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Abstract. We discuss and implement a spectral method approach to computing

stationary and axisymmetric black hole solutions and their properties in modified

theories of gravity. The resulting code is written in the Julia language and is

transparent and easily adapted to new settings. We test the code on both general

relativity and on Einstein-Scalar-Gauss-Bonnet gravity. It is accurate and fast,

converging on a spinning solution in these theories with tiny errors (∼ O
(
10−13

)
in most cases) in a matter of seconds.
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1 Introduction

In the last decade, with the observation of gravitational wave events by the LIGO

Scientific Collaboration [1–6], and interferometry measurements of the centre of M87

and the Milky Way by the Event Horizon Telescope Collaboration [7–9], we have entered

a new era of testing gravity, probing the nature of black holes and Einstein’s theory of

general relativity (GR) in the previously inaccessible strong field regime.

In GR, mathematical theorems guarantee that in (electro-)vacuum the gravitational

field of stationary black holes is described uniquely by the Kerr(-Newman) metric [10].

As eloquently put by Subrahmanijan Chandrasekhar, the uniqueness theorems along

with a set of other results dubbed no-hair theorems (see [11] for a review) assert that

the Kerr metric provides “the absolute exact representation of untold numbers of massive

black holes that populate the universe”. While all strong regime observations are so far

compatible with this “Kerr hypothesis”, any eventual deviation would provide a much

sought after smoking-gun for new physics.

Indeed, once we go beyond GR and delve onto the realm of modified theories of

gravity, stationary vacuum spacetimes need not to be described by the Kerr metric.

Popular examples of black hole spacetimes defying the Kerr hypothesis include gravity

coupled with new (complex) bosonic degrees of freedom [12–15], scalar-Gauss-Bonnet

gravity [16–28], 4D-Einstein-Gauss-Bonnet gravity [29–38], and dynamical Chern-

Simons gravity [39–43].

Modification of the field equations describing gravity, however, naturally leads to

an increase in their complexity such that analytic analysis becomes intractable. With

closed-form solutions not available, one is forced to resort either to perturbation theory

or numerical methods. In the strong-field regime, perturbative approximations may not

be well-justified, leaving numerical studies as the most promising way forward. In this

arena, the ever-increasing precision of our observations and measurements necessitates

increasingly accurate solutions.

In this paper, we will describe a numerical method and code capable of solving

with high accuracy a system of non-linear elliptic partial differential equations (PDEs),

such as those that appear when analyzing stationary and axially symmetric spacetimes,

and implement this in a publicly available code. A first version of our numerical

implementation is available in the GitHub repository in Ref. [44]. The code is written in

Julia and can be run with ease on laptop-class computers, with solutions being found in a

matter of seconds. The Julia language is fast, memory efficient, and easy to manipulate,

ensuring that implementing different modified gravity theories is not a difficult task.

Our code follows similar previous numerical solvers for these spacetimes, in

particular the non-publicly-available FIDISOL/CADSOL solver [45–47] (which has been

extensively used in the literature, see e.g. [13–15, 21, 23, 24, 26, 28, 48]) and a recent

publicly available solver developed in Refs. [49, 50]. We have several motivations

for writing another code. First, in this work we show that pseudospectral methods
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∗ are ideally suited to solving the type of equations at hand. In our tailor-made

implementation we therefore make use of such methods†, while both former codes

utilise finite difference methods. In contrast to the first code mentioned above, our

implementation is also open source, and moreover in our bench-marking we find our

code to be far more accurate as detailed further below. The code of Refs. [49, 50] is

also significantly more accurate than that of the FIDISOL/CADSOL solver (though

the documented accuracy is still less than our own when bench-marked on the Kerr

solution) and is publicly available. This code is, however, written in C, and our use of

Julia leads to simple code that can easily be adapted. Our code is also considerably

faster. Our overall aim is a publicly available, accurate, well documented code that is

transparent and easy to use code. Furthermore, our code provides a toolbox to explore

several properties of the obtained black hole solutions, rather than being only a PDE

solver.

This paper is organised as follows. In section 2 we introduce the reader to

pseudospectral methods and the technical machinery that will be necessary to apply

them in the context of black hole physics. Next, in section 3 we will describe how

we can use the aforementioned methods to solve the stationary and axisymmetric field

equations for gravity, discussing the boundary conditions, coordinate compactifications,

and our numerical approach. We further discuss many of the properties that can be

extracted from a spinning black hole solution. Finally, in section 4 we start by validating

our methods and code against the Kerr black hole, which is known in closed form, and

later use our machinery to obtain stationary and axisymmetric black holes in Einstein-

scalar-Gauss-Bonnet gravity for linear and exponential couplings. We also discuss the

accuracy of our code, and further compare with results from other codes in published

literature. We work with units such that G = c = 1.

