
The University of Manchester Research

Saturation-based Boolean conjunctive query answering
and rewriting for the guarded quantification fragments

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Zheng, S., & Schmidt, R. (in press). Saturation-based Boolean conjunctive query answering and rewriting for the
guarded quantification fragments. Journal of Automated Reasoning.

Published in:
Journal of Automated Reasoning

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:26. Oct. 2023

https://research.manchester.ac.uk/en/publications/e0e5facc-8096-4647-aac6-9f4e2a94ebd4

Noname manuscript No.
(will be inserted by the editor)

Saturation-based Boolean conjunctive query answering and
rewriting for the guarded quantification fragments

Sen Zheng · Renate A. Schmidt

Received: date / Accepted: date

Abstract Query answering is an important problem in AI, database and knowl-
edge representation. In this paper, we develop saturation-based Boolean conjunc-
tive query answering and rewriting procedures for the guarded, the loosely guarded
and the clique-guarded fragments. Our query answering procedure improves existing
resolution-based decision procedures for the guarded and the loosely guarded frag-
ments and this procedure solves Boolean conjunctive query answering problems for
the guarded, the loosely guarded and the clique-guarded fragments. Based on this
query answering procedure, we also introduce a novel saturation-based query rewrit-
ing procedure for these guarded fragments. Unlike mainstream query answering and
rewriting methods, our procedures derive a compact and reusable saturation, namely
a closure of formulas, to handle the challenge of querying for distributed datasets.
This paper lays the theoretical foundations for the first automated deduction deci-
sion procedures for Boolean conjunctive query answering and the first saturation-
based Boolean conjunctive query rewriting in the guarded, the loosely guarded and
the clique-guarded fragments.

Keywords Saturation-based decision procedure · Saturation-based query rewriting ·
Boolean conjunctive query · Unskolemisation · Guarded fragment · Loosely guarded
fragment · Clique-guarded fragment

1 Introduction

The problem of answering conjunctive queries [1, 91] over logical constraints is at
the heart of knowledge representation and database research. This problem can be
reduced to that of Boolean conjunctive query (BCQ) answering by instantiating free
variables in conjunctive queries with facts from databases. Problems in many fields of
computer science such as constraint satisfaction problems [34, 63], homomorphism

Sen Zheng · Renate A. Schmidt
Department of Computer Science
University of Manchester, United Kingdom

2 Sen Zheng, Renate A. Schmidt

<latexit sha1_base64="noyoNsVouPWf+rHervT3tIa6UIY=">AAACL3icbVBNS8NAFNz4bf2qetPLYhE8lUREPQpePFawrdCGstm+Nkt3k7D7IpYQ8Nd4VX+NeBGv/glx0+ag1YGFYd4b5u0EiRQGXffNmZtfWFxaXlmtrK1vbG5Vt3daJk41hyaPZaxvA2ZAigiaKFDCbaKBqUBCOxhdFvP2HWgj4ugGxwn4ig0jMRCcoZV61T0MgXZBJWGWMD6CPh1oNlQQYd6r1ty6OwH9S7yS1EiJRq/61e3HPC3MXDJjOp6boJ8xjYJLyCvd1EARwobQsTRiCoyfTf6Q00Or2PBY2xchnag/HRlTxoxVYDcVw9DMzgrxv1knxcG5n4koSREiPg0apJJiTItCaF9o4CjHljCuhb2V8pBpxtHW9itFsRFwkDKfUTFMUN3nFVuYN1vPX9I6rnun9ZPr49qFV1a3QvbJATkiHjkjF+SKNEiTcPJAHskTeXZenFfn3fmYrs45pWeX/ILz+Q3jZ6qH</latexit>

the packed fragment

LGF

<latexit sha1_base64="Uvgx9VcldzqoIBWxmc+zz/fTUDQ=">AAACH3icbVDLSsNAFJ3UV62vqks3wSK4KokUdVkoqMsK9gFtKZPpTTt0JgkzN2IJ+Q236te4E7f9GXGadmFbD1w4nHMv93C8SHCNjjO1chubW9s7+d3C3v7B4VHx+KSpw1gxaLBQhKrtUQ2CB9BAjgLakQIqPQEtb1yb+a1nUJqHwRNOIuhJOgy4zxlFI3W7kuJI+0nt/i7tF0tO2clgrxN3QUpkgXq/+NMdhCyWECATVOuO60TYS6hCzgSkhW6sIaJsTIfQMTSgEnQvyTKn9oVRBrYfKjMB2pn69yKhUuuJ9MxmlnHVm4n/eZ0Y/dtewoMoRgjY/JEfCxtDe1aAPeAKGIqJIZQpbrLabEQVZWhqWvoi6RgYCJGuqDiKUL6kBVOYu1rPOmleld3rcuWxUqpWFtXlyRk5J5fEJTekSh5InTQIIxF5JW/k3fqwPq0v63u+mrMWN6dkCdb0F5CqpDs=</latexit>

CGF

<latexit sha1_base64="QXdDywbhfC9eIybBGLn1PW/7vxA=">AAACH3icbVDLSsNAFJ3UV62vqks3wSK4KokUdVkQxIVgBfuAtpTJ9KYdOpOEmRuxhPyGW/Vr3Inb/ow4TbuwrQcuHM65l3s4XiS4RseZWLm19Y3Nrfx2YWd3b/+geHjU0GGsGNRZKELV8qgGwQOoI0cBrUgBlZ6Apje6mfrNZ1Cah8ETjiPoSjoIuM8ZRSN1OpLiUPvJ7cN92iuWnLKTwV4l7pyUyBy1XvGn0w9ZLCFAJqjWbdeJsJtQhZwJSAudWENE2YgOoG1oQCXobpJlTu0zo/RtP1RmArQz9e9FQqXWY+mZzSzjsjcV//PaMfrX3YQHUYwQsNkjPxY2hva0ALvPFTAUY0MoU9xktdmQKsrQ1LTwRdIRMBAiXVJxGKF8SQumMHe5nlXSuCi7l+XKY6VUrcyry5MTckrOiUuuSJXckRqpE0Yi8kreyLv1YX1aX9b3bDVnzW+OyQKsyS+teaRM</latexit>

FOL

<latexit sha1_base64="aiZ2Lp1v4xG65JxhD5cPggxsmBY=">AAACHnicbVDLSsNAFJ34rPVVdekmWARXJZGiLguCuqxgH5CGMpnetENnkjBzI5aQz3Crfo07cas/I04fC9t6YOBwzr3cMydIBNfoON/Wyura+sZmYau4vbO7t186OGzqOFUMGiwWsWoHVIPgETSQo4B2ooDKQEArGF6P/dYjKM3j6AFHCfiS9iMeckbRSF5HUhzoMLu9ybulslNxJrCXiTsjZTJDvVv66fRilkqIkAmqtec6CfoZVciZgLzYSTUklA1pHzxDIypB+9kkcm6fGqVnh7EyL0J7ov7dyKjUeiQDMzmJuOiNxf88L8Xwys94lKQIEZseClNhY2yP/2/3uAKGYmQIZYqbrDYbUEUZmpbmrkg6BAZC5AsqDhKUT3nRFOYu1rNMmucV96JSva+Wa9VZdQVyTE7IGXHJJamRO1InDcJITJ7JC3m13qx368P6nI6uWLOdIzIH6+sX9kSj7g==</latexit>

GF

<latexit sha1_base64="+MWaCgWhlualMW49YU/+YlI5agI=">AAACOXicbVDBSiNBFOxRd9XorlGPXhqj4CnMiKhHwYtHF4wKSQhvOi+ZJt0zTfcbNQzzA36NV/VLPO5NvHoXOzEHjRY0FPVeUa8rNko6CsOnYGZ27tfv+YXFytLyn78r1dW1c5flVmBDZCqzlzE4VDLFBklSeGksgo4VXsSD49H84gqtk1l6RkODbQ39VPakAPJSp7pFCfIWapMUBqS9lg55PwfbxS7vWehrTKnsVGthPRyDfyfRhNTYBKed6lurm4l8ZBYKnGtGoaF2AZakUFhWWrlDA2IAfWx6moJG1y7Gvyn5tld8eGb9S4mP1c+OArRzQx37TQ2UuOnZSPxp1sypd9guZGpywlR8BPVyxSnjo2p4V1oUpIaegLDS38pFAhYE+QK/pGgYoEClyimVEkP6pqz4wqLper6T8916tF/f+7dbO4om1S2wDbbJdljEDtgRO2GnrMEEu2V37J49BI/B/+A5ePlYnQkmnnX2BcHrO4WNruM=</latexit>

the pairwise guarded fragment

<latexit sha1_base64="dFKy9h+TETQTuAVoaB7j4mbhFUA=">AAACNHicbVBNSyNBEO1x1dX4ld09erAxCHoJMyK6R9GLRwWjQhJCTU9N0qS7Z+iuEcMwx/01Xnf9L4K3Za/7E8ROzEGjDwoe71VRVS/OlXQUho/B3Jf5hcWvS8u1ldW19Y36t+9XLiuswJbIVGZvYnCopMEWSVJ4k1sEHSu8joenY//6Fq2TmbmkUY5dDX0jUymAvNSrb3VogJCUuwb7QJjs8Q7hHbm0PDm9qFzVqzfCZjgB/0iiKWmwKc579edOkolCoyGhwLl2FObULcGSFAqrWqdwmIMYQh/bnhrQ6Lrl5JGK73gl4WlmfRniE/XtRAnauZGOfacGGrhZbyx+5rULSn92S2nygtCI10VpoThlfJwKT6RFQWrkCQgr/a1cDMCCIJ/duy0ahihQqWpGpUFO+q6q+cCi2Xg+kqv9ZnTYPLjYbxwfTKNbYptsm+2yiB2xY3bGzlmLCfaL3bPf7E/wEDwFf4N/r61zwXTmB3uH4P8Llb2sXw==</latexit>

(negated) BCQs

Fig. 1: The relationship of the guarded quantification fragments, (negated) BCQs and first-order logic

problems [27] and query evaluation and containment problems [27] can be recast as
Boolean conjunctive query answering problems [92]. Our interest in this paper is to
develop practical methods and inference systems that can provide the basis for the
following problems:

– answering BCQs for the guarded, the loosely guarded and the clique-guarded
fragments, and

– saturation-based rewriting of BCQs for these guarded fragments.

The guarded fragment (GF) and the loosely guarded fragment (LGF) are in-
troduced in [3, 18] as generalised modal fragments of first-order logic (FOL). In a
guarded formula the free variables of quantified formulas are ‘guarded’ by an atom.
Strictly extended from GF, the loosely guarded fragment LGF, which is also known
as the pairwise guarded fragment [4,18], pairwise ‘guards’ the free variables of quan-
tified formulas using a conjunction of atoms. This conjunction is called a loose guard
where the variables form a ‘clique’. Further LGF has been extended to the clique-
guarded fragment (CGF) [45], in which the ‘cliques’ are extended with branches.
In [55, 65] CGF is called the packed fragment. A common characteristic of GF,
LGF and CGF is that the free variables of quantified formulas need to be guarded;
therefore we collectively refer to these fragments as the guarded quantification frag-
ments. These fragments are decidable and have well-behaved computational proper-
ties [3,18,29,45,46,55,56,65]. Figure 1 shows the relationship between the guarded
quantification fragments, (negated) BCQs targeted in this paper and FOL.

The computational complexity of the BCQ answering problem for GF is 2EXP-
TIME-complete [12]. For LGF and CGF the complexity of the BCQ answering prob-
lem is also 2EXPTIME-complete, as in both cases the problem is reducible to the
satisfiability checking problem of the clique-guarded negation fragment [11].1 Fig-
ure 2 lists important known properties of the guarded quantification fragments where
3 and 7 respectively denote positive and negative results. In the Satisfiability check-
ing column of Figure 2, we assume that the fragments have a fixed signature.

Resolution-based procedures have been devised for deciding satisfiability in GF
in [39, 69] and for LGF in [39, 69, 98]. Tableau-based procedures have been devised

1 This paper does not consider the clique-guarded negation fragment.

Saturation-based methods for querying the guarded quantification fragments 3

Decidability Satisfiability
checking

Tree-like
model

Finite
model

BCQ
answering

FO rewritable
(with BCQs)

GF 3 [3, 18] EXPTIME
[46] 3 [46] 3 [46] 2EXPTIME

[12]

7 [13, 14]LGF 3 [18] EXPTIME
[46] 3 [45] 3 [55]

2EXPTIME
[11]

CGF 3 [46, 65] EXPTIME
[46, 65] 3 [45] 3 [55, 65]

Fig. 2: Known properties of the guarded quantification fragments

for deciding satisfiability in GF [54] and CGF [53]. However, querying poses a major
problem, since neither BCQ nor its negation belongs to the guarded quantification
fragments (see Figure 1). Indeed, so far it appears that there has been no effort to
extend these methods to solving the BCQ answering problems for any of the guarded
quantification fragments, even if the aforementioned complexity results mean that
in theory, these querying problems are decidable. Introducing new techniques, this
paper develops decision procedures to answer BCQs for all the guarded quantification
fragments. Our initial work for solving the BCQ answering problem for Horn LGF
was published in [98] and for GF was published in [99].

Figure 3 illustrates the idea of our query answering procedure. Given a set Σ of
rules, a dataset D and a BCQ q, checking whether Σ ∪D |= q is equivalent to check-
ing unsatisfiability of {¬q}∪Σ ∪D. To decide {¬q}∪Σ ∪D, we transform it into a
clausal form. In particular, Σ and D are mapped to loosely guarded clauses and ¬q
to query clauses. To perform the saturation process we develop a novel top-variable
inference system. This system ensures termination when we perform resolution infer-
ences on loosely guarded clauses and query clauses.

Conventional BCQ rewriting tasks aim to reduce a BCQ entailment problem to
a model checking problem: one first compiles a BCQ q and a set Σ of formulas into
a (function-free) first-order formula Σq, and then applies a model checking algorithm
to Σq over datasets [25, 32, 48]. If this reduction is possible, then q and Σ are called
first-order (FO) rewritable. Counter-examples in [13, 14] imply that this property

<latexit sha1_base64="cdzSU3Tsi7ijNbHqOC+n50Vzrrw=">AAACSHicbVBNTxsxEPWGlkIoNJRjL1ajSpyiXUCFIxIXjkEiECkbRbPOLLFie1f2LEq02h/SX8MV+Af9F9xQL1WdjwMJHcny03vzNDMvyZV0FIa/g9rGh4+bn7a26zufd/e+NPa/3rissAI7IlOZ7SbgUEmDHZKksJtbBJ0ovE3GFzP99h6tk5m5pmmOfQ13RqZSAHlq0DiOCSeUpGVMI4RheaGgcKC4yaz2Xxzz1CNOFoxTc09VDRrNsBXOi78H0RI02bLag8bfeJiJQqMhocC5XhTm1C/BkhQKq3pcOMxBjOEOex4a0Oj65fy4iv/wzHC2hX+G+Jx96yhBOzfVie/UQCO3rs3I/2m9gtKzfilNXhAasRiUFopTxmdJ8aG0KEhNPQBhpd+VixFYEOTzXJmiYYwClarWWBrlpCdV3QcWrcfzHtwctaKfrZOro+b52TK6LfaNfWeHLGKn7JxdsjbrMMF+sQf2yJ6C5+AleA3+LFprwdJzwFaqVvsHwdG0cg==</latexit>

Clausal normal
form translation

<latexit sha1_base64="9EX3hcr2HYVof6YGr7ttYu99n8A=">AAACPnicbVBNSwMxEM367frV6lEPwSJ4kLJbRD0WvHhUsCq0pWTTqQ1Nsmsyq5ZlL/4ar/oL/Bv+AW/i1aPp2oNVBwKP92bmTV6USGExCF69qemZ2bn5hUV/aXllda1UXr+wcWo4NHgsY3MVMQtSaGigQAlXiQGmIgmX0eB4pF/egrEi1uc4TKCt2LUWPcEZOqpT2mqBSvpZC/vAutlNCmZIuWSpBZvnnVIlqAZF0b8gHIMKGddpp+z5rW7MUwUa3RZrm2GQYDtjBgWXkPsttzhhfMCuoemgZgpsOyu+kdMdx3RpLzbuaaQF+3MiY8raoYpcp2LYt7+1Efmf1kyxd9TOhE5SBM2/jXqppBjTUSa0KwxwlEMHGDfC3Up5nxnG0SU34aLhLrlHuMe9AhWOEw2KDYCDlLnvu/TC31n9BRe1anhQ3T+rVepH4xwXyCbZJrskJIekTk7IKWkQTh7II3kiz96L9+a9ex/frVPeeGaDTJT3+QULy6/q</latexit>

query clauses
<latexit sha1_base64="Ob+JV2tsvilo0iT4XHntEj3jAJM=">AAACSHicbVDLTttAFB0HSqnbQmiX3YyIilhUkR2hwhKpmy5BagApiaLr8U0yyjysmetCZPkP+jXdtl/AH/AX7FB3nZgsGuiRRjo6577mZIWSnpLkLmptbL7Yern9Kn795u3Obnvv3YW3pRPYF1ZZd5WBRyUN9kmSwqvCIehM4WU2/7L0L7+j89Kab7QocKRhauRECqAgjdsHQ9TFrBrSDCGvlLVh1IJPS3A55lwoKD36uh63O0k3acCfk3RFOmyFs/FeFA9zK0qNhsIU7wdpUtCoAkdSKKzjYRhcgJjDFAeBGtDoR1XzoZp/DErOJ9aFZ4g36r8dFWjvFzoLlRpo5p96S/F/3qCkycmokqYoCY14XDQpFSfLl+nwXDoUFBLIJQgnw61czMCBoJDh2haD18UN4Q19alizca1AwxwFKlXHcUgvfZrVc3LR66afu0fnvc7pySrHbfaB7bNDlrJjdsq+sjPWZ4L9YD/ZL/Y7uo3uo4foz2NpK1r1vGdraLX+Ap+Lsxw=</latexit>

loosely guarded clauses

<latexit sha1_base64="tQKD2xGqv8kfiJS6VGorCvxQkko=">AAACPHicbVBNTxsxEPXymaYFUjhysYiq9hTtIgQckXrJkUoEkJIomvXOJlZs72LPIqLV/oT+ml6B/8G9N8SVI8IJOZTQJ1l6ejPzZvziXElHYfgQLC2vrK6t1z7VP3/Z2NxqfN0+d1lhBXZEpjJ7GYNDJQ12SJLCy9wi6FjhRTz+Oa1fXKN1MjNnNMmxr2FoZCoFkJcGje89whuK07JHI4SkbINJvNeQXxVoJ1woKBy6qho0mmErnIF/JNGcNNkcp4PGSy/JRKHRkDdxrhuFOfVLsCSFwqre8745iDEMseupAY2uX84+VPFvXkl4mln/DPGZ+u9ECdq5iY59pwYaucXaVPxfrVtQetwvpckLQiPeFqWF4pTxaTo8kRYFqYknIKz0t3IxAguCfIbvtmgYo0ClqgWVRjnpm6ruA4sW4/lIzvdb0WHr4Nd+8+R4Hl2N7bI99oNF7IidsDY7ZR0m2G/2h92yu+A++Bs8Bk9vrUvBfGaHvUPw/ArVY7Cb</latexit>

Handling query clauses

<latexit sha1_base64="3t4RZRwQTRdNsRxVbp+Q5EO98Gs=">AAACOXicbVBNS8NAEN34WetX1aOXxSp4KkkR9Vjw4lHRqtCWMtlO2qW7SdidiCXkD/hrvKq/xKM38epdTGMPWn0w8Hhvhpl5fqykJdd9cWZm5+YXFktL5eWV1bX1ysbmlY0SI7ApIhWZGx8sKhlikyQpvIkNgvYVXvvDk7F/fYvGyii8pFGMHQ39UAZSAOVSt7LbpgFCL20T3pEfpBdAiSk8HptIoLVZVu5Wqm7NLcD/Em9CqmyCs27ls92LRKIxJKHA2pbnxtRJwZAUCrNyO7EYgxhCH1s5DUGj7aTFNxnfy5UeDyKTV0i8UH9OpKCtHWk/79RAAzvtjcX/vFZCwXEnlWGcEIbie1GQKE4RH0fDe9KgIDXKCQgj81u5GIABQXmAv7ZoGKJApbIplQYx6bsiMG86nr/kql7zDmsH5/Vq43gSXYltsx22zzx2xBrslJ2xJhPsnj2wR/bkPDuvzpvz/t0640xmttgvOB9fLkOvRQ==</latexit>

Saturation process

<latexit sha1_base64="0K17btB3oW/Rgj43yIkGlUiWKSg=">AAACOXicbZDPTttAEMbXQAuEUgIcuSyklcIlslFVOCJx6Yk/ahOQ4igab8bJKru2tTtGRJZfgKfhSnkSjtyqXnuv2IQcIOGTVvr0mxnN7BdlSlry/UdvYXHpw8flldXK2qf1zxvVza2WTXMjsClSlZqrCCwqmWCTJCm8ygyCjhReRsOTcf3yGo2VafKLRhl2NPQTGUsB5FC3+iWkAUKv+AmUmwnjYcjrIeENRXFxerZb7pfdas1v+BPxeRNMTY1Ndd6t/g97qcg1JiQUWNsO/Iw6BRiSQmFZCXOLGYgh9LHtbAIabaeY/KbkXx3p8Tg17iXEJ/T1RAHa2pGOXKcGGtjZ2hi+V2vnFB91CplkOWEiXhbFueKU8nE0vCcNClIjZ0AY6W7lYgAGBLkA32zRMESBSpUzlAYZ6Zuy4gILZuOZN62DRvC98e3ioHZ8NI1uhe2wPVZnATtkx+wHO2dNJtgtu2P37Lf34D15f7y/L60L3nRmm72R9+8ZNP2uIw==</latexit>

Saturation
(NO!)

<latexit sha1_base64="C9E2CuSWDMlHay6RFvlH5wiV078=">AAACNnicbVBNS8NAEN34bf2qevSytQr1UhIR9SiI4FHR+kFTymY7aZfuJmF3IpaQs7/Gq/pXvHgTr/4CcVt7sNUHA4/3ZpiZFyRSGHTdV2dicmp6ZnZuvrCwuLS8UlxduzJxqjnUeCxjfRMwA1JEUEOBEm4SDUwFEq6D7nHfv74DbUQcXWIvgYZi7UiEgjO0UrNY8rEDrJVt+UGMW9T3acVHuMcgzG5PLkr5Tt4slt2qOwD9S7whKZMhzprFL78V81RBhFwyY+qem2AjYxoFl5AX/NRAwniXtaFuacQUmEY2eCWn21Zp0TDWtiKkA/X3RMaUMT0V2E7FsGPGvb74n1dPMTxsZCJKUoSI/ywKU0kxpv1caEto4Ch7ljCuhb2V8g7TjKNNb2SLYl3gIGU+pmInQXWfF2xg3ng8f8nVbtXbr+6d75aPDofRzZENskkqxCMH5IickjNSI5w8kEfyRJ6dF+fNeXc+flonnOHMOhmB8/kNS96sGA==</latexit> ?
(YES!)

<latexit sha1_base64="Upw0yEuhAeadu1FuUs+SBkUVBHE=">AAACG3icbVBNS8NAEN34WetX1aOXYBE8SEmkaI8FPXisaD+gDWWznbRLd5OwOxFLyZ/wqv4ab+LVg39G3LY52NYHA4/3ZpiZ58eCa3Scb2tldW19YzO3ld/e2d3bLxwcNnSUKAZ1FolItXyqQfAQ6shRQCtWQKUvoOkPryd+8xGU5lH4gKMYPEn7IQ84o2ikVuee9yU9v+kWik7JmcJeJm5GiiRDrVv46fQilkgIkQmqddt1YvTGVCFnAtJ8J9EQUzakfWgbGlIJ2htP703tU6P07CBSpkK0p+rfiTGVWo+kbzolxYFe9Cbif147waDijXkYJwghmy0KEmFjZE+et3tcAUMxMoQyxc2tNhtQRRmaiOa2SDoEBkKkCyoOYpRPad4E5i7Gs0waFyX3slS+KxerlSy6HDkmJ+SMuOSKVMktqZE6YUSQZ/JCXq036936sD5nrStWNnNE5mB9/QKyQqIt</latexit>

S,D
<latexit sha1_base64="Ps++EfHBFgkXlDz0JDsobpOn6F0=">AAACFHicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48t2A9oQ9lsJ+3S3STuTsQS+gu8qr/Gm3j17p8Rt20OtvXBwOO9GWbm+bHgGh3n28ptbG5t7+R3C3v7B4dHxeOTlo4SxaDJIhGpjk81CB5CEzkK6MQKqPQFtP3x7cxvP4LSPArvcRKDJ+kw5AFnFI3UeOgXS07ZmcNeJ25GSiRDvV/86Q0ilkgIkQmqddd1YvRSqpAzAdNCL9EQUzamQ+gaGlIJ2kvnh07tC6MM7CBSpkK05+rfiZRKrSfSN52S4kivejPxP6+bYFD1Uh7GCULIFouCRNgY2bOv7QFXwFBMDKFMcXOrzUZUUYYmm6Utko6BgRDTFRVHMcqnacEE5q7Gs05aV2X3ulxpVEq1ahZdnpyRc3JJXHJDauSO1EmTMALkmbyQV+vNerc+rM9Fa87KZk7JEqyvX8PJn5s=</latexit>q

<latexit sha1_base64="byNpvj7SkhulE2m9WkghEBIrD8c=">AAACOXicbVBNSyNBFOzR3VWzH0Y9emk2u7CXDTMS1KPgxaOCUSEJ4U3njWnS3dN0vwmGYf6Av8aru7/Eozfx6l3sxBzWuAUNRdUrXr9KrZKe4vguWlr+8PHTyupa7fOXr9/W6xubZz4vnMC2yFXuLlLwqKTBNklSeGEdgk4Vnqejw6l/PkbnZW5OaWKxp+HSyEwKoCD16z+6qO2wPM3t7zE4CSHHpcnQoRHI/cQT6qpfb8TNeAb+niRz0mBzHPfrz91BLgqNhoQC7ztJbKlXgiMpFFa1buHRghjBJXYCNaDR98rZNRX/GZQBz3IXniE+U/9NlKC9n+g0TGqgoV/0puL/vE5B2X6vlMYWFK57XZQVilPOp9XwgXQoSE0CAeFk+CsXQ3AgKBT4ZouGEQpUqlpQaWhJX1W1UFiyWM97crbTTHabrZNW46A1r26VbbPv7BdL2B47YEfsmLWZYNfsht2yP9Hf6D56iB5fR5eieWaLvUH09AKQCK7t</latexit>

Top-variable inference system

Fig. 3: Saturation-based BCQ answering processing of a set of guarded quantification formulas Σ , a
dataset D and a BCQ q

4 Sen Zheng, Renate A. Schmidt

<latexit sha1_base64="cdzSU3Tsi7ijNbHqOC+n50Vzrrw=">AAACSHicbVBNTxsxEPWGlkIoNJRjL1ajSpyiXUCFIxIXjkEiECkbRbPOLLFie1f2LEq02h/SX8MV+Af9F9xQL1WdjwMJHcny03vzNDMvyZV0FIa/g9rGh4+bn7a26zufd/e+NPa/3rissAI7IlOZ7SbgUEmDHZKksJtbBJ0ovE3GFzP99h6tk5m5pmmOfQ13RqZSAHlq0DiOCSeUpGVMI4RheaGgcKC4yaz2Xxzz1CNOFoxTc09VDRrNsBXOi78H0RI02bLag8bfeJiJQqMhocC5XhTm1C/BkhQKq3pcOMxBjOEOex4a0Oj65fy4iv/wzHC2hX+G+Jx96yhBOzfVie/UQCO3rs3I/2m9gtKzfilNXhAasRiUFopTxmdJ8aG0KEhNPQBhpd+VixFYEOTzXJmiYYwClarWWBrlpCdV3QcWrcfzHtwctaKfrZOro+b52TK6LfaNfWeHLGKn7JxdsjbrMMF+sQf2yJ6C5+AleA3+LFprwdJzwFaqVvsHwdG0cg==</latexit>

Clausal normal
form translation

<latexit sha1_base64="9EX3hcr2HYVof6YGr7ttYu99n8A=">AAACPnicbVBNSwMxEM367frV6lEPwSJ4kLJbRD0WvHhUsCq0pWTTqQ1Nsmsyq5ZlL/4ar/oL/Bv+AW/i1aPp2oNVBwKP92bmTV6USGExCF69qemZ2bn5hUV/aXllda1UXr+wcWo4NHgsY3MVMQtSaGigQAlXiQGmIgmX0eB4pF/egrEi1uc4TKCt2LUWPcEZOqpT2mqBSvpZC/vAutlNCmZIuWSpBZvnnVIlqAZF0b8gHIMKGddpp+z5rW7MUwUa3RZrm2GQYDtjBgWXkPsttzhhfMCuoemgZgpsOyu+kdMdx3RpLzbuaaQF+3MiY8raoYpcp2LYt7+1Efmf1kyxd9TOhE5SBM2/jXqppBjTUSa0KwxwlEMHGDfC3Up5nxnG0SU34aLhLrlHuMe9AhWOEw2KDYCDlLnvu/TC31n9BRe1anhQ3T+rVepH4xwXyCbZJrskJIekTk7IKWkQTh7II3kiz96L9+a9ex/frVPeeGaDTJT3+QULy6/q</latexit>

query clauses
<latexit sha1_base64="Ob+JV2tsvilo0iT4XHntEj3jAJM=">AAACSHicbVDLTttAFB0HSqnbQmiX3YyIilhUkR2hwhKpmy5BagApiaLr8U0yyjysmetCZPkP+jXdtl/AH/AX7FB3nZgsGuiRRjo6577mZIWSnpLkLmptbL7Yern9Kn795u3Obnvv3YW3pRPYF1ZZd5WBRyUN9kmSwqvCIehM4WU2/7L0L7+j89Kab7QocKRhauRECqAgjdsHQ9TFrBrSDCGvlLVh1IJPS3A55lwoKD36uh63O0k3acCfk3RFOmyFs/FeFA9zK0qNhsIU7wdpUtCoAkdSKKzjYRhcgJjDFAeBGtDoR1XzoZp/DErOJ9aFZ4g36r8dFWjvFzoLlRpo5p96S/F/3qCkycmokqYoCY14XDQpFSfLl+nwXDoUFBLIJQgnw61czMCBoJDh2haD18UN4Q19alizca1AwxwFKlXHcUgvfZrVc3LR66afu0fnvc7pySrHbfaB7bNDlrJjdsq+sjPWZ4L9YD/ZL/Y7uo3uo4foz2NpK1r1vGdraLX+Ap+Lsxw=</latexit>

loosely guarded clauses

<latexit sha1_base64="tQKD2xGqv8kfiJS6VGorCvxQkko=">AAACPHicbVBNTxsxEPXymaYFUjhysYiq9hTtIgQckXrJkUoEkJIomvXOJlZs72LPIqLV/oT+ml6B/8G9N8SVI8IJOZTQJ1l6ejPzZvziXElHYfgQLC2vrK6t1z7VP3/Z2NxqfN0+d1lhBXZEpjJ7GYNDJQ12SJLCy9wi6FjhRTz+Oa1fXKN1MjNnNMmxr2FoZCoFkJcGje89whuK07JHI4SkbINJvNeQXxVoJ1woKBy6qho0mmErnIF/JNGcNNkcp4PGSy/JRKHRkDdxrhuFOfVLsCSFwqre8745iDEMseupAY2uX84+VPFvXkl4mln/DPGZ+u9ECdq5iY59pwYaucXaVPxfrVtQetwvpckLQiPeFqWF4pTxaTo8kRYFqYknIKz0t3IxAguCfIbvtmgYo0ClqgWVRjnpm6ruA4sW4/lIzvdb0WHr4Nd+8+R4Hl2N7bI99oNF7IidsDY7ZR0m2G/2h92yu+A++Bs8Bk9vrUvBfGaHvUPw/ArVY7Cb</latexit>

Handling query clauses

<latexit sha1_base64="3t4RZRwQTRdNsRxVbp+Q5EO98Gs=">AAACOXicbVBNS8NAEN34WetX1aOXxSp4KkkR9Vjw4lHRqtCWMtlO2qW7SdidiCXkD/hrvKq/xKM38epdTGMPWn0w8Hhvhpl5fqykJdd9cWZm5+YXFktL5eWV1bX1ysbmlY0SI7ApIhWZGx8sKhlikyQpvIkNgvYVXvvDk7F/fYvGyii8pFGMHQ39UAZSAOVSt7LbpgFCL20T3pEfpBdAiSk8HptIoLVZVu5Wqm7NLcD/Em9CqmyCs27ls92LRKIxJKHA2pbnxtRJwZAUCrNyO7EYgxhCH1s5DUGj7aTFNxnfy5UeDyKTV0i8UH9OpKCtHWk/79RAAzvtjcX/vFZCwXEnlWGcEIbie1GQKE4RH0fDe9KgIDXKCQgj81u5GIABQXmAv7ZoGKJApbIplQYx6bsiMG86nr/kql7zDmsH5/Vq43gSXYltsx22zzx2xBrslJ2xJhPsnj2wR/bkPDuvzpvz/t0640xmttgvOB9fLkOvRQ==</latexit>

Saturation process

<latexit sha1_base64="Q/jiDRgfij6KRebLi2qMLr6YfEU=">AAACSHicbZBNThtBEIV7DAng/JlkmU0rdiSysWYgCiyRsmEVEREDkseyanrKdsv9M+muiWKN5iCchi1wg9wiuygblLbxIhie1NLTV1Wq6pcVSnqK419RY239ydONza3ms+cvXr5qbb8+9bZ0AnvCKuvOM/CopMEeSVJ4XjgEnSk8y6af5/WzH+i8tOYbzQocaBgbOZICKKBhay+lCUJenQCVbsF450uHpynf6aQncqyBp8YST7XNUXn+vfOhHrbacTdeiD80ydK02VLHw9ZtmltRajQkFHjfT+KCBhU4kkJh3UxLjwWIKYyxH6wBjX5QLT5X8/eB5HxkXXiG+IL+P1GB9n6ms9CpgSZ+tTaHj9X6JY0OBpU0RUloxN2iUak4WT5PiufSoSA1CwaEk+FWLibgQFDI894WDVMUqFS9QmlSkP5ZN0NgyWo8D83pbjf51P34dbd9eLCMbpO9Ze/YDkvYPjtkR+yY9ZhgF+ySXbHr6Cb6Hf2J/t61NqLlzBt2T43GPwclscQ=</latexit>

Saturation N
(S 6|= q)

<latexit sha1_base64="qrlLnD9Bn/Rx3tR9jKRTQhC5RAI=">AAACO3icbVA9TxtBEN3jIxCHJAbKNCtsEGmsO4QIJRINJSgYkHyWNbc3tlfevb3szqFYp/sH/Bpa4IdQp4to00ZZGxdg8qSRnt6b0cy8JFfSURg+BguLS8vvVlbf1z6sffz0ub6+ceFMYQW2hVHGXiXgUMkM2yRJ4VVuEXSi8DIZHU/8y2u0TprsnMY5djUMMtmXAshLvfpOTEOEtGzGiaEmj2O+24y/y4EGHmuTonL8R/Nr1as3wlY4BX9LohlpsBlOe/W/cWpEoTEjocC5ThTm1C3BkhQKq1pcOMxBjGCAHU8z0Oi65fSfim97JeV9Y31lxKfqy4kStHNjnfhODTR0895E/J/XKah/2C1llheEmXhe1C8UJ8Mn4fBUWhSkxp6AsNLfysUQLAjyEb7aomGEApWq5lQa5qR/VjUfWDQfz1tysdeKDlr7Z3uNo8NZdKvsC9tiuyxi39gRO2GnrM0Eu2G37I7dBw/Br+B38PTcuhDMZjbZKwR//gFB7q19</latexit> ?
(S |= q)

<latexit sha1_base64="I1yIad+csyibKVxkSkQaUejDCCM=">AAACGXicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy2k3btbhJ2J2IJ/Q9e1V/jTbx68s+I2zYH2/pg4PHeDDPz/FhwjY7zbeXW1jc2t/LbhZ3dvf2D4uFRU0eJYtBgkYhU26caBA+hgRwFtGMFVPoCWv7oeuq3HkFpHoX3OI7Bk3QQ8oAzikZqdu/4QNJeseSUnRnsVeJmpEQy1HvFn24/YomEEJmgWndcJ0YvpQo5EzApdBMNMWUjOoCOoSGVoL10du3EPjNK3w4iZSpEe6b+nUip1HosfdMpKQ71sjcV//M6CQZVL+VhnCCEbL4oSISNkT193e5zBQzF2BDKFDe32mxIFWVoAlrYIukIGAgxWVJxGKN8mhRMYO5yPKukeVF2L8uV20qpVs2iy5MTckrOiUuuSI3ckDppEEYeyDN5Ia/Wm/VufVif89aclc0ckwVYX7+mN6Gp</latexit>

S
<latexit sha1_base64="Ps++EfHBFgkXlDz0JDsobpOn6F0=">AAACFHicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48t2A9oQ9lsJ+3S3STuTsQS+gu8qr/Gm3j17p8Rt20OtvXBwOO9GWbm+bHgGh3n28ptbG5t7+R3C3v7B4dHxeOTlo4SxaDJIhGpjk81CB5CEzkK6MQKqPQFtP3x7cxvP4LSPArvcRKDJ+kw5AFnFI3UeOgXS07ZmcNeJ25GSiRDvV/86Q0ilkgIkQmqddd1YvRSqpAzAdNCL9EQUzamQ+gaGlIJ2kvnh07tC6MM7CBSpkK05+rfiZRKrSfSN52S4kivejPxP6+bYFD1Uh7GCULIFouCRNgY2bOv7QFXwFBMDKFMcXOrzUZUUYYmm6Utko6BgRDTFRVHMcqnacEE5q7Gs05aV2X3ulxpVEq1ahZdnpyRc3JJXHJDauSO1EmTMALkmbyQV+vNerc+rM9Fa87KZk7JEqyvX8PJn5s=</latexit>q

<latexit sha1_base64="byNpvj7SkhulE2m9WkghEBIrD8c=">AAACOXicbVBNSyNBFOzR3VWzH0Y9emk2u7CXDTMS1KPgxaOCUSEJ4U3njWnS3dN0vwmGYf6Av8aru7/Eozfx6l3sxBzWuAUNRdUrXr9KrZKe4vguWlr+8PHTyupa7fOXr9/W6xubZz4vnMC2yFXuLlLwqKTBNklSeGEdgk4Vnqejw6l/PkbnZW5OaWKxp+HSyEwKoCD16z+6qO2wPM3t7zE4CSHHpcnQoRHI/cQT6qpfb8TNeAb+niRz0mBzHPfrz91BLgqNhoQC7ztJbKlXgiMpFFa1buHRghjBJXYCNaDR98rZNRX/GZQBz3IXniE+U/9NlKC9n+g0TGqgoV/0puL/vE5B2X6vlMYWFK57XZQVilPOp9XwgXQoSE0CAeFk+CsXQ3AgKBT4ZouGEQpUqlpQaWhJX1W1UFiyWM97crbTTHabrZNW46A1r26VbbPv7BdL2B47YEfsmLWZYNfsht2yP9Hf6D56iB5fR5eieWaLvUH09AKQCK7t</latexit>

Top-variable inference system

<latexit sha1_base64="ICvda/PT2QoU6b+2X9SdCtPXevo=">AAACNnicbVA9SwNBFNzz2/gVtbQ5DYKN4U6CWoo2lgpGhSSEd5t3Zsnu3rH7TgzH1f4aW/Wv2NiJrb9A3MQUGh1YGObNY95OlEphKQhevInJqemZ2bn50sLi0vJKeXXt0iaZ4VjniUzMdQQWpdBYJ0ESr1ODoCKJV1HvZDC/ukVjRaIvqJ9iS8GNFrHgQE5qlzebhHcUxXmTugid/Bh4b5cMaCuHjqJolytBNRjC/0vCEamwEc7a5c9mJ+GZQk1cgrWNMEiplYMhwSUWpWZmMXUxcIMNRzUotK18+JXC33ZKx48T454mf6j+3MhBWdtXkXMqoK4dnw3E/2aNjOLDVi50mhFq/h0UZ9KnxB/04neEQU6y7whwI9ytPu+CAU6uvV8pCnrIUcpiTKVuSuquKLnCwvF6/pLLvWq4X62d1ypHh6Pq5tgG22I7LGQH7IidsjNWZ5zdswf2yJ68Z+/Ve/Pev60T3mhnnf2C9/EF116uIw==</latexit>

Back-translation
<latexit sha1_base64="z1nH3uPdt0tJWPG5jWGr5d0nhCI=">AAACRHicbVBNT9tAEF3zVRo+GtpjL6sGJC4EG0WFI1IvHEFtACmOovF6HK+ya7u7Y0Rk+Wfwa7gC/4H/0BvqFXUTciiBJ4309N6MZuZFhZKWfP/RW1hcWl75sPqxsba+sfmpufX53OalEdgVucrNZQQWlcywS5IUXhYGQUcKL6LRj4l/cYXGyjz7ReMC+xqGmUykAHLSoLkfoi7SKqQUIa6AJ9JY2stNjIYnudGlAr4d/pRDDYPf23U9aLb8tj8Ff0uCGWmxGU4HzecwzkWpMSOhwNpe4BfUr8CQFArrRlhaLECMYIg9RzPQaPvV9LGa7zglntzhKiM+Vf+fqEBbO9aR69RAqZ33JuJ7Xq+k5KhfyawoCTPxsigpFaecT1LisTQoSI0dAWGku5WLFAwIclm+2qJhhAKVqudUSgvS13XDBRbMx/OWnB+0g+/tzlmndXw0i26VfWXf2C4L2CE7ZifslHWZYDfslt2xe+/B++M9eX9fWhe82cwX9gre8z8PpbMM</latexit>

a first-order formula Sq

Fig. 4: Saturation-based BCQ rewriting processing of a set of guarded quantification formulas Σ and a
BCQ q

does not hold for BCQs for any of the guarded quantification fragments. To address
this problem, we introduce a new setting of saturation-based query rewriting. This
rewriting reduces the query answering problem Σ ∪D |= q to the entailment problem
D |= Σq, where Σq is a first-order formula. Our query rewriting method pre-saturates
the clausal form of {¬q}∪Σ and does it in such a way that this pre-saturation can be
restored to a first-order formula Σq. Using our method, any dataset D can be tested
against the pre-saturation, but it is also possible to use other reasoning methods such
as the chase algorithm [2, 64] to solve the entailment checking of D |= Σq. Figure 4
outlines our saturation-based query rewriting procedure, which applies the saturation
process to the rules and the query but not the dataset, and back-translates the satura-
tion to a first-order formula Σq.

This result is of independent interest to automated reasoning, as back-translating
a clausal set that includes inferred conclusions, to a first-order formula typically fails,
as in general this problem is undecidable [37]. Using results established in [33] that a
clausal set can be back-translated into a first-order formula if the clausal set satisfies
certain properties, we devise a query rewriting procedure that ensures a successful
back-translation. To distinguish our query rewriting setting from the traditional ones,
we refer to our approach as saturation-based query rewriting.

To provide a basis for implementation, our query answering and rewriting ap-
proaches are devised in line with the resolution framework of [8], which provides
the basis for powerful saturation-based theorem provers such as E [84], SPASS [96],
Vampire [76] and Zipperposition [28] and a lot of work in automated reasoning [31,
74, 82, 85, 94].

In a nutshell, the contributions of this paper are:

– Inference systems for deciding BCQ answering for GF, LGF and CGF, dedicated
to provide the basis for practical decision procedures.

– A novel saturation-based BCQ rewriting approach for GF, LGF and CGF.
– Improvements on existing resolution-based decision approaches for GF and LGF,

and the first resolution-based approach for deciding CGF.

Saturation-based methods for querying the guarded quantification fragments 5

– Novel saturation-based resolution inference systems, namely a partial selection-
based resolution system and a top-variable resolution system, with formal sound-
ness and refutational completeness proofs for first-order clausal logic.

– Our procedures are applicable to answer and rewrite BCQs for real-world onto-
logical languages such as guarded, loosely guarded, and clique-guarded Datalog±

and the description logic ALCHOI.
– Novel aspects of our approach include but are not limited to: the separation rules,

the partial selection-based and top-variable resolution rules, the clausification
processes and the back-translation procedure. These techniques may allow deci-
sion and querying problems for other fragments to be solved in the future.

The remainder of this paper is organised as follows. Section 2 formally defines
basic notions of first-order logic, the guarded quantification fragments and the re-
search questions. Section 3 reduces the BCQ answering problem for the targeted
guarded fragments to an unsatisfiability checking problem of loosely guarded clauses
and query clauses. Section 4 presents the partial selection-based resolution system
and the top-variable resolution system. Section 5 then proves that the top-variable
system decides satisfiability of the class of loosely guarded clauses. Section 6 tackles
query clauses by introducing the separation rules and formula renaming. Combining
the results from the previous sections, Section 7 devises a BCQ answering procedure
for the guarded quantification fragments. Section 8 develops a saturation-based BCQ
rewriting procedure for these guarded fragments. Sections 9 and 10 discuss related
work and conclude the paper, respectively.

2 Basic notions, guarded fragments and the querying problems of interest

Basic notions

Let C, F and P be countably infinite sets that are pairwise disjoint. The elements
in C, F and P are constant symbols (or constants), function symbols and predicate
symbols. A predicate symbol of arity zero is a propositional variable. We refer the
triple (C,F,P) as a signature. A term is either a constant, or a variable, or it has the
form of f (t1, . . . , tn) if i) f is a function symbol of arity n and ii) t1, . . . , tn are terms.
A compound term is a term that is neither a constant nor a variable. An atom is an
expression P(t1, . . . , tn), where P is a n-ary predicate symbol distinct from ≈ and
t1, . . . , tn are terms. A literal is an atom A or a negated atom ¬A. Given two terms (or
atoms) E1 = A(. . . , t, . . .) and E2 = B(. . . ,s, . . .), we say t pairs s if the argument
position of t in E1 is the same as that of s in E2. If a signature allows the special
predicate symbols ≈ and 6≈, then the setting is first-order logic with equality. We use
infix notation for positive and negative equational atoms: s≈ t and s 6≈ t.

In a quantified first-order formula ∀xF or ∃xF , x is the quantified variable and F is
the scope of the quantified variable x. An occurrence of a variable x in a first-order
formula F is a free variable of F if and only if x is not within the scope of quan-
tified variables. A sentence (or closed formula) is a first-order formula without free
variables. A first-order clause (or clause) is a multiset of literals, interpreted as a dis-
junction of literals. A positive (negative) clause is a clause that contains only positive

6 Sen Zheng, Renate A. Schmidt

(negative) literals. An expression can be a term, an atom, a literal, or a clause. The
set of variables that occur in an expression E is denoted as var(E). A variable-free
expression is a ground expression. A clause is decomposable if it can be partitioned
into two variable-disjoint subclauses, otherwise, the clause is indecomposable.

The depth of a term t is denoted dep(t) and defined as: i) if t is a variable or
a constant, then dep(t) = 0, ii) if t is a compound term f (t1, . . . , tn), then dep(t) =
1+max({dep(ti) | 1 ≤ i ≤ n}). The depth of an expression E is the depth of the
deepest term in E, denoted as dep(E). The width of an expression E is the number of
distinct variables in E. If an expression E does not contain any term, then dep(E) = 0
and the width of E is 0.

A substitution of terms for variables is a set {x1 7→ t1, . . . ,xn 7→ tn} where each xi
is a distinct variable and each ti is a term, which is not identical to the respective vari-
able xi. We use lower-case Greek letters σ ,θ ,η to denote substitutions. We use Eσ to
denote the result of the application of a substitution σ to the expression E. It is
also said to be an instance of E. A variable renaming is a substitution σ such that
σ = {x1 7→ y1, . . . ,xn 7→ yn} where x1, . . . ,xn,y1, . . . ,yn are variables and σ is bi-
jective. An expression E1 is a variant of an expression E if there exists a variable
renaming σ such that E1 = Eσ . We consider two clauses C1 and C2 to be identical
if C1 is a variant of C2. Given substitutions σ and θ , the composition σθ denotes that
for each variable x, xσθ = (xσ)θ . A substitution σ is a unifier of a set {E1, . . . ,En}
of expressions if and only if E1σ = . . . = Enσ . The set {E1, . . . ,En} is said to be
unifiable if there is a unifier for it. A unifier σ of a set {E1, . . . ,En} of expressions
is a most general unifier (mgu) if and only if for each unifier θ of the set, there is
a substitution η such that σ = θη . A unifier σ is a simultaneous mgu of two se-
quences E1, . . . ,En and E ′1, . . . ,E

′
n of expressions where n > 1, if σ is an mgu for

each pair Ei and E ′i . By σ = mgu(E .
= E ′), we mean that σ is an mgu of expres-

sions E and E ′. By σ = mgu(E1
.
= E ′1, . . . ,En

.
= E ′n) where n > 1, we mean that σ is

a simultaneous mgu of two sequences E1, . . . ,En and E ′1, . . . ,E
′
n of expressions.

We distinguish rules in our paper in two types: i) the rules that are applied to
a clausal set, and they are framed using bold lines; ii) the rules that are applies to
clauses, namely inference rules, and they are framed using non-bold lines. When we
refer to function symbols, we mean non-constant ones. In the rest of the paper, we
use the following notational convention:

• x,y,z,u,v,x1, . . . for variables • a,b,c,a1, . . . for constant symbols
• f ,g,h, . . . for function symbols • P,P1,A,B, . . . for predicate symbols
• p, p1, . . . for propositional variables • F,F1, . . . for formulas
•C,D,Q,C1, . . . for clauses • s, t,u, . . . for terms
• L,L1, . . . for literals • A,B,G,G1, . . . for atoms

Guarded quantification fragments

In the following definitions, constants are allowed but not equality.

Definition 1. The guarded fragment (GF) is a fragment of first-order logic without
function symbols, inductively defined as follows:

Saturation-based methods for querying the guarded quantification fragments 7

1. > and ⊥ belong to GF.
2. If A is an atom, then A belongs to GF.
3. GF is closed under Boolean connectives.
4. Let F be a guarded formula and G an atom. Then ∃x(G∧F) and ∀x(G→ F)

belong to GF if all free variables of F occur in G.

Definition 2. The loosely guarded fragment (LGF) is a fragment of first-order logic
without function symbols, inductively defined as follows:

1. > and ⊥ belong to LGF.
2. If A is an atom, then A belongs to LGF.
3. LGF is closed under Boolean connectives.
4. Let F be a loosely guarded formula and G a conjunction of atoms. Then ∀x(G→

F) and ∃x(G∧F) belong to LGF if
(a) all free variables of F occur in G, and
(b) for each variable x in x and each variable y occurring in G that is distinct

from x, x and y co-occur in an atom of G.

Definition 3. The clique-guarded fragment (CGF) is a fragment of first-order logic
without function symbols, inductively defined as follows:

1. > and ⊥ belong to CGF.
2. If A is an atom, then A belongs to CGF.
3. CGF is closed under Boolean connectives.
4. Let F be a clique-guarded formula and G(x,y) a conjunction of atoms. Then
∀z(∃xG(x,y)→ F) and ∃z(∃xG(x,y)∧F) belong to CGF, if
(a) all free variables of F occur in y, and
(b) each variable in x occurs in only one atom of G(x,y), and
(c) for each variable z in z and each variable y occurring in G(x,y) that is distinct

from z, z and y co-occur in an atom of ∃xG(x,y).

In 4. of Definitions 1–3, the atom G, the conjunctions of atoms G and ∃x(G(x,y))
are, respectively, the guard, the loose guard and the clique-guard for F . We say a
formula is a guarded quantification formula if it belongs to either GF, or LGF and
CGF. Definition 1 defines GF in the same way as [69, Definition 2.1] and [39, Def-
inition 2.1] modulo equality. Definition 2 improves the previous definitions of LGF
in [39, 69]: [69, Definition 4.1] misses Condition 4(a) of Definition 2, and Condi-
tion (ii) in the definition of LGF in [39] is amended in Condition 4(b) of Definition 2.
Unlike the definitions of CGF in [53, 65], Definition 3 is defined in accordance with
Definitions 1–2 and disallows equality symbols.

Among the following formulas, F1,F2,F4,F6 and F7 are guarded formulas, but
not the rest. The formula F7 is the standard translation [19, chapter 2] of the modal
formula P→ 32P and the description logic axiom P v ∃R.∀R.P. For the relation-
ship between GF and modal logic see [19, section 7.4], and for that between GF and

8 Sen Zheng, Renate A. Schmidt

description logic see [81].

F1 = A(x) F2 = ∀x[A(x,y)→ B(x,y)] F3 = ∀x[A(x)]
F4 = ∀x[A(x,y)→⊥] F5 = ∀x[A(x,y)→∃y(B(y,z))]
F6 = ∃x[A(x,y)∧∀z(B(x,z)→∃u(R(z,u)))]
F7 = ∀x[P(x)→∃y(R(x,y)∧∀z(R(y,z)→ P(z))))]

Extended from GF, LGF allows a restricted form of a conjunction of atoms in
the guard positions. For example, ∀z[(R(x,z)∧R(z,y))→ P(z)] and the first-order
translation of a temporal logic formula A until B:

∃y[R(x,y)∧B(y)∧∀z((R(x,z)∧R(z,y))→ A(z)))],

are loosely guarded formulas, but are not guarded. Extended from LGF, CGF allows
existentially quantified variables in loose guards. In the clique-guarded formula

F = ∀x1x2

G(x1,x2)→ ∀x3(
(∃x4x5(A(x1,x3,x4)∧B(x2,x3,x5)))→
(∃x6D(x1,x6)∧>))

 ,
∃x6D(x1,x6), ∃x4x5(A(x1,x3,x4) ∧ B(x2,x3,x5)) and G(x1,x2) are respectively the
clique-guards of ∃x6D(x1,x6)∧>,

∀x3(∃x4x5(A(x1,x3,x4)∧B(x2,x3,x5))→ (∃x6D(x1,x6)∧>)) and F.

The transitivity formula ∀xyz[(R(x,y)∧R(y,z))→ R(x,z)] is neither a guarded nor a
loosely guarded nor a clique-guarded formula.

BCQ answering and saturation-based BCQ rewriting problems

First, we give the formal definition of BCQs and unions thereof.
Definition 4. A Boolean conjunctive query (BCQ) is a first-order sentence of the
form ∃xϕ(x), where ϕ(x) is a conjunction of atoms containing only constants and
variables as arguments. A union of BCQs is a disjunction of BCQs.

This paper aims to answer the following question.
Question 1. Given a set Σ of formulas in GF, LGF and CGF, a set D of ground
atoms and a union q of BCQs, can we devise a practical decision procedure to check
whether Σ ∪D |= q?

