected GMPEs.   

Site specific approaches (level 1 and 2) 

These approaches consider a more refined estimation of the site amplification, based 

on measurements or numerical analyses. They allow the integration of more detailed 

site properties (e.g., soil 𝑉𝑠 profiles, degradation curves, and 1D, 2D or 3D site effects) 

as well as their associated uncertainties. Site-specific approaches are categorised in 

two main levels: 

- Level 1 uses a frequency dependent amplification factor, 𝐴𝐹(𝑓), estimated 

through instrumentally assessing site-specific residuals (e.g., Ktenidou et al., 

2015) or Standard Spectral Ratios (SSR) (e.g., Raptakis et al., 1998), or through 

numerical simulations of weak ground-motions by performing linear SRA. At 

this level, soil nonlinearity effects are neglected. 

The hazard on soil is computed using the Partially Probabilistic Hybrid Method 

(PPHM) based on disaggregation (Cramer, 2003).  

- Level 2 is generally based on numerical simulations and considers soil 

nonlinearity effects. The hazard on soil can be estimated using PPHM or the 

full convolution method (Bazzurro and Cornell, 2004). This requires 

computing the frequency- and ground-motion dependent AF, 𝐴𝐹(𝑓, 𝑆𝑎), from 

linear equivalent/nonlinear SRA. Other fully probabilistic approaches can be 

found in Table 5.1 (e.g., level 2b-d-e). 
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In the next section, we detail Level 1c (Table 5.1). This approach is used in this VoI 

application to better capture the site-effects and their variability within the estimation 

of the hazard on soil (PGA). 
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Table 5.1: Methods for the integration of site-effects in PSHA (Modified from Aristizabal et al., 2022) 

 

Generic or 

partially Site-

specific 

approaches 

Level 0 

Site-specific approaches 

Level 1: Linear site-response 

𝑨𝑭(𝒇) Ground-motion 

independent 

Level 2: Nonlinear site-response 

𝑨𝑭(𝒇, 𝑺𝒂) Ground-motion dependent 

 0a 0b 1a 1b 1c 2a 2b 2c 2d 2e 

Site effect 

integration 

method 

Proxy 

in 

GMPE 

Proxy 

in 

GMPE 

and AF 

Partially probabilistic Hybrid method 

(Cramer, 2003) 

UHSrock × 𝐴𝐹(𝑓) 

Hybrid 

method 

Full 

probabilisti

c stochastic 

method  

Analytical 

approximatio

n of the full 

convolution 

method 

Full 

probabilisti

c Classical 

PSHA with 

site-specific 

GMPE 

Full 

Probabilisti

c 

integration-

based 

Method 

𝐴𝐹(𝑓)  
from site-

specific 

residuals 

𝐴𝐹(𝑓)  
from SSR 

with rock 

reference 

station 

outcroppin

g or 

downhole 

𝐴𝐹(𝑓)  
from 

numerical 

simulation 

of weak 

ground 

motion 

𝐴𝐹(𝑓, 𝑆𝑎)  
from 

numerical 

simulatio

n of 

strong 

ground 

motion 

 

Full PSHA  

 

Classic PSHA 

rock * 

𝐴𝐹(𝑓, 𝑆𝑎) 

 

Classic 

PSHA soil 

 

Stochastic 

PSHA soil  
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5.3 Site-specific PSHA approach  

In this chapter, the incorporation of site effects in PSHA is performed using the 

Partially Probabilistic Hybrid Method (PPHM) where a deterministic site-response is 

combined with the probabilistic rock hazard (Cramer, 2003). The site-specific hazard 

is numerically computed with the approach in Level 1c and detailed in Aristizábal 

(2018). This approach, also referred to as the traditional approach (e.g., Rathje et al., 

2015), consists of the multiplication of the UHS on a reference rock, obtained from 

previous PSHA studies for rock conditions, by a frequency-dependent amplification 

function resulting from a 1D, 2D or 3D SRA (Equation 5.1).  

Within this approach, the soil response is usually considered linear (i.e., independent 

of the rock-motion level). This is equivalent to neglecting nonlinear site effects and 

assuming that the soil dynamic properties are not affected by the shear strains (e.g., 

input-motion intensity). This assumption is only valid for weak ground motions.  

The UHS on soil, 𝑈𝐻𝑆𝑠𝑜𝑖𝑙 , is computed using the hybrid method as follows: 

                                  𝑈𝐻𝑆𝑠𝑜𝑖𝑙(𝑓) = 𝑈𝐻𝑆𝑟𝑜𝑐𝑘(𝑓) ×  𝐴𝐹(𝑓)                             (5.1) 

where 𝑈𝐻𝑆𝑟𝑜𝑐𝑘  is the UHS on the reference rock at a particular annual frequency of 

exceedance and 𝐴𝐹(𝑓) the linear amplification function at a frequency 𝑓 representing 

the ratio of the spectral response between the soil surface and the outcropping 

reference rock. 

In this application, the considered building is the same as in the previous application 

in Chapter 4: a four-storey three-bay reinforced concrete (RC) building. The 

hypothetical building location is chosen to be in the city of Mirandola, Italy. The city, 

situated in northern Italy in the region of Emilia Romana, has moderate to high seismic 

activity (Figure 5.1). This region was shaken by the Emilia earthquake of magnitude 

6.1 in May 2012, which resulted in several fatalities and severe structural damage. This 

location is selected because of the availability of geophysical, geotechnical and 

geological studies aiming at characterising several sites in the region. Associated to 

this, hazard curves for rock sites are available in the 2020 updated European Seismic  
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Hazard Model (ESHM20) database (Danciu et al., 2021), enabling us to carry out a 

site-specific PSHA.  

The ESHM20 database provides hazard curves for rock conditions (Vs30=800m/s), 

indicating probabilities of exceedance in 50 years. These curves are converted to 

annual frequency of exceedance (AFoE) using the assumption of earthquakes 

occurrence being a Poisson process (Cornell, 1968; Reiter, 1990; Stein and Wysession, 

2003). The probability of exceeding a ground motion intensity IM in t years is 

expressed as follows: 

                                                     𝑃(𝑧 > 𝐼𝑀) = 1 − 𝑒−𝜆𝑡                                             (5.2) 

where λ is the annual rate/frequency of exceedance and is then calculated as follows: 

                                                  𝜆 = −
ln(1−𝑃(𝑧>𝐼𝑀))

𝑡
                                                     (5.3) 

 

 

Figure 5.1: Hazard map from ESHM20 database showing Mirandola’s location and the spectral 

accelerations at 0.2s with 10% in 50 years of probability of exceedance (Return period of 475 

years) (from Danciu et al., 2021) 
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The PGA hazard curve for Mirandola converted to AFoE is shown on Figure 5.2. 

Similar to Chapter 4, the hazard on soil is only expressed in terms of PGA. The 

considered building is aimed to be designed for a higher target hazard level, associated 

with an AFoE= 10-4 (i.e., return period of 10,000 years). This AFoE is usually used 

when considering critical facilities (HSE, 2009).  

Finally, the 𝑈𝐻𝑆𝑟𝑜𝑐𝑘 to include in Equation (5.1) is then simply the PGA value 

reported on the rock hazard curve for AFoE= 10-4, called hereafter PGArock and 

estimated at 1.09g. 

 

Figure 5.2: Hazard curve at PGA for the Mirandola site, Italy 

The next step is to estimate 𝐴𝐹 at PGA and to quantify its variability. Soil properties 

are considered to represent the only source of uncertainties within this application. VoI 

assessments are targeted to estimate the benefits of reducing such uncertainties. 

5.4 VoI for single-layer profile: Analytical Soil Response 

Analysis 

In this section, uncertainties in soil properties are integrated by analytically performing 

linear site-specific SRA for a single layer over an elastic bedrock profile. VoI is 

computed for uncertain parameters such as 𝑉𝑠 and thickness (𝐻), considered to 
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represent the single layer properties. The results are compared to VoI estimates from 

direct measurements of the amplification factor. 

5.4.1 Analytical linear elastic soil-response analysis 

To study the impact of reducing uncertainties of specific soil properties such as the 𝑉𝑠 

or the thickness (H), we perform 1D linear elastic SRA for a single layer over an elastic 

bedrock. Ultimately, the influence of reducing these epistemic uncertainties is shown 

through the computation of VoI. 

Calculation of the amplification factors 

Linear elastic SRA carry the assumption that weak ground motions do not affect the 

soil dynamic properties and that the resulting amplification factor is independent of 

the ground-motion intensity. Therefore, only one input motion is needed. This motion 

is vertically propagated through the uniform soil layer profile to estimate the spectral 

acceleration at the surface. 

First, the transfer function, TF, is analytically computed at each angular frequency (𝜔), 

assuming a 5% damping in the single layer over an elastic bedrock considered as an 

infinite half space:  

                                 |𝑇𝐹(𝜔)| =
1

|cos(𝑘𝑧𝐻)+𝑖𝑘𝑎sin (𝑘𝑧𝐻)|
                        (5.4) 

with 𝑘𝑎 =
𝜌𝐿𝑉𝑠𝐿

𝜌𝑏𝑉𝑠𝑏
  , translating the impedance ratio including the bedrock, 𝜌𝑏 , and the 

layer, 𝜌𝐿 , densities. 𝑘𝑧 is the wave number and is expressed as follows: 

    𝑘𝑧 =
𝜔

𝑉𝑠𝑏
                                                     (5.5) 

The density 𝜌𝑏  and the shear-wave velocity of the bedrock 𝑉𝑠𝑏, considered as a 

sedimentary rock, are fixed to 2.25 g/cm3 and 1500 m/s, respectively (Hu et al., 2021). 

𝜌𝐿  is computed according to the Al Atik and Abrahamson (2021) 𝜌-Vs correlation: 

                                              𝜌 = 1.742 + 0.2875 𝑉𝑠(𝑘𝑚/𝑠)                                  (5.6) 

Introducing the damping, ξ, is achieved by considering a complex expression of 

bedrock (𝑉𝑠𝑏) and soil layer (𝑉𝑠𝐿) velocities as follows:  
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                                                𝑉𝑠𝑏
∗ = 𝑉𝑠𝑏(1 + 𝑖𝜉)                                             (5.7)                            

                                                𝑉𝑠𝐿
∗ = 𝑉𝑠𝐿(1 + 𝑖𝜉)                                            (5.8)                      

Damping can be introduced into the SRA by replacing the layer 𝑉𝑠 by their complex 

expressions. 

Finally, the soil response is analytically computed as follows: 

- The input motion is transformed in the Fourier domain using the Fast Fourier 

Transform (FFT). 

- For each frequency, the Fourier series of the input motion is multiplied by the 

appropriate value of the transfer function to obtain the output Fourier series 

- The output is transformed to the time domain by using the inverse FFT. 

The amplification function, 𝐴𝐹(𝑓), is then the ratio, at each frequency, of the response 

spectrum at the soil surface and the response spectrum at the top of the bedrock, 

assumed here to be the same as the outcropping rock.  

Following Level 1c, the site-specific seismic hazard using the hybrid method simply 

consists of multiplying 𝐴𝐹(𝑓) by the hazard curve on rock at the same spectral 

frequency 𝑓 and for a particular annual probability of exceedance.  

Uncertain parameters 

Unlike the previous chapter where only one parameter was uncertain (Vs30), we 

consider here both the soil layer 𝑉𝑠 and thickness 𝐻 to be uncertain. We define the 

associated hypothetical normal prior probability distributions as follows:  

                                  𝑉𝑠 ≈ 𝑁(𝜇𝑉𝑠 , 𝜎𝑉𝑠
2 )= 𝑁(400,602) in m/s                           (5.9) 

                                       𝐻≈ 𝑁(𝜇𝐻, 𝜎𝐻
2)= 𝑁(20,52)  in m                               (5.10) 

where 𝜇 and 𝜎 represent the mean and the standard deviation of the considered 

parameter, respectively. 

The uncertainties in parameters  𝑉𝑠 and 𝐻 induce a variability in the overall 𝐴𝐹, which 

in turn is reflected in the final hazard on soil estimates. To capture this variability, 𝐴𝐹 

is computed for all possible 𝑉𝑠-𝐻 combinations.  
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To do so, 1,000 values are uniformly sampled from each uncertain soil property, 𝑉𝑠 

and 𝐻, and AF is computed following the previous framework for each possible (𝑉𝑠, 

𝐻) combinations. The resulting 𝐴𝐹 at 𝑃𝐺𝐴 is shown in Figure 5.3, where the 𝑥 and 𝑦 

axis represent 𝐻 and 𝑉𝑠, respectively. Note that the thickness 𝐻 and the bedrock depth 

(𝑥 axis) are equivalent for a single layer profile. 𝐴𝐹s values are indicated by a 

greyscale, ranging from 0.8 to 1.8. 

 

Figure 5.3: Amplification factor matrix at PGA computed for all combinations of (𝑽𝒔, 𝑯) couples 

from analytical 1D linear elastic soil-response analysis 

At PGA, the highest amplification mostly occurs for thin layers and low 𝑉𝑠. In other 

words, shallow sites composed of soft materials amplify most the ground motion at 

the surface. Conversely, the site amplification decreases when the thickness and/or 𝑉𝑠 

increases. Moreover, de-amplification (i.e., AF<1) is noticed for layers where 𝑉𝑠 >600 

m/s and 2m<H<5m as well as for H>40m and low 𝑉𝑠 (< 200 m/s).  

The calculation of 𝐴𝐹 prior to applying the VoI methodology is essential for reducing 

the computational cost. This grid/matrix of computed 𝐴𝐹s will be used next to compute 

VoI for two different types of measurements.  
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5.4.2  Value of Measurements of Profile characteristics 

As demonstrated above, AFs are strongly dependent on the single layer properties, 𝑉𝑠 

and H. AF variability induced by these uncertain properties can be linearly translated 

in the estimation of the PGA hazard on soil when computed using the Level 1 approach 

for site-specific PSHA (i.e., the hybrid method). The variability in the hazard estimates 

gives rise to less straightforward decision-making when choosing an optimal design 

for the structure. This variability might be reduced when additional measurements on 

the sources of uncertainty are obtained.  

We want to estimate the value, in monetary units, of collecting data on 𝑉𝑠, 𝐻 or both. 

The challenge is to develop the approach in Chapter 4, defined for a single uncertain 

parameter, to a more complex situation of having two uncertain parameters. This will 

allow analysing, in terms of VoI, the impact of inferring 𝑉𝑠 and 𝐻 on the overall 

calculations and will enable deciding on prioritising the measurement of one parameter 

over another. 

Prior joint probability density function 

While Chapter 4 solely focused on univariate distributions due to the identification of 

only one source of uncertainty, the present analysis requires the consideration of prior 

probability distributions for two parameters. Because both parameters are 

simultaneously used within the framework, it is essential to define a common joint 

distribution corresponding to all possible pairs of 𝑉𝑠 and 𝐻, respecting each individual 

distribution.  Moreover, a joint distribution helps to perform the sampling of (𝑉𝑠 , 𝐻) 

couples through Monte Carlo simulations to approximate the integrals within the VoI 

calculations. 
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As 𝑉𝑠 and 𝐻 are described by normal distributions, the prior joint distribution results 

in a bivariate normal distribution. The prior joint probability density function (pdf) of 

the normally distributed variables 𝑉𝑠 and 𝐻, denoted as 𝑓𝑝𝑟𝑖𝑜𝑟(𝑉𝑠 , 𝐻), is expressed as 

follows:  

                      𝑓𝑝𝑟𝑖𝑜𝑟(𝑉𝑠 , 𝐻) =
1

2𝜋𝜎𝑉𝑠𝜎𝐻
 𝑒
(
𝑉𝑠−𝜇𝑉𝑠
𝜎𝑉𝑠

)
2

+(
𝐻−𝜇𝐻
𝜎𝐻

)
2

           (5.11) 

𝑓𝑝𝑟𝑖𝑜𝑟  is parametrised by a mean vector, mean, and a covariance matrix, cov. The two 

random variables 𝑉𝑠 and 𝐻 being uncorrelated, the covariance matrix is diagonal and 

expressed as follows: 

                                                  𝑐𝑜𝑣 = [
𝜎𝑉𝑠
2 0

0 𝜎𝐻
2]                                           (5.12) 

and the mean as 

                                                     𝑚𝑒𝑎𝑛 = (𝜇𝑉𝑠
𝜇𝐻
)                                            (5.13) 

𝑉𝑠 and 𝐻 joint pdf is shown in a 3D plot in Figure 5.4-a, where 𝑥 and 𝑦 axes indicate 

H and 𝑉𝑠, respectively. Since the two variables have no covariance, there is no clear 

trend here. The distribution is a circle with a centre point at coordinates (𝜇𝑉𝑠 , 𝜇𝐻).  

Next, Monte Carlo simulations are performed to generate samples according to the 

joint pdf. An example of a sampling of 10,000 (𝑉𝑠, 𝐻) couples is shown in Figure 5.4-

b, where each red dot represents a (𝑉𝑠, 𝐻) couple. We can clearly see that the number 

of samples depends on the value of the joint pdf.  Indeed, the highest number of 

samples is at the centre and decreases for lower joint pdf values (i.e., towards the dark 

background).  

Figure 5.4Figure 5.4-c represent a comparison between the prior (red dots) and the 

posterior sampling when uncertainties on 𝑉𝑠 and 𝐻 are reduced by 50% for two 

different observations of the (𝑉𝑠-𝐻) couple. The posterior estimation is further 

developed in the following subsection. 
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Figure 5.4: Monte Carlo sampling process. (a) Prior joint pdf, (b) Prior sampling (red dots), (c) 

Posterior sampling for 50% uncertainty reduction and 2 different observations (blue and green 

dots) 

VoI methodology 

The purpose of this application is to study the impact of uncertainty reduction on each 

of the uncertain parameters, but also on both simultaneously. We assume that 

geophysical/geotechnical investigations might infer different degrees of knowledge on 

𝑉𝑠 and/or 𝐻. This degree of knowledge is considered here as a percentage, 𝑋, of the 

uncertainty reduction. For instance, if a test is performed with a likelihood of reducing 

the uncertainties on 𝑉𝑠 by 𝑋 %, the error distribution function, e, assigned to the test is 

expressed as follows: 

                                              𝑒 ≈  𝑁 (0, (𝜎𝑉𝑠(1 − 𝑋))
2

)                                      (5.14) 

e is chosen as a normal distribution with mean 0 (i.e., unbiased test) and standard 

deviation 𝜎𝑉𝑠(1 − 𝑋). 
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The following VoI approach is developed for three possible configurations: 

1- Conducting a perfect/imperfect test only on 𝑉𝑠 to reduce uncertainties by X %. 

2- Conducting a perfect/imperfect test only on 𝐻 to reduce uncertainties by Y %. 

3- Conducting a perfect/imperfect test on both 𝑉𝑠 and 𝐻 to reduce uncertainties 

by X % and Y%, respectively. 

The decision tree in Figure 5.5 illustrates the workflow of inferring the expected 

outcomes resulting from these different scenarios, along with the representation of the 

decision-making in applying a design based on the available information. The marginal 

probabilities of the three types of observations are shown as red chance nodes (circles) 

along with an example of the used posterior probabilities given a random observation. 

Finally, the expected outcomes to be used for VoI calculations are computed using the 

joint posterior distributions (black nodes) for each decision alternative 𝑑𝑖. 

 

 

Figure 5.5: Decision tree for the estimation of VoI when collecting data on 𝑽𝒔, H or both. Red 

chance nodes represent marginal probabilities, black chance nodes represent joint posterior 

probabilities. Rectangle nodes represent the decisions. 𝒅𝒊 is the decision alternative on seismic 

design 

While the definition of the expected losses remains unchanged (see Chapter 4, section 

4.3.1), the methodology is further developed to integrate the prior as a joint 

distribution. The detailed steps to compute the prior value (PV), the Expected Value 
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of Perfect Information (EVPI) and the Expected Value of Imperfect Information 

(EVII) on 𝑉𝑠 and/or 𝐻 are as follows: 

1- Prior Value (PV) 

- Compute prior joint distribution 𝑓𝑝𝑟𝑖𝑜𝑟  and the associated mean and covariance 

- Monte Carlo sampling from 𝑓𝑝𝑟𝑖𝑜𝑟  (n samples) 

- Associate each sample (couple) with the previously computed 𝐴𝐹 matrix 

(Figure 5.3) 

- Estimate the hazard on soil, 𝑃𝐺𝐴𝑠, according to Equation (5.1) for each sample. 

Determine the probability distribution of 𝑃𝐺𝐴𝑠, 𝑓𝑃𝐺𝐴𝑠 . 

- Select d ϵ D potential seismic designs. This can be done by observing the 

variability of the resulting 𝑃𝐺𝐴𝑠 and selecting alternative seismic designs. 

- Calculate the PV as follows: 

𝑃𝑉 = max
𝑑𝑖∊D

{∫ 𝑜(𝑑𝑖 , 𝑥) 𝑓𝑃𝐺𝐴𝑠(𝑥)𝑑𝑥 } ∼ max
𝑑𝑖∊D

 {
1

𝑛
∑𝑜(𝑑𝑖 , 𝑥𝑘)

𝑛

𝑘=1

}   

𝑥 = {𝑥1, . . , 𝑥𝑘, . . 𝑥𝑛} represent the values of the computed 𝑃𝐺𝐴𝑠 describing 

𝑓𝑃𝐺𝐴𝑠 . 𝑜(𝑑𝑖, 𝑥) is the expected losses function for a true state 𝑥 when 

applying design 𝑑𝑖. The function is defined in Chapter 4, Equation (4.20). 

  

2- Assessing the EVPI 

To compute the EVPI on 𝑉𝑠 and 𝐻 (i.e., conduct perfect test to infer 𝑉𝑠 and 𝐻), 

we estimate the posterior value (PoV) as follows: 

𝑃𝑜𝑉 = ∫max
𝑑𝑖∊𝐷

{ 𝑜(𝑑𝑖 , 𝑥)}𝑓𝑃𝐺𝐴𝑠(𝑥) 𝑑𝑥 ∼
1

𝑛
∑max

𝑑𝑖∊𝐷
{𝑜(𝑑𝑖, 𝑥𝑘)}

𝑛

𝑘=1

 

EVPI is then simply 

𝐸𝑉𝑃𝐼 = 𝑃𝑜𝑉 − 𝑃𝑉 
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3- Assessing the EVII 

a- Test error functions 

- Define the reduction in uncertainties, that could be achieved from conducting 

a given test, for each of 𝑉𝑠 and 𝐻 distributions and compute the new standard 

deviations, 𝜎𝑉𝑠𝑇and 𝜎𝐻𝑇  respectively. 

