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Abstract

This thesis describes the design and implementation of a compact zero-field optically

pumped magnetometer for human biomagetic measurements. This project aimed to

achieve lower operating temperatures and a higher sensor bandwidth than current

commercial rubidium-based equivalent sensors. Through careful selection of the

sensing alkali, caesium, and all constituent components of the sensor package design,

both of these aims are achieved.

All of the required systems and components for a single-beam zero-field magne-

tometer are discussed, including a high efficiency cell heating and monitoring system,

multi-axis field control and the optical detection scheme. Through full understand-

ing and development of these systems, miniaturised and microfabricated versions

are developed that facilitate the construction of a sensor package with external di-

mensions of 25× 25× 50 mm3.

A number of machine learning tools are developed and applied to directly op-

timise the sensor’s sensitivity through control of the appropriate operational pa-

rameters, yielding a factor of five improvement. These techniques also enabled the

investigation of the effect of nitrogen buffer gas pressure on the sensor’s measured

sensitivity, demonstrating a linear increase in sensitivity with increasing pressure.

The prototype sensor demonstrated a significant advancement in terms of band-

width achieving a linear frequency response up to ' 900 Hz. The external package

temperature of the sensor for prolonged timescales (> 1 hour) maintained a skin-safe

temperature (< 41 ◦C), with a biomagnetic field level sensitivity, 90 fT/
√

Hz, and

compact package footprint, less than a square inch. A practical measurement of the

magnetic field of a cardiac signal successfully demonstrates the sensor as a suitable

biomagnetic measurement tool.
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Chapter 1

Introduction

1.1 Introduction

Developments in metrological understanding and magnetometry technologies have

made it possible to quantify smaller and smaller magnetic fields. The measurement

of magnetic fields produced by biological functions, biomagnetism, has been achieved

through realisation of ultra-sensitive magnetometers that are capable of detecting

magnetic fields at sub picotesla scale (< 10−12 T ). Developments in the field of op-

tically pumped magnetometers (OPMs) have delivered sensors capable of detecting

biomagnetic signals in hand-held scale “portable” devices. Such OPMs provide both

improvements in size, weight, and power (SWAP) and more modalities of sensing,

than established technologies for biomagnetic sensing. However, production of ultra-

sensitive OPMs at a portable scale for the use in biomagnetic sensing intersects and

combines; 1) the challenges of highly sensitive sensor design and operation, 2) the

constraints and challenges of miniaturised and microfabricated design processes and

3) operational, temperature and material constraints driven through the proximity

of the sensor to a participant during biomagnetic sensing. There is a gap in the liter-

ature, due to commercialisation sensitivities, specifically regarding the development

and production of OPM sensors for biomagnetic measurements that encompasses all

aspects of sensor design, operation and testing.

The research in this thesis aims to develop the tools, software and hardware

1



Chapter 1. Introduction

required to build a portable OPM for biomagnetic sensing from base principles

and explores the use of caesium for this purpose. This chapter will provide an

introduction to the research undertaken during this Doctor of Philosophy (PhD), by

first discussing the background and context of biomagnetism and optically pumped

magnetometry.

1.2 Biomagnetism

Over 200 years ago Luigi Galvani, a physician and physicist, conducted experiments

on the interdependence of electricity and muscle contraction in frogs [1], which is

regarded as the discovery of the electrical phenomena associated with biological

processes, electrophysiology. Electrophysiology is caused by the movement of ions

across cell membranes, which generates electrical potentials and currents within

biological systems. The first measurement of the electrical phenomena produced by

an adult human heart, electrocardiography (ECG), was demonstrated in 1887 [2].

A vast array of electrophysiology measurements followed, including measurement of

the electrical activity within the human brain, electroencephalography (EEG), first

demonstrated in 1924 [3, 4], followed by demonstration of electrical activity during

muscle contraction, electromyography (EMG), in 1929 [5–7]. Bioelectric phenomena

studies are crucial for understanding many biological processes and have greatly

advanced the understanding of human physiology. However, bioelectric signals are

distorted by electrical fields generated by extracellular currents in human tissue

[8,9] demonstrating a significant draw-back to non-invasive bioelectric measurement

techniques.

A bioelectric current has an accompanying magnetic field, known as biomag-

netism [10], that is not subject to the same deformation since tissue is magnetically

transparent [11]. The lack of signal distortion allows for non-invasive measurements

of biomagnetism measured outside of the body. However, biomagnetic signals are

very small and the detection of such poses many technical challenges. The signal

amplitude of biomagnetic signals are often of order 10−12 T, with the smallest sig-

nals such as evoked brain signals, measuring at < 10−13 T. Sources of magnetism

2



Chapter 1. Introduction

and magnetic noise such as the Earth’s magnetic field, power systems and electrical

systems can overpower the measurement of tiny biomagnetic signals.

Baule and MaFee [12] recorded the first human biomagnetic measurement in

1963, with the detection of magnetic fields produced by the human heart, magneto-

cardiography (MCG), through use of an optimised induction coil assembly. Cohen

also measured the heart field in 1967 through use of a copper induction coil detec-

tor, which he later used to successfully measure the brain’s magnetic field in 1968,

introducing the field of detection of magnetic fields produced by the human brain,

magnetoencephalography (MEG). This first MEG measurement was enabled by use

of a multi-layer magnetically shielded chamber used to attenuate large external

sources of magnetic field.

The development of superconducting quantum interference devices (SQUIDs)

in the 1970’s facilitated measurement of biomagnetic fields with a better signal-

to-noise ratio than recorded with induction coils [13–15]. SQUID-systems quickly

advanced the field of biomagnetism measurements due to the high sensitivity ca-

pabilities at biomagnetic frequency ranges. SQUID dominance is further demon-

strated by the gradiometric SQUID-system utilised in an unshielded environment in

1974 to first non-invasively record the in-vivo biomagnetic signal of the fetal heart,

fetal-magnetocardiography (FMCG) [16], and the first measurement of the mag-

netic fields produced by the human eye in 1978, magnetoretinograph (MRG) [17].

Improvements in magnetometer sensitivity, magnetic shielding, and data processing

continue to demonstrate biomagnetic measurements as a credible medical imaging

tool [9, 18]. Today, SQUIDs in clinical MEG applications are developing to promis-

ing effect for both medical diagnosis, such as for the detection of cerebral haemor-

rhages [19] and diagnosis of Parkinson’s disease symptom severity [20]. There are

commercially available or prototype low TC SQUID-based systems for various bio-

magnetic measurements; however, the use of SQUID-based systems impose a num-

ber of limitations due to the operational requirement for the system to be cryogenic

cooled to ' 4 K. This cooling requirement is both costly and constrains the sensor

placement in proximity to the patient, detrimentally affecting signal clarity due to

3



Chapter 1. Introduction

a large signal-to-noise ratio (SNR) [18,21]. High TC SQUIDs are being explored for

use within biomagnetic measurements, however, there is limited demonstrated use

due to the technology not yet reaching the required level of maturity for mass pro-

duction, leading to poor fabrication yield of sensors [22,23]. The demonstrated need

for more effective and cost-efficient biomagnetic sensing has encouraged research

in the field of quantum technology to develop innovative and resilient miniaturised

technologies to prepare existing highly-sensitive OPMs for field deployment. This,

in turn, drives the development of novel technologies such as compact lasers and

microfabricated cells.

1.3 Optical magnetometry

Optical magnetometry utilises resonant light interactions with magnetically sensitive

atomic vapour to detect magnetic fields. Atoms have a magnetic dipole moment,

µ, that results from intrinsic properties of spin and electron charge. In the pres-

ence of an external magnetic field, B, the magnetic dipole experiences a torque, τ ,

orthogonal to µ and B:

τ = µB . (1.1)

The result is that the magnetic moment precesses about the magnetic field, B,

at the Larmor frequency, ωL.

ωL = γ|B| , (1.2)

where γ is the atomic species dependent gyromagnetic ratio. The process of optically

pumped magnetometry typically occurs in 3 stages.

1. Pump: The atomic vapour is optically pumped by polarised light tuned to

the atomic resonance frequency. The light transfers angular momentum to the

atomic ensemble, pumping the atoms into a polarised state and creates a net

angular momentum, known as magnetisation.

2. Precession: Any external static magnetic field, B, that is applied to the

4



Chapter 1. Introduction

atomic ensemble causes the atomic polarisation to freely precess around the

field at the Larmor frequency effectively causing the angular momentum of the

atoms to precess.

3. Probe: The precession of the angular momentum of the atoms affects the

atom-light interaction, which manifests as changes to the detected light trans-

mitted through the atomic ensemble. The changes in light transmission is

utilised to extract an accurate measurement of B-field.

Through this method we create a magnetised state of the atomic ensemble; how-

ever, this magnetisation has a finite lifetime due to relaxation mechanisms. In the

1970’s, Happer and Tang discovered that a dominant relaxation mechanism, spin-

exchange broadening, vanishes at extremely high alkali density [24]. This discovery

started a branch of OPM development in which the OPM is designed such that

spin-exchange broadening is suppressed, known as the spin exchange relaxation free

(SERF) regime. SERF regime magnetometry maximises atomic polarisation lifetime

to improve sensor sensitivity capabilities, discussed further in Chapter 2. SERF

OPMs have demonstrated magnetic field sensitivity that approaches the sensitivity

capabilities of SQUIDs, legitimising the use of SERF regime OPMs as a complimen-

tary avenue for biomagnetic research alongside SQUID-based systems [25–27]. SERF

OPMs have been demonstrated extensively using a range of alkali atom species and

buffer gases reaching fT/
√

Hz sensitivity [28–30], with the highest recorded sensi-

tivity reaching 160 aT/
√

Hz [31] in a controlled lab environment. OPMs do not

require cryogenic cooling, providing a major advantage of OPMs compared to low

temperature SQUIDs. The relative simplicity of OPMs design facilitates smaller,

more portable sensors that can be placed much closer to the source of biomagnetic

signals to improve the signal to noise ratio [25].

Figure 1.1 illustrates the signal amplitude and frequency range for a number of

biomagnetic signals, indicated through the coloured regions. The simulated time

domain signals can be observed for the biomagnetic measurements, including MCG,

MEG and evoked muscle response measured through magnetomyography (MMG).
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Figure 1.1: The magnetic field amplitude and frequency range for various biomag-
netic signals with respect to the Earth’s magnetic field. The various line types
illustrate the approximate currently demonstrated capabilities of different magne-
tometer types, including SQUIDs, SERF OPMs, and fluxgate magnetometers. From
the main graph the arrows point to examples of the time domain signals for three
biomagnetic measurements, MCG, MEG and MMG, which are simulated and de-
picted in the right-hand column.
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The dotted and dashed lines here indicate the capabilities of different types of mag-

netometers, including SQUIDs, SERF OPMs and fluxgate magnetometers.

1.4 Thesis structure

This thesis discusses the construction of a portable single-beam SERF OPMs us-

ing caesium atoms, for the use in biomagnetic measurements. The sensing head

of the OPMs for biomagnetic measurements must be at a compact portable scale,

to counter many of the issues of SQUID-based systems. Chapter 2 will provide a

comprehensive overview of the atomic physics and optical magnetometry concepts

that underpin the SERF magnetometer design and results presented in this thesis.

In Chapter 3, the experimental setup at lab scale for the caesium SERF magne-

tometer is explored at a system, component and process level, to fully describe the

magnetometers assembly and operation. Chapter 4 presents and demonstrates the

effectiveness of machine learning techniques for optimisation of the SERF magne-

tometers performance through automated control of a selection of key operational

parameters. The machine learning techniques are employed to benchmark magne-

tometer hardware improvements for fast characterisation of the magnetometers op-

timal performance. In Chapter 5, the development of a prototype portable version

of the magnetometer is discussed, including description of the miniaturised com-

ponents developed for the portable package. Practical biomagnetic measurements

using the portable scale SERF magnetometer are also demonstrated in Chapter 5.

Chapter 6 proposes a scheme of operation and measurement for the caesium SERF

magnetometer that is less affected by extraneous magnetic fields. Lastly, Chapter 6

concludes the thesis through summary and presentation of future work.

SERF magnetometry was a new research interest for the Experimental Quan-

tum Optics and Photonics group at the University of Strathclyde. The author, in

collaboration with Edward Irwin, Marcin S. Mrozowski and postdoctoral researcher

Carolyn O’Dwyer, actively contributed to the SERF magnetometry project, and

subsequently made contributions to each other’s work. The work reported in this

thesis was the author’s contribution, unless stated otherwise.
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Chapter 2

General theory

Optical magnetometry uses light to measure the response of atoms to magnetic fields.

Alkali metals contained within vapour cells underpin the development of highly sensi-

tive magnetometers. Alkali vapour cells are relatively inexpensive, low-maintenance,

low-power and physically robust to external temperature, pressure, and vibration.

Optical pumping allows for control of the internal atomic states through use of the

light polarisation to reach a well defined state in order to accurately predict atomic

response to a magnetic field. This chapter will discuss the theories of atomic physics

and optical magnetometry required to explain the experimental SERF magnetome-

ter presented in this thesis.

2.1 Atomic structure

Alkali metal atoms are typically used in optically pumped magnetometry due to

their accessible atomic transitions afforded by their atomic structure. Alkali metal

atoms only have a single valence electron which allows for simplification of the atom

energy as one electron outside of a central potential formed by the nucleus and

closed energy shells. This simple structure allows for a well understood model of the

dynamics of the electron spin. Through definition of alkali-metal atomic structure,

the fundamental principles of atomic magnetometry can be explored. Such principles

include discussion of how alkali atoms interact with magnetic fields and laser light,
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Chapter 2. General theory

as discussed in the following sections. Here a brief outline of atomic structure will

be covered, in order to provide a framework for later discussion, for further details

see [32] by Sobelman.

Alkali metal atoms have hydrogenic structure with a single valence electron oc-

cupying the outermost shell. The orbital angular momentum, L, arises due to the

motion of the electron around the nucleus where L = 0 in the ground state and

L = 1 in the first excited state.

2.1.1 Fine structure

Electrons have half-integer spin of S = 1/2 with corresponding spin angular momen-

tum, S = 1/2. The atomic fine structure arises due to magnetic interactions between

the electron spin angular momentum, S, and the orbital angular momentum, L, to

give the total angular momentum, J, where

J = L + S . (2.1)

The corresponding quantum number, J , is limited to integer steps within the

range of |L − S| ≤ J ≤ |L + S|. The fine-structure spitting is hundreds of THz.

Figure 2.1 shows the atomic structure of Cs, where atomic orbital and fine structure

is denoted in the standard spectroscopic notation:

n2S+1LJ , (2.2)

where n is the principle quantum number and L denotes corresponding orbital such

that L = S, P,D, F, ....

If a number of different atomic states share the same energy, the states are

described as degenerate. The fine structure breaks the degeneracy of the first excited

state. For example, in the case of caesium, fine structure separates the first excited

state, 62P , of the L = 1 orbital into two so called fine-structure sub-levels; 62P1/2

and 62P3/2. The transitions, which represents the energy difference between these

states, from the ground state, 62S1/2, to these excited states are known as the D1
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Figure 2.1: Energy structure diagram illustrating the orbital, fine and hyperfine
structure of caesium atom. The red lines indicate the D1 and D2 transitions. The
indicated splitting values are accurate [34] but not to scale

(62S1/2 → 62P1/2) and D2 (62S1/2 → 62P3/2) transitions.

The energy shift, Efs, between fine structure spectral lines is a function of the

spin–orbit interaction constant βfs is defined as [33]:

Efs = βfs〈L · S〉 (2.3)

=
βfs

2
(J(J + 1)− L(L+ 1)− S(S + 1)) . (2.4)

2.1.2 Hyperfine structure

The atomic hyperfine structure arises due to magnetic interaction between the total

nuclear angular momentum, I, with the angular momentum of the electron, J, to

give the total atomic angular momentum, F, where;

F = I + J . (2.5)

The corresponding quantum number, F , is limited to integer steps within the

range of |I − J | ≤ F ≤ |I + J |.
The energy shift, Ehfs, between hyperfine structure spectral lines is a function of
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the hyperfine spin–orbit interaction constant, Ahfs, is defined as [33]:

Ehfs = Ahfs〈I · J〉 , (2.6)

For states with ` = 0, such as the ground state;

Ehfs =
Ahfs

2
(F (F + 1)− I(I + 1)− J(J + 1)) (2.7)

2.2 Atom-field interaction

In the presence of an external magnetic field hyperfine magnetic sublevels are bro-

ken from degeneracy into mf sublevels, known as Zeeman splitting. The num-

ber of mf states for a given F state is given by 2F + 1. For example, in the

case of the caesium ground state, 62S1/2, F = 4 with corresponding sublevels

mf = (−4,−3,−2,−1, 0, 1, 2, 3, 4) and F = 3 with corresponding sublevels,

mf = (−3,−2,−1, 0, 1, 2, 3), as shown in Figure 2.4.

The hamiltonian HB describes the atomic interaction with the magnetic field as:

HB =
µB
~

(gSS + gLL + gII).B , (2.8)

where µB is the Bohr magneton and gS , gL and gI are electron spin, electron orbital,

and nuclear g-factors respectively.

At the low field regime, as indicated by µB � Ahfs〈I · J〉, the linear Zeeman

effect occurs such that the energy splitting E|Fmf 〉 induced is small with respect to

the hyperfine structure splitting.

E|Fmf 〉 = µBgFmfBz , (2.9)

where gF is the hyperfine g-factor.

While we will not examine fields outside of this regime, it should be noted that

the Breit–Rabi formula Equation (2.10) can be used to calculate the energy shifts

for the states with J = 1/2 when subject to an external magnetic field [35]. For
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example, in the case of caesium, Equation (2.10) can be utilised for the 62S1/2 and

62P1/2 states.

E|J=1/2mJImI〉 = − ∆Ehfs

2(2I + 1)
+ gIµBmB ±

∆Ehfs

2

(
1 +

4mFx

2I + 1
+ x2

)1/2

, (2.10)

where, ∆Ehfs = Ahfs(I + 1/2) and m = mI ±mJ = mI ± 1/2. In low magnetic fields

m = mf .

x =
(gJ − gI)µNB

∆Ehfs
, (2.11)

where µN is the nuclear magneton.

Figure 2.2 shows the splitting of the caesium ground state, 62S1/2, with hyperfine

levels F = 3 and F = 4, into the sublevels, m, under a large external magnetic

field (Tesla level), calculated with Equation (2.10). Similarly, Figure 2.3 shows the

splitting of the caesium ground state, 62S1/2, into the sublevels, m, under nT level

external magnetic fields, as explored in this thesis.

2.3 Optical pumping

Optical pumping is the creation of non-equilibrium population states through the

use of optical scattering [36]. The populations of states are given the Boltzmann

distribution. For a system at temperature, T , with two states separated by energy

∆E, the ratio of the populations, P2
P1

, can be expressed as;

P2

P1
= exp

(
−∆E
kB.T

)
. (2.12)

Zeeman state optical pumping occurs by shining polarised light resonant to the

wavelength of an atomic transition through an atomic ensemble. The light polarisa-

tion is a manifestation of the resonant photons’ angular momentum projected onto

the beam axis, that transfers one unit of angular momentum to the atom’s electron.

The effect of optical pumping, as illustrated in Figure 2.4, is two-fold, 1) ex-

citation of the atom to the excited state, and 2) spontaneous decay of the atom
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Fine Hyperfine Zeeman Splitting

σ+

62P 1
2 F ′ = 4

F ′ = 3

m′
f

= −4 −3 −2 −1 0 +1 +2 +3 +4

mf = −4 −3 −2 −1 0 +1 +2 +3 +4

62S 1
2

D1 = 894.9 nm

F = 3

F = 4
Dark
States

Optical
Pumping

Number of mf levels = 2F + 1

Figure 2.4: Fine, hyperfine and Zeeman splitting for caesium D1 with optical pump-
ing, adapted from [37]. Optical pumping is achieved using circular polarised light,
that is orientated with respect to the B-field to give σ+ transitions. On the left light
is resonant with all states, whereas on the right it is resonant with 4→ 3 such that
the atoms will only be pumped into F=3 Zeeman sublevels

back to the ground state manifold. The polarisation of the incident light determines

the atoms excitation through “selection rules” for the magnetic sublevels, mF , such

that;

• m′f = mf + 1 for σ+ transitions

• m′f = mf − 1 for σ+ transitions

• m′f = 0 for π transitions

However, the type of transition also depends on any applied B-field, for instance,

in a system driving σ+ transitions, reversing the direction of an applied B-field would

drive σ− transitions. Application of a shifting B-field to drive σ+ then σ− transition

is fundamental in SERF magnetometry to measure magnetic resonance, as discussed

further in Section 2.6.2.

In this thesis, light polarised to drive the σ+ transitions and tuned to the D1

transition of caesium (λ = 894 nm) is used throughout, as shown in Figure 2.4. As

illustrated in Figure 2.4 an atom in F = 4 and mf = +1 is optically pumped using

σ+ light to F ′ = 3 and m′f = +2.

Spontaneous decay changes the state of the atom from the excited state to the

ground state (L = 1 → L = 0) by emitting a photon. This decay occurs through
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one of three possible decay channels to return the atom to the ground state, such

that;

mf = m′f + (1, 0,−1) , (2.13)

where the probability of decaying to a particular channel depends on the Clebsch-

Gordan coefficient, resulting in some proportion of the atomic ensemble to be opti-

cally pumped to a mf ground state level with a higher quantum number.

Repeated pumping eventually creates populations of atoms in the two outermost

magnetic sublevels, mf = 3 and 4, (neglecting decay to the F = 3 sublevel), known

as the stretched states. In these states, the atom can no longer be optically pumped

as the light transfers no momentum to the atom, as such these are known as the

dark states. By populating the dark states and depopulating other states, optical

pumping leads to a non-equilibrium population distribution across the ground state

resulting in a strong net magnetisation. The atomic ensemble in this state is referred

to as polarised, and is highly sensitive to any magnetic field applied perpendicular

to the laser beam axis.

2.4 Relaxation mechanisms

An optically pumped highly polarised atomic ensemble is depolarised by relaxation

mechanisms. Relaxation randomises the atoms mf states leading to depolarisa-

tion and loss of magnetic sensitivity. As such, relaxation mechanisms must be well

defined, understood and controlled to ensure optimal sensitivity. Here, all relax-

ation mechanisms relevant to a microfabricated cuboid cell filled with caesium alkali

vapour and nitrogen (N2) gas will be discussed, as this type of cell will be utilised

throughout all experimentation in this thesis.

2.4.1 Intrinsic relaxation

The total relaxation rate is a sum of effects intrinsic and extrinsic to the atomic

vapour cell. Extrinsic relaxation effects are caused by operational processes, such as

perturbation caused by laser light, and as such are managed through sensor design
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and operation. Intrinsic relaxation processes are inherent to every vapour cell and

are a function of the cell geometry and buffer gas quantity. The total relaxation

rate, Γtotal, is the combination of all intrinsic relaxation mechanisms, which can be

grouped as either relaxation due to atom-wall collisions, Γwall, or relaxation due to

atom-atom collisions, Γcollisions, such that;

Γtotal = Γwall + Γcollisions . (2.14)

2.4.2 Atom-wall collisions

Collisions of the caesium atoms with the glass cell walls are depolarising and can be

effectively suppressed with the addition of buffer gases, such as nitrogen or neon, to

the atomic vapour cell. For cells with buffer gas, the wall collision relaxation rate,

Γwall, is diffusion limited, and hence a function of the diffusion coefficient, D. The

diffusion coefficient is defined as D = λ
3 v̄ [38], where λ is the mean free path of an

atom between collisions with buffer gas atom within the cell.

With the addition of a buffer gas the average velocity of the atoms, v̄, can be

expressed as [38];

v̄ =

√
8kBT

πM
, (2.15)

where kB is Boltzmann’s constant, and T is temperature. The reduced mass, M , of

both the masses of the alkali atom, m, and the buffer gas mass, m′, is defined as;

1

M
=

1

m
+

1

m′
. (2.16)

The wall collision rate is most accurately described with respect to the vapour

cell geometry. The cuboid geometry cells used within this research can be adequately

modelled by a simplification to a well defined cylindrical geometry [39]. This assumes

the effect of complex cuboid corner collisions are negligible.

Γwall =

[(π
d

)2
+

(
2.405

r

)2
]
Dn0

nb

√
T

273.15K
, (2.17)
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where nb is the buffer gas number density and n0 is the Loschmidt constant. For

cylindrical geometry, the radius, r, of the circular face and the height, d, of the

cylinder, map to the required cuboid geometry such that r = F for a square-faced

cuboid with dimensions = F × F × d.

2.4.3 Atom-atom collisions

Atom-atom collisions are spin depolarising, manifesting in two distinct ways, 1)

spin-exchange that preserves the total atomic spin of the colliding pair, and 2) spin-

destruction that randomise atomic polarisation post collision. The total relaxation

due to collisions, Γcollisions, is defined as the sum of spin-exchange, ΓSE , and spin-

destruction relaxation, ΓSD.

Γcollisions = ΓSE + ΓSD . (2.18)

ΓSE and ΓSD are further defined as the sum of all types of atom-atom collisions

possible within the atomic vapour cell, in this case; caesium-caesium (Cs-Cs) and

caesium-nitrogen (Cs-N2).

ΓSD = ΓCs−Cs
SD + ΓCs−N2

SD , (2.19)

ΓSE = ΓCs−Cs
SE . (2.20)

The general equation for relaxation due to atom-atom collisions is given by:

Γ = qσnν̄ , (2.21)

where n is the caesium vapour density and σ is the cross-section giving the probabil-

ity of a spin-destruction or spin-exchange event to occur during a collision. The rele-

vant cross section values for caesium are summarised in Table 2.1 adapted from [28].

The degree to which spin coherence is maintained, described by the nuclear slowing

down factor, q, is dependent on the atomic spin polarisation, P , of the atomic en-

semble. For a highly polarised atomic ensemble, P ' 1, the nuclear slowing down
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factor, qhp, is described as;

qhp = 2I + 1 , (2.22)

such that for a highly polarised atomic ensemble of caesium atoms where I = 7/2,

q = qhp = 8 [38].

Table 2.1: Cross section values for SE between alkali-alkali atoms, SD between alkali-
alkali, and alkali-buffer gas atoms. For caesium (Cs) alkali and nitrogen (N2) buffer
gas.

Caesium cross sections σ

σCs−Cs
SE = 2.1x10−14cm2 [40, 41]

σCs−Cs
SD = 2.0x10−16cm2 [41]

σCs−N2
SD = 5.5x10−22cm2 [42]

2.4.4 Transverse and longitudinal relaxation

The discussed relaxation mechanisms apply only with respect to the beam axis such

that separate total relaxation rates are defined for the longitudinal and transverse

axes, corresponding to polarisation lifetimes T1 and T2 respectively. The longitudinal

relaxation rate, Γ1, is composed of mechanisms that affect the spin component along

the beam axis (z). Conversely, the transverse relaxation rate, Γ2, is composed of

mechanisms that affect the spin component orthogonal to the beam axis (x or y).

Γ1 =
1

T1
= Γwall + ΓCs−Cs

SD + ΓCs−N2
SD , and (2.23)

Γ2 =
1

T2
= Γ1 + ΓCs−Cs

SE . (2.24)

For the caesium SERF magnetometer presented throughout this thesis, the total

relaxation, Γtotal, is derived from Equations 2.17, 2.21 and 2.24,:

Γtotal = Γwall + ΓCs−N2
SD + ΓCs−Cs

SE , (2.25)

=

[(π
d

)2
+

(
2.405

F

)2
]
Dn0

nN2

√
T

273.15K

+
1

q
σCs−N2

SD nCs−N2 v̄Cs−N2 +
1

qSE
σCs−Cs

SE nCsv̄Cs , (2.26)
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where Γtotal = Γ2 and spin destruction is dominated by alkali-buffer collisions due to

high buffer gas density. The spin-exchange broadening factor, qSE , is dependent on

the ambient magnetic field magnitude and alkali vapour density. For caesium atoms

at suitably high magnetic field (∼10’s of nT level [43]) qSE = 7
32 , however qSE → 0

in zero-field sensing conditions, as will be explained in Section 2.6.

2.4.5 Intrinsic linewidth

Whilst intrinsic relaxation can be calculated numerically using Equation (2.24), Γ2

can also be extracted experimentally through interrogation of the atomic vapour cell.

The measured magnetic linewidth (described in Section 2.6.2) is composed of intrin-

sic relaxation processes and additional contributions from power broadening. To

accurately measure the intrinsic linewidth, the effects of power broadening must be

accounted for. The effect of broadening is expected to be linear to power, however,

for other power broadening effects, such as in optical spectroscopy, the broaden-

ing scales as a function of square-root of power. A measurement of the magnetic

linewidth with respect to laser power allows for extrapolation of the zero-crossing

which corresponds to zero power and subsequently the intrinsic linewidth Γ.

2.5 Buffer gas effects

The caesium atomic vapour cell used throughout this thesis contains nitrogen buffer

gas. The various intrinsic relaxation mechanisms vary with the amount of buffer

gas added to the atomic vapour cell, as shown in Figure 2.5 modelled using Equa-

tion (2.26).