In this paper, the above question is reduced to check whether Σ |= q, since ground
atoms D belong to the guarded quantification fragments Σ . To answer this question,
we use a saturation-based method, which computes the closure of a given set of
formulas under a set of inference rules.

If we answer Question 1 positively, then we consider a follow-up question:
Question 2. Suppose Σ is a set of formulas in GF, LGF and CGF, D is a set of ground
atoms and q is a union of BCQs. Further, suppose N is the saturation obtained by
applying the procedure devised for Question 1 to {¬q}∪Σ . Can N be back-translated
to a (Skolem-symbol-free) first-order formula Σq such that Σ ∪D |= q if and only if
D |= Σq?

Saturation-based methods for querying the guarded quantification fragments 9

3 From formulas to clausal sets

In this section, we formally define a clausal class to which the considered problems
can be reduced, and then define our clausal normal form translation.

Loosely guarded clauses and query clauses

It is helpful to use the flatness, simpleness, compatibility and covering properties to
formally define our clausal forms, namely loosely guarded clauses and query clauses.

A compound term is flat if each argument in it is either a constant or a variable.
A literal is flat if each argument in it is either a constant or a variable. A clause is flat
if the literals in it are flat. A clause is simple if each argument in it is either a variable
or a constant or a flat compound term. A simple compound-term literal (clause), or
plainly a compound-term literal (clause), is a simple literal (clause) containing at least
one flat compound term. For example, ¬A(f (x,y)) is a compound-term literal, but not
¬A(f (g(x),y)) because ofs the presence of the nested compound term f (g(x),y). A
clause C is covering if each compound term t in it satisfies var(t) = var(C). Two com-
pound terms t and s are compatible if the argument sequences of t and s are identical.
A clause C is compatible if in C, compound terms that are under the same function
symbol are compatible. A clause is strongly compatible if all compound terms in
it are compatible. For example, A1(f (x,y))∨¬A2(g(x,y))∨A3(y,x) is covering and
strongly compatible, and A1(f (x,y))∨¬A2(g(y,x)) is covering and compatible, but
not strongly compatible.

Definition 5. A query clause is a flat negative clause.

Definition 6. A loosely guarded clause C is a simple, covering and strongly compat-
ible clause, satisfying the following conditions:

1. C is either ground, or
2. C contains a set of negative flat literals ¬G1, . . . ,¬Gn such that each pair of

distinct variable in C co-occurs in at least one literal of ¬G1, . . . ,¬Gn.

In 2. of Definition 6, ¬G1, . . . ,¬Gn is called a loose guard of C. When a clause
contains only one variable, then it is a loosely guarded clause if it is simple, covering,
strongly compatible, and it contains a flat negative literal that contains its variable. A
loosely guarded clause is a guarded clause if its loose guards contain only one literal,
which we call a guard of this clause. A Horn guarded clause is a guarded clause
containing at most one positive literal. A clause is (loosely) guarded if it contains at
least one (loose) guard.

Consider the clauses

C1 = ¬A1(x,y)∨¬A2(y,z)∨¬A3(z,x),

C2 = ¬B1(x,y,a)∨¬B2(y,z,b)∨¬B3(z,x,w),

C3 = ¬A1(x,y)∨A2(f (y,x), f (x,y)).

The clause C1 is a loosely guarded clause; C2 is not as w and y do not co-occur in any
negative flat literal; C3 is not a loosely guarded clause either since f (y,x) and f (x,y)

10 Sen Zheng, Renate A. Schmidt

LGQ clauses

LG clauses

CGF

LGF

GF

guarded
clauses

Horn
guarded clauses

query clauses

negated
a union of BCQs

Fig. 5: Relationships between the investigated clausal classes and fragments

are not compatible. A query clause is not necessarily loosely guarded or vice-versa.
For example, C1 is a query clause; ¬A(x,y)∨B(f (x,y)) is a (loosely) guarded clause
but not a query clause; and ¬A1(x,y)∨¬A2(y,z) is a query clause, but not (loosely)
guarded.

We use LG to denote the class of loosely guarded clauses, and LGQ to denote the
class of both query and LG clauses. The class of LG clauses is more expressive than
the guarded quantification fragments. For example, ¬G(x)∨A(f (x)) is an LG clause
but it does not belong to the guarded quantification fragments. Figure 5 summarises
the relationships between BCQs, the guarded quantification fragments and the con-
sidered clausal classes. In Figure 5, an upper node is more expressive than the one
linked below it.

Clausal normal form translation

We use the formula renaming technique [70, section 4] in our clausification processes.
Let F [F1(x)] denote a first-order formula F in which F1 is a subformula of F and x are
the free variables in F1. Using a predicate symbol P, say, not occurring in F [F1(x)],
formula renaming with positive literals transforms F [F1(x)] to

F [P(x)]∧∀x(¬P(x)∨F1(x))

and formula renaming with negative literals transforms F [F1(x)] to

F [¬P(x)]∧∀x(P(x)∨F1(x)),

where every occurrence of F1(x) in F [F1(x)] are replaced by P(x) and ¬P(x), respec-
tively. In the above formula renaming with positive literals, F [P(x)] and ∀x(¬P(x)∨
F1(x)) are called the replacement of F [F1(x)] and the definition of P, respectively. In
the above formula renaming with negative literals, F [¬P(x)] and ∀x(P(x)∨F1(x)) are
called the replacement of F [F1(x)] and the definition of P, respectively. If a formula F
is the definition of a predicate symbol P, we say P defines F . For a comprehensive
description of clausification techniques, we refer the reader to [6, 70].

Saturation-based methods for querying the guarded quantification fragments 11

Given a union q1∨ . . .∨qn of BCQs and a set Σ guarded quantification formulas,
we reduce the entailment checking problem of Σ |= q1 ∨ . . .∨ qn to the problem of
checking unsatisfiability of {¬q1∧ . . .∧¬qn}∪Σ . We assume that all free variables
in Σ are existentially quantified as we are interested in satisfiability checking. We use
Trans to denote our clausification process, detailed below.

1. Negate the union of BCQs to obtain a set of query clauses.
2. Clausify loosely guarded formulas following the steps below, illustrated on

F = ∃y[R(x,y)∧B(y)∧∀z((R(x,z)∧R(z,y))→ A(z)))].

(a) Add existential quantifiers to all free variables, equivalently express (double)
implications as disjunctions and then perform negation normal form transla-
tion. From F we obtain

F1 = ∃xy[R(x,y)∧B(y)∧∀z(¬R(x,z)∨¬R(z,y)∨A(z))].

(b) Use formula renaming with positive literals for all universally quantified sub-
formulas in the formula obtained in 2(a). From F1 we obtain

F2 =

[
∃xy(R(x,y)∧B(y)∧P1(x,y))∧
∀xy(¬P1(x,y)∨∀z(¬R(x,z)∨¬R(z,y)∨A(z)))

]
,

where P1 is a fresh predicate symbol. We say that

∃xy(R(x,y)∧B(y)∧P1(x,y)) is the replacement of F1, and
∀xy(¬P1(x,y)∨∀z(¬R(x,z)∨¬R(z,y)∨A(z)) is the definition of P1.

(c) Transform immediate subformulas of the formulas obtained in 2(b) that are
connected by conjunctions to prenex normal form and then apply Skolemisa-
tion. By introducing Skolem constants a and b, from F2 we obtain

F3 =

[
R(a,b)∧B(b)∧P1(a,b) ∧

∀xyz(¬P1(x,y)∨¬R(x,z)∨¬R(z,y)∨A(z))

]
.

(d) Drop universal quantifiers and then perform conjunctive normal form trans-
formation to formulas obtained in 2(c). From F3 we obtain a set of LG clauses:

R(a,b), B(b), P1(a,b) and ¬P1(x,y)∨¬R(x,z)∨¬R(z,y)∨A(z).

3. Clausify clique-guarded formula following the steps below, illustrated on

F ′ = ∀x1x2

G(x1,x2)→ ∀x3(
(∃x4x5(A(x1,x3,x4)∧B(x2,x3,x5)))→
(∃x6D(x1,x6)∧>))

 .

12 Sen Zheng, Renate A. Schmidt

(a) Add existential quantification for all free variables and simplify > and ⊥.
Unlike 2(a) we first apply the miniscoping rule [70] to existential quantified
variables in clique-guards, and then perform the negation normal form trans-
formation. From F ′ we obtain

F ′1 = ∀x1x2

G(x1,x2)→ ∀x3(
(∃x4A(x1,x3,x4)∧∃x5B(x2,x3,x5))→
(∃x6D(x1,x6)∧>))

 .
Then transform F ′1 to negation normal form and drop >, obtaining

F ′2 = ∀x1x2

¬G(x1,x2) ∨ ∀x3(
(∀x4(¬A(x1,x3,x4))∨∀x5(¬B(x2,x3,x5))) ∨
∃x6D(x1,x6))

 ,
(b1) Apply formula renaming to all universally quantified subformulas in the for-

mula obtained in 3(a). For universally quantified subformulas in the clique-
guards, namely ∀x4(¬A(x1,x3,x4)) and ∀x5(¬B(x2,x3,x5)), we apply formula
renaming with negative literals to them. From F ′2 we obtain an intermediate
formula

F ′3 =

∀x1x3(P1(x1,x3)∨∀x4(¬A(x1,x3,x4)))∧
∀x2x3(P2(x2,x3)∨∀x5(¬B(x2,x3,x5)))∧
∀x1x2(¬G(x1,x2)∨∀x3(¬P1(x1,x3)∨¬P2(x2,x3)∨∃x6D(x1,x6)))

 ,
where P1 and P2 are the fresh predicate symbols.

(b2) For the remaining universally quantified subformulas in the formula obtained
in 3(a) and 3(b1), we apply formula renaming with positive literals. From F ′3
we eventually obtain

F ′4 =

p1∧
(¬p1∨∀x1x2(¬G(x1,x2)∨P3(x1,x2)))∧
∀x1x3(P1(x1,x3)∨∀x4(¬A(x1,x3,x4)))∧
∀x2x3(P2(x2,x3)∨∀x5(¬B(x2,x3,x5)))∧
∀x1x2(¬P3(x1,x2)∨∀x3(¬P1(x1,x3)∨¬P2(x2,x3)∨∃x6D(x1,x6)))

 ,
where p1 and P3 are the fresh predicate symbols. In F ′4, p1 is the replacement
of F ′2 and the remaining four conjuncts respectively defines p1, P1, P2 and P3.

(c) Transform immediate subformulas of the formulas obtained in 3(b2) that are
connected by conjunctions to prenex normal form and then apply Skolemisa-
tion. Using a Skolem function symbol f , F ′4 is transformed into

F ′5 =

p1∧
(¬p1∨∀x1x2(¬G(x1,x2)∨P3(x1,x2)))∧
∀x1x3x4(P1(x1,x3)∨¬A(x1,x3,x4))∧
∀x2x3x5(P2(x2,x3)∨¬B(x2,x3,x5))∧
∀x1x2x3(¬P3(x1,x2)∨¬P1(x1,x3)∨¬P2(x2,x3)∨D(x1, f (x1,x2,x3)))

 .

Saturation-based methods for querying the guarded quantification fragments 13

(d) Transform the formula obtained in 3(c) to conjunctive normal form and then
drop universal quantifiers. From F ′5 we obtain a set of LG clauses:

p1, ¬p1∨¬G(x1,x2)∨P3(x1,x2),

P1(x1,x3)∨¬A(x1,x3,x4), P2(x2,x3)∨¬B(x2,x3,x5),

¬P3(x1,x2)∨¬P1(x1,x3)∨¬P2(x2,x3)∨D(x1, f (x1,x2,x3)).

To sum up, the Trans process transforms unions of BCQs to query clauses, clausifies
guarded formulas to a set of guarded clauses, and loosely guarded and clique-guarded
formulas to a set of LG clauses.

By i) renaming universally quantified subformulas and ii) applying prenex normal
form transformation and then Skolemisation to each conjunctively connected imme-
diate subformulas, the Trans process intentionally introduces Skolem functions of a
higher arity. More specifically, i)–ii) ensure that LG clauses have the covering and
the strong compatibility properties. The covering property is essential to guarantee
termination in our BCQ answering procedures, and the strong compatibility property
makes the back-translation from an LG clausal set to a first-order formula possible.

The Trans process provides the most general and crucial clausification steps, but
this can be further optimised in implementation. For example, in 3(c) of the Trans
process, renaming the top-most formula ∀x1x2(¬G(x1,x2)∨P1(x1,x2)) is not critical.
Another possible optimisation is using formula renaming to avoid the exponential
blow-up of distributing disjunctions over conjunctions.

Lemma 7. i) Applying the Trans process to a (loosely) guarded formula transforms
it into a set of (loosely) guarded clauses, and ii) applying the Trans process to a
clique-guarded formula transforms it into a set of loosely guarded clauses.

Proof. i): Suppose F is a loosely guarded formula. Suppose F2 is a result of applying
2(a)–2(b) of Trans to F , and further suppose P1, . . . ,Pn are the fresh predicate sym-
bols introduced in 2(b). W.l.o.g. we say F2 = F2,1∧ . . .∧F2,n∧F2,r where F2,1, . . . ,F2,n
are respectively the definitions of P1, . . . ,Pn and F2,r is the replacement of F2. We
prove that Trans clausifies every conjunct of F2 to a set of LG clauses.

Consider F2,r. By 2(b), no universally quantified subformulas occur in F2,r, there-
fore F2,r is a closed existentially quantified formula. The fact that F2,r contains no
compound terms implies that 2(c)–2(d) clausify F2,r to a set of flat ground clauses,
which are LG clauses.

Consider F2,1, . . . ,F2,n. W.l.o.g. we take F2,1. By 2(b), F2,1 can be represented as

∀x(¬P1(x)∨∀y(¬G1(x1,y1)∨ . . .∨¬Gr(xk,yk)∨Fa))

where ∀y(¬G1(x1,y1)∨ . . .∨¬Gr(xk,yk)∨Fa) is a loosely guarded formula, Fa is a
loosely guarded formula where all universal quantified formulas are abstracted (hence
Fa is a formula containing no universal quantification but may contain existential
quantifications), x1, . . . ,xk ⊆ x and y1, . . . ,yk ⊆ y. By 2(c), F2,1 is converted to

∀xy(¬P1(x)∨¬G1(x1,y1)∨ . . .∨¬Gr(xk,yk)∨Fa).

If Fa contains conjunctions, 2(c)–2(d) clausify F2,1 to a set of clauses, otherwise F2,1 is
clausified to one clause. Suppose C is a clause obtained by applying 2(c)–2(d) to F2,1.

14 Sen Zheng, Renate A. Schmidt

We use C1 to denote the subclause ¬P1(x)∨¬G1(x1,y1)∨ . . .∨¬Gr(xk,yk). First, we
prove that C1 is a loose guard of C. By the fact var(F2,1) = xy, var(C) = xy. By 4 of
Definition 2, C1 is flat and var(C1) = xy. By 4(b) of Definition 2 and the fact that the
free variables of ∀y(¬G1(x1,y1)∨ . . .∨¬Gr(xk,yk)∨Fa) are x, each pair of variables
in xy co-occurs in at least one literal of C1. Hence C1 is a loose guard of C. Next,
we prove that C satisfies the other properties of LG clauses. We distinguish two cases
of whether Fa contains existential quantifications. Suppose Fa contains existential
quantifications and suppose the existentially quantified variables in Fa are Skolemised
to Skolem functions f1, . . . , fk. W.l.o.g. suppose f1 and f2 are two Skolem symbols
occurring in C. By prenex normal form transformation, all compound terms in C that
are under neither f1 or f2 have the same sequence of arguments xy, therefore C is
covering and strongly compatible. As no function symbol occurs in Fa, no term in C is
nested, and C is simple. Then, C is an LG clause. Suppose Fa contains no existentially
quantified formulas. Immediately C is flat. Since we previously proved that C1 is a
loose guard of C, C is an LG clause. That Trans converts guarded formulas to a set of
guarded clauses is immediate since this is the case that a loose guard contains only
one literal.

ii): Now we consider the clique-guarded formula. Unlike the clausification for
loosely guarded formulas, the existentially quantified variables in clique-guards, men-
tioned in Condition 4(b) in the CGF definition, need to be handled. Suppose F ′ is a
clique-guarded formula, and w.l.o.g. suppose F ′2 is a result of applying 3(a) to F ′. Fur-
ther, suppose F ′3 is the result of applying 3(b1) to F ′2. Using the fresh predicate sym-
bols P3,1, . . . ,P3,n, we say F ′3 = F ′3,1 ∧ . . .∧F ′3,n ∧F ′3,r where F ′3,1, . . . ,F

′
3,n are respec-

tively the definitions of P3,1, . . . ,P3,n and F ′3,r is the replacement of F ′3. Assume that F ′4
is the result of applying 3(b2) to F ′3,r. Using fresh predicate symbols P4,1, . . . ,P4,m, we
say F ′4 = F ′3,1∧ . . .∧F ′3,n∧F ′4,1∧ . . .∧F ′4,m∧F ′4,r where F ′4,1, . . . ,F

′
4,m are respectively

the definitions of P4,1, . . . ,P4,m and F ′4,r is the replacement of F ′4. We prove that by
Trans every conjunct of F ′4 is clausified as a set of LG clauses.

Consider applying 3(b1) to F ′2, deriving F ′3, viz., F ′3,1 ∧ . . . ∧ F ′3,n ∧ F ′3,r. Sup-
pose F ′2,1 is a subformula in F ′2 that contains universally quantified subformulas oc-
curring in clique-guards. W.l.o.g. we assume that F ′3,1∧ . . .∧F ′3,n∧F ′3,r is obtained by
applying 3(b1) to F ′2,1 and w.l.o.g. we present F ′2,1 as

∀z(∀x1¬G1(x1,y1)∨ . . .∨∀xk¬Gt(xk,yk)∨F ′a)

where x1, . . . ,xk respectively only occur in ¬G1(x1,y1), . . . ,¬Gt(xk,yk) and F ′a is a
clique-guarded formula. W.l.o.g. we use P3,1, . . . ,P3t such that t ≤ n to apply 3(b1)
to F ′2,1, obtaining

∀z(¬P3,1(y1)∨ . . .∨¬P3,r(yk)∨F ′′a)∧
∀y1(P3,1(y1)∨∀x1¬G1(x1,y1))∧ . . .∧∀yk(P3t (yk)∨∀xn¬Gt(xk,yk))

where F ′′a is a clique-guarded formula and no universal quantification occurs in its
clique-guards (since 3(b1) abstracts universal quantified formulas in clique-guards).
The subformula ∀z(¬P3,1(y1)∨ . . .∨¬P3,r(yk)∨F ′′a) is the replacement of F ′2,1. This

Saturation-based methods for querying the guarded quantification fragments 15

replacement represents a conjunct in F ′3,r and we consider F ′3,r in the next paragraph.
The subformulas

∀y1(P3,1(y1)∨∀x1¬G1(x1,y1)), . . . , ∀yk(P3t (yk)∨∀xn¬Gt(xk,yk)).

are the definitions of P3,1, . . . ,P3t such that t ≤ n, respectively. By 3(c)–3(d) these
definitions are clausified to flat LG clauses consisting of two literals. Hence, 3(c)–
3(d) clausify F ′3,1∧ . . .∧F ′3,n to a set of LG clauses.

Next consider F ′3,r. Since F ′3,r contains no quantification in its clique-guard, by
the definitions of LGF and CGF, F ′3,r is a loosely guarded formula. Suppose apply-
ing 3(b2) to F ′3,r derives F ′4 = F ′4,1∧ . . .∧F ′4,m∧F ′4,r. W.l.o.g. we discuss F ′4,1. The fact
that no universal quantification occurs in clique-guards of F ′3,r implies that F ′4,1 can
be presented as

∀x(¬P4,1(x)∨∀y(¬G1(x1,y1)∨ . . .∨¬Gl(xk,yk)∨F ′′′a)

where ∀y(¬G1(x1,y1)∨ . . .∨¬Gl(xk,yk)∨F ′′′a) is a loosely guarded formula, F ′′′a is a
loosely guarded formula where all universal quantified formulas are abstracted (hence
it is a formula containing no universal quantification but may contain existential quan-
tifications) and x1, . . . ,xk ⊆ x and y1, . . . ,yk ⊆ y. Note that F ′′a is obtained by abstract-
ing universally quantified subformulas in clique-guards in F ′2,1, and F ′′′a is obtained
by abstracting all universally quantified formulas in F ′3,r. By the result established in
applying 2(c)–2(d) of Trans to F2,1, . . . ,F2,n, 3(c)–3(d) of Trans clausify F ′4,1 to an
LG clause or a set of LG clauses if F ′′′a contains conjunctions. Finally consider F ′4,r.
By the result established in applying 2(b) of Trans to F2,r, 3(c)–3(d) clausify F ′4,r to
a set of flat ground clauses, viz., LG clauses.

Theorem 8. The Trans process reduces the problem of BCQ answering for GF, LGF
and CGF to that of deciding satisfiability of a set of LGQ clauses.

Proof. Suppose q1∨ . . .∨qn is a union of BCQs, Σ is a set of guarded quantification
formulas and D is a set of ground atoms. Since ground atoms D belong to GF, LGF
and CGF, it suffices to reduce checking entailment of Σ |= q1 ∨ . . .∨ qn to checking
unsatisfiability of {¬q1, . . . ,¬qn}∪Σ . By the definition of BCQ, {¬q1, . . . ,¬qn} is a
set of query clauses. By Lemma 7, Σ is clausified to a set of LG clauses.

4 Top-variable inference system

In this section, we present three systems: a basic selection-based resolution system,
a partial selection-based resolution system and a top-variable resolution system.

Basic notions in the saturation-based resolution framework

In our systems, admissible orderings and selection functions are the two main param-
eters to refine and guide the inference process. The following notions are standard in
the resolution framework of [8].

16 Sen Zheng, Renate A. Schmidt

Let � be a strict ordering, called a precedence, on the symbols in C, F and P.
An ordering � on expressions is liftable if E1 � E2 implies E1σ � E2σ for any
expressions E1, E2 and substitution σ . An ordering � on literals is admissible, if the
following conditions are satisfied.

– It is liftable, well-founded and total on ground literals,
– ¬A� A for all ground atoms A,
– if B� A, then B� ¬A for all ground atoms A and B.

Let � be an ordering and C a ground clause. A literal L in C is (strictly) maximal
with respect to the ground clause C if and only if for all L′ in C, L � L′ (L � L′).
A non-ground literal L is (strictly) maximal with respect to a clause C if and only
if there exist some ground substitutions σ such that Lσ is (strictly) maximal with
respect to Cσ , that is, for all L′ in C, Lσ � L′σ (Lσ � L′σ). A selection function
maps a clause C to a multiset of negative literals in C. The literals in the range of
selection functions are said to be selected. An eligible literal with respect to a clause
is either a (strictly) maximal literal or a selected literal.

A ground clause C is redundant with respect to a ground clausal set N if there exist
C1, . . . ,Cn in N such that C1, . . . ,Cn |=C and C �Ci for each i with 1≤ i≤ n. Let N
be a clausal set. Then a ground clause C is redundant with respect to N if there exists
ground instances C1σ , . . . ,Cnσ of clauses C1, . . . ,Cn in N such that C1σ , . . . ,Cnσ |=C
and C � Ciσ for each i with 1 ≤ i ≤ n. A non-ground clause C is redundant with
respect to N if every ground instance of C is redundant with respect to N. Let C and
C1, . . . ,Cn be premises and D a conclusion in an inference I. Then the inference I is
redundant with respect to N if there exist clauses D1, . . . ,Dk in N that are smaller
than C such that C1, . . . ,Cn,D1, . . . ,Dk |= D. A non-ground inference I is redundant
with respect to N if every ground instance of I is redundant in the ground instances
of the clauses of N. A clausal set N is saturated up to redundancy with respect to
an inference system R if all inferences in R with non-redundant premises in N are
redundant with respect to N.

The S-Res system

In this section, we fine a selection-based resolution system, referred to as the S-Res
system. This is a standard instance of the resolution framework in [8].

The S-Res system consists of two types of rules: the Deduce and Delete rules.
New conclusions are derived using the Deduce rule.

N
Deduce:

N∪{C}
if C is a conclusion of applying resolution or positive factoring rules to N.

To ensure decidability, we minimally need the following Delete rule.

Saturation-based methods for querying the guarded quantification fragments 17

N∪{C}
Delete:

N

if C is a tautology, or N contains a variant of C.

The Factor rule is the positive factoring rule, defined by:

C∨A1∨A2Factor:
(C∨A1)σ

if the following conditions are satisfied.

1. Nothing is selected in C∨A1∨A2.
2. A1σ is �-maximal with respect to Cσ .
3. σ = mgu(A1

.
= A2)

The S-Res rule is the selection-based resolution rule defined by

B1∨D1, . . . , Bn∨Dn ¬A1∨ . . .∨¬An∨D
S-Res:

(D1∨ . . .∨Dn∨D)σ

if the following conditions are satisfied.

1. No literal is selected in D1, . . . ,Dn,D and B1σ , . . . ,Bnσ are strictly�-maximal
with respect to D1σ , . . . ,Dnσ , respectively.

2a. If n = 1, then i) either ¬A1 is selected, or nothing is selected in ¬A1∨D and
¬A1σ is �-maximal with respect to Dσ , and ii) σ = mgu(A1

.
= B1) or

2b. if n> 1, then¬A1, . . . ,¬An are selected and σ =mgu(A1
.
=B1, . . . ,An

.
=Bn).

3. All premises are variable disjoint.

In the S-Res rule, the right-most premise is the main premise and the others are the
side premises. Unlike the standard hyperresolution rule [77] (like the hyperresolution
rule in [93]), the S-Res rule does not require the side premises to be positive and all
negative literals in the main premise to be selected, e.g., D in the main premise is
not nessarily positive. Standard hyperresolution is only applied when the selection
function selects all negative literals in the premises of the S-Res rule. The binary
resolution rule [8] is an instance of the S-Res rule whenever it only has one selected
literal in the main premise.

The S-Res system is defined in the spirit of the resolution framework of [8], there-
fore, more sophisticated simplification and redundant elimination techniques, such as
forward and backward subsumption elimination and condensation in [8, section 4.3],
can be freely added to the system.

Theorem 9. The S-Res system is sound and refutationally complete for general first-
order clausal logic.

Proof. By the fact that the S-Res system strictly follows the principles of the resolu-
tion framework in [8].

18 Sen Zheng, Renate A. Schmidt

The P-Res system

Next, we describe a new partial selection-based resolution inference system, denoted
as P-Res. This system is built on the top of the S-Res system, but the S-Res rule is
replaced by the following partial selection-based resolution rule.

B1∨D1, . . . , Bm∨Dm, . . . , Bn∨Dn ¬A1∨ . . .∨¬Am∨ . . .∨¬An∨D
P-Res:

(D1∨ . . .∨Dm∨¬Am+1∨ . . .∨¬An∨D)σ

if the following conditions are satisfied.

1. No literal is selected in D1, . . . ,Dn,D and B1σ , . . . ,Bnσ are strictly�-maximal
with respect to D1σ , . . . ,Dnσ , respectively.

2a. If n = 1, then i) either ¬A1 is selected, or nothing is selected in ¬A1∨D and
¬A1σ is �-maximal with respect to Dσ , and ii) σ = mgu(A1

.
= B1) or

2b. there must exist an mgu σ ′ such that σ ′ = mgu(A1
.
= B1, . . . ,An

.
= Bn), then

the mgu used to perform the inference is σ = mgu(A1
.
= B1, . . . ,Am

.
= Bm)

where 1≤ m≤ n.
3. All premises are variable disjoint.

The P-Res rule is not a selection-based resolution rule where a sub-multiset of
the negative literals in the main premise is selected. The literals ¬A1, . . . ,¬Am are
resolved not because they are selected, but because the application of the S-Res rule
makes the inference on a sub-multiset of the S-Res side premises and the S-Res main
premise possible. Condition 2b. stipulates the existence of an mgu between A1, . . . ,An
and B1, . . . ,Bn as a pre-requisite for the application of the P-Res rule. This means that
whenever the S-Res rule applies to

C1 = B1∨D1, . . . , Cn = Bn∨Dn and C = ¬A1∨ . . .∨¬Am∨ . . .∨¬An∨D

with ¬A1, . . . ,¬An selected, one can apply the P-Res rule with m of the side premises
where 1 ≤ m ≤ n. We say that ¬A1, . . . ,¬Am are the P-Res eligible literals with re-
spect to an S-Res inference.

Unlike the S-Res rule, Condition 2b. in the P-Res rule includes the case of n = 1,
meaning that the pre-requisites for Conditions 2a. and 2b. are not exclusive. Though
when n = 1, using either Condition 2a. or 2b. to the main premise derives the same
conclusion, the mechanism is different: Condition 2a. considers the situation when
the P-Res rule is reduced to a binary S-Res rule, but Condition 2b. considers the par-
tial inferences when the main premise contains only one P-Res eligible literal. Both
mechanisms are useful in practice: for example, Condition 2a. is used when a main
premise contains only one negative literal, but when a main premise contains multi-
ple negative literals, Condition 2b. allows us to decide that among all these negative
literals, the one we want to resolve, to derive a partial resolvent. This partial resolvent
can have properties that the resolvent, when we resolve all the negative literals, does
not have.

Although the S-Res rule has the advantage of avoiding intermediate resolvents
that are derived by binary resolution rules, the S-Res resolvents can be difficult to

Saturation-based methods for querying the guarded quantification fragments 19

tame as the rule is performed on a macro level. The P-Res rule, on the other hand,
amends the S-Res rule by allowing one to resolve any non-empty and non-strict sub-
multiset of the S-Res side premises with the S-Res main premise. This means that
the P-Res rule provides new flexibility to capture the S-Res resolvents and thus gen-
eralises the S-Res rule. This flexibility is important to tame (and decide) the clausal
class we consider.

Next, we show soundness and refutational completeness of the P-Res system.
A P-Res inference with the main premise C and a sub-multiset of the side premises
C1, . . . ,Cn makes the S-Res inference on C and C1, . . . ,Cn redundant. We first consider
the ground case.

Lemma 10. Suppose N is a clausal set and C1, . . . ,Cn,C are ground clauses occur-
ring in N. Suppose I is an S-Res inference with C1, . . . ,Cn the side premises and C the
main premise. Further suppose Rp is the P-Res resolvent of applying the P-Res rule
to a sub-multiset of C1, . . . ,Cn and C. Then, I is redundant with respect to N∪{Rp}.

Proof. Suppose R is the resolvent of I and � is the applied admissible ordering. By
the notion of redundant inferences for ground clauses, we prove that C � Rp and
C1, . . . ,Cn,Rp |= R. W.l.o.g. suppose

C1 = A1∨D1, . . . ,Cn = An∨Dn and C = ¬A1∨ . . .∨¬Am∨ . . .∨¬An∨D

where 1≤m≤ n. Further suppose a P-Res inference is performed on C and C1, . . . ,Cm.
By the definitions of the S-Res and P-Res rules,

R = D1∨ . . .∨Dn∨D and Rp = ¬Am+1∨ . . .∨¬An∨D1∨ . . .∨Dm∨D.

By Condition 1. of the S-Res and P-Res rules, A1 �D1, . . . ,Am �Dm, hence C� Rp.
Next, we prove C1, . . . ,Cn,Rp |= R by contradiction. Let I be an arbitrary interpreta-
tion satisfying that

I |= A1∨D1, . . . ,An∨Dn,¬Am+1∨ . . .∨¬An∨D1∨ . . .∨Dm∨D, (1)
but I 6|= D1∨ . . .∨Dn∨D. (2)

(2) implies I 6|= D1, . . . , I 6|= Dn, therefore, considering (1) we get that

I |= A1, . . . ,An,¬Am+1∨ . . .∨¬An∨D1∨ . . .∨Dm∨D. (3)

(3) implies that I |= D1 ∨ . . .∨Dm ∨D. As D1 ∨ . . .∨Dm ∨D is a subclause of D1 ∨
. . .∨Dn∨D, I |=D1∨ . . .∨Dn∨D, which refutes (2). Then, C1, . . . ,Cn,Rp |=R. By the
facts that C� Rp and C1, . . . ,Cn,Rp |= R, I is redundant with respect to N∪{Rp}.

Lemma 10 shows that given an S-Res inference I on ground clauses of a clausal
set N, computing a P-Res resolvent Rp with respect to I makes I redundant with
respect to N ∪{Rp}. Similar justifications can be found in [8, pages 53–54] and [7,
page 28] described as ‘partial replacement strategy’.

Next, we generalise Lemma 10 to non-ground inferences.

20 Sen Zheng, Renate A. Schmidt

Lemma 11. Suppose N is a clausal set and C1, . . . ,Cn,C are general clauses occur-
ring in N. Suppose I is an S-Res inference where C1, . . . ,Cn are the side premises
and C is the main premise. Further suppose Rp is the P-Res resolvent of applying the
P-Res rule to a sub-multiset of C1, . . . ,Cn and C. Then, every ground instance of I is
redundant with respect to the ground instances of the clauses in N∪{Rp}.

Proof. Suppose R is the S-Res resolvent in I. W.l.o.g. suppose C1, . . . ,Cm are side
premises of applying the P-Res rule to C and C1, . . . ,Cm and Rp is the resolvent, where
1≤m≤ n. Suppose σ is a ground substitution satisfying that applying the S-Res rule
to C1σ , . . . ,Cnσ as the side premises and Cσ as the main premise derives Rσ . We
use Ignd to denote this ground S-Res inference. Since the P-Res rule only requires a
sub-multiset of the S-Res side premises, the P-Res rule is applicable to C1σ , . . . ,Cmσ

as the side premises and Cσ as the main premise, deriving Rpσ . By Lemma 10, Ignd
is redundant with respect to the ground instances C1σ , . . . ,Cnσ ,Rpσ of the clauses
in N ∪{Rp}. Hence, every ground S-Res inference is redundant with respect to the
ground instances of the clauses in N∪{Rp}.

The main result of this section is then as follows.

Theorem 12. The P-Res system is sound and refutationally complete for general
first-order clausal logic.

Proof. By Lemma 10 and Theorem 9, the P-Res system is sound and complete for
ground clauses. By the fact that the Factor rule is the positive factoring rule in the res-
olution framework of [8] and Lemma 11, the P-Res system is sound and refutational
complete for general first-order clauses.

The T-Res system

Finally, we present the top-variable resolution inference system, referred to as the
T-Res system. As a special case of the P-Res system, the T-Res system uses the
customised admissible orderings, selection functions and a specific version of the P-
Res rule, i.e., the top-variable resolution rule T-Res, particularly devised for deciding
satisfiability of the LGQ clausal class.

First, we give the top-variable resolution rule T-Res. Suppose in an S-Res in-
ference with C1 = B1 ∨D1, . . . ,Cn = Bn ∨Dn the side premises and C = ¬A1 ∨ . . .∨
¬An ∨ D the main premise with ¬A1, . . . ,¬An selected. The top-variable technique
is applied to this inference by the following steps.

1. Without producing or adding the resolvent, compute an mgu σ ′ for C1, . . . ,Cn
and C such that σ ′ = mgu(A1

.
= B1, . . . ,An

.
= Bn).

2. Compute the variable ordering >v and =v over the variables of ¬A1∨ . . .∨¬An.
By definition, x >v y and x =v y with respect to σ ′, if dep(xσ ′) > dep(yσ ′) and
dep(xσ ′) = dep(yσ ′), respectively.

3. Based on >v and =v, the maximal variables in ¬A1 ∨ . . .∨¬An are the top vari-
ables. The sub-multiset ¬A1, . . . ,¬Am of ¬A1, . . . ,¬An (1 ≤ m ≤ n) are the top-
variable literals if each literal in ¬A1, . . . ,¬Am contains at least one top variable,
and ¬A1∨ . . .∨¬Am is the top-variable subclause of C.

Saturation-based methods for querying the guarded quantification fragments 21

The top-variable resolution rule is defined by

B1∨D1, . . . , Bm∨Dm, . . . , Bn∨Dn ¬A1∨ . . .∨¬Am∨ . . .∨¬An∨D
T-Res:

(D1∨ . . .∨Dm∨¬Am+1∨ . . .∨¬An∨D)σ

if the following conditions are satisfied.

1. No literal is selected in D1, . . . ,Dn,D and B1σ , . . . ,Bnσ are strictly�-maximal
with respect to D1σ , . . . ,Dnσ , respectively.

2a. If n = 1, then i) either ¬A1 is selected, or nothing is selected in ¬A1∨D and
¬A1σ is �-maximal with respect to Dσ , and ii) σ = mgu(A1

.
= B1) or

2b. there must exist an mgu σ ′ such that σ ′ = mgu(A1
.
= B1, . . . ,An

.
= Bn), then

¬A1, . . . ,¬Am are the top-variable literals of ¬A1∨ . . .∨¬Am∨ . . .∨¬An∨D
and σ = mgu(A1

.
= B1, . . . ,Am

.
= Bm) where 1≤ m≤ n.

3. All premises are variable disjoint.

Top variables, top-variable literals and top-variable subclauses are only in effect
with respect to an S-Res inference, since the T-Res rule is a very specific application
of the P-Res rule, built on the top of the S-Res rule. Suppose I is an S-Res inference
with C1, . . . ,Cn the side premises and C the main premise. As shown in the previous
section, the P-Res rule allows one to perform an inference on C and any sub-multiset
of C1, . . . ,Cn. Suppose I′ is a P-Res inference based on I. Then, in the computation
of I′, the T-Res rule further specifies the sub-multiset N of C1, . . . ,Cn by the top-
variable technique. Let I′′ be a T-Res inference based on I′ in which C is the main
premise and the side premises are clauses in N. To ensure that the clauses in N are
the P-Res side premises in I′′, we use the complementary literals of the eligible lit-
erals of N to restrict the inference and name these literals the top-variable literals.
Therefore, although the T-Res rule identifies the top-variable literals as per S-Res in-
ference, the top-variable literals are not determined by a dynamic selection function,
but by the presence of S-Res side premises. This top-variable technique provides the
basis for our decision procedures discussed later. Since a T-Res inference is based
on the existence of an S-Res inference, the mgu for the T-Res inference is ensured
to exist, hence the top-variable literals in T-Res inferences can always be identified.
To distinguish the mgus of the T-Res and the S-Res rules, we use σ and σ ′ to denote
them, respectively.

Now we provide the customised admissible orderings and selection functions. As
admissible orderings, we choose to use any lexicographic path ordering �l po with a
precedence in which function symbols are larger than constants, which are larger than
predicate symbols. This is a requirement also for any admissible ordering with the
same precedence restriction. For selection functions, we require the selection func-
tion SelectNC to select one of the negative compound-term literals in LGQ clauses
containing negatively occurring compound-term literals.

Algorithm 1 details how the admissible ordering �l po, the selection function
SelectNC and the T-Res rule are applied to LGQ clauses. The algorithm contains
the following functions:

– Max(C) returns a (strictly) �l po-maximal literal with respect to the clause C.

22 Sen Zheng, Renate A. Schmidt

Algorithm 1: Find the eligible or the top-variable literals for LGQ clauses
Input: An LGQ clausal set N and a clause C in N
Output: The eligible or the top-variable literals in C

1 if C is ground then
2 return Max(C)

3 else if C has negatively occurring compound-term literals then
4 return SelectNC(C)

5 else if C has positively occurring compound-term literals then
6 return Max(C)

7 else return TRes(N,C) // C is a non-ground flat clause

– SelectNC(C) returns one of the negative compound-term literals in the clause C.
– TRes(N,C) performs a T-Res inference with clauses in N the side premises and C

the main premise, returning
1. either all negative literals of the clause C, or
2. the top-variable literals of the clause C (with respect to this T-Res inference).

Algorithm 2 specifies the TRes(N,C) function, describing the application of the
T-Res rule to a non-ground flat LGQ clause C as the main premise and C1, . . . ,Cn
occurring in N as the side premises. In Algorithm 2, the ComT(C1, . . . ,Cn,C) function
finds the top-variable literals in C with respect to the S-Res inference when C1, . . . ,Cn
are the side premises and C is the main premise. Algorithm 2 first tries to perform
an S-Res inference on C1, . . . ,Cn and C, and if it is possible, the S-Res inference is
immediately replaced by a T-Res inference. In the algorithm Lines 2–3 check whether
the S-Res rule applies to C1, . . . ,Cn as the side premises and C as the main premise
with all negative literals selected. If so, Line 5 uses the ComT(C1, . . . ,Cn,C) function
to compute the top-variable literals in C with respect to this S-Res inference, ensuring
that the T-Res rule is applicable to C and the sub-multiset of C1, . . . ,Cn mapping to
the top-variable literals in C. Otherwise, Line 6 returns all negative literals of C,
meaning that no S-Res inference, hence no T-Res inference, is possible for C1, . . . ,Cn

Algorithm 2: The TRes function
Input: An LGQ clausal set N and a non-ground flat clause C in N
Output: The eligible or the top-variable literals in C

1 Function TRes(N,C):
2 Select all negative literals in C
3 Find some clauses C1, . . . ,Cn in N so that an S-Res inference is possible

when C is the main premise and C1, . . . ,Cn are the side premises
4 if C1, . . . ,Cn exist then
5 return ComT(C1, . . . ,Cn,C)

6 else return all negative literals in C

Saturation-based methods for querying the guarded quantification fragments 23

and C. Though the T-Res rule does not require one to select all negative literals in the
S-Res main premise, the TRes function requires it because it is essential for deciding
satisfiability of the LGQ clausal class.

The following sample derivation shows how the T-Res system decides an unsat-
isfiable set of LG clauses. Consider an unsatisfiable set N of LG clauses C1, . . . ,C9:

C1 = ¬A1(x,y)∨¬A2(y,z)∨¬A3(z,x)∨B(x,y,b),

C2 = A3(x, f (x))∨¬G3(x), C3 = A2(f (x), f (x))∨¬G2(x),

C4 = A1(f (x),x)∨D(g(x))∨¬G1(x), C5 = ¬B(x,y,b),

C6 = ¬D(x), C7 = G1(f (a)), C8 = G3(f (a)), C9 = G2(a).

Suppose the precedence on which �l po is based is f > g > a > b > B > A1 > A2 >

A3 > D > G1 > G2 > G3. By L or L∗ we mean that L is selected or L is a (strictly)
maximal literal, respectively. In the T-Res system, C1, . . . ,C9 are presented as:

C1 = ¬A1(x,y) ∨ ¬A2(y,z) ∨ ¬A3(z,x) ∨B(x,y,b),

C2 = A3(x, f (x))∗∨¬G3(x), C3 = A2(f (x), f (x))∗∨¬G2(x),

C4 = A1(f (x),x)∗∨D(g(x))∨¬G1(x), C5 = ¬B(x,y,b) ,

C6 = ¬D(x) , C7 = G1(f (a))∗, C8 = G3(f (a))∗, C9 = G2(a)∗.

One can use any clause to start a derivation, w.l.o.g. we begin with C1. For each newly
derived clause, Algorithm 1 is applied to determine the eligible or the top-variable
literals of the clause.

1. By Algorithm 1 and the fact that C1 is a non-ground flat LG clause, the TRes
function is applied to C1 and clauses in N. In Algorithm 2, all negative literals
in C1 are temporarily selected to check if the S-Res rule is applicable to C1.

2. As an S-Res inference step is applicable to C2,C3,C4 as the side premises and C1
as the main premise, the ComT(C2,C3,C4,C1) function computes an mgu

σ
′ = {x 7→ f (f (x′)),y 7→ f (x′),z 7→ f (x′)}

for variables of C1. Hence x is the only top variable in C1 and therefore ¬A1(x,y)
and ¬A3(z,x) are the top-variable literals. This means that based on the S-Res
inference on C and C2,C3,C4, we intend to perform a special P-Res inference,
viz., a T-Res inference, with C the main premise and C2 and C4 the side premises.

3. The T-Res rule is applied to C2 and C4 as the side premises and C1 as the main
premise with an mgu σ = {x 7→ f (x′),y 7→ x′,z 7→ x′}, deriving

C10 = ¬A2(x,x)∨B(f (x),x,b)∗∨D(g(x))∨¬G1(x)∨¬G3(x),

with x′ renamed as x. No resolution step can be performed on C3 and C10 for the
lack of complementary eligible literals, nonetheless a resolution inference step
can be performed between C5 and C10.

24 Sen Zheng, Renate A. Schmidt

4. By Algorithm 2, the S-Res rule is applicable to C5 as the main premise and C10
as the side premise. Since C5 contains only one negative literal, the literal is the
top-variable literal in C5. Then applying the T-Res rule to C10 and C5 derives

C11 = ¬A2(x,x)∨D(g(x))∗∨¬G1(x)∨¬G3(x).

5. By Algorithm 2, the T-Res rule is applicable to C11 as the side premise and C6 as
the main premise with ¬D(x) the top-variable literal, deriving

C12 = ¬A2(x,x) ∨ ¬G1(x) ∨ ¬G3(x) .

6. Due to the presence of C3,C7,C8 and C12 satisfy conditions of the TRes function,
the ComT(C3,C7,C8,C12) function finds that x is the only top variable in C12 with
an mgu σ ′ = {x 7→ f (a)}. Hence all negative literals in C12 are the top-variable
literals. Applying the T-Res rule to C3,C7,C8 as the side premises and C12 as the
main premise derives C13 = ¬G2(a) .

7. Applying the T-Res rule to C9 and C13 derives ⊥.

Recall that by the term depth of a clause, we mean the depth of the deepest term
in that clause. As shown by the above example, the T-Res rule avoids term depth in-
crease in resolvents of LGQ clauses. Suppose the ComT(C1, . . . ,Cn,C) function takes
LGQ clauses C1, . . . ,Cn and C as input and C is a non-ground flat LGQ clause. In the
application of the top-variable technique to C1, . . . ,Cn and C, Step 1. first computes
an S-Res mgu of C1, . . . ,Cn and C, and Steps 2.–3. then find the variable x in C that
is unified to be the deepest term xσ ′ in Cσ ′ as the top variable. As xσ ′ may become
a nested term in the S-Res resolvent, the T-Res rule computes a partial resolvent,
by only resolving the top-variable literals of C, to avoid this potential term depth in-
crease caused by xσ ′. In the previous example, if an S-Res inference is computed
on C1 as the main premise and C2,C3,C4 as the side premises, a nested compound
term f (f (x)) will occur in the S-Res resolvent.

Now we give the main result of this section.

Theorem 13. The T-Res system is sound and refutationally complete for general
first-order clausal logic.

Proof. By Theorem 12 and since T-Res is a special case of the P-Res system.

The definitions in the resolution framework of [8] and most resolution-based de-
cision procedures [35] stipulate that eligibility, in particular (strict) maximality, of
literals is determined on the instantiated premises with the mgus, i.e., a-posteriori eli-
gibility is used. Instead, a-priori eligibility determines eligibility, in particular (strict)
maximality, of literals on the non-instantiated premises. A-posteriori eligibility is
more general and stronger than a-priori eligibility. However, a-priori eligibility is
possible is more efficient, due to the overhead of pre-computing unifications.

The T-Res system uses a-posteriori eligibility, however, thanks to the covering
and strong compatibility properties of the LGQ clausal class, one can use a-priori
eligibility. This is briefly mentioned in deciding satisfiability of guarded clauses with
equality in [39]. We now formally prove this claim.

Saturation-based methods for querying the guarded quantification fragments 25

Lemma 14. Let a covering clause C contain a compound-term literal L1 and a non-
compound-term literal L2. Then L1 �l po L2.

Proof. We distinguish two cases: i) Suppose L1 contains a ground compound term.
By the covering property, C is ground. Then L1 �l po L2 as L1 contains at least one
function symbol but L2 does not.

ii) Suppose L1 contains a non-ground compound term t. By the covering property,
var(t) = var(L1) = var(C). By the facts that var(L2)⊆ var(L1) and L1 contains at least
one function symbol but L2 does not, L1 �l po L2.

By the covering and the strong compatibility properties of LGQ clauses, a literal
identified as eligible by a-posteriori eligibility is the same as the one identified by
a-priori eligibility. This is formally stated as:

Lemma 15. When applying the refinement of the T-Res system to an LGQ clause C,
if a literal L is (strictly) �l po-maximal with respect to C, then Lσ is (strictly) �l po-
maximal with respect to Cσ , for any substitution σ .

Proof. In Algorithm 1, the maximality checking is done in either Lines 1–2 or 5–6.
For the case in Lines 1–2 the claim trivially holds as C is ground. Lines 5–6

mean that C contains compound-term literals. By Lemma 14, L is a compound-
term literal. Suppose L′ is a literal in C distinct from L. First, suppose L′ is not a
compound-term literal. By the covering property, L �l po L′ implies Lσ �l po L′σ for
any substitution σ . Next, suppose L′ is a compound-term literal. By the fact that C is
strongly compatible, L�l po L′ implies Lσ �l po L′σ for any substitution σ . Thus, Lσ

is (strictly) maximal with respect to Cσ .

Lemma 15 is generalisable to any covering and strongly compatible clause, as it
is these properties that make a-priori eligibility determination possible. From now on
we assume the use of a-priori eligibility to determine (strictly) maximal literals in the
T-Res system. This also streamlines the discussions and simplifies proofs.

5 Deciding satisfiability of the LG clausal class

Having shown in the previous section that the T-Res system is sound and refutational
complete, now we prove the system decides the LG clausal class. Our goal is to show:
given a finite signature, applying the conclusion-deriving Deduce rules in the T-Res
system to a set of LG clauses only derives LG clauses that are of bounded depth and
width. This claim is achieved by restricting that in an LG clause C, the eligible literals
or the top-variable literals

1. have the same variables set as C, and
2. are the deepest literals in C.

First, we show 1.

Lemma 16. By the T-Res system, the eligible literals or the top-variable literals in
an LG clause C have the same variable set as C.

26 Sen Zheng, Renate A. Schmidt

Proof. Being led by Algorithm 1, we distinguish three cases:
Lines 1–2: When C is ground the statement trivially holds.
Lines 3–6: Suppose C is a non-ground compound-term LG clause and L is an

eligible literal in C. Suppose L is positive. By the Max function and �l po, L is a
positive compound-term literal. Next, suppose L is negative. By the SelectNC func-
tion, L is a negative compound-term literal. In either case, by the covering property
of LG clauses, var(L) = var(C).

Lines 7: Suppose C is a non-ground flat LG clause and L are the top-variable
literals in C. Suppose x is a top variable in C. By 2. of Definition 6 and the definition of
top-variable literals, x co-occurs with all other variables of C in L, therefore var(L) =
var(C).

For 2, the T-Res system ensures that the deepest literals in LG clauses are eligible.
Specifically Lines 3–6 of Algorithm 1 ensure that when an LG clause contains non-
ground compound-terms, one of the compound-term literals is eligible.

Compound-term covering clauses have the following property.

Remark 17. Suppose C is a covering clause and contains ground compound terms.
Then, C is ground.

Proof. By the definition of the covering property.

Next, we look at the unification for the eligible literals of LG clauses. We first
investigate the pairing property of compound-term eligible literals. Recall the defini-
tion of pairing from Section 2: Given two atoms A(. . . ,s, . . .) and B(. . . , t, . . .) with
terms s and t, we say s pairs t if the argument position of s in A(. . . ,s, . . .) is the same
as that of t in B(. . . , t, . . .).

Lemma 18. Let A1 and A2 be two simple and covering compound-term atoms, and
suppose A1 and A2 are unifiable using an mgu σ . Then, compound terms in A1 pair
only compound terms in A2 and vice-versa.

Proof. We distinguish three cases: i) The statement trivially holds when both A1
and A2 are ground atoms.

ii) Suppose one of A1 and A2 is a ground atom and the other one is a non-ground
atom. By Remark 17, the non-ground atom in A1 and A2 contains no ground com-
pound terms. Hence, in this case, a non-ground compound term pairs either a ground
compound term or a constant. As unifying a non-ground compound term with a con-
stant is not possible, a non-ground compound term must pair a ground compound
term.

iii) Suppose both A1 and A2 are non-ground. W.l.o.g., A1 and A2 are represented as
A1(t, t ′, . . .) and A2(u,u′, . . .), respectively. By Remark 17 and the fact that A1 and A2
are non-ground atoms, if any of t, t ′, u and u′ is a compound term, then it is a non-
ground compound term.

Suppose t is a compound term. We prove that u is a compound term by con-
tradiction. Then u can be either a constant or a variable. The case that u is a con-
stant prevents the unification of tσ = uσ . Now suppose u is a variable. As A2 is a
compound-term literal, w.l.o.g., suppose u′ is a compound term in A2. Then t ′ is not

Saturation-based methods for querying the guarded quantification fragments 27

a constant as it prevents the unification of u′ and t ′, therefore, t ′ is a variable or a
compound term. We distinguish the two cases of t ′: 1) Suppose t ′ is a variable. By
the covering property, w.l.o.g., we use f (. . . ,x, . . .), x, y and g(. . . ,y, . . .) to repre-
sent t, t ′, u and u′ respectively. Then A1(t, t ′, . . .) and A2(u,u′, . . .) are represented
as A1(f (. . . ,x, . . .),x, . . .) and A2(y,g(. . . ,y, . . .), . . .), respectively. The unification be-
tween these two atoms is impossible due to occur-check failure.

2) Suppose t ′ is a compound term. By the covering property, w.l.o.g., we use f (x),
g(x), y and g(. . . ,y, . . .) to represent t, t ′, u and u′ respectively. Then A1(t, t ′, . . .) and
A2(u,u′, . . .) are represented as A1(f (x),g(x), . . .) and A2(y,g(. . . ,y, . . .), . . .), respec-
tively. Then there exists no unifier for these two atoms again due to occur-check fail-
ure. The fact that u is neither a constant nor a variable implies that u is a compound
term.

The loose guard in the premise of Factor inferences or the loose guard in the side
premise of T-Res inferences act as the loose guard of the conclusion. Formally:

Lemma 19. Let A1 and A2 be two simple and covering atoms, and suppose A1 and
A2 are unifiable using an mgu σ . Further suppose G is a set of flat literals satisfying
var(A1) = var(G). Then, if A1 is a compound-term atom, var(A1σ) = var(Gσ) and
all literals in Gσ are flat.

Proof. Since var(A1) = var(G), it is immediate that var(A1σ) = var(Gσ).
We prove that Gσ is a set of flat literals by distinguishing two cases: i) Assume

that A2 is flat. This implies that σ substitutes variables in A1 with either variables or
constants. By the facts that G is a set of flat literals and var(A1) = var(G), all literals
in Gσ are flat.

ii) Assume that A2 is a compound-term literal. By Lemma 18, compound terms
in A1 pair compound terms in A2 and vice-versa. Since A1 and A2 are simple, the
mgu σ substitutes variables in A1 with either variables or constants. Since G is a set
of flat literals and var(A1) = var(G), all literals in Gσ are flat.

