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Abstract: Transport of vesicles and organelles inside cells consists of constant-speed bidirectional
movement along cytoskeletal filaments interspersed by periods of idling. This transport shows many
features of anomalous diffusion. In this paper, we develop a non-Markovian persistent random
walk model for intracellular transport that incorporates the removal rate of organelles. The model
consists of two active states with different speeds and one resting state. The organelle transitions
between states with switching rates that depend on the residence time the organelle spends in each
state. The mesoscopic master equations that describe the average densities of intracellular transport
in each of the three states are the main results of the paper. We also derive ordinary differential
equations for the dynamics for the first and second moments of the organelles’ position along the
cell. Furthermore, we analyse models with power-law distributed random times, which reveal the
prevalence of the Mittag-Leffler resting state and its contribution to subdiffusive and superdiffusive
behaviour. Finally, we demonstrate a non-Markovian non-additivity effect when the switching rates
and transport characteristics depend on the rate of organelles removal. The analytical calculations are
in good agreement with numerical Monte Carlo simulations. Our results shed light on the dynamics
of intracellular transport and emphasise the effects of rest times on the persistence of random walks
in complex biological systems.

Keywords: intracellular transport; subdiffusion; superdiffusion; integro-differential equations

1. Introduction

Transport processes within eukaryotic cells bear striking similarities to the intricate
networks found in large cities. Cytoskeletal networks, analogous to roads and highways,
crisscross cells, and facilitate the transport of various cargoes. Intracellular transport is
a fundamental biological process involving the movement of molecules, proteins, and
organelles from one location to another within cells. It relies on a combination of passive
diffusion and ATP-driven movement along cytoskeletal filaments. This process is crucial to
maintaining cellular structure, function, and survival, and is involved in essential cellular
activities such as growth, division, and signaling. Dysregulation of intracellular transport
has been implicated in numerous diseases, including cancer. Therefore, understanding the
mechanisms and regulation of intracellular transport is of great importance for both basic
cell biology research and clinical applications. In neurons, long-range intracellular transport
is even more critical, as its malfunctioning has been linked to adult-onset neurodegenerative
diseases, including Alzheimer’s, Parkinson’s, and Huntington’s disease [1].

Vesicles and organelles have been observed to undergo bidirectional motion along
cytoskeletal filaments, periodically pausing for finite time intervals. These cargoes utilise
molecular motors of opposite polarity in rapid succession [2,3], facilitating their transporta-
tion over long distances [4]. The two major families of motors involved in this process are
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kinesins and dyneins [5,6]. Kinesins transport vesicles along microtubules toward the plus
ends, facilitating material transport from the cell interior toward the cortex (anterograde
movement). Dyneins move material toward the microtubule minus ends, moving from the
cell periphery to the cell interior (retrograde movement). Cytoplasmic dynein predomi-
nantly facilitates the minus-end directed long-range transport along microtubules (MTs) [7],
and its activity is regulated by multifunctional adaptors such as dynactin [8].

Various modeling approaches have been reviewed to understand intracellular trans-
port [2,9,10], including Markovian models such as reaction–diffusion models [11,12], Brow-
nian ratchet models [13], random walk models [14,15], intermittent search processes [16,17],
and exclusion models [18–20]. While most of these approaches treat microtubules implic-
itly, some models explicitly consider them, allowing the investigation of the influence
of cytoskeleton topology on intracellular transport [21,22]. A Markovian model of par-
ticle diffusion with spatially varying diffusivity shows non-ergodic behaviour [23] fre-
quently observed experimentally in intracellular transport, which was also modelled using
non-Markovian fractional Brownian motion [24]. Several multi-state Markovian models
exhibit anomalous diffusive regimes before transitioning into normal diffusion at longer
times [22,25,26], or even subdiffusion due to topological trapping at longer times [21] or due
to non-Markovian run-length-dependent detachment rate of cargo from a
microtubule [27]. The effect of advection on diffusive particles was studied using the
mobile–immobile model where the particle switch between mobile and immobile states
with finite rates [28] and with power-law and mixed trapping time distributions [29].
The non-Markovian mobile-immobile model without advection was used to model the
diffusion of excitons in layered perovskites and transition metal dichalcogenides [30].

Given the complexity of intracellular space, cytoskeleton topology, and various inter-
actions within cells, it is not surprising that intracellular transport deviates from standard
Brownian diffusion and displays anomalous diffusion [31–37]. In cellular and molecular
biology, anomalous diffusion is also highly heterogeneous [38]. Experimental studies have
observed different non-Brownian regimes of diffusion at various time scales [24,27,39–52].
The intracellular environment is highly crowded with macromolecules, subcellular com-
partments, and confinement domains, leading to subdiffusion at small time scales (less than
tens of milliseconds) [53–56] which transitions to superdiffusion associated with the activity
of molecular motors. Whether this superdiffusion persists at longer time scales or if it
represents an intermediate regime before transitioning into further normal or subdiffusion
regimes is still a subject of debate. Also, the long-time subdiffusion could originate from
different mechanisms. At longer times, the influence of cytoskeleton topology [21] and
the heterogeneity of the transport process come into play, leading to spurious subdiffu-
sion [24]. In spite of this, the anomalous nature of intracellular transport suggests that
non-Markovian models could be viable.