- Use 𝜎𝑉𝑠𝑇  and 𝜎𝐻𝑇  to define test error functions for 𝑉𝑠 measurements, 𝑒𝑉𝑠 , and 

𝐻 measurements, 𝑒𝐻, respectively. (see Equation 5.14) 

 

b- Observations 

- Simulate potential observations for each of 𝑉𝑠 and 𝐻: 

Pick random error 𝑒𝑉𝑠
∗  from 𝑒𝑉𝑠 (similarly 𝑒𝐻

∗  from 𝑒𝐻) 

Pick random 𝑉𝑠
∗ from 𝑁(𝜇𝑉𝑠 , 𝜎𝑉𝑠

2 ) (similarly 𝐻∗ from 𝑁(𝜇𝐻 , 𝜎𝐻
2)) 

Compute the observation 𝑉𝑠
∗+𝑒𝑉𝑠

∗  (similarly 𝐻∗ + 𝑒𝐻
∗ ) 

Repeat to obtain enough observations describing the overall distribution, 

representing the associated marginal probability distribution  

𝑝𝑉𝑠 ∼ 𝑁(𝜇𝑉𝑠𝑚 , 𝜎𝑉𝑠𝑚) and 𝑝𝐻 ∼ 𝑁(𝜇𝐻𝑚 , 𝜎𝐻𝑚) 

- Define the joint marginal probability density function 𝑓𝑚  of mean 𝑚𝑒𝑎𝑛𝑚 and 

covariance 𝑐𝑜𝑣𝑚 as follows: 

                                                              𝑚𝑒𝑎𝑛𝑚 = (𝜇𝑉𝑠𝑚
𝜇𝐻𝑚

)                                    (5.15)                                    

                                                             𝑐𝑜𝑣𝑚 = [
𝜎𝑉𝑠
2
𝑚

0

0 𝜎𝐻𝑚
2 ]                                 (5.16) 

- Perform Monte Carlo simulations to sample 𝑁 observations of (𝑉𝑠, 𝐻) couples 

from 𝑓𝑚 .  

 

c- Posterior Value (PoV) 

- For each bivariate observation 𝑦(𝑉𝑠𝑗,𝐻𝑗) (𝑗 ∈ {1, . . , 𝑁}): 

Compute posterior pdfs (using Bayes’ rule) for each of the observations 𝑉𝑠𝑗 

and 𝐻𝑗.  

Identify the mean and the standard deviation of each pdf.  
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Calculate the posterior joint distribution 𝑓𝑝𝑜𝑠𝑡(𝑦(𝑉𝑠𝑗,𝐻𝑗)) using the identified 

means and standard deviations. Estimate the mean, 𝑚𝑒𝑎𝑛𝑝𝑜𝑠𝑡 , and the 

covariance matrix, 𝑐𝑜𝑣𝑝𝑜𝑠𝑡. 

Sample 𝑚 posterior couples (𝑉𝑠
𝑙 , 𝐻𝑙) from 𝑓𝑝𝑜𝑠𝑡  where 𝑙 ∈ {1, . . , 𝑚}. An 

example of posterior sampling is given in Figure 5.4-c for two different 

observations. 

Compute 𝑃𝐺𝐴𝑠 values for each of the 𝑚 posterior samples by using the 

amplification factor matrix in Figure 5.3 and applying Equation (5.1). 

Estimate the expected outcomes, EO, conditioned on the observation 𝑦(𝑉𝑠𝑗,𝐻𝑗) 

(𝑗 ∈ {1, . . , 𝑁}) for each decision 𝑑𝑖: 

 

   𝐸𝑂 (𝑑𝑖|𝑦(𝑉𝑠𝑗,𝐻𝑗) ) = ∫ 𝑜(𝑑𝑖, 𝑥)𝑝(𝑥|𝑦(𝑉𝑠𝑗,𝐻𝑗) ) 𝑑𝑥 ∼
1

𝑚
∑ 𝑜(𝑑𝑖, 𝑥

𝑙)𝑚
𝑙=0    (5.17) 

 

where 𝑥𝑙 is the 𝑃𝐺𝐴𝑠 corresponding to the posterior sample (𝑉𝑠
𝑙 , 𝐻𝑙). 

- The posterior value is then computed for each of the 𝑁 observations to estimate 

the VoI as follows: 

𝑃𝑜𝑉 = ∫ 𝑝(𝑦).max
𝑑𝑖∊𝐷

{∫𝑜(𝑑𝑖, 𝑥)𝑝(𝑥|𝑦)𝑑𝑥} 𝑑𝑦
𝑥𝑦

 

                         ∼
1

𝑁
∑ max 

𝑑𝑖∊𝐷
{
1

𝑚
∑ 𝑜(𝑑𝑖 , 𝑥

𝑙)𝑚
𝑙=0 }𝑁

𝑗=0  

d- Value of information 

The EVII is then simply: 

𝐸𝑉𝐼𝐼 = 𝑃𝑜𝑉 − 𝑃𝑉 

Results and sensitivity analyses 

We choose an arbitrary number of ten alternative decisions, corresponding to the PGA 

at which the building can be designed, by uniformly sampling from the obtained 𝑃𝐺𝐴𝑠 

in the PV calculations (i.e., initial variability from available knowledge). We want to 

study the sensitivity of VoI estimations to several types of measurements and different 

combinations. To achieve this, we assess the VoI by considering all possible test 
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accuracies (i.e., the standard deviation in the error functions and percentage of 

uncertainty reduction) for both uncertain parameters,  𝑉𝑠 and 𝐻.  

Practically, for a fixed 𝑒𝑉𝑠, 𝑒𝐻 is varied to cover a range starting from no uncertainty 

reduction on H to a test that gives perfect measurements. Subsequently, VoI is assessed 

for each 𝑒𝐻. 𝑒𝑉𝑠 is then modified and the process is repeated. The resulting VoI for all 

possible configurations and combinations of tests on 𝑉𝑠 and 𝐻 is shown in Figure 5.6. 

This VoI sensitivity analysis is presented as a heatmap with 𝑥 and 𝑦 axis representing 

the different test accuracies and translating the percentage of expected uncertainty 

reduction for 𝐻 and 𝑉𝑠, respectively. Uncertainties reductions are expressed by a 

percentage relative to the initial uncertainty (𝜎𝑉𝑠 and/or 𝜎𝐻). The estimated VoI at each 

point of the grid is indicated by a greyscale, ranging from 2400 to 6700 euros, where 

lighter colours indicate higher values. Specifically, VoI estimates at the coordinates 

(100,0) and (0,100) correspond to the Expected Value of Partially Perfect Information 

(EVPPI) on H and 𝑉𝑠, respectively. EVPPI is an estimate of the value of obtaining 

perfect information on one parameter from a subset of uncertain parameters.  This plot 

is useful as it enables the visualisation of the impact on VoI of reducing the 

uncertainties of one parameter at a time but also both simultaneously.  

VoI smoothly increases when there is additional information about one of the two 

variables. We notice that VoI is slightly more sensitive to 𝑉𝑠 uncertainty reduction than 

reduction in uncertainty in H. Overall, reducing the uncertainties for 𝑉𝑠 and 𝐻 increases 

VoI. The red dot at the upper right corner is the EVPI previously computed when 

assuming perfect information about both parameters. The EVII framework applied 

when assuming a 100% reduction in uncertainty in both parameters gives results equal 

to the EVPI. This result validates the developed approach. 



Chapter 5: VoI for bivariate uncertain parameters within site-specific probabilistic  

seismic hazard assessment                                                                                                                  130 
 

 

 

 

 

Figure 5.6: Value of Information on 𝑽𝒔 and/or 𝑯 

Another interesting finding is that in some cases, investing in better quality of 

measurements for only one parameter is more valuable than obtaining lower quality 

measurements on both parameters. For example, reducing the uncertainty only on 𝐻 

by 60% (i.e., no reduction on 𝑉𝑠) results in a higher VoI than investing in measurements 

that would reduce 𝐻 uncertainty by 30% and 𝑉𝑠 by 20%. 

It is worth mentioning that in practice, 𝑉𝑠 and 𝐻 are not necessarily uncorrelated. In 

fact, most invasive and non-invasive measurements (e.g., crosshole, dowhole, multi-

channel analysis of surface waves) provide information on both parameters, 

simultaneously. This degree of dependence of a measurement on the two parameters 

can be considered within this framework by defining a joint error function distribution 

that translates the level of correlation within its covariance matrix.  

This approach can be applied to other parameters with uncertainties as a tool for 

estimating the value of combining different ground investigation techniques, but also 

as an indicator for prioritising some measurements over others.  
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5.4.3  Value of Direct Measurements of the Amplification Factor 

In this subsection, we assume that we target measurements that would directly reduce 

the AF variability. Indeed, if geophysical/geotechnical investigations can directly or 

indirectly reduce the uncertainties around soil properties, some other measurements 

are able to directly infer the characteristic of interest here, the amplification factor. 

𝐴𝐹s can be instrumentally evaluated through recordings of ground motions during 

earthquakes using the reference site method (Borcherdt, 1970), where an experimental 

transfer function is estimated from spectral ratios of records from reference rock and 

sediment site (simultaneously), also known as the Standard Spectral Ratio (SSR) 

(Tucker and King, 1984; Mittal et al., 2013; Gelis et al., 2022). Other techniques are 

used to estimate site amplification such as the spectral inversion method (Iwata and 

Irikura, 1988) using shear-waves data from the observed ground motions during 

earthquakes, and the Horizontal to Vertical Spectral Ratio (HSVR) obtained from 

microtremor data as well as from weak and strong ground motions (Nakamura, 1989; 

Theodoulidis et al., 1996; Carpenter et al., 2018).  

Here, the VoI is assessed for direct measurements on AF. Hence, AF is the main 

uncertain parameter to be reduced to better constrain the site hazard and enhance the 

decision-making process on choosing the building design level at PGA. To do so, the 

prior distribution of AF should be determined. 

Prior AF distribution 

The value of direct measurements on 𝐴𝐹 is assessed using the same single-layer 

profile, the same uncertainties on 𝑉𝑠 and 𝐻 and the same design alternatives.  𝐴𝐹 should 

express the variability induced by both parameters’ uncertainties. To estimate this 

variability, we sample 𝑛=10,000 (𝑉𝑠, 𝐻) couples through performing Monte Carlo 

simulations using the joint bivariate probability distribution of 𝑉𝑠 and 𝐻 computed in 

the previous section and denoted 𝑓𝑝𝑟𝑖𝑜𝑟 . 

For each of these 𝑛 couples, associated AF values are reported from the amplification 

matrix previously computed and shown in Figure 5.3. Figure 5.7 shows the normalised 

histogram of the resulting 𝑛 AFs. AFs is shown to be lognormally distributed with a 
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median estimated at 1.18. On the same figure, we superimpose the best-fit lognormal 

distribution (red) estimated using Maximum Likelihood Estimation (MLE) and 

considered as the prior pdf to be used within the VoI approach.  

 

 

Figure 5.7: Normalised prior AFs histogram for PGA and best-fit distribution (red)  

AFs and their distributions are considered as one of the most important inputs in 

estimating the hazard at the surface (e.g., Bazzurro and Cornell, 2004). Generally, AF 

is assumed here to be lognormally distributed (e.g., Li and Assimaki, 2010; Rathje et 

al., 2010; Bahrampouri et al., 2018). The variability in the results, obtained from 

analytically computing AF using uncertain parameters within this study, is in line with 

the common practice that assumes a lognormal distribution for AF.  

Measurements error functions 

Similarly, the variability in AF measurements obtained from techniques such as SSR 

and HVSR is generally assumed to follow lognormal distributions (e.g., Edwards et 

al., 2013). This assumption is used to define lognormal test error functions, describing 

the variability in the future measurements. We construct the test error distribution, e, 

based on the prior AF distribution which is defined by a median 𝜇𝐴𝐹  and a shape 𝜎𝐴𝐹 

(i.e., standard deviation) as follows: 
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                                                          𝜇𝑒 = 0                                                    (5.18) 

                                                    𝜎𝑒 = 𝜎𝐴𝐹(1 − 𝑋)                                              (5.19) 

where 𝑋 translates the reduction, in percentage, of the prior AF variability after 

performing the test. Moreover, the obtained lognormal distribution 𝑒 is shifted with 

the use of the location parameter in Python to force its median to be 0, assuming a 

non-biased test.  

 

 

Figure 5.8: Example of the error functions used to describe measured AF variabilities from 

different tests 

We show in Figure 5.8 four examples of error functions describing different 

measurement variabilities. These distributions are associated with measurements that 

would reduce the prior AF variability by 10, 30, 50 and 70%. Measurements with 

higher accuracy (i.e., higher X) have narrower and more constrained variabilities. 

Defining the error functions are not only important for expressing the decrease in the 

observed variability. Indeed, they are used as ‘vessels’ within the definition of the 

likelihood, which enables consideration of the possibility of measurements with 

medians that are different than the prior AF median. In the following, we aim at 

estimating the sensitivity of VoI to these different error functions. 



Chapter 5: VoI for bivariate uncertain parameters within site-specific probabilistic  

seismic hazard assessment                                                                                                                  134 
 

 

 

Results and sensitivity analyses 

The framework applied to estimate VoI is equivalent to the framework detailed in 

Chapter 4 when a single uncertainty is considered as continuous. Here, we want to 

estimate the value of obtaining direct measurements on AF by assessing the EVPI and 

EVII.  

The sensitivity of VoI to the test accuracy is analysed by computing VoI for a range 

of potential uncertainty reductions X, ranging from 0% (i.e., same variability as prior 

AF) to 100% (i.e., measurements that perfectly estimate AF). The obtained estimations 

of VoI are displayed on Figure 5.9. 

         

Figure 5.9: VoI sensitivity analysis to the percentage of uncertainties reduction after data 

collection 

Similar to the previous results presented in Chapter 4, VoI increases linearly when the 

quantity and/or quality of measurements is higher, converging asymptotically towards 

the EVPI (red dot). Moreover, it is interesting to notice that for X=0% (i.e., obtained 

measurements have the same variability as the prior AF), VoI is different from zero. 

Intuitively, we tend to think that this measurement would be of no use in reducing the 

variability. Bayesian inference tells us otherwise. The explanation lies within the 

definition of the posterior probability, which is used in the computation of the expected 

outcomes. As defined in Chapter 4, the posterior probability is a combination of the 
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likelihood and the prior estimates. VoI would be zero if the posterior was equal to the 

prior. However, the likelihood of a random observation when X=0% has the same 

standard deviation as the prior. Hence, the likelihood brings additional information, 

suggesting that AF has the highest probability of being equal to the observation along 

with carrying the same variability. This is still additional information that gives value 

to this specific measurement.  

To better illustrate this case, we compute the posterior distribution of AF when 

measurements (observations) have a median of 1.4 and the same variability as the AF 

prior variability (i.e., X=0%). Figure 5.10-a shows the posterior along with the 

likelihood and prior distribution.  This result, valid for any median observation, shows 

that even when the observed variability is not reduced with additional measurements 

compared to the prior knowledge, the posterior distribution has lower variability than 

the prior, resulting in a VoI that is greater than 0.  

Moreover, it would be interesting to study the posterior when an error function has a 

higher variability than the prior distribution. In other word, what is the impact of 

obtaining measurements that carry more uncertainty than the prior knowledge? We 

compute the posterior for the same median observation but instead, the error function 

has twice the prior standard deviation (i.e., 𝜎𝑒 = 2𝜎𝐴𝐹). The obtained posterior 

distribution is shown on Figure 5.10-b and is compared to the likelihood and prior 

distributions. The posterior distribution has a large variability, comparable to the prior 

distribution but slightly lower. This type of measurement appears to slightly enhance 

the prior knowledge. Larger variabilities have been tested, showing that the posterior, 

by definition, cannot express larger uncertainties than the prior. In other words, 

obtaining additional data can never decrease the prior knowledge.  

In reality, additional measurements with high variability might suggest a more 

complex state of knowledge such as specific geological features, 2D or 3D site effects 

and strong soil nonlinearity. Such features, which associated uncertainties have not 

been included in the definition of prior distributions, must be considered and VoI 

should be reassessed. To conclude, additional information seems to always be valuable 

when relevant to the characteristic of interest. However, its value might be negligeable 

in some cases. 
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Figure 5.10: AF prior, posterior and likelihood distributions for a median observation of AF=1.4 

when (a) X=0% and (b) 𝝈𝒆 = 𝟐𝝈𝑨𝑭 

This VoI sensitivity analysis shows values similar to the results in section 5.4.2. In 

fact, both direct measurements on AF and measurements to infer 𝑉𝑠 and 𝐻 result in VoI 

estimations ranging from 2 500 to 6 500-6 700 euros, depending on the test accuracy. 

However, direct AF measurements are more effective when compared to 

measurements obtained solely on 𝑉𝑠 or 𝐻.  Nevertheless, measuring accurately 𝐴𝐹 

from recordings requires instrument installations and a prolonged monitoring period 

to correctly characterise the amplification at the site of interest. VoI should be 

compared to the cost of such instrumentation and monitoring to make a decision. 

  

a b 
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5.5 VoI for multi-layer profile: Numerical Soil Response 

Analysis  

In this section, the VoI is assessed to decide on investing in a technique to directly 

measure AF when the site of interest is characterised by a complex and uncertain multi-

layer 1D profile. The scope of VoI remains the same as the previous section, which is 

minimising the expected losses when deciding on the seismic design of the same four-

storey three-bay reinforced concrete building located in Mirandola, Italy. 

We consider a multi-layer 𝑉𝑠 profile obtained from site characterisation through 

geophysical and geotechnical measurements at a specific location in Mirandola. Barani 

and Spallarossa (2017) provide estimates of the soil properties, which are detailed in 

Table 5.2. The soil model is a six-layer profile over an elastic bedrock. 𝑉𝑠 is defined 

by a lognormal distribution of median 𝜇𝑉𝑠 and standard deviation 𝜎𝑉𝑠 at each layer’s 

mid-depth. 

Table 5.2: Mirandola soil model properties (Barani and Spallarossa, 2017) 

 

Material 

Median 

Thickness  

(𝒎) 

Unit 

Weight 

(𝒌𝑵𝟑/𝒎)  

Median 𝑽𝒔  

𝝁𝑽𝒔 

(𝒎/𝒔) 

𝝈𝑽𝒔 

Layer 1  Clay 12 17.5 180 11 

Layer 2 Sand 18 18.2 270 17 

Layer 3 Sand 10 18.2 475 30 

Layer 4 Sand 25 18.2 288 18 

Layer 5 Sand 35 18.2 400 25 

Layer 6 Softer rock 20 19.1 775 48 

Bedrock Rock ∞ 20 800 50 
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5.5.1  Building the prior  

In this study, the prior distribution of AF at PGA is computed numerically through 1D 

linear elastic SRA performed with STRATA software (Kottke et al., 2013). This 

analysis requires a single weak input motion, vertically propagated through the profile 

to respect the linear assumption. As a reminder, the linear assumption considers that 

for weak input motions, AF is ground-motion independent.  

Soil parameter uncertainties are directly introduced in STRATA, via Monte Carlo 

simulations. This consists in varying the shear-wave velocity and the layer thickness 

following lognormal distributions using the Toro (1995) model, while the dynamic 

properties remain fixed (i.e., linear assumption). Performing these simulations are an 

essential step in considering alternative profiles and incorporating the variability in 

site effects. 

Figure 5.11 shows the Mirandola soil model (median profile in Table 5.2) as well as 

200 random profiles realisations generated using 𝑉𝑠 uncertainties as 𝜎𝑙𝑛𝑉𝑠 and a 

thickness uncertainty increasing with depth (Toro, 1995). 

 

Figure 5.11: 𝑽𝒔 profile at the Mirandola site (red) (Barani and Spallarossa, 2017) and 200 Monte 

Carlo realisations (grey) 
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1D linear elastic SRA is performed using a single weak motion for each of the profile 

realisations to obtain the acceleration response spectra at the surface for 5% damping. 

The spectral amplification functions are simply estimated by dividing each of the 

obtained response spectrum at the surface by the response spectrum of the input motion 

defined at the top of bedrock. A histogram of the 200 obtained amplification factors at 

PGA is displayed in Figure 5.12. 𝐴𝐹 is shown to have a moderate variability (0.65-

1.85) and tends to follow a normal distribution (𝑖. 𝑒. , 𝑁(1.37,0.262)). The blue curve 

represents the best-fit distribution for the histogram estimated using the MLE method 

and is considered as the prior probability density function for 𝐴𝐹, 𝑓𝐴𝐹𝑝𝑟𝑖𝑜𝑟 .   

    

Figure 5.12: Normalised prior AF histogram at PGA (black), best-fit pdf (blue) 

To estimate the integrals within VoI expressions, 𝑓𝐴𝐹𝑝𝑟𝑖𝑜𝑟  is used to generate 𝑛 =

10,000 samples. The hazard on soil, 𝑃𝐺𝐴𝑠, is computed for each sample using 

Equation (5.1). The sampling is iterated to ensure a stable estimate of the prior 

distribution. Figure 5.13 displays the histograms of 𝑃𝐺𝐴𝑠, resulting from each Monte 

Carlo sampling procedure along with the best-fit distribution in black, 𝑓𝑝𝑟𝑖𝑜𝑟 . This step 

is important to verify that the histograms are well fitted to 𝑓𝑝𝑟𝑖𝑜𝑟 . The 𝑃𝐺𝐴𝑠 variability 

is then used to sample, uniformly, ten values to be considered as decisions alternatives 

for seismic design, 𝑃𝐺𝐴𝑑.  
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Figure 5.13: Several 𝑷𝑮𝑨𝒔 histograms from Monte Carlo sampling and best-fit prior 𝑷𝑮𝑨𝒔 pdf 

(𝒇𝒑𝒓𝒊𝒐𝒓) 

5.5.2  VoI results and sensitivity analyses 

VoI is estimated for several potential tests, aimed at directly measuring AF. The PV 

and EVPI are computed using the prior 𝑃𝐺𝐴𝑠 distribution, 𝑓𝑝𝑟𝑖𝑜𝑟 , and based on the 

approach detailed in Chapter 4 for a single parameter defined by a continuous 

probability distribution (here AF). It is worth noting that the prior used in the 

calculations represent the distribution of the hazard at the site, 𝑃𝐺𝐴𝑠. Although the 

observed variable is AF, the shortcut in directly using 𝑓𝑝𝑟𝑖𝑜𝑟  is correct as the latter was 

built from 𝑓𝐴𝐹𝑝𝑟𝑖𝑜𝑟  using the linear expression in Equation (5.1). Moreover, this helps 

reduce the computational costs. 