2 Spectral Methods

The idea behind spectral methods is to approximate a smooth solution to a system of

differential or integral equations by a sum over a finite number of basis functions. In this

section, we review how this works. Given that our aim is a clear and adaptable code,

the presentation is relatively complete, and summarises that given in John P. Boyd’s

book on spectral methods [53], to which the reader can turn for full details (see also

Ref. [51]).

For simplicity, we begin with the one dimensional case and illustrate how the

method finds an approximation to the smooth solution to a differential equation, u(x),

with the differential equation written in the form

R (x, u) = 0, (1)

where R is called the residual of the system. The solution, u(x), can be approximated

∗See Ref. [51] for a review in the context of gravitational solutions
†See also Kadath [52], which implements a spectral methods library for theoretical physics in C++.



5

by a finite truncated series solution uN(x) such that

u(x) ≈ uN(x) =
N−1∑
n=0

αnϕn(x), (2)

where {ϕn(x)}∞n=0 is a set of global and orthogonal basis functions, {αn}∞n=0 is the set

of spectral coefficients, and N is the resolution. In this setup, uN(x) can be said to

be a numerical solution of the system (1) if spectral coefficients are found such that

the residual is below a certain prescribed tolerance. The method is therefore global

rather than local, with an exponential convergence with N for problems with smooth

solutions. Since black hole solutions are smooth, we expect exponential convergence

when come to find such solutions using spectral methods. This is in contrast to the

polynomial convergence rate of most other numerical methods, such as finite element

or finite difference schemes. Furthermore, numerical solutions obtained via a spectral

method provide an analytical approximation to the problem at hand (rather than a set

of approximate numerical values at a discrete number of points).

As noted the basis functions must be orthogonal, which implies that

(ϕn, ϕm) = cnδmn, (3)

where the brackets represent the inner product of two functions f(x) and g(x) with

respect to the weight function, ω(x) > 0, on the interval [a, b] as

(f, g) ≡
∫ b

a

f(x)g(x)ω(x)dx. (4)

The set of basis functions used should have a number of further properties: i)

they should be easy to compute (e.g. trigonometric functions or polynomials); ii) the

approximations built out of the basis functions should converge rapidly to the true

solution as the resolution is increased; iii) they should be complete, which means that

any solution can be represented to arbitrarily high accuracy by taking the resolution

to be sufficiently high. Two commonly used sets of basis functions that obey these

requirements are sines and cosines, as used in a Fourier series, and a special class of

polynomials dubbed Chebyshev polynomials.

2.1 Chebyshev Polynomials

For non-periodic problems, Chebyshev polynomials are the most natural choice as the

spectral series is guaranteed to converge exponentially fast (provided our domain is

restricted to the interval x ∈ [−1, 1]). The nth Chebyshev polynomial (of the first kind)

is defined as

Tn (x) = cos (nθ) , θ = arccosx, (5)

or equivalently by the three-term recurrence relation

T0(x) ≡ 1, T1(x) ≡ x,

Tn(x) = 2xTn−1(x)− Tn−2(x), n ≥ 2.
(6)
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Figure 1. First six Chebyshev polynomials in the domain x ∈ [−1, 1].

The first six Chebyshev polynomials are shown in Fig. 1 in the domain x ∈ [−1, 1].

Chebyshev polynomials obey the orthogonality relation in the domain x ∈ [−1, 1]∫ 1

−1

Tm(x)Tn(x)√
1− x2

dx =
π

2
(1 + δ0n) δmn, (7)

and hence form an orthogonal basis. Their derivatives are given by

d

dx
Tn(x) = nUn−1(x), (8)

where Un(x) denotes the nth Chebyshev polynomial of the second kind, defined by the

recurrence relation
U0(x) ≡ 1, U1(x) ≡ 2x,

Un(x) = 2xUn−1(x)− Un−2(x), n ≥ 2,
(9)

and with derivative
d

dx
Un(x) =

(n+ 1)Tn+1(x)− xUn(x)

x2 − 1
. (10)

Note that some derivatives require special care at the boundaries x = ±1, and must be

computed as a well-defined limit, namely

d2Tn
dx2

∣∣∣∣
x=−1

= (−1)n
n4 − n2

3
,

d2Tn
dx2

∣∣∣∣
x=1

=
n4 − n2

3
. (11)

2.2 Interpolation

Interpolation is the process by which a function is approximated by a finite sum

of suitable basis functions. The idea is that the sum is constructed such that the

aproximation agrees with the true function at the chosen set of interpolation points

(also called collocation points). The objective is that the interpolant provides a good

approximation to the true function also between those points. By virtue of the minimal
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amplitude theorem [53], Chebyshev polynomials are widely used in interpolations. The

reason is twofold. First, when using the so called Chebyshev nodes (or Gauss-Chebyshev

points), xn, as collocation points, the effect of the Runge phenomenon (numerical

instabilities near the boundaries in the form of uncontrolled oscillations) is minimized.