The non-Markovian nature of intracellular transport has been modelled using random
walks [27], fractional Brownian motion [24,51,52] and Levy walks [57] and combinations of
FBM and CTRW [46] and CTRW and Levy walk [49]. The later stochastic model consists of
altering phases of active motion with constant velocity interchanged with periods of passive
dynamics. Depending on the distribution of times in the two phases of motion, the model
shows transitions from normal diffusive to superdiffusive and to ballistic behavior [58–61].
Recently, Han et al. [62] (see also [63]) proposed a three-state self-reinforcing random walk
model involving Mittag–Leffler distributed rest:

∂p±
∂t
± ν

∂p±
∂x

= −λp±(x, t) + r±τ
−β
0 D

1−β
t p0(x, t), (1)

∂p0

∂t
= λp+(x, t) + λp−(x, t)− (r+ + r−)τ

−β
0 D

1−β
t p0(x, t). (2)

Here, p+ and p− are PDFs of particles moving in the positive and negative direction.
The running times are exponentially distributed with the rate λ. The PDF p0(x, t) describes
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the rest states drawn from the Mittag-Leffler distribution with parameter β and D1−β
t

denotes the Riemann–Liouville fractional derivative given by:

D1−β
t p0(x, t) =

1
Γ(β)

∂

∂t

∫ t

0

p0(x, t′)

(t− t′)1−β
dt′, (0 < β < 1). (3)

Three densities satisfy the following normalisation condition:∫ +∞

−∞
(p+(x, t) + p−(x, t) + p0(x, t))dx = 1. (4)

Parameters r+ and r− describe the probabilities of transitions from the rest. In the
self-reinforcing random walk model [62], these probabilities depend on time and space.
This three-state self-reinforcing random walk model is characterised by superdiffusive
behaviour at intermediate times and by subdiffusion at a longer time scale.

Clearly, in reality, the speeds of cargoes in anterograde and retrograde directions are
not equal, since they are powered by different motors. Therefore, in this paper, we analyse
intracellular transport using a one-dimensional three-state persistent random walk model
with different speeds of cargoes in anterograde and retrograde directions v+ and v− that
generalises the system (1)–(3). We suggest a model in which cargo transitions between
moving states and resting states with zero velocity are non-Markovian. We consider the
case when the rate of transitions depends on the running time. In order to take into account
the random duration of cargo trajectories observed in experiments [24,52], we introduce a
removal rate that terminates trajectories at random times. This effect was not considered in
a recent paper [64]. The constant removal rate corresponds to the exponentially distributed
duration of trajectories. The structure of the paper is as follows. In Section 2, we set up
the Three-State Model with a residence time variable and derive the equations for the
structured densities in two active states and one passive state. In Section 3, the mesoscopic
master equations for densities in all three states are introduced. Specific examples of the
Markovian Three-State Model and the Three-State Model with Mittag-Leffler distributed
resting times are considered, and equations are derived for the first and second moments.
The analytical results of Section 3 are compared in Section 4, in which we perform Monte
Carlo simulations. Finally, we discuss our results in Section 5 and give a summary and
conclusions in Section 6.

2. Three-State Transport Model with a Residence Time Variable

We consider a model in which cargo randomly switches between three possible states:
Two states in which the cargoes move with a constant speed ν+ > 0 (state A) or ν− > 0
(state R) and a resting state (state 0) in which the cargoes do not move. In this section, we
aim to develop a stochastic intracellular transport model to describe the non-Markovian
dynamics of intracellular transport.

We introduce the densities that are functions of running and residence time
τ [65–68]. Consider nA(x, t, τ) and nR(x, t, τ) the densities of cargoes at point x at time t
whose residence time in an active state (state A or state R, respectively) lies in the interval
(τ, τ + dτ). The density of cargoes in a resting state is n0(x, t, τ). The balance equations for
structured densities can be written as [66]:

∂nA
∂t

+
∂nA
∂τ

+ ν+
∂nA
∂x

= −λA(τ)nA − θAnA, (5)

∂nR
∂t

+
∂nR
∂τ
− ν−

∂nR
∂x

= −λR(τ)nR − θRnR, (6)

∂n0

∂t
+

∂n0

∂τ
= −λ0(τ)n0 − θ0n0, (7)
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where λA(τ), λR(τ) and λ0(τ) are the switching rates that depend on τ and θA, θR and θ0
are the constant removal rates. We assume that the residence time of all cargoes at t = 0
equals zero. In this case, the initial conditions are:

nj(x, 0, τ) = p0
j (x)δ(τ), j = A, R, 0, (8)

where p0
j (x) represents the initial densities (0 ≤ τ ≤ t).

Three escape (switching) rates, λA(τ), λR(τ), λ0(τ) appearing in (5)–(7) can be defined
as [69]:

λj(τ) =
ψj(τ)

Ψj(τ)
, j = A, R, 0, (9)

where ψj(τ) are PDFs of the residence times in corresponding states and Ψj(τ) =
∫ ∞

τ ψj(u)du
are the survival functions. Our approach is very flexible and can be used for various forms
of the residence time probability distribution. This flexibility is important, since recently,
the non-exponential PDF of the residence time was found in experiments [27].