Relaxation due to alkali-wall collisions, Γwall, reduces with increasing buffer gas

pressure, indicated by the dashdotted line in Figure 2.5. The increased buffer gas

pressure means more nitrogen atoms are available to slow down alkali diffusion and

increase the time between the alkali-wall collisions. However, the addition of more

buffer gas atoms increases the rate of alkali-buffer gas spin-destruction collisions,

ΓCs−N2
SD , indicated by the dotted line in Figure 2.5. Spin-exchange collisions are

20



Chapter 2. General theory

10 100 1000
10

100

1000

N2 Pressure (Torr)

Γ
(H

z)

Measured

ΓCs−Cs
SE

ΓCs−N2

SD

Γwall

Γtotal

Figure 2.5: Intrinsic linewidth measured for a range of microelectromechanical
(MEMS) atomic vapour cells, with internal dimensions of 6 × 6 × 3 mm3. Five
atomic vapour cells with distinct pressures are tested, spanning a range of nitrogen
buffer gas pressures (95, 125, 185, 211 and 225 Torr). The intrinsic linewidth, Γ, is
extracted for each cell with the measured value, Γ Measured, indicated by crosses
and the modelled total relaxation rate, ΓTotal, is indicated by the solid line. Each
component of the total relaxation rate, as in Equation (2.25) where qSE = 4, is
indicated by various line types.

dominated by alkali-alkali collisions, therefore relaxation due to spin-exchange col-

lisions, ΓCs−Cs
SE , remains constant regardless of buffer gas pressure, indicated by the

dashed line in Figure 2.5.

The total relaxation rate, Γtotal, combines all relaxation mechanisms, indicated

by the solid line in Figure 2.5. The total relaxation rate can be used to find the

optimum buffer gas pressure that considers the trade-off between increasing spin

destruction rate and decrease in wall collision rate. For measurement of B-fields,

we want to operate at a minimum total relaxation rate and subsequent narrow

resonance. A region with the lowest total relaxation rate is indicated in Figure 2.5

by the trough of the curve, correlating to a region of potential optimal buffer gas

pressure at ' 150 Torr.

The relaxation rate calculations are also verified through experimentally mea-

sured intrinsic linewidth values indicated in Figure 2.5 by the red crosses. The

intrinsic relaxation rates of the measured points were taken in the same manner as

in Section 2.4.5, for a range of caesium microfabricated cells with different pressures

of nitrogen buffer gas (all cells have identical geometry and were heated to 90 ◦C).

With the addition of buffer gas, the atomic spectral lines are both 1) broadened
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Figure 2.6: Spectroscopy of various caesium MEMS cells. The red line indicates a
reference cell. Colour indicated the various cells and corresponding nitrogen buffer
gas pressure.

and 2) frequency shifted, due to collisions with the buffer gas molecules. Absorption

spectroscopy measures the absorption of light incident through an atomic ensemble

as a function of wavelength or frequency, resulting in a number of dips in measured

light transmission, ε, correlating to appropriate hyperfine components as defined in

Section 2.1. Figure 2.6 shows a well-defined absorption spectrum for a caesium only

reference cell (Thorlabs GC25075-CS) indicated by the red line. The broadening

and frequency shifting phenomena caused by buffer gas increases with increasing

buffer gas pressure [44], for example, at 21 ◦C, the linewidth broadens by 30.93 ±
5.71 MHz/Torr, and shifts by −7.38± 0.11 MHz/Torr [45]. Figure 2.6 demonstrates

this broadening and shifting for a range of cells (with identical geometries) with

varying buffer gas pressures (85 to 225 Torr indicated by line colour). All cells were

measured experimentally where transmission, ε, is normalised between 0 and 1 for

each cell.

The same physical collision mechanisms due to the buffer gas affects all the alkali

atoms in the same way, which results in the observed homogeneous broadening of

spectral lines seen in Figure 2.6. This broadening effect on the absorption profiles

of the optical transitions enables the simultaneous pumping to both excited states

using a single narrow-band laser for buffer gas pressures & 100 Torr.

A Voigt profile, including the appropriate hyperfine components, fit to the ab-

sorption spectrum identifies homogeneous broadening of the Lorentzian linewidth

caused by nitrogen buffer gas, ΓN2 , and a characteristic shift of the transition fre-
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quencies, ∆N2 . The ratio of ΓN2/∆N2 is suitably well defined such that it can be

used to analytically extract the buffer gas pressure within an atomic vapour cell [45].

2.6 Suppressing spin exchange relaxation

In zero-field conditions with high alkali vapour density the relaxation effect of spin-

exchange collisions can vanish [46]. Operation within this scheme is known as the

SERF regime. Counterintuitively, in the SERF regime spin-exchange relaxation is

largely reduced by increasing the rate of spin-exchange collisions ΓSE [29].

During spin-exchange collisions, spin directions of colliding atoms may be re-

versed resulting in a swap of the sign of their electron spin, S. For example, atom

A with electron spin SA = 1/2 and atom B has electron spin SB = −1/2 collide

and spin-exchange such that atom A and B may have swapped electron spin to

SA = −1/2 and SB = 1/2 respectively [46]. Consequently, the atomic angular mo-

mentum jumps between the states of total angular momentum F = I + 1/2 and

F = I − 1/2 [24]. As such spin-exchange collisions leads to a change in precession

direction whilst conserving angular momentum. The average precession frequency

of the atomic ensemble is altered by the time it takes to change precession direction

after spin-exchange collisions, as such the average precession frequency is tied to the

spin-exchange rate.

At high atomic density, statistical analysis of the effect of spin-exchange defines

the average precession frequency, ω̄, as a function of the Larmor frequency, ωL, and

nuclear spin, I [46].

ω̄ =
6I + 3

4I2 + 4I + 4
ωL . (2.27)

The effect of spin-exchange relaxation on the average precession frequency is de-

termined by the relationship between the Larmor frequency and the rate of spin-

exchange collisions, ΓSE , in the follow ways:

• Slow spin-exchange rate, ΓSE < ωL:

If the Larmor frequency is higher than the spin-exchange rate the atoms precess

freely in one of the hyperfine states multiple times before switching to another
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Figure 2.7: Diagram of spin-exchange collisions, indicated by orange starburst, for
different spin-exchange rates, ΓSE . The atom colour indicates the hyperfine state
and precession direction. Spin-exchange collisions change an atoms hyperfine state
causing the atoms to precess at Larmor frequency, ωL, in the opposite direction.
a) Slow spin-exchange rate, ΓSE < ωL. After a spin-exchange collision, the atoms
decoherently precess in opposite directions. b) Fast spin-exchange rate, ΓSE � ωL,
in the SERF regime. A high rate of spin-exchange collisions causes the atoms to
precess between collisions only marginally before another spin-exchange collision
occurs. The populations of the two hyperfine levels subsequently precess coherently.

hyperfine level post collision. Figure 2.7(a) illustrates the decoherence of two

atoms post collision.

• Intermediate spin-exchange rate, ΓSE > ωL:

As the spin-exchange rate is increased the atoms undergo less precession be-

tween collisions. Once the spin-exchange rate is larger than the Larmor pre-

cession frequency, individual atoms spend less time in an individual hyperfine

state and only precess a small amount between collisions.

• Fast spin-exchange rate, ΓSE � ωL:

If the spin-exchange rate is much faster than the Larmor frequency, the pre-

cession between collisions is so small that atoms in the two hyperfine levels

become locked together as they experience the same slower net precession fre-

quency ω̄. Figure 2.7(b) illustrates the coherence of two atoms post multiple

collision. Statistically the atoms spend more time in the upper F = I + 1/2

hyperfine level due to the higher number of Zeeman sublevels than the lower

hyperfine level, which determines the direction of the net precession. Spin-
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exchange collisions no longer cause spin relaxation because the entire alkali

ensemble precesses coherently [38,46,47].

In operation the SERF regime is reached through the combination of high vapour

density and a zero magnetic field environment provided through magnetic shielding

and residual field compensation using magnetic field coils.

2.6.1 High vapour pressure

The relationship between vapour pressure, Pv, and temperature, T , is described by

the Clausius–Clapeyron equation;

dPv
dT

=
Pv∆H

RT 2
, (2.28)

where R is the universal gas constant and ∆H is the heat of vapourisation as a

function of temperature.

The integrated form of Equation (2.28) can be derived such that vapour pressure

is expressed in terms of only temperature and a number of constants that are specific

to the atomic species [48]:

Pv = 10(A+B
T
−CT+D log10 T) , (2.29)

where constants A, B, C and D are well defined in the literature for each atomic

species [34,49,50].

Through combination of the ideal gas law and the definition of vapour pressure

in Equation (2.29), the atomic density, ρ, is expressed as;

ρ =
133.3× 10(A+B

T
−CT+D log10 T)

RTm
, (2.30)

where m is the atomic mass.

The consensus within SERF literature defines the atomic density required for

SERF regime magnetometry as ρ ' 1014 cm−3, where the corresponding cell tem-

perature is dependent on the atomic species utilised; caesium T ' 120 ◦C [51],
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Figure 2.8: Atomic density, ρ, of caesium (Cs), rubidium (Rb) and potassium (K),
with respect to temperature. The density required for SERF regime magnetometry
(1014 cm−3) is indicated by the red line.

rubidium T ' 150 ◦C [52] and potassium (K) T ' 190 ◦C [28]. Figure 2.8 illustrates

density, ρ, with respect to temperature for various alkali species typically used for

magnetometry, calculated with Equation (2.30). The density required for SERF

regime magnetometry (1014 cm−3) is illustrated by the red line.

The temperature of the atomic vapour cell is of particular interest for magne-

tometers where the intended use is for biomagnetic measurements. During biomag-

netic measurements an external face of the atomic sensor will be in close proximity

to a participants’ skin. Operationally, this means the external package of the mag-

netometer must be skin safe. IEC 60601 [53] defines the technical standards for the

safety and essential performance of medical electrical equipment, set by the Inter-

national Electrotechnical Commission. IEC 60601-1 specifies the maximum allowed

external temperature limit for a device that has contact with healthy skin of an

adult, based on touch duration t. For measurements that require over 10 minutes of

touch duration t > 10 min, the allowable maximum temperature is 41 ◦C [53]. As

such, here we define the maximum skin-safe temperature for the external face of the

sensor as 41 ◦C.

Based on discussions and personal experience, rubidium SERF sensors experience

significant heat generation during operation, with temperatures reaching up to �
41 ◦C, causing discomfort. In this thesis caesium was selected as the sensing alkali

due to the lower temperature required to reach the SERF regime atomic density.
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Figure 2.9: Diagram of the ground state Hanle effect, demonstrated as a change in
optical transmission with respect to a magnetic field applied along the beam axis,
Bz. The inset graphs show the hyperfine manifold of caesium at various values of
applied field, as shown by the grey arrows. The break in degeneracy of the Zeeman
sublevels caused by the magnetic field allows for large population (pink) distributions
to the dark states.

2.6.2 Ground state Hanle effect

Magnetometers operating in the SERF regime exploit the ground state Hanle ef-

fect (GSHE) to generate a magnetic resonance. GSHE resonances are absorptive

measurements manifesting as changes in transmitted optical power when the atomic

ensemble is subject to a static magnetic field that is swept through zero from nega-

tive (−B) to positive (+B).

The longitudinal GSHE is realised when a static magnetic field is applied along

the beam axis, when optically pumped with circularly polarised light. The longi-

tudinal GSHE is illustrated in Figure 2.9. The break in degeneracy of the Zeeman

sublevels caused by the magnetic field allows for large population distribution to

the dark states (for −B, mf = −4 and −3) resulting in a highly polarised atomic

ensemble and high transmission of laser light. As the applied static field is swept to

zero, B → 0, ground state populations redistribute evenly resulting in less optical

pumping, more absorption of light and less light transmission. Finally, as the applied

static field is swept strongly in the opposite direction to the initial field, degeneracy

of the hyperfine manifold is again broken to allow large population distribution to
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the dark states (for +B, mf = 4 and 3), resulting in a highly polarised atomic

ensemble with high transmission of laser light. As such, the GSHE results from the

interplay of polarisation creation, stabilisation, and depolarisation as a response to

a static magnetic field [54].

Longitudinal (along the beam axis) and transverse (orthogonal to the beam

axis) magnetic field components affect the atomic polarisation distinctly differently.

The Bloch equations provide a foundation to phenomenologically describe atomic

magnetisation. This is realised firstly with the use of the equation of motion for a

classical magnetic dipole to describe the vector change in magnetisation with time

Ṁ

Ṁ = γM ×B(t)− Γ.M + ΓPM0 , (2.31)

where γ is the gyromagnetic ratio, B(t) is the magnetic field applied to the atoms.

The relaxation rate, Γ, consists of the longitudinal relaxation rate, Γ1, and the

transverse relaxation rate, Γ2 on the appropriate axes. ΓP is relaxation due to

optical pumping along the beam axis defined in M0. M is the magnetisation vector;

M =




Mx

My

Mz


 . (2.32)

Through definition of the applied magnetic field B(t), the system can be inter-

rogated to demonstrate separate components of the atomic response such as the

transverse, longitudinal and magnetically modulated responses.

2.6.3 Transverse magnetic resonance

The transverse resonance occurs when the magnetic field varies in an orthogonal

plane to the direction of the pump beam [55]. A transverse resonance is realised

through application of a sweeping magnetic field in an axis transverse to the beam

axis, z, from positive to negative, in this instance y. Thus, for the most simple case,
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the applied magnetic field B(t) is expressed as;

B(t) =




0

By

0


 . (2.33)

Substituting B(t) into Equation (2.31), where Γ = Γ1 = Γ2, due to the suppression

of spin-exchange, Equation (2.24), as a result of operating in the SERF regime. The

change in magnetisation vector, Ṁ , can be defined as:

Ṁ =




−Γ 0 −γBy
0 −Γ 0

γBy 0 −Γ


M +




0

0

ΓPM0


 . (2.34)

The equations for magnetisation along each axis can subsequently be defined as;

Mx =
−γBy

Γ2 + γB2
y

(ΓPM0) , (2.35)

My = 0 , (2.36)

Mz =
Γ

Γ2 + γB2
y

(ΓPM0) . (2.37)

From here we will assume ΓPM0 → 1 due to efficient optical pumping.
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Figure 2.10: Transverse Hanle amplitude (arb) with sweeping By (nT), for a range
of relaxation rates, Γ (Hz).

The resultant magnetisation vector, R, across the two transverse axes reflects
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the light transmitted through the cell, where R =
√
Mx

2 +My
2. In practical terms,

the transmission signal is measured as a change in light intensity amplitude, A, on

the photodetector measured in volts.

Using Equations (2.35 & 2.36), the amplitude of light intensity, A, is modelled

with respect to a sweeping transverse field, By, demonstrating the transverse Hanle

effect as shown in Figure 2.10. The transverse Hanle effect lineshape varies in am-

plitude with respect to total relaxation rate, Γ, due to homogeneous broadening,

as demonstrated by the coloured lines in Figure 2.10, ranging from 150 to 300 Hz.

The peak of the transverse resonance indicates the value of the applied transverse

magnetic field, By0, at which the atoms experience close to zero-field.

The transverse resonance is described here as the 1D Hanle resonance and is

homogeneous resulting in a Lorentzian profile. A Lorentzian model, S1D, is used to

extract key lineshape parameters:

S1D = A0

(
Γ2

Γ2 + (By −By0)2

)
+ C , (2.38)

where By denotes the magnetic field values that are swept along the y axis. An

offset, C, accounts for the background signal. The resonance peak signal amplitude,

A0, and full-width at half-maximum (FWHM) Γ are also described through function

Equation (2.38).

Figure 2.10 and Equations (2.35 & 2.36), demonstrates how the sharpness of the

transverse Hanle resonance depends on total relaxation. We have already shown that

the cell temperature is tied to relaxation as described by Equation (2.26), and as

such can describe the transverse Hanle resonance with respect to temperature. The

rate of spin-exchange collisions increase with an increase in cell temperature, and

spin-exchange relaxation and total relaxation consequently decreases, as discussed

in Section 2.6.

Figure 2.11 shows measured linewidths (black points) extracted from a num-

ber of transverse Hanle resonances measured using a caesium atomic vapour cell

at increasing cell temperature, and modelled (black line) equivalent using Equa-
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Figure 2.11: Measured resonance amplitude, A, in red and magnetic linewidth, Γ, in
black of a caesium atomic vapour cell filled with 225 Torr of nitrogen buffer gas, at
increasing cell temperature. The measured Γ is extracted from the transverse Hanle
resonance, indicated by dots, and the model (Equation (2.26)) is fit indicated by the
line. The measured peak amplitude value for each Hanle resonance are indicated by
triangles, and a Gaussian curve is fit to the measured data.

tion (2.26). The narrowest magnetic linewidths are reached at > 120 ◦C, which

aligns with the expected temperature required to reach the desired atomic density,

as shown in Figure 2.8.

However, whilst minimising linewidth is important, the resonance amplitude

must be maximised to increase the SNR of the measured response. The opacity of

the vapour cell increases with temperature to the detriment of the measured signal

amplitude. Figure 2.11 shows resonance amplitude, A, with respect to temperature.

A Gaussian curve (red line) fit to the measured resonance amplitude values (red

triangles) is found by minimising the sum of squared errors.

As such, Figure 2.11 illustrates how amplitude decreases as temperature increases

> 115 ◦C. The trade off between amplitude and linewidth must be managed to locate

the sharpest resonance to optimise SNR of the sensor.

2.6.4 Longitudinal magnetic resonance

Whilst transverse fields depolarise the atomic ensemble, longitudinal magnetic fields

stabilise spin polarisation [54]. The longitudinal resonance occurs when the magnetic

field varies in a plane parallel to the direction of the pump beam [54]. In this

case, spin polarisation is proportional to both the magnetic field and the transverse
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relaxation time of the electron spins. Here, the longitudinal resonance is modelled as

a function of both transverse and longitudinal fields. From the equation of motion

for a classical magnetic dipole Equation (2.31), a more complex definition of B-fields

across two axes must be applied.

B(t) =




Bx

0

Bz


 , (2.39)

where Bx and Bz contribute to transverse and longitudinal Hanle effects. Ṁ is now

defined as:

Ṁ =




−Γ γBz 0

−γBz −Γ γBx

0 −γBx −Γ


M +




0

0

ΓPM0


 . (2.40)

The equations for magnetisation along each axis can subsequently be defined as;

Mx =
γ2BxBz

Γ2 + γBz
2 + γBx

2M0 , (2.41)

My =
γBx

Γ2 + γBz
2 + γBx

2 ΓPM0 , (2.42)

Mz =

(
1− γB2

x

Γ2 + γBz
2 + γBx

2

)
M0 . (2.43)

Similarly to Section 2.6.3, by using the resultant magnetisation vector from Equa-

tions (2.41 & 2.42), the amplitude of light intensity, A, is modelled with respect to

a sweeping longitudinal field across Bz, demonstrating the longitudinal Hanle effect

as shown in Figure 2.12.
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Figure 2.12: Longitudinal Hanle amplitude (arb) with sweeping Bz (nT), for a range
of transverse fields, Bx (nT).

The atomic response as a function of magnetic field on orthogonal axes is de-

scribed here as the 2D Hanle landscape, as seen in Figure 2.13. The solution to

the Bloch equations with dual-axis magnetic fields, described in Equations (2.41),

(2.42) and (2.43), describes the atomic response to form such a landscape. This

feature of atomic response is used to identify and null any remaining magnetic fields

across all axes of the SERF OPM. The point at which the transverse resonance is the

most narrow, manifesting as the narrowest profile as seen in Figure 2.13, indicates

the value of the applied longitudinal field at which the atoms experience close to

zero-field, Bz0. The position of the peak of the most narrow transverse resonance

identifies the zero-field point of the transverse axis, Bx0.

Experimentally, this landscape is found through iteratively sweeping the mag-

netic field across the x- and z-axes to generate a series of transverse Hanle resonances

with respect to the longitudinal field. A Lorentzian model, S2D, is used to extract

the value of the applied transverse and longitudinal magnetic fields for zero-field

(Bx0 and Bz0 respectively) and other key landscape parameters:

S2D = A0

(
Γ2 + (Bx +Bx0)2

Γ2 + (Bz +Bz0)2

)
− C , (2.44)

where Bx and Bz denote the magnetic field values that are swept along the x and

z axes. C is the background offset, A0 is the peak signal amplitude, and Γ is the

FWHM on the resonance.
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Figure 2.13: Simulated 2D Hanle Landscape, where colour indicates the amplitude
of light intensity, A, from the resultant magnetisation vector found using Equa-
tions (2.41 & 2.42). The landscape is measured by rastering across the full range of
Bx and Bz in steps of ∆Bx and ∆Bz. The point at which atoms experience close to
zero-field is indicated at Bx0 and Bz0.

2.6.5 Magnetic modulation response

OPM measurements run in schemes with only static field application, as seen in

Sections 2.6.4 and 2.6.3 are highly sensitive to low frequency noise. In order to

reduce the effect of low frequency noise and improve SNR, magnetic modulation is

commonly used [25,56].

Magnetic field modulation refers to the application of an oscillating magnetic field

to the atomic ensemble that rotates the direction of the atomic spin polarisation,

which in turn creates a large modulation of the light polarisation [57]. Modulation

of the light polarisation induces a magnetic moment which changes the transparency

of the atomic ensemble proportionally [58]. The transparency of the atomic vapour

is detected through light transmission where the measured signal is shifted to higher

frequencies by the modulation [59].

The measured modulated signal is demodulated through a lock-in detection

scheme, which extracts the in-phase, X, and quadrature-phase, Y , components.

The strength or power of the signal, R, is calculated as the square root of the sum of

the squares of the X and Y components (R =
√
X2 + Y 2). Signal recovery through

this magnetic modulation and lock-in detection scheme shifts the measured signal
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away from the low frequency end and increases the signal-to-noise ratio.

Whilst the relationship between amplitude and magnetic field is absorptive in a

static scheme, as seen in Figures 2.10 & 2.12, the demodulated response, ADemod,

produces a dispersive curve with respect to a magnetic field applied orthogonal to

the beam axis. Importantly, the dispersive curve amplitude response ADemod = 0 at

zero field (By0), which allows for positive and negative field changes to be identified.

Furthermore, the dispersive signal is used to lock the sensor to zero field through

the use of external control to feedback to the zero field point, ADemod = 0.

The demodulated response can be modelled again through use of Equation (2.31),

where;

B(t) =




Bx

By +BMy sinωM t

Bz ,


 (2.45)

where fields across all axes contribute to the demodulated response, and modulation

is applied on the sensitive axis (y) at a given amplitude BMy and frequency ωM t.

Ṁ is now defined as:

Ṁ =




−Γ γBz −β
−γBz −Γ γBx

β −γBx −Γ


M +




0

0

ΓPM0


 , (2.46)

where β = By +BMy sinωM t.

The X, Y and R demodulated response amplitude ADemod using a modelled time

evolved solution to Equation (2.46) is shown in Figure 2.14.
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Figure 2.14: The modelled atomic response, found using a time evolved solution to
Equation (2.46), to a sweeping field across the y-axis, from ByMin to ByMax , through
the zero-field point, By0 . The in-phase, X, quadrature-phase, Y , and resultant, R,
demodulation components are extracted, where R =

√
X2 + Y 2. The linear region

(pink dashed) indicates the dynamic range, Rdyn, in which the measured response
of in-phase component is proportional to the applied magnetic field, bound within
the limits of Byl1 ≤ Rdyn ≤ Byl2 .

The linear region of the dispersive curve defines the dynamic range, Rdyn, of

the sensor in which measured response of the signal is proportional to the applied

magnetic field. Linearity is important for accurate sensing, to reliably provide the

calibration of measured atomic response to a magnetic field value, within a small

margin of error and to a high degree of certainty. A simple linear model is fit to the

linear region of the in-phase component, X, of the demodulated atomic response,

which in turn defines the linear region boundaries. Deviation from the linear fit

within the linear region is expected as ≤ 1 % as a rule of thumb [25]. The linear

region as illustrated in Figure 2.14 by the pink dashed line, is bound between Byl1

and Byl2 , such that Byl1 ≤ Rdyn ≤ Byl2 . The linear region boundaries are defined as

the points after which deviation from linear fit exceeds the expected value (> 1 %).

If the sensor is operated outside of the dynamic range in the non-linear region,

through application of fields < Byl1 or > Byl2 , the measured atomic response cannot

be reliably used to extract magnetic field information.

The gradient of the linear region provides the measured response (mV) to de-

tected field (nT) conversion factor (χ) in mV/nT.
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χ =
δADemod

δBy
, (2.47)

where δADemod is the change in amplitude of the demodulated response and δBy is

the change in magnetic field, across the linear response region.

A steep demodulated gradient means very small fields produce a large voltage re-

sponse which translates to a more sensitive magnetometer. The dispersive response

and linear region are defined by the resonance width of the atoms, modulation ampli-

tude and modulation frequency. Efforts to increase the gradient (such as optimising

for the narrowest magnetic resonance) can reduce the boundaries of the demodulated

linear region, and consequently the dynamic range.

The presence of any extraneous magnetic fields, Bex, greater than the boundaries

of the dynamic range (Bex > |Byl1 | or Bex > |Byl2 |) will produce a non-linear

amplitude response with respect to the field. As such, the extraneous fields present

across the OPM must be kept as low as possible, or be managed through active

closed-loop feedback.

2.6.6 SERF sensitivity

The fundamental sensitivity limit, δB0, of a SERF magnetometer is defined as [28];

δB0 =
1

γ
√
ρT2V t

, (2.48)

where ρ is the atomic density, V is the cell volume and t measurement time.

Experimentally, the sensitivity of the sensor is directly extracted from the sen-

sor response which also includes all magnetic and electrical noise contributions. The

sensitivity is measured after zero-field has been established across the atomic ensem-

ble (through application of Bx0, By0 and Bz0). The sensor noise floor and therefore

sensitivity is characterised through a “free-running” measurement, achieved through

monitoring the atomic response for a set measurement time, t, whilst the atoms are

magnetically modulated across an axis orthogonal to the beam axis. Analysis of

the free running measurement through the square root of the power spectral density
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(PSD) provides amplitude response as a function of frequency. The
√

PSD scaled by

the measured demodulated gradient (Equation (2.47)) constitutes the magnetometer

noise floor with magnetic field as a function of frequency.

The sensitivity, as a single figure of merit, is calculated across a selected frequency

band of interest through the geometric mean. The use of the geometric mean is more

appropriate than the arithmetic mean as the geometric mean is less susceptible to

the influence of stochastic noise that manifests as positive peaks in the
√

PSD.

Measured sensitivity, δB1, is therefore expressed as;

δB1 =




n∏

fMin≤k≤fMax

δADemod

δBy
X(k)




1
n

, (2.49)

where fMin minimum and fMaxmaximum frequencies define the frequency band of

interest.
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SERF experimental setup

This section will detail the systems and components that are required to create a sin-

gle beam SERF magnetometer. The specific laboratory-scale components used for

the caesium SERF magnetometer presented in thesis will be discussed. The opera-

tional procedure of the caesium SERF magnetometer will also be explored, including

description of how the user controls the magnetometer, collection of data and the

measurement scheme required to ensure fast calibration to a zero-field environment

throughout all testing.

3.1 Caesium SERF magnetometer setup

To aid system discussions in later sections, we will first describe the single-beam

SERF OPM from a high-level perspective. In single beam magnetometry a single

laser source, tuned to the wavelength of the appropriate atomic transition, is utilised

to both pump and probe the atomic ensemble [51, 60]. The beam simultaneous

optically pumps the atoms into a desired state of polarisation and probes the atomic

response to a magnetic field. Two-beam setups with separate pump and probe laser

sources are also common [30, 61, 62] that allow for individual adjustment of pump

and probe beams to provide optimal pumping and probing efficiency with minimised

pump beam noise. However, single-beam systems are only explored in this thesis,

due to simplicity of construction with the view to aid miniaturisation of the system.
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Chapter 3. SERF experimental setup

Figure 3.1: Generic SERF OPM topology showing essential components and systems

The caesium SERF magnetometer presented here uses a distributed Bragg re-

flector (DBR) laser resonant with the caesium D1 (F = 4 → F ′ = 3) transition at

895 nm in the interest of miniaturising the sensor for portability. The D1 line is

selected due to its superior optical pumping efficiency [38]. The single beam setup

is less complex in terms of hardware and benefits microfabricated cells with a single

axis of optical access due to the silicone frame. The DBR laser optically pumps

the atomic ensemble into a dark state, leading to decreased transmission of light

through the cell. A quarter waveplate, λ/4, elliptically polarises the light before it

is incident on the atomic vapour cell for optimal polarisation [57].

In this section the specific hardware, control and calibration of the laboratory-

scale components required for the caesium (Cs) SERF magnetometer setup are dis-

cussed. Components developed specifically for the portable sensor package, including

a miniaturised rotation mount for a waveplate and coil design, will be discussed in

further in Chapter 5. The general architecture of a single beam SERF magnetome-

ter is illustrated in Figure 3.1. The essential systems of a SERF magnetometer can

be summarised as below, with reference to the corresponding components labelled

in Figure 3.1:

(A) Pump and probe laser source:

The power and wavelength of the DBR laser is tunable by the laser current

40



Chapter 3. SERF experimental setup

29.5 30 30.5 31 31.5
0

2

4

6

8

10

TEC Temperature (◦ C)

P
D

V
o
lt

ag
e

(V
)

70

100

130

Current (mA)

Figure 3.2: Laser calibration. Spectroscopy taken by sweeping the TEC temper-
ature, across the full range of laser current available. The measured photodector
(PD) voltage for a range of laser currents (mA) with respect to TEC temperature

and temperature. A digital butterfly laser diode controller (Koheron CTL200)

provides direct control of the laser current and thermoelectric cooler (TEC)

temperature. The effects of changing the TEC temperature and laser current

are entwined, but can be calibrated to provide direct control of laser power

and frequency.