Regarding the EVII, it is estimated by considering measurements defined by a normal 

error function 𝑁(0, (𝜎𝑃𝐺𝐴𝑠(1 − 𝑋)) 
2), where X represents the percentage in 𝑃𝐺𝐴𝑠 

variability reduction and 𝜎𝑃𝐺𝐴𝑠 the standard deviation of the distribution 𝑓𝑝𝑟𝑖𝑜𝑟 . 
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Figure 5.14: 𝒇𝒑𝒓𝒊𝒐𝒓 and posterior pdfs of 𝑨𝑭 for 3 different indirect 𝑷𝑮𝑨𝒔 mean observations from 

measurements that would reduce the prior uncertainties by 𝑿=5% 

Figure 5.14 displays the normalised prior and posterior 𝑃𝐺𝐴𝑠 pdfs for 3 different 𝑃𝐺𝐴𝑠 

mean observations and for 𝑋 = 5%. Observations, y, are simply the measured 𝐴𝐹s 

multiplied by the hazard on rock, 𝑃𝐺𝐴𝑟. The displayed posteriors are computed for a 

mean observation equal to 𝜇𝑝𝑟𝑖𝑜𝑟 , 1.25 and 2. Vertical dashed lines are associated to 

each posterior to indicate the distributions mean 𝜇𝑝𝑜𝑠𝑡(𝑦). Comparing 𝑦 and the 

obtained 𝜇𝑝𝑜𝑠𝑡(𝑦)  shows the influence of the prior and likelihood definition on the 

posterior pdfs. In fact, the estimated 𝜇𝑝𝑜𝑠𝑡(𝑦) tend to shift towards 𝜇𝑝𝑟𝑖𝑜𝑟  when  𝑦 ≠

𝜇𝑝𝑟𝑖𝑜𝑟 , suggesting a ‘correction’ to the observation in light of the prior knowledge. 

Conversely, 𝑦 = 𝜇𝑝𝑟𝑖𝑜𝑟  produces no shift to the estimated posterior mean that equals 

𝜇𝑝𝑟𝑖𝑜𝑟 . These results are in accordance with the outcomes of Chapter 4. 

Finally, EVII is assessed for different 𝑋, ranging from measurements having the same 

prior variability (i.e., X=0%) to measurements that perfectly infer AF. The sensitivity 

results are shown in Figure 5.15. Comparable to Figure 5.9, EVII shows a roughly 

linear tendency where values increase when the percentage of uncertainty reduction is 

increased. Similarly, EVII tends to asymptotically converge towards the EVPI, which 

is indicated by a red dot.  
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Figure 5.15: VoI sensitivity analysis to the percentage of uncertainty reduction after data 

collection 

The results depend on the Monte Carlo sampling regarding the number of simulated 

observations (N), as well as the sampling from posteriors (m). An acceptable stability 

(i.e., negligeable variations) is reached for N=5,000 and m=100. 

Moreover, we notice that when computing EVII for 𝑋 = 0% (i.e., collecting data with 

no improvement in data quality), VoI is different from 0. As demonstrated in section 

5.4.3, collecting twice the same data strengthens the prior distribution, where the 

posterior becomes the new prior. Similarly, hearing a piece of information twice might 

increase the chances of it being true. 

When comparing the EVII results with the estimates from direct measurements on AF 

for a single-layer profile in Figure 5.9, we notice that in this study case the slope 

translating the increase of EVII when better quality and/or quantity data are collected 

is smaller than the study case in section 5.4.3. In addition, the EVPI is also lower. 

These differences suggests that within these specific examples, direct AF estimations 

are more valuable for a single-layer profile than a multi-layer profile. This is primarily 

due to a smaller prior AF variability than for the single-layer profile case.  
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5.6 Conclusion 

In this chapter, we assessed the VoI for different site characterisations and several 

types of measurements, aiming at reducing uncertainties regarding one or more 

parameters. The VoI application has been designed to help in the decision-making 

process of inferring an optimal seismic design for a building located in northern Italy.  

VoI was first estimated when considering uncertain properties in a single-layer profile, 

such as the shear-wave velocity 𝑉𝑠 and the thickness H, where analytical calculations 

of amplification factors (AFs) were used to estimate the seismic hazard on site. The 

second profile configuration consisted of a multi-layer complex profile defined by 

uncertainties on both 𝑉𝑠 and H at each layer. AFs were computed by performing 1D 

numerical elastic linear site-response analysis. The goal of these assessments is not 

only to compute VoI, but also to study its variability to the different inputs (i.e., site 

characterisation, prior knowledge and likelihood). 

The single layer-profile case was applied to develop a VoI approach applicable when 

we have two sources of uncertainty, 𝑉𝑠 and H, by introducing bivariate joint 

distributions. The developed framework permits assessment of the value of additional 

data on solely 𝑉𝑠, solely H and both simultaneously with different degrees of data 

quality and/or quantity. Results show that in most cases, combining measurements of 

both parameters is more valuable (i.e., increase in VoI), for the condition that both 

measurements are reliable and of high quality.  In fact, we notice that often, high 

quality data for one parameter results in a higher VoI than using poorly constrained 

data for both parameters. Moreover, the value of direct measurements on AF (e.g., 

SSR, HVSR) gives similar estimates of VoI compared to obtaining measurements on 

both 𝑉𝑠 and H. These results are mainly due to the assumption of a linear elastic soil 

response and cannot be generalised for regions with moderate to high seismicity where 

the soil is likely to display nonlinear behaviour, rendering computational AFs from 

linear site-response analyses more difficult to match direct AF measurements. Finally, 

deciding on the target parameter and the type of test to conduct would depend on the 

cost of the chosen ground investigation technique.  
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In this chapter, comparisons have been made between the different results of the two 

site profiles (i.e., single and multi-layer) and the three measurement types (𝑉𝑠, H, and 

AF). While these interpretations are true for these specific applications, they cannot be 

generalised. In the last case (section 5.5), we concluded that measuring AF for a single 

layer is more valuable than for a multi-layer profile. While it has been proven in these 

specific cases to be true, it is important to keep in mind that the definition of the input 

prior knowledge is, however, different. While uncertainties on 𝑉𝑠 an H have been 

assigned arbitrarily, the variability expressed by the multi-layer profile is defined 

differently and is incorporated using the Toro (1995) model. Specifically, the obtained 

AF variability for each of the single and multi-layer profile is different. Indeed, prior 

variability in the AF in the multi-layer case is smaller than the single-layer profile case 

suggesting more constrained prior knowledge. As a result, we obtain lower VoI 

estimates. This finding aligns with the sensitivity analyses performed in Chapter 4 to 

study the impact of prior knowledge on VoI where we show that the less we know, the 

more we benefit from additional information.  

Analysing and comparing the results within the case of single-layer profile is more 

straightforward. The findings from VoI estimation for the three types of measurements 

can be more readily compared as they share the same prior knowledge, same profile 

configuration and same method for the computation of AF. 

The next chapter constitutes a significant upgrade to the overall approach. While VoI 

is still used to make informed decisions on seismic design, the structure of interest is 

now considered to be a critical facility, specifically a nuclear powerplant (NPP). This 

NPP is assumed to be located in the same city, Mirandola, for convenience when 

applying the method. The seismic design criteria are no longer only based on PGA, as 

in the current and previous chapter. Instead, the UHS over a large structural frequency 

range is considered. Moreover, the site-specific PSHA is computed according to 

modern practice, allowing the incorporation of nonlinear site effects. The site-specific 

PSHA approach is modified to a non-ergodic approach focused of assessing the value 

of reducing epistemic uncertainties in the site characterisation.  
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6 VoI for multivariate uncertain 

parameters within site-specific 

probabilistic seismic hazard 

assessment: Full convolution method 

 

6.1 Introduction 

The state-of-the-art for determining a robust seismic design for a structure requires 

considering the full Uniform Hazard Spectrum (UHS) computed from a Probabilistic 

Seismic Hazard Assessment (PSHA) at a particular return period. In the previous 

chapters (4 and 5), the Value of Information (VoI) approach was developed by 

computing the expected losses for the failure of a hypothetical building based solely 

on the site response at zero spectral period (i.e., the peak ground acceleration, PGA).  

We firstly assumed a single uncertain parameter, Vs30, characterised by a discrete 

probability function (Chapter 4). The resulting site response was simply computed by 

the multiplication of a frequency-independent amplification factor, which is also only 

dependent on Vs30, by a rock motion characterised by PGA. Following that step, the 

VoI approach was further developed to consider Vs30 as a continuous uncertain 

variable using Monte Carlo simulations. 

The approach evolved in Chapter 5, where 1D linear site-response analyses (SRA) 

were performed to estimate the site amplification functions. A first case described a 

site characterised by a single layer over an elastic bedrock where the associated shear-

wave velocity (𝑉𝑠) and thickness are assumed uncertain. Joint probability distributions 

were introduced to define the prior probabilities when computing VoI. SRA were 

analytically performed and the Level-1c site-specific PSHA approach (Table 5.1) was 

applied to estimate the expected PGA (i.e., the ordinate of the UHS for zero spectral 

period). The second case consisted of a complex six-layer 𝑉𝑠 profile where numerical 

linear SRA were run using random profiles generated through Monte Carlo 
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simulations. Through sensitivity analyses, the developed VoI approach showed 

coherency with previous results. Nevertheless, only the response or hazard 

representing the PGA was accounted for when evaluating the probability of a 

building’s failure and the associated expected losses. 

Only considering the hazard at PGA for a fixed annual frequency of exceedance 

(AFoE) might underestimate the potential hazard at other structural periods and would 

possibly put the structure at risk and general safety in peril. The design response 

spectrum, when constructed to envelop the site-specific UHS, helps evaluate the 

possible earthquake lateral loads that a structure can be expected to withstand during 

its design lifetime. Several guidelines and procedures have been developed in the last 

decades to infer seismic designs at a specific location depending on the structure’s 

characteristics, such as the National Earthquake Hazards Reduction Program 

provisions (e.g., NEHRP, 2015), the International Building Code (IBC, 2012) and 

Eurocodes (e.g., CEN, 2004). Nevertheless, site-specific PSHA is still encouraged to 

take into account all uncertainties, such as soil properties and non-linearity effects as 

well as catalogue incompleteness and path attenuation, in order to infer a seismic 

design with an acceptable level of seismic performance.  

In this chapter, we propose a novel approach for VoI calculations that aims to respect 

the state-of-the-art regarding 1D site-specific SRA, site-specific PSHA and the 

guidelines and requirements of seismic design codes. The VoI approach is developed 

to estimate the value of reducing 𝑉𝑠 profile uncertainties applied in the selection of an 

appropriate seismic design for a critical facility, a hypothetical nuclear powerplant 

(NPP) located in Mirandola, Italy. Although this location might not be suitable for 

NPP installations, it has been selected as of the available geophysical and geotechnical 

data, for comparison purposes with the results in Chapter 5 and to develop the VoI 

methodology.  

This framework consists of: 

- Performing 1D linear-equivalent SRA 

- Incorporating SRA results within a full convolution site-specific PSHA 

approach (Bazzurro and Cornell, 2004) 
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- Proposing and developing a method to capture and differentiate the epistemic 

uncertainties from the motion-to-motion variability 

- Inferring hazard curves and UHS 

- Developing an approach to estimate a multivariate joint distribution describing 

the UHS variability over a range of spectral periods 

- Constructing potential nuclear seismic designs and associated fragility curves 

at specific spectral periods 

- Implementing VoI input parameters and defining different test error functions 

The full VoI framework is then detailed and the expected value of perfect information 

(EVPI) and imperfect information (EVII) for different hypothetical tests 

measurements are estimated, followed by comparison and interpretation of the results.  

6.2 Site-specific PSHA  

PSHA accounts for all possible earthquakes (source models) as well as the variability 

of the ground motion (source, path, site etc.) to obtain hazard curves expressing the 

probability of exceeding a certain ground motion. PSHA has become the standard 

approach for developing probabilistic estimates of ground motion levels and it is often 

used to infer seismic design loads for structures or to derive inputs for dynamic 

analyses. It incorporates a wide range of sources of epistemic uncertainties and 

aleatory variabilities affecting both the seismic-source and the ground-motion models. 

PSHA studies are usually undertaken for rock sites to permit consistency between 

studies and to enable the estimation of input rock motions used in SRA. 

In this chapter, we apply the full convolution method (Bazzurro and Cornell, 2004) to 

estimate the site-specific PSHA at a particular location and to produce the hazard 

curves at several spectral periods as well as the associated UHS. In the following, all 

input parameters are defined to implement SRA. SRA outputs are then incorporated 

within the full convolution method to infer the output of interest: the UHS at a target 

hazard level. Moreover, we propose an alternative approach to the traditional 

convolution method to retrieve the contribution of the epistemic uncertainty. Finally, 

we show that the alternative method is equivalent to the traditional one and valid to be 

used within the proposed VoI framework (in section 6.3). 
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6.2.1 Site characterisation 

The hypothetical NPP is assumed to be constructed at a site in the city of Mirandola, 

Italy (same location as in Chapter 5). Site-specific ground motion analyses require 

detailed measurements of the site soil properties in order to quantify, as accurately as 

possible, the local amplification/de-amplification due to the underlined geology. 

Barani & Spallarossa (2017) provide a six-layer 1-D numerical soil model for a site in 

Mirandola, which is inferred from available geophysical and geotechnical data. The 

profile properties are detailed in Table 5.2 (Chapter 5). 

The shear-wave velocity, 𝑉𝑠, is defined by a lognormal distribution of median 𝜇𝑉𝑠 and 

standard deviation 𝜎𝑉𝑠  at each layer’s mid-depth. Within STRATA, the Toro (1995) 

model allows the generation, through Monte Carlo simulations, of random 𝑉𝑠 profiles 

following defined lognormal distributions. Performing these simulations are an 

essential step in integrating measurement uncertainties. Regarding the uncertainties in 

the layer thicknesses, the Toro (1995) model employs a generic depth dependent rate 

model 𝜆(𝑑): 

                                                      𝜆(𝑑) = 𝑎. (𝑑 + 𝑏)𝑐                                    (6.1) 

The coefficients a, b and c, estimated by Toro (1995) using layering from 557 sites in 

California, describe the increase in thickness uncertainties with depth. These 

coefficients have been modified in our present study to assume a constant thickness 

uncertainty with depth. Therefore, a, b and c have been fixed to 1, 1 and 0, respectively. 

These correlation models are directly implemented in the software STRATA (Kottke 

et al., 2013) to allow the layering and shear-wave velocities 𝑉𝑠 to vary through Monte 

Carlo simulations. STRATA allows the user to define the median 𝑉𝑠 (𝜇𝑉𝑠 ) and the 

standard deviation (𝜎ln(𝑉𝑠)).  

For the purpose of the current application, the values of 𝜎𝑉𝑠 have been increased by 

doubling the value obtained from the initial measurements (Table 5.2) to increase the 

prior uncertainties. The associated 𝜎ln(𝑉𝑠) is approximated as follows for all layers: 

                                                      𝜎ln(𝑉𝑠) ≈
𝜎𝑉𝑠

𝜇𝑉𝑠
≈ 0.12                                           (6.2) 
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Constraints have been added to STRATA to truncate the generated 𝑉𝑠 profiles at an 

upper and lower bound of +/- 2𝜎ln(𝑉𝑠) around the median to avoid unrealistic profiles, 

following the recommendation of EPRI (2013). 

The VoI framework requires quantifying the overall impact of the 𝑉𝑠 profile 

uncertainties on the obtained UHS before and after uncertainty reduction through 

additional measurements. SRA should then be performed for different values of 𝜎ln(𝑉𝑠). 

50 randomised models are generated through STRATA for different 𝜎ln(𝑉𝑠): 0.12, 0.06, 

0.03, 0.015. The obtained 𝑉𝑠 profiles realisations are presented in Figure 6.1. 

 

Figure 6.1: Mirandola soil model and Monte Carlo realisations with different 𝝈𝒍𝒏(𝑽𝒔) 

The modification of the Toro (1995) layering model results in thickness and 𝑉𝑠 

variations coherent with the median soil model at Mirandola and the defined truncated 

lognormal distributions. The interlayer shear-wave velocities show minimal variations 

for some profiles with negligible effects on the overall soil response. These profiles, 

corresponding to each of the configurations, are used in SRA to retrieve the site 

amplification functions considered as input to the site-specific PSHA. 
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6.2.2 Input motions 

STRATA enables 1D linear or linear-equivalent SRA by using either input time series 

or the Random Vibration Theory (RVT) approach (Silva et al., 1997; Boore, 2003). 

RVT has the advantage of solely requiring an input motion described by its Fourier 

Amplitude Spectrum (FAS) and a motion duration. The other advantage is that the 

method does not suffer from time series non-uniqueness and spectral matching 

methods. Nevertheless, this method has some drawbacks as it might overestimate the 

predictions in terms of site amplification around the natural site frequencies by as 

much as 20-50% (Kottke & Rathje, 2013).  

The alternative is using recorded time-series as input motions for 1D linear-equivalent 

SRA. A suite of input time-series is used to simulate the motion-to motion variability 

to generate stable estimates of the expected response at the reference outcropping rock. 

Input motions should be matched to the spectrum at the reference outcropping rock 

(e.g., the UHS) and at the target hazard level over a range of spectral periods or a single 

period (Stewart et al., 2014).  In the present study, the target hazard level according to 

UK regulations for NPPs (HSE, 2009) corresponds to an annual frequency of 

exceedance (AFoE) of 10-4, equivalent to a UHS at a return period of 10,000 years. 

The issue in considering matching records to a single hazard level is that the 

amplification functions are defined for a narrow ground motion intensity range. In case 

of nonlinearity, this range is often insufficient and fails to fully capture nonlinearity 

effects. The U.S. Nuclear Regulatory Commission (USNRC, 2007) requires 

disaggregation of the mean probabilistic hazard (Bazzurro and Cornell, 1999) at 

ground motion levels corresponding to AFoEs of 10-4, 10-5 and 10-6 for NPP 

applications. Disaggregation is an efficient tool to infer the most controlling 

earthquake scenarios as input to the SRA.  

It was preferred to find matching records for a single target hazard level: 10-4. This 

was achieved using the online tool RexelWeb developed by Sgobba et al. (2019). This 

tool enables the user to find and scale matched records to a particular spectrum. To do 

so, hazard curves at the reference rock site in Mirandola are retrieved from the 

ESHM20 database (Danciu et al., 2021) and converted to AFoE for several spectral 

periods in the range [0.01-3]s. This permits the construction of the UHS at AFoE=10-
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4. RexelWeb considers the UHS as input along with other specifications on the record 

selections (e.g., Eurocode 8 site classification of the station, magnitude-distance range, 

number of record combinations). We fix the criteria to obtain recordings at stiff soil 

stations (Eurocode 8 site class B), from events of moment magnitude (Mw) between 5 

and 6.5 and at epicentral distances ranging from 10 to 50 km. Recordings at sites of 

class A (Vs30>800 m/s) would be more suitable, considering that the used hazard 

curves on rock are defined for 𝑉𝑠30=800 m/s. However, insufficient recordings were 

obtained from RexelWeb for this site class and the target magnitude-distance range.  

For similar reasons, we obtain a total number of six records, slightly below the 

minimum number of seven input motions recommended by Stewart et al., (2014). For 

non-linear response analysis, it is recommended to use 11 records. In this study, we 

intend to perform a linear-equivalent SRA and express the soil epistemic uncertainties 

to include within the VoI framework. For the scope of this chapter, six records motions 

are considered sufficient to capture the variability of the hazard at the site and to 

incorporate in the framework.  

Table 6.1 lists key parameters for the six input motions from the Engineering Strong 

Motion (ESM) database (Luzi et al., 2015): 

Table 6.1: Input motions from site class B stations used in soil-response analyses 

Station 

name 
Event Component 𝑴𝒘 

PGA 

(g) 

Vs30 

(m/s) 

Epicentral 

distance 

(Km) 

BRN 
Irpinia 

(23/11/1980) 
E 6.9 0.17 403 42.6 

SLO 
Sellano 

(26/10/2016) 
N 5.9 0.07 N/A 14.4 

CSC 
Norcia 

(30/10/2016) 
E 6.5 0.17 698 14.9 

T1214 Norcia E 6.5 0.60 N/A 11.4 

MZ29 Norcia E 6.5 0.69 N/A 26.9 

MZ29 Norcia N 6.5 0.41 N/A 26.9 
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The associated time-series are obtained along with an associated scaling factor. The 

unscaled and scaled acceleration spectrum of each recording are shown in Figure 6.2. 

The scaled spectra match well, on average, the UHS at AFoE=10-4. However, the 

scaled recordings have been automatically normalised through RexelWeb to the target 

spectral acceleration, the PGA. This prevents the characterisation of nonlinear effects 

in the spectral period range 0.01s to 0.04s. Using these scaled records limits the input 

motion range to apply the full convolution method within site-specific PSHA. 

Therefore, the unscaled records are preferred as input for SRA. For purpose of 

comparison, the UHS at 10-3 is also shown in Figure 6.2. 

 

Figure 6.2: Target UHS at reference rock (AFoE= 10-4 and 10-3) and scaled/unscaled records 

response spectra 

The target UHS being defined at the reference outcropping rock, the matched 

accelerograms should be deconvolved to obtain the input motion at the bedrock level 

through using generic profiles such as Cotton et al., (2006), and then to be propagated 

through the soil column. We simplified the calculations, however,  by assuming here 

that the response at the reference rock is comparable to the response at the bedrock 

level. Therefore, the selected accelerograms are vertically propagated from the base 

(bedrock) of each of the 50 profiles generated with the Monte Carlo approach outlined 

in the previous section to assess the ground motion at the surface. 
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6.2.3 Site Response Analyses 

1D equivalent-linear response analysis is carried out with STRATA to take into 

account the dependence of the ground shaking on the dynamic soil properties and thus, 

on the shear strain. The nonlinearity of the soil response is then included in the 

response analysis by simplifying it into a linear system that uses strain compatible 

dynamic properties. The strain dependence on the nonlinear properties is described in 

several different models in the literature (Seed and Idriss, 1970; EPRI, 1993; 

Darendeli, 2001). The model developed by Darendeli (2001) is used within STRATA 

and assumes that both the damping ratio (D) and shear modulus reduction (G) are 

normally distributed. This model creates the shear modulus reduction and damping 

curves, which are assumed to be known. 

The 5% damped response spectrum at the surface (0m) of the site is computed by 

vertically propagating each of the six input motions through the 50 simulated soil 

profiles using 𝜇𝑉𝑠 and 𝜎ln(𝑉𝑠)={0.12,0.06,0.03,0.015} denoted respectively 

{𝜎ln(𝑉𝑠),
1

2
𝜎ln(𝑉𝑠),

1

4
𝜎ln(𝑉𝑠),

1

8
 𝜎ln(𝑉𝑠)} henceforth. The amplification factors are then 

calculated as the ratio of the 5% damped spectral acceleration at the surface of the soil 

profile (𝑆𝐴𝑠𝑜𝑖𝑙) and the 5% damped spectral acceleration at the bedrock (𝑆𝐴𝑟). The 

period-dependent amplification factor is defined as follows: 

                                                   𝐴𝐹(𝑇) =
𝑆𝐴𝑠𝑜𝑖𝑙(𝑇)

𝑆𝐴𝑟(𝑇)
                                                  (6.3) 

We obtain 300 𝐴𝐹 curves corresponding to the propagation of each input record (six) 

through the 50 Monte Carlo generated soil profiles where 𝜎ln(𝑉𝑠)=0.12. 𝐴𝐹s are 

represented in Figure 6.3 along with the corresponding median curve. 
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Figure 6.3: Computed Amplification Factors (AFs) for 50 Monte Carlo 𝑽𝒔 profiles simulations 

(𝝈𝒍𝒏(𝑽𝒔)=0.12) and six input records 

The highest AF peak can be seen around the spectral period 1.4s, corresponding to the 

soil model’s fundamental period T0. A second peak is noticeable in the range 0.3-0.7s 

which can be due to the second and third modes of the soil model, which are identified 

as 0.7s and 0.35s, respectively.  