The boundary conditions at zero running time (τ = 0) can be written as follows:

nA(x, t, 0) = αA

∫ t

0
λA(τ)nA(x, t, τ)dτ + βA

∫ t

0
λR(τ)nR(x, t, τ)dτ+

γA

∫ t

0
λ0(τ)n0(x, t, τ)dτ, (10)

nR(x, t, 0) = αR

∫ t

0
λA(τ)nA(x, t, τ)dτ + βR

∫ t

0
λR(τ)nR(x, t, τ)dτ+

γR

∫ t

0
λ0(τ)n0(x, t, τ)dτ, (11)

n0(x, t, 0) = α0

∫ t

0
λA(τ)nA(x, t, τ)dτ + β0

∫ t

0
λR(τ)nR(x, t, τ)dτ+

γ0

∫ t

0
λ0(τ)n0(x, t, τ)dτ. (12)

These equations describe the switching process to the states A, R, and resting state 0.
If the cargo moves in the positive direction, it can switch with rate λA(τ) to the opposite
direction with the probability αR, to the resting state with the probability α0, or continue in
the same direction with the probability αA. The cargo moving in the negative direction can
switch with rate λB(τ) to the opposite direction with the probability βA, to the resting state
with the probability β0, or continue in the same direction with the probability βR. Finally,
for the resting cargo, it can switch with rate λ0(τ) to cargo moving in the positive direction
with the probability γA, to cargo moving in the negative direction with the probability γR,
or remain at rest again with the probability γ0. Obviously,

αA + αR + α0 = 1, βA + βR + β0 = 1, γA + γR + γ0 = 1. (13)

The product λj(τ)nj(x, t, τ) gives the escape rate corresponding to a particular resi-
dence time τ. If we denote the escape rates from the states A, R and 0 by iA(x, t), iR(x, t)
and i0(x, t), correspondingly. They can be obtained by integrating λjnj over variable τ from
0 to t [67]:

ij(x, t) =
∫ t

0
λj(τ)nj(x, t, τ)dτ, j = A, R, 0. (14)

It follows from Equations (10)–(12) and (14) that

nA(x, t, 0) = αAiA(x, t) + βAiR(x, t) + γAi0(x, t), (15)
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nR(x, t, 0) = αRiA(x, t) + βRiR(x, t) + γRi0(x, t), (16)

n0(x, t, 0) = α0iA(x, t) + β0iR(x, t) + γ0i0(x, t). (17)

We solve Equations (5)–(7) using the method of characteristics: For active states
(0 ≤ τ < t):

nA(x, t, τ) = nA(x− ν+τ, t− τ, 0)e−
∫ τ

0 λA(u)due−θAτ . (18)

nR(x, t, τ) = nR(x + ν−τ, t− τ, 0)e−
∫ τ

0 λR(u)due−θRτ . (19)

For resting state (0 ≤ τ < t)

n0(x, t, τ) = n0(x, t− τ, 0)e−
∫ τ

0 λ0(u)due−θ0τ . (20)

One can see that all solutions (18)–(20) contain an exponential factor e−
∫ τ

0 λj(s)ds, which
is recognised as the survival function Ψj(τ):

Ψj(τ) = e−
∫ τ

0 λj(u), j = A, R, 0. (21)

Using equations (10)–(12), the solutions in (18) can be rewritten using the survival
function from (21) and the escape rates (switching terms) as follows:

nA(x, t, τ) = [αAiA(x− ν−τ, t− τ) + βAiR(x− ν−τ, t− τ) + γAi0(x− ν−τ, t− τ)]×

ΨA(τ)e−θAτ , (22)

nR(x, t, τ) = [αRiA(x + ν−τ, t− τ) + βRiR(x + ν−τ, t− τ) + γRi0(x + ν−τ, t− τ)]×

ΨR(τ)e−θRτ , (23)

n0(x, t, τ) = [α0iA(x, t− τ) + β0iR(x, t− τ) + γ0i0(x, t− τ)]Ψ0(τ)e−θ0τ . (24)

Notice that the residence time PDF, ψj(τ), is related to the switching rate, λj(τ), as
follows [69]:

ψj(τ) = λj(τ)e
−
∫ τ

0 λj(u)du, j = A, R, 0. (25)

3. Mesoscopic Master Equations

Now, we introduce the mesoscopic densities for all three states: pA(x, t), pR(x, t) and
p0(x, t). The functions pA and pR are the densities for cargoes moving in a positive/negative
direction and p0 is the density of cargoes with a resting state. These densities can be
obtained by integrating the structured densities nj(x, t, τ) over residence time variable τ:

pj(x, t) =
∫ t

0
nj(x, t, τ)dτ, j = A, R, 0. (26)

By differentiating (26) with respect to time t and using (5)–(7), we obtain the meso-
scopic master equations for pA, pR and p0:

∂pA
∂t

= nA(x, t, t)−
∫ t

0
λA(τ)nA(x, t, τ)dτ − ν+

∫ t

0

∂nA
∂x

dτ −
∫ t

0

∂nA
∂τ

dτ

−θA

∫ t

0
nA(x, t, τ)dτ, (27)
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∂pR
∂t