Lemmas 20–21 below consider non-loose-guard literals in the conclusions of LG
clauses. A similar result to Lemma 20 is Lemma 4.6 in [39], but a key ‘covering’
condition is not considered. First, we look at the depth of eligible literals.

Lemma 20. Suppose A1 and A2 are two simple and covering atoms, and they are
unifiable using an mgu σ . Then, A1σ is simple.

Proof. If either of A1 and A2 is ground, or either of A1 and A2 is non-ground and flat,
then immediately A1σ is simple.

Let both A1 and A2 be compound-term atoms. By Lemma 18 and since A1 and A2
are simple, the mgu σ substitutes variables with either constants or variables. Then,
the fact that A1 is simple implies that A1σ is simple.

Next we study the depth and width of non-eligible literals in conclusions.

Lemma 21. Let A1 and A2 be two simple atoms satisfying var(A2) ⊆ var(A1). Then
given an arbitrary substitution σ , these properties hold:

1. If A1σ is simple, then A2σ is simple.

28 Sen Zheng, Renate A. Schmidt

2. var(A2σ)⊆ var(A1σ).

Further suppose that t and u are, respectively, compound terms occurring in A1
and A2 satisfying var(t) = var(u) = var(A1). Then, var(tσ) = var(uσ) = var(A1σ).

Proof. By the assumption that A1 and A1σ are simple, σ does not cause term depth
increase in A1σ . By the facts that var(A2)⊆ var(A1) and A2 is simple, A2σ is simple.

By the facts that var(A2)⊆ var(A1) and var(t) = var(u) = var(A1), it is immediate
that var(A2σ)⊆ var(A1σ) and var(tσ) = var(uσ) = var(A1σ), respectively.

Recall that a flat compound term is a compound term containing only variables
and constants as arguments. We consider how the strong compatibility property holds
in the conclusions.

Lemma 22. Let s, s′, t and t ′ be flat compound terms. Suppose s and t are compatible
with s′ and t ′, respectively. Then, if sσ

.
= tσ with an arbitrary substitution σ , the

following conditions are satisfied.

1. sσ and s′σ are compatible, and tσ and t ′σ are compatible.
2. s and t are compatible, and sσ and tσ are compatible.
3. s′σ and t ′σ are compatible.

Proof. Since s and t are, respectively, compatible with s′ and t ′, sσ and tσ are com-
patible with s′σ and t ′σ , respectively. Since s and t are unifiable by σ , sσ and tσ are
compatible. Then, 1. implies that s′σ and t ′σ are compatible.

A compound-term LG clause with a compound-term literal removed is still an LG
clause. We generalise this claim with applications of substitutions.

Lemma 23. Suppose C = D∨B is an LG clause with B a compound-term literal.
Further, suppose σ is a substitution that substitutes all variables in C with either
constants or variables. Then, Dσ is an LG clause.

Proof. If σ is a ground substitution, the lemma trivially holds. Suppose σ is a non-
ground substitution. We prove that Dσ is simple, covering, strongly compatible and
contains a loose guard. Since C is an LG clause and D is a subclause of C, D is
simple. Because σ substitutes variables with either constants or variables, Dσ is
simple. Let s and t be two arbitrary compound terms in D. That C is covering im-
plies that var(t) = var(C), hence var(t) = var(D), and therefore var(tσ) = var(Dσ).
Then Dσ is covering. Since C is strongly compatible, s and t are compatible. By 2. of
Lemma 22, sσ and tσ are compatible, hence Dσ is strongly compatible. Suppose G is
a set of flat literals that acts as a loose guard of C. Then G is a loose guard of D.
Since σ substitutes variables with either constants or variables and all literals in G
are flat, all literals in Gσ are flat. Since var(G) = var(C) and D is a subclause of C,
var(Gσ) = var(Dσ). By the facts that σ substitutes variables with either constants
or variables and G is a loose guard of D, each pair of variables of Dσ co-occurs in a
literal of Gσ . Hence Gσ is a loose guard of Dσ . Therefore, Dσ is an LG clause.

We establish properties of applying the T-Res rule to a flat clause and LG clauses.

Saturation-based methods for querying the guarded quantification fragments 29

Lemma 24. Suppose a T-Res inference happens to LG clauses as the side premises
and a non-ground flat clause as the main premise, with Condition 2b. of the T-Res
rule satisfied. Then, the top variables in the main premise pair constants or com-
pound terms in the side premises, and the non-top variables in the main premise pair
constants or variables in the side premises.

Proof. Assuming that a-priori eligibility is applied, the T-Res rule is simplified to:

B1∨D1, . . . , Bm∨Dm, . . . , Bn∨Dn ¬A1∨ . . .∨¬Am∨ . . .∨¬An∨D
T-Res:

(D1∨ . . .∨Dm∨¬Am+1∨ . . .∨¬An∨D)σ

provided the following conditions are satisfied.

1. No literal is selected in D1, . . . ,Dn,D and B1, . . . ,Bn are strictly �l po-maximal
with respect to D1, . . . ,Dn, respectively.

2a. If n = 1, then i) either ¬A1 is selected, or nothing is selected in ¬A1∨D and ¬A1
is �l po-maximal with respect to D, and ii) σ = mgu(A1

.
= B1) or

2b. there must exist an mgu σ ′ such that σ ′ = mgu(A1
.
= B1, . . . ,An

.
= Bn), then

¬A1, . . . ,¬Am are the top-variable literals of ¬A1∨ . . .∨¬Am∨ . . .∨¬An∨D and
σ = mgu(A1

.
= B1, . . . ,Am

.
= Bm) where 1≤ m≤ n.

3. All premises are variable disjoint.

W.l.o.g. suppose ¬At(. . . ,x, . . . ,y, . . .) is a literal in ¬A1, . . . ,¬Am, x is a top vari-
able and y is a non-top variable (if it exists). Further suppose σ ′ is the S-Res mgu that
σ ′ = mgu(A1

.
= B1, . . . ,An

.
= Bn). Suppose Ct = Bt(. . . , t1, . . . , t2, . . .)∨Dt is the side

premise such that At(. . . ,x, . . . ,y, . . .)σ ′ = Bt(. . . , t1, . . . , t2, . . .)σ ′, and t1 and t2 pair x
and y, respectively.

We prove that t1 is either a constant or a compound term and t2 is either a
constant or a variable by distinguishing two cases of Ct . i) Suppose Ct is ground.
Then, immediately t1 is either a constant or a ground compound term. We prove
that t2 is a constant by contradiction. Assume that t2 is a ground compound term.
The fact that Ct is simple implies dep(t2) ≥ dep(t1). Since t1 and t2 are ground,
dep(t2σ ′) ≥ dep(t1σ ′), and dep(yσ ′) ≥ dep(xσ ′), which contradicts that y is not a
top variable. Therefore, t2 is a constant.

ii) Suppose Ct is non-ground. Then Lines 3–7 in Algorithm 1 are used to check
eligibility in Ct . By the fact that the eligible literal in Ct is positive, Lines 5–6 are ap-
plied to Ct , hence Ct is a non-ground compound-term clause and Bt(. . . , t1, . . . , t2, . . .)
is the�l po-strictly maximal with respect to Ct . By Lemma 14, Bt is a compound-term
literal. We prove that t1 is a compound term by contradiction. Assume t1 is either a
variable or a constant. Since Bt is a compound-term literal, there exists a compound
term in Bt . W.l.o.g., we suppose t is a compound term in Bt and suppose z is the vari-
able in At that t pairs. The covering property of Ct implies var(t1)⊆ var(t). The fact
that dep(t1) < dep(t) implies dep(t1σ ′) < dep(tσ ′), therefore dep(xσ ′) < dep(zσ ′),
which contradicts that x is a top variable. Then, t1 is a compound term. Next, we
prove that t2 is either a constant or a variable again by contradiction. Assume t2 is
a compound term. Since Ct is covering, var(t1) = var(t2). Since dep(t1) = dep(t2),
dep(t1σ ′) = dep(t2σ ′), and therefore dep(xσ ′) = dep(yσ ′), which contradicts that y
is not a top variable. Hence, t2 is either a variable or a constant.

30 Sen Zheng, Renate A. Schmidt

Lemma 24 allows us to analyse unification in T-Res inferences, formally stated
in the following corollary.

Corollary 25. In an application of the T-Res rule to LG clauses as the side premises
and a non-ground flat clause as the main premise, with Condition 2b. of the T-Res
rule satisfied, the following conditions hold.

1. An mgu σ substitutes top variables x with either constants or the compound term
pairing x modulo variable renaming and grounding, and substitutes non-top vari-
ables with either constants or variables.

2. An mgu σ substitutes variables in the eligible literals of the side premises with
either constants or variables.

Proof. 1: By the pairing property established in Lemma 24.
2: Suppose B(. . . ,x, . . .) is an eligible literal in one of the side premises, and sup-

pose x is a variable argument in B(. . . ,x, . . .). By Lemma 24 and the fact that the main
premise is a non-ground flat clause, x pairs either a constant or a variable, therefore σ

substitutes x with either a constant or a variable.

If a top-variable pairs a constant, the way a T-Res inference is performed is clear.

Lemma 26. Suppose a T-Res inference happens to LG clauses as the side premises
and a non-ground flat clause as the main premise, with Condition 2b. of the T-Res
rule satisfied. Then, if a top variable x pairs a constant, then i) all negative literals in
the main premise are selected and ii) the mgu is a ground substitution instantiating
all variables in the eligible literals and the top-variable literals with only constants.

Proof. Suppose σ ′ is the mgu of the S-Res inference that ensures this application
of the T-Res rule. By the definition of the top-variable technique, for any non-top
variable y in the main premise, dep(xσ ′)> dep(yσ ′). The fact that x pairs a constant
indicates that dep(xσ ′) = 0, therefore dep(yσ ′) = 0. Then, all variables in the main
premise are top variables and they pair either constants or variables. By Lemma 24,
these top variables pair constants. Hence, σ ′ is a ground substitution that substitutes
all variables with only constants.

Next, we formally show that the T-Res rule prevents term depth increase in the
T-Res resolvents of a non-ground flat clause and LG clauses.

Lemma 27. In an application of the T-Res rule to LG clauses as the side premises
and a non-ground flat clause as the main premise, with Condition 2b. of the T-Res
rule satisfied, the T-Res resolvent is no deeper than at least one of its premises.

Proof. By 1.–2. of Corollary 25.

Finally, we investigate the applications of the Factor and T-Res rules to LG
clauses, starting with the Factor rule.

Lemma 28. In the application of the Factor rule in the T-Res system to LG clauses,
the factors are LG clauses.

Saturation-based methods for querying the guarded quantification fragments 31

Proof. Assuming a-priori eligibility, the Factor rule simplifies to:

C∨A1∨A2Factor:
(C∨A1)σ

if the following conditions are satisfied.

1. Nothing is selected in C∨A1∨A2.
2. A1 is �l po-maximal with respect to C.
3. σ = mgu(A1

.
= A2).

Suppose C′ = C∨A1 ∨A2 and the premise C′ is an LG clause. By the definition
of the Factor rule, A1 is the eligible literal and it is positive. Since Lines 3–4 and
Line 7 in Algorithm 1 select negative literals of LG clauses as the eligible or the top-
variable literals, either Lines 1–2 or Lines 5–6 in Algorithm 1 are applicable to C′.
We distinguish these cases:

Suppose C′ satisfies Lines 1–2. Then the premise C′ is a ground LG clause, and it
is immediate that the factor (C∨A1)σ is a ground LG clause.

Suppose C′ satisfies Lines 5–6. Then C′ is a non-ground LG clause containing pos-
itive compound-term literals, but no negative compound-term literals. By Lemma 14
and the fact that C′ is covering, A1 is a compound-term literal. By Remark 17 and the
fact that C′ is not ground, A1 is a non-ground compound-term literal. By the cover-
ing property of C′, var(A2) ⊆ var(A1). We prove that A2 is a compound-term literal
by contradiction. Suppose A2 is a flat literal. Because var(A2) ⊆ var(A1) and A1 is a
compound-term literal, a compound term t in A1 pairs either a variable that occurs
in t, or a constant. Due to occur-check failure, in neither case A1 and A2 are unifiable,
which refutes the fact that A1 and A2 are unifiable. Hence, A2 is a compound-term
literal. The fact that C′ is covering implies that var(A2) = var(A1). By Lemma 18
and the fact that C′ is covering, the mgu σ substitutes variables with either variables
or constants. By Lemma 23 and since C′ is a compound-term LG clause, the factor
(C∨A1)σ is an LG clause.

Lemma 29. In the application of the T-Res rule to LG clauses, the resolvents are LG
clauses.

Proof. We consider T-Res inferences by distinguishing all possible cases of the main
premise. Suppose an LG clause C = ¬A1 ∨D is the T-Res main premise. In Algo-
rithm 1, C satisfies either Lines 1–4 or Line 7.

First, we consider the cases where the main premise satisfies either Lines 1–2 or
Lines 3–4 in Algorithm 1. In these cases, the eligible literal in the main premise C
is either selected or is maximal with respect to C. Then Condition 2a. of the T-Res
rule is applied to the main premise and the T-Res inference is reduced to a binary
T-Res inference without using the top-variable technique. W.l.o.g., suppose in a T-
Res inference, an LG clause C1 = B1∨D1 is the side premise and the resolvent R =
(D1 ∨D)σ where σ the mgu of B1 and A1. Further, suppose C satisfies either Lines
1–2 or Lines 3–4 in Algorithm 1. Since the eligible literal in C1 is positive, C1 satisfies
either Lines 1–2 or Lines 5–6 in Algorithm 1.

32 Sen Zheng, Renate A. Schmidt

Suppose C satisfies Lines 1–2. Then C is a ground LG clause. We distinguish the
cases of ¬A1.

1) Suppose ¬A1 is a ground flat literal. The fact that no selection function in
the T-Res system selects negative ground literals implies that the eligibility of ¬A1,
because ¬A1 is maximal with respect to C, therefore C is a flat clause. The facts that
A1 and B1 are unifiable and A1 is a flat ground literal imply that B1 is a flat literal.
The fact that B1 is strictly �l po-maximal with respect to C1 implies that C1 is a flat
clause. Since the eligible literal B1 in the flat LG clause C1 is a flat literal, C1 is
a ground clause satisfying Lines 1–2 in Algorithm 1. Since both C and C2 are flat
ground clauses, the resolvent R is a flat ground clause. Hence, R is an LG clause.

2) Next, suppose ¬A1 is a ground compound-term literal. By Remark 17, C is a
ground compound-term LG clause. Since C1 is an LG clause, B1 is either a compound-
term literal or a flat literal. Since B1 is maximal with respect to C1, the assumption
that B1 is flat implies that B1 is ground, otherwise, negative literals in C1 will be se-
lected. However, if B1 is ground, the unification between A1 and B1 is impossible
due to a clash. Then, B1 is a compound-term literal. Suppose B1 is ground. By Re-
mark 17, C1 is a ground compound-term LG clause. The fact that C and C1 are both
ground compound-term LG clauses implies that applying the T-Res rule to C and C1
derives a ground LG clause. Next, suppose B1 is a non-ground compound-term literal.
By Lemma 18 and since A1 and B1 are unifiable by the mgu σ , the mgu σ substitutes
the variables in B1 with constants. By Lemma 16 and because B1 is the eligible lit-
eral in C1, σ substitutes all variables in C1 with constants, therefore C1σ is a ground
compound-term LG clause. Since C is ground, applying the T-Res rule to C and C1
derives the same resolvent as applying the T-Res rule to C and C1σ . The fact that C
and C1σ are ground compound-term LG clauses implies that applying the T-Res rule
to C and C1σ derives a ground LG clause. Hence, the resolvent R is an LG clause.

Suppose C satisfies Lines 3–4. Then C contains negative compound-term liter-
als. By Remark 17 and since C is not ground, the literal ¬A1 contains non-ground
compound terms, and therefore ¬A1 is selected by the SelectNC function. We now
distinguish the possible cases of B1.

i) Suppose B1 is a flat literal. Similar to the proof in 2) that B1 cannot be a flat
literal, the assumption that B1 is flat implies that B1 is ground. This makes the unifi-
cation between A1 and B1 impossible due to a clash. Hence, B1 cannot be flat.

ii) Suppose B1 is a compound-term literal. We distinguish two cases of B1.
ii)-i) First, consider B1 as a ground compound-term literal. By Lemma 18 and

the fact that A1 and B1 are unifiable, the mgu σ substitutes all variables in A1 with
constants. By the fact that A1 is a compound-term literal of C1 and the covering prop-
erty of the LG clauses, σ substitutes all variables in C1 with constants, therefore C1σ

is a ground compound-term LG clause. As C is ground, applying the T-Res rule to
C and C1 derives the same resolvent as the one when applying the T-Res rule to C
and C1σ . The fact that C and C1σ are ground compound-term LG clauses implies
that applying the T-Res rule to C and C1σ derives a ground LG clause. Hence, the
resolvent R is an LG clause.

ii)-ii) Next, suppose B1 is a non-ground compound-term literal. By Lemma 18 and
the fact that A1 and B1 are two unifiable simple compound-term literals, the σ substi-
tutes the variables in A1 and B1 with variables or constants. By Lemma 16, σ substi-

Saturation-based methods for querying the guarded quantification fragments 33

tutes the variables in C and C1 with variables or constants. If the mgu σ is a ground
substitution, then both Cσ and C1σ are ground LG clauses, therefore applying the
T-Res rule to Cσ and C1σ derives a ground LG clause. Suppose σ is a non-ground
substitution. First, we prove that there is a loose guard in the resolvent R. Suppose G
is a set of flat literals that act as a loose guard of C1. By Lemma 19 and because A1
and B1 are covering, simple and unifiable by the mgu σ , var(A1σ) = var(Gσ). By
Lemma 16, var(A1σ) = var(Cσ) and var(B1σ) = var(C1σ), therefore, var(Gσ) =
var(C1σ) = var(Cσ). Then var(Gσ) = var(R). By the variable co-occurrence prop-
erty of LG clauses and because G is a loose guard of C1, each pair of variables in C1
co-occurs in a literal of G. Since var(Gσ) = var(C1σ) = var(R) and σ substitutes
the variables in C1 and C with variables and constants, each pair of variables in R
co-occurs in a literal of Gσ and all literals in Gσ are flat. Hence, Gσ is a loose guard
of the resolvent R. Next, we prove that R is simple. Suppose L is a literal in either C
or C1. By Lemma 16, either var(L)⊆ var(A1) or var(L)⊆ var(B1). Because σ substi-
tutes the variables in either A1 or B1 with either variables or constants, A1σ and B1σ

are simple. By 1. in Lemma 21, Lσ is simple. Hence, the resolvent R is simple. Next,
we prove that R is covering. Because the mgu σ substitutes the variables in C1 and C
with variables and constants, the compound terms in R come from compound terms
in either C1 or C. Suppose t is a compound term in either C or C1. By Remark 17
and since both C and C1 are non-ground, t is a non-ground compound term literal.
By Lemma 21 and the covering property of LG clauses, either var(tσ) = var(A1σ)
or var(tσ) = var(B1σ). The fact that either var(A1σ) = var(R) or var(B1σ) = var(R)
implies that var(tσ) = var(R), therefore the resolvent R is covering. Finally, we prove
that R is strongly compatible. By the fact that σ substitutes the variables in C and C1
with variables and constants, the compound terms in the resolvent R are inherited
from compound terms that exist in C or C1. W.l.o.g. suppose s and t are respectively
compound terms in A1 and B1, and s pairs t. Further, suppose s1 is a compound term
in C that is distinct from s, and t1 is a compound term in C1 that is distinct from t.
By 3. of Lemma 22 and the fact that s and t are unifiable by the mgu σ , s1σ is
compatible with t1σ . Then all compound terms in the resolvent R are compatible.
Hence, R is strongly compatible. Because R is simple, covering, strongly compatible
and R contains a loose guard, R is an LG clause.

Next, we consider the case when a T-Res main premise satisfies Line 7. This
means that the premise is a non-ground flat LG clause. These T-Res inferences happen
when the main premise satisfies Condition 2b. and hence the top-variable technique
is applied. Assume that in an T-Res inference, LG clauses C1 = B1 ∨D1, . . . ,Cn =
Bn ∨Dn are the side premises, an LG clause C = ¬A1 ∨ . . .∨¬Am ∨ . . .∨¬An ∨D is
the main premise with ¬A1 ∨ . . .∨¬Am the top-variable subclause and the resolvent
is R = (D1 ∨ . . .∨Dm ∨¬Am+1 ∨ . . .∨¬An ∨D)σ , where σ is the the mgu such that
σ =mgu(A1

.
=B1, . . . ,Am

.
=Bm) where 1≤m≤ n. Suppose C is a non-ground flat LG

clause. By Corollary 25, the mgu σ substitutes the top variables in C with constants or
compound terms, it substitutes non-top variables in C with constants or variables and
it substitutes all variables in C1, . . . ,Cm with constants or variables. We distinguish
two possible cases of the mgu σ :

1. Suppose σ substitutes a top variable with a constant. By Lemma 26, all vari-
ables in the top-variable subclause ¬A1 ∨ . . .∨¬Am are substituted with constants.

34 Sen Zheng, Renate A. Schmidt

Hence, B1, . . . ,Bn are flat literals. Since the strictly �l po-maximal literal Bi with
respect to Ci is flat, Ci is a flat ground clause, for each i such that 1 ≤ i ≤ n. By
Lemma 16 and since C is an LG clause, σ substitutes all variables in C with con-
stants. Applying the T-Res rule to flat ground LG clauses C1, . . . ,Cm and C derives
the same conclusions as applying the T-Res rule to C1, . . . ,Cm and Cσ . Since applying
the T-Res rule to C1, . . . ,Cm and Cσ derive a flat ground clause, applying the T-Res
rule to C1, . . . ,Cm and C also derives flat ground clauses. Hence, the resolvent R is an
LG clause.

2. Next, suppose the mgu σ substitutes no top variables with constants. First,
we establish intermediate results of unification on top variables. Suppose x is a top
variable and ¬At is the literal in ¬A1, . . .¬Am where x occurs. Further, suppose Bt is a
literal in the side premises satisfying Btσ

.
=Atσ . W.l.o.g. suppose Ct is a side premise

in C1, . . . ,Cm and Ct = Bt ∨Dt . By the assumption that the mgu σ substitutes no top
variables with constants and Bt pairs the top-variable literal At , Bt is a compound-term
literal. Suppose t is the compound term in Bt that pairs x. The fact that Btσ

.
= Atσ im-

plies that var(Btσ) = var(Atσ). By the covering property of LG clauses and the fact
that t is a compound term, var(t) = var(Bt), therefore var(tσ) = var(Btσ). The fact
that x pairs t implies that var(xσ) = var(tσ), therefore var(xσ) = var(Btσ). Since
var(Btσ) = var(Atσ), var(xσ) = var(Atσ). By the variable co-occurrence property
of LG clauses, x co-occurs with all other variables in C. Because x is a top-variable,
in the literals of ¬A1, . . . ,¬Am, x co-occurs with all other variables in C. Suppose y is
a variable in ¬A1, . . . ,¬Am, and w.l.o.g. suppose x and y co-occurs in A1. The fact that
var(xσ) = var(Atσ) implies that var(xσ) = var(A1σ), therefore var(yσ) ⊆ var(xσ).
Hence for each variable y in ¬A1, . . . ,¬Am, var(yσ) ⊆ var(xσ). Then, for each Ai
in A1, . . . ,Am, var(Aiσ) = var(xσ). By the covering property of the LG clauses, for
each Bi in B1, . . . ,Bm, var(Bi) = var(Di). Since Ai and Bi are unifiable using the
mgu σ , var(Aiσ)= var(Biσ) for each i such that 1≤ i≤m. Then var(xσ)= var(Biσ),
and therefore var(xσ) = var(Diσ) for each i such that 1 ≤ i ≤ m. By Lemma 16,
var(¬A1 ∨ . . .∨¬Am) = var(C). Hence, var(xσ) = var((¬Am+1 ∨ . . .∨¬An ∨D)σ).
Then, var(xσ) = var(tσ) = var(R).

Following 2. we also need to prove that the resolvent R contains a loose guard.
Suppose Ci = Bi ∨Di is a side premise in C1, . . . ,Cm, t is a compound term in Bi,
x is the top-variable that t pairs. Further, suppose G is a set of negative flat liter-
als acting as a loose guard of Ci. By 2. of Corollary 25, all literals in G are flat.
By the definition of LG clauses, var(G) = var(t). By the result established in the
previous paragraph and as var(Gσ) = var(tσ), var(Gσ) = var(R). By the variable
co-occurrence property of LG clauses, each pair of variables in Gσ co-occurs in
a literal of Gσ , therefore each pair of variables in Gσ co-occurs in a literal of R.
The fact that all literals in Gσ are flat implies that Gσ act as a loose guard of
the resolvent R. Next, we prove that R is covering. The fact that C is a flat clause
implies that all compound terms in R come from the side premises. Suppose Ci =
Bi ∨Di is a side premise in C1, . . . ,Cm and t is a compound term in Bi. W.l.o.g. fur-
ther suppose s is a compound term in Di. By the covering property of LG clauses,
var(s) = var(t) and var(sσ) = var(tσ) with σ as the mgu. By the result established
in the previous paragraph, var(sσ) = var(R). Then, the resolvent R is covering. Next,
we prove that R is strongly compatible. Again, we consider compound terms in the

Saturation-based methods for querying the guarded quantification fragments 35

side premises since all compound terms in R come from the side premises. Suppose
t1 and t2 are two flat compound terms in D1, . . . ,Dm. We prove that R is strongly
compatible by showing that t1σ and t2σ are compatible. Suppose C1 = B1 ∨D1 and
C2 = B2 ∨D2 are two side premises in C1, . . . ,Cm and w.l.o.g. suppose t1 and t2 oc-
cur in D1 and D2, respectively. By the assumption that the mgu σ substitutes no
top variables with constants and the fact that B1 and B2 pair the top-variable liter-
als, B1 and B2 are compound-term literals. W.l.o.g. suppose s1 and s2 are two flat
compound terms in B1 and B2, respectively. Further suppose s1 and s2 pair top vari-
ables x1 and x2, respectively. By the variable co-occurrence property of LG clauses,
x1 and x2 co-occur in at least one literal in ¬A1, . . . ,¬Am. W.l.o.g. suppose ¬A3 is
a literal where‘x1 and x2 co-occur. Suppose C3 = B3 ∨D3 is a side premise and
A3σ

.
= B3σ . Further suppose u1 and u2 are flat compound terms in B3 that pair x1

and x2, respectively. By the strong compatibility property of LG clauses, u1σ is com-
patible with u2σ , therefore, x1σ is compatible with x2σ . Since x1 pairs s1 and x2
pairs s2, s1σ is compatible with s2σ . By the strong compatibility property of LG
clauses, s1 and s2 are compatible with t1 and t2, respectively. Hence s1σ and s2σ

are compatible with t1σ and t2σ , respectively. By the fact that s1σ is compatible
with s2σ , t1σ is compatible with t2σ , therefore all compound terms in the resol-
vent R are compatible. Then, R is strongly compatible. Finally, we prove that the re-
solvent R is a simple clause. By 1. of Corollary 25, the mgu σ substitutes the variables
in ¬Am+1 ∨ . . .∨¬An ∨D with either variables, constants or flat compound terms.
By 2. of Corollary 25, the mgu σ substitutes the variables in D1, . . . ,Dm with either
variables or constants. Because ¬Am+1∨ . . .∨¬An∨D is a flat clause and D1, . . . ,Dm
are simple clauses, the resolvent (D1∨ . . .∨Dm∨¬Am+1∨ . . .∨¬An∨D)σ is a simple
clause. Then, the resolvent R is an LG clause.

Lemmas 28–29 prove that applying the Factor and T-Res rules to LG clauses
derive LG clauses. The derived LG clauses are of bounded depth as the clauses are
simple. We now investigate the width of the derived clauses. Recall that by the width
of a clause, we mean the number of distinct variables in the clause.

Lemma 30. In applications of the T-Res system to LG clauses, the derived LG clause
is no wider than at least one of its premises.

Proof. We distinguish the applications of the Factor rule and the T-Res rule: i) By
Lemma 28, the conclusions of applying Factor to LG clauses are LG clauses. The
proof in Lemma 28 shows that the loose guard of the factor is from the loose guard
of the premise (modulo variable renaming and ground instantiations). The fact that
a loose guard contains all variables of an LG clause implies that the factor of an LG
clause is no wider than its premise.

ii) By Lemma 29, the conclusions of applying T-Res to LG clauses are LG clauses.
The proof in Lemma 29 shows that the loose guard of the derived LG clauses is
inherited from one of the T-Res side premises (modulo variable renaming and ground
instantiation), therefore any derived LG clause is no wider than at least one of its T-
Res side premises.

Finally, we give the main result of this section.

36 Sen Zheng, Renate A. Schmidt

Theorem 31. The T-Res system decides satisfiability of the LG clausal class.

Proof. By Lemmas 28–29, applying the T-Res system to LG clauses derives LG
clauses with bounded depth. By Lemma 30, the derived LG clauses have bounded
width. As no fresh symbols are introduced in the derivation, the T-Res system de-
cides the LG clausal class.

6 Handling query clauses

Basic notions of query clauses

Recall that a query clause is a negative flat clause. Since there is no restriction on
the occurrences of the variables in query clauses, analysing the conclusions of these
clauses is non-trivial. To better manipulate and study query clauses, we introduce the
notions of surface literal, chained variables and isolated variables.
Definition 32. Let Q be a query clause. Then, a literal L is a surface literal in Q if
there exists no distinct literal L′ in Q such that var(L)⊂ var(L′). Let L1 and L2 be two
surface literals in Q such that var(L1) 6= var(L2). Then, x is a chained variable in Q
if x belongs to var(L1)∩ var(L2). The other non-chained variables are the isolated
variables in Q.

For example, the literals ¬A1(x1,x2),¬A2(x2,x3),¬A3(x3,x4,x5),¬A4(x5,x6) in

Q1 = ¬A1(x1,x2)∨¬A2(x2,x3)∨¬A3(x3,x4,x5)∨¬A4(x5,x6)∨¬A5(x3,x4),

are surface literals, but the literal ¬A5(x3,x4) is not as var(A5) ⊂ var(A3). Then, the
variables x2,x3,x5 are the chained variables and x1,x4,x6 are the isolated variables
in Q1. In

Q2 = ¬A1(x1,x2,x3)∨¬A2(x3,x4,x5)∨¬A3(x5,x6,x7)∨
¬A4(x1,x7,x8)∨¬A5(x3,x4,x9),

all literals are surface literals, therefore, the variables x1,x3,x4,x5,x7 are the chained
variables and x2,x6,x8,x9 are the isolated variables in Q2.

A hypergraph is used to represent a flat clause, formally defined as follows.
Definition 33. Suppose C is a flat clause, and H(V,E) is a hypergraph which consists
of a set V of vertices and a set E of hyperedges. Then H(V,E) is the hypergraph
associated with C if the set V of vertices consists of all variables in C, and the set E
of hyperedges contains, for each literal L in C, the set of variables that appear in L.

We use rectangles and variable symbols to represent the hyperedges and the ver-
tices of the hypergraph associated with a flat clause, respectively. Dotted-line and
solid-line rectangles respectively represent positive and negative literals and negation
symbols are omitted. Figure 6 displays the hypergraphs associated with the query
clauses Q1 and Q2 above.
Definition 34. A chained-only query clause and an isolated-only query clause are
respectively query clauses containing only chained and only isolated variables.

For example, the query clause ¬A(x1,x2)∨¬A2(x2,x3)∨¬A3(x3,x1) is a chained-
only query clause and ¬A1(x1)∨¬A2(x1,x2,x3) is an isolated-only query clause.

Saturation-based methods for querying the guarded quantification fragments 37

<latexit sha1_base64="cqp4skeLvlCzxT2ejd520z+XWFY=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRS1GPVi8eK9gPaUDbbSbt0Nwm7E7GU/ASv6q/xJl69+mfEbZuDbX0w8Hhvhpl5fiy4Rsf5tnIrq2vrG/nNwtb2zu5ecf+goaNEMaizSESq5VMNgodQR44CWrECKn0BTX94M/Gbj6A0j8IHHMXgSdoPecAZRSPdX3XdbrHklJ0p7GXiZqREMtS6xZ9OL2KJhBCZoFq3XSdGb0wVciYgLXQSDTFlQ9qHtqEhlaC98fTU1D4xSs8OImUqRHuq/p0YU6n1SPqmU1Ic6EVvIv7ntRMMLr0xD+MEIWSzRUEibIzsyd92jytgKEaGUKa4udVmA6ooQ5PO3BZJh8BAiHRBxUGM8iktmMDcxXiWSeOs7J6XK3eVUvU6iy5PjsgxOSUuuSBVcktqpE4Y6ZNn8kJerTfr3fqwPmetOSubOSRzsL5+AbPdoBk=</latexit>

A1
<latexit sha1_base64="cqp4skeLvlCzxT2ejd520z+XWFY=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRS1GPVi8eK9gPaUDbbSbt0Nwm7E7GU/ASv6q/xJl69+mfEbZuDbX0w8Hhvhpl5fiy4Rsf5tnIrq2vrG/nNwtb2zu5ecf+goaNEMaizSESq5VMNgodQR44CWrECKn0BTX94M/Gbj6A0j8IHHMXgSdoPecAZRSPdX3XdbrHklJ0p7GXiZqREMtS6xZ9OL2KJhBCZoFq3XSdGb0wVciYgLXQSDTFlQ9qHtqEhlaC98fTU1D4xSs8OImUqRHuq/p0YU6n1SPqmU1Ic6EVvIv7ntRMMLr0xD+MEIWSzRUEibIzsyd92jytgKEaGUKa4udVmA6ooQ5PO3BZJh8BAiHRBxUGM8iktmMDcxXiWSeOs7J6XK3eVUvU6iy5PjsgxOSUuuSBVcktqpE4Y6ZNn8kJerTfr3fqwPmetOSubOSRzsL5+AbPdoBk=</latexit>

A1
<latexit sha1_base64="ZT+gcjgFe8EA4u1bpqxBLKPhVh8=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8laQU9Vj14rGi/YA2lM122i7dTcLuRCwhP8Gr+mu8iVev/hlx2+ZgWx8MPN6bYWaeHwmu0XG+rZXVtfWNzdxWfntnd2+/cHDY0GGsGNRZKELV8qkGwQOoI0cBrUgBlb6Apj+6mfjNR1Cah8EDjiPwJB0EvM8ZRSPdX3XL3ULRKTlT2MvEzUiRZKh1Cz+dXshiCQEyQbVuu06EXkIVciYgzXdiDRFlIzqAtqEBlaC9ZHpqap8apWf3Q2UqQHuq/p1IqNR6LH3TKSkO9aI3Ef/z2jH2L72EB1GMELDZon4sbAztyd92jytgKMaGUKa4udVmQ6ooQ5PO3BZJR8BAiHRBxWGE8inNm8DcxXiWSaNccs9LlbtKsXqdRZcjx+SEnBGXXJAquSU1UieMDMgzeSGv1pv1bn1Yn7PWFSubOSJzsL5+AbWNoBo=</latexit>

A2

<latexit sha1_base64="ZT+gcjgFe8EA4u1bpqxBLKPhVh8=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8laQU9Vj14rGi/YA2lM122i7dTcLuRCwhP8Gr+mu8iVev/hlx2+ZgWx8MPN6bYWaeHwmu0XG+rZXVtfWNzdxWfntnd2+/cHDY0GGsGNRZKELV8qkGwQOoI0cBrUgBlb6Apj+6mfjNR1Cah8EDjiPwJB0EvM8ZRSPdX3XL3ULRKTlT2MvEzUiRZKh1Cz+dXshiCQEyQbVuu06EXkIVciYgzXdiDRFlIzqAtqEBlaC9ZHpqap8apWf3Q2UqQHuq/p1IqNR6LH3TKSkO9aI3Ef/z2jH2L72EB1GMELDZon4sbAztyd92jytgKMaGUKa4udVmQ6ooQ5PO3BZJR8BAiHRBxWGE8inNm8DcxXiWSaNccs9LlbtKsXqdRZcjx+SEnBGXXJAquSU1UieMDMgzeSGv1pv1bn1Yn7PWFSubOSJzsL5+AbWNoBo=</latexit>

A2
<latexit sha1_base64="x1LWJGW/sVfjZghuCZWJqazcJcE=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRa1GPVi8eK9gPaUDbbSbt0Nwm7E7GU/ASv6q/xJl69+mfEbZuDrT4YeLw3w8w8PxZco+N8Wbml5ZXVtfx6YWNza3unuLvX0FGiGNRZJCLV8qkGwUOoI0cBrVgBlb6Apj+8nvjNB1CaR+E9jmLwJO2HPOCMopHuLrun3WLJKTtT2H+Jm5ESyVDrFr87vYglEkJkgmrddp0YvTFVyJmAtNBJNMSUDWkf2oaGVIL2xtNTU/vIKD07iJSpEO2p+ntiTKXWI+mbTklxoBe9ifif104wuPDGPIwThJDNFgWJsDGyJ3/bPa6AoRgZQpni5labDaiiDE06c1skHQIDIdIFFQcxyse0YAJzF+P5SxonZfesXLmtlKpXWXR5ckAOyTFxyTmpkhtSI3XCSJ88kWfyYr1ab9a79TFrzVnZzD6Zg/X5A7c9oBs=</latexit>

A3

<latexit sha1_base64="x1LWJGW/sVfjZghuCZWJqazcJcE=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRa1GPVi8eK9gPaUDbbSbt0Nwm7E7GU/ASv6q/xJl69+mfEbZuDrT4YeLw3w8w8PxZco+N8Wbml5ZXVtfx6YWNza3unuLvX0FGiGNRZJCLV8qkGwUOoI0cBrVgBlb6Apj+8nvjNB1CaR+E9jmLwJO2HPOCMopHuLrun3WLJKTtT2H+Jm5ESyVDrFr87vYglEkJkgmrddp0YvTFVyJmAtNBJNMSUDWkf2oaGVIL2xtNTU/vIKD07iJSpEO2p+ntiTKXWI+mbTklxoBe9ifif104wuPDGPIwThJDNFgWJsDGyJ3/bPa6AoRgZQpni5labDaiiDE06c1skHQIDIdIFFQcxyse0YAJzF+P5SxonZfesXLmtlKpXWXR5ckAOyTFxyTmpkhtSI3XCSJ88kWfyYr1ab9a79TFrzVnZzD6Zg/X5A7c9oBs=</latexit>

A3

<latexit sha1_base64="I0voNd3myr/0dVBGZ7aRgStYyCY=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdJze8WSU3bmsNeJm5ESyVDvFX+6/ZDFEgJkgmrdcZ0IvYQq5ExAWujGGiLKxnQIHUMDKkF7yfzU1L4wSt8ehMpUgPZc/TuRUKn1VPqmU1Ic6VVvJv7ndWIcVL2EB1GMELDFokEsbAzt2d92nytgKKaGUKa4udVmI6ooQ5PO0hZJx8BAiHRFxVGEcpIWTGDuajzrpHlVdq/LlftKqVbNosuTM3JOLolLbkiN3JE6aRBGhuSZvJBX6816tz6sz0VrzspmTskSrK9fDiigRg==</latexit>x1

<latexit sha1_base64="I0voNd3myr/0dVBGZ7aRgStYyCY=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdJze8WSU3bmsNeJm5ESyVDvFX+6/ZDFEgJkgmrdcZ0IvYQq5ExAWujGGiLKxnQIHUMDKkF7yfzU1L4wSt8ehMpUgPZc/TuRUKn1VPqmU1Ic6VVvJv7ndWIcVL2EB1GMELDFokEsbAzt2d92nytgKKaGUKa4udVmI6ooQ5PO0hZJx8BAiHRFxVGEcpIWTGDuajzrpHlVdq/LlftKqVbNosuTM3JOLolLbkiN3JE6aRBGhuSZvJBX6816tz6sz0VrzspmTskSrK9fDiigRg==</latexit>x1
<latexit sha1_base64="1HyMhqfuNs1rGiimoIOwzoldJes=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8laQU7bHgxWNF+wFtKJvtpF26m4TdibSE/ASv6q/xJl69+mfE7cfBtj4YeLw3w8w8PxZco+N8WxubW9s7u7m9/P7B4dFx4eS0qaNEMWiwSESq7VMNgofQQI4C2rECKn0BLX90O/VbT6A0j8JHnMTgSToIecAZRSM9jHvlXqHolJwZ7HXiLkiRLFDvFX66/YglEkJkgmrdcZ0YvZQq5ExAlu8mGmLKRnQAHUNDKkF76ezUzL40St8OImUqRHum/p1IqdR6In3TKSkO9ao3Ff/zOgkGVS/lYZwghGy+KEiEjZE9/dvucwUMxcQQyhQ3t9psSBVlaNJZ2iLpCBgIka2oOIxRjrO8CcxdjWedNMsl97pUua8Ua9VFdDlyTi7IFXHJDamRO1InDcLIgDyTF/JqvVnv1of1OW/dsBYzZ2QJ1tcvD9igRw==</latexit>x2

<latexit sha1_base64="1HyMhqfuNs1rGiimoIOwzoldJes=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8laQU7bHgxWNF+wFtKJvtpF26m4TdibSE/ASv6q/xJl69+mfE7cfBtj4YeLw3w8w8PxZco+N8WxubW9s7u7m9/P7B4dFx4eS0qaNEMWiwSESq7VMNgofQQI4C2rECKn0BLX90O/VbT6A0j8JHnMTgSToIecAZRSM9jHvlXqHolJwZ7HXiLkiRLFDvFX66/YglEkJkgmrdcZ0YvZQq5ExAlu8mGmLKRnQAHUNDKkF76ezUzL40St8OImUqRHum/p1IqdR6In3TKSkO9ao3Ff/zOgkGVS/lYZwghGy+KEiEjZE9/dvucwUMxcQQyhQ3t9psSBVlaNJZ2iLpCBgIka2oOIxRjrO8CcxdjWedNMsl97pUua8Ua9VFdDlyTi7IFXHJDamRO1InDcLIgDyTF/JqvVnv1of1OW/dsBYzZ2QJ1tcvD9igRw==</latexit>x2
<latexit sha1_base64="pH/KKpT7Lp4K2L79efZwRJDzCyQ=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8lUSL9ljw4rGi/YA2lM120i7dTcLuRFpCf4JX9dd4E69e/TPits3Btj4YeLw3w8w8PxZco+N8W2vrG5tb27md/O7e/sFh4ei4oaNEMaizSESq5VMNgodQR44CWrECKn0BTX94O/WbT6A0j8JHHMfgSdoPecAZRSM9jLpX3ULRKTkz2KvEzUiRZKh1Cz+dXsQSCSEyQbVuu06MXkoVciZgku8kGmLKhrQPbUNDKkF76ezUiX1ulJ4dRMpUiPZM/TuRUqn1WPqmU1Ic6GVvKv7ntRMMKl7KwzhBCNl8UZAIGyN7+rfd4woYirEhlClubrXZgCrK0KSzsEXSITAQYrKk4iBGOZrkTWDucjyrpHFZcq9L5ftysVrJosuRU3JGLohLbkiV3JEaqRNG+uSZvJBX6816tz6sz3nrmpXNnJAFWF+/EYigSA==</latexit>x3

<latexit sha1_base64="pH/KKpT7Lp4K2L79efZwRJDzCyQ=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8lUSL9ljw4rGi/YA2lM120i7dTcLuRFpCf4JX9dd4E69e/TPits3Btj4YeLw3w8w8PxZco+N8W2vrG5tb27md/O7e/sFh4ei4oaNEMaizSESq5VMNgodQR44CWrECKn0BTX94O/WbT6A0j8JHHMfgSdoPecAZRSM9jLpX3ULRKTkz2KvEzUiRZKh1Cz+dXsQSCSEyQbVuu06MXkoVciZgku8kGmLKhrQPbUNDKkF76ezUiX1ulJ4dRMpUiPZM/TuRUqn1WPqmU1Ic6GVvKv7ntRMMKl7KwzhBCNl8UZAIGyN7+rfd4woYirEhlClubrXZgCrK0KSzsEXSITAQYrKk4iBGOZrkTWDucjyrpHFZcq9L5ftysVrJosuRU3JGLohLbkiV3JEaqRNG+uSZvJBX6816tz6sz3nrmpXNnJAFWF+/EYigSA==</latexit>x3

<latexit sha1_base64="lS5zXJ9AUDfSn8gqpzxif8MPre4=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7F6XK/eVUq2aRZcnZ+ScXBKX3JAauSN10iCMDMkzeSGv1pv1bn1Yn4vWnJXNnJIlWF+/EzigSQ==</latexit>x4
<latexit sha1_base64="lS5zXJ9AUDfSn8gqpzxif8MPre4=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7F6XK/eVUq2aRZcnZ+ScXBKX3JAauSN10iCMDMkzeSGv1pv1bn1Yn4vWnJXNnJIlWF+/EzigSQ==</latexit>x4

<latexit sha1_base64="IBJa70XmZE3zGhhNJjuT2TQ8v4Y=">AAACF3icbVBNS8NAEN3Ur1q/qh69BIvgqSRSVDwVvXhswX5AG8pmO2mW7iZhdyKW0L/gVf013sSrR/+MmLQ52NYHA4/3ZpiZ50aCa7Ssb6Owtr6xuVXcLu3s7u0flA+P2jqMFYMWC0Woui7VIHgALeQooBspoNIV0HHHd5nfeQSleRg84CQCR9JRwD3OKGZSc2DfDMoVq2rNYK4SOycVkqMxKP/0hyGLJQTIBNW6Z1sROglVyJmAaakfa4goG9MR9FIaUAnaSWa3Ts2zVBmaXqjSCtCcqX8nEiq1nkg37ZQUfb3sZeJ/Xi9G79pJeBDFCAGbL/JiYWJoZo+bQ66AoZikhDLF01tN5lNFGabxLGyRdAwMhJguqehHKJ+mpTQwezmeVdK+qNqX1VqzVqnf5tEVyQk5JefEJlekTu5Jg7QIIz55Ji/k1Xgz3o0P43PeWjDymWOyAOPrF1bhoG0=</latexit>

Q1 :
<latexit sha1_base64="PsIlWbEFASj4tK+J4hwRzFYv+XA=">AAACF3icbVBNS8NAEN3Ur1q/qh69BIvgqSSlqHgqevHYgv2ANpTNdtIs3U3C7kQsoX/Bq/prvIlXj/4ZMWlz0NYHA4/3ZpiZ50aCa7SsL6Owtr6xuVXcLu3s7u0flA+POjqMFYM2C0Woei7VIHgAbeQooBcpoNIV0HUnt5nffQCleRjc4zQCR9JxwD3OKGZSa1i7HpYrVtWaw1wldk4qJEdzWP4ejEIWSwiQCap137YidBKqkDMBs9Ig1hBRNqFj6Kc0oBK0k8xvnZlnqTIyvVClFaA5V39PJFRqPZVu2ikp+nrZy8T/vH6M3pWT8CCKEQK2WOTFwsTQzB43R1wBQzFNCWWKp7eazKeKMkzj+bNF0gkwEGK2pKIfoXycldLA7OV4VkmnVrUvqvVWvdK4yaMrkhNySs6JTS5Jg9yRJmkTRnzyRJ7Ji/FqvBnvxseitWDkM8fkD4zPH1iSoG4=</latexit>

Q2 :

<latexit sha1_base64="+W4TyF6M3YFH6ovKpDp6atS6Te4=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRS1GPVi8eK9gPaUDbbabt0Nwm7E7GE/ASv6q/xJl69+mfEbZuDbX0w8Hhvhpl5fiS4Rsf5tnIrq2vrG/nNwtb2zu5ecf+gocNYMaizUISq5VMNggdQR44CWpECKn0BTX90M/Gbj6A0D4MHHEfgSToIeJ8zika6v+pWusWSU3amsJeJm5ESyVDrFn86vZDFEgJkgmrddp0IvYQq5ExAWujEGiLKRnQAbUMDKkF7yfTU1D4xSs/uh8pUgPZU/TuRUKn1WPqmU1Ic6kVvIv7ntWPsX3oJD6IYIWCzRf1Y2Bjak7/tHlfAUIwNoUxxc6vNhlRRhiaduS2SjoCBEOmCisMI5VNaMIG5i/Esk8ZZ2T0vV+4qpep1Fl2eHJFjckpcckGq5JbUSJ0wMiDP5IW8Wm/Wu/Vhfc5ac1Y2c0jmYH39ArjtoBw=</latexit>

A4

<latexit sha1_base64="+W4TyF6M3YFH6ovKpDp6atS6Te4=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRS1GPVi8eK9gPaUDbbabt0Nwm7E7GE/ASv6q/xJl69+mfEbZuDbX0w8Hhvhpl5fiS4Rsf5tnIrq2vrG/nNwtb2zu5ecf+gocNYMaizUISq5VMNggdQR44CWpECKn0BTX90M/Gbj6A0D4MHHEfgSToIeJ8zika6v+pWusWSU3amsJeJm5ESyVDrFn86vZDFEgJkgmrddp0IvYQq5ExAWujEGiLKRnQAbUMDKkF7yfTU1D4xSs/uh8pUgPZU/TuRUKn1WPqmU1Ic6kVvIv7ntWPsX3oJD6IYIWCzRf1Y2Bjak7/tHlfAUIwNoUxxc6vNhlRRhiaduS2SjoCBEOmCisMI5VNaMIG5i/Esk8ZZ2T0vV+4qpep1Fl2eHJFjckpcckGq5JbUSJ0wMiDP5IW8Wm/Wu/Vhfc5ac1Y2c0jmYH39ArjtoBw=</latexit>

A4

<latexit sha1_base64="u8O2/IM7or8WJSlzASG3GjYzIpY=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSTi17HqxWNF+wFtKJvttF26m4TdiVhCfoJX9dd4E69e/TPits3Btj4YeLw3w8w8PxJco+N8W7ml5ZXVtfx6YWNza3unuLtX12GsGNRYKELV9KkGwQOoIUcBzUgBlb6Ahj+8GfuNR1Cah8EDjiLwJO0HvMcZRSPdX3XOOsWSU3YmsBeJm5ESyVDtFH/a3ZDFEgJkgmrdcp0IvYQq5ExAWmjHGiLKhrQPLUMDKkF7yeTU1D4yStfuhcpUgPZE/TuRUKn1SPqmU1Ic6HlvLP7ntWLsXXoJD6IYIWDTRb1Y2Bja47/tLlfAUIwMoUxxc6vNBlRRhiadmS2SDoGBEOmcioMI5VNaMIG58/EskvpJ2T0vn96dlirXWXR5ckAOyTFxyQWpkFtSJTXCSJ88kxfyar1Z79aH9TltzVnZzD6ZgfX1C7qdoB0=</latexit>

A5

<latexit sha1_base64="u8O2/IM7or8WJSlzASG3GjYzIpY=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSTi17HqxWNF+wFtKJvttF26m4TdiVhCfoJX9dd4E69e/TPits3Btj4YeLw3w8w8PxJco+N8W7ml5ZXVtfx6YWNza3unuLtX12GsGNRYKELV9KkGwQOoIUcBzUgBlb6Ahj+8GfuNR1Cah8EDjiLwJO0HvMcZRSPdX3XOOsWSU3YmsBeJm5ESyVDtFH/a3ZDFEgJkgmrdcp0IvYQq5ExAWmjHGiLKhrQPLUMDKkF7yeTU1D4yStfuhcpUgPZE/TuRUKn1SPqmU1Ic6HlvLP7ntWLsXXoJD6IYIWDTRb1Y2Bja47/tLlfAUIwMoUxxc6vNBlRRhiadmS2SDoGBEOmcioMI5VNaMIG58/EskvpJ2T0vn96dlirXWXR5ckAOyTFxyQWpkFtSJTXCSJ88kxfyar1Z79aH9TltzVnZzD6ZgfX1C7qdoB0=</latexit>

A5

<latexit sha1_base64="kMsDIMIvbvn9cXcij3vVt+v72eI=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSTiR48FLx4r2g9oQ9lsp+3S3STsTqQl5Cd4VX+NN/Hq1T8jbtscbOuDgcd7M8zM8yPBNTrOt5VbW9/Y3MpvF3Z29/YPiodHDR3GikGdhSJULZ9qEDyAOnIU0IoUUOkLaPqj26nffAKleRg84iQCT9JBwPucUTTSw7h71S2WnLIzg71K3IyUSIZat/jT6YUslhAgE1TrtutE6CVUIWcC0kIn1hBRNqIDaBsaUAnaS2anpvaZUXp2P1SmArRn6t+JhEqtJ9I3nZLiUC97U/E/rx1jv+IlPIhihIDNF/VjYWNoT/+2e1wBQzExhDLFza02G1JFGZp0FrZIOgIGQqRLKg4jlOO0YAJzl+NZJY2Lsntdvry/LFUrWXR5ckJOyTlxyQ2pkjtSI3XCyIA8kxfyar1Z79aH9TlvzVnZzDFZgPX1CxTooEo=</latexit>x5
<latexit sha1_base64="kMsDIMIvbvn9cXcij3vVt+v72eI=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSTiR48FLx4r2g9oQ9lsp+3S3STsTqQl5Cd4VX+NN/Hq1T8jbtscbOuDgcd7M8zM8yPBNTrOt5VbW9/Y3MpvF3Z29/YPiodHDR3GikGdhSJULZ9qEDyAOnIU0IoUUOkLaPqj26nffAKleRg84iQCT9JBwPucUTTSw7h71S2WnLIzg71K3IyUSIZat/jT6YUslhAgE1TrtutE6CVUIWcC0kIn1hBRNqIDaBsaUAnaS2anpvaZUXp2P1SmArRn6t+JhEqtJ9I3nZLiUC97U/E/rx1jv+IlPIhihIDNF/VjYWNoT/+2e1wBQzExhDLFza02G1JFGZp0FrZIOgIGQqRLKg4jlOO0YAJzl+NZJY2Lsntdvry/LFUrWXR5ckJOyTlxyQ2pkjtSI3XCyIA8kxfyar1Z79aH9TlvzVnZzDFZgPX1CxTooEo=</latexit>x5

<latexit sha1_base64="WYXY/9ptNxEy2NaFnUBapxEJL84=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQitceCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7FbK1/fXpVo1iy5Pzsg5uSQuuSE1ckfqpEEYGZJn8kJerTfr3fqwPhetOSubOSVLsL5+ARaYoEs=</latexit>x6
<latexit sha1_base64="WYXY/9ptNxEy2NaFnUBapxEJL84=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQitceCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7FbK1/fXpVo1iy5Pzsg5uSQuuSE1ckfqpEEYGZJn8kJerTfr3fqwPhetOSubOSVLsL5+ARaYoEs=</latexit>x6

<latexit sha1_base64="mH9DSU4V+EQ7YAZ+6VXjv5Q5k7I=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQitseCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7N6Ur++vS7VqFl2enJFzcklcUiE1ckfqpEEYGZJn8kJerTfr3fqwPhetOSubOSVLsL5+ARhIoEw=</latexit>x7

<latexit sha1_base64="XAklprydd3VG/qJz0qhY+WRul5M=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9oolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7F6XK/eVUq2aRZcnZ+ScXBKX3JAauSN10iCMDMkzeSGv1pv1bn1Yn4vWnJXNnJIlWF+/GfigTQ==</latexit>x8

<latexit sha1_base64="/pLPNnMkWKoPkF2kpumRZaekqKI=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQiWm8FLx4r2g9oQ9lsp+3S3STsTqQl5Cd4VX+NN/Hq1T8jbtscbOuDgcd7M8zM8yPBNTrOt5VbW9/Y3MpvF3Z29/YPiodHDR3GikGdhSJULZ9qEDyAOnIU0IoUUOkLaPqj26nffAKleRg84iQCT9JBwPucUTTSw7h70y2WnLIzg71K3IyUSIZat/jT6YUslhAgE1TrtutE6CVUIWcC0kIn1hBRNqIDaBsaUAnaS2anpvaZUXp2P1SmArRn6t+JhEqtJ9I3nZLiUC97U/E/rx1jv+IlPIhihIDNF/VjYWNoT/+2e1wBQzExhDLFza02G1JFGZp0FrZIOgIGQqRLKg4jlOO0YAJzl+NZJY2LsntVvry/LFUrWXR5ckJOyTlxyTWpkjtSI3XCyIA8kxfyar1Z79aH9TlvzVnZzDFZgPX1CxuooE4=</latexit>x9

Fig. 6: Hypergraphs associated with of Q1 and Q2

The separation rules

We define the separation rules we need and prove their soundness.
The separation rule Sep replaces a clause C ∨D by two clauses in which the

subclauses C and D have been separated by a fresh predicate symbol [83], formally:

N∪{C∨D}
Sep:

N∪{C∨P(x),¬P(x)∨D}
if the following conditions are satisfied.