The median 𝐴𝐹 for the two peaks are 1.9 and 1.6, respectively, and decrease after the 

second peak, tending towards 1.0.  The site 𝐴𝐹 presents a strong de-amplification at 

around 0.1s which could be due to the shear-waves reversal at around 40 meters depth. 

The soil nonlinearity might also affect the amplification as ground motions are strong 

around these spectral periods.  Moreover, the site amplification depicts the highest 

variability around the spectral periods corresponding to PGA and the two first natural 

frequencies of the soil model.  

𝐴𝐹 curves and the associated standard deviation are inputs of high importance to 

perform site-specific PSHA using the full convolution method of Bazzurro & Cornell 

(2004). 
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6.2.4 Site-specific PSHA approach: Full convolution method 

The full convolution method introduced by Cramer (2003) and analytically developed 

by Bazzurro & Cornell (2004) permits the estimation of the site-specific seismic 

hazard by accounting for site-effects in a fully probabilistic framework. This method 

is equivalent to the Approach 3, used in the U.S. nuclear industry and introduced 

within NUREG 6728 (McGuire et al., 2001). The soil hazard curves, 𝐻𝐶𝑠𝑜𝑖𝑙 , are 

computed through the convolution of the reference rock hazard curves and the 

amplification function as follows:  

                                     𝐻𝐶𝑠𝑜𝑖𝑙(𝑍) = ∫ 𝑃 [𝑌 >
𝑍

𝑥
|𝑥] 𝑓𝑥(𝑥)𝑑𝑥

∞

𝑜
                               (6.4) 

where 𝑍 = 𝑆𝐴𝑠𝑜𝑖𝑙[𝑇] and 𝑥 = 𝑆𝐴𝑟[T]. 𝑌 is the input dependent site amplification 

𝐴𝐹(𝑇, 𝑆𝐴𝑟) and 𝑃[𝑌] its distribution conditioned on the input rock motion 𝑆𝐴𝑟. 

Finally, 𝑓𝑥(𝑥) is the probability density function (pdf) of 𝑥= 𝑆𝐴𝑟. 

This equation was made readily useful by Bazzurro & Cornell (2004) by discretizing 

the integral as follows:  

                                    𝐻𝐶𝑠𝑜𝑖𝑙(𝑍) = ∑ 𝑃 [𝑌 >
𝑍

𝑥𝑗
|𝑥𝑗] 𝑝𝑥(𝑥𝑗)𝑎𝑙𝑙 𝑥𝑗

                               (6.5) 

The term 𝑝𝑥(𝑥𝑗) represents the probability of the input rock motion being equal or 

higher than 𝑥𝑗. Its value can be calculated by differentiating the rock hazard curve in 

discrete or numerical forms. In other words, 𝑝𝑥(𝑥𝑗)  is the annual probability of 

occurrence of 𝑆𝐴𝑟 = 𝑥𝑗 and 𝑃 [𝑌 >
𝑍

𝑥𝑗
|𝑥𝑗] translates the probability that 𝐴𝐹 is greater 

than 
𝑍

𝑥𝑗
  given 𝑆𝐴𝑟 = 𝑥𝑗.  

Equation (6.5) could be analytically approximated by making the following 

assumptions: 

- The amplification factor 𝐴𝐹(𝑇, 𝑆𝐴𝑟) is lognormally distributed given 𝑆𝐴𝑟: The 

median is described by a linear piece-wise dependence on 𝑆𝐴𝑟 (log-log scale) 

and its variability is described by a lognormal distribution.  

- The rock hazard can be represented by a power law around the return period of 

interest.  
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This approach respects the probabilistic aspects of the hazard and subsequently the 

UHS and considers the amplification function as an a posteriori corrector to the rock 

hazard calculations.  

Considering the above assumptions, 𝑃 [𝑌 >
𝑍

𝑥𝑗
|𝑥𝑗] can be written as follows:  

                                        𝑃 [𝑌 >
𝑍

𝑥𝑗
|𝑥𝑗] = �̂� (

ln(
𝑧

𝑥𝑗
)−𝜇ln𝐴𝐹|𝑥𝑗

𝜎ln𝐴𝐹|𝑥𝑗

)                               (6.6) 

Where 𝜇ln 𝐴𝐹|𝑥𝑗  and 𝜎ln 𝐴𝐹|𝑥𝑗  are respectively the median value and standard deviation 

of the natural logarithm of 𝐴𝐹 given 𝑆𝐴𝑟 = 𝑥𝑗. �̂�(. ) is the standard complementary 

Gaussian cumulative distribution function. 𝜇ln 𝐴𝐹|𝑥𝑗  and 𝜎ln 𝐴𝐹|𝑥𝑗  are derived through 

SRA by regressing 𝐴𝐹 values computed for several soil profiles and input rock 

motions for each spectral period T. 

 

Figure 6.4: AF for six input records PGA and 50 random profiles. The linear regression curve 

representing 𝝁𝒍𝒏𝑨𝑭 is a dashed red line. 

The relationship describing the dependence of 𝐴𝐹 on 𝑆𝐴𝑟 can be expressed by a linear 

or a nonlinear relationship. An example of linear regression on 𝐴𝐹 for PGA inputs is 

given in Figure 6.4. Python can solve for the regression parameters and it can estimate 

𝑆𝐴𝑟 [g] 
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the associated standard deviation 𝜎ln 𝐴𝐹 . Generally, the amplification factor decreases 

with increasing input motions intensity due to the soil’s nonlinear properties. This can 

be seen through the negative slope of the 𝜇ln 𝐴𝐹  function in Figure 6.4. The linear 

relationship has this form: 

                                        ln 𝐴𝐹̅̅ ̅̅ (𝑇, 𝑆𝐴𝑟) = 𝑎 + 𝑏 ln( 𝑆𝐴𝑟(𝑇))                                 (6.7) 

a and b are regression coefficients with b representing the effect of nonlinearity.  

When the range of input rock intensities is large enough, the regression could be in the 

form of a nonlinear relationship. This form is usually preferred, especially as the linear 

form can lead to non-physical values at low input intensities. In fact, 𝐴𝐹(𝑇, 𝑆𝐴𝑟) 

should flatten at the lowest input-motion intensities to respect linear soil conditions.   

Stewart et al. (2014) modified the expression used by Abrahamson & Silva (1997) as 

follows: 

ln 𝐴𝐹̅̅ ̅̅ (𝑇, 𝑆𝐴𝑟) = 𝑐1 + 𝑐2 ln (
𝑆𝐴𝑟(𝑇)+𝑐3

𝑐3
)                                   (6.8)  

c1 represents the weak-motion linearity, c2 the nonlinearity and c3 the reference input 

motion below which 𝐴𝐹 converges towards linearity. Higher degree polynomial forms 

can also be applied.  

In the present study, the linear form is adopted because of the limited coverage of input 

motions, which are insufficient to capture both the linearity at very weak motions and 

the nonlinearity at very strong motions. From the following results, the nonlinearity 

effects appear to be moderate. We recall that the state-of-the-art requires matching 

records to several levels of hazard. However, as explained earlier, we only use six 

unscaled moderate to strong input records. This study focuses more on the application 

of VoI when site-specific PSHA is performed rather than providing the best 

engineering estimate of 𝐴𝐹(𝑇). 
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Figure 6.5: Standard deviation of the natural logarithm of AF (𝝈𝒍𝒏(𝑽𝒔)=0.12) 

The advantage of this method is that the amplification variability is taken into account. 

𝜎ln 𝐴𝐹  is computed for each spectral period and incorporated in Equation (6.6) to 

produce the hazard curves for the chosen spectral periods. The variation of 𝜎ln 𝐴𝐹 with 

spectral period T is shown in Figure 6.5 for 𝜎ln(𝑉𝑠)=0.12. The highest variability is 

observed around the second and third modes of the site model resonance periods then 

decreases gradually for the highest periods.  

One of the limitations of the convolution approach is that it does not distinguish 

epistemic uncertainties from aleatory variability. 𝜎ln 𝐴𝐹  is considered in the full 

convolution method as aleatory (Rodriguez‐Marek et al., 2014) as a result of the 

motion-to motion variability but also because of the use of the Monte Carlo step to 

generate the soil parameters. Thus, 𝜎ln 𝐴𝐹 is ergodic. As a result, at each spectral 

period, the convolution of the amplification function and the rock hazard curve at the 

same spectral period results in a single soil hazard curve. However, to compute the 

VoI, it is important to be able to build prior distributions from available information 

but as equally important, to estimate the likelihood and posterior distributions to assess 

the outcomes in reducing uncertainties. Distributions cannot be constructed from a 

single soil hazard curve. To tackle that, it is necessary to separate the epistemic 

uncertainty from the aleatory, representing here the motion-to-motion variability. 
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Barani et al. (2013) have studied the influence of soil modelling uncertainties on site 

response by performing sensitivity analyses through varying one soil property at a 

time. The soil modelling uncertainties (e.g., 𝑉𝑠, layer thickness, unit weight, dynamic 

properties) and input motion variability (e.g., number of records and scaling) have 

been separately studied and analysed to quantify their individual impact on 𝐴𝐹.  This 

is useful in identifying both the epistemic and aleatory components but also to assess 

what parameter is predominant in the overall variability.  

In this application, we opted for explicitly expressing the epistemic uncertainty by 

estimating 𝐴𝐹 − 𝑆𝐴𝑟 regressions for each random profile. The standard deviation, 

associated to each regression, would then only capture the motion-to-motion 

variability. The convolution approach can then be applied for each random profile to 

obtain 50 soil hazard curves at each spectral period. This method allows the 

construction of the prior probability distributions that translate epistemic uncertainty, 

𝑉𝑠 profiles here, at each spectral period for a chosen AFoE.   

Figure 6.6 shows 𝐴𝐹 versus 𝑆𝐴𝑟  for four spectral periods: 0.0s (i.e., 𝑆𝐴𝑟 is PGA), 0.1s, 

0.3s and 1s for the reference case 𝜎ln(𝑉𝑠)=0.12. Regressions including all profiles are 

shown in red lines and those for each individual profile in grey. The slope of individual 

profiles linear regression is negative and consistent with the soil nonlinearity. From 

the spectral periods considered, 0.1s depicts the highest nonlinearity effect while at 

higher spectral periods (T=1s), the nonlinear effects decrease. 𝜇𝑙𝑛𝐴𝐹(𝑆𝐴𝑟 , 𝑇) is then 

computed for each profile as well as the associated standard deviation, representing 

the motion-to-motion variability. The convolution has been applied and the resulting 

soil hazard curves are shown in Figure 6.7 for the same four periods. 
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Figure 6.6: AF versus 𝑺𝑨𝒓 for T=0.0s (PGA),0.1s, 0.3s and 1s. Linear regressions including all 50 

random profiles (red line) and for each individual profile (grey lines) are shown. 

In Figure 6.7, we compare the single soil hazard curve computed by including the total 

standard deviation (i.e., considering all profiles) and the median hazard curve resulting 

from all individual profile hazard curves. These are almost superimposed, suggesting 

that the above standard deviation decomposition method is valid and can be a 

substitute to the traditional implementation of the full convolution method.  

 

PGA 0.1s 

0.3s 1s 
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Figure 6.7: Soil hazard curves for T=0.0s (PGA),0.1s, 0.3s and 1s using the full convolution 

method including all profiles (red), individual profiles (grey) and the median of the individual 

profiles (black dashed). 

Decomposing and isolating the epistemic uncertainties (layers 𝑉𝑠 and thickness) 

enables to study the impact of new information on the hazard results and thus, on the 

site-specific UHS. The associated UHS at AFoE=10-4 is presented in Figure 6.8. This 

return period is chosen as the target level in our study case for an NPP. The spectral 

accelerations obtained from including all random profiles (red line) appear to be 

slightly higher than those obtained from calculating the median of individual profiles 

UHS in the period range [0.1s-0.5s]. Outside this range, both curves are almost 

superimposed. This validates the use of the decomposition method. This approach of 

site-specific PSHA enables building probability distributions, at chosen spectral 

periods, which define the prior knowledge part of the VoI calculation.  
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Figure 6.8: Soil Uniform Hazard Spectrum (UHS) at a return period= 10,000 years 

(AFoE of 10-4) for 𝝈𝒍𝒏(𝑽𝒔)=0.12 

The next section details, step by step, the VoI framework. First, the chosen prior 

distributions are justified and built. Second, the different seismic design alternatives 

are constructed along with the associated fragility curves. Then, the expected outcomes 

estimations in case of total damage are defined and the associated values given. 

Finally, the expected posterior distributions after data collection are built based on 

results obtained from reducing 𝜎𝑉𝑠.  Results of VoI estimation are then presented for 

several possible 𝜎𝑉𝑠 reductions.  

6.3 Value of Information approach 

We are interested in predicting the reduction in expected losses in case of damage 

when inferring a seismic design for a NPP after data collection. We recall that the VoI 

assessment is to be performed before the data collection itself. In this study, we focus 

on one uncertain step leading to developing an appropriate seismic design, the seismic 

hazard assessment phase. Particularly, we aim at assessing the value, in monetary 

units, of reducing uncertainties regarding the site characterisation. The uncertain 

parameter of interest is the shear-wave velocity profile. 

In this section, we propose a new approach resulting from a complex framework that 

uses the basic elements of the VoI method developed in the previous chapters (4 and 



Chapter 6: VoI for multivariate uncertain parameters within site-specific probabilistic seismic hazard 

assessment: Full convolution method                                                                                                 163 
 

 

 

5). This approach is challenging as the uncertain variable is multivariate, unlike the 

previous studies (Vs30 and 𝑉𝑠-thickness of a single layer). The developed VoI approach 

is adapted and applied to a realistic situation, enabling seismic hazard analysts and 

facilities owners to understand how to implement the framework for specific 

applications.  

First, we detail the preparation steps to define and construct the input parameters. 

Then, we explain their implementation within the VoI proposed framework. Finally, 

we analyse and interpret results of Prior Value (PV), Expected Value of Perfect 

Information (EVPI) and Expected Value of Imperfect Information (EVII) along with 

sensitivity analyses to understand the impact of various input parameters and to 

validate the results by comparing them with the results of previous studies (Chapter 4 

and 5). 

6.3.1 Building the framework input parameters 

While the important elements and input parameters of the VoI method are theoretically 

known, the challenge lies in extrapolating the method for uncertain univariate and 

bivariate variables to a multivariate implementation. In previous chapters, VoI has 

been computed from the estimation of expected losses that are solely based on a 

univariate variable (e.g., expected PGA). Indeed, the fragility curves along with the 

expected loss function were only defined for PGA. The challenge in using a full UHS 

as an uncertain variable is the integration of prior probability distributions that translate 

the latter uncertainty over a range of spectral periods (T).   

The following section is considered to be the most important step in carrying out 

consistent VoI estimations. This section details, step by step, the building of all crucial 

elements within the VoI calculation. From an attempt in predicting UHS variability 

with the input shear-wave standard deviations 𝜎𝑉𝑠 to building the requirements in the 

Expected Losses (EL) calculations, we also define the seismic design candidates and 

their associated fragility curves for specific spectral periods. 
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Distributions of UHS conditioned on 𝝈𝑽𝒔 

The idea is to study the impact of 𝑉𝑠  uncertainty on the overall variability of the UHS 

and to consider the UHS as a prior conditional on 𝜎𝑉𝑠. The prior chosen to be included 

in the VoI framework is not the 𝑉𝑠 probability distribution. However, 𝑉𝑠 could be the 

uncertain input prior given the condition that we can quantify its relationship to the 

resulting UHS. This condition is essential as UHS represents the judging criteria to 

compute EL. Attempts have been made to quantify the direct implication of 𝜎𝑉𝑠 

variation on the UHS by analysing soil response results when 𝜎𝑉𝑠 is varied. The 

purpose being to better identify the impact of the different measurements on the 

resulting UHS. This would also simplify studying the sensitivity of VoI to this 

parameter. 

Similar to Figure 6.6, Figure 6.9 depicts 𝐴𝐹 − 𝑆𝐴𝑟 dependence and linear regression 

for different spectral periods for the reference 𝜎𝑙𝑛𝑉𝑠 = 0.12 and when performing SRA 

using  
1

2
𝜎𝑉𝑠, 

1

4
𝜎𝑉𝑠 and  

1

8
𝜎𝑉𝑠. The linear regressions computed at the same spectral 

period are all parallel, demonstrating similar nonlinearity effects. Table 6.2 shows the 

gradient (i.e., slope) of the linear regressions in log-log scale for all scenarios and at 

each spectral period. Median 𝜇𝑙𝑛𝐴𝐹  appears to slightly increase when 𝑉𝑠 uncertainties 

decrease. The variations being minimal, we focus on analysing the associated 𝜎𝑙𝑛𝐴𝐹 . 
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Figure 6.9: AF versus 𝑺𝑨𝒓 for T=0.0s (PGA) and T=0.1s, 0.3s and 1s. Linear regressions including 

all profiles for 𝝈𝑽𝒔,  
𝟏

𝟐
𝝈𝑽𝒔, 

𝟏

𝟒
 𝝈𝑽𝒔 and 

𝟏

𝟖
 𝝈𝑽𝒔 are represented as dashed lines 

Table 6.2: Gradient regression coefficient of the linear regressions presented in Figure 6.9 in log-

log scale 

  gradient  

T=0s T=0.1s T=0.5s T=1s 

𝜎𝑉𝑠 -0.60 -1.04 -0.62 -0.38 

1

2
𝜎𝑉𝑠 -0.60 -1.05 -0.60 -0.40 

1

4
 𝜎𝑉𝑠 -0.60 -1.04 -0.60 -0.39 

1

8
 𝜎𝑉𝑠 -0.59 -1.04 -0.60 -0.39 

 

In Figure 6.10-a, we observe the total 𝜎𝑙𝑛𝐴𝐹  values depending on T when implementing 

the soil model with the same median 𝑉𝑠 and decreasing standard deviation (𝜎𝑉𝑠,  
1

2
𝜎𝑉𝑠, 

1

4
 𝜎𝑉𝑠 and 

1

8
 𝜎𝑉𝑠). Generally, and for most spectral periods, decreasing 𝜎𝑉𝑠 results in 

lower associated 𝜎𝑙𝑛𝐴𝐹 . To study in-depth the consequences, the percentage reduction 

in  𝜎𝑙𝑛𝐴𝐹  compared to the reference 𝜎𝑉𝑠 is shown in Figure 6.10-b. There is a positive 

correlation between 𝜎𝑉𝑠 and 𝜎𝑙𝑛𝐴𝐹  for all spectral periods except within the range of 

the 2nd and 3rd modes of the soil model (∼0.35s-0.7s). The reduction in 𝐴𝐹 variability 

A
F

 

𝑆𝐴𝑟[𝑔] 

Linear regression coefficient 

Scenario 
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is not homogeneous and seems difficult to quantify and predict for all periods. We can 

notice that for T=1s, the percentage reductions for 
1

4
 𝜎𝑉𝑠 and  

1

8
 𝜎𝑉𝑠 are almost equal.  

Similar efforts were made by Barani et al. (2010) in deriving empirical predictive 

equations to relate the level of period-dependent amplification on Vs30 for a specific 

case study. It was found that Vs30 can be effective in predicting AF(T) only at short 

periods, but correlation was poor at longer periods. Best correlations were found when 

computing period-independent amplifications. 

We conclude that attempts to extrapolate these results to predict the 𝜎𝑙𝑛𝐴𝐹  associated 

to other 𝑉𝑠 standard deviations without performing a proper soil response analysis 

would compromise the VoI framework and results.  

 

Figure 6.10: (a) Total 𝝈𝒍𝒏𝑨𝑭(𝑻) for 𝝈𝑽𝒔,  
𝟏

𝟐
𝝈𝑽𝒔, 

𝟏

𝟒
 𝝈𝑽𝒔 and 

𝟏

𝟖
 𝝈𝑽𝒔. (b) Bar plot showing the percentage 

of 𝝈𝒍𝒏𝑨𝑭(𝑻) reduction compared to the reference (𝝈𝑽𝒔) for each scenario 

Further attempts to predict the impact of 𝜎𝑉𝑠 reduction is to directly study the resulting 

UHS when applying the decomposition method. Similar to the results in Figure 6.8, 

Figure 6.11-a shows all UHS at AFoE= 10-4 computed through the convolution method 

for each random profile and each of the reduced 𝜎𝑉𝑠 scenarios. We notice a decrease 

in the UHS variability, over all period ranges, when the uncertainty associated to the 

𝑉𝑠 profile decreases. In order to study further the impact of the uncertainty reduction, 

the UHS variability is analysed for each scenario at nine different spectral periods. 

a b 
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Figure 6.11-b shows an example of the histograms for the four scenarios at 0.1s. The 

histograms are superimposed to analyse the relative reduced UHS variability. From 

each histogram, we identify a corresponding probability density distribution (pdf), 

considered as the best-fit in describing the data variability. At T=0.1s, beta 

distributions show the best fit to the histograms. Beta distributions have great 

flexibility in shape (skewed right or left) and can be bounded to chosen intervals by 

keeping the same shape. 

The analysis is performed for eight other spectral periods and shown in Figure 6.11-c. 

Most of variabilities could be explained by beta distributions, some by lognormal, and 

at long periods, normal distributions were preferred.  Nevertheless, the behaviour of 

the median 𝜇𝑈𝐻𝑆(𝑇) and standard deviation 𝜎𝑈𝐻𝑆(𝑇) conditioned on 𝜎𝑉𝑠 remain 

complex to characterise and predict for each spectral period. While at long spectral 

periods (>1s), 𝜇𝑈𝐻𝑆(𝑇) is the same for each 𝜎𝑉𝑠 scenario, shorter periods depict a 

chaotic evolution of the same parameter. For some periods, 𝜇𝑈𝐻𝑆 increases with 𝜎𝑉𝑠 

(T=0.2s) and decreases for others (PGA, 0.25s and 0.5s). Similarly, 𝜎𝑈𝐻𝑆(𝑇) depicts a 

nonlinear dependence on 𝜎𝑉𝑠. However, despite the sensitivity analysis being 

inconclusive to build a predictive relationship, these distributions will be used to infer 

prior probability distributions and measurements error functions when estimating VoI. 