= nR(x, t, t)−
∫ t

0
λR(τ)nR(x, t, τ)dτ + ν−

∫ t

0

∂nR
∂x

dτ −
∫ t

0

∂nR
∂τ

dτ

−θR

∫ t

0
nR(x, t, τ)dτ, (28)

∂p0

∂t
= n0(x, t, t)−

∫ t

0
λ0(τ)n0(x, t, τ)dτ −

∫ t

0

∂n0

∂τ
dτ − θ0

∫ t

0
n0(x, t, τ)dτ. (29)

Using (10)–(29), we rewrite the system of equations using the escape rates iA, iR, and
i0:

∂pA
∂t

+ ν+
∂pA
∂x

= −(1− αA)iA(x, t) + βAiR(x, t) + γAi0(x, t)− θA pA, (30)

∂pR
∂t
− ν−

∂pR
∂x

= αRiA(x, t)− (1− βR)iR(x, t) + γRi0(x, t)− θR pR, (31)

∂p0

∂t
= α0iA(x, t) + β0iR(x, t)− (1− γ0)i0(x, t)− θ0 p0. (32)

The escape rates iA, iR, and i0 can be expressed in terms of pA, pR and p0, respectively,
as follows (see Appendix A for the details of the derivation):

iA(x, t) =
∫ t

0
HA(t− τ)pA(x− ν+(t− τ), τ)e−θA(t−τ)dτ, (33)

iR(x, t) =
∫ t

0
HR(t− τ)pR(x + ν−(t− τ), τ)e−θR(t−τ)dτ, (34)

i0(x, t) =
∫ t

0
H0(t− τ)p0(x, τ)e−θ0(t−τ)dτ, (35)

where Hi(t) is the memory kernel defined by its Laplace transform [70]:

H̃j(s) =
ψ̃j(s)
Ψ̃j(s)

, j = A, R, 0. (36)

Here, ψ̃j(s) and Ψ̃j(s) are the Laplace transforms of the residence time PDF ψj(τ) and
the survival function Ψj(τ), respectively.

It is clear from (33)–(35) that the escape rates iA(x, t), iR(x, t) and i0(x, t) depend on
the rates of organelles removal. This is the non-Markovian non-additivity effect that
leads to the dependence of the transport characteristics on the kinetics of organelles
removal [70–72]. Note that the equations above can be applied for the analysis of the phe-
nomenon of the migration–proliferation dichotomy in gliomas [73–75], anomalous transport
in spiny dendrites [70]. It would be interesting to extend this model
for 2− D [76–79].

Next, we will examine various distributions for residence time PDFs, ψk(τ), including
power-law distributions. We will derive the equations for the moments of the random walk
position

µn(t) =
∫ ∞

−∞
xn p(x, t)dx, (37)

where p(x, t) = pA(x, t) + pR(x, t) + p0(x, t).

3.1. Markovian Three-State Model

In this subsection, we consider the Markovian case when the switching rates for all
three states, λj(τ), are constant. The residence time’s PDFs are exponential:

ψj(τ) = λje
λjτ , j = A, R, 0, (38)
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with the Laplace transform ψ̃j(s) =
λj

λj+s . The escape rates iA(x, t), iR(x, t) and i0(x, t) do
not involve memory effects and can be written as follows:

iA(x, t) = λA pA(x, t), iR(x, t) = λR pR(x, t), i0(x, t) = λ0 p0(x, t). (39)

The balance equations for the mean densities pA(x, t), pR(x, t) and p0(x, t) are:

∂pA
∂t

+ ν+
∂pA
∂x

= −(1− αA)λA pA + βAλR pR + γAλ0 p0 − θA pA, (40)

∂pR
∂t
− ν−

∂pR
∂x

= αRλA pA − (1− βR)λR pR + γRλ0 p0 − θR pR, (41)

∂p0

∂t
= α0λA pA + β0λR pR − (1− γ0)λ0 p0 − θ0 p0. (42)

A similar Markovian model describing macroscopic intracellular transport of vesicles
and organelles has been introduced in the classical paper [11]. Note that without the resting
state, the system of (40), (41) can be reduced to the generalised telegraph equation [66].

3.2. Three-State Model with Mittag–Leffler Distributed Resting Times

Now, let us consider another example involving anomalous behavior. For simplicity,
we assume that the removal rate θ0 for the rest state is zero. We consider the case when
the cargoes move along microtubules with running times that follow an exponential
distribution with rate λ in the active states and pause for a Mittag–Leffler (ML) distributed
residence time in the resting state. In this case, the PDF for the residence time exhibits a
power law such that the mean residence time does not exist. The survival function can be
written in terms of the one-parameter ML function, Eµ(.), as:

Ψ0(τ) = Eµ

[
−
(

τ

τ0

)µ]
, 0 < µ < 1, (43)

where τ0 is a time scale. The Laplace transforms of the survival function Ψ0(τ) and
residence time PDF ψ0(τ) are:

Ψ̃0(s) =
τ0(sτ0)