1. C and D are non-empty subclauses of C∨D.
2. var(C) 6⊆ var(D) and var(D) 6⊆ var(C).
3. var(C)∩var(D) = x.
4. P is a predicate symbol that does not occur in N∪{C∨D}.

The Sep rule is introduced in [83] to decide satisfiability of fluted logic, and the rule
is referred to as ‘splitting through new predicate symbols’ in [60, section 3.5.6].

The Sep rule preserves satisfiability equivalence. This proof can be found in The-
orem 3 of the technical report version of [83]. Formally:

Lemma 35. The Sep premise N∪{C∨D} is satisfiable if and only if the Sep conclu-
sion N∪{C∨P(x),¬P(x)∨D} is satisfiable.

The following are separation rules, customised for separating decomposable and
indecomposable query clauses. Recall that a clause is decomposable if it can be parti-
tioned into two variable-disjoint subclauses, otherwise, the clause is indecomposable.

N∪{C∨D}
SepDeQ:

N∪{C∨¬p1,¬p2∨D, p1∨ p2}
if the following conditions are satisfied.

1. C∨D is a decomposable query clause.
2. C and D are non-empty subclauses of C∨D.
3. var(C)∩var(D) = /0.
4. p1 and p2 are propositional variables that do not occur in N∪{C∨D}.

38 Sen Zheng, Renate A. Schmidt

N∪{C∨¬A(x,y)∨D}
SepIndeQ:

N∪{C∨¬A(x,y)∨P(x),¬P(x)∨D}
if the following conditions are satisfied.

1. C∨¬A(x,y)∨D is an indecomposable query clause, and x 6= /0 and y 6= /0.
2. ¬A(x,y) is a surface literal and var(C)⊆ x∪ y.
3. x are chained variables and x⊆ var(D).
4. y are isolated variables and y∩var(D) = /0.
5. P is a predicate symbol that does not occur in N∪{C∨¬A(x,y)∨D}.

The SepDeQ rule can be seen as either a form of formula renaming with positive
literals introduced in Section 3 or a form of the splitting rule with propositional
symbols [68,75]. Unlike splitting [95], the SepDeQ rule does not create a new branch
in the derivation, thus no back-tracking is needed. Due to the introduction of the
fresh predicate symbols in the SepDeQ conclusions, one cannot use the subsumption
elimination technique to eliminate the SepDeQ premise by the SepDeQ conclusions,
whereas splitting can take the advantage of the subsumption elimination technique as
no fresh predicate symbols are needed in the splitting process.

Inspired by the Sep rule, the SepDeQ and SepIndeQ rules are specifically devel-
oped for separating query clauses. For example, in applications of the SepDeQ and
SepIndeQ rules to query clauses, the polarity of the literals using the fresh predicate
symbol is assigned in a way such that the SepDeQ and SepIndeQ conclusions are
either query clauses or guarded clauses. The Sep rule is stronger than the SepDeQ
and SepIndeQ rules with respect to separating query clauses. Given a query clause

Q = ¬A(z,x1)∨¬A(x1,x2)∨¬A(x2,x3)∨¬A(x3,z)∨
¬B(z,y1)∨¬B(y1,y2)∨¬B(y2,y3)∨¬B(y3,z),

the Sep rule separates it into

¬A(z,x1)∨¬A(x1,x2)∨¬A(x2,x3)∨¬A(x3,z)∨P(z),

¬B(z,y1)∨¬B(y1,y2)∨¬B(y2,y3)∨¬B(y3,z)∨¬P(z)

using a fresh predicate symbol P. Yet neither SepDeQ nor SepIndeQ is applicable
to Q as Q is an indecomposable chained-only query clause.

Though the Sep rule is stronger and more general than the SepDeQ and SepIn-
deQ rules, our separation rules provide a clear view of how a query clause is separated
in a goal-oriented way. Consider the SepIndeQ rule. Each application of the SepIn-
deQ rule removes a surface literal and the subclause it guards, viz., C ∨¬A(x,y),
from the premise C ∨¬A(x,y)∨D. On the other hand, the application of the Sep
rule to query clauses is complicated and difficult to analyse. Most importantly, ap-
plying the Sep rule to query clauses can derive conclusions that do not belong to the
LGQ clausal class, making the conclusions difficult to handle. For example, apply-
ing the Sep rule to the above query clause Q guarantees deriving a non-LGQ clause
¬A(z,x1)∨¬A(x1,x2)∨¬A(x2,x3)∨¬A(x3,z)∨P(z).

Now we prove the soundness of the SepIndeQ rule by showing the connection
between the rule and the Sep rule, formally stated as:

Saturation-based methods for querying the guarded quantification fragments 39

Lemma 36. Suppose N∪{C∨¬A(x,y)∨D} is a SepIndeQ premise. Then, applying
the Sep rule can derive N∪{C∨¬A(x,y)∨P(x),¬P(x)∨D} using a fresh predicate
symbol P.

Proof. First, we prove that the Sep rule is applicable to N ∪{C∨¬A(x,y)∨D}. We
distinguish four conditions of the Sep rule.

1) We prove that both C∨¬A(x,y) and D are non-empty subclauses. The case
when C∨¬A(x,y) is empty makes the application of the SepIndeQ rule to N ∪{C∨
¬A(x,y)∨D} void. We prove that D is not empty by contradiction. Suppose D is
empty. By the fact that var(C)⊆ x∪ y, all variables in C∨¬A(x,y) are isolated vari-
ables, therefore the SepIndeQ rule is not applicable to C∨¬A(x,y). Hence, D is a
non-empty subclause.

2) We prove that var(C ∨¬A(x,y)) 6⊆ var(D) and var(D) 6⊆ var(C ∨¬A(x,y)).
The fact that y∩var(D) = /0 implies var(C∨¬A(x,y)) 6⊆ var(D). We prove var(D) 6⊆
var(C∨¬A(x,y)) by contradiction. Suppose var(D)⊆ var(C∨¬A(x,y)). As var(C)⊆
x∪y, we also have var(D)⊆ x∪y. Then {x∪y}= var(C∨¬A(x,y)∨D)= var(¬A(x,y)).
Hence, ¬A(x,y) is a surface literal of C∨¬A(x,y)∨D, and therefore for any other
surface literals L in C∨¬A(x,y)∨D, var(L) = var(¬A(x,y)). Then all variables in
C∨¬A(x,y)∨D are isolated variables, which contradicts that x are the chained vari-
ables of C∨¬A(x,y)∨D.

3) By the result established in 2) and the fact that the chained variables x occur in
both subclauses C∨¬A(x,y) and D, x = var(C∨¬A(x,y))∩var(D).

4) This is the same condition as 5. of the SepIndeQ rule.
By the results established in 1)–4), applying the Sep rule to N∪{C∨¬A(x,y)∨D}

derives either

N∪{C∨¬A(x,y)∨P(x),¬P(x)∨D} or N∪{C∨¬A(x,y)∨¬P(x),P(x)∨D}.

using a fresh predicate symbol P.

The SepDeQ and SepIndeQ rules are sound, formally stated as:

Lemma 37. The SepDeQ and SepIndeQ premises are satisfiable if and only if the
SepDeQ and SepIndeQ conclusions are satisfiable, respectively.

Proof. It is immediate that the statement holds for the SepDeQ rule since the rule
performs formula renaming. By Lemma 36, applying the SepIndeQ rule or the Sep
rule to the same premise derives the same conclusions. Hence, each application of
the SepIndeQ rule can be seen as an application of the Sep rule. By Lemma 35, the
SepIndeQ rule is sound.

Now we extend the T-Res system with the SepDeQ and SepIndeQ rules. Resolu-
tion systems in line with the framework of [8] follow the principle that a conclusion
is always smaller than the premises. To satisfy this condition, we make the fresh
predicate symbols introduced in the applications of the SepDeQ and SepIndeQ rules
�l po-smaller than the predicate symbols in the SepDeQ and SepIndeQ premises.
With this restriction and the fact that the SepDeQ and SepIndeQ rules are replace-
ment rules, we regard the SepDeQ and SepIndeQ rules as the simplification rules

40 Sen Zheng, Renate A. Schmidt

in the T-Res system. We use T-Res+ to denote the T-Res system combined with the
SepDeQ and SepIndeQ rules.

When infinitely many fresh predicate symbols are introduced in the saturation
process of the T-Res+ system, the system may lose refutational completeness. Hence,
the main result of this section is formulated as follows.

Theorem 38. Provided that the SepDeQ and SepIndeQ rules introduce finitely many
fresh predicate symbols, the T-Res+ system is sound and refutationally complete for
first-order clausal logic.

Proof. By Theorem 13, Lemma 37 and the assumption that the fresh predicate sym-
bols introduced in the applications of the SepDeQ and SepIndeQ rules are �l po-
smaller than the predicate symbols in the SepDeQ and SepIndeQ premises.

Separating query clauses

In this section, we investigate application of the SepDeQ and SepIndeQ rules to
query clauses. We start with the SepDeQ rule.

Lemma 39. Suppose Q is a decomposable query clause. Then, the SepDeQ rule
separates Q into narrower query clauses and narrower guarded clauses.

Proof. By the definitions of query clauses and guarded clauses.

Next, we consider the SepIndeQ rule.

Remark 40. Suppose Q is an indecomposable query clause. Then, the SepIndeQ
rule applies to Q if and only if there exists a surface literal in Q containing both
isolated variables and chained variables.

Proof. By the definition of the SepIndeQ rule.

Based on the observation of Remark 40, we look at how the SepIndeQ rule is
applied to indecomposable query clauses.

Lemma 41. Suppose Q is an indecomposable query clause, and Q has a surface
literal containing both chained variables and isolated variables. Then, SepIndeQ
can separate Q into narrower query clauses and narrower Horn guarded clauses.

Proof. Suppose C1 = C∨¬A(x,y)∨D is an indecomposable query clause, and sup-
pose ¬P(x)∨D and C∨¬A(x,y)∨P(x) are the SepIndeQ conclusions of C1.

First, consider ¬P(x)∨D. As D is a query clause, ¬P(x)∨D is a query clause.
By the facts that all variables in ¬P(x)∨D occur in C∨¬A(x,y)∨D and ¬P(x)∨D
does not contain y, ¬P(x)∨D is narrower than C∨¬A(x,y)∨D.

Next consider C∨¬A(x,y)∨P(x). The fact that var(C) ⊆ var(¬A(x,y)) implies
var(¬A(x,y)) = var(C∨¬A(x,y)∨P(x)). By the fact that all literals in C∨¬A(x,y)∨
P(x) are flat, ¬A(x,y) is a guard for C∨¬A(x,y)∨P(x), therefore C∨¬A(x,y)∨P(x)
is a guarded clause. Because P(x) is the only positive literal in C∨¬A(x,y)∨P(x), the
clause is a Horn guarded clause. We prove that C∨¬A(x,y)∨P(x) is narrower than

Saturation-based methods for querying the guarded quantification fragments 41

C∨¬A(x,y)∨D by contradiction. Suppose var(C∨¬A(x,y)∨D)⊆ var(C∨¬A(x,y)∨
P(x)). The fact that var(D)∩ y = /0 implies var(D) ⊆ x, which contradicts that x are
chained variables in C∨¬A(x,y)∨D. Hence, C∨¬A(x,y)∨P(x) is narrower than
C∨¬A(x,y)∨D.

The SepIndeQ rule is devised to remove the isolated variables from a query
clause through separating i) the surface literal containing both the isolated variables
and chained variables and ii) the literals guarded by this surface literal from the
query clause. By ‘a literal L1 is guarded by a literal L’, we mean that L acts as a guard
of L1, viz., the literal L is a negative flat literal and var(L1)⊆ var(L).

An isolated variable satisfies the following condition:

Remark 42. Suppose Q is a query clause, and x is an isolated variable in Q. Further
suppose L1 and L2 are x-occurring surface literals in Q. Then, var(L1) = var(L2).

Proof. We prove the claim by contradiction. Suppose var(L1) 6= var(L2). The facts
that x ∈ var(L1)∩var(L2) and L1 and L2 are surface literals imply that x is a chained
variable, which contradicts the assumption that x is an isolated variable.

Lemmas 39 and 41 claim that applying the SepDeQ and SepIndeQ rules to a
query clause derives new query clauses, therefore the separation rules can be recur-
sively applied to query clauses. We use Q-Sep to denote the procedure of recursively
applying the SepDeQ and SepIndeQ rules to a query clause.

Consider an application of the Q-Sep procedure to the query clause

Q1 = ¬A1(x1,x2)∨¬A2(x2,x3)∨¬A3(x3,x4,x5)∨¬A4(x5,x6)∨¬A5(x3,x4).

Since Q1 is indecomposable and contains surface literals where both isolated vari-
ables and chained variables occur, the SepIndeQ rule is applicable to the clause. All
literals in Q1 are the surface literals containing both isolated variables and chained
variables, except ¬A2(x2,x3). To better show how the SepIndeQ rule separates a
query clause, we colour the isolated variables red and the surface literal and the liter-
als guarded by it blue.

The Q-Sep procedure separates Q1 by the following steps:

1. W.l.o.g. we begin with removing the isolated variable x1 from Q1. This means
we separate the surface literal ¬A1(x1,x2) from Q1. Using a fresh predicate sym-
bol P1, applying the SepIndeQ rule to Q1 derives:

C1 = ¬A1(x1,x2)∨P1(x2) and
Q′1 = ¬P1(x2)∨¬A2(x2,x3)∨¬A3(x3,x4,x5)∨¬A4(x5,x6)∨¬A5(x3,x4).

2. As C1 is a guarded clause, it is not separable. In Q′1 the surface literal ¬A2(x2,x3)
guards the literal ¬P1(x2). To remove the isolated variable x2 from Q′1, we use the
SepIndeQ rule to separate¬P1(x2)∨¬A2(x2,x3) from Q′1. Using a fresh predicate
symbol P2, Q′1 is separated into:

C2 = ¬P1(x2)∨¬A2(x2,x3)∨P2(x3) and
Q′2 = ¬P2(x3)∨¬A3(x3,x4,x5)∨¬A4(x5,x6)∨¬A5(x3,x4).

42 Sen Zheng, Renate A. Schmidt

<latexit sha1_base64="Cn3Y4NJztxuzCkx+xFtN/pynDM4=">AAACKnicbVDLSsNAFJ34rPVVFVdugkVwVRIp6rLqxmUF+4A2lMn0th06k4SZG2kJ+Ri36te4K279DnHaZmFbDwwczrn3nuH4keAaHWdira1vbG5t53byu3v7B4eFo+O6DmPFoMZCEaqmTzUIHkANOQpoRgqo9AU0/OHD1G+8gNI8DJ5xHIEnaT/gPc4oGqlTOG0jjHB2J/FFDGly13HTTqHolJwZ7FXiZqRIMlQ7hZ92N2SxhACZoFq3XCdCL6EKOROQ5tuxhoiyIe1Dy9CAStBeMotN7QujdO1eqMwL0J6pfzcSKrUeS99MSooDvexNxf+8Voy9Wy/hQRQjBGwe1IuFjaE97cLucgUMxdgQyhQ3f7XZgCrK0DS2kCLpEBgIkS6pOIhQjtK8KcxdrmeV1K9K7nWp/FQuVu6z6nLkjJyTS+KSG1Ihj6RKaoSRhLySN/JufVif1sT6mo+uWdnOCVmA9f0LY6uo1g==</latexit>

A1
<latexit sha1_base64="4n3lGNkEBj5w3zkdFfmRwSPpH5c=">AAACKnicbVDLSsNAFJ3UV62vqLhyEyyCq5JoUZdVNy4r2Ae0pUymt+3QmSTM3EhLyMe4Vb/GXXHrd4jTx8K2Hhg4nHPvPcPxI8E1uu7Yyqytb2xuZbdzO7t7+wf24VFVh7FiUGGhCFXdpxoED6CCHAXUIwVU+gJq/uBh4tdeQGkeBs84iqAlaS/gXc4oGqltnzQRhji9k/gihjS5a1+lbTvvFtwpnFXizUmezFFu2z/NTshiCQEyQbVueG6ErYQq5ExAmmvGGiLKBrQHDUMDKkG3kmls6pwbpeN0Q2VegM5U/buRUKn1SPpmUlLs62VvIv7nNWLs3rYSHkQxQsBmQd1YOBg6ky6cDlfAUIwMoUxx81eH9amiDE1jCymSDoCBEOmSiv0I5TDNmcK85XpWSfWy4F0Xik/FfOl+Xl2WnJIzckE8ckNK5JGUSYUwkpBX8kberQ/r0xpbX7PRjDXfOSYLsL5/AWcNqNg=</latexit>

A3

<latexit sha1_base64="XwJ7N9ZipKPQRl0MG+OxOH34DGc=">AAACKnicbVDLTsJAFJ3iC/GFGlduGomJK9ISoi5RNy4xkUcChEyHC0yYaZuZWwNp+jFu1a9xR9z6HcahsBDwJJOcnHPvPZPjhYJrdJypldnY3Nreye7m9vYPDo/yxyd1HUSKQY0FIlBNj2oQ3IcachTQDBVQ6QloeKOHmd94AaV54D/jJISOpAOf9zmjaKRu/qyNMMb0TuyJCJL4rltKuvmCU3RS2OvEXZACWaDazf+0ewGLJPjIBNW65TohdmKqkDMBSa4daQgpG9EBtAz1qQTdidPYxL40Ss/uB8o8H+1U/bsRU6n1RHpmUlIc6lVvJv7ntSLs33Zi7ocRgs/mQf1I2BjYsy7sHlfAUEwMoUxx81ebDamiDE1jSymSjoCBEMmKisMQ5TjJmcLc1XrWSb1UdK+L5adyoXK/qC5LzskFuSIuuSEV8kiqpEYYickreSPv1of1aU2tr/loxlrsnJIlWN+/ZVyo1w==</latexit>

A2

<latexit sha1_base64="+W4TyF6M3YFH6ovKpDp6atS6Te4=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRS1GPVi8eK9gPaUDbbabt0Nwm7E7GE/ASv6q/xJl69+mfEbZuDbX0w8Hhvhpl5fiS4Rsf5tnIrq2vrG/nNwtb2zu5ecf+gocNYMaizUISq5VMNggdQR44CWpECKn0BTX90M/Gbj6A0D4MHHEfgSToIeJ8zika6v+pWusWSU3amsJeJm5ESyVDrFn86vZDFEgJkgmrddp0IvYQq5ExAWujEGiLKRnQAbUMDKkF7yfTU1D4xSs/uh8pUgPZU/TuRUKn1WPqmU1Ic6kVvIv7ntWPsX3oJD6IYIWCzRf1Y2Bjak7/tHlfAUIwNoUxxc6vNhlRRhiaduS2SjoCBEOmCisMI5VNaMIG5i/Esk8ZZ2T0vV+4qpep1Fl2eHJFjckpcckGq5JbUSJ0wMiDP5IW8Wm/Wu/Vhfc5ac1Y2c0jmYH39ArjtoBw=</latexit>

A4
<latexit sha1_base64="+W4TyF6M3YFH6ovKpDp6atS6Te4=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRS1GPVi8eK9gPaUDbbabt0Nwm7E7GE/ASv6q/xJl69+mfEbZuDbX0w8Hhvhpl5fiS4Rsf5tnIrq2vrG/nNwtb2zu5ecf+gocNYMaizUISq5VMNggdQR44CWpECKn0BTX90M/Gbj6A0D4MHHEfgSToIeJ8zika6v+pWusWSU3amsJeJm5ESyVDrFn86vZDFEgJkgmrddp0IvYQq5ExAWujEGiLKRnQAbUMDKkF7yfTU1D4xSs/uh8pUgPZU/TuRUKn1WPqmU1Ic6kVvIv7ntWPsX3oJD6IYIWCzRf1Y2Bjak7/tHlfAUIwNoUxxc6vNhlRRhiaduS2SjoCBEOmCisMI5VNaMIG5i/Esk8ZZ2T0vV+4qpep1Fl2eHJFjckpcckGq5JbUSJ0wMiDP5IW8Wm/Wu/Vhfc5ac1Y2c0jmYH39ArjtoBw=</latexit>

A4
<latexit sha1_base64="+W4TyF6M3YFH6ovKpDp6atS6Te4=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRS1GPVi8eK9gPaUDbbabt0Nwm7E7GE/ASv6q/xJl69+mfEbZuDbX0w8Hhvhpl5fiS4Rsf5tnIrq2vrG/nNwtb2zu5ecf+gocNYMaizUISq5VMNggdQR44CWpECKn0BTX90M/Gbj6A0D4MHHEfgSToIeJ8zika6v+pWusWSU3amsJeJm5ESyVDrFn86vZDFEgJkgmrddp0IvYQq5ExAWujEGiLKRnQAbUMDKkF7yfTU1D4xSs/uh8pUgPZU/TuRUKn1WPqmU1Ic6kVvIv7ntWPsX3oJD6IYIWCzRf1Y2Bjak7/tHlfAUIwNoUxxc6vNhlRRhiaduS2SjoCBEOmCisMI5VNaMIG5i/Esk8ZZ2T0vV+4qpep1Fl2eHJFjckpcckGq5JbUSJ0wMiDP5IW8Wm/Wu/Vhfc5ac1Y2c0jmYH39ArjtoBw=</latexit>

A4

<latexit sha1_base64="+W4TyF6M3YFH6ovKpDp6atS6Te4=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRS1GPVi8eK9gPaUDbbabt0Nwm7E7GE/ASv6q/xJl69+mfEbZuDbX0w8Hhvhpl5fiS4Rsf5tnIrq2vrG/nNwtb2zu5ecf+gocNYMaizUISq5VMNggdQR44CWpECKn0BTX90M/Gbj6A0D4MHHEfgSToIeJ8zika6v+pWusWSU3amsJeJm5ESyVDrFn86vZDFEgJkgmrddp0IvYQq5ExAWujEGiLKRnQAbUMDKkF7yfTU1D4xSs/uh8pUgPZU/TuRUKn1WPqmU1Ic6kVvIv7ntWPsX3oJD6IYIWCzRf1Y2Bjak7/tHlfAUIwNoUxxc6vNhlRRhiaduS2SjoCBEOmCisMI5VNaMIG5i/Esk8ZZ2T0vV+4qpep1Fl2eHJFjckpcckGq5JbUSJ0wMiDP5IW8Wm/Wu/Vhfc5ac1Y2c0jmYH39ArjtoBw=</latexit>

A4

<latexit sha1_base64="u8O2/IM7or8WJSlzASG3GjYzIpY=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSTi17HqxWNF+wFtKJvttF26m4TdiVhCfoJX9dd4E69e/TPits3Btj4YeLw3w8w8PxJco+N8W7ml5ZXVtfx6YWNza3unuLtX12GsGNRYKELV9KkGwQOoIUcBzUgBlb6Ahj+8GfuNR1Cah8EDjiLwJO0HvMcZRSPdX3XOOsWSU3YmsBeJm5ESyVDtFH/a3ZDFEgJkgmrdcp0IvYQq5ExAWmjHGiLKhrQPLUMDKkF7yeTU1D4yStfuhcpUgPZE/TuRUKn1SPqmU1Ic6HlvLP7ntWLsXXoJD6IYIWDTRb1Y2Bja47/tLlfAUIwMoUxxc6vNBlRRhiadmS2SDoGBEOmcioMI5VNaMIG58/EskvpJ2T0vn96dlirXWXR5ckAOyTFxyQWpkFtSJTXCSJ88kxfyar1Z79aH9TltzVnZzD6ZgfX1C7qdoB0=</latexit>

A5
<latexit sha1_base64="u8O2/IM7or8WJSlzASG3GjYzIpY=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSTi17HqxWNF+wFtKJvttF26m4TdiVhCfoJX9dd4E69e/TPits3Btj4YeLw3w8w8PxJco+N8W7ml5ZXVtfx6YWNza3unuLtX12GsGNRYKELV9KkGwQOoIUcBzUgBlb6Ahj+8GfuNR1Cah8EDjiLwJO0HvMcZRSPdX3XOOsWSU3YmsBeJm5ESyVDtFH/a3ZDFEgJkgmrdcp0IvYQq5ExAWmjHGiLKhrQPLUMDKkF7yeTU1D4yStfuhcpUgPZE/TuRUKn1SPqmU1Ic6HlvLP7ntWLsXXoJD6IYIWDTRb1Y2Bja47/tLlfAUIwMoUxxc6vNBlRRhiadmS2SDoGBEOmcioMI5VNaMIG58/EskvpJ2T0vn96dlirXWXR5ckAOyTFxyQWpkFtSJTXCSJ88kxfyar1Z79aH9TltzVnZzD6ZgfX1C7qdoB0=</latexit>

A5

<latexit sha1_base64="u8O2/IM7or8WJSlzASG3GjYzIpY=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSTi17HqxWNF+wFtKJvttF26m4TdiVhCfoJX9dd4E69e/TPits3Btj4YeLw3w8w8PxJco+N8W7ml5ZXVtfx6YWNza3unuLtX12GsGNRYKELV9KkGwQOoIUcBzUgBlb6Ahj+8GfuNR1Cah8EDjiLwJO0HvMcZRSPdX3XOOsWSU3YmsBeJm5ESyVDtFH/a3ZDFEgJkgmrdcp0IvYQq5ExAWmjHGiLKhrQPLUMDKkF7yeTU1D4yStfuhcpUgPZE/TuRUKn1SPqmU1Ic6HlvLP7ntWLsXXoJD6IYIWDTRb1Y2Bja47/tLlfAUIwMoUxxc6vNBlRRhiadmS2SDoGBEOmcioMI5VNaMIG58/EskvpJ2T0vn96dlirXWXR5ckAOyTFxyQWpkFtSJTXCSJ88kxfyar1Z79aH9TltzVnZzD6ZgfX1C7qdoB0=</latexit>

A5

<latexit sha1_base64="hQTBHBxCtVcKBsXSsohPCbj6Oc4=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6rHoxWNF+wFtKJvtpF26m4TdiVhCfoJX9dd4E69e/TPits3Btj4YeLw3w8w8PxZco+N8W4WV1bX1jeJmaWt7Z3evvH/Q1FGiGDRYJCLV9qkGwUNoIEcB7VgBlb6Alj+6mfitR1CaR+EDjmPwJB2EPOCMopHu6z23V644VWcKe5m4OamQHPVe+afbj1giIUQmqNYd14nRS6lCzgRkpW6iIaZsRAfQMTSkErSXTk/N7BOj9O0gUqZCtKfq34mUSq3H0jedkuJQL3oT8T+vk2Bw5aU8jBOEkM0WBYmwMbInf9t9roChGBtCmeLmVpsNqaIMTTpzWyQdAQMhsgUVhzHKp6xkAnMX41kmzbOqe1E9vzuv1K7z6IrkiByTU+KSS1Ijt6ROGoSRAXkmL+TVerPerQ/rc9ZasPKZQzIH6+sXzUugKA==</latexit>

P1
<latexit sha1_base64="hQTBHBxCtVcKBsXSsohPCbj6Oc4=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6rHoxWNF+wFtKJvtpF26m4TdiVhCfoJX9dd4E69e/TPits3Btj4YeLw3w8w8PxZco+N8W4WV1bX1jeJmaWt7Z3evvH/Q1FGiGDRYJCLV9qkGwUNoIEcB7VgBlb6Alj+6mfitR1CaR+EDjmPwJB2EPOCMopHu6z23V644VWcKe5m4OamQHPVe+afbj1giIUQmqNYd14nRS6lCzgRkpW6iIaZsRAfQMTSkErSXTk/N7BOj9O0gUqZCtKfq34mUSq3H0jedkuJQL3oT8T+vk2Bw5aU8jBOEkM0WBYmwMbInf9t9roChGBtCmeLmVpsNqaIMTTpzWyQdAQMhsgUVhzHKp6xkAnMX41kmzbOqe1E9vzuv1K7z6IrkiByTU+KSS1Ijt6ROGoSRAXkmL+TVerPerQ/rc9ZasPKZQzIH6+sXzUugKA==</latexit>

P1
<latexit sha1_base64="4S7ayAjcRquhrezI53Te042kV5I=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSSlqMeiF48V7Qe0oWy2k3bpbhJ2J2IJ/Qle1V/jTbx69c+I2zYH2/pg4PHeDDPz/FhwjY7zbeXW1jc2t/LbhZ3dvf2D4uFRU0eJYtBgkYhU26caBA+hgRwFtGMFVPoCWv7oZuq3HkFpHoUPOI7Bk3QQ8oAzika6r/cqvWLJKTsz2KvEzUiJZKj3ij/dfsQSCSEyQbXuuE6MXkoVciZgUugmGmLKRnQAHUNDKkF76ezUiX1mlL4dRMpUiPZM/TuRUqn1WPqmU1Ic6mVvKv7ndRIMrryUh3GCELL5oiARNkb29G+7zxUwFGNDKFPc3GqzIVWUoUlnYYukI2AgxGRJxWGM8mlSMIG5y/Gskmal7F6Uq3fVUu06iy5PTsgpOScuuSQ1ckvqpEEYGZBn8kJerTfr3fqwPuetOSubOSYLsL5+Ac77oCk=</latexit>

P2

<latexit sha1_base64="4S7ayAjcRquhrezI53Te042kV5I=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSSlqMeiF48V7Qe0oWy2k3bpbhJ2J2IJ/Qle1V/jTbx69c+I2zYH2/pg4PHeDDPz/FhwjY7zbeXW1jc2t/LbhZ3dvf2D4uFRU0eJYtBgkYhU26caBA+hgRwFtGMFVPoCWv7oZuq3HkFpHoUPOI7Bk3QQ8oAzika6r/cqvWLJKTsz2KvEzUiJZKj3ij/dfsQSCSEyQbXuuE6MXkoVciZgUugmGmLKRnQAHUNDKkF76ezUiX1mlL4dRMpUiPZM/TuRUqn1WPqmU1Ic6mVvKv7ndRIMrryUh3GCELL5oiARNkb29G+7zxUwFGNDKFPc3GqzIVWUoUlnYYukI2AgxGRJxWGM8mlSMIG5y/Gskmal7F6Uq3fVUu06iy5PTsgpOScuuSQ1ckvqpEEYGZBn8kJerTfr3fqwPuetOSubOSYLsL5+Ac77oCk=</latexit>

P2

<latexit sha1_base64="KPWBX7zgHP/WNtp/mTryNjI9/L0=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRa1GPRi8eK9gPaUDbbabt0Nwm7E7GE/ASv6q/xJl69+mfEbZuDbX0w8Hhvhpl5fiS4Rsf5tnIrq2vrG/nNwtb2zu5ecf+gocNYMaizUISq5VMNggdQR44CWpECKn0BTX90M/Gbj6A0D4MHHEfgSToIeJ8zika6r3XPu8WSU3amsJeJm5ESyVDrFn86vZDFEgJkgmrddp0IvYQq5ExAWujEGiLKRnQAbUMDKkF7yfTU1D4xSs/uh8pUgPZU/TuRUKn1WPqmU1Ic6kVvIv7ntWPsX3kJD6IYIWCzRf1Y2Bjak7/tHlfAUIwNoUxxc6vNhlRRhiaduS2SjoCBEOmCisMI5VNaMIG5i/Esk8ZZ2b0oV+4qpep1Fl2eHJFjckpcckmq5JbUSJ0wMiDP5IW8Wm/Wu/Vhfc5ac1Y2c0jmYH39AtCroCo=</latexit>

P3

<latexit sha1_base64="KPWBX7zgHP/WNtp/mTryNjI9/L0=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRa1GPRi8eK9gPaUDbbabt0Nwm7E7GE/ASv6q/xJl69+mfEbZuDbX0w8Hhvhpl5fiS4Rsf5tnIrq2vrG/nNwtb2zu5ecf+gocNYMaizUISq5VMNggdQR44CWpECKn0BTX90M/Gbj6A0D4MHHEfgSToIeJ8zika6r3XPu8WSU3amsJeJm5ESyVDrFn86vZDFEgJkgmrddp0IvYQq5ExAWujEGiLKRnQAbUMDKkF7yfTU1D4xSs/uh8pUgPZU/TuRUKn1WPqmU1Ic6kVvIv7ntWPsX3kJD6IYIWCzRf1Y2Bjak7/tHlfAUIwNoUxxc6vNhlRRhiaduS2SjoCBEOmCisMI5VNaMIG5i/Esk8ZZ2b0oV+4qpep1Fl2eHJFjckpcckmq5JbUSJ0wMiDP5IW8Wm/Wu/Vhfc5ac1Y2c0jmYH39AtCroCo=</latexit>

P3

<latexit sha1_base64="I0voNd3myr/0dVBGZ7aRgStYyCY=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdJze8WSU3bmsNeJm5ESyVDvFX+6/ZDFEgJkgmrdcZ0IvYQq5ExAWujGGiLKxnQIHUMDKkF7yfzU1L4wSt8ehMpUgPZc/TuRUKn1VPqmU1Ic6VVvJv7ndWIcVL2EB1GMELDFokEsbAzt2d92nytgKKaGUKa4udVmI6ooQ5PO0hZJx8BAiHRFxVGEcpIWTGDuajzrpHlVdq/LlftKqVbNosuTM3JOLolLbkiN3JE6aRBGhuSZvJBX6816tz6sz0VrzspmTskSrK9fDiigRg==</latexit>x1

<latexit sha1_base64="1HyMhqfuNs1rGiimoIOwzoldJes=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8laQU7bHgxWNF+wFtKJvtpF26m4TdibSE/ASv6q/xJl69+mfE7cfBtj4YeLw3w8w8PxZco+N8WxubW9s7u7m9/P7B4dFx4eS0qaNEMWiwSESq7VMNgofQQI4C2rECKn0BLX90O/VbT6A0j8JHnMTgSToIecAZRSM9jHvlXqHolJwZ7HXiLkiRLFDvFX66/YglEkJkgmrdcZ0YvZQq5ExAlu8mGmLKRnQAHUNDKkF76ezUzL40St8OImUqRHum/p1IqdR6In3TKSkO9ao3Ff/zOgkGVS/lYZwghGy+KEiEjZE9/dvucwUMxcQQyhQ3t9psSBVlaNJZ2iLpCBgIka2oOIxRjrO8CcxdjWedNMsl97pUua8Ua9VFdDlyTi7IFXHJDamRO1InDcLIgDyTF/JqvVnv1of1OW/dsBYzZ2QJ1tcvD9igRw==</latexit>x2

<latexit sha1_base64="1HyMhqfuNs1rGiimoIOwzoldJes=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8laQU7bHgxWNF+wFtKJvtpF26m4TdibSE/ASv6q/xJl69+mfE7cfBtj4YeLw3w8w8PxZco+N8WxubW9s7u7m9/P7B4dFx4eS0qaNEMWiwSESq7VMNgofQQI4C2rECKn0BLX90O/VbT6A0j8JHnMTgSToIecAZRSM9jHvlXqHolJwZ7HXiLkiRLFDvFX66/YglEkJkgmrdcZ0YvZQq5ExAlu8mGmLKRnQAHUNDKkF76ezUzL40St8OImUqRHum/p1IqdR6In3TKSkO9ao3Ff/zOgkGVS/lYZwghGy+KEiEjZE9/dvucwUMxcQQyhQ3t9psSBVlaNJZ2iLpCBgIka2oOIxRjrO8CcxdjWedNMsl97pUua8Ua9VFdDlyTi7IFXHJDamRO1InDcLIgDyTF/JqvVnv1of1OW/dsBYzZ2QJ1tcvD9igRw==</latexit>x2

<latexit sha1_base64="pH/KKpT7Lp4K2L79efZwRJDzCyQ=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8lUSL9ljw4rGi/YA2lM120i7dTcLuRFpCf4JX9dd4E69e/TPits3Btj4YeLw3w8w8PxZco+N8W2vrG5tb27md/O7e/sFh4ei4oaNEMaizSESq5VMNgodQR44CWrECKn0BTX94O/WbT6A0j8JHHMfgSdoPecAZRSM9jLpX3ULRKTkz2KvEzUiRZKh1Cz+dXsQSCSEyQbVuu06MXkoVciZgku8kGmLKhrQPbUNDKkF76ezUiX1ulJ4dRMpUiPZM/TuRUqn1WPqmU1Ic6GVvKv7ntRMMKl7KwzhBCNl8UZAIGyN7+rfd4woYirEhlClubrXZgCrK0KSzsEXSITAQYrKk4iBGOZrkTWDucjyrpHFZcq9L5ftysVrJosuRU3JGLohLbkiV3JEaqRNG+uSZvJBX6816tz6sz3nrmpXNnJAFWF+/EYigSA==</latexit>x3
<latexit sha1_base64="pH/KKpT7Lp4K2L79efZwRJDzCyQ=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8lUSL9ljw4rGi/YA2lM120i7dTcLuRFpCf4JX9dd4E69e/TPits3Btj4YeLw3w8w8PxZco+N8W2vrG5tb27md/O7e/sFh4ei4oaNEMaizSESq5VMNgodQR44CWrECKn0BTX94O/WbT6A0j8JHHMfgSdoPecAZRSM9jLpX3ULRKTkz2KvEzUiRZKh1Cz+dXsQSCSEyQbVuu06MXkoVciZgku8kGmLKhrQPbUNDKkF76ezUiX1ulJ4dRMpUiPZM/TuRUqn1WPqmU1Ic6GVvKv7ntRMMKl7KwzhBCNl8UZAIGyN7+rfd4woYirEhlClubrXZgCrK0KSzsEXSITAQYrKk4iBGOZrkTWDucjyrpHFZcq9L5ftysVrJosuRU3JGLohLbkiV3JEaqRNG+uSZvJBX6816tz6sz3nrmpXNnJAFWF+/EYigSA==</latexit>x3

<latexit sha1_base64="pH/KKpT7Lp4K2L79efZwRJDzCyQ=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8lUSL9ljw4rGi/YA2lM120i7dTcLuRFpCf4JX9dd4E69e/TPits3Btj4YeLw3w8w8PxZco+N8W2vrG5tb27md/O7e/sFh4ei4oaNEMaizSESq5VMNgodQR44CWrECKn0BTX94O/WbT6A0j8JHHMfgSdoPecAZRSM9jLpX3ULRKTkz2KvEzUiRZKh1Cz+dXsQSCSEyQbVuu06MXkoVciZgku8kGmLKhrQPbUNDKkF76ezUiX1ulJ4dRMpUiPZM/TuRUqn1WPqmU1Ic6GVvKv7ntRMMKl7KwzhBCNl8UZAIGyN7+rfd4woYirEhlClubrXZgCrK0KSzsEXSITAQYrKk4iBGOZrkTWDucjyrpHFZcq9L5ftysVrJosuRU3JGLohLbkiV3JEaqRNG+uSZvJBX6816tz6sz3nrmpXNnJAFWF+/EYigSA==</latexit>x3

<latexit sha1_base64="pH/KKpT7Lp4K2L79efZwRJDzCyQ=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8lUSL9ljw4rGi/YA2lM120i7dTcLuRFpCf4JX9dd4E69e/TPits3Btj4YeLw3w8w8PxZco+N8W2vrG5tb27md/O7e/sFh4ei4oaNEMaizSESq5VMNgodQR44CWrECKn0BTX94O/WbT6A0j8JHHMfgSdoPecAZRSM9jLpX3ULRKTkz2KvEzUiRZKh1Cz+dXsQSCSEyQbVuu06MXkoVciZgku8kGmLKhrQPbUNDKkF76ezUiX1ulJ4dRMpUiPZM/TuRUqn1WPqmU1Ic6GVvKv7ntRMMKl7KwzhBCNl8UZAIGyN7+rfd4woYirEhlClubrXZgCrK0KSzsEXSITAQYrKk4iBGOZrkTWDucjyrpHFZcq9L5ftysVrJosuRU3JGLohLbkiV3JEaqRNG+uSZvJBX6816tz6sz3nrmpXNnJAFWF+/EYigSA==</latexit>x3

<latexit sha1_base64="lS5zXJ9AUDfSn8gqpzxif8MPre4=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7F6XK/eVUq2aRZcnZ+ScXBKX3JAauSN10iCMDMkzeSGv1pv1bn1Yn4vWnJXNnJIlWF+/EzigSQ==</latexit>x4

<latexit sha1_base64="kMsDIMIvbvn9cXcij3vVt+v72eI=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSTiR48FLx4r2g9oQ9lsp+3S3STsTqQl5Cd4VX+NN/Hq1T8jbtscbOuDgcd7M8zM8yPBNTrOt5VbW9/Y3MpvF3Z29/YPiodHDR3GikGdhSJULZ9qEDyAOnIU0IoUUOkLaPqj26nffAKleRg84iQCT9JBwPucUTTSw7h71S2WnLIzg71K3IyUSIZat/jT6YUslhAgE1TrtutE6CVUIWcC0kIn1hBRNqIDaBsaUAnaS2anpvaZUXp2P1SmArRn6t+JhEqtJ9I3nZLiUC97U/E/rx1jv+IlPIhihIDNF/VjYWNoT/+2e1wBQzExhDLFza02G1JFGZp0FrZIOgIGQqRLKg4jlOO0YAJzl+NZJY2Lsntdvry/LFUrWXR5ckJOyTlxyQ2pkjtSI3XCyIA8kxfyar1Z79aH9TlvzVnZzDFZgPX1CxTooEo=</latexit>x5
<latexit sha1_base64="kMsDIMIvbvn9cXcij3vVt+v72eI=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSTiR48FLx4r2g9oQ9lsp+3S3STsTqQl5Cd4VX+NN/Hq1T8jbtscbOuDgcd7M8zM8yPBNTrOt5VbW9/Y3MpvF3Z29/YPiodHDR3GikGdhSJULZ9qEDyAOnIU0IoUUOkLaPqj26nffAKleRg84iQCT9JBwPucUTTSw7h71S2WnLIzg71K3IyUSIZat/jT6YUslhAgE1TrtutE6CVUIWcC0kIn1hBRNqIDaBsaUAnaS2anpvaZUXp2P1SmArRn6t+JhEqtJ9I3nZLiUC97U/E/rx1jv+IlPIhihIDNF/VjYWNoT/+2e1wBQzExhDLFza02G1JFGZp0FrZIOgIGQqRLKg4jlOO0YAJzl+NZJY2Lsntdvry/LFUrWXR5ckJOyTlxyQ2pkjtSI3XCyIA8kxfyar1Z79aH9TlvzVnZzDFZgPX1CxTooEo=</latexit>x5

<latexit sha1_base64="kMsDIMIvbvn9cXcij3vVt+v72eI=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSTiR48FLx4r2g9oQ9lsp+3S3STsTqQl5Cd4VX+NN/Hq1T8jbtscbOuDgcd7M8zM8yPBNTrOt5VbW9/Y3MpvF3Z29/YPiodHDR3GikGdhSJULZ9qEDyAOnIU0IoUUOkLaPqj26nffAKleRg84iQCT9JBwPucUTTSw7h71S2WnLIzg71K3IyUSIZat/jT6YUslhAgE1TrtutE6CVUIWcC0kIn1hBRNqIDaBsaUAnaS2anpvaZUXp2P1SmArRn6t+JhEqtJ9I3nZLiUC97U/E/rx1jv+IlPIhihIDNF/VjYWNoT/+2e1wBQzExhDLFza02G1JFGZp0FrZIOgIGQqRLKg4jlOO0YAJzl+NZJY2Lsntdvry/LFUrWXR5ckJOyTlxyQ2pkjtSI3XCyIA8kxfyar1Z79aH9TlvzVnZzDFZgPX1CxTooEo=</latexit>x5

<latexit sha1_base64="kMsDIMIvbvn9cXcij3vVt+v72eI=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSTiR48FLx4r2g9oQ9lsp+3S3STsTqQl5Cd4VX+NN/Hq1T8jbtscbOuDgcd7M8zM8yPBNTrOt5VbW9/Y3MpvF3Z29/YPiodHDR3GikGdhSJULZ9qEDyAOnIU0IoUUOkLaPqj26nffAKleRg84iQCT9JBwPucUTTSw7h71S2WnLIzg71K3IyUSIZat/jT6YUslhAgE1TrtutE6CVUIWcC0kIn1hBRNqIDaBsaUAnaS2anpvaZUXp2P1SmArRn6t+JhEqtJ9I3nZLiUC97U/E/rx1jv+IlPIhihIDNF/VjYWNoT/+2e1wBQzExhDLFza02G1JFGZp0FrZIOgIGQqRLKg4jlOO0YAJzl+NZJY2Lsntdvry/LFUrWXR5ckJOyTlxyQ2pkjtSI3XCyIA8kxfyar1Z79aH9TlvzVnZzDFZgPX1CxTooEo=</latexit>x5

<latexit sha1_base64="1HyMhqfuNs1rGiimoIOwzoldJes=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8laQU7bHgxWNF+wFtKJvtpF26m4TdibSE/ASv6q/xJl69+mfE7cfBtj4YeLw3w8w8PxZco+N8WxubW9s7u7m9/P7B4dFx4eS0qaNEMWiwSESq7VMNgofQQI4C2rECKn0BLX90O/VbT6A0j8JHnMTgSToIecAZRSM9jHvlXqHolJwZ7HXiLkiRLFDvFX66/YglEkJkgmrdcZ0YvZQq5ExAlu8mGmLKRnQAHUNDKkF76ezUzL40St8OImUqRHum/p1IqdR6In3TKSkO9ao3Ff/zOgkGVS/lYZwghGy+KEiEjZE9/dvucwUMxcQQyhQ3t9psSBVlaNJZ2iLpCBgIka2oOIxRjrO8CcxdjWedNMsl97pUua8Ua9VFdDlyTi7IFXHJDamRO1InDcLIgDyTF/JqvVnv1of1OW/dsBYzZ2QJ1tcvD9igRw==</latexit>x2

<latexit sha1_base64="IBJa70XmZE3zGhhNJjuT2TQ8v4Y=">AAACF3icbVBNS8NAEN3Ur1q/qh69BIvgqSRSVDwVvXhswX5AG8pmO2mW7iZhdyKW0L/gVf013sSrR/+MmLQ52NYHA4/3ZpiZ50aCa7Ssb6Owtr6xuVXcLu3s7u0flA+P2jqMFYMWC0Woui7VIHgALeQooBspoNIV0HHHd5nfeQSleRg84CQCR9JRwD3OKGZSc2DfDMoVq2rNYK4SOycVkqMxKP/0hyGLJQTIBNW6Z1sROglVyJmAaakfa4goG9MR9FIaUAnaSWa3Ts2zVBmaXqjSCtCcqX8nEiq1nkg37ZQUfb3sZeJ/Xi9G79pJeBDFCAGbL/JiYWJoZo+bQ66AoZikhDLF01tN5lNFGabxLGyRdAwMhJguqehHKJ+mpTQwezmeVdK+qNqX1VqzVqnf5tEVyQk5JefEJlekTu5Jg7QIIz55Ji/k1Xgz3o0P43PeWjDymWOyAOPrF1bhoG0=</latexit>

Q1 :
<latexit sha1_base64="ZT+gcjgFe8EA4u1bpqxBLKPhVh8=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8laQU9Vj14rGi/YA2lM122i7dTcLuRCwhP8Gr+mu8iVev/hlx2+ZgWx8MPN6bYWaeHwmu0XG+rZXVtfWNzdxWfntnd2+/cHDY0GGsGNRZKELV8qkGwQOoI0cBrUgBlb6Apj+6mfjNR1Cah8EDjiPwJB0EvM8ZRSPdX3XL3ULRKTlT2MvEzUiRZKh1Cz+dXshiCQEyQbVuu06EXkIVciYgzXdiDRFlIzqAtqEBlaC9ZHpqap8apWf3Q2UqQHuq/p1IqNR6LH3TKSkO9aI3Ef/z2jH2L72EB1GMELDZon4sbAztyd92jytgKMaGUKa4udVmQ6ooQ5PO3BZJR8BAiHRBxWGE8inNm8DcxXiWSaNccs9LlbtKsXqdRZcjx+SEnBGXXJAquSU1UieMDMgzeSGv1pv1bn1Yn7PWFSubOSJzsL5+AbWNoBo=</latexit>

A2
<latexit sha1_base64="x1LWJGW/sVfjZghuCZWJqazcJcE=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRa1GPVi8eK9gPaUDbbSbt0Nwm7E7GU/ASv6q/xJl69+mfEbZuDrT4YeLw3w8w8PxZco+N8Wbml5ZXVtfx6YWNza3unuLvX0FGiGNRZJCLV8qkGwUOoI0cBrVgBlb6Apj+8nvjNB1CaR+E9jmLwJO2HPOCMopHuLrun3WLJKTtT2H+Jm5ESyVDrFr87vYglEkJkgmrddp0YvTFVyJmAtNBJNMSUDWkf2oaGVIL2xtNTU/vIKD07iJSpEO2p+ntiTKXWI+mbTklxoBe9ifif104wuPDGPIwThJDNFgWJsDGyJ3/bPa6AoRgZQpni5labDaiiDE06c1skHQIDIdIFFQcxyse0YAJzF+P5SxonZfesXLmtlKpXWXR5ckAOyTFxyTmpkhtSI3XCSJ88kWfyYr1ab9a79TFrzVnZzD6Zg/X5A7c9oBs=</latexit>

A3
<latexit sha1_base64="x1LWJGW/sVfjZghuCZWJqazcJcE=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRa1GPVi8eK9gPaUDbbSbt0Nwm7E7GU/ASv6q/xJl69+mfEbZuDrT4YeLw3w8w8PxZco+N8Wbml5ZXVtfx6YWNza3unuLvX0FGiGNRZJCLV8qkGwUOoI0cBrVgBlb6Apj+8nvjNB1CaR+E9jmLwJO2HPOCMopHuLrun3WLJKTtT2H+Jm5ESyVDrFr87vYglEkJkgmrddp0YvTFVyJmAtNBJNMSUDWkf2oaGVIL2xtNTU/vIKD07iJSpEO2p+ntiTKXWI+mbTklxoBe9ifif104wuPDGPIwThJDNFgWJsDGyJ3/bPa6AoRgZQpni5labDaiiDE06c1skHQIDIdIFFQcxyse0YAJzF+P5SxonZfesXLmtlKpXWXR5ckAOyTFxyTmpkhtSI3XCSJ88kWfyYr1ab9a79TFrzVnZzD6Zg/X5A7c9oBs=</latexit>

A3

<latexit sha1_base64="cqp4skeLvlCzxT2ejd520z+XWFY=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRS1GPVi8eK9gPaUDbbSbt0Nwm7E7GU/ASv6q/xJl69+mfEbZuDbX0w8Hhvhpl5fiy4Rsf5tnIrq2vrG/nNwtb2zu5ecf+goaNEMaizSESq5VMNgodQR44CWrECKn0BTX94M/Gbj6A0j8IHHMXgSdoPecAZRSPdX3XdbrHklJ0p7GXiZqREMtS6xZ9OL2KJhBCZoFq3XSdGb0wVciYgLXQSDTFlQ9qHtqEhlaC98fTU1D4xSs8OImUqRHuq/p0YU6n1SPqmU1Ic6EVvIv7ntRMMLr0xD+MEIWSzRUEibIzsyd92jytgKEaGUKa4udVmA6ooQ5PO3BZJh8BAiHRBxUGM8iktmMDcxXiWSeOs7J6XK3eVUvU6iy5PjsgxOSUuuSBVcktqpE4Y6ZNn8kJerTfr3fqwPmetOSubOSRzsL5+AbPdoBk=</latexit>

A1
<latexit sha1_base64="ZT+gcjgFe8EA4u1bpqxBLKPhVh8=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8laQU9Vj14rGi/YA2lM122i7dTcLuRCwhP8Gr+mu8iVev/hlx2+ZgWx8MPN6bYWaeHwmu0XG+rZXVtfWNzdxWfntnd2+/cHDY0GGsGNRZKELV8qkGwQOoI0cBrUgBlb6Apj+6mfjNR1Cah8EDjiPwJB0EvM8ZRSPdX3XL3ULRKTlT2MvEzUiRZKh1Cz+dXshiCQEyQbVuu06EXkIVciYgzXdiDRFlIzqAtqEBlaC9ZHpqap8apWf3Q2UqQHuq/p1IqNR6LH3TKSkO9aI3Ef/z2jH2L72EB1GMELDZon4sbAztyd92jytgKMaGUKa4udVmQ6ooQ5PO3BZJR8BAiHRBxWGE8inNm8DcxXiWSaNccs9LlbtKsXqdRZcjx+SEnBGXXJAquSU1UieMDMgzeSGv1pv1bn1Yn7PWFSubOSJzsL5+AbWNoBo=</latexit>