We recommend performing a first SRA including prior knowledge and a second one 

including the same median soil model 𝑉𝑠 but with a reduced 𝜎𝑉𝑠.  The latter 𝜎𝑉𝑠 would 

describe the approximate reduced 𝜎𝑉𝑠 after performing a specific test/measurements. 

It is encouraged to consult experts and review past measurements and data to estimate 

the test bias and associated variability.   
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Figure 6.11: (a) UHS at AFoE=10-4 for 𝝈𝑽𝒔,  
𝟏

𝟐
𝝈𝑽𝒔, 

𝟏

𝟒
 𝝈𝑽𝒔 and 

𝟏

𝟖
 𝝈𝑽𝒔 (b) Associated histograms and 

probability density distributions at 0.1s (c) pdfs for nine spectral periods (unscaled axes) 

a 

b 

c 
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Prior UHS distribution 

In Chapter 4, VoI was estimated based on the site PGA when a single parameter (Vs30) 

is uncertain and is described by discrete binary probabilities. The VoI method was then 

further developed to consider a continuous prior univariate probability distribution.  

In Chapter 5, bivariate joint distributions were introduced when both 𝑉𝑠 and the 

thickness H were uncertain for a profile consisting of a single layer. Only the PGA was 

considered to describe the hazard and was included in the VoI framework as a 

univariate variable defined by a single distribution. 

In this chapter, we complement the approach by taking into account the variability in 

the UHS defined over a range of spectral periods. While major components of VoI 

remain unchanged, defining these in light of standard PSHA practice and nuclear 

design requirements and regulations can be challenging as this is the first time the VoI 

concept is applied in this context. 

The prior to be included as prior knowledge in the VoI framework is the UHS at 

AFoE=10-4 associated to the reference 𝜎𝑙𝑛𝑉𝑠 = 0.12. As shown in Figure 6.11-a, the 

50 UHS from the Monte Carlo simulations within STRATA are sufficient to describe 

the UHS variability at each spectral period T. However, to compute the PV within the 

VoI, a higher number of samples is needed to apply the Monte Carlo approach to 

approximate the integrals within the expression. The samples need to be generated 

from probability distributions.  

The idea is to define a probability distribution that could respect the variability of the 

prior UHS at each spectral period. This distribution would then enable the user to 

generate 𝑛 versions of the UHS that preserve the variability at each period. The UHS 

being a multivariate random variable, the suitable probability distribution achieving 

the latter condition would be a multivariate joint distribution.  

The probability distributions shown in Figure 6.11-c in black are used to generate the 

prior UHS samples. Lognormal distributions were the best fit at PGA and T=2s 

whereas for the rest, beta distributions best describe the data histograms. A 

multivariate joint distribution is then built from these nine probability distributions 

using the Symbulate package in Python. Symbulate allows simulating samples based 
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on probability distributions. The multivariate joint distribution takes into account the 

marginal distributions of each random variable and respects the associated probability 

space.  

Let’s define 𝑥𝑇 a random variable representing a UHS value at a spectral period T and 

𝑓𝑇 the associated probability distribution with 𝑇 ∈ {0.0,0.1,0.2,0.25,0.3,0.5,1,2,3}𝑠. 

 

                𝑥𝑃𝐺𝐴, 𝑥0.1𝑠, 𝑥0.2𝑠, 𝑥0.25𝑠 , 𝑥0.3𝑠, 𝑥0.5𝑠, 𝑥1𝑠, 𝑥2𝑠, 𝑥3𝑠 = 𝑅𝑉(∏ 𝑓𝑖𝑖∈𝑇 )           (6.9) 

 

RV is a class function within Symbulate that defines a random variable on a probability 

space. Equation (6.9) enables the simulation of a set of 𝑛 samples of the UHS defined 

by nine variables associated to each chosen spectral period, T. 

To build our prior samples, Equation (6.9) is applied to generate 5,000 UHS at 

AFoE=10-4 as shown on Figure 6.12, along with the original 50 UHS. Both median 

curves superimpose, except for a slightly higher median for the simulated UHS at 

around 0.5s. To further validate the simulated UHS, the resulting probability 

distributions for the nine spectral periods are compared to the computed ones in Figure 

6.11-c, which shows the distribution is preserved after applying Equation (6.9). These 

simulated UHS represent our prior input within the VoI framework. 
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Figure 6.12: Computed (50) and simulated (5,000) prior UHS for an AFoE of 10-4  

Seismic design candidates 

An important part of the characterisation of the prior knowledge is the definition of 

the decision alternatives. As part of the VoI framework, these alternatives are used to 

compute the expected losses. In this case study, these decisions represent the seismic 

design to be applied.  

For NPPs, the UK guidelines (ONR, 2017) require considering a seismic design where 

the associated design spectrum envelops the 84th percentile of the UHS for an AFoE 

of 10-4, equivalent to one standard deviation above the median UHS (TAG 13).  

Inspired by the IBC (2012) guidelines for spectral design shapes, seismic designs are 

constructed in this application based on the conditional expressions in Equation (6.10) 

to compute SA at each T, where 𝑆0 is the PGA and 𝑆𝑝𝑙𝑎𝑡𝑒𝑎𝑢  the spectral acceleration 

at the plateau value: 

         𝑆𝐴 =

{
 
 

 
 𝑆0 +

𝑆𝑝𝑙𝑎𝑡𝑒𝑎𝑢−𝑆0

𝑇1−0.01
(𝑇 − 0.01)                         0.01 < 𝑇 < 𝑇1    

𝑆𝑝𝑙𝑎𝑡𝑒𝑎𝑢                                                                     𝑇1 < 𝑇 < 𝑇2
𝑆1𝑠

𝑇
                                                                            𝑇2 < 𝑇 < 𝑇𝐿

𝑆1𝑠𝑇𝐿

𝑇2
                                                                                𝑇𝐿 < 𝑇

            (6.10) 
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𝑇𝐿 is the long period transition spectral period which marks the transition between long 

and very long periods. It is fixed to 2s in this study. 𝑆1𝑠  represents the spectral 

acceleration at T=1s and is equivalent to multiplying 𝑆𝑝𝑙𝑎𝑡𝑒𝑎𝑢  by 𝑇2. 

While design spectra are constructed using the IBC (2012) guidelines to allow 

flexibility of shapes and spectral values, the obtained seismic designs are subjected to 

nuclear design codes requirements. The NPP is assumed to belong to the seismic 

design category 1 (SDC1), corresponding to high hazard nuclear installations (Report 

SSG-67 IAEA, 2021). Depending on the hazard, the NPP should comply with the 

nuclear design codes and regulations by respecting a minimum target performance 

goal at the required hazard level (IAEA, 2019). These requirements are detailed in the 

next section and are implemented in the definition of the probability of failure and the 

expected losses. 

To build the design alternatives, we consider low but also very conservative designs 

based on the UHS variability at AFoE=10-4. Five design candidates are defined in 

Table 6.3. Design 1 represents the most conservative design, enveloping the overall 

variability of the prior UHS. Design 5 is the least resistant design with spectral 

accelerations below the median UHS at certain spectral periods (e.g., at T=0.5s). 

Figure 6.13 shows the five design spectra along with the prior UHS. These designs are 

used as alternative decisions in the decision tree for VoI calculations.  

Table 6.3: Design spectra parameters for five seismic designs 

 
𝑺𝟎 𝑺𝒑𝒍𝒂𝒕𝒆𝒂𝒖 𝑺𝟏𝒔 𝑻𝟏 𝑻𝟐 𝑻𝑳 

Design 1 0.6 1.46 1.02 0.1 0.7 2 

Design 2 0.5 1.33 0.93 0.1 0.7 2 

Design 3 0.45 1.2 0.84 0.1 0.7 2 

Design 4 0.4 1.0 0.8 0.1 0.8 2 

Design 5 0.35 0.83 0.7 0.1 0.85 2 
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Figure 6.13: Prior UHS (5,000) and the defined five design spectra as decisions within VoI 

(Table 6.3) 

Fragility curves and calibration to design spectra 

Fragility curves need to be defined to estimate the probability of failure and the 

associated expected losses to incorporate in the VoI framework. These curves are a 

key point in assessing the seismic performance of a structure conditioned on the input 

motions. They are useful in making decisions regarding future structure characteristics 

or the improvement of an existent facility. Fragility curves are usually assessed for a 

structure in terms of PGA (Biswajit, 2017; Zentner et al., 2017; Gkimprixis et al., 

2020) even if analytical methods allow the use of pseudo-spectral accelerations (PSA) 

for non-zero periods (NUREG/CR-3558). Fragility curves are often described by a 

lognormal conditional cumulative distribution with parameters representing the 

median capacity 𝐶50%, associated to the SA value at 50% probability, and the 

composite logarithmic standard deviation β. Because building the fragility curves from 

dynamic analyses for these seismic designs is out of the scope of this PhD, the 

parameters of the fragility curves have been inspired by the literature on this topic.  

In this VoI framework, each prior UHS sample is compared to the different design 

spectra. Thus, considering only the fragility curves conditioned on PGA would 

disregard the SA at higher spectral periods and might over- or under-estimate the 

seismic risk at these periods. To be able to assess the overall UHS versus each seismic 
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design spectrum, it is important to define fragility curves for several spectral periods. 

Park et al. (2022) developed a method using conditional spectra (CS) to infer fragility 

curves at specific spectral periods from an original fragility curve conditioned on PGA. 

CSs are anchored to a reference UHS at specific control frequencies (𝑓𝑐). That is, the 

spectral accelerations of the UHS, 𝑆𝐴𝑈𝐻𝑆, and CS are equal at 𝑓𝑐 . CS are usually used 

in the seismic design of buildings as an alternative to a reference UHS to predict a 

more realistic shape of response spectrum for different earthquake scenarios. The 

transition from a PGA-based fragility curve to a fragility curve conditioned on 𝑆𝐴(𝑓𝑐) 

is implemented by calculating the ratio 𝑟 between  𝑆𝐴(𝑓𝑐) and the 𝑆𝐴𝑈𝐻𝑆 at 0s (i.e., 

PGA). In other words, the fragility curve conditioned on 𝑆𝐴(𝑓𝑐) is equivalent to the 

PGA-based fragility curve conditioned on 𝑆𝐴𝑈𝐻𝑆(𝑃𝐺𝐴) × 𝑟. 

CS are not used in this study but the transition method is implemented to infer the 

fragility curves parameters at specific spectral periods 𝑇𝑠𝑝𝑒𝑐 . Besides 0.0s 

(corresponding to PGA), these specific periods are T=0.1s (𝑇1), T=0.5s and T=2s (𝑇𝐿).  

The values of the median capacity (𝐶50%) and β are inspired by the work of Zhao et al. 

(2020) for the collapse damage state. These values have been tailored and adjusted 

based on the NUREG/CR-6728 guidelines (McGuire et al., 2001) in defining the 

unacceptable seismic performance for a structure of seismic design category (SDC5) 

associated to NPPs. The performance-based method, described in ASCE/SEI Standard 

43-05 (ASCE, 2005) provides criteria for the safety of nuclear facilities.  The 

quantitative target annual probability of unacceptable performance is: 

                                                        𝑃𝐹 = 10
−5  /𝑦𝑟                                              (6.11) 

A seismic performance 𝑃𝐹 is acceptable for values lower than 10-5/yr. Qualitatively, 

an accepted performance is to not exceed a specific limit state, considered as limit state 

D in ASCE (2005) Standard 43-05 (i.e., Essentially Elastic Behaviour). Higher limit 

states (C, B and A) are considered as significant inelastic deformation states inducing 

functioning problems that might lead to core damage. Their associated 𝑃𝐹 are lower 

than 10-5/yr. The risk target seismic goal is fixed in this study at 10-5/yr and is used as 

a condition in the computation of the expected losses. 
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The seismic risk 𝑃𝐹 is numerically computed as the convolution of the mean seismic 

hazard curve and the mean fragility curve by either of the following two equivalent 

equations (Kennedy, 2011): 

                                              𝑃𝐹 = −∫ 𝑝𝑓(𝑎) (
𝑑 𝐻(𝑎)

𝑑𝑎
)𝑑𝑎

+∞

0
                                          (6.12) 

                                                𝑃𝐹 = ∫ 𝐻(𝑎) (
𝑑 𝑝𝑓(𝑎)

𝑑𝑎
)𝑑𝑎

+∞

0
                                        (6.13) 

where 𝑝𝑓(𝑎) is the conditional probability of failure given the ground motion 𝑎 and 

𝐻(𝑎) is the mean hazard exceedance frequency for 𝑎. Equations (6.12) and (6.13) 

cannot be used in this study as we are unable to retrieve the hazard curves associated 

with the simulated UHS. As an alternative, a simplified seismic risk equation is used 

based on the assumption of linearity of the hazard curves when plotted on a log-log 

scale. Hence, over any 10-fold difference in exceedance frequencies, hazard curves 

can often be approximated by a power law (Kennedy, 1999; ASCE, 2005): 

                                                       𝐻(𝑎) = 𝐾1𝑒
−𝐾𝐻                                                   (6.14) 

𝐾1 is a constant and 𝐾𝐻  is a slope parameter defined by: 

                                                         𝐾𝐻 =
1

log (𝐴𝑟)
                                                 (6.15) 

where 𝐴𝑟 =
𝑆𝑎0.1𝐻

𝑆𝑎𝐻
. 𝐴𝑟 is an amplitude ratio. 𝑆𝑎𝐻 is the spectral acceleration at the 

target hazard level H equal to an AFoE of 10−4. 𝑆𝑎0.1𝐻 is the spectral acceleration 

when 𝐴𝐹𝑜𝐸 = 0.1 × 10−4 = 10−5.  

The simulated UHS samples represent the value of 𝑆𝑎𝐻 at each T. In continuity of the 

assumption of linearity of the hazard curve on a log-log scale around H,  𝑆𝑎0.1𝐻(T) can 

be interpolated by inferring a linear regression using the computed hazard curves from 

the 50 profiles. Figure 6.14 shows the linear regression in log-log scale used in 

estimating 𝑆𝑎0.1𝐻 from the previously computed 50 hazard curves at PGA, 0.1s, 0.2s 

and 2s. This regression is performed for the four specific spectral periods to compute 

𝐴𝑟(𝑇). 
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Figure 6.14: Sa at AFoE= 10-4 versus Sa at AFoE=10-5 scatter log-log plot and the associated linear 

regression at 0.0s (PGA), 0.1s, 0.5s and 2s. Data from SRA for 50 profiles. 

The  𝑆𝑎0.1𝐻 estimation method is integrated within the seismic risk 𝑃𝐹 function and 

automatised through a Python script. 

With the assumption of a lognormally distributed fragility curve, 𝑝𝑓(a) and a hazard 

curve expressed as Equation (6.14), the closed form of Equations (6.12) and (6.13) to 

estimate the performance risk is then expressed as follows (Kennedy, 1999; McGuire 

et al., 2001; McGuire, 2004): 

                                                          𝑃𝐹 = 𝐻𝐹50%
−𝐾𝐻𝑒𝛼                                                      (6.16) 

where 𝐹50% =
𝐶50%

𝑆𝑎𝐻
 and 𝛼 =

1

2
(𝐾𝐻𝛽)

2. 

By fixing 𝐶50% for PGA and using the conversion ratio r to infer it for the other spectral 

periods, the logarithmic standard deviation of the fragility curves, β, are tailored to all 

five seismic designs and at each specific spectral period by assuming the following: 
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If 𝑆𝐴𝑈𝐻𝑆(𝑇) = 𝑆𝐴𝐷𝑒𝑠𝑖𝑔𝑛  (𝑇) then 𝑃𝐹 = 10
−5/𝑦𝑟. In other words, the limit of 

acceptable risk is attained when a UHS is equal to the design spectrum at one of the 

specific spectral periods defined above. This will enable a 𝑃𝐹 estimation aligned with 

the representation of the design spectra in Figure 6.13.  

Using the conversion ratio 𝑟,  𝐶50% at T=0.1s, 0.5s and 2s is calculated as follows for 

each seismic design (𝑑) : 

                𝐶50%(𝑑) = {
𝐶50%𝑃𝐺𝐴

(𝑑).
𝑆𝑝𝑙𝑎𝑡𝑒𝑎𝑢(𝑑)

𝑆0(𝑑)
               ; 𝑇 = {0.1,0.5}𝑠

𝐶50%𝑃𝐺𝐴
(𝑑).

𝑆1𝑠(𝑑)

𝑆0(𝑑)𝑇𝐿
                                  ; 𝑇 = 2𝑠

             (6.17)                       

The fragility curves parameters for the five designs at four specific periods are detailed 

in Table 6.4 and shown in Figure 6.15. 

 

Table 6.4: Fragility curves parameters for each seismic design 

 T=0.0s T=0.1s T=0.5s T=2s 

 𝐶50% β 𝐶50% β 𝐶50% β 𝐶50% β 

Design 1 1.80 0.485 4.38 0.410 4.38 0.510 1.53 0.330 

Design 2 1.70 0.528 4.52 0.436 4.52 0.568 1.58 0.489 

Design 3 1.60 0.542 4.25 0.442 4.25 0.584 1.49 0.545 

Design 4 1.40 0.535 3.49 0.433 3.49 0.569 1.40 0.542 

Design 5 1.20 0.528 2.87 0.422 2.87 0.550 1.20 0.547 
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Figure 6.15: Fragility curves for five seismic designs conditioned on spectral accelerations at 0.0s 

(PGA), 0.1s, 0.5s and 2s 

Expected Losses 

The design of NPP traditionally adopts a two-level concept: A safety design that 

accounts for low probability of seismic exceedance for the design basis and a design 

for service using moderate seismic ground motion for operational limits (Katona, 

2017). NPPs should be designed to withstand the Design Basis Earthquake (DBE), 

also referred to as Safe Shutdown Earthquake (SSE) according to U.S. terminology 

(USNRC, 1956).  

The chosen design in our application should ensure the ultimate limit-state of safety-

related systems, structures and components (SSC) accounted for in the DBE and the 

integrity of the reactor core. In other words, for a UHS above the chosen design 

spectra, the probability of SSC damages and radiological contamination is taken into 

account.  

We consider the expected losses in case of severe damage. Some losses considered in 

the following are inspired by data and consequences of the Fukushima Dai-Ichi plant 

caused by the great Tohoku earthquake that was followed by a tsunami on 11 March 

2011. Estimates of the total economic losses caused by the catastrophe are between 

$250 billion (IRSN, 2011) and $360 billion (Ferris and Solis, 2013), excluding the 
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human costs (victims compensation, houses decontamination, relocations and so 

forth). The manager of the powerplant, Takeshi Takahashi, estimated that the plant 

decommissioning could take between 40 and 50 years, making it the most complex 

and costly nuclear decommissioning in history (McCurry, 2013). 

The total losses (EL) due to SCC damage, core melt, crisis management, 

decontamination, decommissioning, loss of function and potential victims’ 

compensation are assumed to be €300 billion in this study. The duration of a 

decommissioning, around 50 years, is taken as the life-cycle duration in the calculation 

of the expected losses. The total expected loss is updated each year to account for 

inflation using a rate λ=3%. 

The considered implementation costs (𝐶𝑑) include the construction cost, the 

commissioning and operating phase (e.g., operation, fuel supply, insurance). The 𝐶𝑑 

affected to each seismic design follow on average the estimates of implementation 

costs for NPPs (Schlissel and Biewald, 2008; IAEA, 2017) and are shown in Table 

6.5.  

Table 6.5: Initial construction and operation costs for each seismic design 

Design number 1 2 3 4 5 

𝐶𝑑 in billion € 7 8 9 10 11 

 

The Expected Losses function during the life-cycle (𝐸𝐿𝐿𝐶)  is defined as a condition 

of the seismic risk 𝑃𝐹 when considering a specific UHS and a seismic design 𝑑: 

  𝐸𝐿𝐿𝐶(𝑑, 𝑈𝐻𝑆) = {

  𝐶𝑑                                  𝑖𝑓   max
𝑇
𝑃𝐹(𝑑, 𝑈𝐻𝑆, 𝑇) < 10−5/𝑦𝑟

𝐶𝑑 + 𝐸𝐿
1−𝑒−𝜆𝑡

𝜆
 max

𝑇
𝑃𝐹(𝑑,𝑈𝐻𝑆, 𝑇)                              𝑒𝑙𝑠𝑒

  (6.18) 

where 𝐸𝐿 = €300 billion, t= 50 years and 𝜆 = 3%.  

Practically, for each UHS sample and a specific design spectrum, 𝑃𝐹 is computed at 

each spectral period (0.0s, 0.1s, 0.5s and 2s). The highest 𝑃𝐹, associated to the highest 

seismic risk, is used to compute the expected losses to be incorporated within the VoI 

framework. If the highest 𝑃𝐹 is below 10−5/𝑦𝑟, the design is accepted and considered 
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safe (i.e., acceptable level of risk). This also means, from the definition of the chosen 

design fragility curves, that the UHS is below the design spectrum. Therefore, the 

expected losses only represent the construction, functioning and maintenance costs. 

On the contrary, if the highest 𝑃𝐹 is above 10−5/𝑦𝑟, the target annual probability of 

unacceptable performance is exceeded which puts the design at risk. This probability 

of failure is then multiplied by the expected losses due to failure and added to the initial 

design cost to constitute the total expected losses.  

6.3.2 VoI framework implementation: Using Full UHS 

In the previous subsection, all components and inputs of VoI have been defined based 

on available literature, engineering judgement and cost estimates. The scope of this 

chapter is to build a framework for the implementation of VoI within PSHA to estimate 

an upper budget value for data collection. Assessing the VoI is estimating the expected 

avoided losses from reducing the epistemic uncertainties of one or more parameters. 

The presented framework is built to estimate the expected avoided losses in reducing 

the 𝑉𝑠  profile uncertainties within a six-layer profile on top of an elastic bedrock. 

Because of the complexity in predicting the expected losses when 𝜎𝑉𝑠 is varied, the 

considered prior within VoI is the UHS variability distribution associated to 𝜎𝑉𝑠 after 

performing SRA and site-specific PSHA.  

In this section, the PV is calculated based on simulated UHS from the prior 

distributions in Figure 6.11-c. Then, the likelihoods for different 𝜎𝑉𝑠 and median 

observations are built to produce the posterior UHS distributions. Finally, potential 

observed UHS are simulated and used in assessing VoI for different hypothetical 

measurements. 

Prior Value  

The PV estimates the expected losses when deciding based on prior knowledge, i.e., 

before the collection of additional data.  

We recall the expression of the PV:  

𝑃𝑉 = max
𝑑ϵD

{∫ 𝑜(𝑑, 𝑥)𝑝(𝑥)𝑑𝑥 }                                  (6.19) 
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where D is the domain of decisions 𝑑, 𝑜(𝑑, 𝑥) represents the outcomes for a decision 

𝑑 if UHS is equal to 𝑥 and 𝑝(𝑥) is the prior probability density function of 𝑥.  