µ−1

1 + (sτ0)
µ , ψ̃0(s) =

1
1 + (sτ0)

µ . (44)

Then, from (35), we obtain the rate i0 as:

i0(x, t) =
1

τ0
µD

1−µ
t p0(x, t), (45)

where D1−µ
t is the Riemann–Liouville fractional derivative defined in (3). The system of

integro-differential Equations (30)–(32) become:

∂pA
∂t

+ ν+
∂pA
∂x

= −(1− αA)λpA + βAλpR +
γA
τ0

µD
1−µ
t p0(x, t)− θA pA, (46)

∂pR
∂t
− ν−

∂pR
∂x

= αRλpA − (1− βR)λpR +
γR
τ0

µD
1−µ
t p0(x, t)− θR pR, (47)

∂p0

∂t
= α0λpA + β0λpR − (1− γ0)

1
τ0

µD
1−µ
t p0(x, t). (48)
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The system of fractional PDEs (46)–(48) can be also rewritten in terms of Caputo
fractional derivatives. In [62], the simplified version of (46)–(48) has been studied, in which
the authors derived an equation with a telegraph operator; see Equation (8) in [62].

3.3. Moments Equations

In this subsection, we calculate the first two moments defined in (37). We put
θA = θR = θ0 = 0 and introduce the following functions:

mij(t) =
∫ ∞

−∞
xi pJ(x, t)dx i = 0, 1, 2 j = A, R, 0. (49)

The first moment, m1(t), and second moment, m2(t) can be determined as:

mi(t) = miA(t) + miR(t) + mi0(t), i = 1, 2 (50)

where miA(t), miR(t), mi0(t) can be found from the system of equations:

dmiA
dt

= iν+mi−1A − (1− αA)λmiA + βAλmiR +
γA
τ0

µD
1−µ
t mi0(t), (51)

dmiR
dt

= −iν−mi−1R + αRλmiA − (1− βR)λmiR +
γR
τ0

µD
1−µ
t mi0(t), (52)

dmi0
dt

= α0λmiA + β0λmiR − (1− γ0)
1

τ0
µD

1−µ
t mi0(t). (53)

From these equations, one can find the equations for the first and second moments

dm1

dt
= ν+m0A − ν−m0R,

dm2

dt
= 2ν+m1A − 2ν−m1R. (54)

Let us find the first moment m1. For simplicity, we consider the case when

α0 = β0 = 1, αA = αR = βA = βR = 0. (55)

The equations for m0A, m0R and m00 take the form:

dm0A
dt

= −λm0A +
γA
τ0

µD
1−µ
t m00(t), (56)

dm0R
dt

= −λm0R +
γR
τ0

µD
1−µ
t m00(t), (57)

dm00

dt
= λm0A + λm0R − (1− γ0)

1
τ0

µD
1−µ
t m00(t). (58)

We take the Laplace transform of (56)–(58), set pA(x, 0) = δ(x), pR(x, 0) = 0 and
p0(x, 0) = 0 and obtain, in the long-time limit (s → 0), expressions for
m̂0A(s) =

∫ ∞
0 m0A(t)e−stdt and m̂0R(s) =

∫ ∞
0 m0R(t)e−stdt :

m̂0A(s) =
γA

λτ0
µ s1−µm̂00(s), m̂0R(s) =

γR
λτ0

µ s1−µm̂00(s). (59)

From the normalisation condition (4), we find:

m̂0A(s) + m̂0R(s) + m̂00(s) = s−1, (60)
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and in the limit s→ 0, we obtain:

m̂00(s) =
1
s
− γA + γR

λ

1
(τ0s)µ . (61)

Finally, from (59) and (61) we obtain the first moment in the long time limit

m1(t) =
γAv+ − γRv−
λΓ(1 + µ)τ

µ
0

tµ. (62)

It follows from (62) that the anomalous rest state becomes dominant leading to subdif-
fusive motion for µ < 1/2.

Now, let us find the second moment for the case when the first moment is zero; that is,

γA = γR =
γ

2
, ν+ = ν+ = ν. (63)

The main aim is to show again that the rest state is dominant in the long-time limit
that leads to subdiffusion. The equation for the second moment is

dm2

dt
= 2ν(m1A −m1R), (64)

where m1A, m1R obey the equations

dm1A
dt

= νm0A − λm1A +
γ

2τ0
µD

1−µ
t m10(t), (65)

dm1R
dt

= −νm0R − λm1R +
γ

2τ0
µD

1−µ
t m10(t), (66)

dm10

dt
= λm1A + λm1R −

γ

τ0
µD

1−µ
t m10(t). (67)

We take the Laplace transform and obtain in the limit s→ 0

m̂2(s) =
2ν

λs
(m̂0A(s) + m̂0R(s)). (68)

Performing straightforward calculations, we obtain

m̂2(s) =
2ν2γ

sλ2
1

(τ0s)µ . (69)

Taking inverse Laplace transform, we obtain the second moment in the long time limit

m2(t) =
2ν2γ

λ2Γ(1 + µ)τ
µ
0

tµ. (70)

Clearly, this formula gives us the subdiffusive motion.
In the next sections, we performed the Monte Carlo simulations.