A2

<latexit sha1_base64="x1LWJGW/sVfjZghuCZWJqazcJcE=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRa1GPVi8eK9gPaUDbbSbt0Nwm7E7GU/ASv6q/xJl69+mfEbZuDrT4YeLw3w8w8PxZco+N8Wbml5ZXVtfx6YWNza3unuLvX0FGiGNRZJCLV8qkGwUOoI0cBrVgBlb6Apj+8nvjNB1CaR+E9jmLwJO2HPOCMopHuLrun3WLJKTtT2H+Jm5ESyVDrFr87vYglEkJkgmrddp0YvTFVyJmAtNBJNMSUDWkf2oaGVIL2xtNTU/vIKD07iJSpEO2p+ntiTKXWI+mbTklxoBe9ifif104wuPDGPIwThJDNFgWJsDGyJ3/bPa6AoRgZQpni5labDaiiDE06c1skHQIDIdIFFQcxyse0YAJzF+P5SxonZfesXLmtlKpXWXR5ckAOyTFxyTmpkhtSI3XCSJ88kWfyYr1ab9a79TFrzVnZzD6Zg/X5A7c9oBs=</latexit>

A3

<latexit sha1_base64="MTNwkiqNBMFVt7WVIycL4V7OYs0=">AAACFnicdZBNTwIxEIa7+IX4hXr00khMPJHdBQFvJF48YhQ1QUK6ZYCGdnfTzhoI4Sd4VX+NN+PVq3/G2EVM1OibNHnzzExm+gaxFAZd983JLCwuLa9kV3Nr6xubW/ntnUsTJZpDk0cy0tcBMyBFCE0UKOE61sBUIOEqGJ6k9atb0EZE4QWOY2gr1g9FT3CGFp2POl4nX3CLx7WKf+RTt+i6Vb9USY1fLfsl6lmSqkDmanTy7zfdiCcKQuSSGdPy3BjbE6ZRcAnT3E1iIGZ8yPrQsjZkCkx7Mjt1Sg8s6dJepO0Lkc7o94kJU8aMVWA7FcOB+V1L4V+1VoK9WnsiwjhBCPnnol4iKUY0/TftCg0c5dgaxrWwt1I+YJpxtOn82KLYEDhIOf1FcRCjGk1zNrCvVOj/5tIvepVi+axcqNfm0WXJHtknh8QjVVInp6RBmoSTPrkj9+TBeXSenGfn5bM148xndskPOa8ffMGgig==</latexit>x1
<latexit sha1_base64="lS5zXJ9AUDfSn8gqpzxif8MPre4=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7F6XK/eVUq2aRZcnZ+ScXBKX3JAauSN10iCMDMkzeSGv1pv1bn1Yn4vWnJXNnJIlWF+/EzigSQ==</latexit>x4

<latexit sha1_base64="WYXY/9ptNxEy2NaFnUBapxEJL84=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQitceCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7FbK1/fXpVo1iy5Pzsg5uSQuuSE1ckfqpEEYGZJn8kJerTfr3fqwPhetOSubOSVLsL5+ARaYoEs=</latexit>x6

<latexit sha1_base64="DfEy+sfQxI2l5Xiq4TjUUL6bvt0=">AAACFnicdZBNSwMxEIazflu/qh69BIvgadmuta03wYvHirYKtZRsOm1Dk90lmZWWsj/Bq/prvIlXr/4ZMdtWUNEXAi/PzDCTN4ilMOh5787c/MLi0vLKam5tfWNzK7+90zBRojnUeSQjfRMwA1KEUEeBEm5iDUwFEq6DwVlWv74DbUQUXuEohpZivVB0BWdo0eWw7bfzBc89qZb9Y596rudV/KNyZvxKyT+iRUsyFchMtXb+47YT8URBiFwyY5pFL8bWmGkUXEKau00MxIwPWA+a1oZMgWmNJ6em9MCSDu1G2r4Q6YR+nxgzZcxIBbZTMeyb37UM/lVrJtittsYijBOEkE8XdRNJMaLZv2lHaOAoR9YwroW9lfI+04yjTefHFsUGwEHK9BfFfoxqmOZsYF+p0P9Nw3eLZbd0USqcVmfRrZA9sk8OSZFUyCk5JzVSJ5z0yD15II/Ok/PsvDiv09Y5ZzazS37IefsEfnGgiw==</latexit>x2

<latexit sha1_base64="lS5zXJ9AUDfSn8gqpzxif8MPre4=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7F6XK/eVUq2aRZcnZ+ScXBKX3JAauSN10iCMDMkzeSGv1pv1bn1Yn4vWnJXNnJIlWF+/EzigSQ==</latexit>x4

<latexit sha1_base64="WYXY/9ptNxEy2NaFnUBapxEJL84=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQitceCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7FbK1/fXpVo1iy5Pzsg5uSQuuSE1ckfqpEEYGZJn8kJerTfr3fqwPhetOSubOSVLsL5+ARaYoEs=</latexit>x6
<latexit sha1_base64="WYXY/9ptNxEy2NaFnUBapxEJL84=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQitceCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7FbK1/fXpVo1iy5Pzsg5uSQuuSE1ckfqpEEYGZJn8kJerTfr3fqwPhetOSubOSVLsL5+ARaYoEs=</latexit>x6

<latexit sha1_base64="WYXY/9ptNxEy2NaFnUBapxEJL84=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQitceCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7FbK1/fXpVo1iy5Pzsg5uSQuuSE1ckfqpEEYGZJn8kJerTfr3fqwPhetOSubOSVLsL5+ARaYoEs=</latexit>x6
<latexit sha1_base64="kMsDIMIvbvn9cXcij3vVt+v72eI=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSTiR48FLx4r2g9oQ9lsp+3S3STsTqQl5Cd4VX+NN/Hq1T8jbtscbOuDgcd7M8zM8yPBNTrOt5VbW9/Y3MpvF3Z29/YPiodHDR3GikGdhSJULZ9qEDyAOnIU0IoUUOkLaPqj26nffAKleRg84iQCT9JBwPucUTTSw7h71S2WnLIzg71K3IyUSIZat/jT6YUslhAgE1TrtutE6CVUIWcC0kIn1hBRNqIDaBsaUAnaS2anpvaZUXp2P1SmArRn6t+JhEqtJ9I3nZLiUC97U/E/rx1jv+IlPIhihIDNF/VjYWNoT/+2e1wBQzExhDLFza02G1JFGZp0FrZIOgIGQqRLKg4jlOO0YAJzl+NZJY2Lsntdvry/LFUrWXR5ckJOyTlxyQ2pkjtSI3XCyIA8kxfyar1Z79aH9TlvzVnZzDFZgPX1CxTooEo=</latexit>x5

<latexit sha1_base64="ZX1Mm7jfUd4x4C5E/UKfLINOs3E=">AAACFnicdZBNTwIxEIa7+I1fqEcvjcTEE1kWBLyRePGoUZAECOmWARra3U07ayCEn+BV/TXejFev/hljVzERom/S5M0zM5np60dSGHTddye1tLyyura+kd7c2t7Zzezt100Yaw41HspQN3xmQIoAaihQQiPSwJQv4dYfnif12zvQRoTBDY4jaCvWD0RPcIYWXY86hU4m6+bOKiXv1KNuznXLXqGUGK9c9Ao0b0miLJnpspP5aHVDHisIkEtmTDPvRtieMI2CS5imW7GBiPEh60PT2oApMO3J16lTemxJl/ZCbV+A9Iv+npgwZcxY+bZTMRyYxVoC/6o1Y+xV2hMRRDFCwL8X9WJJMaTJv2lXaOAox9YwroW9lfIB04yjTWdui2JD4CDldIHiIEI1mqZtYD+p0P9N3cvlS7niVTFbrcyiWyeH5IickDwpkyq5IJekRjjpk3vyQB6dJ+fZeXFev1tTzmzmgMzJefsEgCGgjA==</latexit>x3

<latexit sha1_base64="PjhgJtM5zEkWAvCG8ctYy2eZ0mI=">AAACFnicdZBNSwMxEIazflu/qh69BIvgqWzX2tab4MVjRVuFupRsOm1Dk90lmZWWsj/Bq/prvIlXr/4ZMdtWUNEXAi/PzDCTN4ilMOi6787c/MLi0vLKam5tfWNzK7+90zRRojk0eCQjfRMwA1KE0ECBEm5iDUwFEq6DwVlWv74DbUQUXuEoBl+xXii6gjO06HLYLrfzBbd4Uqt4xx51i65b9Y4qmfGqZe+IlizJVCAz1dv5j9tOxBMFIXLJjGmV3Bj9MdMouIQ0d5sYiBkfsB60rA2ZAuOPJ6em9MCSDu1G2r4Q6YR+nxgzZcxIBbZTMeyb37UM/lVrJdit+WMRxglCyKeLuomkGNHs37QjNHCUI2sY18LeSnmfacbRpvNji2ID4CBl+otiP0Y1THM2sK9U6P+m6RVLlWL5olw4rc2iWyF7ZJ8ckhKpklNyTuqkQTjpkXvyQB6dJ+fZeXFep61zzmxml/yQ8/YJgdGgjQ==</latexit>x4

<latexit sha1_base64="HS4FGT1tsoXArchFLH28Uv3XtQ8=">AAACFnicdVBNS0JBFJ1nX2ZfVss2QxK0kvdETHdSm5ZG+QEqMm+86uDMe4+Z+yIRf0Lb6te0i7Zt+zPR+BGk1IELh3Pu5d57/EgKg6776STW1jc2t5LbqZ3dvf2D9OFRzYSx5lDloQx1w2cGpAigigIlNCINTPkS6v7waurX70EbEQZ3OIqgrVg/ED3BGVrpttLxOumMm3UtCgU6JV7R9SwplYq5XIl6M8t1M2SBSif91eqGPFYQIJfMmKbnRtgeM42CS5ikWrGBiPEh60PT0oApMO3x7NQJPbNKl/ZCbStAOlN/T4yZMmakfNupGA7MqjcV//KaMfaK7bEIohgh4PNFvVhSDOn0b9oVGjjKkSWMa2FvpXzANONo01naotgQOEg5WVFxEKF6mKRsYD+p0P9JLZf1Ctn8TT5TvlxElyQn5JScE49ckDK5JhVSJZz0ySN5Is/Oi/PqvDnv89aEs5g5JktwPr4BLxugZQ==</latexit>

P1
<latexit sha1_base64="UJs/dtHrT/dKmgRygtUvWBmk5I4=">AAACFnicdVDLTgJBEJzFF+IL9ehlIjHxRHYJItxQLx4xipIgIbNDAxNmdjczvUZC+ASv6td4M169+jPGWcBEjFbSSaWqO91dfiSFQdf9cFILi0vLK+nVzNr6xuZWdnvn2oSx5lDnoQx1w2cGpAigjgIlNCINTPkSbvzBWeLf3IE2IgyucBhBS7FeILqCM7TS5Un7qJ3NuXnXolSiCfHKrmdJpVIuFCrUm1iumyMz1NrZz9tOyGMFAXLJjGl6boStEdMouIRx5jY2EDE+YD1oWhowBaY1mpw6pgdW6dBuqG0FSCfqz4kRU8YMlW87FcO++e0l4l9eM8ZuuTUSQRQjBHy6qBtLiiFN/qYdoYGjHFrCuBb2Vsr7TDOONp25LYoNgIOU418q9iNU9+OMDew7Ffo/uS7kvVK+eFHMVU9n0aXJHtknh8Qjx6RKzkmN1AknPfJAHsmT8+y8OK/O27Q15cxmdskcnPcvHG2gWg==</latexit>

A5
<latexit sha1_base64="ChJc7jYEzxqjEKXKC0YVoLxX8do=">AAACFnicdVBNS0JBFJ1nX2ZfVss2QxK0kvdETHdSm5ZG+QEqMm+86uDMe4+Z+yIRf0Lb6te0i7Zt+zPR+BGk1IELh3Pu5d57/EgKg6776STW1jc2t5LbqZ3dvf2D9OFRzYSx5lDloQx1w2cGpAigigIlNCINTPkS6v7waurX70EbEQZ3OIqgrVg/ED3BGVrpttLJddIZN+taFAp0Sryi61lSKhVzuRL1ZpbrZsgClU76q9UNeawgQC6ZMU3PjbA9ZhoFlzBJtWIDEeND1oempQFTYNrj2akTemaVLu2F2laAdKb+nhgzZcxI+bZTMRyYVW8q/uU1Y+wV22MRRDFCwOeLerGkGNLp37QrNHCUI0sY18LeSvmAacbRprO0RbEhcJBysqLiIEL1MEnZwH5Sof+TWi7rFbL5m3ymfLmILklOyCk5Jx65IGVyTSqkSjjpk0fyRJ6dF+fVeXPe560JZzFzTJbgfHwDMMugZg==</latexit>

P2

<latexit sha1_base64="f3iAZcsKQiep3CsVgfN8LaJs8O4=">AAACHnicbVBNS8NAEN3Ur1q/qh69BIvgqSQiKp6KXjy2YD+gjWWznbRLd5OwOxFLyc/wqv4ab+JV/4y4bXOwrQ8GHu/NMDPPjwXX6DjfVm5ldW19I79Z2Nre2d0r7h80dJQoBnUWiUi1fKpB8BDqyFFAK1ZApS+g6Q9vJ37zEZTmUXiPoxg8SfshDzijaKR2res+dGLFJVx3iyWn7ExhLxM3IyWSodot/nR6EUskhMgE1brtOjF6Y6qQMwFpoZNoiCkb0j60DQ2pBO2Npyen9olRenYQKVMh2lP178SYSq1H0jedkuJAL3oT8T+vnWBw5Y15GCcIIZstChJhY2RP/rd7XAFDMTKEMsXNrTYbUEUZmpTmtkg6BAZCpAsqDmKUT2nBBOYuxrNMGmdl96J8XjsvVW6y6PLkiByTU+KSS1Ihd6RK6oSRiDyTF/JqvVnv1of1OWvNWdnMIZmD9fULNyKjig==</latexit>

Q01 :
<latexit sha1_base64="uaiIfs94ERDHGvK+M3YGZ0odOb8=">AAACIHicbVDLSgNBEJz1GeMr6tHLYhA8hd0QVDwFvXhMwDwgWcPspJMMmdldZ3rFsOx3eFW/xpt41I8RJ4+DSSxoKKq6qab8SHCNjvNlrayurW9sZray2zu7e/u5g8O6DmPFoMZCEaqmTzUIHkANOQpoRgqo9AU0/OHN2G88gtI8DO5wFIEnaT/gPc4oGsmrdor3STtSXEJ61cnlnYIzgb1M3BnJkxkqndxPuxuyWEKATFCtW64ToZdQhZwJSLPtWENE2ZD2oWVoQCVoL5k8ndqnRunavVCZCdCeqH8vEiq1HknfbEqKA73ojcX/vFaMvUsv4UEUIwRsGtSLhY2hPW7A7nIFDMXIEMoUN7/abEAVZWh6mkuRdAgMhEgXVBxEKJ/SrCnMXaxnmdSLBfe8UKqW8uXrWXUZckxOyBlxyQUpk1tSITXCyAN5Ji/k1Xqz3q0P63O6umLNbo7IHKzvXy8QpJc=</latexit>

Q02 :
<latexit sha1_base64="BqMSFVwgAITy9HzlnBvORR6CLsk=">AAACIHicbVDLSgNBEJz1GeMr6tHLYhA8hV0NKp6CXjwmYB6QrGF20kmGzOyuM71iWPY7vKpf40086seIk8fBJBY0FFXdVFN+JLhGx/mylpZXVtfWMxvZza3tnd3c3n5Nh7FiUGWhCFXDpxoED6CKHAU0IgVU+gLq/uBm5NcfQWkeBnc4jMCTtBfwLmcUjeRV2mf3SStSXEJ61c7lnYIzhr1I3CnJkynK7dxPqxOyWEKATFCtm64ToZdQhZwJSLOtWENE2YD2oGloQCVoLxk/ndrHRunY3VCZCdAeq38vEiq1HkrfbEqKfT3vjcT/vGaM3Usv4UEUIwRsEtSNhY2hPWrA7nAFDMXQEMoUN7/arE8VZWh6mkmRdAAMhEjnVOxHKJ/SrCnMna9nkdROC+55oVgp5kvX0+oy5JAckRPikgtSIrekTKqEkQfyTF7Iq/VmvVsf1udkdcma3hyQGVjfvzDKpJg=</latexit>

Q03 :

<latexit sha1_base64="yC35dMozpEhBWEJUh0YKZJ5HLK8=">AAACF3icbVBNS8NAEN3Ur1q/qh69BIvgqSRSVDwVe/FYwX5AG8pmO2mW7iZhdyKW0L/gVf013sSrR/+MmLQ52NYHA4/3ZpiZ50aCa7Ssb6Owtr6xuVXcLu3s7u0flA+P2jqMFYMWC0Woui7VIHgALeQooBspoNIV0HHHjczvPILSPAwecBKBI+ko4B5nFDOpMbBvBuWKVbVmMFeJnZMKydEclH/6w5DFEgJkgmrds60InYQq5EzAtNSPNUSUjekIeikNqATtJLNbp+ZZqgxNL1RpBWjO1L8TCZVaT6SbdkqKvl72MvE/rxejd+0kPIhihIDNF3mxMDE0s8fNIVfAUExSQpni6a0m86miDNN4FrZIOgYGQkyXVPQjlE/TUhqYvRzPKmlfVO3Lau2+Vqnf5tEVyQk5JefEJlekTu5Ik7QIIz55Ji/k1Xgz3o0P43PeWjDymWOyAOPrFz8XoF8=</latexit>

C1 :
<latexit sha1_base64="5lQaGuERFF4/e5loUMZTSBBe+xE=">AAACF3icbVBNS8NAEN3Ur1q/qh69BIvgqSSlqHgq9uKxgv2ANpTNdtIs3U3C7kQsoX/Bq/prvIlXj/4ZMWlz0NYHA4/3ZpiZ50aCa7SsL6Owtr6xuVXcLu3s7u0flA+POjqMFYM2C0Woei7VIHgAbeQooBcpoNIV0HUnzczvPoDSPAzucRqBI+k44B5nFDOpOaxdD8sVq2rNYa4SOycVkqM1LH8PRiGLJQTIBNW6b1sROglVyJmAWWkQa4gom9Ax9FMaUAnaSea3zsyzVBmZXqjSCtCcq78nEiq1nko37ZQUfb3sZeJ/Xj9G78pJeBDFCAFbLPJiYWJoZo+bI66AoZimhDLF01tN5lNFGabx/Nki6QQYCDFbUtGPUD7OSmlg9nI8q6RTq9oX1fpdvdK4yaMrkhNySs6JTS5Jg9ySFmkTRnzyRJ7Ji/FqvBnvxseitWDkM8fkD4zPH0DIoGA=</latexit>

C2 :
<latexit sha1_base64="6qxbIL+C3Xm5YZf7SXG+3wE8+hc=">AAACF3icbVBNS8NAEN34WetX1aOXYBE8lUSLiqdiLx4r2A9oQ9lsJ+3S3STsTsQS8he8qr/Gm3j16J8RkzYH2/pg4PHeDDPz3FBwjZb1baysrq1vbBa2its7u3v7pYPDlg4ixaDJAhGojks1CO5DEzkK6IQKqHQFtN1xPfPbj6A0D/wHnITgSDr0uccZxUyq9y9u+qWyVbGmMJeJnZMyydHol356g4BFEnxkgmrdta0QnZgq5ExAUuxFGkLKxnQI3ZT6VIJ24umtiXmaKgPTC1RaPppT9e9ETKXWE+mmnZLiSC96mfif143Qu3Zi7ocRgs9mi7xImBiY2ePmgCtgKCYpoUzx9FaTjaiiDNN45rZIOgYGQiQLKo5ClE9JMQ3MXoxnmbTOK/ZlpXpfLddu8+gK5JickDNikytSI3ekQZqEkRF5Ji/k1Xgz3o0P43PWumLkM0dkDsbXL0J5oGE=</latexit>

C3 :

Fig. 7: The Q-Sep procedure separates Q1 into Horn guarded clauses C1,C2,C3 and an indecomposable
isolated-only query clause Q′3. The removed isolated variables are red and the separated surface literal and
the literals guarded by it are blue.

3. No separation rule is applicable to C2. We separate the isolated variable x3 from Q′2:
find that ¬A3(x3,x4,x5) is the x3-occurring surface literal in Q′2, and then separate
this literal and the literals guarded by it, viz., ¬P2(x3) and ¬A5(x3,x4). Using a
fresh predicate symbol P3, Q′2 is separated into:

C3 = ¬P2(x3)∨¬A3(x3,x4,x5)∨¬A5(x3,x4)∨P3(x5) and
Q′3 = ¬A4(x5,x6)∨¬P3(x5).

4. The conclusions C3 and Q′3 are not separable. Finally, Q1 is replaced by the Horn
guarded clauses C1,C2,C3 and the indecomposable isolated-only query clause Q′3.

Though Step 3. aims to remove the isolated variable x3 from Q′2, it turns out that both
the isolated variables x3 and x4 are removed from Q′2. This is because x4 occurs in
the x3-occurring surface literal ¬A3(x3,x4,x5), therefore by Remark 40, Step 3. also
removes all x4-occurring literals from Q′2. Figure 7 shows how the Q-Sep procedure
separates Q1 into C1,C2,C3 and Q′3, framed in the green box.

The indecomposable isolated-only query clauses, for example, Q′3 from the previ-
ous example, are indeed Horn guarded clauses. Analysis of these two clausal classes
reveals the following property:

Lemma 43. An indecomposable isolated-only query clause is a Horn guarded clause.

Proof. Suppose Q is an indecomposable isolated-only query clause. Recall that if Q
contains two surface literals L1 and L2 such that var(L1) 6= var(L2) and x ∈ var(L1)∩
var(L2), then x is a chained variable in Q. Since Q contains no chained variables, it
is the case that either i) Q contains only one surface literal, or ii) Q contains multiple
surface literals and each pair L1 and L2 of surface literals satisfies either var(L1) =
var(L2) or var(L1)∩var(L2) = /0. We distinguish these two cases:

i) The indecomposable isolated-only query clause Q is flat, negative and con-
tains only one surface literal L. By the definition of surface literals, var(L) = var(Q).
Then, Q is a Horn guarded clause with a guard L.

Saturation-based methods for querying the guarded quantification fragments 43

ii) If any pair L1 and L2 of surface literals in Q satisfies var(L1) = var(L2), then
it is the same case as i) but L1 and L2 are both guards of Q. If there exists a pair L1
and L2 of surface literals satisfying var(L1)∩ var(L2) = /0, then Q is decomposable,
which contradicts the assumption.

A chained variable in the SepIndeQ premise may become an isolated variable in
the SepIndeQ conclusion, but not vice-versa. For example, in Step 1. of the previous
example, the chained variable x2 in Q1 becomes isolated in Q′1, due to the removal of
the isolated variable x1 in Q1. However, since the SepIndeQ rule does not introduce
new connections between variables in the conclusions, an isolated variable in the
SepIndeQ premise cannot turn into a chained variable in the SepIndeQ conclusion.
Since the Q-Sep procedure continuously removes isolated variables in the SepIndeQ
conclusions, the procedure handles the freshly converted isolated variables.

Next, we look at another query clause

Q2 = ¬A1(x1,x2,x3)∨¬A2(x3,x4,x5)∨¬A3(x5,x6,x7)∨
¬A4(x1,x7,x8)∨¬A5(x3,x4,x9).

To remove the isolated variables x2,x4,x6,x8 and x9 from Q2, we apply the SepIndeQ
rule to Q2 five times. Using fresh predicate symbols P4, P5, P6, P7 and P8, the Q-Sep
procedure separates Q2 into Horn guarded clauses

¬A1(x1,x2,x3)∨P4(x1,x3), ¬A4(x1,x7,x8)∨P5(x1,x7),

¬A3(x5,x6,x7)∨P6(x5,x7), ¬A5(x3,x4,x9)∨P7(x3,x4),

¬A2(x3,x4,x5)∨¬P7(x3,x4)∨P8(x3,x5),

and an indecomposable chained-only query clause

Q3 = ¬P4(x1,x3)∨¬P8(x3,x5)∨¬P6(x5,x7)∨¬P5(x1,x7).

Figure 8 shows how the Q-Sep procedure separates Q2 into the above Horn guarded
clauses and the above indecomposable chained-only query clause. We see that each
application of the SepIndeQ rule separates a coloured surface literal.

Unlike the Q-Sep conclusions of Q1, applying the Q-Sep procedure to Q2 derives
the indecomposable chained-only query clause, c.f. Q3. By Remark 40, the procedure
of recursively applying the SepIndeQ rule to an indecomposable query clause termi-
nates if either an indecomposable chained-only query clause or an indecomposable
isolated-only query clause is derived. We use the notion of ICQ to denote indecom-
posable chained-only query clauses.

The main result of this section is given as follows.

Lemma 44. Applying the Q-Sep procedure to a query clause replaces it with nar-
rower guarded clauses and optionally narrower ICQ clauses.

Proof. i) By Lemma 39, recursively applying the SepDeQ rule to a decomposable
query clause replaces it with narrower guarded clauses and narrower indecompos-
able query clauses. ii) By Remark 40 and Lemmas 41 and 43, recursively applying
the SepIndeQ rule to an indecomposable query clause, in which a surface literal

44 Sen Zheng, Renate A. Schmidt

……
<latexit sha1_base64="I0voNd3myr/0dVBGZ7aRgStYyCY=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdJze8WSU3bmsNeJm5ESyVDvFX+6/ZDFEgJkgmrdcZ0IvYQq5ExAWujGGiLKxnQIHUMDKkF7yfzU1L4wSt8ehMpUgPZc/TuRUKn1VPqmU1Ic6VVvJv7ndWIcVL2EB1GMELDFokEsbAzt2d92nytgKKaGUKa4udVmI6ooQ5PO0hZJx8BAiHRFxVGEcpIWTGDuajzrpHlVdq/LlftKqVbNosuTM3JOLolLbkiN3JE6aRBGhuSZvJBX6816tz6sz0VrzspmTskSrK9fDiigRg==</latexit>x1

<latexit sha1_base64="I0voNd3myr/0dVBGZ7aRgStYyCY=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdJze8WSU3bmsNeJm5ESyVDvFX+6/ZDFEgJkgmrdcZ0IvYQq5ExAWujGGiLKxnQIHUMDKkF7yfzU1L4wSt8ehMpUgPZc/TuRUKn1VPqmU1Ic6VVvJv7ndWIcVL2EB1GMELDFokEsbAzt2d92nytgKKaGUKa4udVmI6ooQ5PO0hZJx8BAiHRFxVGEcpIWTGDuajzrpHlVdq/LlftKqVbNosuTM3JOLolLbkiN3JE6aRBGhuSZvJBX6816tz6sz0VrzspmTskSrK9fDiigRg==</latexit>x1

<latexit sha1_base64="I0voNd3myr/0dVBGZ7aRgStYyCY=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdJze8WSU3bmsNeJm5ESyVDvFX+6/ZDFEgJkgmrdcZ0IvYQq5ExAWujGGiLKxnQIHUMDKkF7yfzU1L4wSt8ehMpUgPZc/TuRUKn1VPqmU1Ic6VVvJv7ndWIcVL2EB1GMELDFokEsbAzt2d92nytgKKaGUKa4udVmI6ooQ5PO0hZJx8BAiHRFxVGEcpIWTGDuajzrpHlVdq/LlftKqVbNosuTM3JOLolLbkiN3JE6aRBGhuSZvJBX6816tz6sz0VrzspmTskSrK9fDiigRg==</latexit>x1

<latexit sha1_base64="I0voNd3myr/0dVBGZ7aRgStYyCY=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdJze8WSU3bmsNeJm5ESyVDvFX+6/ZDFEgJkgmrdcZ0IvYQq5ExAWujGGiLKxnQIHUMDKkF7yfzU1L4wSt8ehMpUgPZc/TuRUKn1VPqmU1Ic6VVvJv7ndWIcVL2EB1GMELDFokEsbAzt2d92nytgKKaGUKa4udVmI6ooQ5PO0hZJx8BAiHRFxVGEcpIWTGDuajzrpHlVdq/LlftKqVbNosuTM3JOLolLbkiN3JE6aRBGhuSZvJBX6816tz6sz0VrzspmTskSrK9fDiigRg==</latexit>x1

<latexit sha1_base64="1HyMhqfuNs1rGiimoIOwzoldJes=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8laQU7bHgxWNF+wFtKJvtpF26m4TdibSE/ASv6q/xJl69+mfE7cfBtj4YeLw3w8w8PxZco+N8WxubW9s7u7m9/P7B4dFx4eS0qaNEMWiwSESq7VMNgofQQI4C2rECKn0BLX90O/VbT6A0j8JHnMTgSToIecAZRSM9jHvlXqHolJwZ7HXiLkiRLFDvFX66/YglEkJkgmrdcZ0YvZQq5ExAlu8mGmLKRnQAHUNDKkF76ezUzL40St8OImUqRHum/p1IqdR6In3TKSkO9ao3Ff/zOgkGVS/lYZwghGy+KEiEjZE9/dvucwUMxcQQyhQ3t9psSBVlaNJZ2iLpCBgIka2oOIxRjrO8CcxdjWedNMsl97pUua8Ua9VFdDlyTi7IFXHJDamRO1InDcLIgDyTF/JqvVnv1of1OW/dsBYzZ2QJ1tcvD9igRw==</latexit>x2

<latexit sha1_base64="1HyMhqfuNs1rGiimoIOwzoldJes=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8laQU7bHgxWNF+wFtKJvtpF26m4TdibSE/ASv6q/xJl69+mfE7cfBtj4YeLw3w8w8PxZco+N8WxubW9s7u7m9/P7B4dFx4eS0qaNEMWiwSESq7VMNgofQQI4C2rECKn0BLX90O/VbT6A0j8JHnMTgSToIecAZRSM9jHvlXqHolJwZ7HXiLkiRLFDvFX66/YglEkJkgmrdcZ0YvZQq5ExAlu8mGmLKRnQAHUNDKkF76ezUzL40St8OImUqRHum/p1IqdR6In3TKSkO9ao3Ff/zOgkGVS/lYZwghGy+KEiEjZE9/dvucwUMxcQQyhQ3t9psSBVlaNJZ2iLpCBgIka2oOIxRjrO8CcxdjWedNMsl97pUua8Ua9VFdDlyTi7IFXHJDamRO1InDcLIgDyTF/JqvVnv1of1OW/dsBYzZ2QJ1tcvD9igRw==</latexit>x2
<latexit sha1_base64="pH/KKpT7Lp4K2L79efZwRJDzCyQ=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8lUSL9ljw4rGi/YA2lM120i7dTcLuRFpCf4JX9dd4E69e/TPits3Btj4YeLw3w8w8PxZco+N8W2vrG5tb27md/O7e/sFh4ei4oaNEMaizSESq5VMNgodQR44CWrECKn0BTX94O/WbT6A0j8JHHMfgSdoPecAZRSM9jLpX3ULRKTkz2KvEzUiRZKh1Cz+dXsQSCSEyQbVuu06MXkoVciZgku8kGmLKhrQPbUNDKkF76ezUiX1ulJ4dRMpUiPZM/TuRUqn1WPqmU1Ic6GVvKv7ntRMMKl7KwzhBCNl8UZAIGyN7+rfd4woYirEhlClubrXZgCrK0KSzsEXSITAQYrKk4iBGOZrkTWDucjyrpHFZcq9L5ftysVrJosuRU3JGLohLbkiV3JEaqRNG+uSZvJBX6816tz6sz3nrmpXNnJAFWF+/EYigSA==</latexit>x3

<latexit sha1_base64="pH/KKpT7Lp4K2L79efZwRJDzCyQ=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8lUSL9ljw4rGi/YA2lM120i7dTcLuRFpCf4JX9dd4E69e/TPits3Btj4YeLw3w8w8PxZco+N8W2vrG5tb27md/O7e/sFh4ei4oaNEMaizSESq5VMNgodQR44CWrECKn0BTX94O/WbT6A0j8JHHMfgSdoPecAZRSM9jLpX3ULRKTkz2KvEzUiRZKh1Cz+dXsQSCSEyQbVuu06MXkoVciZgku8kGmLKhrQPbUNDKkF76ezUiX1ulJ4dRMpUiPZM/TuRUqn1WPqmU1Ic6GVvKv7ntRMMKl7KwzhBCNl8UZAIGyN7+rfd4woYirEhlClubrXZgCrK0KSzsEXSITAQYrKk4iBGOZrkTWDucjyrpHFZcq9L5ftysVrJosuRU3JGLohLbkiV3JEaqRNG+uSZvJBX6816tz6sz3nrmpXNnJAFWF+/EYigSA==</latexit>x3

<latexit sha1_base64="pH/KKpT7Lp4K2L79efZwRJDzCyQ=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8lUSL9ljw4rGi/YA2lM120i7dTcLuRFpCf4JX9dd4E69e/TPits3Btj4YeLw3w8w8PxZco+N8W2vrG5tb27md/O7e/sFh4ei4oaNEMaizSESq5VMNgodQR44CWrECKn0BTX94O/WbT6A0j8JHHMfgSdoPecAZRSM9jLpX3ULRKTkz2KvEzUiRZKh1Cz+dXsQSCSEyQbVuu06MXkoVciZgku8kGmLKhrQPbUNDKkF76ezUiX1ulJ4dRMpUiPZM/TuRUqn1WPqmU1Ic6GVvKv7ntRMMKl7KwzhBCNl8UZAIGyN7+rfd4woYirEhlClubrXZgCrK0KSzsEXSITAQYrKk4iBGOZrkTWDucjyrpHFZcq9L5ftysVrJosuRU3JGLohLbkiV3JEaqRNG+uSZvJBX6816tz6sz3nrmpXNnJAFWF+/EYigSA==</latexit>x3
<latexit sha1_base64="pH/KKpT7Lp4K2L79efZwRJDzCyQ=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8lUSL9ljw4rGi/YA2lM120i7dTcLuRFpCf4JX9dd4E69e/TPits3Btj4YeLw3w8w8PxZco+N8W2vrG5tb27md/O7e/sFh4ei4oaNEMaizSESq5VMNgodQR44CWrECKn0BTX94O/WbT6A0j8JHHMfgSdoPecAZRSM9jLpX3ULRKTkz2KvEzUiRZKh1Cz+dXsQSCSEyQbVuu06MXkoVciZgku8kGmLKhrQPbUNDKkF76ezUiX1ulJ4dRMpUiPZM/TuRUqn1WPqmU1Ic6GVvKv7ntRMMKl7KwzhBCNl8UZAIGyN7+rfd4woYirEhlClubrXZgCrK0KSzsEXSITAQYrKk4iBGOZrkTWDucjyrpHFZcq9L5ftysVrJosuRU3JGLohLbkiV3JEaqRNG+uSZvJBX6816tz6sz3nrmpXNnJAFWF+/EYigSA==</latexit>x3

<latexit sha1_base64="pH/KKpT7Lp4K2L79efZwRJDzCyQ=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8lUSL9ljw4rGi/YA2lM120i7dTcLuRFpCf4JX9dd4E69e/TPits3Btj4YeLw3w8w8PxZco+N8W2vrG5tb27md/O7e/sFh4ei4oaNEMaizSESq5VMNgodQR44CWrECKn0BTX94O/WbT6A0j8JHHMfgSdoPecAZRSM9jLpX3ULRKTkz2KvEzUiRZKh1Cz+dXsQSCSEyQbVuu06MXkoVciZgku8kGmLKhrQPbUNDKkF76ezUiX1ulJ4dRMpUiPZM/TuRUqn1WPqmU1Ic6GVvKv7ntRMMKl7KwzhBCNl8UZAIGyN7+rfd4woYirEhlClubrXZgCrK0KSzsEXSITAQYrKk4iBGOZrkTWDucjyrpHFZcq9L5ftysVrJosuRU3JGLohLbkiV3JEaqRNG+uSZvJBX6816tz6sz3nrmpXNnJAFWF+/EYigSA==</latexit>x3

<latexit sha1_base64="lS5zXJ9AUDfSn8gqpzxif8MPre4=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7F6XK/eVUq2aRZcnZ+ScXBKX3JAauSN10iCMDMkzeSGv1pv1bn1Yn4vWnJXNnJIlWF+/EzigSQ==</latexit>x4

<latexit sha1_base64="lS5zXJ9AUDfSn8gqpzxif8MPre4=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7F6XK/eVUq2aRZcnZ+ScXBKX3JAauSN10iCMDMkzeSGv1pv1bn1Yn4vWnJXNnJIlWF+/EzigSQ==</latexit>x4

<latexit sha1_base64="lS5zXJ9AUDfSn8gqpzxif8MPre4=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7F6XK/eVUq2aRZcnZ+ScXBKX3JAauSN10iCMDMkzeSGv1pv1bn1Yn4vWnJXNnJIlWF+/EzigSQ==</latexit>x4

<latexit sha1_base64="kMsDIMIvbvn9cXcij3vVt+v72eI=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSTiR48FLx4r2g9oQ9lsp+3S3STsTqQl5Cd4VX+NN/Hq1T8jbtscbOuDgcd7M8zM8yPBNTrOt5VbW9/Y3MpvF3Z29/YPiodHDR3GikGdhSJULZ9qEDyAOnIU0IoUUOkLaPqj26nffAKleRg84iQCT9JBwPucUTTSw7h71S2WnLIzg71K3IyUSIZat/jT6YUslhAgE1TrtutE6CVUIWcC0kIn1hBRNqIDaBsaUAnaS2anpvaZUXp2P1SmArRn6t+JhEqtJ9I3nZLiUC97U/E/rx1jv+IlPIhihIDNF/VjYWNoT/+2e1wBQzExhDLFza02G1JFGZp0FrZIOgIGQqRLKg4jlOO0YAJzl+NZJY2Lsntdvry/LFUrWXR5ckJOyTlxyQ2pkjtSI3XCyIA8kxfyar1Z79aH9TlvzVnZzDFZgPX1CxTooEo=</latexit>x5

<latexit sha1_base64="kMsDIMIvbvn9cXcij3vVt+v72eI=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSTiR48FLx4r2g9oQ9lsp+3S3STsTqQl5Cd4VX+NN/Hq1T8jbtscbOuDgcd7M8zM8yPBNTrOt5VbW9/Y3MpvF3Z29/YPiodHDR3GikGdhSJULZ9qEDyAOnIU0IoUUOkLaPqj26nffAKleRg84iQCT9JBwPucUTTSw7h71S2WnLIzg71K3IyUSIZat/jT6YUslhAgE1TrtutE6CVUIWcC0kIn1hBRNqIDaBsaUAnaS2anpvaZUXp2P1SmArRn6t+JhEqtJ9I3nZLiUC97U/E/rx1jv+IlPIhihIDNF/VjYWNoT/+2e1wBQzExhDLFza02G1JFGZp0FrZIOgIGQqRLKg4jlOO0YAJzl+NZJY2Lsntdvry/LFUrWXR5ckJOyTlxyQ2pkjtSI3XCyIA8kxfyar1Z79aH9TlvzVnZzDFZgPX1CxTooEo=</latexit>x5

<latexit sha1_base64="kMsDIMIvbvn9cXcij3vVt+v72eI=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSTiR48FLx4r2g9oQ9lsp+3S3STsTqQl5Cd4VX+NN/Hq1T8jbtscbOuDgcd7M8zM8yPBNTrOt5VbW9/Y3MpvF3Z29/YPiodHDR3GikGdhSJULZ9qEDyAOnIU0IoUUOkLaPqj26nffAKleRg84iQCT9JBwPucUTTSw7h71S2WnLIzg71K3IyUSIZat/jT6YUslhAgE1TrtutE6CVUIWcC0kIn1hBRNqIDaBsaUAnaS2anpvaZUXp2P1SmArRn6t+JhEqtJ9I3nZLiUC97U/E/rx1jv+IlPIhihIDNF/VjYWNoT/+2e1wBQzExhDLFza02G1JFGZp0FrZIOgIGQqRLKg4jlOO0YAJzl+NZJY2Lsntdvry/LFUrWXR5ckJOyTlxyQ2pkjtSI3XCyIA8kxfyar1Z79aH9TlvzVnZzDFZgPX1CxTooEo=</latexit>x5

<latexit sha1_base64="kMsDIMIvbvn9cXcij3vVt+v72eI=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSTiR48FLx4r2g9oQ9lsp+3S3STsTqQl5Cd4VX+NN/Hq1T8jbtscbOuDgcd7M8zM8yPBNTrOt5VbW9/Y3MpvF3Z29/YPiodHDR3GikGdhSJULZ9qEDyAOnIU0IoUUOkLaPqj26nffAKleRg84iQCT9JBwPucUTTSw7h71S2WnLIzg71K3IyUSIZat/jT6YUslhAgE1TrtutE6CVUIWcC0kIn1hBRNqIDaBsaUAnaS2anpvaZUXp2P1SmArRn6t+JhEqtJ9I3nZLiUC97U/E/rx1jv+IlPIhihIDNF/VjYWNoT/+2e1wBQzExhDLFza02G1JFGZp0FrZIOgIGQqRLKg4jlOO0YAJzl+NZJY2Lsntdvry/LFUrWXR5ckJOyTlxyQ2pkjtSI3XCyIA8kxfyar1Z79aH9TlvzVnZzDFZgPX1CxTooEo=</latexit>x5
<latexit sha1_base64="WYXY/9ptNxEy2NaFnUBapxEJL84=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQitceCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7FbK1/fXpVo1iy5Pzsg5uSQuuSE1ckfqpEEYGZJn8kJerTfr3fqwPhetOSubOSVLsL5+ARaYoEs=</latexit>x6

<latexit sha1_base64="WYXY/9ptNxEy2NaFnUBapxEJL84=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQitceCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7FbK1/fXpVo1iy5Pzsg5uSQuuSE1ckfqpEEYGZJn8kJerTfr3fqwPhetOSubOSVLsL5+ARaYoEs=</latexit>x6

<latexit sha1_base64="mH9DSU4V+EQ7YAZ+6VXjv5Q5k7I=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQitseCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7N6Ur++vS7VqFl2enJFzcklcUiE1ckfqpEEYGZJn8kJerTfr3fqwPhetOSubOSVLsL5+ARhIoEw=</latexit>x7

<latexit sha1_base64="mH9DSU4V+EQ7YAZ+6VXjv5Q5k7I=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQitseCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7N6Ur++vS7VqFl2enJFzcklcUiE1ckfqpEEYGZJn8kJerTfr3fqwPhetOSubOSVLsL5+ARhIoEw=</latexit>x7

<latexit sha1_base64="mH9DSU4V+EQ7YAZ+6VXjv5Q5k7I=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQitseCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7N6Ur++vS7VqFl2enJFzcklcUiE1ckfqpEEYGZJn8kJerTfr3fqwPhetOSubOSVLsL5+ARhIoEw=</latexit>x7

<latexit sha1_base64="mH9DSU4V+EQ7YAZ+6VXjv5Q5k7I=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQitseCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7N6Ur++vS7VqFl2enJFzcklcUiE1ckfqpEEYGZJn8kJerTfr3fqwPhetOSubOSVLsL5+ARhIoEw=</latexit>x7

<latexit sha1_base64="XAklprydd3VG/qJz0qhY+WRul5M=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9oolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7F6XK/eVUq2aRZcnZ+ScXBKX3JAauSN10iCMDMkzeSGv1pv1bn1Yn4vWnJXNnJIlWF+/GfigTQ==</latexit>x8

<latexit sha1_base64="XAklprydd3VG/qJz0qhY+WRul5M=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9oolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7F6XK/eVUq2aRZcnZ+ScXBKX3JAauSN10iCMDMkzeSGv1pv1bn1Yn4vWnJXNnJIlWF+/GfigTQ==</latexit>x8

<latexit sha1_base64="/pLPNnMkWKoPkF2kpumRZaekqKI=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQiWm8FLx4r2g9oQ9lsp+3S3STsTqQl5Cd4VX+NN/Hq1T8jbtscbOuDgcd7M8zM8yPBNTrOt5VbW9/Y3MpvF3Z29/YPiodHDR3GikGdhSJULZ9qEDyAOnIU0IoUUOkLaPqj26nffAKleRg84iQCT9JBwPucUTTSw7h70y2WnLIzg71K3IyUSIZat/jT6YUslhAgE1TrtutE6CVUIWcC0kIn1hBRNqIDaBsaUAnaS2anpvaZUXp2P1SmArRn6t+JhEqtJ9I3nZLiUC97U/E/rx1jv+IlPIhihIDNF/VjYWNoT/+2e1wBQzExhDLFza02G1JFGZp0FrZIOgIGQqRLKg4jlOO0YAJzl+NZJY2LsntVvry/LFUrWXR5ckJOyTlxyTWpkjtSI3XCyIA8kxfyar1Z79aH9TlvzVnZzDFZgPX1CxuooE4=</latexit>x9

<latexit sha1_base64="/pLPNnMkWKoPkF2kpumRZaekqKI=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQiWm8FLx4r2g9oQ9lsp+3S3STsTqQl5Cd4VX+NN/Hq1T8jbtscbOuDgcd7M8zM8yPBNTrOt5VbW9/Y3MpvF3Z29/YPiodHDR3GikGdhSJULZ9qEDyAOnIU0IoUUOkLaPqj26nffAKleRg84iQCT9JBwPucUTTSw7h70y2WnLIzg71K3IyUSIZat/jT6YUslhAgE1TrtutE6CVUIWcC0kIn1hBRNqIDaBsaUAnaS2anpvaZUXp2P1SmArRn6t+JhEqtJ9I3nZLiUC97U/E/rx1jv+IlPIhihIDNF/VjYWNoT/+2e1wBQzExhDLFza02G1JFGZp0FrZIOgIGQqRLKg4jlOO0YAJzl+NZJY2LsntVvry/LFUrWXR5ckJOyTlxyTWpkjtSI3XCyIA8kxfyar1Z79aH9TlvzVnZzDFZgPX1CxuooE4=</latexit>x9

<latexit sha1_base64="PsIlWbEFASj4tK+J4hwRzFYv+XA=">AAACF3icbVBNS8NAEN3Ur1q/qh69BIvgqSSlqHgqevHYgv2ANpTNdtIs3U3C7kQsoX/Bq/prvIlXj/4ZMWlz0NYHA4/3ZpiZ50aCa7SsL6Owtr6xuVXcLu3s7u0flA+POjqMFYM2C0Woei7VIHgAbeQooBcpoNIV0HUnt5nffQCleRjc4zQCR9JxwD3OKGZSa1i7HpYrVtWaw1wldk4qJEdzWP4ejEIWSwiQCap137YidBKqkDMBs9Ig1hBRNqFj6Kc0oBK0k8xvnZlnqTIyvVClFaA5V39PJFRqPZVu2ikp+nrZy8T/vH6M3pWT8CCKEQK2WOTFwsTQzB43R1wBQzFNCWWKp7eazKeKMkzj+bNF0gkwEGK2pKIfoXycldLA7OV4VkmnVrUvqvVWvdK4yaMrkhNySs6JTS5Jg9yRJmkTRnzyRJ7Ji/FqvBnvxseitWDkM8fkD4zPH1iSoG4=</latexit>

Q2 :
<latexit sha1_base64="ftj6YkJp7AX65YISwa00h38q3B8=">AAACFnicdZDLSgMxFIYz9V5vVZdugkVwVWZqrXXnZeNS0V6gLSWTnrahycyQnBFL6SO4VZ/Gnbh168uIaR3BFv0h8POdczgnvx9JYdB1P5zU3PzC4tLySnp1bX1jM7O1XTFhrDmUeShDXfOZASkCKKNACbVIA1O+hKrfvxjXq3egjQiDWxxE0FSsG4iO4Awtujlrea1M1s0dud5J8ZC6OXeiiSl5+RL1EpIlia5amc9GO+SxggC5ZMbUPTfC5pBpFFzCKN2IDUSM91kX6tYGTIFpDienjui+JW3aCbV9AdIJ/T0xZMqYgfJtp2LYM7O1MfyrVo+xU2oORRDFCAH/XtSJJcWQjv9N20IDRzmwhnEt7K2U95hmHG06U1sU6wMHKUczFHsRqvtR2gb2kwr931TyOa+YK1wXsqfnSXTLZJfskQPikWNySi7JFSkTTrrkgTySJ+fZeXFenbfv1pSTzOyQKTnvX/mOoEQ=</latexit>

A1

<latexit sha1_base64="ftj6YkJp7AX65YISwa00h38q3B8=">AAACFnicdZDLSgMxFIYz9V5vVZdugkVwVWZqrXXnZeNS0V6gLSWTnrahycyQnBFL6SO4VZ/Gnbh168uIaR3BFv0h8POdczgnvx9JYdB1P5zU3PzC4tLySnp1bX1jM7O1XTFhrDmUeShDXfOZASkCKKNACbVIA1O+hKrfvxjXq3egjQiDWxxE0FSsG4iO4Awtujlrea1M1s0dud5J8ZC6OXeiiSl5+RL1EpIlia5amc9GO+SxggC5ZMbUPTfC5pBpFFzCKN2IDUSM91kX6tYGTIFpDienjui+JW3aCbV9AdIJ/T0xZMqYgfJtp2LYM7O1MfyrVo+xU2oORRDFCAH/XtSJJcWQjv9N20IDRzmwhnEt7K2U95hmHG06U1sU6wMHKUczFHsRqvtR2gb2kwr931TyOa+YK1wXsqfnSXTLZJfskQPikWNySi7JFSkTTrrkgTySJ+fZeXFenbfv1pSTzOyQKTnvX/mOoEQ=</latexit>

A1

<latexit sha1_base64="3DeLtrHQgQGaUath4OCo9ll1VHc=">AAACFnicdZBNTwIxEIa7+I1fqEcvjcTEE1lWBLyhXjxqFCUBQrplgIZ2d9POGsmGn+BV/TXejFev/hljVzFRom/S5M0zM5np60dSGHTdNyczMzs3v7C4lF1eWV1bz21sXpkw1hzqPJShbvjMgBQB1FGghEakgSlfwrU/PEnr1zegjQiDSxxF0FasH4ie4AwtujjqeJ1c3i0cVsvegUfdgutWvP1yarxKydunRUtS5clEZ53ce6sb8lhBgFwyY5pFN8J2wjQKLmGcbcUGIsaHrA9NawOmwLSTz1PHdNeSLu2F2r4A6Sf9OZEwZcxI+bZTMRyY6VoK/6o1Y+xV24kIohgh4F+LerGkGNL037QrNHCUI2sY18LeSvmAacbRpvNri2JD4CDleIriIEJ1O87awL5Tof+bK69QLBdK56V87XgS3SLZJjtkjxRJhdTIKTkjdcJJn9yRe/LgPDpPzrPz8tWacSYzW+SXnNcPJDWgXg==</latexit>

A2

<latexit sha1_base64="3DeLtrHQgQGaUath4OCo9ll1VHc=">AAACFnicdZBNTwIxEIa7+I1fqEcvjcTEE1lWBLyhXjxqFCUBQrplgIZ2d9POGsmGn+BV/TXejFev/hljVzFRom/S5M0zM5np60dSGHTdNyczMzs3v7C4lF1eWV1bz21sXpkw1hzqPJShbvjMgBQB1FGghEakgSlfwrU/PEnr1zegjQiDSxxF0FasH4ie4AwtujjqeJ1c3i0cVsvegUfdgutWvP1yarxKydunRUtS5clEZ53ce6sb8lhBgFwyY5pFN8J2wjQKLmGcbcUGIsaHrA9NawOmwLSTz1PHdNeSLu2F2r4A6Sf9OZEwZcxI+bZTMRyY6VoK/6o1Y+xV24kIohgh4F+LerGkGNL037QrNHCUI2sY18LeSvmAacbRpvNri2JD4CDleIriIEJ1O87awL5Tof+bK69QLBdK56V87XgS3SLZJjtkjxRJhdTIKTkjdcJJn9yRe/LgPDpPzrPz8tWacSYzW+SXnNcPJDWgXg==</latexit>

A2

<latexit sha1_base64="74EneMz9jNSV9u36Y4IZUmWvrnw=">AAACFnicdVBNSwMxEM36WetX1aOXYBE8Ldm6ar1VvXhUtCrUUrLptA1NdpdkViylP8Gr+mu8iVev/hkxrRVU9MHA470ZZuZFqZIWGXvzJianpmdmc3P5+YXFpeXCyuqFTTIjoCoSlZiriFtQMoYqSlRwlRrgOlJwGXWPhv7lDRgrk/gceynUNW/HsiUFRyedHTS2G4Ui8/f3WRiWKfN3WKkU7jjCtkvlckADn41QJGOcNArv181EZBpiFIpbWwtYivU+NyiFgkH+OrOQctHlbag5GnMNtt4fnTqgm05p0lZiXMVIR+r3iT7X1vZ05Do1x4797Q3Fv7xahq1yvS/jNEOIxeeiVqYoJnT4N21KAwJVzxEujHS3UtHhhgt06fzYonkXBCg1+KViJ0V9O8i7wL5Sof+Ti5If7PrhaVisHI6jy5F1skG2SED2SIUckxNSJYK0yR25Jw/eo/fkPXsvn60T3nhmjfyA9/oBL36gZQ==</latexit>

A3

<latexit sha1_base64="74EneMz9jNSV9u36Y4IZUmWvrnw=">AAACFnicdVBNSwMxEM36WetX1aOXYBE8Ldm6ar1VvXhUtCrUUrLptA1NdpdkViylP8Gr+mu8iVev/hkxrRVU9MHA470ZZuZFqZIWGXvzJianpmdmc3P5+YXFpeXCyuqFTTIjoCoSlZiriFtQMoYqSlRwlRrgOlJwGXWPhv7lDRgrk/gceynUNW/HsiUFRyedHTS2G4Ui8/f3WRiWKfN3WKkU7jjCtkvlckADn41QJGOcNArv181EZBpiFIpbWwtYivU+NyiFgkH+OrOQctHlbag5GnMNtt4fnTqgm05p0lZiXMVIR+r3iT7X1vZ05Do1x4797Q3Fv7xahq1yvS/jNEOIxeeiVqYoJnT4N21KAwJVzxEujHS3UtHhhgt06fzYonkXBCg1+KViJ0V9O8i7wL5Sof+Ti5If7PrhaVisHI6jy5F1skG2SED2SIUckxNSJYK0yR25Jw/eo/fkPXsvn60T3nhmjfyA9/oBL36gZQ==</latexit>

A3

<latexit sha1_base64="vQL4O6oV8R6uo1gp4wnJ2ZhlO/g=">AAACFnicdZBNSwMxEIazftb6VfXoJVgET2VXuq29+XHxWNGq0C4lm07b0GR3SWbFUvYneFV/jTfx6tU/I6ZawYq+EHh5ZoaZvGEihUHXfXNmZufmFxZzS/nlldW19cLG5qWJU82hwWMZ6+uQGZAiggYKlHCdaGAqlHAVDk7G9asb0EbE0QUOEwgU60WiKzhDi86P2uV2oeiWfNerVarULbmu5/sVa2q1A9/zqGfJWEUyUb1deG91Yp4qiJBLZkzTcxMMRkyj4BKyfCs1kDA+YD1oWhsxBSYYfZ6a0V1LOrQba/sipJ/058SIKWOGKrSdimHf/K6N4V+1Zordg2AkoiRFiPjXom4qKcZ0/G/aERo4yqE1jGthb6W8zzTjaNOZ2qLYADhImf2i2E9Q3WZ5G9h3KvR/c7lf8iql8lm5eHg8iS5HtskO2SMeqZJDckrqpEE46ZE7ck8enEfnyXl2Xr5aZ5zJzBaZkvP6ATcRoGo=</latexit>