The integral can be estimated by applying the Monte Carlo approximation when 

generating 𝑛 samples from the prior distribution through Monte Carlo simulation. In 

the previous subsection, 𝑛 = 5,000 prior UHS are simulated (Figure 6.12) to compute 

PV as follows: 

                                      𝑃𝑉 ∼ max
𝑑ϵD

 {
1

𝑛
∑ 𝐸𝐿𝐿𝐶(𝑑,𝑈𝐻𝑆

𝑘)𝑛
𝑘=1 }                              (6.20) 

where 𝑛 is the number of samples, 𝐸𝐿𝐿𝐶(𝑑, 𝑈𝐻𝑆
𝑘) are the expected losses when 

design 𝑑 is considered and the true site-specific hazard is equal to 𝑈𝐻𝑆𝑘.  

Expected Value of Perfect Information (EVPI) 

The EVPI is estimated by considering that future measurements might determine the 

exact site properties, implying that 𝜎𝑉𝑠 = 0. These measurements would infer the true 

𝑉𝑠 profile and result in a true UHS for an AFoE of 10-4. In practice, the site-specific 

PSHA includes other sources of uncertainties and the UHS variability might only 

decrease. Nevertheless, this study case considers the 𝑉𝑠 profile as the only source of 

uncertainty and assumes that a perfect test (one similar to high-resolution downhole 

measurements) could determine the exact hazard level at the site. Practically, the EVPI 

is only computed as a measure of an upper limit to not exceed when deciding on 

investing in ground investigation surveys. 

The Posterior Value (PoV) after a perfect measurement is: 

  𝑃𝑜𝑉 = ∫max
𝑑∊𝐷

{ 𝐸𝐿𝐿𝐶(𝑑,𝑈𝐻𝑆)}𝑝(𝑈𝐻𝑆) 𝑑𝑈𝐻𝑆 

∼
1

𝑛
∑ max

𝑑∊𝐷
{𝐸𝐿𝐿𝐶(𝑑,𝑈𝐻𝑆

𝑘)}𝑛
𝑘=1                                      (6.21) 

The EVPI is then calculated as follows: 

                                                         𝐸𝑉𝑃𝐼 = 𝑃𝑜𝑉 − 𝑃𝑉                        
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Expected Value of Imperfect Information (EVII) 

Let’s recall the expression of the PoV in estimating the EVII:  

                                𝑃𝑜𝑉 = ∫ 𝑝(𝑦).max
𝑑∊𝐷

{∫ 𝑜(𝑑, 𝑥)𝑝(𝑥|𝑦)𝑑𝑥} 𝑑𝑦
𝑥𝑦

                     (6.22) 

The variable 𝑦 represents the possible median observations after hypothetical 

measurements from a specific test. As defined in Chapter 4, 𝑝(𝑦) is the observations 

marginal pdf and 𝑝(𝑥|𝑦) the posterior probability of having 𝑥 if 𝑦 is observed. By 

making an analogy in our current VoI application, 𝑥 and 𝑦 are the true and ‘observed’ 

state resulting UHS at AFoE=10-4, respectively.  

a- Likelihood 

To estimate the marginal and posterior probability distributions, the hypothetical test 

likelihood, 𝑝(𝑦|𝑥), should be defined. This function expresses the probability of an 

observation being true to the real hazard level. In this present application, the 

observation is the UHS and is therefore considered indirect. In fact, the direct observed 

measurements are initially defined by a median 𝑉𝑠 , 𝜇𝑉𝑠, and an associated standard 

deviation, 𝜎𝑉𝑠. Therefore, the UHS variability is considered as an indirect observation 

as it represents the expression of the direct measurements’ uncertainties. Assuming the 

UHS as a potential observation is viable, following the modification of the traditional 

full convolution method to isolate the contribution of the epistemic uncertainties in 

site-specific PSHA. Hence, UHS variability becomes an articulation of the epistemic 

uncertainty. 

A measurement likelihood can be estimated from the error function of the conducted 

test. We propose an approach to determine the error function of three hypothetical 

tests, aiming to reduce the prior 𝜎𝑉𝑠 by half, one quarter and one-eighth (
1

2
𝜎𝑉𝑠, 

1

4
 𝜎𝑉𝑠 

and 
1

8
 𝜎𝑉𝑠). 1D linear-equivalent SRA are run using the same 𝜇𝑉𝑠 and for each of the 

reduced 𝜎𝑉𝑠. Site-specific PSHA is then performed to infer a median and UHS standard 

deviation. These calculations have been performed in section 6.3.1 and the probability 

functions at each spectral period T and for each test are shown in Figure 6.11-c. These 

probability functions are considered as likelihood functions for an observation with 

median  𝜇𝑉𝑠 and a reduced 𝜎𝑉𝑠.  
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In order to define likelihood functions for any random observation, error functions are 

constructed as follows. 

An example of an error function at PGA when the 𝑉𝑠 standard deviation is reduced by 

half (
1

2
𝜎𝑉𝑠) is shown in Figure 6.16. The solid line pdf, labelled as computed UHS, 

represents the probability distribution of the UHS spectral accelerations at 0.0s (i.e., 

PGA) when estimating the site-specific PSHA based on the soil 𝑉𝑠 model in Table 5.2 

with 
1

2
𝜎𝑉𝑠. This probability distribution is estimated following section 6.3.1 (also 

shown in Figure 6.11-c). The error function, 𝑒(𝑧), is built based on the same 

distribution parameters and shifted using the location parameter to align the maximum 

pdf value at 0 (dashed line). This is based on the assumption that the measurements 

have the highest probability of being true to the real 𝑉𝑠. For some tests, measurements 

can have a high probability of being biased by a certain value. To implement that, the 

error function can be shifted to translate this biased value. 

 

Figure 6.16: Probability distribution of computed UHS at 0.0s (PGA) and the associated test error 

function 

The likelihood function is then simply calculated as follows: 

                                                       𝑝(𝑦|𝑥) = 𝑒(𝑦 − 𝑥)                                                      (6.23) 

This workflow needs to be repeated for each of the specific spectral periods (PGA, 

0.1s, 0.5s and 2s) that define each UHS.  

SA [g] 
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b- Observations 

EVII calculations require the simulation of potential observations. These observations 

represent the resulting possible UHS after a high number of measurements using a 

chosen test. To simulate the observations, we proceed as follows for each spectral 

period 𝑇𝜖𝑇𝑠𝑝𝑒𝑐: 

- Pick a spectral acceleration from the prior probability distribution 𝑓𝑝𝑟𝑖𝑜𝑟 , 

𝑥𝑝𝑟𝑖𝑜𝑟(𝑇). 

- Pick an error value from the error probability distribution 𝑒𝑇, 𝑥𝑒(𝑇) 

- The observed spectral acceleration is 𝑦𝑜𝑏𝑠(𝑇) = 𝑥𝑝𝑟𝑖𝑜𝑟(𝑇) + 𝑥𝑒(𝑇) 

This process is repeated a high number of times to construct the observed probability 

distributions for each T. Using Equation (6.9) enables a multivariate joint probability 

distribution defined on 𝑇𝑠𝑝𝑒𝑐  to be built. This can be used to simulate 𝑁 observations. 

An example of 3,000 simulated observed UHS for measurements producing 

uncertainties of  
1

2
𝜎𝑉𝑠   along with the prior UHS is shown in Figure 6.17.  

 

Figure 6.17: Prior and observed UHS at AFoE=10-4 for 𝑽𝒔 uncertainty= 
𝟏

𝟐
𝝈𝑽𝒔 
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Observations are meant to envelop the prior as a consequence of possible measurement 

errors. This step also allows to consider the possibility of a median soil model, 𝜇𝑉𝑠, 

being different from the prior median. 

c- Posterior 

Posterior probability distribution functions combine the test likelihood and prior 

knowledge. The posterior probability for an observation 𝑦𝑜𝑏𝑠 at a spectral period T, 

𝑝(𝑥|𝑦𝑜𝑏𝑠), is constructed by computing 𝑝(𝑥|𝑦𝑜𝑏𝑠) for each 𝑥 = 𝑥𝑘  within the 

definition domain of 𝑓𝑝𝑟𝑖𝑜𝑟(T): 

                                         𝑝(𝑥𝑘|𝑦𝑜𝑏𝑠(𝑇)) =
𝑓𝑝𝑟𝑖𝑜𝑟(𝑥

𝑘,𝑇) 𝑒𝑇(𝑦𝑜𝑏𝑠−𝑥
𝑘)

𝑝𝑚(𝑦𝑜𝑏𝑠)
                            (6.24) 

𝑝𝑚(𝑦𝑜𝑏𝑠) is the marginal probability of the observation 𝑦𝑜𝑏𝑠 at T: 

                                       𝑝𝑚(𝑦𝑜𝑏𝑠) = ∑ 𝑓𝑝𝑟𝑖𝑜𝑟(𝑥
𝑘, 𝑇) 𝑒𝑇(𝑦𝑜𝑏𝑠 − 𝑥

𝑘)𝑘                        (6.25) 

An example of posterior pdf UHS at 𝑇𝜖𝑇𝑠𝑝𝑒𝑐, 𝑓𝑝𝑜𝑠𝑡(𝑇), for the case 
1

2
𝜎𝑉𝑠 is shown in 

Figure 6.18 along with the likelihood for an observed UHS (𝑈𝐻𝑆𝑜𝑏𝑠) and its prior 

distribution. The posterior is presented as a trade-off between the prior and the 

likelihood. We can notice that for the pdfs at T=0.5s, all probability distributions share 

the same mean/median. This case is unusual and is a consequence of a median 

observation being equal to the value of highest prior probability.  

Equation (6.9) is then used to compute the multivariate joint distribution from all  

𝑓𝑝𝑜𝑠𝑡(𝑇) to construct the posterior UHS for each observation 𝑈𝐻𝑆𝑜𝑏𝑠 .  
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Figure 6.18: Prior and likelihood-posteriors UHS PDFs for four spectral periods for 𝑽𝒔 

uncertainty= 
𝟏

𝟐
𝝈𝑽𝒔 

d- Final Implementation 

In this section, the full implementation of previously defined inputs is generalised. 

This represents the last step in VoI calculations. We start by giving notations to all 

variables. Some variables may have one, two or three subscripts and superscripts as 

we deal with multivariate variables. We then detail the steps leading to computing the 

EVII.  

- Notations 

Let the prior and observed UHS be defined as a multi-dimensional variable defined at 

spectral periods 𝑇 ∈ 𝑇𝑠𝑝𝑒𝑐 = {𝑇1, . . , 𝑇𝑠}: 

𝑈𝐻𝑆𝑝𝑟𝑖𝑜𝑟 = {𝑥1, … , 𝑥𝑠} 

𝑈𝐻𝑆𝑜𝑏𝑠 = {𝑦1, … , 𝑦𝑠} 
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If 𝑛 is the number of simulated priors and 𝑁 the number of observed UHS then each 

𝑈𝐻𝑆𝑝𝑟𝑖𝑜𝑟  and 𝑈𝐻𝑆𝑜𝑏𝑠  samples are defined as follows: 

𝑈𝐻𝑆𝑝𝑟𝑖𝑜𝑟
𝑘 = {𝑥1

𝑘, … , 𝑥𝑠
𝑘}    ; 𝑘 ∈ {1, … , 𝑛} 

𝑈𝐻𝑆𝑜𝑏𝑠
𝑗

= {𝑦1
𝑗
, … , 𝑦𝑠

𝑗
}    ; 𝑗 ∈ {1,… , 𝑁} 

𝑓𝑝𝑟𝑖𝑜𝑟  is the prior probability distribution defined for each 𝑇 ∈ 𝑇𝑠𝑝𝑒𝑐: 

𝑓𝑝𝑟𝑖𝑜𝑟 = {𝑓𝑝𝑟𝑖𝑜𝑟1 , … , 𝑓𝑝𝑟𝑖𝑜𝑟𝑠} 

𝑒 is the error probability distribution function defined for each 𝑇 ∈ 𝑇𝑠𝑝𝑒𝑐: 

𝑒 = {𝑒1, … , 𝑒𝑠} 

𝑓𝑝𝑜𝑠𝑡  the posterior probability distribution defined for each 𝑇 ∈ 𝑇𝑠𝑝𝑒𝑐: 

𝑓𝑝𝑜𝑠𝑡 = {𝑓𝑝𝑜𝑠𝑡1 , … , 𝑓𝑝𝑜𝑠𝑡𝑠} 

- Implementation 

After computing the PV, we detail the steps in estimating the PoV. The first step is to 

generate 𝑁 potential observed UHS using the prior and the chosen test error function 

as follows:  

For each 𝑇𝑖  ∈ 𝑇𝑠𝑝𝑒𝑐 : 

- Sample 𝑥𝑖
∗ from 𝑓𝑝𝑟𝑖𝑜𝑟𝑖 

- Sample 𝑒𝑖
∗ from 𝑒𝑖 

- Compute  𝑦𝑖
∗= 𝑥𝑖

∗  + 𝑒𝑖
∗ 

The sampling is repeated X times to identify a probability distribution for 𝑦𝑖. 

The 𝑈𝐻𝑆𝑜𝑏𝑠 multivariate joint distribution is then assessed by coupling 𝑦𝑖 probability 

distributions at each 𝑇𝑖 (Equation 6.9). 𝑁 number of 𝑈𝐻𝑆𝑜𝑏𝑠
𝑗

 are sampled using the 

same equation. 

The next step is similarly iterative over the number of sampled observations. This 

sampling according to pdfs permits application of the Monte Carlo approximation to 

estimate the integrals in the VoI equations. 
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For each simulated observation 𝑈𝐻𝑆𝑜𝑏𝑠
𝑗

: 

1. For each 𝑇𝑖  ∈ 𝑇𝑠𝑝𝑒𝑐 : 

Estimate 𝑓𝑝𝑜𝑠𝑡𝑖(𝑥|𝑦𝑖
𝑗
) from the calculation of  𝑓𝑝𝑜𝑠𝑡𝑖(𝑥𝑖

𝑘|𝑦𝑖
𝑗
) for 𝑘 ∈

{1, … , 𝑛}: 

                                        𝑓𝑝𝑜𝑠𝑡𝑖(𝑥𝑖
𝑘|𝑦𝑖

𝑗) =
𝑓𝑝𝑟𝑖𝑜𝑟𝑖

(𝑥𝑖
𝑘)𝑒𝑖(𝑦𝑖

𝑗
−𝑥𝑖

𝑘)

𝑝𝑚(𝑦𝑖
𝑗
)

                    (6.26) 

where   𝑝𝑚(𝑦𝑖
𝑗
) = ∑ 𝑓𝑝𝑟𝑖𝑜𝑟𝑖

(𝑥𝑖
𝑘)𝑒𝑖(𝑦𝑖

𝑗
− 𝑥𝑖

𝑘)𝑛
𝑘=1  

𝑓𝑝𝑜𝑠𝑡𝑖(𝑥𝑖
𝑘|𝑦𝑖

𝑗
) assigns a pdf value at each 𝑥𝑖

𝑘 in the prior probability 

space to define 𝑓𝑝𝑜𝑠𝑡𝑖(𝑥|𝑦𝑖
𝑗
). 

                

2. Generate 𝑈𝐻𝑆𝑝𝑜𝑠𝑡
𝑗

: 

Use equation (6.9) to build the multivariate joint distribution as follows: 

                           𝑓𝑝𝑜𝑠𝑡1 , … , 𝑓𝑝𝑜𝑠𝑡𝑠 = 𝑅𝑉(∏ 𝑓𝑝𝑜𝑠𝑡 𝑖
𝑠
𝑖=1 )                         (6.27) 

     Simulate 𝑚 posterior UHS where each sample is denoted: 

                  𝑈𝐻𝑆𝑝𝑜𝑠𝑡
𝑗,𝑙

= {𝑧1
𝑗,𝑙
, … , 𝑧𝑠

𝑗,𝑙
}   ; 𝑙 ∈ {1,… ,𝑚} 

3. Estimate the expected losses 𝐸𝐿𝐿𝐶(𝑑,𝑈𝐻𝑆𝑝𝑜𝑠𝑡
𝑗,𝑙

) using the expression 

(6.18) for each seismic design 𝑑 ∈ 𝐷 for all 𝑚 samples 

Finally, the EVII is computed as follows: 

                      𝐸𝑉𝐼𝐼 ∼
1

𝑁
∑ max 

𝑑∊𝐷
{
1

𝑚
∑ 𝐸𝐿𝐿𝐶(𝑑, 𝑈𝐻𝑆𝑝𝑜𝑠𝑡

𝑗,𝑙
)𝑚

𝑙=0 }𝑁
𝑗=0 − 𝑃𝑉                 (6.28) 

When 𝑁 and 𝑚 are high enough to characterise the observations and posterior pdfs, 

respectively, the Monte Carlo approximation can estimate associated integrals by 

simply averaging the expected losses at each sample by the total number of samples.  
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6.4 Results and conclusions 

The above framework is implemented to estimate the PV, EVPI and EVII using 𝑛 =

5,000 simulated 𝑈𝐻𝑆𝑝𝑟𝑖𝑜𝑟 built from prior knowledge when considering the median 

𝑉𝑠 soil model in Table 5.2 and the reference 𝑉𝑠 standard deviation 𝜎𝑙𝑛𝑉𝑠 = 0.12. Results 

for total losses if failure EL= € 300 and € 200 billion are shown in Table 6.6. 

For the initial case of EL= € 300 billion, 𝑃𝑉 has been estimated at € -7.306 billion, 

considered as a negative value to account for an outcome in terms of losses. The 

extremely high value is due to considering severe damage when underestimating the 

seismic design but is mainly explained by the initial construction costs where the less 

resistant design is estimated to cost € 7 billion. 

Table 6.6: Multivariate uncertain parameter results of PV, EVPI and EVII for three different 

tests and two different EL inputs 

Total 

Losses if 

failure, EL 

(billon €) 

PV 

(billon €) 

EVPI 

(million €) 

EVII in million € 

𝟏

𝟐
 𝝈𝑽𝒔  

𝟏

𝟒
 𝝈𝑽𝒔  

𝟏

𝟖
 𝝈𝑽𝒔   

300 -7.3 31.9 8.3 18.6 30.6 

200 -7.2 13.1 1.2 3.5 9.8 

 

This EVPI has a high value compared to the costs of possible different measurements 

from non-invasive and even invasive ground investigations. This value is tightly 

related to the input value of losses (EL) when severe damages occur. We can notice a 

relatively decrease in PV, by € 100 million, when EL=€ 200 billion. 

The EVII was assessed for three different types of measurements by assuming different 

possible uncertainty reductions. All values were calculated and reached stability for 

the numbers of simulation 𝑁 = 3,000 and 𝑚 = 500. It is interesting to notice that the 

larger the uncertainty reduction, the higher the EVII, and that this value converges 

towards the EVPI. We note that for EL= € 300 billion, reducing 𝜎𝑉𝑠 down to one eighth 

of its value results in an EVII averaging 96% of the EVPI. EVII for 
1

2
𝜎𝑉𝑠, 

1

4
𝜎𝑉𝑠 and  
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1

8
𝜎𝑉𝑠 , respectively represent 0.11%, 0.266%, 0.438% of the initial cost of designing 

Design 5, while it averages 0.456% for the EVPI. This result validates the framework 

and the results from the discrete and continuous studies in Chapter 4 and 5.  

The number of samples {𝑛,𝑁,𝑚}, related to the number of iterations, need to be 

chosen carefully. Depending on the distributions type and parameters, stable results 

can be achieved by studying the variability of the Monte Carlo estimator during 

simulation to insure its convergence.The Monte Carlo approximation often requires a 

high number of random samples, depending on the probability space and the sensitivity 

of the results to each sample. The higher the number, the higher the computational 

costs. It is not possible to advocate for a certain number of samples as it depends on 

the application, the nature of the outcomes and the elements at risk. Nevertheless, we 

can emphasise that the sampling should be high enough to fully describe the associated 

probability distribution.   

Depending on the chosen ground investigation, one must be able to quantify the degree 

of uncertainty in the measurements. Some attempts have been made to study the 

uncertainties for different 𝑉𝑠 measurement techniques (Passeri et al., 2019; Toro, 2022) 

such as invasive ground investigation (e.g., boreholes) or non-invasive (e.g., surface 

waves). Such quantifications are essential in defining the likelihood functions within 

the VoI calculations. During this research, it was challenging to obtain data from a 

particular ground investigation with consistent estimation of uncertainties. This is due 

to the variability in size and extent of ground investigation techniques, the 

incorporation of other types of measurements, the use of proxies and so forth. 

Nevertheless, the use of past data from similar projects along with expert elicitation 

might give an insight on the potential uncertainty reduction that a particular ground 

investigation technique could provide. 

The VoI approach applied in inferring an appropriate seismic design can be further 

developed by taking into account other sources of uncertainties (e.g., dynamic soil 

properties, hazard on rock, fragility curves). The challenge remains in decoupling each 

source of uncertainty to study its reduction on the overall outcomes. VoI seems to 
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constitute a promising tool in decision-making. It can be developed to integrate higher 

levels of complexity, to make it suitable for a wide range of applications.  

While these calculations might be a helpful indicator in setting a budget limit when 

deciding to collect additional information, they remain rough estimates. The term 

‘expected’, added to almost all expressions, indicates the uncertainties arising from the 

assumptions, approximations and attempts to predict measurements and systems 

behaviour. The VoI concept might not constitute an exact science, but it is based on 

approved decision strategies, prior knowledge and the science intrinsic to the specific 

application. 
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7 Conclusions and recommendations 

7.1 Key findings 

The Value of Information (VoI) concept has been developed and tailored to respond 

to realistic decision-making situations within seismic hazard assessment (SHA) and 

earthquake engineering. SHA inputs suffer from epistemic uncertainties and aleatory 

variabilities, often leading to a high total uncertainty in the overall hazard estimates. 

Generally, guidelines and requirements are used to design a structure to an acceptable 

level of safety. Nevertheless, large uncertainties in hazard estimates could lead to high 

design spectra, resulting in increased construction costs. These designs, however, 

might be over-conservative because of an over-estimation of the actual seismic hazard. 

VoI was used to assess the benefit of investing in data collection to better constrain the 

seismic hazard and, ultimately, to design accordingly.  

This thesis presented a gradual evolution of the method, from basic and simplified 

applications to more complex implementations that follow modern practice. This 

gradual upgrade was essential to: (a) provide a clear understanding of the influence of 

the various input variables, (b) validate the methodology by means of comparison of 

outputs obtained using applications of different levels of complexity, and (c) construct 

a comprehensive framework and justified guidelines for industry and other 

stakeholders.  