Frequency calibration is realised through repeated measurement of a refer-

ence cell that is typically only Doppler broadened that allows for clear iden-

tification of the four expected optical peaks. Figure 3.2 shows the measured

absorption spectra of a caesium reference cell (Thorlabs GC25075-CS) found

by sweeping the TEC temperature. Identification of the F = 3 peak is used

for calibration such that the temperature and current set on the laser con-

troller produces the same frequency response, where 0 GHz corresponds to the

F = 4 → F ′ = 3 transition. By mapping the full range of current and TEC

temperature available it can be seen in Figure 3.2 that at ∼ 72.05 mA the laser

exhibits a sudden jump in wavelength due to a mode hop between different

modes of the laser.

Laser current (mA) to laser power (mW) is calibrated through iterative

measurement using a power meter. Full calibration is defined in Appendix A.

(B) Optics:
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Optics are required to set the polarisation of the light before interrogating the

atomic ensemble. For the caesium SERF magnetometer the light is elliptically

polarised, for optimal polarisation [57] (Section 2.3), using a quarter waveplate,

λ/4, to enable optical pumping of the atomic ensemble into the dark state to

facilitate sensing.

(C) Atomic vapour cell:

Atomic vapour cells can vary in size and shape, from small MEMS cells [63–65]

to larger glass blown cylindrical cells [66–68]. The selection of the atomic

vapour cell is based on the application and considerations that largely impact

the atomic response, such as buffer gas, aperture diameter and optical path

length. The caesium SERF magnetometer uses a MEMS fabricated silicon cell

with external dimensions of 10 × 10 × 4 mm3, featuring a 3 mm optical

path length and a 6 × 6 mm2 optical aperture enclosed between two layers of

borofloat glass (0.5 mm thickness), seen in Figure 3.3. The cell is filled with

a caesium and nitrogen vapour, achieved through the deposition of droplets

of caesium azide (CsN) in the vapour cell prior to the final glass bond in a

nitrogen environment. The caesium azide is then dissociated using ultraviolet

(UV), resulting in the presence of caesium and nitrogen, which minimises the

rate of wall collisions and prolongs the lifetime of the atomic coherences [69].

Figure 3.3: Photograph of the caesium MEMS atomic vapour cell

(D) Magnetic field control:
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Figure 3.4: Current loop direction and geometry for circular Helmholtz coils, indi-
cating the separation, S, and radius, R, of the coils.

A combination of coils are required across all axes to compensate for any resid-

ual magnetic fields across the magnetometer. The coils assist in providing a

zero-field environment to maintain SERF regime operation. Magnetic modula-

tion is also required to enable sensing along the y−axis as discussed in Section

2.6.5. Typical coil configurations include Helmholtz [70] and saddle coils [71],

however implementation of customised novel coil geometries have also found

success [72–74]. The important consideration for coil design include the pro-

duced magnetic field homogeneity and current noise.

A Helmholtz coil configuration is a commonly utilised design in magne-

tometry applications due to its ability to generate a region of nearly uniform

magnetic field which can be simply and reliably calculated. This configuration

consists of two circular coils with radius, R and each wound N times with equal

electric current flowing in the same direction. A Helmholtz-like configuration

is seen in Figure 3.4, where the coils are separated by the free parameters of

distance, S. The resulting on-axis magnetic field, denoted as BHH, for circular

geometry Helmholtz coils can be described by the following equation, derived

from the Biot-Savart law [75,76].

BHH =
µ0NIR

2

2


 1
((
D + s

2

)
+R2

) 3
2

+
1

((
D − s

2

)
+R2

) 3
2


 , (3.1)

where D is the distance of the measured field value from the coils. Other ge-
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ometries of Helmholtz-like coils can be utilised, in a similar symmetrical con-

figuration, with the geometry specific resultant on-axis magnetic fields found

similarly, including square [77, 78] and equilateral triangular [79] coil geome-

tries.

Portable scale microfabricated coil design and construction is discussed in

the portable sensor chapter (Chapter 5).

(E) Cell heating:

The caesium MEMS atomic vapour cell must be heated to ' 120 ◦C to reach

an atomic density of ' 1014 cm−3 for SERF regime magnetometry, as discussed

in Section 2.6.1. Heating through methods that do not produce a magnetic

field that the sensor can detect are preferred such as heating laser sources [80],

or ohmic heating using alternating currents (ACs) [31]. Here, ohmic electrical

heating is realised through use of a heating resistor, as discussed in detail in

Section 3.2.1.

Heating currents, provided through a custom heater driver, are digitally user-

selectable and automatically controlled to maintain stability during any mea-

surements through closed-loop control. The full heating system, including

heater driver, temperature monitor and automatic controller are discussed in

greater detail in Section 3.2.

(F) Magnetic shielding:

Magnetic shielding and static field compensation is necessary to keep the

atomic ensemble in a zero-field environment. Magnetic shielding directs the

external magnetic flux around the shielded area using high-permeability fer-

romagnetic material with high nickel content such as mu-metal [81]. The

shielding ratio, ζ, defines the efficiency of the shielding in terms of the mag-

netic field outside the shielding and the field induced inside the shielding Bin

due to B0, where:

ζ =
Bin
B0

. (3.2)

Here in the laboratory setting magnetic shielding is provided by five lay-
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ers of mu-metal magnetic shielding with a shielding factor of ζ ' 105. The

shielding maintains a low nT-level magnetic field environment through the

attenuation of external magnetic fields. To negate the effect of the residual

magnetization of the innermost shielding layer, the shielding is demagnetised

through degaussing. Degaussing is achieved through application of a slowly

decaying alternative current to degaussing coils around the shielding [82].

(G) Photodetector:

A photodiode (OSRAM, SFH 206 K), labelled PD 1 in Figure 3.1, with a large

active area of 7.02 mm2 measures light transmitted through the vapour cell

which varies in relation to the applied magnetic field. The photodiode current

with a responsivity of 620 mA/W, is amplified by a custom transimpedence

amplifier (TIA) with a gain of 5000 Ω which produces measured signals in

the ±10 V range. Differential detection through use of a second monitor

photodiode (where typically light is picked off before the polarisation optics)

as shown in Figure 3.1 labelled PD 2, can be used to cancel common mode

laser noise to improve sensitivity [51].

(H) Low-noise current drivers:

Electronics drivers are required to provide current to the field coils and heating

system for ohmic heating.

Coil driver: To compensate for the residual fields inside the magnetic shield,

currents are applied to the coils on each axis. It is crucial to ensure these

currents do not introduce excess magnetic field noise that could degrade the

sensor’s sensitivity. The static field coils are driven using an ultra-low noise

programmable current source system with a narrow 1/f noise bandwidth of

1 Hz [83]. The current source, described here as the coil driver, has a bi-

directional current range of ±192 mA on three independent channels with

16-bit resolution. The current noise on this driver is in the nA regime, leading

to a maximum of 37 fT/
√

Hz contribution in magnetic noise (for a 1 µT ap-

plied field) for the specific coils within the caesium SERF magnetometer. The
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desired coil magnetic field value is provided digitally to the custom coil driver

through serial connection. The coil driver internally converts the digital signal

to an analogue low-noise current [83]. A restraint exists that limits the speed

at which the coil driver can be addressed which is important when considering

measurement time, discussed more is Section 3.3.

Heater driver: The noise of any heater currents is of great importance due

to proximity of the heater to the atomic vapour cell. To reduce the effect of

current noise on the noise floor of the sensor alternating currents are preferred,

as the net effect of the current across the atoms averages to effectively zero.

The frequency of the heating currents should be selected far outside the region

of interest of the OPM (≥ 1 kHz) [57]. A ' 275 kHz AC is used here for heating

provided by a custom high efficiency heater driver, described in Section 3.2.2.

(I) Data acquisition and control:

To digitally interface with the system, control appropriate electronics and col-

lect data, a data acquisition system (DAQ) is utilised. The measured pho-

todetector signal is digitised via a 16-bit data acquisition system (National In-

struments NI USB-6366). The DAQ records data at 1 MHz sample frequency.

The data can be down-sampled in post-processing for analysis if required.

3.2 Closed-loop cell heating

An important process in successful operation of an OPM in the SERF regime is

reaching and maintaining the required atomic density of the sensing alkali, as dis-

cussed in Section 2.6.1. The cell temperature required for the caesium OPM is

' 120 ◦C which must be reached quickly, and maintained to ±0.5 ◦C level accuracy

throughout any OPM measurements. These cell heating requirements introduce a

number of operational challenges which in practicality facilitate the need for a full

closed-loop cell heating system. The simplified topology for a full closed-loop cell

heating system is illustrated in Figure 3.5, which consists of a number of custom

designed subsystems. An overview of how these heating subsystems interface, in
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Figure 3.5: Simplified topology of the closed-loop cell heating system. A custom
heater driver, powered by two PWM wave-forms from a function generator, pro-
duces a low noise and efficient heating current. The heating resistor, driven by the
heater current, heats the atomic vapour cells bottom face. A temperature sensor,
attached to the top face of the atomic vapour cell, measures current cell tempera-
ture. A custom temperature monitoring system accurately amplifies and calibrates
the measured temperature value. The deviation of the measured temperature from
a set point temperature is input to an automatic proportional–integral–derivative
(PID) controller. The controller adjusts the driving wave-forms from the function
generator, to correct for the temperature deviation, in a closed-loop process.

a closed-loop system, to maintain cell temperature at a user-defined set point, is

summarised below.

Firstly, a custom heater driver, as will be described in more detail in Section

3.2.2, driven by two pulse-width modulation (PWM) wave-forms from a function

generator, generates a low noise heating current with high efficiency. A heating

resistor, as described in Section 3.2.1, is driven by the heater current which in turn

directly heats the bottom face of the atomic vapour cell. The temperature of the

cell is measured through a custom designed temperature monitoring system, which

will be discussed in Section 3.2.3. The temperature monitoring is realised through

amplification of the output of a non-magnetic temperature sensor attached to the

top face of the atomic vapour cell. The deviation of the measured temperature

to the user input specified set point temperature, is provided to an automatic PID

controller. The controller in turn calculates the correct driving wave-forms to correct

for the temperature deviation, interfacing with the function generator directly, to
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provide stabilised heating control in a closed-loop process. The automatic controller

and stabilised heating control process will be discussed in Section 3.2.4. In operation,

the combination of these subsystems allow for digital selection of a cell temperature,

the temperature is reached quickly (minutes scale), and automatically maintained

throughout all measurements without any further user input required.

3.2.1 Cell heating

Ohmic electrical heating is achieved with an AC signal (at ' 275 kHz) passed

through a heating resistor. An aluminum nitride non-magnetic thin-film resistor

(PN: PCNM2512K8R20FST5), is thermally bonded using boron nitride paste to an

edge of the atomic vapour cell surface, as seen in Figure 3.6. The heating resistor

covers a total heating surface area of 20.2 mm2 equating to 67% coverage of the

MEMS cell bottom-edge surface and resulting in rapid heating.

The MEMS cell is further packaged in a heating assembly that includes insulation

and a cell mount produced in temperature resistant materials. Full description of

the heating assembly can be found in Chapter 5. Furthermore, cell heating through

this method results in minimal thermal gradients across the MEMS cell, as discussed

in Section 5.3.

MEMS Cell

Heating Resistor

Heating PCB

Figure 3.6: Model of the PCB mounted heating resistor in contact with the caesium
MEMS atomic vapour cell. The heating resistor is bonded to an edge of the MEMS
with boron nitride paste.
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3.2.2 AC heater driver

Cell heating is achieved through ohmic heating of a resistor thermally connected to

the atomic vapour cell. An AC method for heating the cell at high efficiency is not

readily available through off the shelf control devices. Here, high efficiency heating

is particularly important for reducing power consumption as the sensor and control

electronics will be portable. This section will describe the design of an efficient and

controllable AC source used for the magnetometer’s cell heating.

Initially, we assumed audio amplifiers would be suitable for the purpose of provid-

ing AC for cell heating. However, the use of commercial off-the-shelf audio amplifiers

results in low efficiency heating due to power losses across the amplifier circuit. The

power efficiency of a typical low distortion audio power amplifier (NCS2211) was

measured at 300 kHz (far outside the bandwidth of the SERF magnetometer), at

around 1 W (desired output power), for an 8 Ω resistive load, such that the audio

amplifier was calculated to be '60% efficient. The amplifier maximum power is

also capped at 1.5 W, which would not provide enough power to adequately heat

the atomic vapour cell to 120 ◦C. To improve power efficiency and cell heating, an

amplifier with less power loss is required.

In this thesis, a custom heater design for a SERF magnetometer is proposed.

The new design improves upon the limitations of commercial off-the-shelf amplifiers

by increasing efficiency (≥ 60%) and providing more precise control over the heating

process. The new design uses a H-bridge amplification scheme to reach a superior

efficiency of >90 % at the desired output power range, ' 1− 2 W.
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Figure 3.7: Simplified architecture of the heater driver. Three steps are indicated.
Digital control; using USB serial to interface from the computer to a function gen-
erator, which in turn drives the selection of two driving waveforms, PWM 1 and
PWM 2. Power amplifier; voltage is provided to two metal–oxide–semiconductor
field-effect transistor (MOSFET) pairs and amplified. Heater; Amplified current is
provided to the heating resistor, indicated in red.

The efficient heater driver system architecture can be simplified into three main

steps as shown in Figure 3.7. These steps include: 1) heating, 2) power amplification

and 3) digital control .

1. Heating:

A heater element is bidirectionally driven by current provided by the power

amplifier. Bi-directionality allows for the net direct current and subsequent

time average of the magnetic field experienced by the atoms to be zero by

ensuring current flow in each direction is equally driven.

2. Power Amplification:

Power amplification is achieved through a MOSFET H-bridge circuit, powered

by a single 5 V supply, and controlled by two PWM wave-forms. PWM wave-

forms are utilised as the magnitude of the current flowing in both the positive

and negative directions is the same, which eliminates the need for dynamically

adjusting or trimming the amplitudes of the waveform during operation. The

amount of current driven to the heating resistor is controlled by the phase off-

set, θ, between the two driving PWMs. The smaller the phase offset, the more

power is delivered through heating (Figure 3.10). The H-bridge Amplifier is

a circuit configuration that consists of 4 MOSFETs (Q1, Q2, Q3 and Q4),
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configured as two pairs on two sides, labeled as A and B side in Figure 3.8.

The net zero direct current (DC) is maintained by AC-coupling the driving

current through capacitors C1 and C2, where the capacitor values are tuned

using the high pass transfer function, Equation (3.3).

fc =
1

2πRC
, (3.3)

where the cutoff frequency, fc, in this application is in the 10’s of kHz scale.

A Side B Side

Figure 3.8: Simplified schematic of the heater driver H-Bridge. The H-bridge Am-
plifier consists of 4 MOSFETs (Q1, Q2, Q3 and Q4), configured as two pairs on two
sides, labeled A and B side

a. b.

Figure 3.9: The heater driver H-bridge amplifier current flow demonstration. a)
Positive flow, turning on Q2 and Q3. b) Negative flow, turning on Q1 and Q4

The direction of current flow is determined by how the MOSFETs are en-

gaged. Both MOSFET pairs from the same side must not be turned on at the

same time as it will create a ’shoot-through’ condition by shorting the power

supply to ground. The current is bi-directionally controlled in 3 states:
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Figure 3.10: H-bridge Output of two PWMs (PWM 1 and PWM2) with varying
degrees of offset θ between PWMs. Full H-bridge output power is achieved at
θ = 180 ◦, null power is achieved at θ = 0 ◦. a) θ = 30 ◦, b) θ = 90 ◦

and c) θ = 150 ◦

(a) No current flow, all MOSFETs closed.

(b) Positive flow, turning on Q2 and Q3. Current flows right to left, as seen

in Figure 3.9(a) indicated by blue arrows.

(c) Negative flow, turning on Q1 and Q4. Current flows left to right, as

seen in Figure. 3.9(b) indicated by red arrows.

Current is always driven equally in the positive and negative directions. The

power delivered to the heating element is determined by the amount of time

with no current flow, which is controlled through the phase offset between the

two driving PWMs. One driving input PWM must be inverted to introduce

a dead time and protect same side MOSFETs from engaging simultaneously.

The full H-bridge is differential in nature, meaning it can deliver twice the

output signal (5 V to -5 V) and four times the output power of single-ended

implementations.

3. Digital Control:

Desired temperature is selected by the user through a custom program cre-

ated in LabVIEW. Temperature is converted to PWM offset θ (from prior
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(a) (b) (c)

Figure 3.11: High efficiency heater driver: a) Prototype stripboard version, b)
printed circuit board (PCB) design, c) computer aided design (CAD) drawing of
the external casing and BNC connectors

calibration) and sent to a function generator through USB serial. The func-

tion generator creates two PWMs of equal frequency, amplitude, and duty

cycle, with an offset in one of the PWMs as specified, seen in Figure 3.10. The

resolution of the PWM phase offset is such that mA level of current control is

achievable that provides m◦C level temperature control of the heating resistor.

The efficient heater driver design was first built and tested on a strip board

(Figure 3.11(a)) and then refined on a PCB (Figure 3.11(b & c)).

Figure 3.12 demonstrates the power efficiency of the efficient heater with respect

to output power, and shows that the heater is over 90 % efficient within the desired

output power range, ' 1 − 2 W. In practicality there is some deviation from the

ideal wave-form seen in Figure 3.10, which can skew the applied current causing net

average to deviate from zero. The measured cycle-averaged DC across the heater

at maximum power delivery (2.5 W) is measured at 0.3 A, which is sufficiently

small that a resultant B-field is not measurable across the atoms. Maximum current

delivery is also not required during sensor operation during measurement.

The heater driver power output, typically within the range of 1-2.5 W, varies

depending on operation and desired cell temperature. During the initial warming

of the cell, to reach the set temperature, the heater driver provides ' 450 mA,

delivering ' 2.5 W at ' 97 % efficiency. At steady-state heating, maintaining a

temperature of 120 ◦C, the heater driver provides ' 250 mA, delivering ' 1.25 W

at ' 95 % efficiency.
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Figure 3.12: Power efficiency, of the new high efficiency heater driver, calculated
from the measured heater driver power output with respect to the expected output.

Figure 3.13: Simplified architecture of the temperature measurement system for
two-channel independent temperature measurements.

3.2.3 Temperature monitoring

Temperature monitoring of the atomic vapour cell is important for closed-loop tem-

perature control to maintain a steady temperature. However, the chosen measure-

ment method can introduce magnetic fields in the sensing region of the sensor. It is

important to minimise the introduction of any magnetic fields through the selection

of non-magnetic measurement components. Thermocouples produce a very low DC

voltage (mV level) and can be manufactured from non-magnetic materials (such as

T-Type theromocouples [84]), making them well-suited for use in sensitive magne-

tometry applications and for this reason we will make use of them in the project.

The cell temperature of the caesium SERF magnetometer is measured using the

following scheme.

Figure 3.13 illustrates the simplified architecture for a 2-channel measurement
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(a) (b)

Figure 3.14: a) Simplified schematic of thermocouple conversion and amplification.
b) PCB temperature monitoring system for the two-channel system showing the
analogue circuitry, ADC, and microcontroller

system, where measurements are taken through two T-type thermocouples. The

voltages produced by the thermocouples are amplified and converted through an

analog-to-digital converter (ADC) and accessed by the user through digital con-

trol, achieved with a microcontroller interfacing to the control computer through

Universal asynchronous receiver-transmitter (UART).

Figure 3.14(a) shows a simplified schematic of a temperature monitor that uses a

MAX31856 as the ADC. The MAX31856 is a temperature monitor converter and am-

plifier specifically for thermocouple temperature sensors. The MAX31856 digitises

the signal from a thermocouple between -63.15 to 2073.15 K with ±0.4 K accuracy.

The conversion uses a lookup table for linearity correction. Additionally, to set the

sensor voltage DC operating point a bias is applied within the MAX31856 circuit;

this is shown in Figure 3.14(a), as RB. To increase the robustness of the design by

minimising the number of thermocouple connections, the design is produced on the

PCB seen in Figure 3.14(b). The 2-channel design allows for simultaneous recording

of 2 individual thermocouples, for example to measure different points across an

atomic vapour cell (top and bottom) to indicate any temperature gradients.

3.2.4 Stabilised heating control

This section will discuss automatic heating control for rapid cell heating in the

caesium SERF magnetometer. PID controllers are widely utilised in heating systems

due to high levels of stability, precision, and response time. Here, a LabVIEW based
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PID is utilised that interfaces to the SERF magnetometer through USB serial. The

PID allows for user input of the set temperature and calculates heating error between

the measured and set temperatures, forming a feedback loop with the OPM. The

heating error informs phase offset (θ), Section 3.2.2, configurations sent to the heater

driver via the function generator.

Whilst simple to implement, the parameters for the PID controller need to be

tuned for each new complete system – controller plus device. The tuning process

involves adjusting three governing parameters: proportional, integral, and deriva-

tive gains. Through careful selection of these gains, the system response can be

controlled. Metrics to define system response include:

• Rise time: The time taken to reach the set temperature.

• Overshoot: Heating above the set temperature.

• Settling time: The time taken to stop oscillating around the set temperature.

• Steady state error: The deviation from the set temperature.

Figure 3.15 demonstrates the outcome of manually tuning a PID controller to

reach a set temperature of 120 ◦C, from a starting temperature of '85 ◦C, where

PID1 to PID8 refer to iterative tuned configurations of the PID controller gain

values. The optimal PID configuration for the heater was determined to include

the proportional and integral terms, whilst excluding the derivative term. The

proportional gain is the most critical parameter, largely controlling the overshoot

and dampening of the heating response. The integral gain helps to eliminate steady-

state error. Excluding the differential term prevents instability caused by hysteresis-

induced delays and non-linear responses.

The goal of PID tuning is to achieve a critically damped response, where heating

is neither too slow nor too oscillatory, and reaches the set point without overshooting.

This is considered the ideal state for a PID controller, as it allows for a fast response

to changes in temperature while still maintaining stability. This has been achieved

with tuning configuration PID6, as shown in Figure 3.15 inset graph. Configurations
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Figure 3.15: Tuning PID to defined set point of 120 ◦C. Various configurations of
PID settings are tested from a starting temperature of '85 ◦C, denoted as PID1 to
PID8. The inset shows three configurations that demonstrate over damping, under
damping and critical damping, as indicated.

of the system that are under damped (PID7) are characterised by fast overshoot and

oscillation, while configurations that are over damped (PID4) are characterised by

slow response and large steady-state error.

During operation of the SERF magnetometer, the goal is to reach and stabilise

at set-temperature as quickly as possible. Whilst it is important to quickly reach the

desired temperature, unfortunately, during operation we see an effect of the rapidly

changing PWM phase manifesting as noise in the measured signal. Investigations to

the cause of this noise have not been able to fully remove it. We know the heater

driver does not apply any DC, or subsequent magnetic field, to the system during

operation of the PID and we only apply PWM phase changes in multiples of full

cycles of the PWM, however the noise still effects the signal. It is possible that

quickly addressing the heater driver with the same computer is introducing small

amounts of noise into the measured detector signal. Regardless of the cause, during

long measurements the PID cannot run, and a constant value for the heater phase

must be applied, to ensure no noise from the PID is added to the signal. As such, the
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Figure 3.16: Comparison of three heating control techniques, 1) PID, 2) Manual,
which set the phase to a pre-defined value, 3) Hydrid approach. a), Measured
temperature of the atomic vapour cell for each heating control method. The dashed
line indicates the target temperature. b) The applied PWM phase offset, ∆PWM,
sent to the heater driver during each method, where maximum heating is delivered
at ∆PWM = 0. The dashed line indicates the target phase

optimal state of heating is reached when a constant phase offset is applied, which

only occurs once the vapour cell has saturated in temperature. There is a trade

off between the time needed to reach either stable temperature or the PWM phase

offset, which will be investigated next.

Here saturation time for cell heating and PWM phase will be explored to under-

stand operation methodology to balance temperature and PWM phase stabalisation,

by understanding three heating schemes: 1) Manual, 2) PID and 3) Hybrid.

1. Manual

Implementing the calibration of PWM phase to temperature value (Equa-

tion (A.3), the phase value for a required temperature can be set manually,

seen in Figure 3.16(b). Cell temperature will slowly rise and saturate at set-

temperature in approximately 20 minutes. For the manual technique, the

target phase is reached immediately but the system drifts from target temper-

ature for a long time.

2. PID

A PID quickly reaches the set-temperature (≤ 2 minutes), Figure 3.16(a), by
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using a very low PWM phase value to provide large heating currents. How-

ever, once the required temperature is reached, the phase offset value slowly

saturates over the course of 20 minutes 3.16(a). For the PID technique, the

target temperature is reached immediately but the system drifts from target

phase for a long time.

3. Hybrid

Here, a third scheme is explored with the goal of reaching temperature quickly

and reaching stable PWM offset quickly. This scheme, denoted in Figure 3.16

as “Hybrid” uses the quick heating methodology of the PID, and the stable

PWM methodology of manual heating, with a period of ramping the PWM

phase to the pre-calculated desired value over a course of 5 minutes. This

ramping period reduces the time needed to saturate at set-temperature to

around 10 minutes, 3.16(a) (teal line). Similarly, the time needed to reach

stable PWM phase in the hybrid scheme is also reduced in comparison to the

PWM, at around 5 minutes 3.16(b) (teal line).

3.3 Caesium SERF magnetometer procedure

In order to measure a field of interest there are a number of procedures that must

be completed. The operational and experimental procedures for using the caesium

SERF magnetometer will be described in this section. This includes activities to

ready the sensor for data collection, preparation and maintenance of a zero-field

environment and the data collection methods employed to extract external magnetic

field information.

The full experimental procedure for using the caesium SERF magnetometer is

illustrated by the flow diagram in Figure 3.17, with examples of important graphical

outputs shown for certain processes to the left indicated by grey arrows. The caesium

SERF magnetometer experimental procedure can be summarised as follows, with

reference to corresponding system labelled in Figure 3.17:

(1) Set operational parameters:
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Start Sensor

Set Operational parameters
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Measure 2D Landscape (x & z)
Find Bx0 & Bz0 (nT)

Measure 1D Resonance (y)
Find By0 (nT)

Zero Field: Bx0, By0, Bz0 → 0

Modulate & Sweep y-axis
Find Demod gradient
χ = δADemod

δBy
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Figure 3.17: The SERF Magnetometer operational procedure, including all steps for
operating the magnetometer. The expected results at each stage are indicated by
corresponding graphs, as shown by the grey arrows.
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Here we classify the sensors key operational parameters as; 1) laser power

(mW), laser frequency (GHz) and cell temperature (◦C). The values of these

parameters are independently optimised for performance, as discussed in more

detail later (Chapter 4). To ready the sensor for data collection, the oper-

ational parameters are digitally selected using the calibration parameters in

Appendix A.

(2) Reach stable temperature:

Before any data can be collected, the temperature of the cell must reach the

desired temperature, TSet, and stabilise consistently at this value such that

measured cell temperature T = TSet ± 0.5 ◦C. The time taken to heat the cell

into a stable state far exceeds the time taken to complete any other process that

is required to use the magnetometer. To minimise the heating time I implement

automatic heating control. The procedure for the automatic heating control

is discussed in Section 3.2.4.

(3) Measure 2D landscape:

The 2D landscape, as described in Section 2.6.4, allows for identification of the

zero-field magnetic field values across two axes. In this case, the 2D landscape

is measured across the x− and z−axes, to extract the zero-field values Bx0

and Bz0 respectively. To apply the shifting fields required to measure the 2D

landscape, the x− and z−coils are utilised, to provide a homogeneous region of

the required field B across the vapour cell. The coils are driven by the current

driver, digitally selected using the calibration parameters in Appendix A.

The time taken to measure the full 2D landscape, '100 s, is the second

most time-exhaustive process for the SERF magnetometer. The time for this

measurement is due to a combination of the time needed for the atoms to reach

equilibrium, the restraints of the coil driver and the number of total measure-

ments needed. A method to reduce the number of total measurements needed,

to identify the zero-field values Bx0 and Bz0, is proposed in the following

section.
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(4) Sweep 1D on y, find By0:

The 1D resonance, as described in Section 2.6.3, is a transverse resonance

that allows for identification of the zero-field magnetic field values across the

remaining axis. In this case, the 1D resonance is measured across y−axis,

to extract the zero-field values By0. To apply the shifting fields required to

measure the 1D resonance, the y−coil is scanned, driven by the current driver

using the conversion in Equation (A.4).

(5) Apply zero-field across all axis:

The remaining magnetic field across each axis are now identified as Bx0, By0

and Bz0. All three zero-field values are applied to maintain zero-field across

all axes.

(6) Modulate and sweep y−axis:

The magnetic field across the y−axis is swept, with an additional field modu-

lation applied along the same axis at an amplitude, AMod and frequency FMod.

For each value of By, the signal is demodulated. The gradient, χ, of the de-

modulated line shape provides the amplitude response ADemod as a function of

magnetic field By (as described in Section 2.6.5). Measurement of the gradient

χ is important for recovering the magnitude of any magnetic fields that are

subsequently applied to the atomic ensemble.

(7) Free-running measurement:

The sensor is used to take a free-running measurement to monitor the mag-

netic field in the environment of the sensor after all the remaining fields have

been nulled. This measured magnetic field could be just the noise in the shield

or some external magnetic field such as a biomagnetic signal. The free-running

measurement is realised by monitoring the atomic response of the atoms as

they are magnetically modulated on an axis orthogonal to the quantisation

axis (here, we selected the y-axis). The measurement time, t, and analysis of

the free-running measurement depends of the type of recovered signal that is

required, specifically whether the signal is analysed in the frequency domain
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or the time domain. Both types of domain are extracted from the same pho-

todetector output which monitors atomic response as a time domain series,

and it is from this that the frequency domain information is extracted. Some

biomagnetic signals are observed in the frequency domain (MEG [85]) and

others in the time domain (MCG). For a noise floor measurement, typically

t ' 1 s and the measurement is repeated (typically 10 times) and averaged

using Welch’s method [86] to provide more accurate frequency domain infor-

mation by reducing the effects of stochastic noise.