4. Monte Carlo Simulations

Monte Carlo simulations of the random walk follow standard procedure:

(1) Set initial conditions x0 = 0 and t0 = 0. The initial state was randomly selected
corresponding to v0 = v+, v0 = −v− or v0 = 0.

(2) For the Markovian Three-State Model, generate an exponentially distributed random
time τ0 = −1/λ ln(1− p) where p is a uniformly distributed random number in [0, 1).
In the Non-Markovian Three-State Model, resting times were drawn from the ML
distribution, and running states were generated using exponentially distributed ran-
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dom times. For the resting state, generate the Mittag-Leffler random number τ using
the Matlab mlrnd function (Guido Germano (2023). Mittag-Leffler random number
generator (https://www.mathworks.com/matlabcentral/fileexchange/19392-mittag-
leffler-random-number-generator (accessed on 1 September 2023)), MATLAB R2020b
Central File Exchange).

(3) Update position and time to x1 = x0 + v0τ0, t1 = t0 + τ0, respectively. Update state
by randomly selecting new velocity v1 = v+, v1 = −v− or v1 = 0.

(4) Repeat steps (2) and (3) until the predefined simulation time Tmax is reached. Thus, a
single trajectory x(t) is generated.

(5) Repeat steps (1)–(4) N = 104 times to generate an ensemble of N trajectories. Note
that trajectories have random durations due to step (2).

(6) The ensemble of trajectories is then analysed by calculating the distribution of posi-
tions at a given Tmax. We estimated these distributions using histograms. To quantify
the anomalous diffusion in the Three-State Model, we calculated the moments of these
distributions as a function of time. In particular, the first and the second moments
were calculated as m1(t) = ∑N

i=1 x(i)(t), m2(t) = ∑N
i=1(x(i)(t))2. Here, (i) denotes the

index of a trajectory.

To achieve the simulation results for the Markovian Three-State Model, we compute
the variance m2(t)−m2

1(t) and distributions of walkers with parameters λ = 1, v+ = 1
and v− = 1. The results are shown in Figure 1. We chose equal probabilities of switching
from resting to running state γA = γR = γ0 = 1/3. As expected, the PDFs of the walker’s
positions follow the Gaussian distribution. The corresponding second moments show
ballistic regimes at short times and asymptotic linear growth.

Figure 1. Markovian three–state model. (a) The distribution of random walkers is calculated at
Tmax = 10 with zero removal rates QA = QR = Q0 = 0 (circles) and QA = QR = Q0 = 0.1 (squares).
Other parameters are given in the text. The dashed line represents the Gaussian distribution with
σ2 = 2DTmax. (b) The corresponding second moment m2(t) as a function of time (blue and red
curves) grows ballistically for short times and switches to linear growth with the effective diffusion
coefficient D.

For the Non-Markovian Three-State model, we also find good agreement with the
theoretical predictions. First, we calculated the first moment m1(t) of random walker
position as a function of time with zero removal rates QA = QR = Q0 = 0, λA = λR = 1/3,
τ0 = 1, λ = 1 and v+ = 1, v− = 0.1. We considered two values of anomalous exponent
µ = 0.3 and µ = 0.7. As shown in Figure 2, the numerics agree with the analytical
Equation (62) without fitting.

The ML-distributed resting states make the distributions of the walker’s position non-
Gaussian. An example of the distributions of random walkers’ position with the resting
states generated from the ML distribution with the scaling parameter µ = 0.7 is shown in
Figure 3. At long times, the MSD is growing sub linearly with time, m2(t) ∼ tβ with β = µ.
At the same time, it was previously found that the two-state model with one running state

https://www.mathworks.com/matlabcentral/ fileexchange/19392-mittag-leffler-random-number-generator
https://www.mathworks.com/matlabcentral/ fileexchange/19392-mittag-leffler-random-number-generator
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and the ML resting state has the long-time behaviour of the variance m2(t)−m2
1(t) ∼ tβ

with β = 2µ. So, for µ < 0.5 the variance grows subdiffusively with time, and for µ > 0.5
the growth is superdiffusive.

We note that the two-state model is equivalent to the three-state model with the
speed of one running state equal to zero. The following question arises: what would be
the long-time behaviour of the three-state model with ML-distributed resting times with
unequal retrograde and anterograde speeds? We calculated the variance of the position for
the three-state model with ML-distributed resting times and showed that the model has
subdiffusion or superdiffusion at long times depending on the parameters. At long times,
the variance depends on cargo speeds and is well fitted by the power-law function:

m2(t)−m2
1(t) ∼ tβ, β = µ

(
1 +
|v+ − v−|
v+ + v−

)
. (71)

For v+ = v−, we recover the subdiffusive behaviour β = µ < 1 predicted by the
Equation (70). The dependence of β/µ− 1 on the speed v+ (with v− kept constant) for the
three-state model with ML-distributed resting state is shown in Figure 4a. The asymptotic
behaviour of different models given by the dependence of exponents of MSDs or variances
at long times, β, is shown in Figure 4a. In contrast to the three-state model with equal
retrograde and anterograde cargo speeds v+ = v−, the three-state model with unequal
retrograde and anterograde cargo speeds, v+ 6= v− can have subdiffusive behaviour and
superdiffusive behaviour.