We defined a general application involving SHA to help decide on the collection of 

data to reduce uncertainties. The VoI concept was chosen as part of a decision-making 

strategy to make better decisions on the level of structural seismic design in light of 

uncertain seismic hazard estimates. More specifically, we assessed the benefit of 

additional information in reducing the expected losses and in inferring an optimal 

design, respecting safety requirements and budget limitations. The VoI methodology 

was tailored to several configurations, decision criteria and characterisations of 

parameter uncertainties. The various applications are summarised in the following. 
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In Chapter 4, the hazard at the site of interest was assumed to be described by the 

product of the expected peak ground acceleration (PGA) on a reference rock for a 

specific return period and a frequency-independent amplification factor, AF. AF was 

only assessed using a single site condition proxy, Vs30, which represents the only 

source of uncertainty. The VoI concept was tailored to estimate the value of reducing 

the Vs30 uncertainty when defined by: (a) a discrete binary variable and (b) a 

continuous probability distribution. The design criterion for a four-storey three-bay 

reinforced concrete building was only based on the PGA, and VoI outcomes were 

expressed in monetary units representing expected avoided losses. Sensitivity analyses 

showed that VoI is strongly dependent on the prior probability distributions. 

Specifically, when conducting measurements to reduce uncertainties, the Expected 

Value of Perfect Information (EVPI) and Imperfect Information (EVII) increases 

linearly with increasing prior uncertainty. That is, the higher the prior uncertainty, the 

more benefits are gained from reducing it. Moreover, the method was further validated 

by observing that more accurate and precise measurements increase the EVII and that 

this value converges towards the EVPI. 

In Chapter 5, a linear-elastic soil response analysis (SRA) was performed to 

analytically infer a frequency-dependent AF. Site conditions were no longer 

approximated by a single uncertain proxy but by the shear-wave velocity (𝑉𝑠) and 

thickness (H) of a single soil layer overlaying an elastic bedrock. The VoI method was 

tailored to include a bivariate joint distribution translating the joint uncertainty of 𝑉𝑠 

and H. Several calculations were performed to assess the value of additional 

information on 𝑉𝑠  only, H only and both. The results were compared to the value of 

obtaining direct measurements on AF (i.e., a different type of measurements). These 

showed a consistency between the two frameworks (i.e., univariate and bivariate). 

Similar to Chapter 4, we find a linear dependence of EVII on the measurement’s 

degree of accuracy (i.e., standard deviation of the error function). Another interesting 

finding suggests that in some cases, it is more valuable to obtain high quality 

measurements on only one parameter than poor quality data on both parameters. In 

this chapter, a third application consisted in numerically performing linear-elastic SRA 

using the STRATA software for a six-layer 𝑉𝑠 profile. VoI sensitivity analysis for 

direct measurements of AF using the univariate framework showed similar patterns 
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but lower values than the previous application. This was explained by a lower 

variability in the AF when compared to the single-layer application. The results are 

aligned with the findings in Chapter 4. 

Finally, Chapter 6 presented an upgrade to the application and the method at several 

levels. These upgrades were made to propose an approach that is more consistent with 

modern practice in SHA and in earthquake engineering. The prototype structure to be 

designed was defined as a critical facility, specifically a nuclear powerplant (NPP). 

AFs were estimated from linear-equivalent SRA to take into account the variability 

resulting from both 𝑉𝑠 profile uncertainties and soil nonlinearity. We proposed an 

approach to: (a) decouple the contribution of 𝑉𝑠 from the overall site hazard variability 

and (b) obtain the hazard curves associated to each randomised 𝑉𝑠 profile, through 

modification of the full convolution approach (Bazzurro and Cornell, 2004) for site-

specific Probabilistic Seismic Hazard Assessment (PSHA). The design criterion was 

based on the obtained Uniform Hazard Spectra (UHS) over a wide range of spectral 

periods. Fragility curves were inferred for each design spectrum alternative (in the 

decision domain) and at several spectral periods to assess the expected losses due to 

severe damage by including current NPP-specific guidelines and requirements 

ensuring safety assurance. This study required a multivariate approach for the VoI 

calculations to consider decisions that are dependent on UHS defined by more than 

one variable (i.e., over several spectral periods). More complex VoI calculations were 

performed by characterising the UHS variability at each spectral period, constructing 

the associated multivariate joint distributions and integrating them to assess the EVPI 

and EVII when obtaining measurements that reduce the uncertainties on 𝑉𝑠 (i.e., 𝜎𝑉𝑠). 

Our results showed that EVII converges towards the EVPI when the quality and/or 

quantity of measurements increase. This finding is in accordance with the results in 

the previous chapters. Compared to the previous applications for a non-critical 

building, these results show higher VoI estimates irrespective of the quality of 

measurements. This was identified to be mainly due to the definition of the expected 

losses, including high construction costs (i.e., in billion €). Moreover, the losses in 

case of severe damage are high considering the life and environmental threats induced 

by severe damage to an NPP.  
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7.2 Guidance for future applications 

A summary of the major steps and VoI analyses components are shown in Figure 7.1. 

This conceptual and analytical framework can be used as a guideline to perform EVPI 

and EVII assessments. Key inputs and computations are represented, with arrows 

indicating the timeline direction and the dependence amongst the different actions and 

quantities. This framework highlights a more complex EVII methodology than for 

EVPI. The approach for EVII is characterised by additional inputs and a two-level 

Monte Carlo simulation (loop within a loop) indicated by the incremental rectangular 

nodes and conditional diamond nodes. We believe that this framework representation 

can be used as a support for VoI assessment for various applications, and not limited 

to SHA and earthquake engineering. 
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Figure 7.1: Conceptual and analytical framework of VoI approach to compute the EVPI and 

EVII. Coloured nodes represent actions: grey nodes represent iterative computations, and red 

and yellow nodes the final computations of the main elements of VoI (Prior Value and Posterior 

Value). Loops are represented by incremental rectangle nodes and conditional diamond nodes 

and indicate iterative computations from Monte Carlo simulations samples. Arrows translate the 

order of the actions, as well as the dependences between actions and results  
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The VoI assessments presented in this thesis demonstrate a high degree of consistency 

in their results, as well as in the sensitivity analyses conducted for various 

configurations and methodologies. Sensitivity analyses were tools of upmost 

importance to identify the elements, inputs and steps that contribute the most to VoI 

estimates. In particular, the findings highlight the following points: 

- Prior knowledge: Sufficient amount of time should be dedicated to gather all 

available information to define the up-to-date prior knowledge based on the 

available data and/or expert elicitation. This knowledge needs to be translated 

into probability distributions that best fit the available data. 

- Parameter estimation: Probabilistic sensitivity analyses should be performed 

using Bayesian Networks, influence diagrams, decision trees or simply 

Bayesian inference to identify parameters that most affect the decision criterion 

(e.g., PGA and UHS in this thesis). 

- Relevant information: Ensure that the measurements to be obtained in the 

future are relevant to the characteristics of interest (i.e., the uncertain 

parameters). 

- Targeting: Decouple the influence of the parameter of interest from the overall 

resulting variability. This permit obtaining VoI estimates that only reflect the 

value of reducing the measured parameter in the future. 

- Error function: Ensure a good characterisation of the variability of future 

measurements from a given ground investigation (GI) technique. Identify if the 

technique is biased or not as well as its ability in constraining the characteristic 

of interest. Translate the characterisation into probability distributions to 

construct error functions. 

- Outcomes: Frame the decision strategy in terms of a number of decision 

alternatives (based on the prior knowledge) and define the consequences of 

making one decision over another (e.g., in terms of gain or avoided losses).  

- Integral approximations: Integrals in VoI equations can be estimated via Monte 

Carlo approximation by sampling from a probability distribution. The stability 

of VoI results is directly linked to the number of samples. It is important to 

sample a sufficient number to reach a stable value whose variability is 

negligeable compared to the mean results.  
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- Expected outcomes: The expected outcomes combine the outcomes for a 

decision and the probability of occurrence of this outcome. The decision-maker 

should be cautious in building the dependence relationship between the 

outcome relative to a decision, and the probability function of the characteristic 

of interest.  

The ’Targeting’ and ‘Expected outcomes’ points mentioned above are of upmost 

importance and require careful analysis. In fact, it is crucial to correctly characterise 

the relationship between the variability of the parameter that directly influences the 

decision (e.g., hazard level) and the sources of uncertainties that are aimed to be better 

constrained (e.g., 𝑉𝑠) through data collection. The relationship is not always 

straightforward when other uncertainties, that are irreducible, contribute to the overall 

variability. The latter uncertainties can be marginalised to eliminate their contributions 

and make sure to only consider the target parameters (e.g., Baio, 2018).  In Chapter 6, 

two sources of uncertainties were affecting the site-specific PSHA results: uncertainty 

from 𝑉𝑠 profiles and the motion-to-motion variability (i.e., nonlinear effects). The 

modification of the full convolution approach enabled decoupling each source and 

explicitly studying the contribution of 𝑉𝑠 uncertainty on the UHS variability. The 

outcomes associated to each decision and resulting UHS were computed within the 

VoI framework, at each iteration.  

Another approach is to study and characterise in a more direct way, the outcomes and 

their expected probabilities. That is, integrating in the calculations a probability 

distribution on the expected outcomes, conditioned on the prior probability of a 

characteristic of interest 𝑥. The main difficulty lies in predicting the potential 

consequences resulting from making a particular decision when 𝑥 is uncertain. Several 

studies have tackled this issue (Briggs et al., 2006; O’Hagan & Stevens, 2001). 

Advances were mostly made within the healthcare and medical domains (e.g., Baio, 

2018). These studies recommend characterising the variability in the expected 

outcomes given an uncertain parameter 𝑥 in a preliminary analysis, outside of the loops 

within the VoI approach. In other words, a conditional probability distribution of the 

expected outcomes (EO), 𝑝(𝐸𝑂, 𝑑|𝑥), is constructed and directly included within the 

calculations. Prior and posterior probabilities of 𝑥 are then translated to prior and 
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posterior probabilities of outcomes conditioned on new evidence. Some methods have 

proven to achieve the latter, such as using Gaussian process and Meta-modelling 

through generalised additive models (GAM) (e.g., Brennan et al., 2007; Jalal et al., 

2015) or Integrated nested Laplace approximations (e.g., Heath et al., 2016).  The main 

motivation of implementing these approaches is to reduce the computational cost.  

As part of these guidelines, the ‘Integral approximation’ step is a requirement that 

needs to be fulfilled to obtain reliable and stable VoI estimates. On one hand, Monte 

Carlo simulations consist in sampling several values from a defined probability 

distribution. On the other hand, the Monte Carlo approximation enables calculation of 

the average computed quantities from the samples to estimate integrals. In Chapter 4, 

we put in evidence the strong dependence of this estimate on the number of samples, 

where the higher the number, the more stable the results. It is necessary, before using 

VoI estimates to justify decisions, to verify that the Monte Carlo simulations (a) best 

describes the probability distribution and (b) results in stable results with minimal 

variance. Some examples of currently used methods to infer the optimal number of 

samples are mentioned in the next section.   

We have identified several situations and configurations where VoI can be used to 

inform better decisions on the collection of data. Table 7.1 gives a brief overview of 

three examples of situations for the decision-maker as well as the associated 

recommended workflow. We call the framework of a single VoI analysis (Figure 7.1) 

𝑉𝑜𝐼𝑠, defined for a target source of uncertainty 𝑌 to be reduced when conducting a test 

𝑇. The final decision is based on the Net Benefit (NB), representing the difference 

between 𝑉𝑜𝐼𝑠 and the cost of the test 𝑇. NB represents a comparative measure that 

helps: (a) identify the best combination of tests and/or the parameters where data 

collection has the higher probability of leading to improved expected outcomes (e.g., 

less losses, maximum gain), and (b) ensure that the budget limitations are respected. 

Similarly, NB can be a key element in justifying future investments. 
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In the three cases presented in Table 7.1, VoI analysis aims to respond to these 

questions: 

Case 1:  Should I perform test 𝑇 to reduce the only source of uncertainty 𝑌? 

Case 2: What is the optimal test to reduce the only source of uncertainty 𝑌 amongst 𝑇𝑠 

number of tests? 

Case 3:  What is the source of uncertainty 𝑌𝑗 amongst a set 𝑌 that I should prioritise 

better constraining from data collection? And what is the optimal test?  

VoI is a polyvalent tool that can respond to various questions and can be adapted to 

multiple configurations of prior knowledge, number of uncertainties, type and number 

of tests as well as the aim of the decision-making. VoI helps to prioritise whether to 

conduct one test over another or whether to discard irrelevant tests. VoI also helps to 

justify decisions to infer information on a specific parameter over another. 
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Table 7.1: Description of the use of VoI for three situations that require different types of data 

collection 

        Case 1 Case 2 Case 3 

Number of 

sources of 

uncertainty X, 𝑵𝑿 

𝑁𝑋 =1 𝑁𝑋 =1 𝑁𝑋 > 1 

Target number of 

uncertain sources 

𝒀=(𝒀𝟏,..,𝒀𝒋,..𝒀𝑵𝒀), 

𝑵𝒀  

𝑁𝑌 =1 𝑁𝑌 =1 𝑁𝑌<𝑁𝑋 

Number of 

planned tests (𝑻𝒔) 
of cost 𝑪𝒔 

targeting 𝐘𝐣 

𝑇𝑠 =1 𝑇𝑠>1 

𝑇𝑠(𝑌𝑗)≥1 

Each 𝑌𝑗  has a set of 

possible tests, 𝑇𝑖
𝑗
, 

𝑖ϵ{1,..,𝑇𝑠(𝑌𝑗)} 

Marginalisation of 

non-target 

uncertainties 

            No No Yes. Over 𝑁𝑋-𝑌𝑗  

sources for 𝑗ϵ{1,..,𝑁𝑌} 

Number of VoI 

analysis 
1 𝑇𝑠 

∏𝑇𝑠(𝑌𝑗)

𝑗

 

VoI analysis 𝑉𝑜𝐼𝑠(𝑌, 𝑇) 
𝑉𝑜𝐼𝑠(𝑌, 𝑇𝑖) 

for 𝑖ϵ{1,..,𝑇𝑠} 
𝑉𝑜𝐼𝑠(𝑌𝑗 , 𝑇𝑖

𝑗) 

Net Benefit 

𝑵𝑩(𝒀, 𝑻, 𝑪𝒔) 
𝑉𝑜𝐼𝑠(𝑌, 𝑇) − 𝐶𝑠  

Select 𝑇𝑖 associated 

to 

max
𝑇𝑖ϵT

𝑁𝐵(𝑌, 𝑇𝑖 , 𝐶𝑠(𝑇𝑖)) 

= max
TiϵT

{𝑉𝑜𝐼𝑠(𝑌, 𝑇𝑖) −

𝐶𝑠(𝑇𝑖)} 

 

Identify 𝑇𝑌𝑗  
maximising NB for 

each 𝑌𝑗  

The parameter to be 

prioritised is 𝑌𝑗    

maximising: 

𝑁𝐵(𝑌𝑗 , 𝑇
𝑌𝑗, 𝐶𝑠(𝑇

𝑌𝑗)) 
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7.3 Challenges and future improvements 

One of the main drawbacks of VoI analysis is the associated computational burden 

emanating from the Monte Carlo simulations and the computations within each 

iteration. As Figure 7.1 depicts, computing EVII requires a two-level Monte Carlo 

approach, commonly referred to as nested Monte Carlo integration, involving 

sampling parameters in an outer loop (e.g., observations) and sampling, for each 

parameter, in an inner loop (conditional parameters). The concerns regarding the 

stability of the results are due to errors in the estimations of the integrals, resulting 

from a chosen number of simulations R. Biases and errors can be estimated and an 

optimal number of simulations R can be determined through sensitivity analyses 

(Oakley et al., 2010) or using quasi-Monte Carlo (Fang et al., 2021). However, often 

thousands of samples are needed to correctly describe a distribution, and in some cases 

millions for complicated distributions. These simulations combined with the inner loop 

computations lead to very high computational demands. 

Recently, there have been an increase in the number of studies aiming at reducing the 

computational costs resulting from VoI analyses. Most of these advances are made in 

the medical field where VoI methods are routinely applied to help inform decisions on 

healthcare and testing strategies. The currently used optimisation methods do not only 

target the number of Monte Carlo simulations but also aim to characterise the 

relationship between the input and the output. One of the approaches suggests defining 

a linear mathematical relationship linking the outcomes to the uncertain parameters 

(e.g., Chapter 4 and 5). This would allow the direct computation of integrals and skip 

the Monte Carlo simulations (Coyle and Oakley, 2008; Madan et al., 2014). However, 

the relationship is often more complex and is generally nonlinear (e.g., Chapter 6). 

Some studies encourage defining a functional relationship between the input and the 

response, requiring a preliminary sensitivity analysis and the use of approximations 

(Strong et al., 2014; Tuffaha et al., 2016; Heath et al., 2016). 

To use the approach developed in this thesis and make optimal use of the results, it is 

highly recommended to improve the characterisation of potential future 

measurements. While the performed sensitivity analyses assumed theoretical 

‘possible’ error functions relative to a ground investigation technique, there is a need 
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to better quantify the level of precision or biases obtained from measurements. 

Assigning a probability distribution to the error is an efficient way to consider the 

variability in measurements. Nevertheless, determining its standard deviation can 

benefit from further efforts to correctly estimate the level of accuracy of a technique, 

based on past measurements. For instance, further VoI assessments could consist of 

reducing the uncertainties on the 𝑉𝑠 profile or the depth of bedrock through measuring 

the fundamental frequency 𝑓0 from ambient vibration methods. Some guidelines such 

as those provided by the SESAME Project (SESAME, 2004) provide estimates of the 

threshold of variability below which horizontal to vertical ratios from ambient 

vibrations are valid for interpretation. This threshold can be a support in building the 

associated error functions. We can find other attempts in developing approaches to 

characterise the uncertainties and potential inherent inaccuracies associated to seismic 

investigation methods, their processing and interpretation (Anukwu et al., 2018; 

Passeri et al., 2019; Wotherspoon et al., 2021).   

A robust characterisation of the error functions of investigation techniques can lead to 

improvements in the VoI approach for SHA. For instance, a future interesting 

application would be to assess the value of combining two or more investigation 

techniques aiming at measuring the same parameter and to estimate the expected 

outcomes and NB. Doing so would permit the selection of an optimal combination that 

would represent a compromise between avoided losses and expected costs. In addition, 

a more complete approach would involve considering all sources of uncertainties 

within SHA, such as the hazard at the reference rock (e.g., including other percentiles, 

rather than only the mean), possible 2D-3D effects, the variability in the dynamic 

properties (e.g., through Monte Carlo simulations) and the risk of liquefaction.  

Within the seismic design component of the proposed VoI application, more 

uncertainties could be included, e.g., those associated to estimates related to soil-

structure interactions and vulnerability analyses. Finally, the expected outcomes could 

be based on more thorough studies (e.g., loss models) to consider both short- and long-

term global consequences (Ordaz et al., 2000; Bommer et al., 2002; León et al., 2022). 

While the outcomes of a decision within VoI are generally tangible estimates of the 

consequences, a decision can also have intangible consequences such as loss/gain in 
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reputation, increase/decrease of public’s trust in a government or industry inducing 

gains/losses due to reliability concerns. These are, however, still challenging to 

quantify. 

The incorporation of VoI into fields such as SHA and seismic design has only just 

started. Further improvements and considerations are needed to make the VoI 

approach a robust and reliable tool for decision-making under uncertainty. For now, 

we might ask the question: what will be the importance of VoI compared to approved 

guidelines and requirements, especially regarding the design of critical facilities? 

Despite building a VoI framework able to acknowledge strict requirements, such as 

the selection of a viable seismic designs that respects a defined acceptable level of 

safety or performing modern practice PSHA (e.g., Chapter 6), the optimal decision 

obtained from performing VoI still needs to satisfy approved best-practices, which are 

often mandatory.  

In the short term, the use of VoI might be of great assistance to facilities owners, hazard 

analysts and insurance companies. In the long term, VoI might become a well-

established tool capable of justifying sensitive decisions for governments and, perhaps 

more importantly, for the general public.  
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Appendix A 

This appendix contains the summary of two semi-structured interviews with two group 

participants. Chapter 3 (section 3.4) outlines the aims and main motivations of 

conducting the interviews as well as the main outputs and conclusions.  

A.1 Interview with the Chief Civil Engineer at EDF Energy 

This section presents a summary of recorded interviews conducted via Skype For 

Business with David J Hamilton who works as the Chief Civil Engineer within the 

Design Authority Department at EDF Energy in East Kilbride. Mr Hamilton is 

responsible for the engineering governance and oversight of projects related to civil 

engineering. The interviews were split in two sessions (23rd July and 19th August 2020) 

with a duration of approximatively 1 hour each.  

Mr Hamilton was willing to share his knowledge and experience regarding seismic 

hazard assessments performed for nuclear facilities owned by EDF Energy as a client 

for such assessments. During the discussion, Mr Hamilton discussed the various 

activities of EDF Energy within the UK and the current relationships with seismic 

hazard analysts and the Office for Nuclear Regulation (ONR). He also emphasised the 

concerns around nuclear safety and the importance of taking into account uncertainties 

regarding the seismic hazard. Finally, the question of the value of information was 

raised in order to learn more about the current practice in prioritising and justifying 

the collection of data as well as the possible gaps that the current PhD project can fill. 

The following interview was divided into six main sections: 

- Overview 

- Required parameters for Probabilistic Seismic Hazard Assessment (PSHA) 

- Life duration 

- Budget 

- Data collection 

- Estimation of the value of information 
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The summary of the interviews with EDF Energy includes each question asked and a 

summary of their response. It should be noted that the following provides a summary 

of the answers and not a verbatim transcript of the interviews. 

Overview 

What are EDF Energy activities in the nuclear sector related to seismic hazard 

assessment? 

EDF Energy is responsible for operating eight nuclear power plants throughout the 

United Kingdom. Some of the concerns of the Design Authority Department, where 

Mr Hamilton is the chief civil engineer, relate to natural hazards, especially when it 

comes to methods of assessing these hazards and their impacts in terms of structural 

response. Seismic hazard studies are important to EDF Energy because seismic safety 

cases have to be put in place for all nuclear sites and these are reviewed by the ONR. 

For the eight sites, some of them were commissioned in the 1970s, others in the 1980s 

and others in the 1990s, such seismic safety cases are required. Some of the nuclear 

power plants were seismically designed but half of the fleet were not originally 

assessed for seismic hazard. EDF Energy is making sure that the seismic hazard against 

which existing sites are assessed remains conservative. EDF Energy use modern 

probabilistic seismic hazard assessments (PSHAs) to quantify changes in the seismic 

hazard. 

What is the frequency in investing in seismic hazard assessment for nuclear power 

plants? 