3.3.1 3-axis zero-field identification

In this section we will discuss the methods for identifying the zero-field magnetic field

values across orthogonal axes (Bx0 and Bz0) that must be applied to maintain a zero-

field region across the atomic vapour cell. As discussed, an exhaustive measurement

for zero-field identification is a highly time-exhaustive aspect of the magnetometers

operation. This section will explore the design and implementation of a method, here

named the fast zero-field technique, developed to reduce the total measurement time

for identifying zero-field across two axes.

We assume the magnitude of any residual background fields falls within the range

±1 µT. A low nT-level magnetic field environment is provided by the laboratory-

based magnetic shielding as discussed in Section 3.1. When the magnetometer is

taken outside the laboratory-environment for practical measurements (discussed fur-

ther in Chapter 5), the sensor is housed inside a magnetically shielded room (MSR).

The uniformity in a MSR has variations in the 10’s of nT range [72,87,88]. By hous-

ing the sensor is the MSR or even a different location within the same MSR [89,90],

we will have to cancel the residual field quickly and efficiently.

The presence of remaining static magnetic fields perpendicular to the sensitive

axis cause systematic errors in the sensor that ultimately results in reduced sensor

capacities [43]. If the remaining static field is larger than the dynamic range of the

sensor, the sensor response is no longer linear and thus not useful for magnetometry.

It is therefore very important to manage the field across the atoms to keep a zero-field
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environment.

Identification of the zero-field point for orthogonal axes is aided through the

existence of a narrowing in the 2D landscape, as described in Section 2.6.4. Here

the transverse and longitudinal axes measured in the 2D landscape are the x−axis

and z−axis respectively. The magnetic field swept across each axis is defined between

selected maximum (Max) and minimum (Min) values such that the magnetic field

on the x−axis is defined as BxMin ≤ Bx ≤ BxMax and the magnetic field on the

z−axis is defined as BzMin ≤ Bz ≤ BzMax. Each magnetic field range is measured

by a set number of points n. The change in magnetic field between measurements

∆Bx and ∆Bz across the x− and z−axis respectively are described as;

∆Bx =
BxMax + |BxMin|

nx
, and (3.4)

∆Bz =
BzMax + |BzMin|

nz
, (3.5)

where nx is the number of samples measured across the x−axis and nz is the number

of samples measured across the z−axis.

Experimentally, a naive method for identifying the zero-field value is through

rastering across the full range of Bx and Bz in steps of ∆Bx and ∆Bz to enable

fitting of the data to a single fit function (Equation (2.44)). Use of this systematic

method to identify the zero-field point across each axis is an exhaustive process that

requires a substantial amount of total measurement time, t2D. After applying any

magnetic fields the atoms require time to respond to the field and reach equilibrium.

This response time varies with the amplitude and frequency of the applied field, I

found experimentally waiting 20 ms ensures equilibrium response is measured for

the full range of amplitudes and frequencies of magnetic fields we apply. Restraints

to the speed at which the coil driver can be addressed also exist due to a manda-

tory wait period that allows for settling, which effectively adds another 20 ms to

each measurement point. As such, a single measurement takes ∼40 ms, and each

resonance sweep at typical resolution, nx = nz = 50, takes ∼2 s to measure. Ac-

cordingly, total measurement time for a 2D landscape at typical resolution is at least
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100 s (t2D ≥ 100 s).

3.3.2 Simulated 2D Hanle landscapes

To test the robustness of the fast zero-field technique, a set of 2D landscapes are

required where the zero-field values in each axis are known.

Simulation of a 2D landscape with known zero-field offsets is achieved again

through derivation of the equation of motion for a classical magnetic dipole Equa-

tion (2.31). Here, we can model atomic response using a definition of the B-fields

B(t) to incorporate two parts of the static magnetic field to be applied to each axis:

1. A static field that defines location of zero-field (BxOffset & BzOffset )

2. A further static field to simulate the application of field during a transverse

resonance sweep at a particular longitudinal field value, (Bx & Bz).

The applied magnetic field across all axes B(t) becomes;

B(t) =




Bx +BxOffset

By

Bz +BzOffset


 , (3.6)

where, BxOffset and BzOffset are the defined zero-field points across the x− and

z−axis respectively. Ṁ is now defined as:

Ṁ =




−Γ βz2D γBy

−βz2D −Γ βx2D

γBy −βx2D −Γ


M +




0

0

ΓPM0


 , (3.7)

where γ is the gyromagnetic ratio. βx2D = γ(Bx +BxOffset) and

βz2D = γ(Bz +BzOffset).

The solution to Equation (3.7) allows simulated 2D landscapes to be easily cre-

ated with a user defined zero-field point (defined as BxOffset and BzOffset) seen in

Figure 3.18(a).
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Figure 3.18: Simulated 2D Hanle landscape modelled using the time evolved solu-
tion to Equation (3.7), simulated between across the x- and z-axes, in the ranges:
BxMin ≤ Bx ≤ BxMax and BzMin ≤ Bz ≤ BzMax. The known applied zero-field
values, BxOffset and BzOffset, are indicated. Colour indicates the amplitude, A, of the
modelled atomic response. a) The full simulated 2D Hanle landscape for 2500 sam-
pled points. b) The sampled landscape using the fast zero-field technique, for 200
sample points. Two longitudinal sweeps and two transverse sweeps are measured.

3.3.3 Fast zero-field technique

The 2D Hanle landscape has some useful symmetry, shown in Figure 3.18(a), cen-

tered around the zero-field value along each axis. Knowing this, rather than exhaus-

tively measuring the entire landscape as in Figure 3.18(a) (a total of 2500 sampled

points), we could instead take individual sweeps along both axes. To reduce the

amount of time required to identify the zero-field point in the x− and z−axes, I

implemented a technique that only requires two sweeps along each axis (a total of

200 sampled points), as illustrated by Figure 3.18(b), equating to a 92 % reduction

in the number of measured points across the 2D landscape. As such, the total time

to identify zero-field now takes ' 8 s, resulting in a >10 factor improvement of t2D.

The faster zero-field technique measures two longitudinal resonances, followed

by two transverse resonances, to accurately locate the zero-field point for the entire

landscape. The technique is described by the flow chart seen in Figure 3.19, which

can be summarised as;

1. Longitudinal resonances:
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Start

i = 0
j = 0

Set Bx = Bxi

Sweep: BzMin < 0 < BzMax

Fit Lorentzian
→ Find Bz0

i = 1?

Set Bz = Bzi

Sweep: BxMin < 0 < BxMax

Fit Lorentzian
→ Find By0

j = 1?

Plot x = Bz, y = Bx0
Zero Crossing → Bx0

Global Bx0

Plot x = Bx, y = Bz0
Zero Crossing → Bz0

Global Bz0

False False

True True

i = i + 1 j = j + 1

Figure 3.19: Flow chart indicating the steps for the fast zero-field finding technique.

The longitudinal resonance is measured at two values that span broadly across

the full range of Bx, Bx0 and Bx1. Using the 1D resonance model (Equa-

tion (2.38)), A0 (the trough of the resonance) is found which correlates to the

zero-field point for the resonance. An example of both longitudinal resonances

are illustrated in Figure 3.20(a).

2. Transverse resonances:

The transverse resonance is measured at two values that span broadly across

the full range of Bz, Bz0 and Bz1. Using the 1D resonance model (Equa-

tion (2.38)), A0 (the peak of the resonance) is found which correlates to the

zero-field point for the resonance. An example of both transverse resonances

are illustrated in Figure 3.20(a).

3. Zero-field identification:

The global longitudinal zero-field value for the landscape, Bz0, is found by
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using the A0 longitudinal resonance values found for the applied transverse

field values of Bx0 and Bx1. Plotting the transverse field against the found A0

values, allows for identification of the zero crossing value, which aligns to Bz0,

as illustrated in Figure 3.20(b).

Similarly, the global transverse zero-field value for the landscape, Bx0, is

found by using the A0 transverse resonance values found for the applied lon-

gitudinal field values of Bz0 and Bz1. Plotting the longitudinal field against

the found A0 values, allows for identification of the zero crossing value, which

aligns to Bx0, as illustrated in Figure 3.20(c).
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Figure 3.20: Results of the fast zero-field finding technique. a) The sampled land-
scape using the fast zero-field technique, for 200 sample points. Two longitudinal
sweeps and two transverse sweeps are measured. b) Plot of the transverse field
against the found A0 values which allows for identification of the zero crossing, that
aligns to the global longitudinal zero-field value for the landscape, Bz0. c) Plot of the
longitudinal field against the found A0 values which allows for identification of the
zero crossing, that aligns to the global transverse zero-field value for the landscape,
Bx0.

The model described in Equation (3.7) is used to produce a variety of 2D land-

scapes with a known randomly selected zero-field value across each axis, to test the

accuracy and robustness of the zero-field finding techniques described. Figure 3.21

shows the results of the identification of zero-field for 100 simulated landscapes for

both the proposed fast technique in pink, and the slower exhaustive measurement

scheme in blue. The deviation of the found zero-field values (Bx0 and Bz0) from the
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Figure 3.21: Accuracy of identification of the zero-field values for 100 simulated
landscapes with known Bx and Bz offsets, simulating the zero-field points along
each axis. The percentage difference between the known and measured values, ∆B.
a) Shows deviation from the zero-field point on the x-axis, ∆Bx. b) Shows deviation
from the zero-field point on the z-axis, ∆Bz. a,b) The colour indicates the routine
used; the fast zero-field technique is shown in pink (Fast), and the exhaustive full
landscape method is indicated in blue (2D). The found values are indicated with
points, and the arithmetic averages for each technique, x̄Fast and x̄2D, are indicated
by solid lines.

known applied zero-field values (BxOffset and BzOffset) is measured as ∆BxOffset (%)

in Figure 3.21(a), and ∆BzOffset (%) in Figure 3.21(b). The average deviation value

is indicated for both techniques by the appropriately coloured solid line as indicated,

which is < 0.1% for all techniques. Both graphs show that the fast technique is simi-

larly accurate in both the x− and z−axis for identifying the known zero-field values.

Thus, we can conclude that the fast zero-field technique is considerably faster (>10

factor improvement of t2D) without a significant loss in accuracy when identifying

the zero-field value in two orthogonal axis.
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Machine learning optimisation

The work presented in this chapter is based on and expands upon the results pub-

lished in [91], seen in full in Appendix B. The performance of a SERF magnetometer

is driven by: 1) the experimental design of the magnetometer and 2) the selected

value of the magnetometer’s operational parameters. The hardware development

of the laboratory and portable systems are discussed elsewhere in the thesis, al-

though, as will be discussed, computational optimisation methods can be brought

to bear on design. Here, the control of the magnetometer describes the selection of

all operational parameters such as cell temperature and laser power. In this chapter

the selection of operational parameter values with the direct aim of optimising the

SERF magnetometer’s performance will be explored. I will show that the selection

of operational parameters has a large effect on performance. For example, if the

vapour cell in the SERF magnetometer is only heated to 50 ◦C, we would expect a

very broad Hanle resonance due to a high rate of spin exchange relaxation and low

atomic density, leading to an overall poor magnetometer performance. In contrast,

if the same vapour cell in the SERF magnetometer is heated to 120 ◦C, we would

expect a narrow Hanle resonance due to suppression of spin exchange relaxation

and high atomic density, leading to an overall improvement in magnetometer per-

formance. In this chapter I will discuss a single, common metric to compare the

effect on performance of changes of a range of parameters.

This chapter will discuss a number of optimisation methods that were developed
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and used on the SERF magnetometer to optimise sensitivity through experimentally

found optimal values for operational parameters. All the optimisation methods ex-

plored are types of automated machine learning (ML) strategies. Machine learning

is an effective tool to interrogate complex systems to find optimal parameters more

efficiently than through manual methods. This efficiency is particularly important

for systems with complex dynamics between multiple parameters and a subsequent

high number of parameter configurations, where an exhaustive optimisation search

would be impractically time consuming. The magnetometer’s sensitivity will be op-

timised through both direct measurement of the noise floor, and indirectly through

measurement of the on-resonance demodulated gradient (mV/nT) of the zero-field

resonance. The validity of ML techniques for optimisation will be proven through

measured sensitivity improvements of the SERF magnetometer. The flexibility and

efficiency of the ML approaches also facilitates optimisation of parameters beyond

experimentally controlled parameters, such as hardware changes. Lastly, this chap-

ter demonstrated the use of ML to quickly optimise the hardware of the OPM, by

iteratively testing a number of atomic vapour cells with varying nitrogen buffer gas

pressure, to improve magnetometer performance as measured by sensitivity.

4.1 Machine learning for caesium SERF magnetometry

The optimal signal from the SERF sensor has intrinsic complex dynamics in at least

five-dimensions contained within the parameters of: 1) atomic density (through cell

temperature), 2) laser frequency, 3) laser power, 4) detection modulation frequency

and 5) detection modulation depth. To date, few SERF sensors reported in the

literature use caesium [29, 92] and only a single sensor is known by the author that

operates in the single-beam configuration that is used in portable sensors [51]. As

such, the optimal operation parameters of the sensor are not known a priori. Some

experimental parameter configurations have been well-described in the literature [93,

94] and others may be modelled accurately [54]. In general, sensitivity is improved by

elevating the temperature of the cell to the increase atomic density and subsequently

increase spin exchange collisions. A threshold exists at which the opacity of the
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cell reduces the transmission of the light through the cell and hence the signal

amplitude. Increasing laser power raises the optical pumping efficiency, at the cost

of higher intensity noise and broadening of the magnetic resonance (and subsequent

reduction of sensitivity). Here, an automated approach is utilised for optimising the

primary experimental parameters with a view to maximising the sensitivity of the

SERF magnetometer.

Here three automated optimisation techniques are presented that have been used

independently to assess the best operation parameters based on experimental per-

formance quantified through a chosen cost function, C. The techniques include a

genetic algorithm, a simplified form of gradient ascent optimisation, and an open-

source machine-learning package that utilises predictive modelling. These auto-

mated optimisation techniques are presented in the context of the caesium SERF

magnetometer to demonstrate use as a generic routine for finding the optimal oper-

ating point for a complex sensor.

Beyond the realms of computer science, automated optimisation and machine

learning have been utilised across many disciplines [74, 95–99], and have found suc-

cess in quantum and particle physics [100–102]. Machine learning has been adopted

for the optimisation of experimental parameters for complex systems [103–105],

where traditional human-intuition-based experimental control is laborious, ineffi-

cient, and may not result in the optimal configuration [106].

The optimisation approach applied here has yielded previously unknown config-

urations of parameters leading to operation of the magnetometer blue-detuned from

the optical absorption peak rather than at peak absorption [65]. It has allowed us to

create a robust, flexible and fast test environment for benchmarking cells of various

buffer gas pressures and different alkali species, which aids sensor development.

4.2 Machine learning optimisation methods

For all the research presented in this chapter, the SERF magnetometer set-up as

described in Chapter 3 is utilised and constructed in a portable sensing package.

The full description of the portable sensor design is found in Chapter 5, and the full
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operational procedure is explained in extensive detail in Section 3.3.

4.2.1 Machine learning

Machine learning works to identify a global optimum (maximum or minimum) within

a parameter space. Here, multiple machine learning algorithms (MLAs) that imple-

ment supervised learning will be demonstrated and compared. Supervised learning

refers to providing the MLA with a quantitative measure of performance known as

cost [103]. For all techniques, the MLA and experiment are contained within a closed

loop where the MLA controls the experiment, which in turn gathers and returns cost

information to the MLA. More specifically, the MLA selects the experimental pa-

rameters, which are translated to the experiment through control instrumentation.

The experiment automatically completes the zero-field resonance measurements in

both 2D and 1D, and calculates cost according to a particular cost function, C(ρ).

The cost associated with each parameter set is used by the MLA to inform the next

set of parameters to sample.

The choice of cost functions is one of the arts of implementing ML and it is

not always evident a priori what the optimal cost function might be. In this work

two cost functions, C1(ρ) and C2(ρ), are defined to optimise in two distinct ways in

order to assess which cost function is most effective. The first cost function, C1(ρ),

measured in (mV/nT), is equal to the gradient of the demodulated lineshape, where

C1(ρ) = χ as defined by Equation (2.47), such that:

C1(ρ) =
δADemod

δBy
, (4.1)

where δADemod and δBy are, respectively, the change in amplitude and magnetic

field of the demodulated lineshape within the linear range. C1 has been selected as

this corresponds to a “sharp” 1D resonance line-shape, that is, a high amplitude

with narrow width, which is a good indicator of OPM performance. Thus, C1 must

be maximised to increase line-shape sharpness and as such a global maximum of C1

is desired.
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The second cost function, C2(ρ), is a sensitivity approximation measured directly

through analysis of the noise floor. A power spectral density is taken to extract

a series of frequency dependent amplitude values, X(k), that are scaled by the

demodulated gradient (C1) to provide a frequency response as a function of magnetic

field. C2(ρ) is found through combination of the measured sensitivity, δB1, from the

geometric mean of the noise spectrum as expressed by Equation (2.49) within our

band of interest (5 to 20 Hz).

C2(ρ) =




n∏

5≤k≤20

δADemod

δBy
X(k)




1
n

. (4.2)

Stochastic noise manifests logarithmically thorough only positive peaks, therefore

the use of the geometric mean is more appropriate than the arithmetic mean, as

discussed in Section 2.6.6. By minimising C2, which is a measure of the intrinsic

noise of the magnetometer in the frequency band of interest, the magnetic sensitivity

is optimised. Thus, the location of a global minimum of C2 across the parameter

space is desired. Both defined cost functions aim to improve sensitivity, where C2

will achieve this directly and C1 indirectly.

4.2.2 Optimisation techniques

For the total number of experimental parameters, M , a single set of experimen-

tal settings (temperature, laser power, etc.) is defined as X = (x1, . . . xM ). For

each individual set, Xi, an associated cost, C(Xi), and associated cost uncertainty,

U(Xi), are found experimentally. All optimisation techniques selected are examples

of online optimisation (OO) in which optimisation is implemented concurrently with

experimental testing. Two evolutionary OO algorithms are employed, a gradient as-

cent OO and a predictive model-based machine learning algorithm. All optimisation

methods continue until 250 sets of parameters are tested, known as the end condi-

tion, Nend = 250, which takes approximately 4 h in total. This end condition is

selected to allow all MLA methods the same number of interactions and to ensure
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optimisation is completed in a time-frame that is reasonable for equivalent manual

optimisation activities for a skilled operator.

4.2.3 Evolutionary algorithms

Evolutionary algorithms are heuristic search-based approaches to solving problems.

The processes of evolutionary algorithms are inspired by nature and biological sys-

tems [107]. The scheme, shown in Figure 4.1, includes the evaluation of the perfor-

mance of individuals within a population to inform the selection of a new popula-

tion mimicking “survival of the fittest”, a crossover of high-performing individuals

to imitate reproduction and mutation. Mutation introduces a stochastic component

and aims to drive optimisation to a global maximum or minimum. Evolutionary

algorithms are commonly used across many types of optimisation problems [108],

due to their robust convergence to a solution. However, this convergence time in-

creases with the system complexity. We use two evolutionary algorithms within

the ML techniques in this chapter, which are both standard methods in the ML

community [109–111]. The first evolutionary algorithm used is a genetic algorithm

(GA) [112, 113] that is implemented standalone, and the second is a differential

evolution (DE) [114, 115] algorithm, which is incorporated into the process of the

predictive model-based machine learning algorithm [103], discussed more in Section

4.2.5.
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(a) (b)

Figure 4.1: Two evolutionary algorithm processes, a) Genetric algorithm and b)
differential evolution, where (a) & (b) share evolutionary elements of initial popu-
lation formation, selection, crossover and mutation. For both algorithms, the initial
population X(t) contains a population of N sets of parameter settings. The colour
indicates each set of parameter settings. t, generation or loop number; t = t + 1,
the next generation; and C(t), measured cost. Both algorithms repeat until the end
condition is met, where the number of sets of parameters tested N is equal to 250
(Nend). (a) GA process. The initial population is generated and evaluated for cost,
with individual costs denoted as Ci.

N
2 parameter sets are selected for the next

generation based on ranked cost. The best performing N
2 are used as “parents” to

produce “children” sets during crossover with respect to the crossover point. Mu-
tation of individual parameter values randomly occurs in the new population. (b)
DE process. The initial population is generated and evaluated for cost where three
random sets Xa, Xb & Xc and a target set XT are selected. A new set V is created
during mutation from the randomly selected sets, and used in a crossover with the
target set to make a new set Q. CQ, the cost of Q, is evaluated and measured
against CT , the cost of the target set. The target set is replaced in a new generation
if CQ > CT (for C1) or CQ < CT (for C2).
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The GA process is displayed in Figure 4.1(a). The GA first randomly creates

the initial population, X(t), of N sets of experimental parameters

X(t) = {X1, . . . XN} , (4.3)

where t denotes the generation of the population, initially t = 0.

All parameters chosen are selected within predefined parameter space limits.

Next, each parameter set, Xi, is automatically and iteratively evaluated through

experimental testing and find associated cost C(t) and uncertainty U(t) of the entire

population, where, C(t) = (C1, . . . CN ) and U(t) = (U1, . . . UN ). Parameter sets with

high levels of uncertainty will be ranked poorly even in cases of favourable costs, to

ensure robust optimisation. The selection of the new generation population, X(t),

is based on the best performing sets of experimental parameters from the previous

generation X(t − 1). To achieve this, X(t − 1) is ranked by C(t − 1) with respect

to U(t − 1) and the best performing N
2 sets of parameters are added to X(t). The

remaining N
2 sets of parameters are created through a crossover. Crossover occurs

between sets of parameters from the previous generation to create sets for the new

generation, shown in Figure 4.1(a) and given by:

X(t)j = {x|x ∈ Xa(t− 1) if xi ≤ CP, x ∈ Xb(t− 1) if xi > CP} (4.4)

X(t)k = {x|x ∈ Xb(t− 1) if xi ≤ CP, x ∈ Xa(t− 1) if xi > CP} , (4.5)

where X(t)j and X(t)k are “children” sets of “parent” Xa(t − 1) and Xb(t − 1).

The crossover point, CP , refers to an individual element, xi, of the parent sets.

The final step is to introduce random mutation to prevent optimisation for a local

optimum. The new population, X(t), is then evaluated experimentally and the

algorithm continues until the end condition is met.

The process of DE deviates from GA as shown in Figure 4.1(b), while maintaining

the same evolutionary elements. The initial population of sets of parameters is

created as defined in Equation (4.3) and similarly evaluated to find the associated
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cost C(t) and uncertainty U(t) of the entire population. The mutation process is

incorporated through creation of a new set, V , derived from three randomly selected

parameter sets (Xa, Xb and Xc), where each individual parameter is a combination

of the value from all three sets such that V = Xc + |Xa − Xb|. Crossover occurs

between V and a randomly selected target set XT to produce an additional set Q. Q

is evaluated experimentally and replaces XT in the new generation where t = t+ 1,

if CQ outperforms CT . Lastly, three random sets and a target set are selected from

the new population, X(t). The algorithm continues until the end condition is met.

DE algorithms can be more efficient during optimisation due to a generalised higher

occurrence of evolution mechanisms than GAs [116].

4.2.4 Gradient ascent

Gradient ascent algorithms are a first-order process. As such, the differential of the

changing cost C(ρ) is used to inform the learning process [117]. Here, a form of batch

gradient algorithm is implemented, displayed in Figure 4.2. Small batches of data

are tested to find the optimal parameters based on the gradient of the cost across

the batch. Learning occurs between iterations of batches. Batch gradient algorithms

guarantee convergence to a local or global optimum. However, as the batch sizes are

pre-defined, some points tested may be redundant, especially compared to stochastic

gradient processes with a higher learning rate [118–120].
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Figure 4.2: Gradient ascent algorithm process. x(i), a vector value for a single
parameter xi ranging from minimum xmini to maximum xmaxi as defined by parameter
space range. i, the individual parameter selected. Initially, the first parameter is
selected for the first batch i = 1. All other parameters are kept constant. The batch
is evaluated based on cost, indicated in green, to find where the gradient tends to
zero, ∂C(ρ)

∂x → 0 indicated in red. The corresponding parameter value xopti is then set
for this parameter for the next batch, i = i+ 1. This continues until all parameters
are used as batches, for a total number of parameters M . The segmented graph
shows this process as a function of the run number. This process in turn repeats
until the end condition is met, where the number of sets of parameters tested N is
equal to 250 (Nend).

In this context, each batch x(i) is defined as a broad sweep of a single parameter

across the full range for that parameter in regular intervals as follows:

x(i) = (xmini , xmini + n, . . . xmaxi ) , (4.6)

where i denotes the individual parameter, n is the interval for the parameter, and

xmaxi and xmini are the maximum and minimum values of the specific parameter from

the defined parameter range. The first batch targets the first parameter only, where
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i = 1. The non-target parameter values are kept constant throughout the batch

testing at the previously found optimum, or initially selected randomly. Evaluation

of the batch experimentally finds the associated cost for each element of x(i). The

cost curve of the batch is used to find where the gradient tends to zero, ∂C(ρ)
∂x → 0.

The value of xi is set to the corresponding parameter value, xopti , for the next batch

iteration. Each iteration changes the target parameter used for the batch, where

i = i+1 after each batch, up to the total number of M parameters. One full process

of the gradient algorithm occurs after all parameters have been selected as the target

parameter, which in turn loops until the end condition is met.

4.2.5 Gaussian process regression

The Gaussian process (GP) regression OO method creates a model defining how

each experimental parameter relates to the experimentally found cost, known as the

cost-landscape. The cost-landscape is formed through training the MLA with data

collected by DE for 2M sets of parameters. The model generates correlation lengths

to indicate how sensitive the cost is to each parameter, where the correlation length

is inversely proportional to its influence on cost. The cost-landscape model informs

the selection of new parameter values to test. Each iteration informs the model and

contributes to defining the noise level of “expected cost” to “found cost”, i.e., the

variance of the cost if measured at the same set of parameters many times. For

this method, an open-source Python-based machine learning toolkit, M-LOOP [103]

(Machine Learning Online Optimization Package), is implemented which utilises

DE and GP during optimisation. While GP regression is the most sophisticated

MLA employed, Gaussian processes lose efficiency in high dimensional spaces and

the computational time required scales with the cube of the number of tests.

4.2.6 Experimentally controlled parameters

The parameters, p, selected for optimisation are: (1) Cell Temperature, T, (2) Laser

Power, LP and (3) Laser Detuning, LD. These parameters are intrinsically linked

with complex dynamics as described in Section 4.3.1. Each parameter is directly
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Table 4.1: Definition of all controlled parameters (p) used for optimisation, with
corresponding units. Min(p), the minimum value for each parameter. Max(p), the
maximum value for each parameter. Default (p), chosen default value if parameter
is not directly optimised during optimisation.

Parameter Min(p) Max(p) Default(p) Unit

Temperature 115 140 - ◦C
Laser Power 0.5 6 - mW
Laser Detuning −20 20 - GHz
AMod 0.2 1.5 0.5 dimensionless
FMod 0.2 1.5 1 dimensionless

controlled through experimental hardware. Both amplitude and frequency of the

applied modulated magnetic field influence light absorption and magnetometer per-

formance. As such, a further two parameters are defined, namely (4) Modulation

Amplitude, BMod, and (5) Modulation Frequency, ωMod. For optimisation we use

the dimensionless parameters AMod and FMod, defined with respect to the magnetic

resonance linewidth;

AMod =
BMod

Γ
(4.7)

FMod =
ωMod

Γγ
, (4.8)

where total relaxation Γ is equal to the HWHM width extracted from magnetic

resonance and γ is the gyromagnetic ratio (2π×3.5 Hz/nT for Cs). BMod and ωMod

are dependent factors, and the modulation index, mi, defines this dependency:

mi =
γBMod

q(P )ωMod
, (4.9)

where q(P ) is the nuclear slowing-down factor at high polarisation [38]. It has been

shown that the optimal modulation index occurs when mi = 0.5−1 [56]. All control

parameter ranges are defined in Table 4.1.

The selection of the parameter ranges shown in Table 4.1 was based on systematic

testing of the OPM response around the boundaries of these ranges to identify when a

resonance is no longer measurable. For example, if the cell temperature is > 140◦C,

the opacity of the cell is increased by the increasing atomic density, to the point
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that no light reaches the detector, to an extent that cannot be accommodated for

by increasing the laser power or shifting the laser frequency away from resonance.

4.3 ML optimisation of experimental parameters

The MLAs presented in Section 4.2.2 were applied to optimise the sensitivity of the

single-beam caesium SERF OPM. Two cost functions (C1, C2) were utilised to inves-

tigate cost function suitability. The number of parameters optimised (M = 3: LD,

LP, T, M = 5: LD, LP, T, AMod, FMod) is varied to demonstrate MLA robustness

with respect to optimisation complexity. In total, four independent optimisation

schemes were measured:

Scheme 1. Cost = C1, M = 3

Scheme 2. Cost = C1, M = 5

Scheme 3. Cost = C2, M = 3

Scheme 4. Cost = C2, M = 5

Three MLAs were used per optimisation scheme: (1) genetic algorithm, (2)

gradient descent algorithm and (3) Gaussian process regression. The full parameter

space used for all optimisation schemes is defined in Table 4.1. For equality between

optimisation schemes, all methods initialise with a random set of parameter values,

often initially producing no magnetic resonance signal. Each MLA ran until the

end condition, requiring 250 sets of experimental settings to be tested, Nend = 250,

taking approximately 4 h in total per MLA. Both cost functions were measured

during each technique, regardless of the selected cost function, to allow comparison.