Figure 2. Non–Markovian three–state model. The first moment m1(t) of random walkers position
as a function of time calculated with zero removal rates QA = QR = Q0 = 0, λA = λR = λ0 = 1/3,
µ = 0.3, µ = 0.7, τ0 = 1, λ = 1 and v+ = 1, v− = 0.1. The dashed lines correspond to the analytical
Equation (62) without fitting.
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Figure 3. Non –Markovian three–state model. (a) The distribution of random walkers is calculated
at Tmax = 10 with zero removal rates QA = QR = Q0 = 0 (circles) and QA = QR = Q0 = 0.1
(squares), τ0 = 1, λ = 1 and v+ = 1, v− = 0.1. The dashed line shows the Gaussian distribution
for comparison. (b) The corresponding mean squared displacements (blue and red curves) grow
ballistically for short times and switch to sub-linear growth m2(t) ∼ tβ with β = µ and the exponent
µ = 0.7.

Figure 4. Three–state model with ML–distributed resting times can have subdiffusive or superdif-
fusive asymptotic behaviour. (a) The dependence β/µ− 1 as a function of the speed v+ (with v−
kept constant) for the three-state model with ML-distributed resting state. The dashed line corre-
sponds to Equation (71) and symbols show the results of numerical simulations. (b) The diagram of
the asymptotic behaviour of different models is given by the dependence of exponents of MSDs or
variances at long times, β, as functions of the exponent of ML distribution of resting states, µ. The
line with the biggest slope corresponds to the two-state model (that is, the three-state model with
either v+ = 0 or v− = 0) with ML-distributed resting states. It has subdiffusive behaviour β < 1
for µ < 1/2 and superdiffusive behaviour β > 1 for µ > 1/2. The lowest line corresponds to the
three-state model with equal retrograde and anterograde cargo speeds v+ = v−. The line with an
intermediate slope corresponds to the three-state model with unequal retrograde and anterograde
cargo speeds, v+ = 1 and v− = 0.25.

5. Discussion

In cells, vesicles are transported by dyneins from the cell periphery to the cell interior
(retrograde transport) and kinesins transport them from the cell interior toward the cortex
(anterograde transport). Dyneins and kinesins move at different velocities. Thus, in contrast
to previous works [62,64], here, we considered different cargo velocities in retrograde and
anterograde directions. As a result, the first moment of the cargo position m1(t) is non-zero
but grows linearly with time for the Markovian model or as a power law in the case of
the non-Markovian model. In experiments, this could be used to distinguish between
Markovian and non-Markovian dynamics.

The variance of cargo position m2(t)−m2
1(t) bears additional information about the

cargo dynamics. For the non-Markovian model with unequal velocities, the variance can
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grow subdiffusively and superdiffusively depending on the anomalous exponent µ of the
distribution of the duration of resting states. Combining predictions for the first moment,
variance, and distribution of cargo’s displacements, it would be possible to verify the
non-Markovian three-state model using the ensemble of experimental trajectories.

6. Summary and Conclusions

We have introduced a non-Markovian persistent random walk model for intracel-
lular transport that incorporates the removal rate and finite speed of propagation. This
model includes random transitions between two active states (anterograde and retrograde
movements) and one resting state, with the probability of switching depending on the
amount of time the organelle spends in each state. We have derived new mesoscopic
integro-differential equations for densities of organelles inside the cell by using the struc-
tural densities obeying Markov differential equations of the first order. We have found a
non-Markovian non-additivity effect when the switching rates and transport characteristics
depend on the rate of organelles removal. Ordinary differential equations describing the
dynamics for the first and second moments of the organelles’ position along the cell have
been derived. A model of stochastic transport of organelles which takes into account exper-
imentally observed Mittag-Leffler resting time distribution has been analysed in detail. In
particular, it determines the subdiffusive and superdiffusive behaviour of the first moment.
Notice that the fractional Riemann–Liouville derivative naturally arises as the result of
the Mittag-Leffler distribution of residence times in the resting state. For a general form
of resting time distribution, one should not expect the escape rate to be expressed with
any kind of fractional derivative. Rather, it will be given by an integral form defined by
Equation (34) A numerical Monte Carlo algorithm has been developed to calculate mo-
ments and organelle mesoscopic densities in cells, taking into account non-Markovian
effects caused by the dependence of transition rates on residence times.

In this paper, we propose the mathematical model of intracellular transport. This
model is based on experimental observations (see, for example [2,6]) that intracellular
transport demonstrates so-called stop-and-go behaviour and is characterised by long time
sub-diffusive behaviour. In this work, we modelled the stop-and-go behaviour as switching
from active to resting states and showed that the ML distributed time spent in resting
states leads to sub-diffusion at long times. So, experimentally, it would be possible to
test the predictions of our model, e.g., whether the resting times are described by the ML
distribution. In fact, in our previous work [27,57], we found that the distribution of resting
times indeed might be better fitted by a power law (notice that the long-time asymptotic of
the ML distribution is t−1−µ). However, more experimental data are needed to make this
comparison more reliable.