There are 36 license conditions that are placed upon EDF Energy as a nuclear operator 

in the UK. One of these requires undertaking periodic safety reviews (PSR) which take 

place every 10 years to make sure that the hazard remains conservative. EDF Energy 

is interested in developing new-build power plants, which are generally built adjacent 

to existing sites.  This is mainly because of the existing expertise in the area as well as 

the societal acceptance of nuclear facilities. In addition, they would be located near 

existing electricity connections and cooling water structures. 

With the help of Jacobs and their team of seismic hazard analysts, sensitivity tests were 

performed for 4 different sites to assess how the hazard might change in the light of 

modern ground motion prediction equations (GMPEs) and other inputs. Sensitivity 
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studies are done on a rolling annual basis with the help of experts who have access to 

projects like SHARE and SIGMA and initiatives coordinated by the Organisation for 

Economic Co-operation and Development (OECD) and the International Atomic 

Energy Agency (IAEA). These guidelines are used to understand where PSHA is 

heading by testing the different modern practices for EDF Energy sites on an annual 

basis. 

Relationship with the Office for Nuclear Regulation (ONR) 

ONR has a legal duty to protect the general public and make sure that safety cases are 

robust. The ONR in the UK is not a prescriptive regulator unlike the regulator in other 

countries (e.g., USA). In the UK, nuclear licensees like EDF are responsible for 

developing safety cases adequately. The ONR reviews these safety cases with the help 

of hazard analysts within their team. The legal duty of EDF Energy is to reduce all 

risks to “As Low As Reasonably Practicable” (ALARP). This requirement sets the 

foundation of the work. 

Meetings with ONR members take place on a regular basis and include 4 levels: 

• Level 4: Lowest in term of technical exchange – Research plans exchanged and 

commented on 

• Level 3: Actions are being undertaken and discussed  

• Level 2 & 1: Represent the higher safety significance where members of the 

government are presented in case of a national safety interest. 

ONR have developed guidelines called Technical Assessment Guides (TAGs). The 

number 13 (i.e., TAG13) covers the regulator guidance for reviewing seismic hazard 

safety cases. 

Relationship with the seismic hazard analysts and level of involvement in the PSHA 

process 

A great number of hazard assessments were undertaken in the 1990s by the Seismic 

Hazard Working Party (SHWP), which was founded by the Central Electricity 

Generating Board (CEGB). CEGB then became Nuclear Electric before becoming 

British Energy and finally EDF Energy. In the 1990s, this organisation did not 

undertake many hazard studies. However, now with the use of sensitivity studies, EDF 

tries to be as active as possible by involving experts in the hazard assessments such as 

John Douglas (University of Strathclyde) and Iain Tromans’s team at Jacobs. EDF 
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Energy is acting as an “Intelligent Customer” to understand the significance of the 

parameters involved and keep informed so as to better communicate with the regulator.  

Required parameters for PSHA 

PSHA requires a lot of input parameters. What are the parameters that have the most 

impact on the results of PSHA and those which need to be known more accurately than 

others? 

From EDF Energy perspective, seismic site characterisation (SSC) is a major 

contribution. There is a need to have an awareness and understanding of what is used 

to develop SSC models. 

Ground motion characterisation (GMC) is of high interest as well. Back at the time 

when the SHWP was performing the analysis, a single GMPE from 1981 was used for 

peak ground acceleration (PGA); this GMPE was then expanded for response spectral 

accelerations between 1985 and 1988. Currently with the development of GMPEs, the 

practice is to include multiple models in a logic tree with different weights according 

to the level of confidence. This area is highly targeted by EDF Energy to determine 

which GMPEs are the most suitable for the UK. The company is also taking active 

interest in the Next Generation Attenuation (NGA) project in the United States where 

new models are being developed.  

Another important input is the earthquake catalogue, which is generally being updated 

for EDF Energy by Roger Musson, formerly at the British Geological Survey (BGS). 

Mr Hamilton added that information about minimum magnitude and developments 

made for the use of Cumulative Absolute Velocity (CAV) is also important. EDF 

Energy is also interested in disaggregating the hazard to identify events that contribute 

the most to the overall risk. In addition to that, there is an ongoing project about 

developing early warning systems with Brian Babtie, a seismologist at the BGS.  

Finally, spectral shapes (e.g., Uniform Hazard Spectra, UHS) are of major importance. 

Studies are being carried out on the conditional mean spectra for situations where the 

plant includes components sensitive to a particular frequency, in order to target their 

structural response.  
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As a part of developing the knowledge, it is important to know which inputs are 

important. EDF Energy has expanded its understanding in order to know what inputs 

could help in the future. If a limited budget was available to collect more information, 

there is a better understanding of where the most value can be obtained. 

Life duration 

What is the impact of the limited life duration of an existing nuclear facility on the 

decision of collecting new data? 

Within the next five years, four of the eight existing nuclear sites will no longer be 

generating and no hazard studies will likely be conducted for those sites. When a 

nuclear power plant shuts down, 5 years are necessary for the nuclear fuel to be 

removed. During that period, there is still significant nuclear risk but a magnitude less 

because concerns will focus on safely handling the fuel. All the seismic safety 

requirements must be applied during fuel removal. For the other sites: one will operate 

until 2030, two until 2035 and the other until 2050. The proportion of efforts is directly 

related to the duration of the operation of the nuclear site. Once the fuel is off the site, 

the site will stay in maintenance for 100 years and will be considered as temporary 

depositary. 

For an existing licensee like EDF, there is a reliance on ground investigation (GI) 

studies that were done prior to construction. Additional site investigations, for now, 

are not likely to be undertaken. Because of limitations regarding GIs, published shear-

wave velocity (Vs) profiles, for example, can be used. 

Budget 

What is the budget for performing PSHA and what differs between old and new-builds? 

PSHA studies are more costly for new-builds. The budget is conditioned with the level 

of rigour and expert elicitation required. For new sites, the budget is between £2 and 

£5 million and a magnitude less for existing sites as the risk is lower because of, as 

said earlier, the shorter operating duration. The greater the level of details required in 

a study, the higher the need to revisit the GI. Indeed, the GI for existing sites were 

more focused on standard civil engineering buildings, like standard rock conditions 

rather than looking at the dynamic properties of the ground.  
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Data collection 

Gap analysis: Before performing any calculations, it is common to have an overview 

of the available data and proceed to a gap analysis, which is a review of the existing 

database and the data that need to be gathered. When and how does this procedure 

take place? 

In the first instance, this is done within EDF Energy. It is part of the strategic siting 

assessment phase. It is common to look at a site X and then decide whether it is suitable 

to build a new nuclear facility. If there is already a station at that location, it is obvious 

that there will be a connection that can handle the level of power output that a new 

power station would generate. Knowing that 9 times out of 10 a new power plant will 

be adjacent to an existing power plant, EDF Energy will go through archive records to 

extract all the available geotechnical information. A database exists for all the sites 

with documented records of every geotechnical report (e.g., boreholes, ground and 

water table testing). Then, EDF Energy interacts with a consultant, shares what is 

available and discusses the gaps. A decision is made afterward regarding undertaking 

further GI. 

How do you include and manage the uncertainties in the decision making? 

First, it is important to make sure that the GI results are representative of the whole 

site. Then, design codes are considered like the ASCE (2005) code to give guidance 

on how to apply an upper and lower bound as well as a best estimate to capture a 

sensible range of what geotechnical data might be providing. When a site-specific 

UHS is derived for a new-build, the 84th percent is considered and used as a 

comparison with the design spectrum used. Whereas on existing stations, the expected 

mean is often considered. This is mainly due to the fact that SHWP studies were known 

to include conservatism at source and deliberate bias within the choice of input 

parameters. The challenge for the operator is to derive a conservatist representation of 

the hazard for the return period of interest, 10,000 years typically. If new features 

regarding the site are discovered and PSHA studies already started, further 

measurements will be made. 
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Estimation of the value of information 

Gathering more data can reduce epistemic uncertainties but it also costs money and 

takes time. What are the common strategies used for prioritising data and determining 

which ones must be collected? 

Before undertaking a PSHA study for a new site, an outline specification is produced 

to set the requirements as a client. The PSHA process can be very detailed so flexibility 

should be given to the consultants. The decision for collecting more data is usually 

made while experts discuss parameters in detail to refine their understanding of the 

data. There are no clear guidelines currently but as a client, EDF Energy relies on the 

consultants by making sure modern practices are adopted. There is a constant need to 

challenge and make sure there are no limitations in the used data. If a specific 

parameter is needed according to academic studies, EDF Energy will invest to make 

sure the parameter is obtained. This will also be put through a study to make sure to 

have a value for investing.  

Within EDF (this comes more from the French side of the business), expert panels are 

convened that consider all the evidence before making a decision with the help of a 

jury of experts along with independent people. They see PSHA not only as a 

probabilistic analysis but they also look at the long-term benefit and the value of 

investment. The quality of collected data is also very important because it can 

influence greatly the quality of the estimated hazard as well as the design of the power 

plant.  

The philosophy within EDF Energy is to keep a balance between having the right 

amount of data and the capability to understand their meaning. Some of the new-build 

organisations, possibly including EDF Energy, suffer from the fact that the earthquake 

community is small and that some of them do not have the “intelligent customer” 

ability to understand current practices. The possible consequence is that the clients can 

be slightly led in different directions. Being surrounded by experts helps making sure 

that EDF Energy is proceeding in the right direction. 
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A.2 Interview with a seismic hazard team at Jacobs 

This section presents a summary of recorded interviews conducted via Skype for 

Business with three members of the seismic hazard team at Jacobs in their London 

office: Iain Tromans (Technical Delivery Team lead on seismic hazard projects), 

Angeliki Lessi-Cheimariou (site characterisation and site response analysis lead) and 

Guillermo Aldama-Bustos (seismic hazard analyst and geotechnical earthquake 

engineer). The interviews were split into two sessions (14th and 28th July) with a 

duration of approximatively 1 hour each.  

Jacobs Engineering Group Inc. is an international technical professional services firm 

headquartered in the USA but with branches worldwide. The company provides a large 

spectrum of expertise in technical, professional and construction services. It also 

performs scientific and specialty consulting for a broad range of clients including 

companies, organisations and government agencies.  

The interviews summarised here focused on their activities in seismic hazard 

assessment, particularly for civil nuclear facilities. The aim of this discussion was to 

gain an overview of their activities in seismic hazard assessment as well as to identify 

the various inputs that have major impacts on their calculations. Also, these interviews 

provide important insights on the process of data collection and dealing with associated 

uncertainties. Finally, questions about the estimation of the value of the information 

were asked to identify the current state of practice and the possible gaps that this PhD 

thesis investigating the use of value of information calculations in this context could 

fill.  

The following interview is divided into five main sections: 

- Overview 

- Required parameters for PSHA 

- Data collection 

- Site effects 

- Estimation of the value of information 
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The summary of the interviews includes each question asked and a summary of their 

response. It should be noted that the following provides a summary of the answers and 

not a verbatim transcript of the interviews. 

Overview  

What are Jacobs activities in seismic hazard assessment? 

Jacobs performs Probabilistic Seismic Hazard Assessment (PSHA) on conventional 

projects as well as nuclear projects. Within the UK, the majority of PSHA work is 

applied to nuclear facilities whether they are defence-related or related to civil power 

generation. 

In the UK, PSHA has been performed since the 1980s. There was a big gap between 

the mid-1990s until about 2010 where not many PSHA were undertaken because of 

the lack of development of new nuclear power plants. Since the early 2010s, the Office 

for Nuclear Regulation (ONR) has developed its approach to the regulation of seismic 

hazard analysis with the help of experts in different task groups (e.g., Professor Julian 

J. Bommer and Professor Robert Holdsworth). This oversight from the ONR has led 

to significant advances in the state of practice of PSHA in the UK. 

In the past several years, one of the biggest projects concerned a new nuclear power 

plant planned by EDF Energy. This was the first PSHA study that got accepted by the 

ONR following publication of an updated version of TAG13 (one of the ONR’s 

Technical Assessment Guides). 

Within Jacobs, PSHA is also performed for petrochemical facilities, new bridges and 

dams. However, the requirements for bridges and petrochemical facilities are less 

severe, compared to nuclear facilities.  

Locations of PSHA studies  

PSHA is performed by the company all over the world, including high seismicity 

regions such as Kashmir, Trinidad, Venezuela and the USA. The requirements of the 

PSHAs differ according to the region of study.  

Relationship with the regulators (ONR) 

Regulators are keen to have an ongoing relationship with the client and the consultants 

working with the client like Jacobs. They want to be aware of the work that is done as 
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the study progresses. However, they retain their independence on the process. 

Therefore, they will comment during workshops on the presented work but will always 

retain the right to comment on the final submitted documentation.  

What is the most performed type of seismic hazard assessment?  

PSHA is the most used approach. However, Deterministic Seismic Hazard Assessment 

(DSHA) is sometimes performed for comparison purposes.  

Required parameters for PSHA 

PSHA requires a lot of parameters. What are the parameters that have the most impact 

on the results of PSHA and those which need to be known more accurately than others? 

Dr. Aldama-Bustos who is a specialist in bedrock-related geotechnical/geophysical 

parameters and GMPEs stated that what controls and leads to major uncertainties in 

the assessed hazard are the GMPEs selection. Site-specific parameters like 𝜅0 (related 

to the attenuation of high frequencies in the shallow crust) and the Q attenuation factor, 

which are sometimes either implicitly or explicitly included in the GMPEs, are also 

important. The standard deviation associated to the median prediction of the ground 

motion (from the GMPEs) controls the uncertainties in the PSHA as well. Other factors 

are of a middle level of influence like the definition and characterisation of the seismic 

sources in seismicity models and uncertainties related to the activity rates of the 

sources.  

Dr. Lessi-Cheimariou shared her experience in site-response analysis and believes that 

one of the critical parameters is the shear-wave velocity (Vs) and the impedance 

contrast between each layer, which are translated into the stiffness of the site. 

Depending on the stiffness of the site, the second set of critical parameters are those 

related to the nonlinear properties of the near-surface materials, including the shear 

modulus degradation with shear strain and the increase in damping as the shear strain 

increases. 

She also stated that as part of site-response analysis for PSHA purposes, the variability 

of 𝑉𝑠  across the site and at depth are important to determine. These parameters define 

the standard deviation of the natural logarithm of 𝑉𝑠, i.e. 𝜎𝑙𝑛𝑉𝑠which is also important 

for the site-response analysis. 



Appendix A                                                                                                                                        246 
 

 

 

Dr. Tromans added that complex geology is also a factor. In the case where there are 

multiple zones within the same site with different geological features, the requirements 

for site characterisation would mean having to obtain information about the potential 

𝑉𝑠 profiles in each of these different areas of the site.  

All of these parameters can be full of uncertainties even with rigorous ground 

investigations and geophysical techniques. How do you manage including these 

uncertainties within the calculations? 

Dr. Lessi-Cheimariou stated that for the site-response analysis, one of the ways of 

incorporating aleatory and epistemic is through Monte Carlo simulations. The 

variability is included as an input in the 𝜎𝑙𝑛𝑉𝑠 parameter explained earlier, which can 

also take account of epistemic uncertainty. As an output, uncertainty is expressed in 

terms of standard deviation of the natural logarithm of amplification factors obtained 

through a convolution approach. Another way is to use logic trees when there are 

different geologies or different best estimates of the velocity profiles. 

Dr. Aldama-Bustos added that it is sometimes difficult to obtain a standard deviation 

associated with the median estimate of any parameter. In the case of GMPEs, tests are 

performed to assess if models can explain observed strong-motion data from the region 

of interest. According to the results of comparison between GMPE predictions and 

observations, a level of confidence is estimated for each GMPE, which will be 

translated into weights assigned to the different branches of the logic tree. The 𝜅0 

parameter mentioned earlier is often expressed as a model giving an average value and 

a standard deviation because this parameter is often difficult to determine precisely. 

Like for the GMPEs, weights will be assigned to the different values characterising its 

distribution in the logic tree.  

  



Appendix A                                                                                                                                        247 
 

 

 

Data collection 

Gap analysis: Before performing any calculations, it is common to have an overview 

of the available data and proceed to a gap analysis, which is a review of the existing 

database and the data that need to be gathered. When and how does this procedure 

take place? 

Gap analysis constitutes the first stage of the PSHA within Jacobs approach. New 

nuclear sites in the UK are generally adjacent to existing nuclear sites. For that reason, 

there will always be an available database of the site properties. In this context, a 

couple of examples were given: 

Example 1: Nuclear power plant 1A is being decommissioned. Nuclear power plant 

1B is still operating. Nuclear power plant 1C is the proposed site. The data for 1A are 

from the late 1950s to early 1960s, which is quite common for nuclear sites in the UK. 

Although useful, these data are of limited quality due to the techniques that were used 

at that time. 1B data were collected in the 1980s and 1990s and represent a huge step 

forward in terms of quantity and quality. Nevertheless, they would not always meet 

the requirements of modern practice for ground investigations (GIs). 

This first stage (gap analysis) usually lasts for 3 to 4 months. Gap analysis often 

continues during the whole duration of the project as the database is continually being 

updated.  

Example 2: In one of the sites studied by Jacobs, there was the possibility of drilling 

incline boreholes. This possibility was identified as being potentially useful during the 

gap analysis at the beginning of the project. Whether these costly boreholes would be 

drilled or not had to be decided at a later stage. When more data was gathered following 

the original gap analysis, these boreholes were seen to be not required. This type of 

decision making is an ongoing process during the entire length of the project. 

What are the usual timelines for data collection? 

GIs can take time. The duration depends on the project as it is related to, for example, 

the resources available. The PSHA starts when most of the GI campaigns have been 

carried out. GI is important, not only, for PSHA purposes but also other design 

calculations as the GI provides geotechnical parameters critical for foundation design 

and so forth. The exact duration of data collection depends on the available dataset 
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(quality and amount). All new-build nuclear sites within the UK are adjacent to 

existing facilities, which means data collection often takes less time than it would if 

completely new sites were being investigated.  

Example:  Project Site 2 

Jacobs has been involved in this project since the beginning. There was at least 6 

months of preparation before the GI started. 

The four phases of GI, their duration and purpose were the following:  

• Phase 1 and 2 (6-9 months): Surface geophysics and H/V studies 

• Phase 3 (9 months): Intrusive GI 

• Phase 4 (2-3 months): Offshore GI 

Do requirements for data collection depend on the type of facility and the level of 

seismic hazard? 

The type of GI is closely related to the type of project. There are fewer requirements 

when it comes to a residential development project than for nuclear power plants, for 

example. For nuclear projects in the UK, which represents a region of low seismicity, 

there are very onerous requirements of GI. From all projects in the UK, those related 

to nuclear facilities have the most detailed GI. For two nuclear projects based in areas 

of different seismic hazard, site-response analysis would require consideration of 

nonlinear site response (high seismicity regions like California) and in the others, such 

as the UK, an equivalent linear approach. This type of consideration helps define 

which GI needs to be performed. 

Site effects 

What are the site effects that you consider most in your PSHA studies? 

The type of site effects included in PSHA studies depend on the characteristics of the 

site and whether there is a 1-dimensional or 2-dimensional site response. Near-surface 

effects are taken into account within the site-response analysis, which considers 

features from the ground level down to what is defined as the bedrock. These effects 

include the de-amplification and amplification due to the presence of softer sediments. 

Associated critical parameters are the 𝑉𝑠 and the nonlinear response of these materials. 

Liquefaction, another type of site effect, is a separate analysis from PSHA and includes 
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different parameters, including the water level. It is also important to look at the 

geomorphology of the site, e.g., dipping strata, basements and specific impedance 

contrasts.  

Which data related to site effects are usually available and which need to be gathered? 

The information used in the analysis should always be site specific when it comes to 

assessing site effects. There is usually no database related to site-specific properties 

existing unlike earthquake catalogues, for example. Some data may be available like 

laboratory data or dynamic parameters, which can be used within empirical 

relationships to establish Vs profiles. However, these are rarely representative of soil 

properties. Hence, GIs are essential to capture the soil features and site effect 

parameters.  

Estimation of the value of information 

Gathering more data can reduce epistemic uncertainties but it also costs money and 

takes time. What are the common strategies used for prioritising data and determining 

which data should be collected? 

Examples of useful guidance include the following: 

- TAG13 by the ONR: data requirements and use of existing data.  

- The International National Atomic Agency (IAEA) guidelines: site 

characterisation and site selection.  

- United States Nuclear Regulatory Commission (USNRC) reports 

- Reports of the INTERPACIFIC project: Combining intrusive and non-

intrusive investigation data 

Are there methods usually used to determine the cost and benefits of collecting data? 

No specific method is currently used for the purpose of determining the benefit in 

terms of reduced costs at Jacobs but progress is being made towards developing such 

a method. There is not always a clear cost-benefit from gathering data. Most of the 

time data collection is related to regulatory assurance. It is not always about knowing 

the right answer but more related to knowing the average hazard with a good level of 

confidence. When performing PSHA for a critical site or facilities, it is important to 

capture the range of epistemic and aleatory uncertainties. It is sometimes hard to 

quantify that in terms of cost-benefit because generally, regulatory assurance is the 

primary concern. 
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Example: Project Site 1 

The client asked the company about the impact on the PSHA if certain datasets were 

not available. The seismic team developed a risk matrix where various datasets were 

listed, the associated effects of not including them in the PSHA and the knock-on 

impact on the capital cost of the project. However, these values are still difficult to 

define. 

In some cases, instrumentation is installed on the site to measure a certain feature, e.g., 

downhole array seismometers to characterise the 𝜅0 value. It is often known in advance 

that the initial model of the target parameter would not change by much (e.g., 𝜅0 in 

this case) but this initiative is important for the client to prove to the owner or regulator 

that he is willing to go the extra mile. However, putting a cost and benefit on such 

effort is quite challenging.  

Whilst the client might not benefit directly from an investment on certain 

instrumentation in the short term, benefits can become valuable in the long term. 

Because of the 10 years cycle of periodic reviews that the ONR requires, the clients 

are setting up contracts with the British Geological Survey (BGS) to have ongoing data 

saved on the BGS servers. These data could be useful when it is necessary to update 

the PSHA study in 10-years’ time, for example. These data would help to update 

specific models and should significantly reduce the uncertainty bounds.  

A GI technique can also be beneficial for different purposes. The client is keen to 

benefit from it for PSHA but also for the geotechnical design of the project. Data 

gathered during GI phases can be used to inform preliminary design stages for the 

geotechnical design requirements of the foundations, for example.  

What are the arguments you make to convince owners to invest money and time in 

collecting information? 

As a part of the gap analysis, data that are believed to be needed in the project are 

presented to the client. The arguments made to encourage data collection include 

regulatory requirements even though they can be vague and make reference to best 

practice. Jacobs then need to discuss with the client what is relevant good practice for 

site investigation and PSHA. The INTERPACIFIC project outputs, industry standard 
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approaches, state of the art approaches and other guidelines are used to assert the 

importance of combining different data sets.  

 

  

 

 