To benchmark the optimised sensitivity of all MLAs and optimisation schemes,

the SERF magnetometer was first manually optimised through human-intuition-

based experimental control. The human optimisation process found an optimal

sensitivity of 500 fT/
√

Hz, in approximately 4 h, through directly optimising sensi-

tivity, C2. The human optimisation process was carried out by a skilled operator,

familiar with OPMs and given control of all operational parameters, where general

intuition lead to the selection of the first parameter values selected, and all subse-
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quent parameter values tested. The skilled operator was selected from within the

department, and had no prior knowledge of the optimum parameter values before

operation, to remove any potential bias in parameter selection.

The results of all optimisation schemes for all MLAs are shown in Figure 4.3.

Each row in Figure 4.3 displays the results for an individual optimisation scheme,

with Cost Function C(ρ) and the number of parameters (M) indicated accordingly.

Progression of each technique can be seen in Figure 4.3(a,d,g,j), where cost is a

function of the experimental run number and the moving maximum (for C1) or

minimum (for C2) throughout optimisation run is indicated by the solid line for each

MLA. Figure 4.3(b,e,h,k) show the corresponding
√

PSD for the optimal parameters

found per MLA, with the sensitivity shown as a function of frequency (Hz) in the

bandwidth of interest (5 to 20 Hz). Figure 4.3(c,f,i,l) depict the corresponding

demodulated line shape for the optimal parameters found per MLA.

The optimised cost for each MLA and optimisation scheme with corresponding

optimal parameter settings can be seen in Table 4.2. All optimisation schemes

resulted in large cost improvement throughout optimisation. Each ML technique

generates a converging solution, the values of these vary but are close within each

scheme.

The optimum sensitivity of 109.5 fT/
√

Hz was identified by the gradient descent

algorithm (with an uncertainty of ±1 fT/
√

Hz taken from the geometric standard

deviation across the frequency band of interest) using five parameters (M = 5) and

direct optimisation of sensitivity (C2). The optimum demodulated gradient of 4.75

mV/nT was identified (with an uncertainty of ±0.03 mV/nT, taken as the linear

fitting error across demodulated linear region) by the Gaussian process regression

model using five parameters and direct optimisation of demodulated gradient (C1).

The GP model is the most sophisticated MLA demonstrated. Due to the nature

of the optimisation method, as described in Section 4.2.5, a cost-landscape depicting

how each parameter affects the measured cost is produced throughout the optimisa-

tion process. Figure 4.4 shows the measured data for each parameter as a function of

cost, for optimisation schemes 2 and 4 (5 parameter optimisations). The parameter
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Figure 4.3: All figure parts contain the following optimisation techniques, gradient
descent algorithm in green, genetic algorithm in blue and Gaussian process regres-
sion model in pink. M , the number of parameters optimised. Row 1 & 3, (a–c,g–i),
optimisation of 3 parameters (M = 3). Row 2 & 4, (d–f,j–l) optimisation of 5
parameters (M = 5). Row 1 & 2, (a–f), optimise for maximising cost function
C1 the demodulated line shape gradient (mV/nT). Row 3 & 4, (g–l), optimise for
minimising cost function C2, calculated sensitivity (T/

√
Hz). Column 1 “Optimi-

sation”, (a,d,g,j), show Cost function as a function of run number. The solid line
indicates the moving maximum per optimisation technique. Column 2 “Sensitiv-
ity”, (b,e,h,k), shows corresponding

√
PSD for the optimal parameters found per

optimisation technique. Sensitivity is shown as a function frequency (Hz), raw data
are shown by solid lines. The frequency band of interest (5 to 20 Hz) is highlighted
in grey. Averaged sensitivity in this band is shown by the dashed line (value rep-
resented in the key). Column 3, “Demodulation”, (c,f,i,l), shows a corresponding
demodulated line shape for the optimal parameters found per optimisation tech-
nique.
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Table 4.2: Optimal parameters found for the following optimisation techniques,
GA), gradient descent (GD) and GP. The outcome for a skilled operator, SO, is
also shown. The number of parameters tested, M , is specified for each optimisation
run. T, cell temperature (◦C). LP, laser power (mW). LD, laser detuning (GHz).
AMod, modulation amplitude factor (dimensionless). FMod, modulation frequency
factor (dimensionless). mi, modulation index (dimensionless). C(ρ) defines the cost
function implemented. C1 is the demodulated lineshape gradient (mV/nT), with
uncertainty taken as the geometric standard deviation across the frequency band
of interest. C2 is the calculated sensitivity (fT/

√
Hz), with uncertainty taken as

the linear fitting error across demodulated linear region. Γ is the FWHM of the
magnetic resonance (nT), with uncertainty taken as the fit error to Equation (2.38).
Values in grey indicate parameters that were not optimised during operation. The
scheme that found the optimal sensitivity, C2, is highlighted in bold.

ML M C(ρ) C1 C2 Γ T LD LP AModFModmi

GD 3 C1 2.8 ± 0.03 158.6 ± 1.3 132.5 ± 1.5 119.4 8.24 6.00 0.50 1.00 0.55
GA 3 C1 2.6 ± 0.02 182.4 ± 1.4 183.3 ± 2.1 115.0 3.00 5.35 0.50 1.00 0.55
GP 3 C1 3.5 ± 0.03 143.4 ± 1.2 168.8 ± 1.6 115.0 8.00 6.00 0.50 1.00 0.55

GD 5 C1 4.0 ± 0.02 150.2 ± 1.5 130.1 ± 2.1 118.9 10.8 5.58 1.50 0.30 5.51
GA 5 C1 4.2 ± 0.02 157.6 ± 1.3 98.8 ± 2.0 123.0 7.00 5.32 1.48 0.39 4.21
GP 5 C1 4.8 ± 0.03 136.3 ± 1.2 147.4 ± 1.2 120.1 6.22 6.00 1.50 0.21 7.82

GD 3 C2 2.1 ± 0.02 148.3 ± 1.3 143.4 ± 2.5 117.9 5.88 5.35 0.50 1.00 0.55
GA 3 C2 2.4 ± 0.02 152.3 ± 1.3 136.7 ± 1.3 119.0 4.00 4.66 0.50 1.00 0.55
GP 3 C2 2.3 ± 0.02 177.4 ± 1.3 192.8 ± 1.6 115.0 3.49 5.57 0.50 1.00 0.55

GD 5 C2 2.2 ± 0.03 109.5 ± 1.3 137.7 ± 1.6 118.9 7.69 5.58 0.70 0.80 0.96
GA 5 C2 2.0 ± 0.02 119.8 ± 1.2 111.1 ± 2.1 121.0 7.00 5.24 0.97 1.15 0.93
GP 5 C2 3.7 ± 0.02 154.8 ± 1.2 203.1 ± 1.6 115.0 3.00 5.50 1.09 1.00 1.20

SO 5 C2 2.0 ± 0.03 499.9 ± 7.8 171.0 ± 1.3 135.0 -
6.00

5.00 1.00 1.06 1.04
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Figure 4.4: Data and models resulting from the Gaussian process regression model
MLA, 5 parameter optimisation schemes (M = 5). The results on each row are
taken from different optimisation schemes. the The 5 parameters optimised are
cell temperature (T), laser power (LP), laser detuning (LD), modulation amplitude
factor (AMod) and modulation frequency factor (FMod). Each part shows a parameter
as a function of the cost. Row 1, (a–e), shows optimisation for cost function C1,
the demodulated line shape gradient (mV/nT). Row 2 , (f–j) optimisation for cost
function C2, calculated sensitivity (T/

√
Hz). Marks indicate measured values from

optimisation, solid line indicates the Gaussian process predicted cost-landscape and
shaded region indicates the model provided 95% confidence interval of the cost-
landscape.
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cost-landscape model is indicated with a line, and the 95% confidence interval gen-

erated by the model is indicated by the shaded region. Many measured points for all

parameters lie outside the confidence interval due to the nature of multi-parameter

optimisation, where the optimised value of one parameter may produce a poor cost

value if other parameters are not optimised. The confidence interval shows the trust

region of the models predictive landscape after all measurement has been completed.

4.3.1 ML optimisation of experimental parameters: Discussion

The sensitivity of the caesium OPM has been improved by all of the MLAs presented

in comparison to human optimisation over comparable run-time. This comprehen-

sive improvement indicates the suitability of automated optimisation methods for

experimental parameter optimisation tasks in optically pumped magnetometry.

The use of 3 MLAs allowed for comparison of these techniques to aid recom-

mendations for suitability. In this use case, all techniques appear capable, with no

single technique standing out as significantly more favourable. Completing the MLA

techniques for a differing number of parameters allows comparison of the robustness

of the MLA techniques to the system complexity. Interestingly, the more simple

MLAs (GA and GD) proved most successful for direct sensitivity optimisation C2,

with GD providing the optimal sensitivity value of 109.5 fT/
√

Hz. However, the

Gaussian process regression model proved most effective for optimisation of C1. This

suggests that the Gaussian process regression model was more sensitive to the more

stochastic nature of cost function C2.

Increasing the complexity to M = 5 parameters, proved beneficial to both cost

functions. As such, the amplitude and frequency of the applied magnetic modulation

are tied to magnetometer performance due to their influence on light absorption.

Optical noise has a large contribution in this sensor, and this noise decreases with

increased absorption. Furthermore, low frequency 1/f noise decreases with increasing

modulation frequency. Each five parameter optimisation scheme converged before

the end condition, suggesting that, in multi-parameter systems with five parameters,

all MLAs are suitable.
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The implementation of two cost functions, C1 and C2, aids identification of the

most suitable cost function for this purpose. Table 4.2 shows relative alignment

of the best parameter values between cost functions. The peak sensitivity found

indirectly (C1) is 30 fT/
√

Hz higher than through direct sensitivity optimisation

(C2). As such, C1 acts as a reasonable proxy for sensitivity optimisation without

specifically measuring sensitivity. C1 requires less data collection and corresponding

sensitivity measurements may be taken after the fact. C2 takes longer experimen-

tally and computationally and is more susceptible to extraneous environmental and

technical noise. However, 5 parameter optimisation using C1 optimised the modu-

lation frequency to a much lower frequency. The subsequent modulation index for

these optimised values are also far outside the expected range (mi > 5). This high-

lights a key drawback of optimisation using C1, that technical noise contributions

are not considered.

A benefit of the implementation of the GP is the production of the cost-landscape

model that defines how influential each parameter is on performance. From this

model, Figure 4.4, clear trends can be seen that span across both cost functions; for

example, the peak in temperature for C1 aligns with the trough in C2. Alignment

of the trends indicates the parameter has a similar influence on both cost functions.

Figure 4.4 also shows mirrored trends for laser detuning, optimising at a sim-

ilar value. However, a deviation between the laser power landscape between cost

functions is also present. The peak laser power required for C1 continues to in-

crease beyond the defined range, whereas the optimum laser power for C2 saturates

at 5 mW. This could be due to the increasing laser power detrimentally affecting

sensitivity due to intensity noise with increased laser power, which does not degrade

C1 to the same degree. These trends suggest that either cost function is suitable for

optimisation if intensity noise is taken into consideration.

The predicted cost-landscapes for AMod and FMod (Figure 4.4) show broad trends

with large confidence intervals, suggesting that the relationship between these pa-

rameters and the cost functions are not well-defined. Table 4.2 shows in the results

for optimisation scheme 4 (C2, M = 5) that the optimised values for modulation
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amplitude and frequency gave a modulation index within the expected optimal val-

ues (mi =0.5 − 1). While clear gains in sensitivity were provided by increasing the

number of parameters optimised, C2 is advised for directly optimising sensitivity

while keeping modulation values within expected optimal conditions.

It is interesting to note that the optimal detuning parameter found is positively

detuned from the optical absorption peak (Table 4.2), in direct contrast to the

negatively detuned value selected by the skilled operator. It appears that the effect

of the buffer gas introduces complex optical pumping dynamics in the atomic system,

likely tied to depopulation of the F = 3 ground state. The results of the MLA

techniques show that the detuning and power dependence are non-trivial. These

results may vary depending on cell parameters such as the optical path length and

buffer gas pressure.

4.4 ML optimisation of hardware

The ML techniques demonstrated in Section 4.2.2 are suitable for applications be-

yond experimentally controlled parameters, and can also be used to quickly charac-

terise the sensitivity impacts of any hardware changes. In this section, a number of

atomic vapour cells are characterised in an efficient and comprehensive manner util-

ising the demonstrated ML toolkit, to optimise the SERF magnetometer sensitivity.

A range of cells with varying nitrogen buffer gas pressure were constructed [69], with

each cell identical otherwise. Each cell had internal dimensions of 6 × 6 × 3 mm3

and a buffer gas range of 95 − 225 Torr, at 85 ◦C [121], was utilised to allow the

relationship between buffer gas pressure and sensitivity to be explored.

The relationship between buffer gas pressure and the relevant relaxation mech-

anism are well understood, as described in Section 2.5. There is an observable

minimum point at which total relaxation, ΓTotal, is the smallest with respect to

buffer gas pressure (shown by the dip in the solid line in Figure 4.5). This point

is often cited as the optimum quantity of buffer gas required to optimise sensor

performance. However, the relationship between buffer gas and magnetometer per-

formance, particularly sensitivity, is not extensively explored within the literature
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beyond the assertion of a relation to the total rate of relaxation.

In order to empirically quantify the effect of buffer gas pressure on magnetic

linewidth and magnetometer sensitivity, a range of buffer gas pressures are anal-

ysed. Here, rapid testing is aided by the design of the portable sensor, described

fully in Chapter 5. The portable sensor package is modular in construction which al-

lows for easy component replacement, including the atomic vapour cell. In practice,

changing the atomic vapour cell within the portable sensor takes less than 5 min-

utes. To isolate only the effect of buffer gas on sensitivity, all other components of

the experimental set-up remain unchanged, including the optics, laser and driving

electronics etc.

In total, five atomic vapour cells with distinct pressures are tested, spanning a

range of nitrogen buffer gas pressures (95, 125, 185, 211 and 225 Torr). Each vapour

cell is installed into the sensor sequentially and two distinct types of measurements,

M, are taken:

M1: Firstly, the cell is heated to 90 ◦C to extract the intrinsic linewidth (through

the methods described in Section 2.4.5). Direct measurement of the intrinsic

linewidth allows for direct comparison of the experimentally found values

(black crosses) with the modelled values (solid black line), which shows

good agreement. This suggests that the definition of the relevant relaxation

mechanisms is correct for the atomic vapour cell with respect to the atomic

species, buffer gas pressure and geometry.

M2: The genetic algorithm, presented in Section 4.2.3, is applied to optimise the

sensitivity of the single-beam caesium SERF OPM. The genetic algorithm

automatically optimises all 5 operational parameters, described in Section

4.2.6. Here, optimisation is based on direct measurement of sensitivity across

the defined frequency band of interest (5–20 Hz), cost function 2, C2. Opti-

misation of all the operational parameters is required as the optimal values

will vary depending on buffer gas pressure.

The results of both of these measurements for all atomic vapour cells are illus-

trated in Figure 4.5. The black crosses denote the measured relaxation, Γ, and the
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Figure 4.5: Intrinsic linewidth and sensitivity measured for a range of MEMS atomic
vapour cells, with internal dimensions of 6 × 6 × 3 mm3. Five atomic vapour cells
with distinct pressures are tested, spanning a range of nitrogen buffer gas pressures
(95, 125, 185, 211 and 225 Torr). a) Intrinsic linewidth, Γ, extracted for each cell
with the measured value, Γ Measured, indicated by crosses and the modelled re-
sponse, ΓTotal, found using Equation (2.26). b) Optimised sensitivity of the caesium
SERF OPM using a 250 loop 5 parameter genetic algorithm as the MLA. Linear fit
(dashed) applied to measured optimal sensitivities (squares).
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solid line represents the modelled relaxation rate, ΓTotal, (described in Section 2.4.5).

The red dots and dashed line refer to the sensitivity measurements. The red dashed

line indicated a linear model fit to the peak found sensitivity values with respect to

buffer gas pressure, P , to a high accuracy (R2 = 0.974). The linear model allows for

the extraction of the derivative of sensitivity, S, with respect to pressure, P , such

that δS
δP = 3 fT/

√
Hz per Torr of buffer gas added to the atomic vapour cell.

4.4.1 ML optimisation of hardware: Discussion

The effect of nitrogen buffer gas pressure within caesium MEMS fabricated silicon

cells with internal dimensions of 6 × 6 × 3 mm3 has been explored to better under-

stand the consequences of buffer gas pressure on sensor sensitivity. Figure 4.5 allows

for easy comparison of the total relaxation, Γ, with respect to buffer gas, and the

measured optimal sensitivity with respect to buffer gas. The optimal sensitivity is

found at 90 fT/
√

Hz, correlating to the atomic vapour cell with the highest pressure

of nitrogen buffer gas (225 Torr). However, the smallest relaxation is measured in

the atomic vapour cell with 185 Torr of nitrogen buffer gas. Thus, the assertion that

the point of minimised total relaxation correlates to the point of optimal sensitivity

has been proven incorrect through direct measurement.

The linear gain in sensitivity with respect to buffer gas, as indicated by the blue

dotted line in Figure 4.5, highlights the need to characterise the sensitivity of atomic

vapour cells with further increasing pressures of nitrogen buffer gas. A limit must

exist in which buffer gas pressure begins to detrimentally effect the sensitivity of the

magnetometer, which would be interesting to find and identify. To that end, further

research here exists to locate the optimised pressure of nitrogen buffer gas for the

caesium SERF magnetometer.
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A portable OPM for

biomagnetic sensing

The production of an ultra-sensitive SERF OPM for the eventual use in biomagnetic

sensing tailors the requirements for the sensor to target the shortcomings of classi-

cally used SQUID-based systems. SQUID-based systems are bulky and costly due to

operationally required cryogenics. As such, SQUID-based systems lack adaptability

due to fixed sensor placement, leading to the loss of signal intensity particularly for

participants with smaller physiology. The participant is also unsecured with respect

to the sensor which leads to movement artifacts during measurements. A required

thermal isolation from the cryogenics sets a fixed minimum distance from sensors to

the participant (' 2 cm for low Tc SQUIDs) [122, 123] which further increases the

average distance between sensor and signal source, to the detriment of the signal

amplitude.

The sensing head of the magnetometer used from biomagnetic measurements

must be at a compact portable scale, to counter many of the issues of SQUID-

based systems. Furthermore, portability is important to allow multiple sensors to

be utilised simultaneously in arrays to provide spatial information of biomagnetic

measurements, such as demonstrated for full head MEG [124, 125] and full chest

MCG [126]. The portability of the OPM allows for use in a variety of settings, in-

cluding both clinical and research environments. Small sized sensors allow for more
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precise placement of the sensor with respect to the measured signal, such that posi-

tioning reduces the stand-off distance between the biomagnetic signal and the sensor,

providing a superior SNR [127] in comparison to static SQUID-based systems. The

reduced stand-off distance also means full head OPM systems require around half as

many sensors than equivalent full head SQUID-based systems (typically requiring

' 300 sensors [128]).

In this chapter, the challenges of highly sensitive sensor design and operation will

be discussed in the specific context of the portable sensor head package. The full

sensor head design, construction and test is described here with particular focus on

miniaturised and microfabricated component design. The portable sensor is built

to the specifications driven by the use in biomagnetic measurements in real-life

applications.

5.1 Introduction

Measurements of magnetic fields generated by the human body provide a critical

diagnostic and research tool [129–136]. Biomagnetic signal amplitudes are 6-9 orders

of magnitude smaller than the earth’s magnetic field of 50 µT, e.g. cardiac signals

(∼100 pT) and neural activity (between 10-500 fT). Advances in OPMs [28, 29, 31,

137] have led to demonstrations of sensors that approach the sensitivity of SQUIDs,

while providing new measurement modalities [138] due to their size and portability,

as well as improved source localisation [139] due to better head coverage [?,124,140].

Zero-field OPMs do not require cryogenic cooling, and the relative simplicity of the

sensor design lends the sensor to miniaturisation, demonstrated by the availability

and widespread use of several commercial sensors [138,141].

The OPM designed here, as described in Chapter 3, utilises an atomic vapour

cell that contains a vapour of caesium as the sensing atom. MEMS fabrication

techniques [69, 121] have been used to manufacture this alkali vapour cell. These

techniques create a very compact vapour cell with outer dimensions 10×10×4 mm3,

whose optical access allows it to reside in a planar stack of components along the

optical path of the laser beam.
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Since the measured magnetic field decays as an inverse function of the distance

cubed [142], it is advantageous to place the sensor in close proximity to the sig-

nal source, with sensor to skin contact therefore being highly desirable. Optically

pumped magnetometers using alkali vapour must create a sufficient density of atoms

in order to operate in the SERF regime. As a result, the atomic vapour cell must

be heated to achieve a vapour density of ' 1014 cm−3, as discussed in Section 2.6.1.

The surface temperature of the sensor package is of great importance, especially

when many sensors are operated in an array around the head, as in MEG. Here,

the sensor must also be capable of operating next to participants’ skin in order to

take biomagnetic measurements, while maintaining high thermal uniformity across

the cell. The Electrotechnical Commission have set a maximum external skin-safe

temperature of 41 ◦C for a device that has contact with healthy skin of an adult [53].

In the sensor described here, the decision to use caesium as the sensing atom was

informed by the expected operating temperature required to achieve optimal sen-

sitivity, which is ' 30 ◦C lower than that of rubidium, due to the higher vapour

pressure of caesium. Effective insulation is also employed to attenuate the heat from

the atomic vapour cell before reaching the sensors external face, discussed in Section

5.3.

OPMs of the type described here must operate close to zero-field. Typically

much of the Earth’s field is attenuated using shielding such as a MSR, which is

commonly used for biomagnetic measurements in hospitals and research institutes.

Approximately 10-50 nT of residual field remains in even high specification MSRs

[72]. The remaining environment magnetic fields can be compensated within the

sensor package using coil pairs that act on each axis.

This chapter will cover the design, development and testing of a caesium portable

zero-field OPM, with particular focus on mircofabricated components to aid porta-

bility. This sensor has demonstrated biomagnetic measurements of the human heart

and has broad applicability in the measurement of other small biomagnetic signals.

95



Chapter 5. A portable OPM for biomagnetic sensing

5.2 Portable sensing package design

DBR
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DAC /
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Figure 5.1: Experimental setup. Elliptically polarised light from a DBR laser close
to the F = 4→ F ′ = 3 hyperfine transition of the caesium D1 line is fibre-coupled to
pass through a micro-fabricated atomic vapour cell [69] filled with a saturated vapour
of caesium and 211 Torr of nitrogen buffer gas. The cell is heated through resistive
heating by square-wave modulated current provided by a custom high efficiency
heater driver. Three pairs of coils, Bx, By, Bz, control the static magnetic field
along each axis, and an additional modulation coil, BRF , allows the application of
an oscillating field along the y-axis. The static field coils are driven using a custom
low-noise current driver [83]. The photodiode, photodetector (PD), measures light
transmitted through the vapour cell. A low nT-level magnetic field environment is
provided by a 5-layer µ-metal shield. Other components; λ/4, quarter waveplate;
Cs, caesium vapour cell; ADC; digital-to-analog converter (DAC).

The topology of the prototype caesium portable sensor configuration is presented

in Figure 5.1. The sensor head is enclosed in a five-layer mu-metal shield during

development and testing, though due to its size and portability, it was easily moved

to an MSR. Laser light from a DBR laser tuned to the caesium D1 line, λ = 895 nm,

is delivered to the sensor head via an optical fibre. The fibre-coupling port is labeled

as FC and fits a non-magnetic fibre collimator (Schäfter Kirchhoff 60FC-4-M12-10-

Ti), which is aligned within the package using a nylon retention screw. Figure 5.2(a)

shows a photograph of the portable sensor head within the mu-metal shielding in the

laboratory environment. The sensor is mounted, using custom 3D printed mounts in

PLA, to align centrally in the shielding to reduce the effects caused by any remaining

magnetisation of the inner shield.
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Figure 5.2: a) Photograph of the portable sensor inside a 5-layer magnetic shield. b)
CAD model (top-view) of the sensor head. I: Insert containing optics and vapour cell;
Cx, Cy, Cz: Bi-planar coils for uniform magnetic field control across each axis; PD:
Photodiode, for detection of the light after it passes through the cell; ACs: MEMS
cell heating assembly, containing caesium vapour cell, heating resistor and insulation;
Aλ

4
: Adjustable quarter-waveplate assembly; FC: non-magnetic fibre coupler with

collimating lens. c) CAD model of the external faces of the sensor package. Case:
3D printed external package casing; IHeater: Shielded cable for heating currents,
ICoils: shielded cable for coil currents and photodiode signal.

The driving and control electronics, including the DAQ unit, coil driver, and cell

heater, are located outside the mu-metal shield. The control and detection signals

are brought to the sensor-head on a cable bundle of individually shielded twisted

pairs, as seen in the back of Figure 5.2(a).

To compensate for stray fields experienced at the cell, electromagnetic coils are

placed within the sensor package to generate fields in three directions. It is of critical

importance that the current does not generate excess magnetic field noise which

would degrade the sensitivity of the sensor. These coils are driven using a custom

ultra-low noise current driver, developed within the group and reported in [83].

The top-view diagram of the sensor head in Figure 5.2(b) shows several key

components. The optical components are housed in a 3D-printed optical insert, I,

which locates the vapour cell, fibre coupler with collimating lens (FC), the adjustable

quarter-waveplate assembly (Aλ
4
) and photodiode (PD). The optical insert allows

for consistent alignment of optical components precisely with respect to the 5 mm

diameter optical path through the sensor.

The external-view diagram of the sensor head in Figure 5.2(c) shows the 3D
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Figure 5.3: 3D Render of V1 the portable sensor from a cross-sectional view length-
ways through the sensor. The red line indicates the path of the laser light. Aλ

4
;

adjustable quarter-waveplate. FC; fibre coupler with collimating lens. PD; photodi-
ode. I; 3D-printed optical insert to align all optical components with respect to the
laser light.

printed sensor case with external dimensions of 25 × 25 × 50 mm3. The interfacing

cables for the heater current, IHeater, and coil currents, ICoils, are indicated with

reference to the sensor package.

CAD modelling of the entire sensor and all components allows for the production

of renderings that provide views of the sensor that are not possible with the physical

package, as seen in Figure 5.3. Here, Figure 5.3 illustrates the path of the DBR

laser light, indicated in red, from the fibre coupler, through the quarter waveplate

assembly, (Aλ
4
), through the atomic vapour cell and onto the PD, in a straight

line. The alignment of all these critical optical components is ensured through the

3D-printed optical insert, I.

Furthermore, the exploded-view diagram of the sensor head in Figure 5.4 illus-

trates how the various components discussed are assembled within the sensor head.

Each part will be discussed in the following sections. All components are aligned

through push-fit retention, with the exception of the fibre coupler which utilises a

nylon retention screw. The retention screw is also used to ensure the fibre cou-

pler is consistently aligned if removed and replaced, as a screw-hole in the fibre

coupler acts as a key-way when combined with the retention screw, to ensure consis-

tent polarisation. By creating a sensor with non-permanent fasteners and retention
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methods, I am quickly able to swap out any part of the sensor if required, such as

for optimisation as discussed in Section 4.4.

5.3 Cell heating assembly
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Figure 5.5: Design of the caesium MEMS cell heating assembly. a) Photograph of the
caesium MEMS cell outside of the printed cell housing, only insulated on the top side,
heated to 120 ◦C. Pictured with a thermal camera, colour indicates temperature from
coolest (blue) to hottest (white/red). b) Drawing of the external cell oven assembly.
c) Cross-section of oven, insulation and cell. A: 3D printed cell housing, B: Calcium-
magnesium silicate thermal insulation, C: T-type thermocouple, D: caesium 3mm
MEMS cell, E: Non-inductive SMD resistor, F: Heater interface PCB.

At the core of the portable sensor is a MEMS fabricated silicon cell (external di-

mensions 10 × 10 × 4 mm3), with 3 mm of silicon sandwiched between two layers

of 0.5 mm borofloat glass, resulting in a 3 mm optical path length and 6 × 6 mm2

optical aperture. The cell contains a vapour of caesium and nitrogen (N2) buffer

gas, which has been achieved by depositing droplets of caesium azide (CsN3) in the

vapour cell before the final glass bond is made in a nitrogen environment [121]. After

sealing, the caesium azide is dissociated using UV. The resultant composition is a

saturated caesium vapour and 225 Torr of nitrogen at 85 ◦C [121]. As discussed

in Section 2.5, the presence of N2 suppresses the rate of wall collisions and extends

the lifetime of the atomic coherences by altering the mean free path of the alkali

atoms, making their effective motion diffusive rather than ballistic with respect to

the cell [143].
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Optical Insert (I)
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Figure 5.4: 3D Render of an exploded view of the portable sensor to illustrate
assembly. The 3D printed case houses all the sensor components. Into the base fits
the Bi-planar coils (Cx, Cy, Cz) for uniform magnetic field control across each axis.
The optical components are housed in a 3D-printed optical insert, I, which locates the
non-magnetic fibre collimator (FC) which is retained with a nylon retention screw,
the adjustable quarter-waveplate (Aλ

4
), the photodiode (PD), and the MEMS cell

heating assembly (ACs). The MEMS cell heating assembly consists of the heating
resistor, soldered to a custom heater PCB, and thermally bonded to the MEMS
cell. The cell is insulated with custom cut insulation on all sides, leaving a 5-mm
diameter aperture for optical axis, through the cell. The insulation is housed in the
3D printed cell housing.
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For optimal sensitivity, the sensor must operate in the SERF regime which is

achieved through heating of the atoms to a sufficiently high atomic density to sup-

press the effect of spin-exchange relaxations, as discussed in Section 2.6. Typical

atomic vapour pressures, to achieve the SERF regime are ' 1014 cm−3, which in

caesium corresponds to 100 - 120 ◦C [29,30,51,92].