A4

<latexit sha1_base64="vQL4O6oV8R6uo1gp4wnJ2ZhlO/g=">AAACFnicdZBNSwMxEIazftb6VfXoJVgET2VXuq29+XHxWNGq0C4lm07b0GR3SWbFUvYneFV/jTfx6tU/I6ZawYq+EHh5ZoaZvGEihUHXfXNmZufmFxZzS/nlldW19cLG5qWJU82hwWMZ6+uQGZAiggYKlHCdaGAqlHAVDk7G9asb0EbE0QUOEwgU60WiKzhDi86P2uV2oeiWfNerVarULbmu5/sVa2q1A9/zqGfJWEUyUb1deG91Yp4qiJBLZkzTcxMMRkyj4BKyfCs1kDA+YD1oWhsxBSYYfZ6a0V1LOrQba/sipJ/058SIKWOGKrSdimHf/K6N4V+1Zordg2AkoiRFiPjXom4qKcZ0/G/aERo4yqE1jGthb6W8zzTjaNOZ2qLYADhImf2i2E9Q3WZ5G9h3KvR/c7lf8iql8lm5eHg8iS5HtskO2SMeqZJDckrqpEE46ZE7ck8enEfnyXl2Xr5aZ5zJzBaZkvP6ATcRoGo=</latexit>

A4

<latexit sha1_base64="EOk8Ot6LE2tWmNQSu4Yr7zKkGuU=">AAACFnicdVDLSgNBEJz1GeMr6tHLYBA8LbMxifHm4+IxolEhhjA76SRDZnaXmV4xhHyCV/VrvIlXr/6MOIkRVLSgoajqprsrTJS0yNibNzU9Mzs3n1nILi4tr6zm1tYvbJwaATURq9hchdyCkhHUUKKCq8QA16GCy7B3PPIvb8BYGUfn2E+goXknkm0pODrp7LBZaubyzC+xYL8cUOYXSmy/tOsICxgrVGjgszHyZIJqM/d+3YpFqiFCobi19YAl2Bhwg1IoGGavUwsJFz3egbqjEddgG4PxqUO67ZQWbcfGVYR0rH6fGHBtbV+HrlNz7Nrf3kj8y6un2K40BjJKUoRIfC5qp4piTEd/05Y0IFD1HeHCSHcrFV1uuECXzo8tmvdAgFLDXyp2E9S3w6wL7CsV+j+5KPhB2S+eFvMHR5PoMmSTbJEdEpA9ckBOSJXUiCAdckfuyYP36D15z97LZ+uUN5nZID/gvX4AFzqgVg==</latexit>

A5

<latexit sha1_base64="EOk8Ot6LE2tWmNQSu4Yr7zKkGuU=">AAACFnicdVDLSgNBEJz1GeMr6tHLYBA8LbMxifHm4+IxolEhhjA76SRDZnaXmV4xhHyCV/VrvIlXr/6MOIkRVLSgoajqprsrTJS0yNibNzU9Mzs3n1nILi4tr6zm1tYvbJwaATURq9hchdyCkhHUUKKCq8QA16GCy7B3PPIvb8BYGUfn2E+goXknkm0pODrp7LBZaubyzC+xYL8cUOYXSmy/tOsICxgrVGjgszHyZIJqM/d+3YpFqiFCobi19YAl2Bhwg1IoGGavUwsJFz3egbqjEddgG4PxqUO67ZQWbcfGVYR0rH6fGHBtbV+HrlNz7Nrf3kj8y6un2K40BjJKUoRIfC5qp4piTEd/05Y0IFD1HeHCSHcrFV1uuECXzo8tmvdAgFLDXyp2E9S3w6wL7CsV+j+5KPhB2S+eFvMHR5PoMmSTbJEdEpA9ckBOSJXUiCAdckfuyYP36D15z97LZ+uUN5nZID/gvX4AFzqgVg==</latexit>

A5

<latexit sha1_base64="Y1NL8Yvt2L4wOS93KiK+W2rzFtQ=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8lUSKeix68VjRfkAbymY7aZfuJmF3IpaQn+BV/TXexKtX/4y4bXOwrQ8GHu/NMDPPjwXX6Djf1srq2vrGZmGruL2zu7dfOjhs6ihRDBosEpFq+1SD4CE0kKOAdqyASl9Ayx/dTPzWIyjNo/ABxzF4kg5CHnBG0Uj39V61Vyo7FWcKe5m4OSmTHPVe6afbj1giIUQmqNYd14nRS6lCzgRkxW6iIaZsRAfQMTSkErSXTk/N7FOj9O0gUqZCtKfq34mUSq3H0jedkuJQL3oT8T+vk2Bw5aU8jBOEkM0WBYmwMbInf9t9roChGBtCmeLmVpsNqaIMTTpzWyQdAQMhsgUVhzHKp6xoAnMX41kmzfOKe1Gp3lXLtes8ugI5JifkjLjkktTILamTBmFkQJ7JC3m13qx368P6nLWuWPnMEZmD9fUL0lugKw==</latexit>

P4

<latexit sha1_base64="Y1NL8Yvt2L4wOS93KiK+W2rzFtQ=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8lUSKeix68VjRfkAbymY7aZfuJmF3IpaQn+BV/TXexKtX/4y4bXOwrQ8GHu/NMDPPjwXX6Djf1srq2vrGZmGruL2zu7dfOjhs6ihRDBosEpFq+1SD4CE0kKOAdqyASl9Ayx/dTPzWIyjNo/ABxzF4kg5CHnBG0Uj39V61Vyo7FWcKe5m4OSmTHPVe6afbj1giIUQmqNYd14nRS6lCzgRkxW6iIaZsRAfQMTSkErSXTk/N7FOj9O0gUqZCtKfq34mUSq3H0jedkuJQL3oT8T+vk2Bw5aU8jBOEkM0WBYmwMbInf9t9roChGBtCmeLmVpsNqaIMTTpzWyQdAQMhsgUVhzHKp6xoAnMX41kmzfOKe1Gp3lXLtes8ugI5JifkjLjkktTILamTBmFkQJ7JC3m13qx368P6nLWuWPnMEZmD9fUL0lugKw==</latexit>

P4

<latexit sha1_base64="aXGraVrHO0WLSTAyybfhAgijuXQ=">AAACF3icbVBNS8NAEN3Ur1q/qh69BIvgqSTi17HoxWMF+wFtKJvtpFm6m4TdiVhC/oJX9dd4E68e/TNi0uZgWx8MPN6bYWaeGwmu0bK+jdLK6tr6RnmzsrW9s7tX3T9o6zBWDFosFKHqulSD4AG0kKOAbqSASldAxx3f5n7nEZTmYfCAkwgcSUcB9zijmEvNwUVlUK1ZdWsKc5nYBamRAs1B9ac/DFksIUAmqNY924rQSahCzgSklX6sIaJsTEfQy2hAJWgnmd6amieZMjS9UGUVoDlV/04kVGo9kW7WKSn6etHLxf+8XozetZPwIIoRAjZb5MXCxNDMHzeHXAFDMckIZYpnt5rMp4oyzOKZ2yLpGBgIkS6o6Econ9I8MHsxnmXSPqvbl/Xz+/Na46aIrkyOyDE5JTa5Ig1yR5qkRRjxyTN5Ia/Gm/FufBifs9aSUcwckjkYX78K8qBA</latexit>

P5

<latexit sha1_base64="aXGraVrHO0WLSTAyybfhAgijuXQ=">AAACF3icbVBNS8NAEN3Ur1q/qh69BIvgqSTi17HoxWMF+wFtKJvtpFm6m4TdiVhC/oJX9dd4E68e/TNi0uZgWx8MPN6bYWaeGwmu0bK+jdLK6tr6RnmzsrW9s7tX3T9o6zBWDFosFKHqulSD4AG0kKOAbqSASldAxx3f5n7nEZTmYfCAkwgcSUcB9zijmEvNwUVlUK1ZdWsKc5nYBamRAs1B9ac/DFksIUAmqNY924rQSahCzgSklX6sIaJsTEfQy2hAJWgnmd6amieZMjS9UGUVoDlV/04kVGo9kW7WKSn6etHLxf+8XozetZPwIIoRAjZb5MXCxNDMHzeHXAFDMckIZYpnt5rMp4oyzOKZ2yLpGBgIkS6o6Econ9I8MHsxnmXSPqvbl/Xz+/Na46aIrkyOyDE5JTa5Ig1yR5qkRRjxyTN5Ia/Gm/FufBifs9aSUcwckjkYX78K8qBA</latexit>

P5

<latexit sha1_base64="LDr4oJXIrjpvO1E5jf5KHgu9bdg=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRSqseiF48V7Qe0oWy2k3bpbhJ2J2Ip+Qle1V/jTbx69c+I2zYH2/pg4PHeDDPz/FhwjY7zbeXW1jc2t/LbhZ3dvf2D4uFRU0eJYtBgkYhU26caBA+hgRwFtGMFVPoCWv7oZuq3HkFpHoUPOI7Bk3QQ8oAzika6r/eqvWLJKTsz2KvEzUiJZKj3ij/dfsQSCSEyQbXuuE6M3oQq5ExAWugmGmLKRnQAHUNDKkF7k9mpqX1mlL4dRMpUiPZM/TsxoVLrsfRNp6Q41MveVPzP6yQYXHkTHsYJQsjmi4JE2BjZ07/tPlfAUIwNoUxxc6vNhlRRhiadhS2SjoCBEOmSisMY5VNaMIG5y/GskuZF2a2WK3eVUu06iy5PTsgpOScuuSQ1ckvqpEEYGZBn8kJerTfr3fqwPuetOSubOSYLsL5+AdW7oC0=</latexit>

P6

<latexit sha1_base64="LDr4oJXIrjpvO1E5jf5KHgu9bdg=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRSqseiF48V7Qe0oWy2k3bpbhJ2J2Ip+Qle1V/jTbx69c+I2zYH2/pg4PHeDDPz/FhwjY7zbeXW1jc2t/LbhZ3dvf2D4uFRU0eJYtBgkYhU26caBA+hgRwFtGMFVPoCWv7oZuq3HkFpHoUPOI7Bk3QQ8oAzika6r/eqvWLJKTsz2KvEzUiJZKj3ij/dfsQSCSEyQbXuuE6M3oQq5ExAWugmGmLKRnQAHUNDKkF7k9mpqX1mlL4dRMpUiPZM/TsxoVLrsfRNp6Q41MveVPzP6yQYXHkTHsYJQsjmi4JE2BjZ07/tPlfAUIwNoUxxc6vNhlRRhiadhS2SjoCBEOmSisMY5VNaMIG5y/GskuZF2a2WK3eVUu06iy5PTsgpOScuuSQ1ckvqpEEYGZBn8kJerTfr3fqwPuetOSubOSYLsL5+AdW7oC0=</latexit>

P6

<latexit sha1_base64="Frh3+vtH1TRmFDbixXoCC8Hnox8=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRSrMeiF48V7Qe0oWy2k3bpbhJ2J2Ip+Qle1V/jTbx69c+I2zYH2/pg4PHeDDPz/FhwjY7zbeXW1jc2t/LbhZ3dvf2D4uFRU0eJYtBgkYhU26caBA+hgRwFtGMFVPoCWv7oZuq3HkFpHoUPOI7Bk3QQ8oAzika6r/eqvWLJKTsz2KvEzUiJZKj3ij/dfsQSCSEyQbXuuE6M3oQq5ExAWugmGmLKRnQAHUNDKkF7k9mpqX1mlL4dRMpUiPZM/TsxoVLrsfRNp6Q41MveVPzP6yQYXHkTHsYJQsjmi4JE2BjZ07/tPlfAUIwNoUxxc6vNhlRRhiadhS2SjoCBEOmSisMY5VNaMIG5y/GskuZF2b0sV+4qpdp1Fl2enJBTck5cUiU1ckvqpEEYGZBn8kJerTfr3fqwPuetOSubOSYLsL5+AddroC4=</latexit>

P7

<latexit sha1_base64="Frh3+vtH1TRmFDbixXoCC8Hnox8=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRSrMeiF48V7Qe0oWy2k3bpbhJ2J2Ip+Qle1V/jTbx69c+I2zYH2/pg4PHeDDPz/FhwjY7zbeXW1jc2t/LbhZ3dvf2D4uFRU0eJYtBgkYhU26caBA+hgRwFtGMFVPoCWv7oZuq3HkFpHoUPOI7Bk3QQ8oAzika6r/eqvWLJKTsz2KvEzUiJZKj3ij/dfsQSCSEyQbXuuE6M3oQq5ExAWugmGmLKRnQAHUNDKkF7k9mpqX1mlL4dRMpUiPZM/TsxoVLrsfRNp6Q41MveVPzP6yQYXHkTHsYJQsjmi4JE2BjZ07/tPlfAUIwNoUxxc6vNhlRRhiadhS2SjoCBEOmSisMY5VNaMIG5y/GskuZF2b0sV+4qpdp1Fl2enJBTck5cUiU1ckvqpEEYGZBn8kJerTfr3fqwPuetOSubOSYLsL5+AddroC4=</latexit>

P7

<latexit sha1_base64="tKS6+tGruK+/1T0IkZ5vIIbb4hQ=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeiF48V7Qe0oWy2k3bpbhJ2J2Ip+Qle1V/jTbx69c+I2zYH2/pg4PHeDDPz/FhwjY7zbeXW1jc2t/LbhZ3dvf2D4uFRU0eJYtBgkYhU26caBA+hgRwFtGMFVPoCWv7oZuq3HkFpHoUPOI7Bk3QQ8oAzika6r/eqvWLJKTsz2KvEzUiJZKj3ij/dfsQSCSEyQbXuuE6M3oQq5ExAWugmGmLKRnQAHUNDKkF7k9mpqX1mlL4dRMpUiPZM/TsxoVLrsfRNp6Q41MveVPzP6yQYVL0JD+MEIWTzRUEibIzs6d92nytgKMaGUKa4udVmQ6ooQ5POwhZJR8BAiHRJxWGM8iktmMDc5XhWSfOi7F6WK3eVUu06iy5PTsgpOScuuSI1ckvqpEEYGZBn8kJerTfr3fqwPuetOSubOSYLsL5+AdkboC8=</latexit>

P8

<latexit sha1_base64="tKS6+tGruK+/1T0IkZ5vIIbb4hQ=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeiF48V7Qe0oWy2k3bpbhJ2J2Ip+Qle1V/jTbx69c+I2zYH2/pg4PHeDDPz/FhwjY7zbeXW1jc2t/LbhZ3dvf2D4uFRU0eJYtBgkYhU26caBA+hgRwFtGMFVPoCWv7oZuq3HkFpHoUPOI7Bk3QQ8oAzika6r/eqvWLJKTsz2KvEzUiJZKj3ij/dfsQSCSEyQbXuuE6M3oQq5ExAWugmGmLKRnQAHUNDKkF7k9mpqX1mlL4dRMpUiPZM/TsxoVLrsfRNp6Q41MveVPzP6yQYVL0JD+MEIWTzRUEibIzs6d92nytgKMaGUKa4udVmQ6ooQ5POwhZJR8BAiHRJxWGM8iktmMDc5XhWSfOi7F6WK3eVUu06iy5PTsgpOScuuSI1ckvqpEEYGZBn8kJerTfr3fqwPuetOSubOSYLsL5+AdkboC8=</latexit>

P8

Fig. 8: The Q-Sep procedure separates Q2 into Horn guarded clauses and an indecomposable chained-only
query clause.

contains both isolated variables and chained variables, replaces it by narrower Horn
guarded clauses and narrower ICQ clauses. iii) Suppose Q an indecomposable query
clause that the SepIndeQ rule cannot separate. By Remark 40, Q is an indecompos-
able query clause containing either only chained variables or only isolated variables.
Then Q is either an indecomposable chained-only query clause, viz., an ICQ clause,
or an indecomposable isolated-only query clause, viz., a Horn guarded clause, thanks
to Lemma 43. By i)–iii), the claim holds.

Following Lemma 44, we analyse the number of fresh predicate symbols that may
be introduced in an application of the Q-Sep procedure to a query clause.

Lemma 45. In the application of the Q-Sep procedure to a query clause, finitely
many fresh predicate symbols are introduced.

Proof. Suppose Q is a query clause and n is the width, viz., the number of distinct
variables, in Q. By Lemma 39, recursively applying the SepDeQ rule to Q terminates
in at most n− 1 steps. The fact that each application of the SepDeQ rule to Q in-
troduces two fresh predicate symbols implies that at most 2∗ (n−1) fresh predicate
symbols are needed. Similarly, by Lemma 41, recursively applying the SepIndeQ
rule to Q requires at most n− 1 fresh predicate symbols. In total at most 3 ∗ (n− 1)
fresh predicate symbols are needed in separating Q.

Depending on the surface literal one picks, applying the Q-Sep procedure to a
query clause may derive distinct sets of guarded clauses and ICQ clauses.

Regarding a query clause as a hypergraph, the Q-Sep procedure is a process
of ‘cutting the branches off’ the hypergraph. Interestingly, this procedure handles
query clauses like the GYO-reduction in [41, 47, 97]. Using the notion of cyclic
queries [16], the GYO-reduction identifies cyclic conjunctive queries by recursively
removing branches, viz., ‘ears’ in the hypergraph of the queries. This method re-
duces a conjunctive query to an empty formula if the query is acyclic, otherwise, the
query is cyclic. In our definition, an ‘ear’ is the surface literal containing both isolated

Saturation-based methods for querying the guarded quantification fragments 45

variables and chained variables, and it is separated from the query clause using the
Q-Sep procedure. Hence, the Q-Sep procedure can be regarded as an implementa-
tion of the GYO-reduction: if a query clause can be separated into guarded clauses,
then, that query clause is acyclic, otherwise it is cyclic. However, the Sep rule, which
is the basis of the Q-Sep procedure, is more general than the GYO-reduction as its
applicability is for any first-order clause. The fact that an acyclic conjunctive query
is expressible as a guarded formula is also reflected in [36, 42].

Handling indecomposable chained-only query clauses

In this section, we show how the term depth increase problem is avoided when the
T-Res rule is performed on ICQ clauses and LG clauses, and we devise a formula
renaming technique to manage the T-Res resolvents, which are not necessarily in the
LGQ clausal class.

In an ICQ clause

Q3 = ¬P4(x1,x3)∨¬P8(x3,x5)∨¬P6(x5,x7)∨¬P5(x1,x7),

the chained variables x1,x3,x5 and x7 form a ‘cycle’ through the literals P4, P5, P6
and P8, as shown by the hypergraph representation given in the top-right corner in
Figure 8. The application of the S-Res rule can lead to nested compound terms in the
resolvents. Consider a set N of the LGQ clause Q3 and the following LG clauses:

C1 = P4(x,g(x,y,z1,z2))
∗∨¬G1(x,y,z1,z2),

C2 = ¬G2(x,y,z1,z2)∨P8(g(x,y,z1,z2),x)∗∨A(h(x,y,z1,z2)),

C3 = P6(f (x),x)∗∨¬G3(x) and C4 = P5(f (x),x)∗∨¬G4(x).

Applying the S-Res rule to C1, . . . ,C4 as the side premises and Q3 as the main premise
with all negative literals selected derives the S-Res resolvent:

R1 = ¬G3(x)∨¬G4(x)∨¬G1(f (x),y,z1,z2)∨
¬G2(f (x),y,z1,z2)∨A(h(f (x),y,z1,z2)).

The nested compound term in the literal A(h(f (x),y,z1,z2)) occurs in R1. Applying
the binary S-Res rule to C3 and Q3 with ¬P6(x5,x7) selected derives

R2 = ¬P4(x1,x3)∨ ¬P8(x3, f (x)) ∨¬G3(x)∨¬P5(x1,x).

Then applying the binary S-Res rule to C2 and R2 with ¬P8(x3, f (x)) selected derives

R3 = ¬P4(x1,x3)∨¬G3(x)∨¬P5(x1,x)∨¬G2(f (x),y,z1,z2)∨A(h(f (x),y,z1,z2)),

in which, again, a nested compound-term occurs in the literal A(h(f (x),y,z1,z2)). The
result is predictable since an application of the S-Res rule can be seen as successive
applications of the binary S-Res rule.

Now we show how the top-variable technique handles this term depth increase.
In Algorithms 1–2, the T-Res rule is applied to Q3 and C1 . . . ,C4 as follows.

46 Sen Zheng, Renate A. Schmidt

1. The T-Res(N,Q3) function first selects all negative literals in Q3, and then seeks
the S-Res side premises for Q3, which are C1, . . . ,C4.

2. The S-Res mgu of C1, . . . ,C4 and Q3 is

{x1 7→ f (x),x5 7→ f (x),x7 7→ x,x3 7→ g(f (x),y,z1,z2)}
for the variables in Q3. Hence x3 is the only top variable in Q3.

3. The literals ¬P4(x1,x3) and ¬P8(x3,x5) in Q3 are therefore the top-variable liter-
als. A T-Res inference is performed on C1, C2 and Q3, deriving:

R = ¬G1(x,y,z1,z2)∨¬G2(x,y,z1,z2)∨A(h(x,y,z1,z2))
∗∨

¬P6(x,x7)∨¬P5(x,x7),

Notice that R contains no nested compound terms.
4. No further inference is possible for N∪{R}, hence N∪{R} is saturated.

Though the T-Res resolvent R is free of nested compound terms, it is wider than
any of its premises; moreover, it is neither a query clause due to the occurrence of
the compound term h(x,y,z1,z2) nor an LG clause since R contains no loose guard.
The resolvent R is formed with the remainders of C1, C2 and Q3 coloured in red, blue
and brown above, respectively. Observe that: i) the remainders of C1 and C2 are LG
clauses and the remainder of Q3 is a query clause, and ii) due to the covering property
of LG clauses, after unification, the remainders of C1 and C2 form an LG clause in R.
Based on this observation, we devise a formula renaming technique which introduces
a fresh predicate symbol P9 to abstract the remainders of C1 and C2 from R and
replaces R by its equisatisfiable set of LGQ clauses:

C5 = ¬G1(x,y,z1,z2)∨¬G2(x,y,z1,z2)∨A(h(x,y,z1,z2))∨P9(x,y,z1,z2),

Q4 = ¬P7(x,x7)∨¬P6(x,x7)∨¬P9(x,y,z1,z2)

where C5 is an LG clause and Q4 is an indecomposable query clause. Since the SepIn-
deQ rule is applicable to Q4, one can remove the isolated variable x7 from Q4 via
separating the literals ¬P7(x,x7) and ¬P6(x,x7) from Q4. Using a new predicate sym-
bol P10, one separates Q4 into the Horn guarded clauses:

C6 = ¬P7(x,x7)∨¬P6(x,x7)∨¬P10(x) and C7 = ¬P9(x,y,z1,z2)∨P10(x).

Figure 9 shows how the Q-Sep procedure separates Q4 into C6 and C7. Then, the
T-Res resolvent R is replaced by the LG clauses C5,C6 and C7. To sum up, i) given
an LGQ clausal set {Q3,C1, . . . ,C4}, a saturated LGQ clausal set {Q3,C1, . . . ,C7} is
derived, and ii) the newly derived clauses C5,C6 and C7 are no wider than the T-Res
side premises C1 and C2.

The other challenge in applying the T-Res rule to an ICQ clause and LG clauses
is that the T-Res resolvents may have a wider variable cycle than the T-Res main
premise. For example, applying the T-Res rule to the LG clauses

C′1 =¬A1(x1,x2)∨¬A1(x2,x3)∨¬A1(x3,x1)∨P4(x1,x3),

C′2 =¬A1(x3,x4)∨¬A1(x4,x5)∨¬A1(x5,x3)∨P8(x3,x5),

C′3 =¬A1(x5,x6)∨¬A1(x6,x7)∨¬A1(x7,x5)∨P6(x5,x7),

C′4 =¬A1(x1,x4)∨¬A1(x4,x7)∨¬A1(x7,x1)∨P5(x1,x7)

Saturation-based methods for querying the guarded quantification fragments 47

<latexit sha1_base64="q0VmAu4xF2uM3qSm/S2fQGZPfPk=">AAACF3icbVBNS8NAEN3Ur1q/qh69BIvgqSRSVDwVvXhswX5AG8pmO2mW7iZhdyKWkr/gVf013sSrR/+MmLQ52NYHA4/3ZpiZ50aCa7Ssb6Owtr6xuVXcLu3s7u0flA+P2jqMFYMWC0Woui7VIHgALeQooBspoNIV0HHHd5nfeQSleRg84CQCR9JRwD3OKGZSc1C7GZQrVtWawVwldk4qJEdjUP7pD0MWSwiQCap1z7YidKZUIWcCklI/1hBRNqYj6KU0oBK0M53dmphnqTI0vVClFaA5U/9OTKnUeiLdtFNS9PWyl4n/eb0YvWtnyoMoRgjYfJEXCxNDM3vcHHIFDMUkJZQpnt5qMp8qyjCNZ2GLpGNgIESypKIfoXxKSmlg9nI8q6R9UbUvq7VmrVK/zaMrkhNySs6JTa5IndyTBmkRRnzyTF7Iq/FmvBsfxue8tWDkM8dkAcbXL1v0oHA=</latexit>

Q4 : <latexit sha1_base64="LDr4oJXIrjpvO1E5jf5KHgu9bdg=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRSqseiF48V7Qe0oWy2k3bpbhJ2J2Ip+Qle1V/jTbx69c+I2zYH2/pg4PHeDDPz/FhwjY7zbeXW1jc2t/LbhZ3dvf2D4uFRU0eJYtBgkYhU26caBA+hgRwFtGMFVPoCWv7oZuq3HkFpHoUPOI7Bk3QQ8oAzika6r/eqvWLJKTsz2KvEzUiJZKj3ij/dfsQSCSEyQbXuuE6M3oQq5ExAWugmGmLKRnQAHUNDKkF7k9mpqX1mlL4dRMpUiPZM/TsxoVLrsfRNp6Q41MveVPzP6yQYXHkTHsYJQsjmi4JE2BjZ07/tPlfAUIwNoUxxc6vNhlRRhiadhS2SjoCBEOmSisMY5VNaMIG5y/GskuZF2a2WK3eVUu06iy5PTsgpOScuuSQ1ckvqpEEYGZBn8kJerTfr3fqwPuetOSubOSYLsL5+AdW7oC0=</latexit>

P6

<latexit sha1_base64="VQ3wjXaPlNVPOBVlVXgKP45pwXA=">AAACF3icbVBNS8NAEN3Ur1q/qh69BIvgqSQi1mPRi8cK9gPaUDbbSbN0Nwm7E7GE/AWv6q/xJl49+mfEpM3Btj4YeLw3w8w8NxJco2V9G6W19Y3NrfJ2ZWd3b/+genjU0WGsGLRZKELVc6kGwQNoI0cBvUgBla6Arju5zf3uIyjNw+ABpxE4ko4D7nFGMZdaw0ZlWK1ZdWsGc5XYBamRAq1h9WcwClksIUAmqNZ924rQSahCzgSklUGsIaJsQsfQz2hAJWgnmd2ammeZMjK9UGUVoDlT/04kVGo9lW7WKSn6etnLxf+8fozetZPwIIoRAjZf5MXCxNDMHzdHXAFDMc0IZYpnt5rMp4oyzOJZ2CLpBBgIkS6p6Econ9I8MHs5nlXSuajbV/XL+8ta86aIrkxOyCk5JzZpkCa5Iy3SJoz45Jm8kFfjzXg3PozPeWvJKGaOyQKMr18OVKBC</latexit>

P7

<latexit sha1_base64="BMH5FzJTCiv8Ag4tk1tDEbi7Yts=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRS/LgVvXisaD+gDWWznbRLd5OwOxFLyU/wqv4ab+LVq39G3LY52NYHA4/3ZpiZ58eCa3Scbyu3srq2vpHfLGxt7+zuFfcPGjpKFIM6i0SkWj7VIHgIdeQooBUroNIX0PSHNxO/+QhK8yh8wFEMnqT9kAecUTTSfa171S2WnLIzhb1M3IyUSIZat/jT6UUskRAiE1TrtuvE6I2pQs4EpIVOoiGmbEj70DY0pBK0N56emtonRunZQaRMhWhP1b8TYyq1HknfdEqKA73oTcT/vHaCwaU35mGcIIRstihIhI2RPfnb7nEFDMXIEMoUN7fabEAVZWjSmdsi6RAYCJEuqDiIUT6lBROYuxjPMmmcld3zcuWuUqpeZ9HlyRE5JqfEJRekSm5JjdQJI33yTF7Iq/VmvVsf1uesNWdlM4dkDtbXL9rLoDA=</latexit>

P9

<latexit sha1_base64="BMH5FzJTCiv8Ag4tk1tDEbi7Yts=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRS/LgVvXisaD+gDWWznbRLd5OwOxFLyU/wqv4ab+LVq39G3LY52NYHA4/3ZpiZ58eCa3Scbyu3srq2vpHfLGxt7+zuFfcPGjpKFIM6i0SkWj7VIHgIdeQooBUroNIX0PSHNxO/+QhK8yh8wFEMnqT9kAecUTTSfa171S2WnLIzhb1M3IyUSIZat/jT6UUskRAiE1TrtuvE6I2pQs4EpIVOoiGmbEj70DY0pBK0N56emtonRunZQaRMhWhP1b8TYyq1HknfdEqKA73oTcT/vHaCwaU35mGcIIRstihIhI2RPfnb7nEFDMXIEMoUN7fabEAVZWjSmdsi6RAYCJEuqDiIUT6lBROYuxjPMmmcld3zcuWuUqpeZ9HlyRE5JqfEJRekSm5JjdQJI33yTF7Iq/VmvVsf1uesNWdlM4dkDtbXL9rLoDA=</latexit>

P9
<latexit sha1_base64="bb6CgybpW7WHGyLGU1O5rsK36pQ=">AAACGXicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6rHoxWMF+wFtKJvtpF27m4TdiVhC/oNX9dd4E6+e/DPits3Btj4YeLw3w8w8PxZco+N8W4WV1bX1jeJmaWt7Z3evvH/Q1FGiGDRYJCLV9qkGwUNoIEcB7VgBlb6Alj+6mfitR1CaR+E9jmPwJB2EPOCMopGa9V7qOlmvXHGqzhT2MnFzUiE56r3yT7cfsURCiExQrTuuE6OXUoWcCchK3URDTNmIDqBjaEglaC+dXpvZJ0bp20GkTIVoT9W/EymVWo+lbzolxaFe9Cbif14nweDKS3kYJwghmy0KEmFjZE9et/tcAUMxNoQyxc2tNhtSRRmagOa2SDoCBkJkCyoOY5RPWckE5i7Gs0yaZ1X3onp+d16pXefRFckROSanxCWXpEZuSZ00CCMP5Jm8kFfrzXq3PqzPWWvBymcOyRysr180SqFu</latexit>

P10

<latexit sha1_base64="bb6CgybpW7WHGyLGU1O5rsK36pQ=">AAACGXicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6rHoxWMF+wFtKJvtpF27m4TdiVhC/oNX9dd4E6+e/DPits3Btj4YeLw3w8w8PxZco+N8W4WV1bX1jeJmaWt7Z3evvH/Q1FGiGDRYJCLV9qkGwUNoIEcB7VgBlb6Alj+6mfitR1CaR+E9jmPwJB2EPOCMopGa9V7qOlmvXHGqzhT2MnFzUiE56r3yT7cfsURCiExQrTuuE6OXUoWcCchK3URDTNmIDqBjaEglaC+dXpvZJ0bp20GkTIVoT9W/EymVWo+lbzolxaFe9Cbif14nweDKS3kYJwghmy0KEmFjZE9et/tcAUMxNoQyxc2tNhtSRRmagOa2SDoCBkJkCyoOY5RPWckE5i7Gs0yaZ1X3onp+d16pXefRFckROSanxCWXpEZuSZ00CCMP5Jm8kFfrzXq3PqzPWWvBymcOyRysr180SqFu</latexit>

P10

<latexit sha1_base64="ppIaiQJLcOSmNBIWCDVbVQf1zro=">AAACFHicbVBNS8NAEN3Ur1q/qh69BIvgqSQi2mPBi8cW7Ae0oWy203bpbhJ2J2II+QVe1V/jTbx698+I2zYH2/pg4PHeDDPz/EhwjY7zbRU2Nre2d4q7pb39g8Oj8vFJW4exYtBioQhV16caBA+ghRwFdCMFVPoCOv70buZ3HkFpHgYPmETgSToO+IgzikZqJoNyxak6c9jrxM1JheRoDMo//WHIYgkBMkG17rlOhF5KFXImICv1Yw0RZVM6hp6hAZWgvXR+aGZfGGVoj0JlKkB7rv6dSKnUOpG+6ZQUJ3rVm4n/eb0YRzUv5UEUIwRssWgUCxtDe/a1PeQKGIrEEMoUN7fabEIVZWiyWdoi6RQYCJGtqDiJUD5lJROYuxrPOmlfVd2b6nXzulKv5dEVyRk5J5fEJbekTu5Jg7QII0CeyQt5td6sd+vD+ly0Fqx85pQswfr6BdFJn6M=</latexit>y

<latexit sha1_base64="ppIaiQJLcOSmNBIWCDVbVQf1zro=">AAACFHicbVBNS8NAEN3Ur1q/qh69BIvgqSQi2mPBi8cW7Ae0oWy203bpbhJ2J2II+QVe1V/jTbx698+I2zYH2/pg4PHeDDPz/EhwjY7zbRU2Nre2d4q7pb39g8Oj8vFJW4exYtBioQhV16caBA+ghRwFdCMFVPoCOv70buZ3HkFpHgYPmETgSToO+IgzikZqJoNyxak6c9jrxM1JheRoDMo//WHIYgkBMkG17rlOhF5KFXImICv1Yw0RZVM6hp6hAZWgvXR+aGZfGGVoj0JlKkB7rv6dSKnUOpG+6ZQUJ3rVm4n/eb0YRzUv5UEUIwRssWgUCxtDe/a1PeQKGIrEEMoUN7fabEIVZWiyWdoi6RQYCJGtqDiJUD5lJROYuxrPOmlfVd2b6nXzulKv5dEVyRk5J5fEJbekTu5Jg7QII0CeyQt5td6sd+vD+ly0Fqx85pQswfr6BdFJn6M=</latexit>y <latexit sha1_base64="Ra7t+H5Tn8exAgnV4e1LXZa9P68=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8laQU7bHgxWNF+wFtKJvtpF26m4TdiVhDf4JX9dd4E69e/TPits3Btj4YeLw3w8w8PxZco+N8W2vrG5tb27md/O7e/sFh4ei4qaNEMWiwSESq7VMNgofQQI4C2rECKn0BLX90PfVbD6A0j8J7HMfgSToIecAZRSPdPfXKvULRKTkz2KvEzUiRZKj3Cj/dfsQSCSEyQbXuuE6MXkoVciZgku8mGmLKRnQAHUNDKkF76ezUiX1ulL4dRMpUiPZM/TuRUqn1WPqmU1Ic6mVvKv7ndRIMql7KwzhBCNl8UZAIGyN7+rfd5woYirEhlClubrXZkCrK0KSzsEXSETAQYrKk4jBG+TjJm8Dc5XhWSbNcci9LldtKsVbNosuRU3JGLohLrkiN3JA6aRBGBuSZvJBX6816tz6sz3nrmpXNnJAFWF+/EzygSQ==</latexit>z2

<latexit sha1_base64="mH9DSU4V+EQ7YAZ+6VXjv5Q5k7I=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQitseCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7N6Ur++vS7VqFl2enJFzcklcUiE1ckfqpEEYGZJn8kJerTfr3fqwPhetOSubOSVLsL5+ARhIoEw=</latexit>x7

<latexit sha1_base64="8IDN6unsUp0sSIWeYrIrf6DGymo=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy2k3bpbhJ2J2IN/Qle1V/jTbx69c+I2zYH2/pg4PHeDDPz/FhwjY7zbeXW1jc2t/LbhZ3dvf2D4uFRU0eJYtBgkYhU26caBA+hgRwFtGMFVPoCWv7oeuq3HkBpHoX3OI7Bk3QQ8oAzika6e+q5vWLJKTsz2KvEzUiJZKj3ij/dfsQSCSEyQbXuuE6MXkoVciZgUugmGmLKRnQAHUNDKkF76ezUiX1mlL4dRMpUiPZM/TuRUqn1WPqmU1Ic6mVvKv7ndRIMql7KwzhBCNl8UZAIGyN7+rfd5woYirEhlClubrXZkCrK0KSzsEXSETAQYrKk4jBG+TgpmMDc5XhWSfOi7F6WK7eVUq2aRZcnJ+SUnBOXXJEauSF10iCMDMgzeSGv1pv1bn1Yn/PWnJXNHJMFWF+/EYygSA==</latexit>z1

<latexit sha1_base64="7QD2ibpjfnL/wFXNGwWhjAej9RQ=">AAACFHicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48t2A9oQ9lsp+3S3STsTqQl5Bd4VX+NN/Hq3T8jbtscbOuDgcd7M8zM8yPBNTrOt5Xb2t7Z3cvvFw4Oj45PiqdnLR3GikGThSJUHZ9qEDyAJnIU0IkUUOkLaPuT+7nffgKleRg84iwCT9JRwIecUTRSY9ovlpyys4C9SdyMlEiGer/40xuELJYQIBNU667rROglVCFnAtJCL9YQUTahI+gaGlAJ2ksWh6b2lVEG9jBUpgK0F+rfiYRKrWfSN52S4live3PxP68b47DqJTyIYoSALRcNY2FjaM+/tgdcAUMxM4Qyxc2tNhtTRRmabFa2SDoBBkKkayqOI5TTtGACc9fj2SStm7J7W640KqVaNYsuTy7IJbkmLrkjNfJA6qRJGAHyTF7Iq/VmvVsf1ueyNWdlM+dkBdbXL8+Zn6I=</latexit>x

<latexit sha1_base64="7QD2ibpjfnL/wFXNGwWhjAej9RQ=">AAACFHicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48t2A9oQ9lsp+3S3STsTqQl5Bd4VX+NN/Hq3T8jbtscbOuDgcd7M8zM8yPBNTrOt5Xb2t7Z3cvvFw4Oj45PiqdnLR3GikGThSJUHZ9qEDyAJnIU0IkUUOkLaPuT+7nffgKleRg84iwCT9JRwIecUTRSY9ovlpyys4C9SdyMlEiGer/40xuELJYQIBNU667rROglVCFnAtJCL9YQUTahI+gaGlAJ2ksWh6b2lVEG9jBUpgK0F+rfiYRKrWfSN52S4live3PxP68b47DqJTyIYoSALRcNY2FjaM+/tgdcAUMxM4Qyxc2tNhtTRRmabFa2SDoBBkKkayqOI5TTtGACc9fj2SStm7J7W640KqVaNYsuTy7IJbkmLrkjNfJA6qRJGAHyTF7Iq/VmvVsf1ueyNWdlM+dkBdbXL8+Zn6I=</latexit>x <latexit sha1_base64="Ra7t+H5Tn8exAgnV4e1LXZa9P68=">AAACFnicbVBNS8NAEN34WetX1aOXYBE8laQU7bHgxWNF+wFtKJvtpF26m4TdiVhDf4JX9dd4E69e/TPits3Btj4YeLw3w8w8PxZco+N8W2vrG5tb27md/O7e/sFh4ei4qaNEMWiwSESq7VMNgofQQI4C2rECKn0BLX90PfVbD6A0j8J7HMfgSToIecAZRSPdPfXKvULRKTkz2KvEzUiRZKj3Cj/dfsQSCSEyQbXuuE6MXkoVciZgku8mGmLKRnQAHUNDKkF76ezUiX1ulL4dRMpUiPZM/TuRUqn1WPqmU1Ic6mVvKv7ndRIMql7KwzhBCNl8UZAIGyN7+rfd5woYirEhlClubrXZkCrK0KSzsEXSETAQYrKk4jBG+TjJm8Dc5XhWSbNcci9LldtKsVbNosuRU3JGLohLrkiN3JA6aRBGBuSZvJBX6816tz6sz3nrmpXNnJAFWF+/EzygSQ==</latexit>z2

<latexit sha1_base64="7QD2ibpjfnL/wFXNGwWhjAej9RQ=">AAACFHicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48t2A9oQ9lsp+3S3STsTqQl5Bd4VX+NN/Hq3T8jbtscbOuDgcd7M8zM8yPBNTrOt5Xb2t7Z3cvvFw4Oj45PiqdnLR3GikGThSJUHZ9qEDyAJnIU0IkUUOkLaPuT+7nffgKleRg84iwCT9JRwIecUTRSY9ovlpyys4C9SdyMlEiGer/40xuELJYQIBNU667rROglVCFnAtJCL9YQUTahI+gaGlAJ2ksWh6b2lVEG9jBUpgK0F+rfiYRKrWfSN52S4live3PxP68b47DqJTyIYoSALRcNY2FjaM+/tgdcAUMxM4Qyxc2tNhtTRRmabFa2SDoBBkKkayqOI5TTtGACc9fj2SStm7J7W640KqVaNYsuTy7IJbkmLrkjNfJA6qRJGAHyTF7Iq/VmvVsf1ueyNWdlM+dkBdbXL8+Zn6I=</latexit>x<latexit sha1_base64="mH9DSU4V+EQ7YAZ+6VXjv5Q5k7I=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSQitseCF48V7Qe0oWy203bpbhJ2J9IS8hO8qr/Gm3j16p8Rt20OtvXBwOO9GWbm+ZHgGh3n28ptbG5t7+R3C3v7B4dHxeOTpg5jxaDBQhGqtk81CB5AAzkKaEcKqPQFtPzx7cxvPYHSPAwecRqBJ+kw4APOKBrpYdKr9Iolp+zMYa8TNyMlkqHeK/50+yGLJQTIBNW64zoReglVyJmAtNCNNUSUjekQOoYGVIL2kvmpqX1hlL49CJWpAO25+ncioVLrqfRNp6Q40qveTPzP68Q4qHoJD6IYIWCLRYNY2Bjas7/tPlfAUEwNoUxxc6vNRlRRhiadpS2SjoGBEOmKiqMI5SQtmMDc1XjWSfOq7N6Ur++vS7VqFl2enJFzcklcUiE1ckfqpEEYGZJn8kJerTfr3fqwPhetOSubOSVLsL5+ARhIoEw=</latexit>x7

<latexit sha1_base64="8IDN6unsUp0sSIWeYrIrf6DGymo=">AAACFnicbVBNS8NAEN3Ur1q/qh69BIvgqSRStMeCF48V7Qe0oWy2k3bpbhJ2J2IN/Qle1V/jTbx69c+I2zYH2/pg4PHeDDPz/FhwjY7zbeXW1jc2t/LbhZ3dvf2D4uFRU0eJYtBgkYhU26caBA+hgRwFtGMFVPoCWv7oeuq3HkBpHoX3OI7Bk3QQ8oAzika6e+q5vWLJKTsz2KvEzUiJZKj3ij/dfsQSCSEyQbXuuE6MXkoVciZgUugmGmLKRnQAHUNDKkF76ezUiX1mlL4dRMpUiPZM/TuRUqn1WPqmU1Ic6mVvKv7ndRIMql7KwzhBCNl8UZAIGyN7+rfd5woYirEhlClubrXZkCrK0KSzsEXSETAQYrKk4jBG+TgpmMDc5XhWSfOi7F6WK7eVUq2aRZcnJ+SUnBOXXJEauSF10iCMDMgzeSGv1pv1bn1Yn/PWnJXNHJMFWF+/EYygSA==</latexit>z1

<latexit sha1_base64="gkITEOJ3/w/ooaXMoR+zhGkVqhI=">AAACKXicbVDLTsJAFJ3iC/GFj52bRmLiirSGCEsSNy4xkUcChEyHC0yYaZuZWwM2/Re36te4U7f+h3EoLAQ8ySQn59x7z+R4oeAaHefTymxsbm3vZHdze/sHh0f545OGDiLFoM4CEaiWRzUI7kMdOQpohQqo9AQ0vfHtzG8+gtI88B9wGkJX0qHPB5xRNFIvf9ZBmGB6J1bQT+JJr5z08gWn6KSw14m7IAWyQK2X/+n0AxZJ8JEJqnXbdULsxlQhZwKSXCfSEFI2pkNoG+pTCbobp6mJfWmUvj0IlHk+2qn6dyOmUuup9MykpDjSq95M/M9rRziodGPuhxGCz+ZBg0jYGNizKuw+V8BQTA2hTHHzV5uNqKIMTWFLKZKOgYEQyYqKoxDlJMmZwtzVetZJ47ro3hRL96VCtbKoLkvOyQW5Ii4pkyq5IzVSJ4w8kWfyQl6tN+vd+rC+5qMZa7FzSpZgff8C4n2okg==</latexit>x7

<latexit sha1_base64="gkITEOJ3/w/ooaXMoR+zhGkVqhI=">AAACKXicbVDLTsJAFJ3iC/GFj52bRmLiirSGCEsSNy4xkUcChEyHC0yYaZuZWwM2/Re36te4U7f+h3EoLAQ8ySQn59x7z+R4oeAaHefTymxsbm3vZHdze/sHh0f545OGDiLFoM4CEaiWRzUI7kMdOQpohQqo9AQ0vfHtzG8+gtI88B9wGkJX0qHPB5xRNFIvf9ZBmGB6J1bQT+JJr5z08gWn6KSw14m7IAWyQK2X/+n0AxZJ8JEJqnXbdULsxlQhZwKSXCfSEFI2pkNoG+pTCbobp6mJfWmUvj0IlHk+2qn6dyOmUuup9MykpDjSq95M/M9rRziodGPuhxGCz+ZBg0jYGNizKuw+V8BQTA2hTHHzV5uNqKIMTWFLKZKOgYEQyYqKoxDlJMmZwtzVetZJ47ro3hRL96VCtbKoLkvOyQW5Ii4pkyq5IzVSJ4w8kWfyQl6tN+vd+rC+5qMZa7FzSpZgff8C4n2okg==</latexit>x7

<latexit sha1_base64="SimwBjbmE3UfgzS/j/9xHCwoYsU=">AAACF3icbVBNS8NAEN3Ur1q/qh69BIvgqSQiVTwVe/FYwX5AG8pmO2mW7iZhdyKWkr/gVf013sSrR/+MmLQ52NYHA4/3ZpiZ50aCa7Ssb6Owtr6xuVXcLu3s7u0flA+P2jqMFYMWC0Woui7VIHgALeQooBspoNIV0HHHjczvPILSPAwecBKBI+ko4B5nFDOpMajdDMoVq2rNYK4SOycVkqM5KP/0hyGLJQTIBNW6Z1sROlOqkDMBSakfa4goG9MR9FIaUAnamc5uTcyzVBmaXqjSCtCcqX8nplRqPZFu2ikp+nrZy8T/vF6M3rUz5UEUIwRsvsiLhYmhmT1uDrkChmKSEsoUT281mU8VZZjGs7BF0jEwECJZUtGPUD4lpTQwezmeVdK+qNq16uX9ZaV+m0dXJCfklJwTm1yROrkjTdIijPjkmbyQV+PNeDc+jM95a8HIZ47JAoyvX0eMoGQ=</latexit>

C6 :

<latexit sha1_base64="IbWLdERYhtAgjK44qZnzkFtvCmQ=">AAACF3icbVBNS8NAEN3Ur1q/qh69BIvgqSQiVjwVe/FYwX5AG8pmO2mW7iZhdyKWkr/gVf013sSrR/+MmLQ52NYHA4/3ZpiZ50aCa7Ssb6Owtr6xuVXcLu3s7u0flA+P2jqMFYMWC0Woui7VIHgALeQooBspoNIV0HHHjczvPILSPAwecBKBI+ko4B5nFDOpMajdDMoVq2rNYK4SOycVkqM5KP/0hyGLJQTIBNW6Z1sROlOqkDMBSakfa4goG9MR9FIaUAnamc5uTcyzVBmaXqjSCtCcqX8nplRqPZFu2ikp+nrZy8T/vF6M3rUz5UEUIwRsvsiLhYmhmT1uDrkChmKSEsoUT281mU8VZZjGs7BF0jEwECJZUtGPUD4lpTQwezmeVdK+qNpX1cv7y0r9No+uSE7IKTknNqmROrkjTdIijPjkmbyQV+PNeDc+jM95a8HIZ47JAoyvX0k9oGU=</latexit>

C7 :

<latexit sha1_base64="Ji46G25C0drQTAeqIUcKqlDM6p0=">AAACF3icdVDLSgNBEJyN7/iKevQyGARPYTeEPG6iF48RjBGSJcxOOsmQmd1lplcMYX/Bq/o13sSrR39GnI0RjGhBQ1HVTXdXEEth0HXfndzS8srq2vpGfnNre2e3sLd/baJEc2jxSEb6JmAGpAihhQIl3MQamAoktIPxeea3b0EbEYVXOInBV2wYioHgDDOp2avle4WiW3ItqlWaEa/uepY0GvVyuUG9meW6RTJHs1f46PYjnigIkUtmTMdzY/SnTKPgEtJ8NzEQMz5mQ+hYGjIFxp/Obk3psVX6dBBpWyHSmfpzYsqUMRMV2E7FcGR+e5n4l9dJcFD3pyKME4SQfy0aJJJiRLPHaV9o4CgnljCuhb2V8hHTjKONZ2GLYmPgIGX6S8VRjOouzQL7ToX+T67LJa9aqlxWiqdn8+jWySE5IifEIzVySi5Ik7QIJyNyTx7Io/PkPDsvzutXa86ZzxyQBThvn3AVoH8=</latexit>

P7

<latexit sha1_base64="aKgtmfrvrcLYswhS4A09No+bsDk=">AAACF3icdVBNS0JBFJ3Xp9mX1bLNkASt5D0R053UpqVBfoCKzBuvOjjz3mPmvkjEv9C2+jXtom3L/kw0Tw1S6sCFwzn3cu89fiSFQdf9dNbWNza3tlM76d29/YPDzNFx3YSx5lDjoQx102cGpAighgIlNCMNTPkSGv7oOvEb96CNCIM7HEfQUWwQiL7gDBOp2i2mu5msm3MtikWaEK/kepaUy6V8vky9meW6WbJAtZv5avdCHisIkEtmTMtzI+xMmEbBJUzT7dhAxPiIDaBlacAUmM5kduuUnlulR/uhthUgnam/JyZMGTNWvu1UDIdm1UvEv7xWjP1SZyKCKEYI+HxRP5YUQ5o8TntCA0c5toRxLeytlA+ZZhxtPEtbFBsBBymnKyoOI1QP0ySwn1To/6Sez3nFXOG2kK1cLaJLkVNyRi6IRy5JhdyQKqkRTobkkTyRZ+fFeXXenPd565qzmDkhS3A+vgFuZKB+</latexit>

P6

Fig. 9: Applying the Q-Sep procedure to Q4 separates it into Horn guarded clauses. The removed isolated
variables are coloured in red and the separated literals are coloured in blue.

as the side premises and Q3 as the main premise derives the ICQ clause

¬A1(x1,x2)∨¬A1(x2,x3)∨¬A1(x3,x1)∨¬A1(x3,x4)∨¬A1(x4,x5)∨¬A1(x5,x3)∨
¬A1(x5,x6)∨¬A1(x6,x7)∨¬A1(x7,x5)∨¬A1(x1,x4)∨¬A1(x4,x7)∨¬A1(x7,x1)

in which the variable cycle is significantly wider than the one in the query clause Q3.
However, the T-Res system avoids this T-Res inference by selecting all negative lit-
erals in C′1,C

′
2,C
′
3 and C′4, forcing these clauses to act as the main premises in the

resolution inferences. Specifically, the T-Res system restricts that only ground sim-
ple clauses and non-ground compound-term clauses can be side premises for ICQ
clauses. Without introducing wider variable cycles, the application of the T-Res rule
to Q3 and C1, . . . ,C4 breaks the variable cycle in Q3. This is due to the covering prop-
erty of the LG clauses in the T-Res side premises, ensuring that the variables in the
side premises are simultaneously unified, therefore the new variable relations in the
remainders of the side premises, occurring in the T-Res resolvent, remain controlled
by the loose guards of the LG side premises.

Transforming the T-Res resolvent of an ICQ clause and LG clauses to the smallest
number of LGQ clauses is not straightforward. We use the notions of connected top
variables and closed top-variable subclauses to identify the LG subclauses in the
T-Res resolvents.

Definition 46. In a T-Res inference on an ICQ clause as the main premise with the
top-variable subclause C, and LG clauses as the side premises,

1. top variables xi and x j are connected in C if there exists a sequence of top vari-
ables xi, . . . ,x j in C such that each pair of adjacent variables co-occurs in a top-
variable literal, and

2. the clause C′ is a closed top-variable subclause of C if
(a) each pair of top variables in C′ are connected, and
(b) the top variables in C′ do not connect to the top variables that are in C but

not in C′.

Suppose Qicq is an ICQ clause and Nlg are LG clauses. Further, suppose Qicq is the
main premise and Nlg are the side premises in a T-Res inference. Then, each closed
top-variable subclause in Qicq is resolved with a subset N′lg of Nlg, and the disjunction
of the remainders of all clauses in N′lg forms an LG clause in the T-Res resolvent. In

48 Sen Zheng, Renate A. Schmidt

the previous example, the top-variable subclause ¬P5(x1,x3)∨¬P9(x3,x5) in Q3 is
the only closed top-variable subclause in Q3, since x3 is the only top variable in Q3.
The fact that the T-Res side premises of ¬P5(x1,x3) and ¬P9(x3,x5) are C1 and C2
implies that the disjunction of remainders of C1 and C2 forms an LG clause

C′lg = ¬G1(x,y,z1,z2)∨¬G2(x,y,z1,z2)∨A(h(x,y,z1,z2))

in the T-Res resolvent

R = ¬G1(x,y,z1,z2)∨¬G2(x,y,z1,z2)∨A(h(x,y,z1,z2))
∗∨¬P7(x,x7)∨¬P6(x,x7).

In the previous example, we abstracted C′lg from R by introducing a fresh predicate
symbol P9, obtaining an LG clause C5 and a query clause Q4.