These points are the roots of the Nth Chebyshev polynomial, and are given by

xn = cos

(
(2n+ 1) π

2N

)
, n = 0, . . . , N − 1. (12)

Secondly, when Chebyshev polynomials are used as the basis for the interpolation, the

interpolation error is distributed uniformly over the whole range.

The algorithm to interpolate a smooth function u(x) using a truncated Chebyshev

series written as∗

uN(x) =
1

2
α0 +

N−1∑
n=1

αnTn(x) ≡
N−1∑
n=0

′
αnTn(x), (13)

relies on finding the optimal spectral coefficients {αn}, and uses the discrete

orthogonality relation of Chebyshev polynomials:

N−1∑
j=0

Tn(xj)Tm(xj) =
N

2
(1 + δ0n) δmn, (14)

where the xj are the points given in Eq. (12). These discrete relations imply that

αn =
2

N

N−1∑
j=0

u(xj)Tn(xj). (15)

We present in Fig. 2 an illustrative example of a Chebyshev interpolation performed

for several resolutions using the above expressions.

2.3 Trigonometric functions

For periodic problems, sines and cosines are the most suitable basis functions for a

spectral series. These obey well known orthogonality relations, and form the basis for the

Fourier series representation of a periodic function. As we will see, a finite sum of these

functions can be used to generate a trigonometric interpolation to a periodic function.

Moreover, we can often simplify further by taking into account symmetries. For example,

considering the core problem considered in this paper, we note that stationary and

axisymmetric black holes are solutions to a system of two-dimensional elliptic PDEs

that depend on the radial coordinate and the zenith angle θ ∈ [0, π]. These solutions

also often possess definite parity with respect to θ = π/2 (i.e. in most cases they are

∗The prime in the sum denotes that the first coefficient is halved. We chose to halve the first

coefficient in the sum in order to simplify some relations below, such as Eq. (15).
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Figure 2. Interpolation of the function u(x) = x2e−2x on a Gauss-Chebyshev grid,

for resolutions ranging from N = 1 to N = 6. Using Eqs. (13) and (15) we find

that for N = 6 the spectral coefficients of the approximation u6(x) are α0 ≈ 1.48427,

α1 ≈ −2.49232, α2 ≈ 1.85409, α3 ≈ −1.01286, α4 ≈ 0.395175, and α5 ≈ −0.111169.

symmetric about θ = π/2), and therefore we need only to consider the range θ ∈ [0, π/2].

In this range, the following discrete orthogonality relations hold

N−1∑
j=0

cos (2nθj) cos (2mθj) =
N

2
(1 + δ0n) δmn,

N−1∑
j=0

cos ([2n+ 1] θj) cos ([2m+ 1] θj) =
N

2
δmn,

N−1∑
j=0

sin (2nθj) sin (2mθj) =
N

2
(1− δ0n) δmn,

N−1∑
j=0

sin ([2n+ 1] θj) sin ([2m+ 1] θj) =
N

2
δmn,

(16)

where

θn =
(2n+ 1)π

4N
, n = 0, . . . , N − 1. (17)

Table 1 summarizes the parity properties of the functions appearing in the relations

above, and together with these orthogonality relations we see that a function, u(θ),

symmetric about θ = 0, π/2 can be interpolated using only even cosines such that

uN(x) =
N−1∑
n=0

′
αn cos(2nθ), (18)

with the spectral coefficients

αn =
2

N

N−1∑
j=0

u(θj) cos(2nθj). (19)
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Fourier series Parity w.r.t. θ = 0Parity w.r.t. θ = π/2u(0)u(π
2
) ∂θu(0) ∂θu(

π
2
)

cos([2n] θ) Even Even ̸= 0 ̸= 0 = 0 = 0

cos([2n+ 1] θ) Even Odd ̸= 0 = 0 = 0 ̸= 0

sin([2n] θ) Odd Odd = 0 = 0 ̸= 0 ̸= 0

sin([2n+ 1] θ) Odd Even = 0 ̸= 0 ̸= 0 = 0

Table 1. Properties of the elements of a Fourier series of a function u(θ), depending

on the parity symmetries, along with a scheme of its boundary values. Here, n ∈ N0.