The vapour cell is heated ohmically through direct contact with an aluminum

nitride non-magnetic thin-film resistor (PN: PCNM2512K8R20FST5) as a heating

element (Figure 5.5(c)), thermally bonded to the MEMS cell surface using boron

nitrate paste and driven by a high efficiency AC driver at 274.699 kHz, a frequency

chosen in order to avoid aliasing with respect to the mains frequency, far outside

the bandwidth of interest of the OPM. The heating element covers a total heating

surface area of 20.2 mm2 equating to 67% coverage of the MEMS cell bottom-edge

surface and resulting in rapid heating. Figure 5.5(a) demonstrates the high thermal

uniformity (<0.5 ◦C thermal gradient) across the cell achieved through the described

ohmic-heating methods, as pictured with a thermal camera (Seek SKU: LW-AAA).

The vapour cell is insulated with calcium-magnesium silicate thermal insulat-

ing sheets (3-mm thick) across all faces and housed in a 3D printed enclosure to

create an insulated oven (Figure 5.5(b)). The printed enclosure is manufactured

using a Formlabs printer in High-Temperature V2 resin with a heat deflection tem-

perature of 238 ◦C at 0.45 MPa, ensuring that even at an operating temperature of

120 ◦C, the oven will not deform. Closed loop temperature feedback allows for stable

heating, using a non-magnetic T-type thermocouple mounted to the top of the cell

(Figure 5.5(c)) for temperature monitoring and a PID controller for temperature

control, as discussed in Section 3.2.4. The distance from the sensing area inside the

cell to the outside of the package measures 12 mm.

To test the requirement of a skin safe external sensor surface, the atomic vapour

cell is ohmically heated to a set temperature of 120 ◦C that is maintained for long

periods through closed-loop PID temperature control. The temperature of the cell,

TCell, and the external face of the sensor, TOuter, are measured directly using two

T-type thermocouples. Figure 5.6 shows the measured temperature responses. The
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time period shown here, >90 minutes, simulates sustained sensor operation.
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Figure 5.6: Temperature measurement (via T-type thermocouple) of the portable
caesium sensor for 90 minutes of cell heating, at the desired cell temperature
(TCell ' 120 ◦C). Ambient temperature ' 22 ◦C. The initial cell temperature
TCell ' 25 ◦C and the initial external face of the sensor temperature TOuter ' 21 ◦C.
Measured temperature of caesium MEMS cell (TCell), (solid line) and external face
of 3D printed case of the sensor TOuter, (dotted). Set temperature (dot-dashed) and
saturation temperature of sensor external face (dashed).

The PID heating system quickly reaches the cell set temperature in ∼100 seconds

and maintains a consistent (±0.5 ◦C) temperature throughout 90 minutes duration

once the set temperature is reached. The tuned PID parameters achieve an overshoot

of ≤ 0.5 ◦C.
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Figure 5.7: Temperature testing of the portable caesium sensor for 90 minutes of
cell heating, at the desired cell temperature (120 ◦C). The sensor external faces are
pictured with a thermal camera, colour indicates temperature from coolest (blue)
to hottest (red), at various points during the heating test. a) ' 5 minutes, b)
' 10 minutes and c) ' 90 minutes.

The sensor package’s outer surface saturates at a temperature of 36 ◦C, indicated

by the pink dashed line in 5.6(a), within 30 minutes. Figure 5.7 shows the sensor

external faces pictured with a thermal camera (Seek SKU: LW-AAA) at various

times during the heating test (' 5, ' 10 and ' 90 minutes), where the hot-spots of

the portable sensor’s surfaces are indicated in red and white.

5.4 Angular control of a quarter waveplate

Typically single-beam zero-field sensors require a circular component of polarisation

for efficient optical pumping [57]. However, we have experimentally found that the

sensor signal is improved through the use of elliptically polarised light. A quarter-

waveplate is used to convert linearly polarised light from the fibre to elliptically

polarised light before passing through the MEMS cell. To allow for investigation

of the optimal angle of the quarter waveplate, the sensor was designed to allow for

precise rotation of the waveplate. A custom design was required for the adjustable

mechanism for rotation because an appropriate commercial equivalent at a compact

scale, constructed from non-magnetic material, does not currently exist.
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5.4.1 Adjustable waveplate design

The adjustable waveplate achieves rotation by utilising a geared mechanism. The

selection of the gear type depends on the required configuration of the drive gear

and driven gear. In this use-case, access to any rotation mechanism once inside the

sensor package is constrained to only be accessed at 90 ◦ to the driving gear. Worm

gears are most suited to this orientation and provide high rotation precision for a

small footprint. The worm gear ratio, i, quantifies the resolution or precision of the

rotation and is defined by the number of gear teeth of the worm gear, n1, and the

number of helical threads that span the length of the shaft of the worm drive gear,

n2, where i = n1
n2

.

Figure 5.8 shows the full adjustable quarter-waveplate design (Aλ
4
). Here, the

waveplate is a 5-mm diameter quarter-waveplate. Figure 5.8(b) shows the worm

drive gear which has a single helical thread such that one turn of the worm drive

causes an advance of one tooth of the worm gear, n2 = 1, controlled through the

turning of a nylon screw embedded along its length. The worm gear is a 20 toothed

gear, n1 = 20, with an external diameter of 10 mm. The subsequent gear ratio,

i = 20:1, equates to 5 turns of the worm drive to give a π/2 retardation, moving

from fully linear to fully circular polarisation.
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Figure 5.8: Design of adjustable quarter-waveplate (Aλ
4
) a) isometric, b) part assem-

bled and c) exploded views. b) Photograph of titanium printed rotating waveplate
mechanism. A: 3D printed enclosure consisting of two push-fit parts with exter-
nal dimensions (17 × 14 × 12 mm3). B: Worm drive gear. C: Worm gear where
n2 = 20 and external diameter = 10 mm. D: Locating extrusions for retention cap.
E; 5.2 mm diameter O-rings. G; 5 mm diameter quarter-waveplate. F: Waveplate
retention cap.

Figure 5.8(a) shows external faces of rotating quarter-waveplate assembly with

total external dimensions of 17 × 14 × 12 mm3. The enclosure for all rotating

components consists of two push-fit parts. In Figure 5.8c all internal components

can be seen, exploded along the optical axis. The waveplate and gears must be

insensitive to movement as vibration of the waveplate can couple as polarisation

noise into the sensing atoms. To dampen vibration, two O-rings (5.2 mm external

diameter) are used to sandwich the quarter-waveplate into an internal ledge carved

into the worm gear, this is all secured by a retention cap that is notched to correspond

with 2 locator notches added to the worm gear.

All components (Figure 5.8c) of the adjustable quarter-waveplate design must

be entirely non-magnetic due to their close proximity to the sensing atoms within

the sensor package. The worm gear and drive gear require the highest accuracy,

robustness and finest resolution, as the minimum tooth resolution is defined by the

production method. These components are produced using titanium 3D printing

(25 µm minimum print resolution) by a commercial supplier. The choice of titanium

means wear and tear of the gear teeth is not a concern. The enclosure and retention

cap are 3D printed in Formlabs Grey Pro engineering resin (50 µm minimum print
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resolution).

5.4.2 Fine polarisation control
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Figure 5.9: Light polarisation corresponding to number of worm drive gear turns (n)
and angle (θ) between the waveplates axis and the plane of polarisation. Measured
state of polarisation mapped onto the Poincaré Sphere, based on measured Stokes
parameters (S1, S2, S3) [144]. Colour indicates the number of turns of the worm
gear (n). Inset are polarisation ellipses, constructed for 0, 2, 4, 6 and 8 turns,

The performance of the fabricated design described in Section 5.4 is seen in Fig-

ure 5.9. To test the polarisation, the rotating waveplate is mounted external to the

sensor package to allow a laser source to pass directly through the assembly optical

aperture. The resultant light is measured using a commercial polarisation analyser

(Schaefter-Kirchoff SK010PA-VIS). In quarter-turn increments, the worm drive gear

is rotated using a nylon screw embedded along the length of the titanium worm gear

drive, and the Stokes parameters (S1, S2, S3) [144] and degree of polarisation, p, are

recorded at each point.

Figure 5.9 shows polarisation changes smoothly and reliably with rotation of the
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worm drive gear, with varying ellipticity. The polarisation ellipses at 0, 2, 4, 6 and

8 turns are displayed as insets, to demonstrate shifting ellipticity with respect to

worm gear and waveplate rotation. The polarisation, starting at θ = 0, is expected

to wrap back around to this polarisation at θ = π which is demonstrated through

the measured polarisation with respect to rotations of the worm drive gear, n = 10.

Thus, the gear ratio (i = 20:1) is demonstrated.

The adjustable rotating waveplate assembly, once installed into the caesium

portable sensor, is operated through manually turning the worm drive screw. Due

to the small size of the sensor package, it is not possible to measure the polarisation

of the laser light inside the sensor with a commercial polarisation analyser. As such,

selection of the optimal polarisation is aided through interrogation of the direct re-

sponse of the atoms. This is achieved by continually sweeping the transverse Hanle

resonance, as described in Section 2.6.3, and measuring the resonance peak signal

amplitude, A0, with respect to the background signal, C, (Equation (2.38)). The

measured amplitude (A0 − C) is optimised by slowly turning the worm gear drive

in the direction that maximises this value, correlating to the optimal polarisation.

Experimentally we find the optimal polarisation is elliptical [57, 145].

5.5 Small footprint coil design

The SERF OPM sensor requires three-axis control of the magnetic field in the region

of the cell to maintain a zero-field environment. The coils described here are designed

as a custom component for assembly within the sensor package to occupy as small

a footprint within the sensor as possible without obscuring the beam path.

In order to minimize the footprint of the required coils, a deviation from the

typical Helmholtz configuration is necessary as 3-axis Helmholtz can be obstructive

to the beam axis and require a large footprint, as illustrated in Figure 5.10.

Bi-planar coils allow multi-axis magnetic field control while all coils are oriented

in a single plane. As such, bi-planar coils occupy a smaller footprint than a tra-

ditional Helmholtz design. Bi-planar coils have been utilised in zero-field sensing

both within an OPM sensor package [73] and external to the sensor through ac-
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Figure 5.10: Helmholtz coil pairs Cx, Cy and Cz, indicated by colour (blue, red and
green respectively), apply homogeneous fields across the x, y and z axes. Each coil
pair is separated by distance 20 mm. A defined homogeneous sensing region (shown
in purple) is centered between the coils which requires high homogeneity throughout,
shown with respect to a caesium MEMS Cell (external dimensions, 11×11×5 mm3).

tive field control inside a MSR [72]. However, while the calculation of the magnetic

field produced by the Helmholtz coil configuration is relatively straightforward using

Equation (3.1), the calculation of fields and wire routing for bi-planar coils is much

more complex. In such cases, open source software called bfieldtools [146, 147], a

specialised python package designed for calculating the current loops required to

create a B-field in complex geometries based on the specific constraints on the user,

can be a valuable tool. Bfieldtools can be used to define current loops, through a well

defined process [73], discussed further in Section 5.5.1, that produce a magnetic field

in the desired direction across a specified sensing region. For this use-case, bfield-

tools is used to create the coils Cx and Cz. A Helmholtz configuration is used for

Cy due to the relative computational ease required to produce a good solution with

the desired field and homogeneity. Circular geometry Helmholtz coils were selected

as curves are more manufacturable to PCB than geometries with right angles.

Figure 5.11(a) shows all three bi-planar coils with respect to the caesium MEMS

cell and a defined sensing area (shaded square), where red and blue indicate opposing

current directions, either clockwise or anti-clockwise. Each coil pair is positioned
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Figure 5.11: Coil pairs Cx, Cy and Cz apply homogeneous fields across the x, y
and z axes respectively. Each coil pair is separated by distance S = 20 mm, red
and blue indicate opposing current directions. Coils are designed for a defined
homogeneous sensing region (shown in purple) centered between the coils which
requires high homogeneity throughout. a) All three coil pairs location with respect
to caesium MEMS Cell (external dimensions, 11×11×5 mm3). b) Coil pair location
is indicated by grey lines, vector arrows across the sensing region show individual
coil pair magnetic field direction.

symmetrically about the sensing area. The details of each coil will be given shortly,

in Section 5.5.2. Figure 5.11(b) illustrates the direction (indicated by the vector

arrow) of the homogeneous magnetic field produced by each coil (Cx, Cz and Cy)

across the sensing area (in purple), between a coil pair separated by distance S

across the yz-plane.

5.5.1 Bi-planar coil design process

The process for designing a coil using bfieldtools involves the following steps, demon-

strated by the prototype seen in Figure 5.12:

1. Specifying the geometry, sensing area, and field direction of the coil.

2. Using bfieldtools stream-function optimisation to generate a surface current
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map, Figure 5.12(a).

3. Converting the surface into current loops, with the number of loops, N , deter-

mining the complexity of the design, Figure 5.12(b) where N = 4.

4. Extracting the field-to-current ratio, βModelled, and homogeneity of the design.

Homogeneity of the modelled field is illustrated in Figure 5.12(c) by the vectors

indicating field direction and amplitude across a central cubic sensing area.

5. Combining the individual loops into a single coil current path that can be

produced through wire or PCB. A 3D modelled coil former for coil winding is

illustrated in Figure 5.12(d).

6. Fabricating the optimised coil design. A photograph of the hand wound coil

using the coil former is shown in Figure 5.12(e) using 22 american wire gauge

(AWG) wire.

7. Testing and evaluating the coil’s performance to ensure it meets the desired

specifications, Figure 5.12(f). In this example a high precision fluxgate (Bart-

ington, Mag-13MS60) was utilised to confirm B-field magnitude across all axes.

In the sensor package, the homogenity will ultimately be tested by the atoms.
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(a) (b) (c)

(d) (e) (f)

Figure 5.12: The process for designing bi-planar coils using bfieldtools. Red and
blue indicate opposing current directions. a) A surface current map generated using
bfieldtools stream-function optimisation. b) Current loops derived from the surface
current map. The number of loops, N , determines the complexity of the design,
N = 4. c) The field-to-current ratio extracted from the current loops allows for
estimation of field homogeneity across the sensing region. The vectors indicate field
direction and amplitude across a central cubic sensing area. d) A 3D modelled coil
former design for hand winding the individual current loops with a single wire. e)
A photograph of the hand wound coil, using 22 AWG wire, in the coil former, 3D
printed in PLA. f) A photograph of the testing setup to measure the coils field
magnitude using a high precision fluxgate (Bartington, Mag-13MS60).

5.5.2 Bi-planar PCB

Field control across 3-axis of the portable caesium sensor is achieved through bi-

planar coils seen in Figure 5.13, which sit on the yz-plane of the portable sensor,

either side of the MEMS cell. By utilising the process described in Section 5.5.1,

the bfieldtools package was used to design the coils along x-axis and z-axis, and a

Helmholtz configuration was used on the remaining y-axis.

The current contours (Figure 5.13 (a),(d) & (g)) provide a homogeneous magnetic

field across the defined sensing area in the desired direction. The homogeneity of the

magnetic field produced across the sensing region for each coil design (Cx, Cy and
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Figure 5.13: Version 1: 3-axis bi-planar coils assembled across the yz-plane of the
portable sensor. Each axis (x,y and z) has a respective unique coil design Cx,
Cy and Cz, indicated in each subplot. a,d,g) bfieldtools current contours (N =
4) produced for the specified desired field, red and blue indicate opposing current
directions. b,e,h) modelled magnetic field homogeneity, based on the bfieldtools
current contours, calculated across the full region between coil pairs, with sensing
regions highlighted in purple. c,f,i) Photograph of manufactured PCB designed
based on bfieldtools current loops shown in a,d,g.
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CZ) is modelled to verify the coil design suitability. Figure 5.13 (b),(e) & (h) show

the modelled magnetic field homogeneity, based on the bfieldtools current contours,

across the full region between the coil pairs on the yz-plane, where the sensing region

(MEMS cell) is highlighted in purple.

PCBs are designed for each coil in KiCAD, in accordance with PCB design prac-

tices and manufacturer tolerances, as seen in Figure 5.13 (c),(f) & (i). An individual

PCB is designed for each coil pair, with the coil contained within a 20 × 20 mm2

area on the PCB. Each coil design is manufactured on a 0.4-mm thick 2-layer PCB.

The coil pairs are installed in the portable sensor package in a configuration where

3 coils are stacked on each side of the sensor. Wire routing between corresponding

coil pairs is achieved through manual wiring of 26 AWG twisted wire pairs. The

expected magnetic field and homogeneity of PCB coils is confirmed through cali-

bration by comparison of the measured magnetic resonance (through sweeping the

magnetic field across one axis) with a well-calibrated external set of coils [148]. All

coils produced fields within 1% of expected calculated values, Table 5.1 (described

as V1 coils).

The PCB bi-planar coils shown in Figure 5.13, hereby referred to as V1, act as a

proof of concept for the design and manufacture of the bi-planar coils. The results

taken with the portable SERF OPM sensor throughout this thesis are taken with the

sensor that uses the V1 coils. However, the field-to-current ratio, βModelled, is rela-

tively low (Table 5.1). The current noise introduced by the coil driver is in the nA

regime, leading to a maximum of ' 40 fT/
√

Hz contribution in magnetic noise (for a

1 µT applied field), for the V1 coils. To reduce the effect of current noise, the field-

to-current ratio can be improved by increasing the number of contours, N , in the

bfieldtools definition (for the Helmholtz coil, N is the number of turns). Figure 5.14

illustrates the linearity of βModelled with respect to N , with the insets showing the

coil designs for various numbers of contours, N = 2, 4, 10 and 20. The βModelled here

is modelled for coils of equal geometry and sensing area, using bfieldtools. The insets

of Figure 5.14 illustrate the a trade-off between complexity and manufacturability,

as the higher contour designs (such as N = 20) are more intricate. In the context of

113



Chapter 5. A portable OPM for biomagnetic sensing

0 2 4 6 8 10 12 14 16 18 20

0

10

20

30

N

β
M

o
d
e
ll
e
d

(n
T

/
m

A
)

Figure 5.14: Bfieldtools generated current loops for coils of external dimensions,
20×20 mm2, across a sensing region of 8×8×8 mm3. Each coil pair is separated by
distance S = 20 mm, red and blue indicate opposing current directions. The coils
were generated with a varying number of contours, N and the corresponding field-
to-current ratio, βModelled, modelled. Insets show the current contours and vector
field experienced across the sensing area for N = 2, 4, 10 and 20.

producing PCBs, these high complexity designs require smaller tracks to accommo-

date the increase of contours, which is ultimately restricted by minimum track width

and minimum track separation capabilities of the PCB manufacturer. As such, the

geometry and manufacturer of the PCBs heavily dictates the manufacturability, in

this case N = 10 is the maximum complexity achievable for the small size of the

PCBs (20× 20 mm2) based on the feasibility of track width.

Table 5.1: Bi-planar coil field to current ratios. Axis; Direction of B-field. Version;
PCB coil version. Expected; modelled field-to-current ratio (nT/mA) from bfield-
tools. Measured; experimentally measured field-to-current ratio (nT/mA) using the
well-calibrated SERF OPM. Homogeneity (%); Average deviation across the sensing
region with respect to the expected field-to-current ratio, from numerical simulation.

Axis Version Expected (nT/mA) Measured (nT/mA) Homogeneity (%)

x V1 9 9.0 '93
y V1 12 11.9 '88
z V1 9 9.0 '93

x V2 27 27.1 '97
y V2 36 36.0 '94
x V2 27 27.0 '97

Based on the complexity investigation carried out in Figure 5.14, version 2 of
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the bi-planar PCB coils, referred to as V2, is based on N = 10 for the x and

z-axes, and N = 3 for the Helmholtz coil on the y-axes. The full design of the

contours, homogeneity and PCB designs can be seen in Figure 5.15. The V2 coils

were validated in the same method as the V1 coils, through direct measurement.

As summarised in Table 5.1 the V2 coils have a proven 3 times increase in field-to-

current ratio, and an overall improvement in homogeneity across the sensing region.
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Figure 5.15: Version 2: 3-axis bi-planar coils assembled across the yz-plane of the
portable sensor. Each axis (x,y and z) has a respective unique coil design Cx,
Cy and Cz, indicated in each subplot. a,d,g) bfieldtools current contours (N =
10) produced for the specified desired field, red and blue indicate opposing current
directions. b,e,h) modelled magnetic field homogeneity, based on the bfieldtools
current contours, calculated across the full region between coil pairs, with sensing
regions highlighted in purple. c,f,i) Photograph of manufactured PCB designed
based on bfieldtools current loops shown in a,d,g.
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Table 5.2: Definition of all optimised operational parameters (p), with corresponding
units. Optimised Value (p), the optimised value for each parameter, found using the
methods described in Chapter 4.

Parameter Optimised Value (p) Unit

Temperature (T) 115 ◦C
Laser power (LP) 5.6 mW
Laser detuning (LD) 6.7 GHz
Modulation amplitude (BMod) 226 nT
Modulation frequency (ωMod) 365 Hz

5.6 Sensor operation

Up to now, this chapter has described a portable version of the sensor hardware

from Chapter 3. The system control and signal extraction is the same as described

there, in Section 3.3. The zero field magnetometer utilises the Hanle effect to detect

changes in the magnetic field through an absorption measurement, as discussed in

Chapter 2. The Hanle effect is used to detect and cancel the residual magnetic fields

in three axes through application of the magnetic field values required to cancel

any static residual fields (Bx0, By0, and Bz0). In the same method as discussed in

Chapter 3, magnetic modulation across the sensitive axis, and a lock-in detection

scheme allows for measurement of the atomic response as a time domain series,

from which frequency domain information can also be extracted. Some biomagnetic

signals are observed in the frequency domain (MEG) and others in the time domain

(MCG), both of which will be measured in the following sections.

All operational parameters, summarised in Table 5.2, for the prototype sensor

were optimised for sensitivity performance using the methods described in Chapter 4.

Operation at these parameters results in an estimated magnetic resonance linewidth

where Γ= 170 nT.

The bandwidth of the sensor is characterised, as shown in Figure 5.16, through

recovery of the amplitude of an applied sine wave across the sensitive axis, at 1 nT

scale, for a logarithmic range of frequencies between 1 Hz and 40 kHz. The oper-

ational parameters in Table 5.2 were used, however the modulation frequency was
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increased to ' 1100 Hz, without any change to the measured linewidth or signif-

icant loss in sensitivity, as we expected this frequency to be outside the expected

bandwidth. A 2nd order low-pass filter response was fit to the measured data, with

a 3db point of ' 1600 Hz. The region of linear response with respect to frequency of

the sensor occurs up to ' 900 Hz. The photodiode has a 16 kHz hardware low-pass

filter, which manifests as a higher order response at > 16 kHz as seen in Figure 5.16.
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Figure 5.16: Measured bandwidth, characterised through recovery of the amplitude
of an applied sine wave, applied at 1 nT magnitude, at various frequencies. The
applied modulation frequency ±10 % is indicated by the gray shaded area, recovered
test signal data within this region has greater uncertainty due to proximity to the
modulation frequency. A 2nd order low-pass filter was fit to the measured data,
with a 3 db point at ' 1600 Hz.

5.7 Bio-magnetism measurements

This section will discuss practical implementation of the described portable sensor,

to test the suitability of the device for measuring real biomagnetic signals. The

University of Nottingham provided access to their MSR facilities at the Sir Peter

Mansfield Centre, allowing for biomagnetic measurements of multiple participants

for MCG and MEG. The experimental paradigms and results of these biomagnetic

measurements are discussed in the following sections. Use of the portable sensor in

this setting, outside of a controlled laboratory environment, highlighted a number

of ways to improve both the sensor design, mounting and control, which will be

discussed in more detail at the end of this section.
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5.7.1 Magnetocardiography

To demonstrate the practical nature of the prototype sensor, a biomagnetic mea-

surement was made in which the magnetic signal of the human heart was measured.

MCG has gained research interest due to functional and clinical benefits pertaining

to cardiac source location accuracy in comparison to electrocardiography [149,150].

MCG measurements with SERF OPMs have been widely used as a viable demonstra-

tion of OPM portability, sensitivity and suitability for biomagnetic measurements

for both single [151] and multichannel systems [126,127,152,153].
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Figure 5.17: Magnetocardiogram setup for the prototype caesium portable sensor.
a) The participant is seated on non-magnetic furniture with their chest close to the
prototype sensor. A commercial sensor (QuSpin QZFM Gen-2) is mounted 10 cm
from the prototype sensor. Inset shows both sensor locations, the sensitive axis of
the prototype sensor indicated with a white arrow and the 3D printed table/ sensor
mounts. b) Participant with respect to MSR and sensor control electronics (housed
external to MSR). c) Photograph of participant leaning against the stationary sen-
sors with the prototype sensor central with respect to their chest.

Figure 5.17 shows the MCG setup for the caesium portable sensor. A mag-

netocardiogram measurement from a human subject was taken. Four participants

(named Participant 0 to 3) took part in the study. The participants gave written,

informed consent, and the study was approved by the University of Nottingham
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Medical School Research Ethics Committee. The MCG measurement took place

inside a MSR (Vacuumschmelze Ak3b with two layers of MuMetal and one layer of

copper).

The experimental setup of the measurement of the MCG measurement is as

follows; the participant to be measured sits within the MSR on non-magnetic fur-

niture. The prototype caesium sensor is mounted to the non-magnetic furniture

with 3D printed table and sensor mounts, seen in Figure 5.17(a) inset. A commer-

cial sensor (QuSpin QZFM Gen-2) is mounted 10 cm from the prototype sensor, to

facilitate concurrent measurement for signal verification. The QuSpin has a sensi-

tivity of < 15 fT/
√

Hz in the band between 3-100 Hz. The participant placed their

chest close to the stationary sensors to align with their approximate heart location,

Figure 5.17(c).

The portable sensor cabling, which comprises of control signals, detection and

optical fibre, were routed through a small hatch in the MSR. All control electronics

are housed outside of the MSR, Figure 5.17(b), including the laser driver, coil driver,

transimpedance amplifier, heater driver, and data acquisition unit. Physically shield-

ing the sensor from the driving electronics signals reduces the noise contributions

and improves the sensitivity of the sensor.

The prototype caesium portable sensor has been successfully used for MCG for

all participants. The MCG measured response, after the application of a 30 Hz

low-pass filter, for Participant 0 using the portable caesium prototype sensor and

QuSpin QZFM Gen-2 sensor over a 60 s time period is shown in Figure 5.18. A

low frequency oscillation (' 0.1 Hz) due to breathing is expected [154, 155] and

visible in the responses of both sensors. The deviation in alignment of the breathing

oscillation in the two responses is likely due to the movement of the chest varying

with respect to the offset of the placement of the sensors.
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Figure 5.18: Magnetocardiogram measured of Participant 0 using the portable cae-
sium prototype sensor and QuSpin QZFM Gen-2 sensor inside a MSR over a 60 s
time period. Low frequency oscillation (' 0.1 Hz) due to breathing is visible in the
responses of both sensors.

The cardiac signal is resolvable in both sensors responses, without any averag-

ing, as shown in Figure 5.19(a). The SNR of the caesium prototype sensor signal

is improved by averaging over multiple heartbeats, shown in Figure 5.19(b), after

triggering the signal with respect to the QuSpin peak. To understand the effect of

averaging, we must quantify the SNRs for both sensors.
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Figure 5.19: Magnetocardiogram measured using the portable caesium prototype
sensor and QuSpin QZFM Gen-2 sensor inside a MSR, using a band-pass filter
from 1-40 Hz. a) Real-time responses of both sensors, without averaging. b) Both
responses averaged across 60 heartbeats.

An approximation of the SNR can be extracted from the measured response [156],

through estimation of the peak-to-peak amplitude of the R peak to the S peak, AR−S,
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in the QRS complex [157], as illustrated in Figure 5.20(a), such that;

SNR =
AR−S

σNoise
, (5.1)

where σNoise denotes the standard deviation of the noise.

Figure 5.20 shows a single cardiac trace extracted from the MCG measurement

taken of Participant 0, after the application of a more narrow 1-25 Hz band-pass

filter, to aid identification of lineshape features. The QuSpin QZFM Gen-2 sensor

measurement for a single cardiac trace averaged across 10 heartbeats is shown in

Figure 5.20(a), where the P-QRS-T features [158] of the cardiac signal are also

indicated. From Figure 5.20(a), an approximation of the SNR for the QuSpin sensor

SNRQuSpin, can be extracted, where AR−S ' 40 pT and σNoise ' 2 pT, such that

SNRQuSpin ' 20. The caesium portable sensor measurement for a single cardiac

trace with various amounts of averaging are shown in Figure 5.20(b). Averaging of

the caesium portable sensor MCG signal was achieved by synchronising the R peak

of the QuSpin waveform, using sequentially recorded heartbeats from the MCG

data. From Figure 5.20(b), using the trace without averaging, an approximation

of the SNR for the caesium sensor SNRCs, can be extracted, where AR−S ' 90 pT

and σNoise ' 10 pT, such that SNRCs ' 9. It is likely that the laser and the fibre

coupling the light to the sensor head contribute a large amount of uncorrelated noise

to the measurement over the measurement window for the caesium portable sensor.