The T-Res resolvents of an ICQ clause and LG clauses is handled by the following
formula renaming:

Given an ICQ clause Q = ¬A1 ∨ . . .∨¬Am ∨ . . .∨¬An and LG clauses C1 =
B1 ∨D1, . . . ,Cn = Bn ∨Dn, applying the T-Res rule to Q as the main premise
and C1, . . . ,Cn as the side premises derives the T-Res resolvent

R = (¬Am+1∨ . . .∨¬An)σ ∨D1σ ∨ . . .∨Dmσ

where σ =mgu(A1
.
=B1, . . . ,Am

.
=Bm) and the top-variable subclause is¬A1∨

. . .∨¬Am in Q where 1≤ m≤ n.
Suppose ¬A1 ∨ . . .∨¬Am is partitioned into the closed top-variable sub-

clauses C′1, . . . ,C
′
t . Then, we can represent R as

R = (¬Am+1∨ . . .∨¬An)σ ∨D′1(x1σ)∨ . . .∨D′t(xtσ),

where xi are the variables occurring in D′i for all i such that 1 ≤ i ≤ t. Then, R
is transformed using the following rule:

T-Trans:
N∪{(¬Am+1∨ . . .∨¬An)σ ∨D′1(x1σ)∨ . . .∨D′t(xtσ)}

N∪{P1(x1σ)∨D′1(x1σ), . . . , Pt(xtσ)∨D′t(xtσ),
(¬Am+1∨ . . .¬An)σ ∨¬P1(x1σ)∨ . . .∨¬Pt(xtσ)}

where P1, . . . ,Pt are the fresh predicate symbols.

Applying the T-Trans rule to a T-Res resolvent of an ICQ clause and LG clause re-
places it with a set of LGQ clauses and preserves satisfiability equivalence. Formally:

Lemma 47. Let R be a T-Res resolvent of an ICQ clause Qicq as the main premise
and LG clauses Nlg as the side premises. Then, the following properties hold.

1. Applying the T-Trans rule to R replaces it by a set N′lg of LG clauses and a query
clause Qr.

2. Applying the Q-Sep procedure to Qr separates it into a set Ng of guarded clauses
and optionally a set Nicq of ICQ clauses.

3. For each clause C′ in N′lg, there exists a clause C in Nlg such that C′ is no wider
than C.

Saturation-based methods for querying the guarded quantification fragments 49

4. For each clause C′ in Ng, it is the case that either C′ is narrower than Qicq, or
there exists a clause C in Nlg such that C′ is not wider than C.

5. For each clause Q′icq in Nicq, Q′icq is narrower than Qicq.
6. Suppose N is a clausal set. Then, N ∪{R} is satisfiable if and only if N ∪N′lg ∪

Ng∪Nicq is satisfiable.

Proof. Recall the T-Res rule with a-priori eligibility.

B1∨D1, . . . , Bm∨Dm, . . . , Bn∨Dn ¬A1∨ . . .∨¬Am∨ . . .∨¬An∨D
T-Res:

(D1∨ . . .∨Dm∨¬Am+1∨ . . .∨¬An∨D)σ

if the following conditions are satisfied.

1. No literal is selected in D1, . . . ,Dn,D and B1, . . . ,Bn are strictly �l po-maximal
with respect to D1, . . . ,Dn, respectively.

2a. If n = 1, i) either ¬A1 is selected, or nothing is selected in ¬A1 ∨D and ¬A1 is
�l po-maximal with respect to D, and ii) σ = mgu(A1

.
= B1) or

2b. there must exist an mgu σ ′ such that σ ′ = mgu(A1
.
= B1, . . . ,An

.
= Bn), then

¬A1, . . . ,¬Am are the top-variable literals of ¬A1∨ . . .∨¬Am∨ . . .∨¬An∨D and
σ = mgu(A1

.
= B1, . . . ,Am

.
= Bm) where 1≤ m≤ n.

3. All premises are variable disjoint.

Suppose Qicq = ¬A1 ∨ . . .∨¬Am ∨ . . .∨¬An is the T-Res main premise and an ICQ
clause, and C1 = B1 ∨D1, . . . ,Cm = Bm ∨Dm, . . . ,Cn = Bn ∨Dn are the T-Res side
premises and LG clauses. Further suppose R is the T-Res resolvent (D1∨ . . .∨Dm∨
¬Am+1∨ . . .∨¬An)σ of C1, . . . ,Cn and C. The variables occurring in the T-Trans rule
are omitted in this proof.

Suppose Ci is a clause in C1, . . . ,Cm. By Algorithm 1, Ci is either a ground flat
clause or a compound-term clause. Suppose Ci is a ground flat clause. This means
that a top variable in Qicq pairs a constant in Ci. By Lemma 26, C1, . . . ,Cm are ground
flat clauses and all negative literals in Qicq are selected. Hence, the T-Res resolvent R
is a ground flat clause, viz., an LG clause, and the case of applying the T-Trans rule
to R is trivial. Hence, C1, . . . ,Cm are compound-term clauses. We now prove 1.–6. by
in sequential order.

1.-1: We first prove that (¬Am+1∨ . . .∨¬An)σ is a query clause. By 1. of Corol-
lary 25, the mgu σ substitutes all variables in ¬Am+1∨ . . .∨¬An with either variables
or constants. Then, (¬Am+1 ∨ . . .∨¬An)σ is a query clause. When m = n the state-
ment trivially holds.

1.-2: We prove that (D1 ∨ . . .∨Dm)σ is a disjunction of LG clauses, and each
disjunct maps to a closed top-variable subclause. This is done by proving:

i The subclause Diσ is an LG clause for each i such that 1≤ i≤ m.
ii Suppose ¬Ai and ¬A j are two distinct literals containing connected top variables

where 1≤ i≤ m and 1≤ j ≤ m. Then, (Di∨D j)σ is an LG clause.
iii Suppose ¬Ai1 ∨ . . .∨¬Aik is a closed top-variable subclause of ¬A1∨ . . .∨¬Am,

and suppose D′i represents Di1 ∨ . . .∨Dik . Then, (D1 ∨ . . .∨Dm)σ can be repre-
sented as (D′1∨ . . .∨D′t)σ where 1≤ t ≤ m.

50 Sen Zheng, Renate A. Schmidt

1.-2-i: By Lemma 14 and the fact that Ci is a compound-term clause, the eligible
literal Bi in Ci is a compound-term literal. By the covering property of LG clauses,
var(Bi) = var(Ci). By 2. of Corollary 25, the mgu σ substitutes variables in Ci with
variables and constants. By the fact that Ci is an LG clause and Lemma 23, Diσ is an
LG clause.

1.-2-ii: Suppose x and y are top variables in ¬Ai and ¬A j, respectively. Further
suppose x and y are connected. By the definition of connected top variables, there
exists a sequence of top variables x, . . . ,y in C such that each pair of adjacent vari-
ables co-occurs in a top-variable literal. By Lemma 24, x, . . . ,y only pair compound
terms. Suppose x′ and y′ are two adjacent top variables in x, . . . ,y. W.l.o.g. sup-
pose ¬At is a top-variable literal in C where x′ and y′ co-occur. Suppose Bt is the
compound-term literal in the T-Res side premises that resolves ¬At , satisfying that
Atσ

.
= Btσ . Further suppose s′ and t ′ are the compound terms in Bt that x′ and y′

pair, respectively. By 1. of Corollary 25 and the covering property of LG clauses,
var(s′σ) = var(t ′σ), therefore var(x′σ) = var(y′σ). Hence, var(xσ) = var(yσ). By
the strong compatibility of LG clauses, s′σ is compatible with t ′σ , therefore x′σ is
compatible with y′σ . Hence, xσ is compatible with yσ . W.l.o.g. suppose x pairs a
compound term t in Bi and y pairs a compound term s in B j. By the result established
in 1.-2-ii, Diσ and D jσ are LG clauses, The fact that var(xσ) = var(yσ) implies
var(sσ) = var(tσ). By the covering property of LG clauses, var(Diσ) = var(D jσ),
therefore Diσ ∨D jσ is covering. Since xσ is compatible with yσ , sσ is compat-
ible with tσ . By the strong compatibility property of LG clauses, the compound
terms in Diσ and D jσ are compatible, therefore Diσ ∨D jσ are strongly compat-
ible. The fact that Diσ and D jσ are LG clauses implies that Diσ ∨D jσ is a sim-
ple clause. Since Diσ is an LG clause, Diσ contains a loose guard. By the fact that
var(Diσ) = var(D jσ), Diσ ∨D jσ contains a loose guard. Hence, Diσ ∨D jσ is an
LG clause.

1.-2-iii: Suppose ¬Ai1∨ . . .∨¬Aik is a closed top-variable subclause of ¬A1∨ . . .∨
¬Am. Further suppose D′i represents Di1∨. . .∨Dik where σ =mgu(Ai1

.
=Bi1 , . . . ,Aik

.
=

Bik). We first prove that D′i is an LG clause. Suppose C′ is the top-variable subclause
¬A1∨ . . .∨¬Am. By the fact that each literal in C′ contains at least one top variable,
and 2b. of Definition 46 that each pair of closed top-variable subclauses of C′ has
no connected top variables, one can partition C′ into a set of closed top-variable sub-
clauses. We use C′1, . . . ,C

′
t to denote this set of subclauses. W.l.o.g. we use C′i to

represent ¬Ai1 ∨ . . .∨¬Aik . By 2a. of Definition 46, each pair of top variables in C′i is
connected. By the result established in 1.-2-ii, (Di1 ∨ . . .∨Dik)σ is an LG clause,
therefore D′i is an LG clause. We represent (D1 ∨ . . .∨Dm)σ as (D′1 ∨ . . .∨D′t)σ
where each D′i in D′1, . . . ,D

′
t maps to a closed top-variable subclause C′i . Now we can

present the T-Res resolvent as follows.

R = (D′1∨ . . .∨D′t ∨¬Am+1∨ . . .∨¬An)σ

Applying the T-Trans rule to R transforms it into

D′1σ ∨P1, . . . , D′tσ ∨Pt , Qr = (¬Am+1∨ . . .∨¬An)σ ∨¬P1∨ . . .∨¬Pt .

We prove that D′iσ ∨Pi is an LG clause for all i such that 1≤ i≤ t. The case is trivial
when D′iσ is ground. Now assume that D′iσ is non-ground. By 1.-2-iii, D′iσ is an LG

Saturation-based methods for querying the guarded quantification fragments 51

clause. By the definition of the T-Trans rule, Pi is a flat literal and var(D′iσ)= var(Pi),
hence D′iσ ∨Pi is an LG clause. Next, we prove that Qr is a query clause. By the
definition of the T-Trans rule, ¬P1 ∨ . . .∨¬Pt is a negative flat clause. By the result
established in 1.-1, Qr is a query clause.

2.: This is a consequence of Lemma 44.
3.: We prove that for each clause D′iσ ∨Pi in D′1σ ∨P1, . . . ,D′tσ ∨Pt , there exists

a T-Res side premise C in C1, . . . ,Cm such that D′iσ ∨Pi is no wider than C. By 1.-
2-i, the loose guard Gσ in D′iσ is inherited from a loose guard G in C1, . . . ,Cm.
W.l.o.g. suppose a side premise C contains the loose guard G. The fact that a loose
guard contains all variables of an LG clause implies that var(D′iσ ∨Pi) = var(Gσ) and
var(C) = var(G). Then, var(D′iσ ∨Pi) = var(Cσ). By 2. of Corollary 25, the mgu σ

substitutes all variables in G with either constants or variables, therefore C contains
no less distinct variables than D′iσ ∨Pi.

4.: Suppose C′ is a guarded clause obtained by applying the Q-Sep procedure to

Qr = ¬Am+1σ ∨ . . .∨¬Anσ ∨¬P1∨ . . .∨¬Pt .

Then, C′ can only be derived due to the fact that a surface literal in Qr is separated by
the Q-Sep procedure. We prove that

1 if the separated surface literal belongs to ¬Am+1σ , . . . ,¬Anσ , then C′ is narrower
than Qicq, or

2 if the separated surface literal belongs to ¬P1, . . . ,¬Pt , then there exists a T-Res
side premise C in C1, . . . ,Cm such that C′ is no wider than C.

4.-1: Suppose C′ is a guarded clause that is obtained by separating a surface lit-
eral in Qr belonging to ¬Am+1σ , . . . ,¬Anσ . The fact that ¬Am+1 ∨ . . .∨¬An con-
tains only non-top variables implies that ¬Am+1 ∨ . . .∨¬An is narrower than Qicq.
By 1. of Corollary 25, the mgu σ substitutes the variables in ¬Am+1∨ . . .∨¬An with
either variables or constants, hence ¬Am+1σ ∨ . . .∨¬Anσ is narrower than Qicq. By
Lemma 44, C′ is narrower than ¬Am+1σ ∨ . . .∨¬Anσ , hence C′ is narrower than Qicq.

4.-2: W.l.o.g. suppose ¬P1 is a surface literal in ¬P1, . . . ,¬Pt that is separated
from Qr and suppose D′1σ is the subclause that P1 defines. Further, suppose C′ is
the guarded clause obtained by separating ¬P1 from Qr. By the definition of the T-
Trans rule, var(P1) = var(D′1σ). By 1.-2-iii, D′1σ is a disjunction of the remainders
from the T-Res side premises that map to a closed top-variable clause. W.l.o.g. sup-
pose D1 is one of those remainders and D1σ is a disjunct in D′1σ . Suppose C is the
T-Res side premise where D1 occurs. By 2. of Corollary 25, the mgu σ substitutes
variables in the T-Res side premises with variables and constants, therefore D1σ is no
wider than D1. By 1.-2-ii, var(D1σ) = var(D′1σ). Hence, D′1σ is no wider than D1,
thus D′1σ is no wider than C. The fact that var(P1) = var(D′1σ) implies that P1 is
no wider than C. Since the guarded clause C′ is obtained by separating the surface
literal ¬P1 from Qr, ¬P1 acts as a guard in C′, hence var(P1) = var(C′). Then, C′ is
no wider than C.

5.: Suppose applying the Q-Sep procedure to

Qr = ¬Am+1σ ∨ . . .∨¬Anσ ∨¬P1∨ . . .∨¬Pt

52 Sen Zheng, Renate A. Schmidt

derives a set Nicq of ICQ clauses, and Q′icq is an ICQ clause in Nicq. W.l.o.g. we as-
sume that the mgu σ substitutes the variable arguments in the T-Res side premises
C1, . . . ,Cm with the variable arguments in the T-Res main premise Qicq. We prove
that Q′icq is narrower than Qicq by showing that Q′icq contains only the non-top-
variables from Qicq. The following three steps prove this claim.

5.-1: First we prove that the chained variables (in Qr) occurring in ¬P1, . . . ,¬Pt
belong to the non-top-variables from Qicq. W.l.o.g. suppose ¬P1 and ¬P2 are two
surface literals in Qr that have common variables. Suppose D′1σ and D′2σ are the
subclauses that P1 and P2 define, respectively. Further suppose D1 is a disjunct in D′1
and D2 is a disjunct in D′2. Suppose C1 = B1 ∨D1 and C2 = B2 ∨D2 are T-Res side
premises. By 1.-2-ii, var(D1σ) = var(D′1σ) and var(D2σ) = var(D′2σ). By the def-
inition of the T-Trans rule, var(P1) = var(D′1σ) and var(P2) = var(D′2σ), therefore
var(P1) = var(D1σ) and var(P2) = var(D2σ). Hence, the overlapping variables be-
tween ¬P1 and ¬P2 are the same as those of D1σ and D2σ . Now we consider how
the mgu σ substitutes the variables in D1 and D2. W.l.o.g suppose ¬A1 and ¬A2 are
top-variable literals in Qicq satisfying A1σ = B1σ and A2σ = B2σ . To understand
how the mgu σ substitutes the variables in D1 and D2 is to understand how σ , re-
spectively, unifies the pair A1 and B1 and the pair A2 and B2. By 2. in Corollary 25
and the assumption that the mgu σ substitutes the variable arguments in Bi with that
in Ai, σ substitutes all variable arguments in B1 and B2 with either non-top-variables
or constants from Qicq. Hence, the overlapping variables between B1σ and B2σ are
non-top-variables in Qicq. Then, the overlapping variables between D1σ and D2σ ,
and the ones between P1 and P2, are non-top-variables from Qicq. By the definition of
chained variables and the assumption that ¬P1 and ¬P2 are the surface literals in Qr,
the overlapping variables of P1 and P2 are the chained variables in Qr. Hence, the
chained variables occurring in ¬P1, . . . ,¬Pt come from the non-top variables in Qicq.

5.-2: Next we prove that the chained variables occurring in ¬Am+1σ ∨ . . .∨¬Anσ

are the non-top-variables from Qicq. By 1. in Corollary 25, the fact that ¬Am+1∨ . . .∨
¬An contains only non-top-variables and the assumption that the mgu σ substitutes
the variable arguments in C1, . . . ,Cm with the variable arguments in Qicq, the vari-
ables in ¬Am+1σ ∨ . . .∨¬Anσ are the non-top-variables in Qicq. Hence, the chained
variables in ¬Am+1σ ∨ . . .∨¬Anσ belong to the non-top-variables in Qicq.

5.-3: By 5.-1 and 5.-2 and the fact that applying the Q-Sep procedure to a query
clause does not introduce new chained variables to the query clause in the conclu-
sions, Q′icq contains no more distinct variables than the non-top-variables in Qicq.
Since the top variables in Qicq do not occur in Q′icq, Q′icq is narrower than Qicq.

6.: By Lemma 37, the Q-Sep procedure is sound. The fact that the T-Trans rule
is formula renaming implies that the rule itself is sound. Hence, satisfiability equiva-
lence is preserved.

We use Q-IC to denote the procedure of applying our rules to ICQ clauses. This
procedure consists of the following steps:

1. Apply the T-Res rule to an ICQ clause as the main premise and LG clauses as the
side premises, deriving the T-Res resolvent R.

2. Apply the T-Trans rule to R, deriving a query clause Q and LG clauses.

Saturation-based methods for querying the guarded quantification fragments 53

<latexit sha1_base64="Avmze2KpWdR6RV5bhE6zJDU7liQ=">AAACM3icbVDLSsNAFJ34tr6qLgUZLIKrkoholwU3LhWsCk0pk8mtGTqTxJkbMYTs/Bq36seIO3HrL4jT2oVtPTBwOOe+5gSpFAZd982ZmZ2bX1hcWq6srK6tb1Q3t65MkmkOLZ7IRN8EzIAUMbRQoISbVANTgYTroH868K/vQRuRxJeYp9BR7DYWPcEZWqlb3fVBpVHhYwQsLO4y0Dn1fS5ZZsCUZbdac+vuEHSaeCNSIyOcd6vffpjwTEGMdogxbc9NsVMwjYJLKCu+nZsy3me30LY0ZgpMpxj+o6T7VglpL9H2xUiH6t+OgiljchXYSsUwMpPeQPzPa2fYa3QKEacZQsx/F/UySTGhg1BoKDRwlLkljGthb6U8YppxtNGNbVGsDxykLCdUjFJUD2XFBuZNxjNNrg7r3nH96OKw1myMolsiO2SPHBCPnJAmOSPnpEU4eSRP5Jm8OK/Ou/PhfP6Wzjijnm0yBufrBz0erNE=</latexit> query
clauses

<latexit sha1_base64="XNlBXzaW+zuluIJfuMxNgBEBfu8=">AAACMHicbVDLSgMxFM3UV62vUZdugkVwVWaKaJeFbnSnYFVoS8mkd9rQZGZI7kjLMAu/xq36NboSt36EmNYutPVA4HDOfeUEiRQGPe/NKSwtr6yuFddLG5tb2zvu7t6NiVPNocljGeu7gBmQIoImCpRwl2hgKpBwGwwbE//2HrQRcXSN4wQ6ivUjEQrO0Epd96ANKhlkbYQRmjC7aFzllEuWGjB51y17FW8Kukj8GSmTGS677le7F/NUQYR2hjEt30uwkzGNgkvIS207NmF8yPrQsjRiCkwnm34ip0dW6dEw1vZFSKfq746MKWPGKrCViuHAzHsT8T+vlWJY62QiSlKEiP8sClNJMaaTRGhPaOAox5YwroW9lfIB04yjze3PFsWGwEHKfE7FQYJqlJdsYP58PIvkplrxTysnV9VyvTaLrkgOyCE5Jj45I3VyTi5Jk3DyQB7JE3l2XpxX5935+CktOLOeffIHzuc3LQOrOg==</latexit>

ICQ clauses

<latexit sha1_base64="QyRQBCh5ZRNIrHS/IIVy0ywIZAU=">AAACSnicbVDdShtBGJ2N2mq0NdVLbwaD4FXYlaq5FHphL7ywYFTIhvDt7LfZITO7y8y3xbDsk/g03tq+QF/DOymUTmIEjR4YOJzz/c2JCiUt+f4fr7G0vPLh4+pac33j0+fN1petS5uXRmBP5Co31xFYVDLDHklSeF0YBB0pvIrG36b+1U80VubZBU0KHGgYZTKRAshJw9ZhiLpIq5BShLgalWBijLlQUFq0PAx5SHhDNqnOTutnua6Hrbbf8Wfgb0kwJ202x/mw9S+Mc1FqzMgNsbYf+AUNKjAkhcK6Gbq5BYgxjLDvaAYa7aCafa/me06JeZIb9zLiM/VlRwXa2omOXKUGSu2iNxXf8/olJd1BJbOiJMzE06KkVJxyPs2Kx9KgIDVxBISR7lYuUjAgyCX6aouGMQpUql5QKS1I39RNF1iwGM9bcnnQCY46X38ctE+68+hW2Q7bZfssYMfshH1n56zHBLtld+ye/fJ+ew/eo/f3qbThzXu22Ss0lv8DV8i1Mw==</latexit>

guarded clauses
LG clauses

<latexit sha1_base64="emMmOIGUiL2QnImKXN5WXfuo2bI=">AAACGXicbVDLSgNBEJz1GeMr6tHLYhA8hd0gGjwFvOgtgnlAsoTZSScZMzO7zPSKYck/eFW/xpt49eTPiJPHwSQWNBRV3XR3hbHgBj3v21lZXVvf2MxsZbd3dvf2cweHNRMlmkGVRSLSjZAaEFxBFTkKaMQaqAwF1MPB9divP4I2PFL3OIwhkLSneJczilaq3ao4wat2Lu8VvAncZeLPSJ7MUGnnflqdiCUSFDJBjWn6XoxBSjVyJmCUbSUGYsoGtAdNSxWVYIJ0cu3IPbVKx+1G2pZCd6L+nUipNGYoQ9spKfbNojcW//OaCXZLQcrHL4Fi00XdRLgYuePX3Q7XwFAMLaFMc3ury/pUU4Y2oLktkg6AgRCjBRX7McqnUdYG5i/Gs0xqxYJ/UTi/K+bLpVl0GXJMTsgZ8cklKZMbUiFVwsgDeSYv5NV5c96dD+dz2rrizGaOyBycr1+gzKGk</latexit>

Input:

<latexit sha1_base64="9QjezA2HrFybP2YKkLw+TMg//Sw=">AAACK3icbVBNS8NAFNz4WetXVfDiJVgEL5akiHosePFYpbWFppTN9sUu3U3C7otYYv6MV/XXeFK8+jfEbc3Btg48GGbeYx7jx4JrdJx3a2FxaXlltbBWXN/Y3Nou7eze6ihRDJosEpFq+1SD4CE0kaOAdqyASl9Ayx9ejv3WPSjNo7CBoxi6kt6FPOCMopF6pX0PB0D7qYfwgH6QNk5uQGdZr1R2Ks4E9jxxc1ImOeq90rfXj1giIUQmqNYd14mxm1KFnAnIil6iIaZsSO+gY2hIJehuOvk/s4+M0reDSJkJ0Z6ofy9SKrUeSd9sSooDPeuNxf+8ToLBRTflYZwghOw3KEiEjZE9LsPucwUMxcgQyhQ3v9psQBVlaCqbSpF0CAyEyGZUHMQoH7KiKcydrWee3FYr7lnl9Lparl3k1RXIATkkx8Ql56RGrkidNAkjj+SJPJMX69V6sz6sz9/VBSu/2SNTsL5+APDbqRE=</latexit>T-Res<latexit sha1_base64="E7jYEt6CYizLIwukwg0n0N1Cmjg=">AAACK3icbVDLSgNBEJz1GeMrKnjxshgEL4bdIJpjwIvHBM0DkhBmJ71myMzuMtMrCev+jFf1azwpXv0NcfI4mMSChqKqm2rKiwTX6Dgf1srq2vrGZmYru72zu7efOzis6zBWDGosFKFqelSD4AHUkKOAZqSASk9AwxvcjP3GIyjNw+AeRxF0JH0IuM8ZRSN1c8dt7APtJW2EIXp+Ur24gyhNu7m8U3AmsJeJOyN5MkOlm/tp90IWSwiQCap1y3Ui7CRUIWcC0mw71hBRNqAP0DI0oBJ0J5n8n9pnRunZfqjMBGhP1L8XCZVaj6RnNiXFvl70xuJ/XitGv9RJeBDFCAGbBvmxsDG0x2XYPa6AoRgZQpni5leb9amiDE1lcymSDoCBEOmCiv0I5TDNmsLcxXqWSb1YcK8Kl9VivlyaVZchJ+SUnBOXXJMyuSUVUiOMPJFn8kJerTfr3fq0vqarK9bs5ojMwfr+BehXqQw=</latexit>

Q-Sep

<latexit sha1_base64="0X+Os7GDzB88OFweQR2j9PgBCtY=">AAACR3icbZDLThtBEEV7nPAyj5iwzKYVKxIbrBkLBZZIbFiSCAOSbVk17Rrccj9G3TUW1mj+g69hS/IJfAW7KCuUtvECTK7U0tWpKlX1TXMlPcXxY1T78HFldW19o765tb3zqbH7+dLbwgnsCKusu07Bo5IGOyRJ4XXuEHSq8Codn87qVxN0XlpzQdMc+xpujMykAApo0Gj3aIQwLHuEt2Ss06DKQCo+B2lWXhz8RF9xh96qCRry1aDRjFvxXPy9SRamyRY6HzSee0MrCh2mhQLvu0mcU78ER1IorOq9wmMOYgw32A3WgEbfL+d/q/i3QIY8sy48Q3xOX0+UoL2f6jR0aqCRX67N4P9q3YKy434pTV4QGvGyKCsUJ8tnQfGhdChITYMB4WS4lYsROBAU4nyzRcMYBSpVLVEa5aRvq3oILFmO5725bLeS763DH+3myfEiunX2hX1l+yxhR+yEnbFz1mGC3bF79sB+Rb+jp+hP9PeltRYtZvbYG9Wif/sMtKI=</latexit>

the T-Res resolvents

<latexit sha1_base64="l3CldvGBra2gW5o95C2OS86W+k8=">AAACLXicbVBNS8NAEN34bf2qehG8BIvgxZIUUY+CF48KrQptKZPtxC7d3YTdiVhC/DVe1V/jQRCv/gtxW3vQ6oOBx3szzMyLUiksBcGrNzU9Mzs3v7BYWlpeWV0rr29c2iQzHBs8kYm5jsCiFBobJEjidWoQVCTxKuqfDv2rWzRWJLpOgxTbCm60iAUHclKnvNWiHkI3bxHeURTn9f26AW2LolOuBNVgBP8vCcekwsY475Q/W92EZwo1cQnWNsMgpXYOhgSXWJRamcUUeB9usOmoBoW2nY8+KPxdp3T9ODGuNPkj9edEDsragYpcpwLq2UlvKP7nNTOKj9u50GlGqPn3ojiTPiX+MA6/KwxykgNHgBvhbvV5DwxwcqH92qKgjxylLCZU6qWk7oqSCyycjOcvuaxVw8PqwUWtcnI8jm6BbbMdtsdCdsRO2Bk7Zw3G2T17YI/syXv2Xrw37/27dcobz2yyX/A+vgDEWqoD</latexit>T-Trans

<latexit sha1_base64="E7jYEt6CYizLIwukwg0n0N1Cmjg=">AAACK3icbVDLSgNBEJz1GeMrKnjxshgEL4bdIJpjwIvHBM0DkhBmJ71myMzuMtMrCev+jFf1azwpXv0NcfI4mMSChqKqm2rKiwTX6Dgf1srq2vrGZmYru72zu7efOzis6zBWDGosFKFqelSD4AHUkKOAZqSASk9AwxvcjP3GIyjNw+AeRxF0JH0IuM8ZRSN1c8dt7APtJW2EIXp+Ur24gyhNu7m8U3AmsJeJOyN5MkOlm/tp90IWSwiQCap1y3Ui7CRUIWcC0mw71hBRNqAP0DI0oBJ0J5n8n9pnRunZfqjMBGhP1L8XCZVaj6RnNiXFvl70xuJ/XitGv9RJeBDFCAGbBvmxsDG0x2XYPa6AoRgZQpni5leb9amiDE1lcymSDoCBEOmCiv0I5TDNmsLcxXqWSb1YcK8Kl9VivlyaVZchJ+SUnBOXXJMyuSUVUiOMPJFn8kJerTfr3fq0vqarK9bs5ojMwfr+BehXqQw=</latexit>

Q-Sep

<latexit sha1_base64="Avmze2KpWdR6RV5bhE6zJDU7liQ=">AAACM3icbVDLSsNAFJ34tr6qLgUZLIKrkoholwU3LhWsCk0pk8mtGTqTxJkbMYTs/Bq36seIO3HrL4jT2oVtPTBwOOe+5gSpFAZd982ZmZ2bX1hcWq6srK6tb1Q3t65MkmkOLZ7IRN8EzIAUMbRQoISbVANTgYTroH868K/vQRuRxJeYp9BR7DYWPcEZWqlb3fVBpVHhYwQsLO4y0Dn1fS5ZZsCUZbdac+vuEHSaeCNSIyOcd6vffpjwTEGMdogxbc9NsVMwjYJLKCu+nZsy3me30LY0ZgpMpxj+o6T7VglpL9H2xUiH6t+OgiljchXYSsUwMpPeQPzPa2fYa3QKEacZQsx/F/UySTGhg1BoKDRwlLkljGthb6U8YppxtNGNbVGsDxykLCdUjFJUD2XFBuZNxjNNrg7r3nH96OKw1myMolsiO2SPHBCPnJAmOSPnpEU4eSRP5Jm8OK/Ou/PhfP6Wzjijnm0yBufrBz0erNE=</latexit> query
clauses

<latexit sha1_base64="cFwXHv/B4N2xo5C/+WR/NPCJtys=">AAACIHicdZBNS8NAEIY3flu/qh69LBbBiyVNtdWLCF70pmBVaINsthO7dDeJuxOxhPwOr+qv8SYe9ceIG62goi8MvDwzwwxvkEhh0HVfnJHRsfGJyanp0szs3PxCeXHp1MSp5tDisYz1ecAMSBFBCwVKOE80MBVIOAv6+0X/7Bq0EXF0goMEfMUuIxEKztAiv4Nwg0GYHW8c7ucX5Ypb3dlueFsedauu2/TqjcJ4zU2vTmuWFKqQoY4uym+dbsxTBRFyyYxp19wE/YxpFFxCXuqkBhLG++wS2tZGTIHxs4+nc7pmSZeGsbYVIf2g3zcypowZqMBOKoY987tXwL967RTDbT8TUZIiRPzzUJhKijEtEqBdoYGjHFjDuBb2V8p7TDOONqcfVxTrAwcp818Uewmqm7xkA/tKhf5vTr1qrVHdPPYqe7vD6KbIClkl66RGmmSPHJAj0iKcXJFbckfunQfn0Xlynj9HR5zhzjL5Ief1HZ55pNU=</latexit>

Q-IC

Fig. 10: Overview of handling query clauses

3. Apply the Q-Sep procedure to Q, deriving guarded clauses and optionally ICQ
clauses.

Figure 10 gives an overview of the query handling process for LG clauses presented
in this section.

The idea behind the Q-IC procedure is: whenever the T-Res resolvent R of an
ICQ clause Q and LG clauses C1, . . . ,Cn is derived, we use the T-Trans rule and the
Q-Sep procedure to replace R by a set N of LGQ clauses, which can be decided by
the T-Res+ system that we introduced above Theorem 38. Most importantly, for each
clause C in N, there exists a clause C′ in Q,C1, . . . ,Cn satisfying that C is no wider
than C′. Another optional implementation for 2.–3. of the Q-IC procedure is to devise
a customised separation rule that separates the T-Res resolvent R into LGQ clauses in
one step. This implementation is feasible due to the analysis of the variable relations
of R, as explored in Lemma 47.

The main result of this section is given as follows.

Lemma 48. In the application of the Q-IC procedure to an ICQ clause Qicq and LG
clauses Nlg, the Q-IC conclusions satisfy the following conditions.

1. They are a set N′lg of LG clauses and optionally a set Nicq of ICQ clauses.
2. For each clause C′ in N′lg, it is the case that either C′ is narrower than Qicq, or

there exists a clause C in Nlg such that C′ is no wider than C.
3. For each clause Q′icq in Nicq, Q′icq is narrower than Qicq.
4. The replacement of {Qicq}∪Nlg by N′lg∪Nicq preserves satisfiability equivalence.

Proof. By Lemma 47 and the fact that the guarded clauses are LG clausal clauses.

7 Answering BCQs for the guarded quantification fragments

In Section 4 we introduce the top-variable inference system, in Section 5 we show
that this system decides loosely guarded clauses, and in Section 6 we show how we
handle query clauses. Now we combine the results from these sections and we are
ready to describe a concrete saturation-based procedure for answering BCQs for the
guarded quantification fragments.

54 Sen Zheng, Renate A. Schmidt

We use the notation Q-Ans to denote this procedure. To show that the Q-Ans
procedure is suitable for implementation in modern saturation-based first-order the-
orem provers, we devise the procedure in accordance with the given-clause algo-
rithm [66, 95] in Algorithm 3.

Algorithm 3: The Q-Ans algorithm for answering BCQs for the guarded
quantification fragments

Input: A union q of BCQs and a set Σ of the guarded quantification formulas
Output: ‘Yes’ or ‘No’

1 workedOff← /0
2 Nlg,Nq← Trans(Σ ,q)
3 usable← Nlg
4 foreach Q in Nq do
5 Ng,Nicq← Sep(Q)
6 usable← usable∪Nicq∪Ng

7 usable← Smp(usable,usable)
8

9 while (usable 6= /0 and ⊥ 6∈ usable) do
10 given← Pick(usable)
11 workedOff← workedOff ∪ {given}
12 if (given is an ICQ clause) then
13 Rtres← T-Res(given, workedOff)
14 Nlg,Q← T-Trans(Rtres)
15 Ng,Nicq← Sep(Q)
16 new← Nlg∪Ng∪Nicq

17 else
18 new← T-Res(given, workedOff)∪Factor(given)

19 new← Smp(new,new)
20 new← Smp(Smp(new, workedOff),usable)
21 workedOff← Smp(workedOff, new)
22 usable← Smp(usable, new)∪new

23

24 if usable = /0 then Print ‘No’
25 if ⊥ ∈ usable then Print ‘Yes’

The functions in Algorithm 3 are listed below.

1. Trans(Σ ,q) applies the Trans process to a set Σ of guarded quantification formu-
las and a union q of BCQs, returning a set Nlg of LG clauses and a set Nq of query
clauses.

2. Sep(Q) applies the Q-Sep procedure to a query clause Q, and returns a set Ng of
guarded clauses and optionally a set Nicq of ICQ clause.

3. Pick(N) picks and then removes a clause from a clausal set N.

Saturation-based methods for querying the guarded quantification fragments 55

4. T-Res(C,N) eagerly applies the T-Res rule to a clause C and clauses in N, and
returns the T-Res resolvent Rtres.

5. T-Trans(Rtres) applies the T-Trans rule to the T-Res resolvents Rtres, returning a
set Nlg of LG clauses and a query clause Q.

6. Factor(C) applies the Factor rule (of the T-Res system) to a clause C, and returns
the factor of C.

7. Smp(N1,N2) returns all clauses from N1 that are not redundant with respect to
clauses in N2.

The derivation in Algorithm 3 needs to guarantee fairness. Let N be a set of
clauses. Then, a derivation N = N0,N1, . . ., with limit N∞ =

⋃
j
⋂

k≥ j Nk is fair if the
conclusion of the non-redundant premises in N∞ is contained in

⋃
j N j. Intuitively

fairness means that no inference in the derivation is delayed indefinitely. To ensure
fairness, the Pick(N) function should guarantee that every clause in N will eventually
be picked. We refer the reader to [8, page 36] for a precise definition of fairness.

As a given-clause algorithm, Algorithm 3 splits input clauses into a worked-off
clausal set workedOff storing the clauses that have already been picked as given
clauses, and a clausal set usable with clauses needed to be considered for further
inferences. For each clause C in usable, we remove it from usable, and then add C,
all non-redundant conclusions for C and the non-redundant clauses in workedOff to
usable. In the inference loop, reduction rules are applied to guarantee termination.

Algorithm 3 consists of the following stages.

– Lines 1–7 transform a union of BCQs, guarded quantification formulas into a set
of LG clauses and ICQ clauses.

– Lines 9–22 saturate the class of LG clauses and ICQ clauses.
– Lines 24–25 output the answer to the given BCQs.

Lines 1–3 initialise the workedOff and usable clausal sets. Lines 4–6 transform a
union of BCQ into a set of ICQ and guarded clauses, and then add these clauses to
the usable clausal set. Line 7 performs the input reduction that removes redundancy
in usable.

The while-loop in Lines 9–22 terminates if either usable is empty or it contains
an empty clause ⊥. Lines 10–11 pick a clause, namely given, from the usable causal
set and then add given to the workdedOffs causal set. Lines 12–18 derive new con-
clusions. Lines 12–16 say that if given is an ICQ clause, then the Q-IC procedure is
applied to this ICQ clause and LG clauses in the workedOff clausal set, deriving a set
of ICQ clauses and LG clauses. These newly derived clauses are denoted as new. As
ICQ clauses are negative clauses, the positive factoring rule Factor does not apply
to them. Lines 17–18 say that if given is an LG clause, then the T-Res or the Factor
rules are applied to that clause, deriving new LG clauses, denoted as new. Finally
Lines 19–22 are the inter-reduction steps that removes redundancy in the new, the
workdedOff and the usable clausal sets.

Lines 24–25 output the answer to the given BCQ. Suppose q = q1 ∨ . . .∨ qn is a
union of BCQs and Σ is a set of the guarded quantification formulas. An empty usable
clausal set implies that {¬q1, . . . ,¬qn}∪Σ is satisfiable. Hence, the answer to q is
‘No’. If the usable clausal set contains an empty clause, then {¬q1, . . . ,¬qn}∪Σ is
unsatisfiable. In this case, the answer to q is ‘Yes’.

56 Sen Zheng, Renate A. Schmidt

Since new predicate symbols are iteratively introduced in the derivation, one
needs to ensure that only finitely many new predicate symbols are required. The in-
troduced new predicate symbol will be reused whenever one needs to define a clause
that has been defined before. This approach is formally stated as:

Remark 49. In the Q-Ans procedure, suppose a predicate symbol P is used to define
an LGQ clause C at one step in the derivation. Then, in any further step whenever a
predicate symbol is needed for defining C, we reuse the symbol P.

We show that for the fragments we consider the Q-Ans procedure requires a finite
number of predicate symbols.

Lemma 50. In the application of the Q-Ans procedure to the BCQ answering prob-
lem for GF, LGF and CGF, only finitely many predicate symbols are introduced.

Proof. In the Q-Ans procedure, new predicate symbols are introduced in Line 2,
Lines 4–6 and Lines 14–15 in Algorithm 3. We distinguish these cases:

Line 2: Since the Trans process is applied to formulas before the saturation pro-
cess, this introduces finitely many new predicate symbols.

Lines 4–6: A union of BCQs is transformed into a finite number of query clauses.
By Lemma 45, only finitely many new predicate symbols are needed for separating
the input query clauses.

Lines 14–15: This step uses new predicate symbols to transform the T-Res resol-
vents R of an ICQ clause and LG clauses by a set of LGQ clauses. Since we reuse
the introduced predicate symbols (Remark 49), we need to prove that given an LGQ
clausal set, the number of different T-Res resolvents R is finitely bounded, and there-
fore the number of predicate symbols needed to transform the T-Res resolvents R to
LGQ clauses is finitely bounded.

W.l.o.g. suppose the T-Res rule is applied to an ICQ clause Qicq = ¬A1 ∨ . . .∨
¬Am∨ . . .∨¬An as the main premise and LG clauses C1 =B1∨D1, . . . ,Cm = Bm∨Dm
as the side premises, deriving the T-Res resolvent

R = D1σ ∨ . . .∨Dmσ ∨¬Am+1σ ∨ . . .∨¬Anσ ,

where σ = mgu(A1
.
= B1, . . . ,Am

.
= Bm). By 1. of Lemma 47, D1σ , . . . ,Dmσ are LG

clauses and ¬Am+1σ ∨ . . .∨¬Anσ is a query clause. By 1. of Corollary 25 and the
fact that the variables in ¬Am+1σ ∨ . . .∨¬Anσ are the non-top variables from Qicq,
¬Am+1σ ∨ . . .∨¬Anσ is narrower than Qicq. By 3. of Lemma 47, the clauses in
D1σ , . . . ,Dmσ are no wider than the clauses in C1, . . . ,Cm. Hence the T-Res resol-
vent R is indeed a disjunction of a query clause (narrower than the query clause in
the T-Res main premise) and LG clauses (that are no wider than the LG clauses in the
T-Res side premises). We use the terminology R-type clauses to refer to the T-Res
resolvents of an ICQ clause and LG clauses.

We first prove that in the application of the Q-Abs procedure to LGQ clauses,
the number of R-type clauses is finite. Suppose N is an LGQ clausal set. Then, by
applying the Q-Sep procedure to the query clauses in N, as shown in Lines 4–6 of
Algorithm 3, N is transformed into a set of LG clauses and a set of ICQ clauses.
Suppose N1 and N2 are sets of LG and ICQ clauses, respectively. W.l.o.g. suppose
N = N1∪N2. We distinguish the inferences performed on N1 and N2.

Saturation-based methods for querying the guarded quantification fragments 57

i: Suppose N′1 is the union of N1 and the LG clauses derived by applying the T-
Res+ system to N. By Lemma 30 and the property that LG clauses contain no nested
compound terms, N′1 consists of finitely many clauses. Suppose N′′1 is the set of LG
clauses (after condensation and modulo variable renaming) built using the signature
of N′1, and no clause N′′1 is wider than the maximal width of the clauses in N′1. By
the fact that the clauses in N′′1 are of bounded depth and width, the number of clauses
in N′′1 is finitely bounded. Suppose C is an LG clause that is a subclause in the R-
type clause when applying the T-Res rule to N. By 3. of Lemma 47, C is no wider
than the clauses in N′1, therefore C belongs to N′′1 . By the fact that the number of
clauses in N′′1 is bounded, the number of clauses that are built using LG subclauses is
bounded, hence, using the signature in N1, there are finitely many D1σ ∨ . . .∨Dmσ

clauses.
ii: Suppose N′2 is the set of query clauses (after condensation and modulo variable

renaming) built using the signature of N2, and the clauses in N′2 are narrower than the
maximal width of the clauses in N2. Since clauses in N′2 are of bounded depth and
width, there are finitely many clauses in N′2. Suppose Qr is the query clause occurring
in the R-type clause in applying the T-Res rule to N. Then, Qr is narrower than the
clauses in N′2, hence Qr belongs to N′2. Hence, using the signature in N2, there are
finitely many ¬Am+1σ ∨ . . .∨¬Anσ clauses.

By the results established in i and ii, given an LGQ clausal set N, the number
of R-type clauses that can be derived from N is finitely bounded. Then, for each
R-type clause, only a finite number of new predicate symbols is needed. Since we
reuse the introduced predicate symbols as stated in Remark 49, the total number of
new predicate symbols for transforming R-type clauses is finitely bounded. Then,
Lines 14–15 only require a finitely bounded number of new predicate symbols.

Next, we prove that the Q-Ans procedure guarantees termination.

Theorem 51. The Q-Ans procedure guarantees termination of deciding satisfiability
for the LGQ clausal class.

Proof. By Theorem 31, the Q-Ans procedure is guaranteed to terminate on the LG
clausal class. By Lemmas 44 and 48, applying the Q-Ans procedure to query clauses
and LG clauses derives LGQ clauses that are no wider and no deeper than the premises.
By Lemma 50, applying the Q-Ans procedure to LGQ clauses requires finitely many
new predicate symbols. Therefor, the Q-Ans procedure decides satisfiability of the
LGQ clausal class.

Finally, the next theorem positively answers Question 1.

Theorem 52. The Q-Ans procedure is a decision procedure for answering BCQs for
GF, LGF and CGF.

Proof. By Theorems 8, 38 and 51.

58 Sen Zheng, Renate A. Schmidt

8 Saturation-based BCQ rewriting for the guarded quantification fragments

In this section, we turn our attention to investigating the saturation-based BCQ rewrit-
ing problem for the guarded quantification fragments.

Question 2. Suppose Σ is a set of formulas in GF, LGF and CGF, D is a set of ground
atoms and q is a union of BCQs. Further, suppose N is the saturation obtained by
applying the procedure devised for Question 1 to {¬q}∪Σ . Can N be back-translated
to a (Skolem-symbol-free) first-order formula Σq such that Σ ∪D |= q if and only if
D |= Σq?

Unlike the previous setting of BCQ answering, the BCQ rewriting problem de-
pends only on the rules Σ and the query q. As guarded quantification formulas are free
of function symbols, the function symbols in the saturation of {¬q}∪Σ are Skolem
symbols, hence the obtained formula Σq should also be function-free.

Basic notions and rules for back-translation

That a clausal set N can be back-translated into a first-order formula if N is globally
consistent, globally linear, normal and unique is shown in [33, chapter 5]. To avoid
ambiguity, we replace the word consistency with compatibility in this paper.

Now we formally define the above notions, starting with global compatibility.
The compatibility property of a clause in Section 3 is extended to that of a clausal
set. Recall that two compound terms t and s are compatible if the argument sequences
of t and s are identical. A clause C is compatible if, in C, compound terms that are
under the same function symbol are compatible.

Definition 53 (Compatibility). A clausal set N is locally compatible if all clauses
in N are compatible. A clausal set N is globally compatible if compound terms in N
that are under the same function symbol are compatible.

Definition 54 (Linearity). A pair of compound terms t and s is linear if the set of
arguments in t is a subset of that in s or vice-versa. A clause C is linear if in C, each
pair of compound terms that are under different function symbols, is linear.

A clausal set N is locally linear if all clauses in N are linear. A clausal set N is
globally linear if each pair of compound terms in N that are under different function
symbols is linear.

Definition 55 (Normality). A clause is normal if the compound terms in it contain
only variables as arguments. A clausal set is normal if each clause in it is normal.

Definition 56 (Uniqueness). A compound term f (t1, . . . , tn) is unique if t1, . . . , tn are
distinct variables. A clausal set N is unique if every compound term in N is unique.

A first-order clausal set N can be back-translated into a first-order formula if N
satisfies all the aforementioned properties.

Theorem 57 ([33, chapter 5]). Suppose N is a normal, unique, globally linear and
globally compatible first-order clausal set. Then, N can be back-translated into a
first-order formula without Skolem symbols.

Saturation-based methods for querying the guarded quantification fragments 59

Next, we introduce the basic rules for back-translation. We use the notation C(t)
to denote that C(t) is a clause and t is a term that possibly occurs in C(t). We use
Cn(f (xn

m)) to denote that f (xn
m) is a flat compound term and xn

m is a variable sequence
x1, . . . ,xm occurring in the clause Cn.

A term is abstracted from a clause using:

N∪{C(t)}
Abs:

N∪{C(y)∨ t 6≈ y}
if t is a term and the variable y does not occur in C(t).

Variables are renamed using:

N∪{C(x)}
Rena:

N∪{C(y)}
if every occurrence of the variable x in C(x) is replaced by the variable y and y
does not occur in C(x).

A clausal set is unskolemised to a first-order formula using:

Suppose N′ is a first-order clausal set{C1(. . . , f (x1, . . . ,xn), . . . ,a, . . . ,z),
. . . ,

Cm(. . . ,g(x1, . . . ,xn), . . . ,b, . . .)

}
,

where a and b represent the Skolem and the non-Skolem constants in N′, re-
spectively, f and g represent the Skolem function symbols in N′, and z repre-
sents the variables that are not under Skolem functions in N′.

Let F be a Skolem-symbol-free first-order formula

∃y∀x1 . . .xn∃y1 . . .yk∀z

C1(. . . ,y1, . . . ,y, . . . ,z)∧
. . .

Cm(. . . ,yk, . . . ,b, . . .)

 ,
where the variables y,y1, . . . ,yk do not occur in N′. Then, N′ is unskolemised
by the following rule:

N∪N′
Unsko:

N∪{F}
if N′ is normal, unique, globally linear and globally compatible.

The challenge of applying the Unsko rule to a clausal set N is not only about
computing a correct result, but it is about ensuring that N is normal, unique, globally
linear and globally compatible. Given a clausal set N that is obtained by saturating
a set of clausified formulas, the Unsko rule restores first-order quantifications for N
by eliminating the Skolem symbols in N. We refer the reader to [33, chapter 5] and
[37, pages 63–69] for more details on unskolemisation.

60 Sen Zheng, Renate A. Schmidt

Lemma 58 ([37, section 5]). The Abs, the Rena and the Unsko rules preserve logical
equivalence.

Next, we devise a back-translation procedure for LGQ clausal sets. This procedure
first transforms an LGQ clausal set N to a normal, unique, globally linear and globally
compatible clausal set N1, and then unskolemises N1 into a Skolem-symbol-free first-
order formula. The following LGQ clausal set

N =

¬G1(x1,a)∨A1(f (x1,a),x1)∨A2(g(x1,a),x1),
¬G2(x2,x3)∨A3(f (x2,x3),x2)∨A4(g(x2,x3),x2),
¬G3(b,x4)∨A5(g(b,x4),b)
¬G4(x5,c,c)∨A6(h(c,c,x5))∨A7(h(c,c,x5))
¬B1(x8,x6)∨¬B2(x6,x7)∨¬B3(x7,x8)

will be used as a running example, in which a and c are non-Skolem constants and b
is a Skolem constant.

Transforming LGQ clausal sets to normal and unique clausal sets

In this section, we transform an LGQ clausal set into a normal, unique, locally linear
and locally compatible clausal set. First, we introduce two variations of the Abs rule.

Constants in compound terms are abstracted using:

N∪{C(f (. . . ,a, . . .))}
ConAbs:

N∪{C(f (. . . ,x, . . .))∨ x 6≈ a}
if the following conditions are satisfied.

1. C(f (. . . ,a, . . .)) is a compound-term clause.
2. The variable x does not occur in C(f (. . . ,a, . . .)).
3. All occurrences of a in C(f (. . . ,a, . . .)) are simultaneously replaced by x.

Duplicate variables in compound terms are abstracted using:

N∪{C(f (. . . ,x, . . . ,x, . . .)}
VarAbs:

N∪{C(f (. . . ,x, . . . ,y, . . .)∨ y 6≈ x}
if the following conditions are satisfied.

1. C(f (. . . ,x, . . . ,x, . . .)) is a compound-term clause.
2. The variable y does not occur in C(f (. . . ,x, . . . ,x, . . .)).
3. Let the second variable x in f (. . . ,x, . . . ,x, . . .) occur at the position i in

f (. . . ,x, . . . ,x, . . .). Then, all occurrence of x in position i in all compound
terms in C(f (. . . ,x, . . . ,x, . . .)) are simultaneously replaced by y.

We use Q-Abs to denote the procedure of applying the ConAbs and the VarAbs
rules to an LGQ clausal set. The Q-Abs procedure ensures that an LGQ clausal set is
transformed into a normal and unique clausal set. Using the LGQ clausal set N as an
example, the Q-Abs procedure is applied to N by the following steps.

Saturation-based methods for querying the guarded quantification fragments 61

1. Recursively apply the ConAbs rule to each clause in an LGQ clausal set. From N
we obtain

N1 =

¬G1(x1,y1)∨A1(f (x1,y1),x1)∨A2(g(x1,y1),x1)∨ y1 6≈ a,
¬G2(x2,x3)∨A3(f (x2,x3),x2)∨A4(g(x2,x3),x2),
¬G3(y2,x4)∨A5(g(y2,x4),y2)∨ y2 6≈ b,
¬G4(x5,y3,y3)∨A6(h(y3,y3,x5))∨A7(h(y3,y3,x5))∨ y3 6≈ c
¬B1(x8,x6)∨¬B2(x6,x7)∨¬B3(x7,x8)

 .

2. For each clause in the clausal set obtained in 1., recursively apply the VarAbs
rule to it. From N1 we obtain

N2 =

¬G1(x1,y1)∨A1(f (x1,y1),x1)∨A2(g(x1,y1),x1)∨ y1 6≈ a,
¬G2(x2,x3)∨A3(f (x2,x3),x2)∨A4(g(x2,x3),x2),
¬G3(y2,x4)∨A5(g(y2,x4),y2)∨ y2 6≈ b,
¬G4(x5,y3,y4)∨A6(h(y3,y4,x5))∨A7(h(y3,y4,x5))∨ y3 6≈ c∨ y4 6≈ y3
¬B1(x8,x6)∨¬B2(x6,x7)∨¬B3(x7,x8)

 .

We use the notation LGQnu to denote the clausal set obtained by applying the
Q-Abs procedure to an LGQ clausal set.

Lemma 59. Let N be a set of LGQnu clauses. Then, i) all clauses in N are strongly
compatible, and ii) N is normal, unique, locally compatible and locally linear.

Proof. W.l.o.g. suppose N1 is an LGQ clausal set satisfying such that applying Q-Abs
procedure to N1 derives N. Further, suppose C is a clause in N1.

By the strong compatible property of LGQ clauses and the fact that the ConAbs
and the VarAbs rules simultaneously abstract variables or constants from C, applying
the Q-Abs procedure to C derives a strongly compatible clause. Hence, the clauses
in N are strongly compatible, therefore N is locally compatible and locally linear.

That C is simple implies that the arguments in compound terms of C are either
variables or constants. Suppose C′ is the clause obtained by recursively applying
the ConAbs rule to C. Since each application of the ConAbs rule to C abstracts a
constant occurring in the compound terms of C, no constants occur in compound
terms in C′, hence C′ is normal. Suppose C′′ is the clause obtained by recursively
applying the VarAbs rule to C′. Since each application of the VarAbs rule to C′

abstracts a duplicate variable occurring in the compound terms of C′, no duplicate
variables occur in compound terms in C′′, therefore C′′ is unique. The fact that C′ is
normal implies that C′′ is normal. Then, N is normal and unique.

Note that an LGQnu clause may not belong to the LGQ clausal class due to the
presence of equality literals.

Renaming LGQnu clausal sets for unskolemisation

In this section, we transform an LGQnu clausal set into a normal, unique, globally
compatible and globally linear clausal set, preparing the set for unskolemisation.

Given an LGQnu clausal set N, one needs to locate the LGQnu clauses in N that
have common Skolem function symbols, so that we can simultaneously unskolemise

62 Sen Zheng, Renate A. Schmidt

these clauses. We introduce the notions of connectedness, inter-connectedness and
closed clausal set to define clauses that have identical function symbols.