In this paper, we used the assumption of constant cargo speeds. In experiments,
intracellular organelles might be described based on the distribution of speed. Our constant
speed assumption could be viewed as utilising the first moment of this distribution. In the
future, it will be interesting to extend our work by taking into account the distribution of
cargo speeds [51] and the heterogeneity of intracellular transport [24].
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Appendix A. Derivation of The Switching Terms

In this Appendix, we derive integral equations for ij(x, t) and the unstructured
density pj(x, t), and determine the structure of the switching functions ij(x, t) in terms
of pj(x, t). The derivation of (33)–(35) involves convolutions in Fourier-Laplace space
via the transformation

FL{ij(x, t)} = ˆ̃ij(k, s) =
∫ ∞

−∞

∫ ∞

0
ij(x, t)e−st+ikxdtdx j = A, R, 0, (A1)

FL{pj(x, t)} = ˆ̃pj(k, s) =
∫ ∞

−∞

∫ ∞

0
pj(x, t)e−st+ikxdtdx j = A, R, 0. (A2)

Substitution of (22)–(24) into (26) and (14), along with the initial condition (8), gives

iA =
∫ t

0
ψA[αAiA(x− ν+τ, t− τ) + βAiR(x− ν+τ, t− τ) + γAi0(x− ν+τ, t− τ)]e−θAτdτ

+p0
A(x− ν+τ)ψA(t)e−θAτ , (A3)

iR =
∫ t

0
ψR[αRiA(x + ν−τ, t− τ) + βRiR(x + ν−τ, t− τ) + γRi0(x + ν−τ, t− τ)]e−θRτdτ

+p0
R(x + ν−τ)ψR(t)e−θRτ , (A4)

i0(x, t) =
∫ t

0
ψ0(τ)[α0iA(x, t− τ) + β0iR(x, t− τ) + γ0i0(x, t− τ)]e−θ0τdτ

+p0
0(x)ψ0(t)e−θ0τ , (A5)

pA =
∫ t

0
ΨA[αAiA(x− ν+τ, t− τ) + βAiR(x− ν+τ, t− τ) + γAi0(x− ν+τ, t− τ)]e−θAτdτ

+p0
A(x− ν+τ)ΨA(t)e−θAτ , (A6)

pR =
∫ t

0
ΨR[αRiA(x + ν−τ, t− τ) + βRiR(x + ν−τ, t− τ) + γRi0(x + ν−τ, t− τ)]e−θRτdτ

+p0
R(x + ν−τ)ΨR(t)e−θRτ , (A7)

p0(x, t) =
∫ t

0
Ψ0(τ)[α0iA(x, t− τ) + β0iR(x, t− τ) + γ0i0(x, t− τ)]e−θ0τdτ

+p0
0(x)Ψ0(t)e−θ0τ , (A8)

where we use formula (25) to eliminate β j(τ). Taking the Fourier-Laplace transform
together with shift theorem of Equations (A3)–(A8), we get

ˆ̃iA(k, s) =
[
αA

ˆ̃iA(k, s) + βA
ˆ̃iR(k, s) + γA

ˆ̃i0(k, s) + p̂0
A(k)

]
ψ̃A(s− ikν+ + θA), (A9)

ˆ̃iR(k, s) =
[
αR

ˆ̃iA(k, s) + βR
ˆ̃iR(k, s) + γR

ˆ̃i0(k, s) + p̂0
R(k)

]
ψ̃R(s + ikν− + θR), (A10)

ˆ̃i0(k, s) =
[
α0

ˆ̃iA(k, s) + β0
ˆ̃iR(k, s) + γ0

ˆ̃i0(k, s) + p̂0
0(k)

]
ψ̃0(s + θ0), (A11)
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ˆ̃pA(k, s) =
[
αA

ˆ̃iA(k, s) + βA
ˆ̃iR(k, s) + γA

ˆ̃i0(k, s) + p̂0
A(k)

]
Ψ̃A(s− ikν+ + θA), (A12)

ˆ̃pR(k, s) =
[
αR

ˆ̃iA(k, s) + βR
ˆ̃iR(k, s) + γR

ˆ̃i0(k, s) + p̂0
R(k)

]
Ψ̃R(s + ikν− + θR), (A13)

ˆ̃p0(k, s) =
[
α0

ˆ̃iA(k, s) + β0
ˆ̃iR(k, s) + γ0

ˆ̃i0(k, s) + p̂0
0(k)

]
Ψ̃0(s + θ0), (A14)

Then from (A9)–(A13), we obtain

ˆ̃iA(k, s) =
ψ̃A(s− ikν+ + θA)

Ψ̃A(s− ikν+ + θA)
ˆ̃pA(k, s), (A15)

ˆ̃iR(k, s) =
ψ̃R(s + ikν− + θR)

Ψ̃R(s + ikν− + θR)
ˆ̃pR(k, s), (A16)

ˆ̃i0(k, s) =
ψ̃0(s + θ0)

Ψ̃0(s + θ0)
ˆ̃p0(k, s). (A17)

Inverse Fourier-Laplace transform of Equations (A15)–(A17) gives (33)–(35), respectively.
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