The SNR of the caesium prototype sensor, SNRCs, improves with averaging such

that SNRCs ' 30 for the average of 60 heartbeats, as shown Figure 5.20(b). The

SNR improvement is largely due to the noise, σNoise, decreasing with the higher-

number of averages. However, the peak-to-peak amplitude of the R peak to the S

peak, AR−S, is also attenuated through the use of more averages. Figure 5.20(b)

demonstrates that the R and S peaks are resolvable from the caesium prototype

sensor response without any averaging. Furthermore, the P-QRS and T peaks are

visible and resolvable from the caesium prototype sensor response with the use of

any averaging, including for only 10 heartbeats.
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Figure 5.20: Magnetocardiogram measured using the portable caesium prototype
sensor (indicated in grey) and QuSpin QZFM Gen-2 sensor (indicated in red) inside
a MSR, for a single participants (Participant 0). All responses are filtered, using a
band-pass filter from 1-25 Hz. a) QuSpin response without averaging. b) Portable
sensor response, averaged across a range of number of heartbeats: 0 (No Averaging),
10, 30 and 60.

The MCG measurements taken for the remaining participants (1,2 and 3) show

good alignment between the recordings taken using the portable caesium prototype

sensor and QuSpin QZFM Gen-2 sensor, illustrated in Figure 5.21. The recorded

signals for Participant 1, Figure 5.21(a), shows an apparent delay between the R

and S peaks in the cardiac traces found from the separate sensors. This deviation

in cardiac line shape is presumably caused by the positioning of the sensors relative

to the dipole field of the heart [126, 159]. The measurements of Participant 2,

Figure 5.21(b), shows good alignment between the two sensor recordings, however
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there is a decrease in SNR comparative to Participant 0, likely due to the standoff

distance between the participants chest and the sensor. In future measurements, a

mechanism or mount to ensure a constant stand-off distance between the sensor and

signal is advisable, particularly to ensure consistency between participants. Finally,

the recorded MCG for Participant 3 Figure 5.21(c) is a much lower amplitude than

the other participants for both sensors, which is again likely due to both placement

and stand-off distance of the sensors to the signal.
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Figure 5.21: Magnetocardiogram measured using the portable caesium prototype
sensor (indicated in grey) and QuSpin QZFM Gen-2 sensor (indicated in red), inside
a MSR, for a multiple participants (1,2 and 3). All responses are averaged across
20 heartbeats, using a band-pass filter from 1-40 Hz. a,b,c) Illustrate the measured
MCG and photograph of the measurement, for participants 1, 2 and 3 respectively.

5.7.2 First trials of magnetoencepholography

To further demonstrate the practical nature of the prototype sensor, a biomagnetic

measurement was made in which the magnetic signal of the human brain was mea-

sured. Neural signals caused by electric currents flowing in neurons in the brain

occur with an estimated peak-to-peak amplitude of ' 120 mV in pulses within the

human brain [9]. The oscillation frequency, typically ranging from 0.2 to 100 Hz, is
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linked to different neural functions [160]. Alpha-band oscillations, 8–13 Hz [3], were

chosen for this measurement due to these signals being among the largest amplitude

recorded from the brain.

MEG has gained research interest due to functional and clinical benefits per-

taining to neural source location accuracy [87, 161] in comparison to EEG. Direct

detection of neural signals through EEG has shown poor spatial resolution due to

participant’s movements and signal distortion as electrical fields pass through inho-

mogeneous biological media of the brain tissue and skull [9]. MEG techniques mea-

sure the corresponding biomagnetic fields of post-synaptic volume currents where

these magnetic fields are not subject to deformation by biological media surrounding

the brain. As such, spatial resolution for MEG is typically better than EEG [18]

whilst maintaining high (ms) temporal resolution [9, 21]. MEG measurements with

SERF OPMs have been widely used as a viable demonstration of OPM portability,

sensitivity and suitability for biomagnetic measurements for both single [51] and

multichannel systems [124,125,162–166]

Figure 5.22 shows the MEG setup for the caesium portable sensor. A magnetoen-

cephalogram alpha-band measurement from a human subject was taken. A single

participant (Participant 4) took part in the study. The participant gave written,

informed consent, and the study was approved by the University of Nottingham

Medical School Research Ethics Committee. The MEG measurement took place

inside the same MSR as the MCG measurement.
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Figure 5.22: Magnetocardiogram setup for the prototype caesium portable sensor.
a) The participant is seated on non-magnetic furniture with the base of their head
close to the prototype sensor. The commercial SERF sensor (QuSpin QZFM Gen-
2) or the prototype sensor are used in this position sequentially. Inset show the
portable sensor location with respect to the participants head, the sensitive axis of
the prototype sensor indicated with a white arrow and the 3D printed table/ sensor
mounts. b) Participant with respect to MSR and sensor control electronics (housed
external to MSR). c) Photograph of Participant 4 leaning against the stationary
commercial sensor, central with respect to the base of their head.

The experimental paradigm of the MEG measurement is as follows; the partici-

pant to be measured sits within the MSR on non-magnetic furniture. The prototype

caesium sensor is mounted to the same non-magnetic furniture and 3D printed table

and sensor mounts as the MCG measurement, seen in Figure 5.22(a) inset. The

location of the sensor with respect to the head is of high importance for MEG mea-

surements, and needs to accurate to mm-level [18]. The commercial sensor (QuSpin

QZFM Gen-2) cannot be mounted closer than 10 cm to the prototype sensor, due

to sensor cross-talk, which rules out the possibility of concurrent measurement for

signal verification. The measurements were taken sequentially, first for the QuSpin

sensor, followed by the caesium portable sensor. The participant placed the base

of their head close to the stationary sensors to align with their approximate alpha-
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band signal location, Figure 5.22(c). The participants neural activity is measured

for 180 s with their eyes open, followed by 180 s with their eyes closed, to stimulated

alpha-band neural oscillations [167].

As with the MCG measurement, all control electronics are housed outside of the

MSR, Figure 5.22(b); physically shielding the sensor from the driving electronics

signals reduces the noise contributions and improves the sensitivity of the sensor.

The MEG measured response, after the application of a 2-25 Hz band-pass filter,

for Participant 5 measured over 180 s with eyes open and 180 s with eyes closed

is shown in Figure 5.23, where the alpha frequency-band of interest (8–13 Hz) is

highlighted in grey. The PSD is utilised to provide frequency information, using the

methods described in Chapter 3, where 18 s of data is averaged 10 times for each state

(eyes open or closed). The response using the portable caesium prototype sensor,

is shown in Figure 5.23(a) and the QuSpin QZFM Gen-2 sensor, Figure 5.23(b). In

this format, we expect a typical alpha-band response to manifest as an increase in

signal amplitude, when the eyes are closed, at several points across the alpha-band

frequency range [85, 168, 169]. It appears the two sensors have measured similar

frequency trends with eyes closed versus eyes open across the alpha frequency-band,

with a clear spike at ' 8 Hz for both sensors when the participant had their eyes

closed. However, without repetition of this measurement or simultaneous recording,

it cannot be definitively stated whether an alpha-band MEG signal is measured with

either sensor. Both sensors show the same noise spikes at ' 4 Hz and ' 7 Hz, that

appear to be location specific to the Nottingham MSR.
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Figure 5.23: Magnetoencephalogram illustrated through an average
√

PSD produced
by averaging 18 s of data 10 times. Alpha-band frequency (8–13 Hz), highlighted by
shaded gray area. The participant kept their eyes open for 180 s, followed by 180 s
when their eyes were closed. The Cs portable sensor MEG is illustrated in a), and
the QuSpin QZFM Gen-2 sensor is illustrated in b).

The noise floor and sensitivity of the caesium portable sensor, at the point of

development during the biomagnetic measurements, also acted as a inhibiting factor

to this measurement. The noise floor, measured in a quiet magnetically shielded

environment while no external signals are introduced, over 1 s intervals, allows the

inherent noise of the sensor to be assessed. The geometric mean over the defined

frequency-band of interest (5-20 Hz) produces a sensitivity figure of merit, as dis-

cussed in Chapter 2. Figure 5.24 shows the noise floor and sensitivity estimates

for the caesium sensor in two states, 1) pre-optimised and 2) optimised. The pre-

optimised sensor, with an estimated 440 fT/
√

Hz sensitivity, was taken at the point

of development in which the MEG measurements were taken. The sensitivity limit

can be seen in Figure 5.23(a), manifesting as an elevated base level of noise in con-

trast to the commercial sensor in Figure 5.23(b).

The optimised sensor sensitivity of 90 fT/
√

Hz, Figure 5.24, was found through

optimisation activities, using the methods described in Chapter 4. With this im-

proved sensitivity, we would expect to be able to distinguish features in a similar

alpha-band MEG measurement to much greater clarity.
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Figure 5.24: Measured magnetic noise floor of the sensor, dashed line indicates
geometric mean calculated in the frequency-band of interest (5-20 Hz). This mea-
surement was taken in a 5-layer mu-metal shield (Magnetic Shields Limited).

5.7.3 Practical biomagnetic measurements: Lessons learned

Use of the portable sensor in the MSR facilities at the Sir Peter Mansfield Centre,

outside of a controlled laboratory environment, highlighted the following points:

• Temperature stabilisation

The opening and closing of the MSR door between measurements caused influ-

ential temperature drifts, ≤ 5 ◦C, of the cell temperature. This is an issue that

I had not encountered in the laboratory environment as the sensor is typically

shielded from any air currents when inside the magnetic shields. As such, the

temperature drifts highlighted the need for quicker temperature stabilisation

methods, inspiring the research discussed in Section 3.2.4.

• Zero-field identification and correction

The prototype sensor taken to Nottingham still utilised the exhaustive 2D

mechanism for identifying the zero-field points across the x-axis and z-axis,

which took around ' 2 minutes. During practical measurement, the shield

doors opened and the participant changed regularly, which required frequent
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identification of zero-field that ultimately accumulated into a lot of measure-

ment time across the day. As such, I developed the quick zero-field identifica-

tion method on return to the laboratory, as discussed in Section 3.3.1, reducing

the total time required to identify zero-field to 8 s.

• Alignment of the sensitive axis

The orientation of the sensor with respect to both the cardiac and neural

measurements was not consistent between measurements or participants. This

is highlighted in the variance of MCG line-shapes seen in Figure 5.21 between

participants. This demonstrates the need for the development of signal specific

mounts to be produced that ensure a consistent stand-off and alignment to the

signal source for future measurements, as seen for MEG helmets [125] or MCG

chest mounts [126].

• Other hardware and software improvements

A number of smaller further hardware improvements were also highlighted,

such as the cabling used on the prototype introducing pickup of noise during

measurement, leading to the use of different shielded cable for the next proto-

type. Software improvements were also highlighted, such as the need for live

data monitoring for sensor to assist alignment of the sensor.

5.8 Portable sensor: Discussion

I have presented the design of a prototype single-beam caesium portable sensor and

proved its suitability for use in biomagnetic measurements through a demonstrated

MCG measurement. Key miniature and microfabricated elements of a prototype

portable sensor were presented and shown to have been successfully implemented.

The heating, temperature control and insulation methods can maintain the re-

quired cell temperature for prolonged timescales (> 90 minutes) while the package

outer remains at skin safe temperatures (< 37 ◦C). This supports both the use of

these heating and insulation methods, and also the use of caesium in this application

due to lower heating requirements compared to other alkalis and subsequent lower
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external temperature.

Miniaturized bi-planar coils are implemented to provide 3-axis fields with a very

small footprint within the sensor, with a high degree of field homogeneity across

the sensing area. Future improvements to the coil design will increase the field to

current ratio of the coils, to allow for greater field control.

While the prototype portable sensor is larger than similar commercial sensors,

there is scope for further miniaturisation using many of the design techniques im-

plemented here. Bi-planar PCB coils can be made for any future custom geometry

in the same method as presented above. All 3D printed components (such as high

temperature optical inserts) are designed and manufactured fully in-house. A pro-

fessional product designer would be able to make reductions of ≥ 10 % on each

dimension through improvements such as reduced wall thicknesses, optimised posi-

tioning of components and compact waveplate mount design. However, we note that

the development of MEMS cell production in-house is still progressing. Ultimately,

the target is a footprint of 20 mm2,

The caesium single beam prototype sensor has a peak sensitivity of 90 fT/
√

Hz.

Limitations to sensitivity are predominantly due to laser noise. As such, future

improvements include the reduction of common mode noise using differential mea-

surement [51, 170], for which the sensor package has been designed. Transition to

an on-package laser source such as a vertical-cavity surface-emitting laser (VCSEL)

would also aid optical noise, especially noise introduced due to the optical fibre.

The single beam prototype sensor has a measured bandwidth of ' 1600 Hz with a

linear response up to ' 900 Hz, illustrated in Figure 5.16. This marks a considerable

improvement on the reported bandwidth of commercial rubidium sensors, with a

linear frequency response up to ' 130 Hz [87,140].

The prototype portable single-beam caesium SERF sensor described here is a

step towards the development of a sensor with suitable sensitivity and bandwidth

for a range of biomagnetic measurements if further development with regards to noise

characterisation and miniaturisation are realised. This sensor serves as a test-bed

for novel and improved components.
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Summary and conclusions

6.1 Summary of work

This thesis presents a single-beam SERF magnetometer using caesium as the sens-

ing alkali within a microfabricated atomic vapour cell. SERF magnetometry was a

novel endeavor for the Experimental Quantum Optics and Photonics group at the

University of Strathclyde. Hence, all aspects of the project, including its develop-

ment, have been built entirely from scratch over the course of the past four years.

The main aims for this work, 1) operating at a lower temperature and 2) obtain-

ing a higher bandwidth sensor, were both motivated by the stipulations for human

biomagnetic measurements, particularly magnetoencephalography. The work in this

thesis demonstrates how I have achieved both of these aims.

The designed and constructed prototype single-beam Cs sensor is suitable for

use in biomagnetic measurements as proven through a demonstrated MCG mea-

surement. Miniature and microfabricated elements of the sensor have been success-

fully employed to created a sensor package with portable scale external dimensions

of 25 × 25 × 50 mm3, reaching the goal of a portable package with a footprint of

' 625 mm3, less than a square inch. Miniaturised bi-planar coils provide 3-axis

static magnetic field control and an additional oscillating magnetic field across the

y−axis, with a very small footprint within the sensor and a high degree of field

homogeneity across the sensing area. An improved design of the coils has also
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been proposed that provides more field for less current, with view of decreasing the

amount of current noise experienced by the sensing atoms. High efficiency (> 90 %)

AC heating of a MEMS vapour cell has also been successfully achieved with au-

tomatic and stable temperature control. Combination of the efficient cell heating

and the insulation methods maintain the required cell temperature for prolonged

timescales (> 1 hour) whilst maintaining a skin-safe (< 41 ◦C) external face of the

sensor.

The optimised sensitivity of the sensor was achieved through careful selection

and intelligent optimisation of constituent components and operational parame-

ters. A number of automated machine learning methods were designed and im-

plemented that significantly improved the sensitivity of the SERF magnetometer,

from ' 500 fT/
√

Hz to 109 fT/
√

Hz across a frequency band of 5 to 20 Hz. The

machine learning techniques were thus proven as suitable for application within

a magnetometry experiment with multi-parameters related by complex dynamics.

Through development of the machine learning toolkit, the digitally selectable pa-

rameters were successfully optimised including cell temperature, laser power and

frequency, and the modulation depth and frequency. Furthermore, the machine

learning toolkit allowed for optimisation of physical experimental changes provided

by the quick benchmarking of the optimised sensitivity after implementing the hard-

ware change. This hardware optimisation is demonstrated through the testing of

multiple atomic vapour cells with varying buffer gas pressures to quantify the effect

of nitrogen buffer gas pressure on the measured optimised sensitivity. Here I proved

that increasing nitrogen buffer gas pressure linearly increased sensitivity capabilities

such that an approximate 3 fT/
√

Hz sensitivity gain is provided for every 1 Torr of

buffer gas added to the atomic vapour cell in the range tested. A focus of work in

the immediate future will be to investigate the extent of this performance increase.

The machine learning optimisation of atomic vapour cell buffer gas pressure lead

to the selection of an atomic vapour cell with 225 Torr of nitrogen buffer gas that

produced an optimised sensitivity of 90 fT/
√

Hz in the frequency band of 5 to 20 Hz.

A primary motivator for the work in this thesis was to prove the effectiveness

133



Chapter 6. Summary and conclusions

of caesium as the sensing alkali in a SERF magnetometer for detecting biomagnetic

signals. The significant advantage of the use of caesium over other typically used

alkali’s, such as rubidium, is the reduced cell temperature required to reach the de-

sired atomic density in an atomic vapour cell of the equivalent volume. The external

surface of the portable sensor never exceeds 37 ◦C, eliminating the requirement for

a stand-off distance between the sensor and the participants skin during biomag-

netic measurements. Stand-off distances are regularly employed for rubidium based

SERF sensors due to high external package temperatures (far exceeding skin-safe

guidance). The stand-off distance, reported at ' 5 mm for a commercial rubidium

based sensor [171], reduces the measured magnetic field as an inverse function of

the distance cubed. For the caesium based SERF magnetometer the reduction in

stand-off distance may compensate for the slightly reduced sensitivity capabilities.

The use of caesium as the sensing alkali has additionally led to increased band-

width capabilities. The demonstrated bandwidth of ' 1600 Hz, accompanied by

a linear response up to ' 900 Hz, signifies a notable advancement compared to

commercially available rubidium sensors. This increase in bandwidth provides the

opportunity for the sensor to be used in measurement schemes where the frequency

of the biomagnetic signal is expected to be far above 100 Hz.

Overall, the prototype portable single-beam caesium SERF sensor demonstrated

in this thesis is a step towards developing a sensor with suitable sensitivity and

bandwidth for a range of biomagnetic measurements. Through careful component

selection and intelligent design, the external dimensions of the prototype sensor could

be reduced by ≥ 10 % in each dimension. Additionally, further development of the

portable caesium SERF magnetometer could be pursued to improve its sensitivity

through further optimisation of hardware (such as through use of an atomic vapour

cell with nitrogen buffer pressure > 225 Torr) and reduction of optical and technical

noise sources. Ultimately, this research lays the groundwork for the development

of non-invasive diagnostic tools for biomagnetic medical imaging and monitoring

techniques with the use of caesium atoms.
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6.2 Future work

Future work for this research will involve expanding the types of biomagnetic sig-

nals detected beyond cardiac signals. With the proven sensitivity of the caesium

SERF magnetometer, it should be possible to measure a range of biomagnetic sig-

nals such as neural activity through MEG, and muscle measurements in through

magnetomyography. Figure 6.1 illustrates a proposed setup for a magnetomyogra-

phy measurement using the portable caesium SERF sensor in the current prototype

package, and using the shielding and equipment described throughout this thesis.

A measurement in this scheme would require participant involvement specifically

through the tensing of the participants fist in regular intervals. The measured bio-

magnetic signal will manifest as heightened activity across a wide range of frequency

bands during the periods of tension due to multiple oscillating biomagnetic signals

being triggered by the clenching of a fist.
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Figure 6.1: A proposed setup for a magnetomyography measurement of the forearm
of a participant, using the portable sensor in the current prototype package. The
sensor is housed and mounted inside a 5 layer shield in the laboratory environment.
a) The participant is stood at the opening of the shield, with their arm close to the
prototype sensor. b) The expected magnetic signal and field lines with respect to
the participants arm. c) Model of the 3D printed mounts and arms rests that will
ensure alignment of the arm and sensor through the measurement
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Future work will also involve repeating biomagnetic measurements that were

presented in this thesis. I plan to repeat the magnetoencephalography trials at

the magnetically shielded room at the Sir Peter Mansfield Centre, in collaboration

with the University of Nottingham. With the proven sensitivity improvements of

the sensor since the last trials, and the planned improvements in the mounting

and measurement schemes, we are hopeful that alpha-band measurements will be

achievable within these trials.

There are other aspects of the sensor design and operation that warrant further

exploration. A systematic cross axis projection error arises during measurement

along the sensitive axis of the sensor, caused by the presence of multi-axis static

magnetic fields, [43] which can be minimised through active control of the static

magnetic fields across all axes. I plan to investigate an operational scheme aimed at

minimising cross axis projection error through magnetic modulation of each axis at

a unique frequency.

Finally, we plan to utilise the techniques and systems designed for the sensor

produced in this research to explore other magnetometer schemes, particularly gra-

diometric configurations.
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Operational parameter

calibration setting

Laser driver calibration

The laser driver controller requires commands in terms of laser current and TEC

temperature, calibration allows for conversion. The desired laser power PL is con-

verted to laser current IL through the following conversion;

IL = 0.0221PL + 62.064 . (A.1)

The desired laser frequency fSet is converted to TEC temperature TTEC and

passed to the laser drive, through the following conditional conversion;

TTEC = − fSet
20.555

+





(−0.0230IL + 32.128) if IL ≤ 72.05

(−0.0275IL + 33.659) otherwise .
(A.2)

where the DBR laser mode hop is accounted for by using separate models based on

the selected laser current with respect to the mode hop threshold IL ≤ 72.05.
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Appendix A. Operational parameter calibration setting

Heater driver calibration

The desired temperature of the cell TSet is converted to a PWM phase offset value

θ through the following conversion (derived through measured phase to temperature

calibration);

θ = −0.0082T 2
Set + 0.1676TSet + 135.13 , (A.3)

which in turn is passed to the heater driver, as discussed in Section 3.2. The laser

parameters are implemented very quickly, however heating of the cell temperature

is the slowest process.

Coil driver calibration

The coils are driven by the current driver which requires an input of count number

NCount, related to the coil current driver full current range IRange by;

NCount =

∣∣∣∣((B × C) + IRange) ∗
65535

2IRange

∣∣∣∣ , (A.4)

where the applied magnetic field B = Bx, By or Bz depending on the axis of the

coil (x, y or z). The calculated value of current to field C (mA/nT) depends on coil

geometry for each individual coil, such that C = Cx, Cy or Cz for the corresponding

axis.
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Appendix B

Automated Machine Learning

Strategies for Multi-Parameter

Optimisation of a

Caesium-Based Portable

Zero-Field Magnetometer
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Abstract: Machine learning (ML) is an effective tool to interrogate complex systems to find optimal
parameters more efficiently than through manual methods. This efficiency is particularly important
for systems with complex dynamics between multiple parameters and a subsequent high number of
parameter configurations, where an exhaustive optimisation search would be impractical. Here we
present a number of automated machine learning strategies utilised for optimisation of a single-beam
caesium (Cs) spin exchange relaxation free (SERF) optically pumped magnetometer (OPM). The
sensitivity of the OPM (T/

√
Hz), is optimised through direct measurement of the noise floor, and

indirectly through measurement of the on-resonance demodulated gradient (mV/nT) of the zero-field
resonance. Both methods provide a viable strategy for the optimisation of sensitivity through effective
control of the OPM’s operational parameters. Ultimately, this machine learning approach increased
the optimal sensitivity from 500 fT/

√
Hz to < 109 fT/

√
Hz. The flexibility and efficiency of the ML

approaches can be utilised to benchmark SERF OPM sensor hardware improvements, such as cell
geometry, alkali species and sensor topologies.

Keywords: magnetometry; atomic; optimisation; machine learning; SERF; caesium

1. Introduction

OPMs have shown impacts across many fields of magnetic sensing, with the potential
perhaps being most transformative in the field of magnetoencephalography (MEG). The
flexible placement of sensing volumes and favourable operating temperature provide sig-
nificant advantages over superconducting quantum interference devices (SQUIDs) in many
contexts. The sensitivity of commercial OPMs approaches that of SQUIDs while providing
functional [1] and longitudinal [2] studies with an important new tool. SERF magnetome-
ters demonstrate sensitivities that approach the low-femtoTesla regime, making this type
of zero-field sensor ideal for MEG, although recent work has also demonstrated finite-field
sensors attaining the requisite sensitivity for these measurements in the Earth’s field [3,4].
The majority of reported work in SERF sensors for MEG utilise rubidium as the sensing
species. Cs is attractive for MEG as the temperature needed to achieve a comparable vapour
pressure is lower than that of other commonly used alkalis, rubidium or potassium. To
date, few SERF sensors reported in the literature use Cs [5,6] and only a single sensor is
known by the authors that operates in a single-beam configuration [7]. As such, the optimal
operation parameters of the sensor are not known a priori.

The optimal signal from the SERF sensor has intrinsic complex dynamics in at least
five-dimensions contained within the parameters of cell temperature, laser power, laser
detuning, modulation frequency and modulation depth. Some experimental parameter
configurations have been well-described in the literature [8,9] and others may be modelled
accurately [10]. In general, sensitivity is improved by elevating the temperature of the cell
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to the increase atomic density and subsequently increase spin exchange (SE) collisions.
A threshold exists at which the opacity of the cell reduces the transmission of the light
through the cell and hence the signal amplitude. Increasing laser power raises the optical
pumping efficiency, at the cost of higher intensity noise and broadening of the magnetic
resonance (and subsequent reduction of sensitivity). In order to ascertain the best opera-
tional parameters for the sensor described here, we have taken an automated approach to
optimising the primary experimental parameters with a view to maximising the sensitivity
of this device.

Here we present three automated optimisation techniques that have been used in-
dependently to assess the best operation parameters based on experimental performance
quantified through a chosen cost function C. The techniques include a genetic algorithm,
a simplified form of gradient ascent optimisation and an open-source machine-learning
package that utilises predictive modelling. We present these automated optimisation tech-
niques in the context of a Cs SERF magnetometer to demonstrate use as a generic routine
for finding the optimal operating point for a complex sensor.

Beyond the realms of computer science, automated optimisation and machine learning
have been utilised across many disciplines [11–16], and have found success in quantum
and particle physics [17–19]. Machine learning has been adopted for the optimisation of
experimental parameters for complex systems [20–22], where traditional human-intuition-
based experimental control is laborious, inefficient, and may not result in the optimal
configuration [23].

The optimisation approach applied here has yielded previously unknown configu-
rations of parameters leading to operation of the magnetometer blue-detuned from the
optical absorption peak rather than at peak absorption [24]. It has allowed us to create
a robust, flexible and fast test environment for benchmarking cells of various buffer gas
pressures and different alkali species, which aids sensor development.

2. Materials and Methods
2.1. Experimental Set-Up

The experimental setup is displayed in Figure 1. A distributed Bragg reflector
(DBR) laser close to the F = 4 → F′ = 3 hyperfine transition of the Cs D1 line is fi-
bre coupled to the sensor package using a non-magnetic fibre coupler (Schäfter Kirchhoff
60FC-4-M12-10-Ti). Laser power and detuning is controlled by a digital butterfly laser
diode controller (Koheron CTL200) through direct control of laser current and TEC temper-
ature. Light polarisation is selected with a miniaturised quarter waveplate (λ/4) that can
be manually controlled to allow fine adjustment of polarisation. The beam is incident on a
micro-fabricated atomic vapour cell [25], which contains Cs vapour and 211 Torr nitrogen
gas. The OPM sensor head [26] consists of all sensing components (cell, optics, PD and
coils) in a portable package with external dimensions of 25 mm × 25 mm × 50 mm, which
is mounted within a 5-layer µ-metal shield (105 shielding factor) to attenuate the Earth’s
magnetic field.

Efforts have been made to reduce the number of magnetic components close to the
cell. The cell is mounted on a printed circuit board (PCB), which drives a single 8 Ω non-
magnetic aluminium nitride heating resistor. Resistive heating is realised by the application
of square-wave current modulation at 274.699 kHz, a frequency far outside the bandwidth
of the sensor. The temperature is varied by changing the phase offset of the two square
waves that drive a full-bridge class D amplifier. A T-type thermocouple is mounted close
to the cell in order to provide temperature feedback.
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Figure 1. Experimental setup. Elliptically polarised light from a distributed Bragg reflector (DBR)
laser close to the F = 4 → F′ = 3 hyperfine transition of the Cs D1 line is fibre-coupled to pass
through a micro-fabricated atomic vapour cell [25,26] filled with a saturated vapour of Cs and 211 Torr
of nitrogen buffer gas. The cell is heated through resistive heating by square-wave modulated current
provided by a custom high efficiency heater driver. Three pairs of biplanar coils, Bx, By, Bz, control the
static magnetic field along each axis, and an additional modulation coil, BRF, allows the application of
an oscillating field along the y-axis. The static field coils are driven using a custom low-noise current
driver [27]. The photodetector (PD) measures light transmitted through the vapour cell. A low
nT-level magnetic field environment is provided by a 5-layer µ-metal shield. λ/4, quarter waveplate;
Cs, caesium vapour cell; ADC, analog-to-digital converter; DAC, digital-to-analog converter.

The cell is mounted at the centre of three biplanar-configuration coil pairs designed
using open source coil design package “bfieldtools” [28,29], which control the static mag-
netic field along each axis. Additionally, a modulation coil along the y-axis allows ap-
plication of an oscillating magnetic field. The static-field coils are driven using a custom
low-noise current driver [27]. The light transmitted through the vapour cell is detected
using a photodetector with a custom transimpedance amplifier and the signal is digitised
via a 16-bit data acquisition system (National Instruments NI USB-6366).