Definition 60 (Inter-connected clausal set). Two clauses are connected if they contain
at least one common function symbol. Two clausal sets are connected if they contain
at least one common function symbol, otherwise, they are unconnected.

A clausal set N is an inter-connected clausal set if for any pair of clauses C and C′

in N, there exists a sequence of clauses C,C1, . . . ,Cn,C′ in N such that each pair of
adjacent clauses in C,C1, . . . ,Cn,C′ is connected.

Recall that a flat clause is a clause containing no function symbols. We say that a
clausal set is flat if the set contains only flat clauses. We partition an LGQnu clausal
set N into clausal sets N1, . . . ,Nn such that i) each Ni is either an inter-connected
clausal set or a flat clausal set, and ii) each pair of clausal sets in N1, . . . ,Nn are
unconnected. Then, N1, . . . ,Nn are closed clausal sets in N.

An inter-connected LGQnu clausal set has the following useful property.

Lemma 61. Let N be an inter-connected LGQnu clausal set. Then, all compound
terms in N have the same arity.

Proof. In a clausal set, compound terms that are under the same function symbol
have the same arity. By i) of Lemma 59, the compound terms in an LGQnu clause
have the same arity. Hence, all compound terms in an inter-connected LGQnu clausal
set have the same arity.

Given a closed LGQnu clausal set N, the Rena rule does not apply to it if N is a
flat clausal set. Variables in an inter-connected LGQnu clausal set are renamed using
the following rule:

N∪{C1(f (x1
m)), . . . ,Cn(g(xn

m)))}VarRe:
N∪{C1(f (ym)), . . . ,Cn(g(ym)))}

if the following conditions are satisfied.

1. {C1(f (x1
m)), . . . ,Cn(g(xn

m)))} is an inter-connected LGQnu clausal set.
2. For variable sequences x1

m, . . . ,xn
m occurring in all compound terms of

{C1(f (x1
m)), . . . ,Cn(g(xn

m)))}, each of x1
m, . . . ,xn

m is renamed with ym.
3. The variable sequence ym does not occur in {C1(f (x1

m)), . . . ,Cn(g(xn
m))}.

We use Q-Rena to denote the procedure of applying the VarRe rule to an inter-
connected LGQnu clausal set. The Q-Rena procedure transforms an LGQnu clausal
set to a normal, unique, globally compatible and globally linear clausal set, detailed
below.

1. Partition an LGQnu clausal set to closed LGQnu clausal sets. We use the LGQnu

clausal set N2 from the previous section as an example. Partition N2 into closed

Saturation-based methods for querying the guarded quantification fragments 63

LGQnu clausal sets

N′2 =

¬G1(x1,y1)∨A1(f (x1,y1),x1)∨A2(g(x1,y1),x1)∨ y1 6≈ a,
¬G2(x2,x3)∨A3(f (x2,x3),x2)∨A4(g(x2,x3),x2),
¬G3(y2,x4)∨A5(g(y2,x4),b)∨ y2 6≈ b

 ,

N′′2 =
{
¬G4(x5,y3,y4)∨A6(h(y3,y4,x5))∨A7(h(y3,y4,x5))∨ y3 6≈ c∨ y4 6≈ y3

}
,

and N′′′2 = {¬B1(x8,x6)∨¬B2(x6,x7)∨¬B3(x7,x8)}.

2. Apply the VarRe rule to the inter-connected LGQnu clausal sets obtained in 1.
Using a sequence of new variables x and y, applying the VarRe rule to N′2 derives

N′3 =

¬G1(x,y)∨A1(f (x,y),x)∨A2(g(x,y),x)∨ y 6≈ a,
¬G2(x,y)∨A3(f (x,y),x)∨A4(g(x,y),x),
¬G3(x,y)∨A5(g(x,y),x)∨ x 6≈ b

 .

Using new variables x1,y1,z1, applying the VarRe rule to N′′2 transforms it into

N′′3 =
{
¬G4(x1,y1,z1)∨A6(h(y1,z1,x1))∨A7(h(y1,z1,x1))∨ y1 6≈ c∨ z1 6≈ y1

}
.

Finally, from N2 we obtain the clausal set N′3∪N′′3 ∪N′′′2 .

We use the notation of LGQnucl to denote the clausal set obtained by applying the
Q-Rena procedure to an LGQnu clausal set.

Lemma 62. Let N be an LGQnucl clausal set. Then, N is normal, unique, globally
compatible and globally linear.

Proof. Suppose N1 is an inter-connected LGQnu clausal set, and N2 is a flat LGQnu

clausal set. As N2 is a flat clausal set, it is trivially is normal, unique, globally com-
patible and globally linear.

We prove that applying the Q-Rena procedure to N1 transforms it to a normal,
unique, globally compatible and globally linear clausal set. Suppose N′1 is the clausal
set obtained by applying the Q-Rena procedure to N1. By Lemma 59, N′1 is normal
and unique. By Lemma 61, the Q-Rena procedure renames the variables in N1 so
that the variable arguments in all compound terms of N1 are renamed with an identi-
cal variable sequence. Then, N′1 is globally compatible and globally linear. Since N2
is normal, unique, globally compatible and globally linear, N is normal, unique, glob-
ally compatible and globally linear.

Unskolemising LGQnucl clausal sets

In this section, we unskolemise an LGQnucl clausal set to a first-order formula without
Skolem symbols. Two variations of the Unsko rule, respectively, are devised for inter-
connected LGQnucl clausal sets and flat LGQnucl clausal sets.

An inter-connected LGQnucl clausal set is unskolemised using:

64 Sen Zheng, Renate A. Schmidt

Suppose N′ is an inter-connected LGQnucl clausal set{C1(x1, . . . ,xn, f (x1, . . . ,xn),z1,a),
. . .

Cn(x1, . . . ,xn,g(x1, . . . ,xn),zt ,b)

}
,

where a, b, x1, . . . ,xn and z1, . . . ,zt represent the Skolem constants, the non-
Skolem constants and the variables introduced by the Q-Rena and Q-Abs pro-
cedures, respectively. Suppose F is the Skolem-symbol-free first-order formula

∃y∀x1 . . .xn∃y1 . . .ym∀z1, . . . ,zt

C1(x1, . . . ,xn,y1,z1,y)∧
. . .

Cn(x1, . . . ,xn,ym,zt ,b)

 ,
where the variables y,y1, . . . ,ym do not occur in N′.

Then, N′ is unskolemised by the following rule:

N∪N′
UnSkI:

N∪{F} .

A flat LGQnucl clausal set is unskolemised using:

N∪{C1(x,a), . . . ,Cn(y,b)}UnSkF:
N∪{∃z∀xy(C1(x,z)∧ . . .∧Cn(y,b))}

if the following conditions are satisfied.

1. {C1(x,a), . . . ,Cn(y,b)} is a flat LGQnucl clausal set.
2. a and b, respectively, represent the Skolem and the non-Skolem constants

in {C1(x,a), . . . ,Cn(y,b)}.
3. The variable z does not occur in {C1(x,a), . . . ,Cn(y,b)}.

We use Q-Unsko to denote the procedure of applying the UnSkI and the UnSkF
rules to an LGQnucl clausal set. Using the LGQnucl clausal set N′′′2 ∪N′3 ∪N′′3 as an
example, we show what the Q-Unsko procedure does.

1. For inter-connected LGQnucl clausal sets, the UnSkI rule is applied to them. Ap-
plying the UnSkI rule to N′3 and N′′3 , respectively, derives

F1 = ∃z′∀xy∃x′y′
 (¬G1(x,y)∨A1(x′,x)∨A2(y′,x)∨ y 6≈ a) ∧
(¬G2(x,y)∨A3(x′,x)∨A4(y′,x)) ∧
(¬G3(x,y)∨A5(y′,x)∨ x 6≈ z′)

 and

F2 = ∀y1z1x1∃x′1
[
¬G4(x1,y1,z1)∨A6(x′1)∨A7(x′1)∨ y1 6≈ c∨ z1 6≈ y1

]
.

2. For flat LGQnucl clausal sets, the UnSkF rule is applied to them. Applying the
UnSkF rule to N′′′2 unskolemise it into

F3 = ∀x6x7x8
[
¬B1(x8,x6)∨¬B2(x6,x7)∨¬B3(x7,x8)

]
.

Saturation-based methods for querying the guarded quantification fragments 65

<latexit sha1_base64="rpu60vOSjKQZczanzK/lxLryenE=">AAACQnicbVBNSyNBEO1Rd9Xsh1n36KUxLHgxzCzB9Sh4WA8eFIwKmRBqOjVOk+6eobtmMQzzK/bX7FX9E/4Fb7JXETsxB40+KHi8V9XV9ZJCSUdheBssLC59+Li8str49PnL17Xmt/VTl5dWYFfkKrfnCThU0mCXJCk8LyyCThSeJaP9iX/2B62TuTmhcYF9DRdGplIAeWnQ3I5RF1kVU4YwrMDwmPCSXFod/j6ueRxzoaB0oLhDqutBsxW2wyn4WxLNSIvNcDRoPsbDXJQaDfmHnOtFYUH9CixJobBuxKXDAsQILrDnqQGNrl9Nz6r5D68MeZpbX4b4VH05UYF2bqwT36mBMjfvTcT3vF5J6W6/kqYoCY14XpSWilPOJxnxobQoSI09AWGl/ysXGVgQ5JN8tUXDCAUqVc+plBWkL+uGDyyaj+ctOf3ZjnbaneNOa293Ft0K22CbbItF7BfbYwfsiHWZYH/ZP3bFroOb4C64D/4/ty4Es5nv7BWChyfMmbJ5</latexit>

an LGQ
clausal set

<latexit sha1_base64="Mjkn3JheziiPTeCoq8om8sxUh2E=">AAACIXicbVDLSgNBEJz1GeMr6tHLYhC8GHYlaI4RLx4TMA9IYpid9CZDZnaXmV5JWPY/vKpf4028if8iTh4Hk1jQUFR1U015keAaHefLWlvf2Nzazuxkd/f2Dw5zR8d1HcaKQY2FIlRNj2oQPIAachTQjBRQ6QloeMO7id94AqV5GDzgOIKOpP2A+5xRNNJjG2GEnp9UL289nXZzeafgTGGvEndO8mSOSjf30+6FLJYQIBNU65brRNhJqELOBKTZdqwhomxI+9AyNKASdCeZfp3a50bp2X6ozARoT9W/FwmVWo+lZzYlxYFe9ibif14rRr/USXgQxQgBmwX5sbAxtCcV2D2ugKEYG0KZ4uZXmw2oogxNUQspkg6BgRDpkoqDCOUozZrC3OV6Vkn9quBeF4rVYr5cmleXIafkjFwQl9yQMrknFVIjjCjyTF7Iq/VmvVsf1udsdc2a35yQBVjfv0HQpSE=</latexit>

Q-Abs
<latexit sha1_base64="cEI6wxkuNlxVBEo7mKuebUHifhA=">AAACJHicbVBNS8NAFNz4WetHox69BIvgxZKIqMeCF4+t2Cq0pWy2L3bp7ibsvogl5Jd4VX+NN/HgxZ8ibtsctDrwYJh5j3lMmAhu0Pc/nIXFpeWV1dJaeX1jc6vibu+0TZxqBi0Wi1jfhtSA4ApayFHAbaKBylDATTi6mPg396ANj9U1jhPoSXqneMQZRSv13UoX4QHDKGseXYGied+t+jV/Cu8vCQpSJQUafferO4hZKkEhE9SYTuAn2MuoRs4E5OVuaiChbETvoGOpohJML5s+nnsHVhl4UaztKPSm6s+LjEpjxjK0m5Li0Mx7E/E/r5NidN7LuEpSBMVmQVEqPIy9SQvegGtgKMaWUKa5/dVjQ6opQ9vVrxRJR8BAiHxOxWGC8iEv28KC+Xr+kvZxLTitnTSPq/XzoroS2SP75JAE5IzUySVpkBZhJCWP5Ik8Oy/Oq/PmvM9WF5ziZpf8gvP5DaYOpco=</latexit>

Q-Rena
<latexit sha1_base64="nv9m0G+3Q/OJJl0HbKvzU7F3a+0=">AAACJXicbVDLSgNBEJz1GeNr1aOXxSB4MeyKqEfBi8cI5gFJCLOT3mTIzOwy0xsSlv0Tr+rXeBPBk38iTmIOJrGgoajqppoKE8EN+v6ns7K6tr6xWdgqbu/s7u27B4c1E6eaQZXFItaNkBoQXEEVOQpoJBqoDAXUw8HdxK8PQRseq0ccJ9CWtKd4xBlFK3Vct4UwwjDKHs6rygzivOOW/LI/hbdMghkpkRkqHfe71Y1ZKkEhE9SYZuAn2M6oRs4E5MVWaiChbEB70LRUUQmmnU0/z71Tq3S9KNZ2FHpT9e9FRqUxYxnaTUmxbxa9ifif10wxumlnXCUpgmK/QVEqPIy9SQ1el2tgKMaWUKa5/dVjfaopQ1vWXIqkA2AgRL6gYj9BOcqLtrBgsZ5lUrsoB1fly4eL0u3NrLoCOSYn5IwE5JrckntSIVXCyJA8kWfy4rw6b8678/G7uuLMbo7IHJyvH7p1pl4=</latexit>

Q-Unsko
<latexit sha1_base64="E4IIzwD7Z0AMry4fvuP3q3OPTJM=">AAACT3icbVBNT9tAFFwH2kLoRwrHXlZESL0kslHVIk5UvfRI1QaQ4ih6Xj/jVXa91u5zRWT5v/TX9Fo49pdwQ12nPkBgpJVGM281701SKukoDP8GvY3NZ89fbG33d16+ev1m8Hb3zJnKCpwIo4y9SMChkgVOSJLCi9Ii6EThebL40vrnP9E6aYoftCxxpuGykJkUQF6aD45j1GVex5QjpPVn/n1hFOqRW+rEqFFmEXkc80xaRyNjU7Q8M1ZXCppmPhiG43AF/phEHRmyDqfzwV2cGlFpLEgocG4ahSXNarAkhcKmH1cOSxALuMSppwVodLN6dWPDD7yStuH+FcRX6v0fNWjXbu0nNVDu1r1WfMqbVpQdzWpZlBVhIf4HZZXiZHhbGE+lRUFq6QkIK/2uXORgQZCv9UGKhgUKVKpZUykvSV81fV9YtF7PY3J2OI4+jj98OxyeHHXVbbF3bJ+9ZxH7xE7YV3bKJkywX+w3+8Oug5vgNrjrdaO9oCN77AF62/8AozC1yg==</latexit>

A Skolem-symbol-free
first-order formula

<latexit sha1_base64="0XZOUjPr2JhweA/XZbE0LMWIzD4=">AAACUHicbVDBbhMxEJ0NLZS0QIAjF6spEqdoF1VQiUslDvTAoZVIWykbRbPObNeK7V3Zs6jRaj+Gr+EK3PonnAAnTSWa9kmWn9+b8dgvq7TyHMdXUefBxubDR1uPu9s7T54+6z1/cerL2kkaylKX7jxDT1pZGrJiTeeVIzSZprNs9nHhn30l51Vpv/C8orHBC6tyJZGDNOl9SMlURZNyQTht0IqU6ZJ93nz+dNLuTW5Otm73RJoKqbH2qIUnbttJrx8P4iXEXZKsSB9WOJ70/qTTUtaGLIeLvB8lccXjBh0rqantprWnCuUML2gUqEVDftwsP9mK10GZirx0YVkWS/X/jgaN93OThUqDXPh1byHe541qzg/GjbJVzWTl9aC81oJLsUhMTJUjyXoeCEqnwluFLNCh5JDrrSkGZyRJ63ZN5aJic9l2Q2DJejx3yenbQfJusH+y3z88WEW3Ba9gF95AAu/hEI7gGIYg4Rt8hx/wM/oV/Y7+dqLr0psdXsItdLr/ABaItoM=</latexit>

an LGQnu

clausal set

<latexit sha1_base64="zKegcdBDRZZCQsyx+Vi1czuBZeU=">AAACUnicbVJNTxsxEHVCCyF8NJQjF4uA1FO0iyLKBSlSD+XAAaQGkLJRNOvMslZs78qeRUSr/TX9Nb0WLv0rPSCckEoQ+iRLz+/NeOwnx7mSjoLgT62+8uHj6lpjvbmxubX9qbXz+cplhRXYF5nK7E0MDpU02CdJCm9yi6Bjhdfx5NvMv75D62RmftA0x6GGWyMTKYC8NGqdRqjztIwoRRiXYHhEeE8uKc+/X1YHo387UwhVHfAo4kJB4UBxh1RVo1Y76ARz8PckXJA2W+Bi1HqKxpkoNBryBzk3CIOchiVYkkJh1YwKhzmICdziwFMDGt2wnD+z4odeGfMks34Z4nP1dUcJ2rmpjn2lBkrdsjcT/+cNCkpOhqU0eUFoxMugpFCcMj7LjI+lRUFq6gkIK/1duUjBgiCf7JspGiYoUKlqSaU0J31fNX1g4XI878nVUSc87nQvu+3eySK6Bttj++wLC9lX1mNn7IL1mWA/2S/2mz3UHmt/6/6XvJTWa4ueXfYG9c1nzA+2Zw==</latexit>

an LGQnucl

clausal set

Fig. 11: The back-translation process for LGQ clausal sets

3. Conjunctively connect the outputting formulas of 1. and 2. The running sample N
is hence back-translated to a Skolem-symbol-free first-order formula F1∧F2∧F3.

Lemma 63. The back-translation defined by applying the Q-Unsko procedure to an
LGQnucl clausal set is a Skolem-symbol-free first-order formula (with equality).

Proof. By Lemma 62, Theorem 57 and the definition of the Q-Unsko procedure.

The result of our back-translation procedure is summarised as follows.

Lemma 64. Let N be an LGQ clausal set. Then, i) successively applying the Q-
Abs, the Q-Rena and the Q-Unsko procedures to N back-translates it into a Skolem-
symbol-free first-order formula F, and ii) F is logically equivalent to N.

Proof. By ii) of Lemma 59, Lemmas 62 and 63, N is ensured to be back-translated
to a Skolem-symbol-free first-order formula. That the ConAbs and the VarAbs rules
are special cases of the Abs rule, the VarRe rule is a special case of the Rena rule,
the UnSkI and the UnSkF rules are special cases of the Unsko rule and Lemma 58
imply that F and N are logically equivalent.

Figure 11 summarises our back-translation procedure for the LGQ clausal class.
Returning to Question 2, let a first-order formula Σq be computed such that D |=

Σq if and only if Σ ∪D |= q. The final step in our procedure is to negate the first-
order formula form of the saturation of Σ ∪{¬q}. In our example, we need negate
F1∧F2∧F3 to obtain as Σq:

∀z′∃xy∀x′y′
 (G1(x,y)∧¬A1(x′,x)∧¬A2(y′,x)∧ y≈ a) ∨
(G2(x,y)∧¬A3(x′,x)∧¬A4(y′,x)) ∨
(G3(x,y)∧¬A5(y′,x)∧ x≈ z′)

∨
∃y1z1x1∀x′1

[
G4(x1,y1,z1)∧¬A6(x′1)∧¬A7(x′1)∧ y1 ≈ c∧ z1 ≈ y1

]
∨

∃x6x7x8[B1(x8,x6)∧B2(x6,x7)∧B3(x7,x8)].

Let N be an LGQ clausal set. We use Q-Rew to denote the procedure of succes-
sively applying the Q-Abs, the Q-Rena and the Q-Unsko procedures to N, deriving
a first-order formula F , and then negating F .

Finally, we positively answer Question 2.

66 Sen Zheng, Renate A. Schmidt

Theorem 65. Suppose Σ is a set of guarded quantification formulas, D is a set of
ground atoms and q is a union of BCQs. Further, suppose N is a saturation obtained
by applying Q-Ans to {¬q}∪Σ . Then, applying the Q-Rew procedure to N produces a
Skolem-symbol-free first-order formula Σq such that Σ ∪D |= q if and only if D |= Σq.

Proof. By Lemma 64.

Comparing the signature in Σq and that in Σ and q, Σq may contain predicate
and equality symbols not occurring in q and Σ , since these symbols may have been
introduced by the Q-Ans and the Q-Abs procedures, respectively.

9 Related work

Resolution-based decision procedures

The basis of our BCQ answering and rewriting approaches is saturation-based reso-
lution, which provides a practical and powerful method for developing decision pro-
cedures, as is evidenced in [9, 35, 38, 57, 59, 60, 69, 83].

The P-Res rule is inspired by the ‘partial replacement’ strategy in [7, 8] and the
‘partial conclusion’ of the ‘Ordered Hyper-Resolution with Selection’ rule in [39].
Even though [39] claims that the idea of ‘partial conclusion’ can be easily generalised
in the framework of [8], it does not show how and no proof is provided. In [7] and [8],
the ‘partial replacement’ strategy seems to be what is behind ‘partial conclusions’,
and it is proved that for ground clauses the ‘partial replacement’ strategy makes the
application of a selection-based resolution rule, viz., the S-Res rule, redundant. In
this paper, we formalise ‘partial replacement’ in the P-Res system with the P-Res
rule as the core rule. We have proved the system is generally sound and refutationally
complete for full first-order clausal logic.

The P-Res rule adds high-level flexibility to the approach of an S-Res inference
step, as one can choose any sub-multiset of the S-Res side premises as the P-Res
side premises. This means that the P-Res rule gives us the option to choose a desir-
able resolvent from the possible ‘partial resolvents’. This technique is critical in our
methods to querying for the guarded quantification fragments, allowing a choice of
the ‘partial resolvent’ that can be expressed in the same clausal class as the P-Res
premises.

Motivated by the ‘MAXVAR’ technique in [69], we devised the top-variable tech-
nique. The ‘MAXVAR’ technique and the top-variable technique are also used in [39]
and [98], respectively. A detailed example to demonstrate how the ‘MAXVAR’ tech-
nique works is given in [39], and the reader is referred to the manuscript [69] for
the formal definitions and proofs. [69] uses the ‘MAXVAR’ technique to avoid term
depth increase in the resolvents of the loosely guarded clauses with nested compound
terms. The presentation of the ‘MAXVAR’ technique in [69] is complicated: one
needs to identify the depth of a sequence of variables, and then apply a specially
devised unification algorithm to find ‘MAXVAR’. Moreover, the ‘MAXVAR’ tech-
nique requires the use of non-liftable orderings, which are not compatible with the
framework of [8].

Saturation-based methods for querying the guarded quantification fragments 67

We introduce the top-variable technique as a variation and simplification of the
‘MAXVAR’ technique in the conference paper [98], which considers the LG clausal
class with no nested compound terms. The top-variable technique is generalised to
apply to query clauses and already uses liftable orderings, so that it fits into the
framework of [8]. However, in [98], the pre-conditions of the top-variable technique,
so-called query pairs, cannot be immediately applied in our general querying setting.

Improving on [39, 69, 98], in the present paper, we first give a clean approach to
compute top variables, viz., the ComT function, and we then encode the top-variable
technique in the TRes function, as given in Algorithm 2. We formally prove that the
T-Res rule can be used in any saturation-based resolution inference system following
principles of the framework of [8]. We further generalise the premises of the T-Res
rule to non-ground flat clauses and LG clauses, with detailed formal proofs given in
Lemma 24, Corollary 25 and Lemma 26.

The T-Res system extends the resolution systems for the guarded fragment in [39,
60, 69] and the loosely guarded fragment in [39, 69, 98]. Although [60] is not inter-
ested in the loosely guarded fragment, it points out that the guarded clauses have
the property that all compound terms have the same sequence of variables, i.e., the
strongly compatible property, which is an essential observation for our saturation-
based rewriting procedure. Nonetheless, in [60], this property is only used in analysing
the complexity of its resolution decision procedure for the guarded fragment. [39] in-
cludes a discussion of refinement for the loosely guarded fragment, but does not give
a formal description of the refinement or relevant proofs. A detailed refinement for
the loosely guarded fragment is given in [69] with proofs, but [69] uses non-liftable
orderings, which are not compatible with the framework of [8]. The resolution frame-
work in [8] provides a powerful system unifying many different resolution refinement
strategies that exist in different forms, such as standard resolution, ordered resolu-
tion, hyper-resolution and selection-based resolution, and it provides vigorous sim-
plification rules and redundancy elimination techniques, and forms the basis of the
most state-of-the-art first-order theorem provers, such as SPASS [96], Vampire [76],
E [84], and Zipperposition [28]. Our initial work in [98] gives a resolution-based
procedure in line with the resolution framework of [8] for deciding satisfiability of
LGF and querying for LGF, but only solves the BCQ answering problem for the Horn
fragment of LGF.

In this paper, we formally define and thoroughly investigate partial resolution and
the top-variable resolution techniques and develop detailed proofs. We then show that
these techniques can be used and extended to decide satisfiability, BCQ answering
and saturation-based BCQ rewriting for the guarded quantification fragments.

These are significant improvements and extensions over [39,60,69,98]. Moreover,
our methods provide the basis for BCQ answering and new saturation-based BCQ
rewriting procedures for all the guarded quantification fragments.

BCQ answering problem

The chase algorithms [21], which can be viewed as a form of forward chaining [80]
or semantic tableau [49], is the state-of-the-art methods in solving BCQ answering

68 Sen Zheng, Renate A. Schmidt

problems in database and knowledge representation. These methods are applied on
the ground data and Σ -rules in implication normal form. Unlike chase, our saturation-
based query answering procedure does not require the grounding of clauses, which
significantly reduces the number of clauses that need to be generated and handled.
In our procedures, the inferences are performed differently, in particular, we are not
limited to forward chaining and instead the Σ -clauses can be saturated first and then
data can be added. Not only do our procedures avoid grounding, but they can simulate
grounding by performing inferences on data first.

The following ontology-based data access [25, 30, 52, 72] scenario further mo-
tivates the saturation-based methods to address query answering problems: given a
set Σ of guarded quantification formulas, a BCQ q and datasets D, checking whether
Σ ∪D |= q is equivalent to checking unsatisfiability of {¬q}∪Σ ∪D.

Suppose both q and Σ are fixed. We pre-saturate {¬q}∪Σ and use N to de-
note this pre-saturation. Then, independent of the datasets D, the saturation N
can be reused in checking satisfiability of N ∪D. This prevents having to re-
compute numerous inferences of {¬q}∪Σ unnecessarily.

Previous works investigate the BCQ answering problem for Datalog± [23] and
description logics, such as guarded Datalog± rules [21, 22, 24] and fragments of the
description logic ALCHOI [25, 62, 67, 78]. Constraints in relational databases and
ontological languages in knowledge bases are widely formalised in rules of Datalog±,
therefore devising automated querying procedures for Datalog± is important.

A Datalog± rule is a first-order formula in the form

F = ∀xy(ϕ(x,y)→∃zφ(x,z)),

where ϕ(x,y) and φ(x,z) are conjunctions of atoms. Although answering BCQs for
Datalog± rules is undecidable [17], answering BCQs for the guarded fragment of
Datalog±, viz., guarded Datalog± rules, is 2EXPTIME-complete [22]. The above
Datalog± rule F is a guarded Datalog± rule if there exists an atom in ϕ(x,y) that
contains all free variables of ∃zφ(x,z). Guarded Datalog± can be extended to the so-
called loosely guarded and clique-guarded Datalog± by adopting the definition of the
loosely guarded and the clique-guarded fragments, respectively. For example,

∀xyz(Siblings(x,y)∧Siblings(y,z)∧Siblings(z,x)→∃u(Mother(u,x,y,z)))

is a loosely guarded Datalog± rule. Guarded, loosely guarded and clique-guarded
Datalog± rules can be seen as belonging to the Horn fragments of GF, LGF and CGF,
respectively. Therefore our methods apply and lay the theoretical foundation for the
first practical decision procedure of answering BCQs for guarded, loosely guarded
and clique-guarded Datalog± rules. Note that there are guarded Datalog± rules that
are not expressible in GF [10, page 103], however, the Trans process transforms these
Datalog± rules into Horn guarded clauses.

The fragments of expressive description logic ALCHOI [5] are prominent onto-
logical languages in semantic web [50]. Query answering approaches for fragments
of ALCHOI have been extensively studied in the literature [25,40,62,67,78]. A key
technique in this area is transforming BCQs into knowledge bases; see the rolling-
up technique in [88] and the tuple graph technique in [26]. Interestingly, our Q-Sep

Saturation-based methods for querying the guarded quantification fragments 69

procedure also achieves encoding of a query clause into the knowledge base of LG
clauses. By the standard translation [19, chapter 2], axioms in the description logic
ALCHOI can be translated into guarded formulas needing only unary and binary
predicate symbols. Hence, our Q-Ans procedure can also be used as a practical deci-
sion procedure for BCQ answering for the expressive description logic ALCHOI.

The squid decomposition technique analyses the complexity for answering BCQs
over weakly guarded Datalog± [22]. In squid decompositions, a BCQ is regarded as
a squid-like graph in which branches are ‘tentacles’ and variable cycles are ‘heads’.
Squid decomposition finds ground atoms that are complementary in the squid head,
and then uses ground unit resolution to eliminate the heads. In contrast, our approach
uses the separation rules to first cut ‘tentacles’ and then uses the T-Res rule to re-
solve cycles in ‘heads’. Our approach produces compact saturations of BCQs and the
guarded quantification formulas, thus avoiding the significant overhead of grounding.

BCQ rewriting problem

Standard BCQ rewriting settings consider the following problem: given a union q of
BCQs, a set Σ of first-order formulas and a dataset D, can we produce (function-
free) first-order formulas Σq, so that the entailment checking problem of D∪Σ |= q is
reduced to the model checking problem of D |= Σq. If there exists such a Σq, Σ and q
are said to be first-order rewritable [25]. Problems on the first-order rewritability
property have been extensively studied in [20, 25, 51, 89, 90] for different description
logics, and in [14, 24, 43, 51] for fragments of Datalog± rules. However, it is known
that BCQ answering for none of the guarded quantification fragments are first-order
rewritable. Another interesting saturation-based rewriting approach is [58], in which
one first saturates axioms of the description logic SHIQ, presenting the saturation
as a set of disjunctive Datalog rules, and then deductive databases are used to check
entailment of BCQs over the disjunctive Datalog rules.

Unlike the idea of the first-order rewritability, saturation-based BCQ rewriting re-
gards D |= Σq as an entailment checking problem. Unlike [58], in our query rewriting,
queries are included in the reasoning process to obtain a saturation. Our saturation-
based query rewriting is advantageous in ontology-based data access scenarios: Hav-
ing a function-free first-order formula Σq such that D∪Σ |= q if and only if D |=
Σq, we can check Σq over different datasets D1, . . . ,Dn. More importantly, to check
whether Di |= Σq, we can use reasoning methods other than resolution, e.g., the chase
algorithm, as Σq is free of Skolem symbols. This combines different reasoning tools
can potentially accelerate query answering processes. Moreover, devising this rewrit-
ing procedure is interesting and challenging in its own right, as it required a new
investigation and new techniques to back-translate a first-order clausal set into a
function-free first-order formula, which in general is an undecidable problem.

10 Conclusion and Discussion

Considering the problem of query answering for the guarded quantification frag-
ments, we present three sound and refutationally complete saturation-based resolu-

70 Sen Zheng, Renate A. Schmidt

tion inference systems for general first-order clausal logic. Based on the top-variable
inference system and customised separation rules, we establish the theoretical foun-
dation for the first practical decision procedures of BCQ answering for the guarded,
the loosely guarded, and the clique-guarded fragments. By extending the BCQ an-
swering procedures with the back-translation techniques, we have devised a novel
saturation-based BCQ rewriting procedure for these fragments.

We are confident that our procedures provide a solid foundation for practical im-
plementations. We claim the procedures can be implemented in any saturation-based
theorem prover, as they are devised in line with the resolution framework in [8]. Com-
pared to the framework in [8], novel techniques are i) the SepDeQ and the SepIndeQ
rules, ii) the P-Res and the T-Res rules and iii) the rules in the Q-Rew procedure.

i) Given a query clause Q, the application of the SepDeQ or the SepIndeQ rules
to Q can be implemented by the following steps.

1. Find the surface literals in Q. By regarding each literal L in Q as a multiset in
which the elements are the variable arguments of L, one can implement a multiset
ordering �m for the literals in Q. The �m-maximal literals in Q are the surface
literals in Q.

2. Identify the separable surface literals in Q. Check whether two surface literals
in Q have overlapping variables.

3. Identify the separable subclauses in Q. Suppose L1 and L2 are two separable sur-
face literals in Q. To separate L1 from Q, one needs to find the literals in Q that
are �m-smaller than L1, namely the literals guarded by L1. The literals guarded
by L1 are a separable subclause in Q.

4. Separate the subclause guarded by L1 from Q. Following the conditions defined in
the SepDeQ or the SepIndeQ rule, apply formula renaming with negative literals
to replace the literals guarded by L1 by a fresh predicate symbol containing the
only overlapping variables of L1 and L2.

ii) A possible implementation of the P-Res or the T-Res rule is: Suppose in a
selection-based resolution (S-Res) inference, C1, . . . ,Cn are the side premises, and C
is the main premise with the negative literals ¬A1, . . . ,¬An selected. Then, one can
use the selection-based resolution (S-Res) to implement a P-Res or a T-Res resolvent
of C and C1, . . . ,Cn as follows.

1. Without deriving any resolvent, compute an mgu σ ′ between C and C1, . . . ,Cn.
2. Unselect the literals¬A1, . . . ,¬An in C, and then select a sub-multiset¬A1, . . . ,¬Am

of ¬A1, . . . ,¬An where 1 ≤ m ≤ n, performing the P-Res rule on C1, . . . ,Cm and
C with ¬A1, . . . ,¬Am selected. For the case of the T-Res inference, ¬A1, . . . ,¬Am
are the top-variable literals computed using the variable ordering �v and σ ′.

3. When the P-Res or the T-Res resolvent is derived, unselect ¬A1, . . . ,¬Am.

iii) The Abs, the Rena and the Unsko rules have been used in eliminating second-
order quantifiers tasks, as implemented in the SCAN system [71].

One next step is implementing the Q-Ans and the Q-Rew procedures and eval-
uating them on real-world ontologies. For example, we could focus on ontologies
that are composed by the fragments of the description logic ALCHOI and guarded,
loosely guarded and clique-guarded Datalog±, since the number of GF problems in
the TPTP first-order theorem proving benchmark [86] is rather small.

Saturation-based methods for querying the guarded quantification fragments 71

Two other interesting questions for future work are: 1) Extend our saturation-
based procedures to support the tasks of BCQ answering and saturation-based BCQ
rewriting for the guarded negation and the clique-guarded negation fragments [11].
This will require equality reasoning which we conjecture can be handled by exten-
sions of the procedures presented in this paper with paramodulation or superposi-
tion. Whether our saturation-based methods can be refined to decide satisfiability of
other variations of the guarded fragment such as the guarded fragment with transi-
tive guards [87], the triguarded fragment [61,79], the two-variable guarded fragment
with counting quantifiers [73] and the forward guarded fragment [15], and querying
for other guard-related fragments such as the monadic fragment of the two-variable
guarded fragment with transitive guards [44] and the forward guarded fragment [15]
remains to be investigated.

2) In our Q-Rew procedure, the rewritten queries are expressible in LGF and
BCQs, but with equality. It would be interesting to know whether in the setting of
the saturation-based BCQ rewriting problem for the guarded quantification fragments
with equality, one can translate the saturated clausal set back into BCQs and formulas
in these guarded quantification fragments with equality. The answer is not straight-
forward, as we first need to develop a decision procedure for the problem of the BCQ
answering for these equality-occurring fragments.

Acknowledgements We would like to thank the editor and the reviewers for the useful comments. Sen
Zheng’s work is partially sponsored by the Great Britain-China Educational Trust.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases: The Logical Level. Addison-Wesley
Longman (1995)

2. Aho, A.V., Beeri, C., Ullman, J.D.: The Theory of Joins in Relational Databases. ACM Trans.
Database Syst. 4(3), 297–314 (1979)

3. Andréka, H., Németi, I., van Benthem, J.: Modal Languages and Bounded Fragments of Predicate
Logic. J. Philos. Logic 27(3), 217–274 (1998)

4. Areces, C., Monz, C., de Nivelle, H., de Rijke, M.: The Guarded Fragment: Ins and Outs. Essays
dedicated to Johan van Benthem on the occasion of his 50th birthday 28, 1–14 (1999)

5. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge Univ.
Press (2017)

6. Baaz, M., Egly, U., Leitsch, A.: Normal Form Transformations. In: J.A. Robinson, A. Voronkov (eds.)
Handbook of Automated Reasoning, pp. 273–333. Elsevier and MIT Press (2001)

7. Bachmair, L., Ganzinger, H.: A Theory of Resolution. Research Report MPI-I-97-2-005, Max-Planck-
Institut für Informatik (1997)

8. Bachmair, L., Ganzinger, H.: Resolution Theorem Proving. In: J.A. Robinson, A. Voronkov (eds.)
Handbook of Automated Reasoning, pp. 19–99. Elsevier and MIT Press (2001)

9. Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with Simplification as a Decision Proce-
dure for the Monadic Class with Equality. In: Proc. KGC’93, LNCS, vol. 713, pp. 83–96. Springer
(1993)

10. Bárány, V., Benedikt, M., ten Cate, B.: Rewriting Guarded Negation Queries. In: Proc. MFCS’13, pp.
98–110. Springer (2013)

11. Bárány, V., ten Cate, B., Segoufin, L.: Guarded Negation. J. ACM 62(3), 22:1–22:26 (2015)
12. Bárány, V., Gottlob, G., Otto, M.: Querying the Guarded Fragment. Logic Methods Comput. Sci.

10(2) (2014)

72 Sen Zheng, Renate A. Schmidt

13. Barceló, P., Berger, G., Gottlob, G., Pieris, A.: Guarded Ontology-Mediated Queries. In: J. Madarász,
G. Székely (eds.) Hajnal Andréka and István Németi on Unity of Science: From Computing to Rela-
tivity Theory Through Algebraic Logic, pp. 27–52. Springer (2021)

14. Barceló, P., Berger, G., Lutz, C., Pieris, A.: First-Order Rewritability of Frontier-Guarded Ontology-
Mediated Queries. In: Proc. IJCAI’18, pp. 1707–1713. IJCAI (2018)

15. Bednarczyk, B.: Exploiting Forwardness: Satisfiability and Query-Entailment in Forward Guarded
Fragment. In: Proc. JELIA’2021, LNCS, vol. 12678, pp. 179–193. Springer (2021)

16. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the Desirability of Acyclic Database Schemes. J.
ACM 30(3), 479–513 (1983)

17. Beeri, C., Vardi, M.Y.: The Implication Problem for Data Dependencies. Springer (1981)
18. van Benthem, J.: Dynamic Bits and Pieces. Research Report LP-97-01, Univ. Amsterdam (1997)
19. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theor. Comp. Sci.

Cambridge Univ. Press (2001)
20. Borgida, A., de Bruijn, J., Franconi, E., Seylan, I., Straccia, U., Toman, D., Weddell, G.E.: On Finding

Query Rewritings under Expressive Constraints. In: Proc. SEDB’10, pp. 426–437. Esculapio Editore
(2010)

21. Calautti, M., Gottlob, G., Pieris, A.: Chase Termination for Guarded Existential Rules. In: Proc.
PODS’15, pp. 91–103. ACM (2015)

22. Calı̀, A., Gottlob, G., Kifer, M.: Taming the Infinite Chase: Query Answering Under Expressive Re-
lational Constraints. J. Artif. Intell. Res. 48(1), 115–174 (2013)

23. Calı̀, A., Gottlob, G., Lukasiewicz, T.: Datalog+/-: A Unified Approach to Ontologies and Integrity
Constraints. In: Proc. ICDT’09, pp. 14–30. ACM (2009)

24. Calı̀, A., Gottlob, G., Lukasiewicz, T.: A General Datalog-Based Framework for Tractable Query
Answering over Ontologies. J. Web Semant. 14, 57–83 (2012)

25. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.: Ontology-Based
Database Access. In: Proc. SEBD’07, pp. 324–331. SEBD (2007)

26. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the Decidability of Query Containment under
Constraints. In: Proc. PODS’98, pp. 149–158. ACM (1998)

27. Chandra, A.K., Merlin, P.M.: Optimal Implementation of Conjunctive Queries in Relational Data
Bases. In: Proc. SToC’77, pp. 77–90. ACM (1977)

28. Cruanes, S.: Extending Superposition with Integer Arithmetic, Structural Induction, and Beyond. (Ex-
tensions de la Superposition pour l’Arithmétique Linéaire Entière, l’Induction Structurelle, et bien
plus encore). Ph.D. thesis, École Polytechnique, France (2015)

29. D’Agostino, G., Lenzi, G.: Bisimulation Quantifiers and Uniform Interpolation for Guarded First
Order Logic. Theor. Comput. Sci. 563, 75–85 (2015)

30. Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K., Sun, X.: Scalable Grounded
Conjunctive Query Evaluation over Large and Expressive Knowledge Bases. In: Proc. ISWC’08,
LNCS, vol. 5318, pp. 403–418. Springer (2008)

31. Echenim, M., Peltier, N.: Combining Induction and Saturation-Based Theorem Proving. J. Autom.
Reason. 64(2), 253–294 (2020)

32. Eiter, T., Ortiz, M., Šimkus, M., Tran, T.K., Xiao, G.: Query Rewriting for Horn-SHIQ Plus Rules.
In: Proc. AAAI’12, pp. 726–733. AAAI (2012)

33. Engel, T.: Quantifier Elimination in Second-Order Predicate Logic: Foundations, Computational As-
pects and Applications. Diplomarbeit, Fachbereich Informatik, Univ. des Saarlandes, Germany (1996)

34. Feder, T., Vardi, M.Y.: Monotone Monadic SNP and Constraint Satisfaction. In: S.R. Kosaraju, D.S.
Johnson, A. Aggarwal (eds.) Proc. STOC’93, pp. 612–622. ACM

35. Fermüller, C.G., Leitsch, A., Tammet, T., Zamov, N.K.: Resolution Methods for the Decision Problem,
LNCS, vol. 679. Springer (1993)

36. Flum, J., Frick, M., Grohe, M.: Query Evaluation via Tree-decompositions. J. ACM 49(6), 716–752
(2002)

37. Gabbay, D.M., Schmidt, R.A., Szałas, A.: Second-order Quantifier Elimination. College Publications
(2008)

38. Ganzinger, H., Hustadt, U., Meyer, C., Schmidt, R.A.: A Resolution-Based Decision Procedure for
Extensions of K4. In: Proc. AiML’98, pp. 225–246. CSLI (1998)

39. Ganzinger, H., de Nivelle, H.: A Superposition Decision Procedure for the Guarded Fragment with
Equality. In: Proc. LICS’99, pp. 295–303. IEEE (1999)

40. Glimm, B.: Querying Description Logic Knowledge Bases. Ph.D. thesis, Univ. Manchester, U.K.
(2007)

Saturation-based methods for querying the guarded quantification fragments 73

41. Goodman, N., Shmueli, O., Tay, Y.C.: GYO Reductions, Canonical Connections, Tree and Cyclic
Schemas, and Tree Projections. J. Comput. Syst. Sci. 29(3), 338–358 (1984)

42. Gottlob, G., Leone, N., Scarcello, F.: Robbers, Marshals, and Guards: Game Theoretic and Logical
Characterizations of Hypertree Width. J. Comp. and Syst. Sci. 66(4), 775–808 (2003)

43. Gottlob, G., Orsi, G., Pieris, A.: Query Rewriting and Optimization for Ontological Databases. ACM
Trans. Database Syst. 39(3), 25:1–25:46 (2014)

44. Gottlob, G., Pieris, A., Tendera, L.: Querying the Guarded Fragment with Transitivity. In: Proc.
ICALP’13, LNCS, vol. 7966, pp. 287–298. Springer (2013)

45. Grädel, E.: Decision Procedures for Guarded Logics. In: Proc. CADE’16, LNCS, vol. 1632, pp. 31–51.
Springer (1999)

46. Grädel, E.: On the Restraining Power of Guards. J. Symb. Logic 64(4), 1719–1742 (1999)
47. Graham, M.H.: On the Universal Relation. Technical report, Univ. Toronto (1979)
48. Grau, B.C., Motik, B., Stoilos, G., Horrocks, I.: Computing Datalog Rewritings beyond Horn Ontolo-

gies. In: Proc. IJCAI’13, pp. 832–838. AAAI (2013)
49. Hähnle, R.: Tableaux and Related Methods. In: J.A. Robinson, A. Voronkov (eds.) Handbook of

Automated Reasoning, pp. 100–178. Elsevier and MIT Press (2001)
50. Harrison, J.: Theorem Proving for Verification (Invited Tutorial). In: Proc. CAV’08, LNCS, vol. 5123,

pp. 11–18. Springer (2008)
51. Hernich, A., Lutz, C., Papacchini, F., Wolter, F.: Horn-Rewritability vs PTIME Query Evaluation in

Ontology-Mediated Querying. In: Proc. IJCAI’18, pp. 1861–1867. IJCAI (2018)
52. Heymans, S., Ma, L., Anicic, D., Ma, Z., Steinmetz, N., Pan, Y., Mei, J., Fokoue, A., Kalyanpur,

A., Kershenbaum, A., Schonberg, E., Srinivas, K., Feier, C., Hench, G., Wetzstein, B., Keller, U.:
Ontology Reasoning with Large Data Repositories. In: M. Hepp, P.D. Leenheer, A. de Moor, Y. Sure
(eds.) Ontology Management, Semantic Web, Semantic Web Services, and Business Applications,
vol. 7, pp. 89–128. Springer (2008)

53. Hirsch, C., Tobies, S.: A Tableau Algorithm for the Clique Guarded Fragment. In: Advances in Modal
Logics Volume 3. CSLI (2001)

54. Hladik, J.: Implementation and Optimisation of a Tableau Algorithm for the Guarded Fragment. In:
Proc. TABLEAUX’02, LNCS, vol. 2381, pp. 145–159. Springer (2002)

55. Hodkinson, I.: Loosely Guarded Fragment of First-order Logic Has the Finite Model Property. Studia
Logica 70(2), 205–240 (2002)

56. Hoogland, E., Marx, M.: Interpolation and Definability in Guarded Fragments. Studia Logica 70(3),
373–409 (2002)

57. Hustadt, U.: Resolution Based Decision Procedures for Subclasses of First-order Logic. Ph.D. thesis,
Univ. Saarlandes, Germany (1999)

58. Hustadt, U., Motik, B., Sattler, U.: Reasoning in Description Logics by a Reduction to Disjunctive
Datalog. J. Autom. Reason. 39(3), 351–384 (2007)

59. Hustadt, U., Schmidt, R.A.: Maslov’s Class K Revisited. In: Proc. CADE’99, LNCS, vol. 1632, pp.
172–186. Springer (1999)

60. Kazakov, Y.: Saturation-Based Decision Procedures for Extensions of the Guarded Fragment. Ph.D.
thesis, Univ. Saarlandes, Saarbrücken, Germany (2006)

61. Kieronski, E., Rudolph, S.: Finite Model Theory of the Triguarded Fragment and Related Logics. In:
Proc. LICS’21, pp. 1–13. IEEE (2021)

62. Kikot, S., Kontchakov, R., Zakharyaschev, M.: Conjunctive Query Answering with OWL 2 QL. In:
Proc. KR’12, pp. 275–285. AAAI (2012)

63. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-Query Containment and Constraint Satisfaction. J. Comput.
Syst. Sci. 61(2), 302–332 (2000)

64. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing Implications of Data Dependencies. ACM Trans.
Database Syst. 4(4), 455–469 (1979)

65. Marx, M.: Queries Determined by Views: Pack Your Views. In: Proc. PODS’07, pp. 23–30. ACM
(2007)

66. McCune, W., Wos, L.: Otter - The CADE-13 Competition Incarnations. J. Autom. Reason. 18(2),
211–220 (1997)

67. Mora, J., Rosati, R., Corcho, O.: Kyrie2: Query Rewriting Under Extensional Constraints in ELHOI.
In: Proc. ISWC’14, LNCS, vol. 8796, pp. 568–583. Springer (2014)

68. de Nivelle, H.: Splitting through New Proposition Symbols. In: Proc. LPAR’01, pp. 172–185. Springer
(2001)

69. de Nivelle, H., de Rijke, M.: Deciding the Guarded Fragments by Resolution. J. Symb. Comput.
35(1), 21–58 (2003)

74 Sen Zheng, Renate A. Schmidt

70. Nonnengart, A., Weidenbach, C.: Computing Small Clause Normal Forms. In: J.A. Robinson,
A. Voronkov (eds.) Handbook of Automated Reasoning, pp. 335–367. Elsevier and MIT Press (2001)

71. Ohlbach, H.J.: SCAN—Elimination of Predicate Quantifiers. In: Proc. CADE’96, pp. 161–165.
Springer (1996)

72. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking Data to
Ontologies. In: S. Spaccapietra (ed.) J. on Data Semantics X, pp. 133–173. Springer (2008)

73. Pratt-Hartmann, I.: Complexity of the Guarded Two-Variable Fragment with Counting Quantifiers. J.
Logic Comput. 17(1), 133–155 (2007)

74. Reger, G., Voronkov, A.: Induction in Saturation-Based Proof Search. In: Proc. CADE’19, LNCS, vol.
11716, pp. 477–494. Springer (2019)

75. Riazanov, A., Voronkov, A.: Splitting without Backtracking. In: Proc. IJCAI’01, pp. 611–617. Morgan
Kaufmann (2001)

76. Riazanov, A., Voronkov, A.: Vampire 1.1 (System Description). In: Proc. IJCAR’01, LNCS, vol. 2083,
pp. 376–380. Springer (2001)

77. Robinson, J.A.: Automatic Deduction with Hyper-Resolution. Int. J. Comp. Math. 1, 227–234 (1965)
78. Rosati, R., Almatelli, A.: Improving Query Answering over DL-Lite Ontologies. In: Proc. KR’10, pp.

290–300. AAAI (2010)
79. Rudolph, S., Simkus, M.: The Triguarded Fragment of First-Order Logic. In: Proc. LPAR’18, vol. 57,

pp. 604–619. EasyChair (2018)
80. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach (4th Edition). Pearson (2020)
81. Sattler, U., Calvanese, D., Molitor, R.: Relationships with Other Formalisms. In: F. Baader, D. Cal-

vanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (eds.) The Description Logic Handbook:
Theory, Implementation, and Applications, 2 edn., pp. 149–192. Cambridge Univ. Press (2007)

82. Schlichtkrull, A., Blanchette, J., Traytel, D., Waldmann, U.: Formalizing Bachmair and Ganzinger’s
Ordered Resolution Prover. J. Autom. Reason. 64(7), 1169–1195 (2020)

83. Schmidt, R.A., Hustadt, U.: A Resolution Decision Procedure for Fluted Logic. In: Proc. CADE’00,
LNCS, vol. 1831, pp. 433–448. Springer (2000). Its technical report can be downloaded at http:
//apt.cs.manchester.ac.uk/ftp/pub/TR/UMCS-00-3-1.ps.Z

84. Schulz, S.: System Description: E 1.8. In: Proc. LPAR’13, LNCS, vol. 8312, pp. 735–743. Springer
(2013)

85. Schulz, S., Möhrmann, M.: Performance of Clause Selection Heuristics for Saturation-Based Theorem
Proving. In: Proc. IJCAR’16, LNCS, vol. 9706, pp. 330–345. Springer (2016)

86. Sutcliffe, G.: The CADE ATP System Competition - CASC. AI Magazine 37(2), 99–101 (2016)
87. Szwast, W., Tendera, L.: The Guarded Fragment with Transitive Guards. Ann. Pure Appl. Logic

128(1-3), 227–276 (2004)
88. Tessaris, S.: Questions and Answers: Reasoning and Querying in Description Logic. Ph.D. thesis,

Univ. Manchester, U.K. (2001)
89. Toman, D., Weddell, G.E.: First Order Rewritability for Ontology Mediated Querying in Horn-

DLFD. In: Proc DL’20, vol. 2663. CEUR-WS.org (2020)
90. Trivela, D., Stoilos, G., Chortaras, A., Stamou, G.B.: Optimising Resolution-Based Rewriting Algo-

rithms for OWL Ontologies. J. Web Semant. 33, 30–49 (2015)
91. Ullman, J.D.: Principles of Database and Knowledge-Base Systems. Comp. Sci. Press (1989)
92. Vardi, M.Y.: Constraint Satisfaction and Database Theory: A Tutorial. In: Proc. PODS’00, pp. 76–85.

ACM (2000)
93. Waldmann, U.: Automated Reasoning Lecture Notes . http://rg1-teaching.mpi-inf.mpg.de/

autrea-ws19/script-3.11-3.16.pdf (2019). [Online; accessed 23 Mar. 2022]
94. Waldmann, U., Tourret, S., Robillard, S., Blanchette, J.: A Comprehensive Framework for Saturation

Theorem Proving. In: Proc. IJCAR’20, LNCS, vol. 12166, pp. 316–334. Springer (2020)
95. Weidenbach, C.: Combining Superposition, Sorts and Splitting. In: J.A. Robinson, A. Voronkov (eds.)

Handbook of Automated Reasoning, pp. 1965–2013. Elsevier and MIT Press (2001)
96. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS Version 3.5.

In: Proc. CADE’09, LNCS, vol. 5663, pp. 140–145. Springer (2009)
97. Yu, C., Ozsoyoglu, M.: An Algorithm for Tree-Query Membership of a Distributed Query. In: Proc.

COMPSAC’79, pp. 306–312. IEEE (1979)
98. Zheng, S., Schmidt, R.A.: Deciding the Loosely Guarded Fragment and Querying Its Horn Fragment

Using Resolution. In: Proc. AAAI’20, pp. 3080–3087. AAAI (2020)
99. Zheng, S., Schmidt, R.A.: Querying the Guarded Fragment via Resolution (Extended Abstract). In:

Proc. PAAR’20, CEUR Workshop Proceedings, vol. 2752, pp. 167–177. CEUR-WS.org (2020)

http://apt.cs.manchester.ac.uk/ftp/pub/TR/UMCS-00-3-1.ps.Z
http://apt.cs.manchester.ac.uk/ftp/pub/TR/UMCS-00-3-1.ps.Z
http://rg1-teaching.mpi-inf.mpg.de/autrea-ws19/script-3.11-3.16.pdf
http://rg1-teaching.mpi-inf.mpg.de/autrea-ws19/script-3.11-3.16.pdf

	Introduction
	Basic notions, guarded fragments and the querying problems of interest
	From formulas to clausal sets
	Top-variable inference system
	Deciding satisfiability of the LG clausal class
	Handling query clauses
	Answering BCQs for the guarded quantification fragments
	Saturation-based BCQ rewriting for the guarded quantification fragments
	Related work
	Conclusion and Discussion