2.2. Hanle Resonance

The magnetometer derives its measurement of the magnetic field through the trans-
verse zero-field Hanle resonance [10,30], which manifests as a peak in light transmission
through the cell when the atoms experience zero magnetic field, seen in Figure 2a. The
static magnetic field on each axis may be swept independently in order to null residual
fields [10]. Bx, By, and Bz denote the magnetic field values that are swept along the x, y
and z axes, respectively. Bx0, By0, and Bz0 denote the magnetic field values that are applied,
respectively, to cancel residual static fields and achieve zero-field. The magnetometer is
designed to be operated in the SERF regime, which requires elevated temperatures and a
low-field environment such that the spin-exchange collision rate sufficiently exceeds the
Larmor frequency.
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Figure 2. (a) (top), Hanle resonances, showing transmission, A, across the transverse axis as a function
of longitudinal magnetic field; far detuned from zero-field (light line) to zero field, Bz0 (darkest line).
(a) (bottom), Hanle resonances, showing transmission, A, across the longitudinal axis as a function of
the transverse magnetic field; far detuned from zero-field (light line) to zero field, Bx0 or By0 (darkest
line). (b), Hanle resonances across two axes. The transverse and longitudinal magnetic fields, Bx & Bz,
are swept across the x- and z-axes to generate a 2D landscape of the Hanle resonance. Colour indicates
the measured light transmission amplitude (A) on the photodetector, normalised with respect to the
maximum (1) and minimum (0) transmission. (c), modulation of the magnetic field is applied across
the y-axis as the transverse field, By, is swept from ByMIN to ByMAX . The resultant photodiode signal is
demodulated and the demodulated amplitude with respect to (By) is shown by the black solid line,
the linear sensing region is shown by the red dashed line.

The experimental procedure of the magnetometer is as follows: the magnetic field
is swept across the x- and z-axes to generate a series of longitudinal Hanle resonances
with respect to the transverse field, seen in Figure 2b. This two-dimensional “2D” Hanle
landscape is fit using Equation (1), which describes the longitudinal Hanle resonance as a
function of the field applied in the transverse, in this case x, direction [10];

S2D = A
(

Γ2 + (Bx + Bx0)2

Γ2 + (Bz + Bz0)2

)
−V0 , (1)

where V0 is the constant background offset voltage, A is the signal amplitude, and Γ is
the full-width at half-maximum (FWHM). The point at which the transverse resonance is
the sharpest indicates the value of the applied transverse and longitudinal field at which
the atoms experience close to zero-field. These fields, Bx0 and Bz0, are applied, effectively
zeroing the field in the x- and z-axes. The final stage steps the field along the y-axis to
generate a single one-dimensional “1D” transverse Hanle resonance, seen in Figure 2a and
[10]. The 1D resonance is fit to the model described as:

S1D = A

(
Γ2

Γ2 + (By − By0)2

)
+ V0 . (2)

Subsequently, the magnetic field across the y−axis is swept, with an additional field
modulation applied along the same axis at an amplitude (Amod) and frequency (Fmod)
determined from Γ. For each value of By, the signal is demodulated. The demodulated
line shape, as seen in Figure 2c, shows the linear sensing region (red dashed line), and the
gradient (mV/nT) is used to generate the first cost function, Equation (3).

Finally, a free-running measurement of the magnetic field is carried out, allowing
the sensor noise floor and hence sensitivity to be characterised. The calculated Bx0, By0
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and Bz0 fields are applied, effectively zeroing the remaining magnetic field experienced
by the sensing atoms across all three axes. Modulation is again applied to the magnetic
field along the y-axis, and the response of the atoms is measured through the photodetector.
Analysis of this measurement through the square root of the power spectral density (PSD)
may be scaled by the measured demodulated gradient (mV/nT) to assess the noise floor
of the sensor. The power in the noise spectrum across the defined frequency band of
interest (5–20 Hz) is calculated, and this serves as the second cost function (Equation (4))
for optimising the OPM.

Machine Learning

Machine learning works to identify a global maximum or minimum within a parameter
space. Here, we will demonstrate and compare multiple machine learning algorithms
(MLAs) that implement supervised learning. Supervised learning refers to providing the
MLA with a quantitative measure of performance known as cost [20]. For all techniques,
the MLA and experiment are contained within a closed loop where the MLA controls
the experiment, which in turn gathers and returns cost information to the MLA. More
specifically, the MLA selects the experimental parameters, which are translated to the
experiment through control instrumentation. The experiment automatically completes the
zero-field resonance measurements in both 2D and 1D, and calculates cost according to
the cost function C(ρ). The cost associated with each parameter set is used by the MLA to
inform the next set of parameters to sample.

We define two cost functions, C1(ρ) and C2(ρ), to optimise in two distinct ways in
order to assess which cost function is most effective. C1(ρ), measured in (mV/nT), is the
gradient of the demodulated lineshape as seen in Figure 2c and given by:

C1(ρ) =
δADemod

δBy
, (3)

where δADemod and δBy are, respectively, the change in amplitude and magnetic field of the
demodulated lineshape within the linear range. C1 has been selected as this corresponds to
a “sharp” 1D resonance line-shape, that is, a high amplitude with narrow width, which is a
good indicator of OPM performance. Thus, C1 must be maximised to increase line-shape
sharpness and as such a global maximum of C1 is desired.

C2(ρ) is a sensitivity approximation measured directly through analysis of the noise
floor. A

√
PSD is taken to extract a series of frequency dependent amplitude values (X(k))

that are scaled by the demodulated gradient (C1) to provide frequency response as a
function of magnetic field. The geometric mean of the noise spectrum within our band of
interest (5 to 20 Hz) constitutes C2(ρ), where

C2(ρ) =

(
n

∏
5≤k≤20

δADemod
δBy

X(k)

) 1
n

. (4)

By minimising C2, which is a measure of the intrinsic noise of the magnetometer in
the frequency band of interest, we optimise the magnetic sensitivity. Thus, the location of a
global minimum of C2 across the parameter space is desired.

Both defined cost functions aim to improve sensitivity, where C2 will achieve this
directly and C1 indirectly.

2.3. Optimisation Techniques

For the total number of experimental parameters, M, a single set of experimental set-
tings (temperature, laser power, etc.) is defined as X = (x1, . . . xM). For each individual set,
Xi, an associated cost C(Xi) and uncertainty U(Xi) are found experimentally. All optimisa-
tion techniques selected are examples of online optimisation (OO) in which optimisation is
implemented concurrently with experimental testing. We employ two evolutionary OO
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algorithms, a gradient ascent OO and a predictive model-based machine learning algorithm.
All optimisation methods continue until 250 sets of parameters are tested, known as the
end condition, Nend = 250.

2.3.1. Evolutionary Algorithms

Evolutionary algorithms are heuristic search-based approaches to solving problems.
The processes of evolutionary algorithms are inspired by nature and biological
systems [31], the scheme is shown here in Figure 3. This includes the evaluation of the
performance of individuals within a population to inform the selection of a new population
mimicking “survival of the fittest”, a crossover of high-performing individuals to imitate
reproduction and mutation. Mutation introduces a stochastic component and aims to drive
optimisation to a global maximum or minimum. Evolutionary algorithms are commonly
used across many types of optimisation problems [32], due to their robust convergence to a
solution. However, this convergence time increases with the system complexity. Here, we
will implement two evolutionary algorithms, (a) genetic algorithm (GA) and (b) differential
evolution (DE) algorithm. The GA process is displayed in Figure 3a. The GA first randomly
creates the initial population, X(t), of N sets of experimental parameters

X(t) = {X1, . . . XN} , (5)

where t denotes the generation of the population, initially t = 0.
All parameters chosen are selected within predefined parameter space limits. Next,

we automatically and iteratively evaluate each parameter set, Xi, through experimental
testing and find associated cost C(t) and uncertainty U(t) of the entire population, where,
C(t) = (C1, . . . CN) and U(t) = (U1, . . . UN). The selection of the new generation popula-
tion, X(t) where t = t + 1, is based on the best performing sets of experimental parameters
from the previous generation X(t− 1). To achieve this, X(t− 1) is ranked by C(t− 1) with
respect to U(t− 1) and the best performing N

2 sets of parameters are added to X(t). The
remaining N

2 sets of parameters are created through a crossover. Crossover occurs between
sets of parameters from the previous generation to create sets for the new generation,
shown in Figure 3a and given by:

X(t)j = {x|x ∈ Xa(t− 1) if xi ≤ CP, x ∈ Xb(t− 1) if xi > CP} (6)

X(t)k = {x|x ∈ Xb(t− 1) if xi ≤ CP, x ∈ Xa(t− 1) if xi > CP} , (7)

where X(t)j and X(t)k are “children” sets of “parent” Xa(t− 1) and Xb(t− 1). The crossover
point, CP, refers to an individual element, xi, of the parent sets. The final step is to introduce
random mutation to prevent optimisation for a local minimum or maximum. The new
population, X(t), is then evaluated experimentally and the algorithm continues until the
end condition is met.

The process of DE deviates from GA as shown in Figure 3b, while maintaining the same
evolutionary elements. The initial population of sets of parameters is created as defined in
Equation (5) and similarly evaluated to find the associated cost C(t) and uncertainty U(t)
of the entire population. The mutation element is incorporated through creation of a new
set, V, where V = Xc + (Xa − Xb) and Xa, Xb and Xc are randomly selected parameter
sets. Crossover occurs between V and a randomly selected target set XT to produce an
additional set Q. Q is evaluated experimentally and replaces XT in the new generation
where t = t + 1, if CQ outperforms CT . Lastly, three random sets and a target set are
selected from the new population, X(t). The algorithm continues until the end condition
is met.
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(a) (b)

Figure 3. Two evolutionary algorithm processes. (a,b) share evolutionary elements of initial popula-
tion formation, selection, crossover and mutation. For both algorithms, the initial population X(t)
contains a population of N sets of parameter settings. The colour indicates each set of parameter
settings. t, generation or loop number; t = t + 1, the next generation; and C(t), measured cost. Both
algorithms repeat until the end condition is met, where the number of sets of parameters tested
N is equal to 250 (Nend). (a) Genetic algorithm (GA) process. The initial population is generated
and evaluated for cost, with individual costs denoted as Ci. N

2 parameter sets are selected for the
next generation based on ranked cost. The best performing N

2 are used as “parents” to produce
“children” sets during crossover with respect to the crossover point. Mutation of individual parameter
values randomly occurs in the new population. (b) Differential evolution (DE) process. The initial
population is generated and evaluated for cost where three random sets Xa, Xb & Xc and a target set
XT are selected. A new set V is created during mutation from the randomly selected sets, and used in
a crossover with the target set to make a new set Q. CQ, the cost of Q, is evaluated and measured
against CT , the cost of the target set. The target set is replaced in a new generation if CQ > CT (for
C1) or CQ < CT (for C2).

2.3.2. Gradient Ascent

Gradient ascent algorithms are a first-order process. As such, the differential of the
changing cost C(ρ) is used to inform the learning process [33]. Here, we implement a form
of batch gradient algorithm, displayed in Figure 4. Small batches of data are tested to
find the optimal parameters based on the gradient of the cost across the batch. Learning
occurs between iterations of batches. Batch gradient algorithms guarantee convergence to
a local or global maximum or minimum. However, as the batch sizes are pre-defined, some
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points tested may be redundant, especially compared to stochastic gradient processes with
a higher learning rate [34–36].

Figure 4. Gradient ascent algorithm process. x(i), a vector value for a single parameter xi ranging
from minimum xmin

i to maximum xmax
i as defined by parameter space range. i, the individual

parameter selected. Initially, the first parameter is selected for the first batch i = 1. All other
parameters are kept constant. The batch is evaluated based on cost, indicated in green, to find where
the gradient tends to zero, ∂C(ρ)

∂x → 0 indicated in red. The corresponding parameter value xopt is
then set for this parameter for the next batch, i = i + 1. This continues until all parameters are used as
batches, for a total number of parameters M. The segmented graph shows this process as a function
of the run number. This process in turn repeats until the end condition is met, where the number of
sets of parameters tested N is equal to 250 (Nend).

In this context, each batch x(i) is defined as a broad sweep of a single parameter across
the full range for that parameter in regular intervals as follows:

x(i) = (xmin
i , xmin

i + n, ..xmax
i ) , (8)
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where i denotes the individual parameter, n is the interval for the parameter, and xmax
i and

xmin
i are the maximum and minimum values of the specific parameter from the defined

parameter range. The first batch targets the first parameter only, where i = 1. The non-
target parameter values are kept constant throughout the batch testing at the previously
found optimum, or initially selected randomly. Evaluation of the batch experimentally finds
the associated cost for each element of x(i). The cost curve of the batch is used to find where
the gradient tends to zero, ∂C(ρ)

∂x → 0. The value of xi is set to the corresponding parameter
value, xopt, for the next batch iteration. Each iteration changes the target parameter used
for the batch, where i = i + 1 after each batch, up to the total number of M parameters.
One full process of the gradient algorithm occurs after all parameters have been selected as
the target parameter, which in turn loops until the end condition is met.

2.3.3. Gaussian Process Regression

The Gaussian process (GP) regression OO method creates a model defining how
each experimental parameter relates to the experimentally found cost, known as the cost-
landscape. The cost-landscape is formed through training the MLA with data collected by
DE for 2M sets of parameters. The model generates correlation lengths to indicate how
sensitive the cost is to each parameter, where the correlation length is inversely proportional
to its influence on cost. The cost-landscape model informs the selection of new parameter
values to test. Each iteration informs the model and contributes to defining the noise level
of “expected cost” to “found cost”, i.e., the variance of the cost if measured at the same set
of parameters many times. For this method, we utilise M-LOOP (Machine Learning Online
Optimization Package), an open-source Python-based machine learning toolkit [20], which
utilises DE and GP during optimisation. While GP regression is the most sophisticated
MLA we employ, Gaussian processes lose efficiency in high dimensional spaces and the
computational time required scales with the cube of the number of tests.

2.4. Parameters

The parameters, p, selected for optimisation are: (1) Cell Temperature T, (2) Laser
Power LP and (3) Laser Detuning LD. These parameters are intrinsically linked with
complex dynamics as described in Section 4. Each parameter is directly controlled through
experimental hardware.

A further two parameters are defined, namely (4) Modulation Amplitude BMod
and (5) Modulation Frequency ωMod. Both amplitude and frequency of the applied mod-
ulated magnetic field influence light absorption and magnetometer performance. These
parameters are not directly selected, rather dimensionless factors AMod and FMod are de-
fined that are tied to the magnetic resonance line width of the magnetometer response,
defined as:

AMod =
BMod

Γ
(9)

FMod =
ωMod

Γγ
, (10)

where total relaxation Γ is equal to the HWHM width extracted from magnetic resonance
and γ is the gyromagnetic ratio (3.5× 2π Hz/nT for Cs). BMod and ωMod are dependent
factors, and the modulation index, mi, defines this dependency:

mi =
γBMod

q(P)ωMod
, (11)

where q(P) is the nuclear slowing-down factor at high polarisation [37]. It has been shown
that the optimal modulation index occurs when mi = 0.5− 1 [38]. All control parameter
ranges are defined in Table 1.
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Table 1. Definition of all controlled parameters (p) used for optimisation, with corresponding units.
Min (p), the minimum value for each parameter. Max (p), the maximum value for each parameter.
Default (p), chosen default value if parameter is not directly optimised during optimisation.

Parameter Min (p) Max (p) Default (p) Unit

Temperature 115 140 - ◦C
Laser Power 0.5 6 - mW
Laser Detuning −20 20 - GHz
AMod 0.2 1.5 0.5 dimensionless
FMod 0.2 1.5 1 dimensionless

3. Results

We applied the MLAs presented in Section 2.3 to optimise the sensitivity of a single-
beam Cs SERF OPM. Two cost functions (C1, C2) are utilised to investigate cost function
suitability. The number of parameters optimised (M = 3: LD, LP, T, M = 5: LD, LP, T, AMod,
FMod) is varied to demonstrate MLA robustness with respect to optimisation complexity. In
total, four independent optimisation schemes are measured:

Scheme 1. Cost = C1, M = 3
Scheme 2. Cost = C1, M = 5
Scheme 3. Cost = C2, M = 3
Scheme 4. Cost = C2, M = 5

Three MLAs are used per optimisation scheme: (1) Genetic Algorithm (GA), (2)
Gradient Descent algorithm (GD) and (3) Gaussian Process Regression (GP). The full
parameter space used for all optimisation schemes is defined in Table 1. For equality
between optimisation schemes, all methods are initialised with a random set of parameter
values, often initially producing no magnetic resonance signal. Each MLA ran until the
end condition, requiring 250 sets of experimental settings to be tested, Nend = 250, taking
approximately 4 h in total per MLA. Both cost functions were measured during each
technique, regardless of the selected cost function, to allow comparison.

To benchmark the optimised sensitivity of all MLAs and optimisation schemes, we first
manually optimised through human-intuition-based experimental control. During human
optimisation, the operational parameters are manually selected and the subsequent mea-
sured sensitivity informs the selection of the next parameters based on intuition. The human
optimisation process found an optimal sensitivity of 500 fT/

√
Hz, in approximately 4 h.

The results of all optimisation schemes for all MLAs are shown in Figure 5. Each row in
Figure 5 displays the results for an individual optimisation scheme, with Cost Function C(ρ)
and the number of parameters (M) indicated accordingly. Progression of each technique can
be seen in Figure 5a,d,g,j, where cost is a function of the experimental run number and the
moving maximum (for C1) or minimum (for C2) throughout optimisation run is indicated
by the solid line for each MLA. Figure 5b,e,h,k show the corresponding FFT for the optimal
parameters found per MLA, with the sensitivity shown as a function of frequency (Hz) in
the bandwidth of interest (5 to 20 Hz). Figure 5c,f,i,l depict the corresponding demodulated
line shape for the optimal parameters found per MLA.
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Figure 5. All figure parts contain the following optimisation techniques, gradient descent algorithm
in green , genetic algorithm in blue and Gaussian process regression model in pink. M, the number
of parameters optimised. Row 1 & 3, (a–c,g–i), optimisation of 3 parameters (M = 3). Row 2 &
4, (d–f,j–l) optimisation of 5 parameters (M = 5). Row 1 & 2, (a–f), optimise for maximising cost
function C1 the demodulated line shape gradient (mV/nT). Row 3 & 4, (g–l), optimise for minimising
cost function C2, calculated sensitivity (T/

√
Hz). Column 1 “Optimisation”, (a,d,g,j), show Cost

function as a function of run number. The solid line indicates the moving maximum per optimisation
technique. Column 2 “Sensitivity”, (b,e,h,k), shows corresponding FFT for the optimal parameters
found per optimisation technique. Sensitivity is shown as a function frequency (Hz), raw data are
shown by solid lines. The frequency band of interest (5 to 20 Hz) is highlighted in grey. Averaged
sensitivity in this band is shown by the dashed line (value represented in the key). Column 3,
“Demodulation”, (c,f,i,l), shows a corresponding demodulated line shape for the optimal parameters
found per optimisation technique.

The optimised cost for each MLA and optimisation scheme with corresponding op-
timal parameter settings can be seen in Table 2. All optimisation schemes resulted in
large cost improvement throughout optimisation. Convergence of optimised values oc-
curred within each optimisation scheme. The mean and standard deviation across all ML
techniques within each scheme are summarised below:
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Scheme 1. C1. All MLAs converged at 2.5± 1 mV/nT, equating to a measured sensitivity
of 163 ± 20 fT/

√
Hz.

Scheme 2. C1. All MLAs converged at 4.4± 0.4 mV/nT, equating to a measured sensi-
tivity of 147 ± 11 fT/

√
Hz.

Scheme 3. C2. All MLAs converged at a measured sensitivity of 163 ± 15 fT/
√

Hz,
equating to a demodulated gradient of 2.2± 0.15 mV/nT.

Scheme 4. C2. All MLAs converged at a measured sensitivity of 132 ± 23 fT/
√

Hz,
equating to a demodulated gradient of 2.8± 0.9 mV/nT.

Table 2. Optimal parameters found for the following optimisation techniques, Genetic Algorithm
(GA), Gradient Descent algorithm (GD) and Gaussian process (GP). The number of parameters
tested, M, is specified for each optimisation run. T, cell temperature (◦C). LP, laser power (mW).
LD, laser detuning (GHz). AMod, modulation amplitude factor (dimensionless). FMod, modulation
frequency factor (dimensionless). mi, modulation index (dimensionless). C(ρ) defines the cost
function implemented. C1 is the demodulated lineshape gradient (mV/nT), with uncertainty taken as
the geometric standard deviation across the frequency band of interest. C2 is the calculated sensitivity
(fT/
√

Hz), with uncertainty taken as the linear fitting error across demodulated linear region. Γ is the
full-width at half-maximum (FWHM) of the magnetic resonance (nT), with uncertainty taken as the
fit error to Equation (2). Values in grey indicate parameters that were not optimised during operation.

MLA M C(ρ) C1 C2 Γ T LD LP AMod FMod mi
GD 3 C1 2.82 ± 0.03 158.62 ± 1.3 132.51 ± 1.5 119.41 8.24 6.00 0.50 1.00 0.55
GA 3 C1 2.59 ± 0.02 182.39 ± 1.4 183.27 ± 2.1 115.00 3.00 5.35 0.50 1.00 0.55
GP 3 C1 3.50 ± 0.03 143.40 ± 1.2 168.83 ± 1.6 115.00 8.00 6.00 0.50 1.00 0.55
GD 5 C1 4.04 ± 0.02 150.24 ± 1.5 130.06 ± 2.1 118.85 10.77 5.58 1.50 0.30 5.51
GA 5 C1 4.23 ± 0.02 157.62 ± 1.3 98.81 ± 2.0 123.00 7.00 5.32 1.48 0.39 4.21
GP 5 C1 4.75 ± 0.03 136.30 ± 1.2 147.36 ± 1.2 120.13 6.22 6.00 1.50 0.21 7.82
GD 3 C2 2.10 ± 0.02 148.28 ± 1.3 143.36 ± 2.5 117.94 5.88 5.35 0.50 1.00 0.55
GA 3 C2 2.35 ± 0.02 152.30 ± 1.3 136.66 ± 1.3 119.00 4.00 4.66 0.50 1.00 0.55
GP 3 C2 2.31 ± 0.02 177.40 ± 1.3 192.81 ± 1.6 115.01 3.49 5.57 0.50 1.00 0.55
GD 5 C2 2.22 ± 0.03 109.59 ± 1.3 137.70 ± 1.6 118.85 7.69 5.58 0.70 0.80 0.96
GA 5 C2 1.95 ± 0.02 119.76 ± 1.2 111.05 ± 2.1 121.00 7.00 5.24 0.97 1.15 0.93
GP 5 C2 3.65 ± 0.02 154.81 ± 1.2 203.05 ± 1.6 115.00 3.00 5.50 1.09 1.00 1.20

The optimum sensitivity of 109 fT/
√

Hz was identified by the gradient descent algo-
rithm (with an uncertainty of ±1 fT/

√
Hz taken from the geometric standard deviation

across the frequency band of interest) using five parameters (M = 5) and direct optimisa-
tion of sensitivity (C2). The optimum demodulated gradient of 4.75 mV/nT was identified
(with an uncertainty of ±0.03 mV/nT, taken as the linear fitting error across demodulated
linear region) by the Gaussian process regression model using five parameters and direct
optimisation of demodulated gradient (C1).

The GP model is the most sophisticated MLA demonstrated in this paper. Due to the
nature of the optimisation method, as described in Section 2.3.3, a cost-landscape depicting
how each parameter affects the measured cost is produced throughout the optimisation
process. Figure 6 shows the measured data for each parameter as a function of cost, for
optimisation schemes 2 and 4 (5 parameter optimisations). The parameter cost-landscape
model is indicated with a line, and the 95% confidence interval generated by the model is
indicated by the shaded region. Many measured points for all parameters lie outside the
confidence interval due to the nature of multi-parameter optimisation, where the optimised
value of one parameter may produce a poor cost value if other parameters are not optimised.
The confidence interval shows the trust region of the models predictive landscape after all
measurement has been completed.
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Figure 6. Data and models resulting from the Gaussian process regression model MLA, from a
5 parameter optimisation scheme (M = 5). The 5 parameters optimised are cell temperature (T), laser
power (LP), laser detuning (LD), modulation amplitude factor (AMod) and modulation frequency
factor (FMod). Each part shows a parameter as a function of the cost. Row 1, (a–e), shows optimisation
for cost function C1, the demodulated line shape gradient (mV/nT). Row 2 , (f–j) optimisation for
cost function C2, calculated sensitivity (T/

√
Hz). Marks indicate measured values from optimisation,

solid line indicates the Gaussian process predicted cost-landscape and shaded region indicates the
model provided 95% confidence interval of the cost-landscape.

4. Discussion

The sensitivity of the Cs OPM has been improved by all of the MLAs presented
in comparison to human optimisation over comparable run-time. This comprehensive
improvement indicates the suitability of automated optimisation methods for experimental
parameter optimisation tasks in optically pumped magnetometry.

The use of 3 MLAs allowed for comparison of these techniques to aid recommendations
for suitability. In this use case, all techniques appear capable, with no single technique
standing out as significantly more favourable. Completing the MLA techniques for a
differing number of parameters allows comparison of the robustness of the MLA techniques
to the system complexity. Interestingly, the more simple MLAs (GA and GD) proved most
successful for direct sensitivity optimisation C2, with GD providing the optimal sensitivity
value of 109 fT/

√
Hz. However, the Gaussian process regression model proved most

effective for optimisation of C1. This suggests that the Gaussian process regression model
was more sensitive to the more stochastic nature of cost function C2.

Increasing the complexity, M = 5, proved beneficial to both cost functions. As such,
the amplitude and frequency of the applied magnetic modulation are tied to magnetometer
performance due to their influence on light absorption. Optical noise has a large contri-
bution in this sensor, and this noise decreases with increased absorption. Furthermore,
low frequency 1/f noise decreases with increasing modulation frequency. Each five pa-
rameter optimisation scheme converged before the end condition, suggesting that, in
multi-parameter systems with five parameters, all MLAs are suitable.

The implementation of two cost functions, C1 and C2, aids identification of the most
suitable cost function for this purpose. Table 2 shows relative alignment of the best
parameter values between cost functions. The peak sensitivity found indirectly (C1) is
30 fT/

√
Hz higher than through direct sensitivity optimisation (C2). As such, C1 acts as a

reasonable proxy for sensitivity optimisation without specifically measuring sensitivity. C1
requires less data collection and corresponding sensitivity measurements may be taken
after the fact. C2 takes longer experimentally and computationally and is more susceptible
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to extraneous environmental and technical noise. However, 5 parameter optimisation
using C1 optimised the modulation frequency to a much lower frequency. The subsequent
modulation index for these optimised values are also far outside the expected range
(mi > 5). This highlights a key drawback of optimisation using C1, that technical noise
contributions are not considered.

A benefit of the implementation of the GP is the production of the cost-landscape
model that defines how influential each parameter is on performance. From this model,
Figure 6, clear trends can be seen that span across both cost functions, for example, the
peak in temperature for C1 aligns with the trough in C2. This is likely due to the increased
sensitivity gained when the temperature of the cell has increased atomic vapour density
sufficiently to reach the SERF regime. As cell temperature is increased, we see a subsequent
improvement of sensitivity up to 120 ◦C, after which the opacity of the cell is increased by
the increasing atomic density, allowing less light to reach the detector.

Figure 6 also shows mirrored trends for laser detuning. However, a deviation between
the laser power landscape between cost functions is also present. The peak laser power
required for C1 continues to increase beyond the defined range, whereas the optimum
laser power for C2 saturates at 5 mW. This could be due to the increasing laser power
detrimentally affecting sensitivity due to intensity noise with increased laser power, which
does not degrade C1 to the same degree. These trends suggest that either cost function is
suitable for optimisation if intensity noise is taken into consideration.

The predicted cost-landscapes for AMod and FMod (Figure 6) show broad trends with
large confidence intervals, suggesting that the relationship between these parameters and
the cost functions are not well-defined. Table 2 shows in the results for optimisation
scheme 4 (C2, M = 5) that the optimised values for modulation amplitude and frequency
gave a modulation index within the expected optimal values (mi =0.5 − 1). While clear
gains in sensitivity were provided by increasing the number of parameters optimised,
C2 is advised for directly optimising sensitivity while keeping modulation values within
expected optimal conditions.

It is interesting to note that the optimal detuning parameter found is positively de-
tuned from the optical absorption peak (Table 2). It appears that the effect of the buffer
gas introduces complex optical pumping dynamics in the atomic system, likely tied to
depopulation on the F = 3 ground state. The results of the MLA techniques show that the
detuning and power dependence are non-trivial. These results may vary depending on cell
parameters such as the optical path length and buffer gas pressure. The techniques shown
here will allow future cells to be characterised in an efficient and comprehensive manner.

With an optimised sensitivity of 109 fT/
√

Hz, the ML methods here have aided the
tuning of operational parameters of a SERF OPM to facilitate a sensitivity suitable for use
in magnetoencephalography.
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[136] M. A. Lopes, D. Krzemiński, K. Hamandi, et al., “A computational biomarker

of juvenile myoclonic epilepsy from resting-state MEG,” Clinical Neurophysi-

ology 132, 922–927 (2021).

[137] J. Fang, T. Wang, W. Quan, et al., “In situ magnetic compensation for potas-

sium spin-exchange relaxation-free magnetometer considering probe beam

pumping effect,” Review of Scientific Instruments 85, 063108 (2014).

[138] M. J. Brookes, J. Leggett, M. Rea, et al., “Magnetoencephalography with opti-

cally pumped magnetometers (OPM-MEG): the next generation of functional

neuroimaging,” (2022).
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