The entries on this table for θ = π would be equivalent to those of θ = 0.

2.4 Solving an ODE with a spectral method – a first example

So far we have seen how a known function can be approximated by a finite sum of

suitable basis functions using interpolation. Now we turn to the problem of how to find

such an approximation to an unknown function that is the solution to a given differential

equation.

To understand how to solve differential equations using a spectral method, we will

first consider a simple ordinary differential equation (ODE) example. Consider the one

dimensional non-linear boundary value problem

R = uxx − u2x = 0, u(−1)− 2 = 0, u(1)− 1 = 0. (20)

We will find an approximate solution to this boundary value problem in the form of a

Chebyshev spectral series, and later compare our results with the known exact solution,

given by

u(x) = log

(
2e2

(e− 1)x+ e+ 1

)
. (21)

To illustrate the calculations analytically, we will first consider a (very) low resolution

approximate solution with N = 3, where

u ≈ u3 =
α0

2
T0(x) + α1T1(x) + α2T2(x) =

α0

2
+ α1x+ α2

(
2x2 − 1

)
. (22)

Here there are N = 3 unknowns (α0, α1, and α2), and NBC = 2 boundary conditions.

Once we substitute our ansatz of Eq. (22) onto the residual given in Eq. (20) we obtain

R ≈ 4α2 − (4α2x+ α1)
2 = 0, (23)

together with the boundary conditions

α0

2
− α1 + α2 − 2 = 0,

α0

2
+ α1 + α2 − 1 = 0. (24)

To find the approximate solution we simply need to determine values for the three

unknowns. Given that we have only N = 3 degrees of freedom, and the two boundary

conditions provide two constraints, we need only one further equation to find the values.

To get this constraint the idea is to evaluate the residual at the N−NBC = 1 collocation
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Figure 3. Approximations to the solution of the boundary value problem given in

Eq. (20) (top) together with their absolute errors with respect to the exact solution

(bottom) for resolutions N = 3 (left) and N = 24 (right).

point given by Eq. (12) (with the N in that expression given by 1), which gives the point

x = 0. With our resolution of N = 3, finding an approximate solution to the boundary

value problem then reduces to solving three non-linear coupled algebraic equations for

the spectral coefficients, given by the two boundary conditions of Eq. (24) together with

the residual of Eq. (23) evaluated at x = 0. The solution to the system is

α0 =
23

8
, α1 = −1

2
, α2 =

1

16
.

By construction this is an interpolation to the exact solution (21).

We note that had we chosen the resolution N = 4, the number of collocation points

where we would have to evaluate the residual would be N − NBC = 2, and would be

given by Eq. (12) as x = ± sin π/8 ≈ ±0.382683. This would give N = 4 coupled

equations to find the four unknowns in this case. This then generalises to arbitrary N .

On Fig. 3 we plot the exact solution against the approximation obtained with

N = 3, together with the absolute error, |1 − uN/u|, whose maximum can be seen to

be O (10−2) already for a very low resolution N = 3. We also plot the approximation

to the solution of the boundary value problem, but for a resolution N = 24, where

we observe that errors become of order machine precision (O (10−16)). In Fig. 4 we

plot the behaviour of the maximum absolute error as a function of the resolution, where

exponential convergence is observed. As a rule of thumb, the truncation error is typically

the same order-of-magnitude as the last coefficient retained in the truncation series.
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Figure 4. Logarithmic plot of the maximum absolute error in the approximation to

the solution of the boundary value problem as a function of the resolution. Spectral

convergence is observed, together with a roundoff plateau.

An important point to make here is that even though for N = 3 the approximation

system has a closed-form analytical solution for the spectral coefficients, once higher

resolutions are considered, a numerical root-finding method (such as Newton-Raphson)

has to be employed. To successfully employ a Newton-Raphson method, a good initial

guess for the spectral coefficients is of the utmost importance. We will come back to

this in the next section.

To conclude, spectral collocation methods, also known as pseudospectral methods,

are powerful tools that can be used to find high accuracy numerical solutions to

differential equations. They provide global analytical approximations for the solution,

and handling any kind of boundary condition is straightforward.

2.5 Root-finding methods – Newton-Raphson

To numerically solve the system of algebraic equations for the spectral coefficients a

root-finding method must, in general, be employed. In particular, we will utilise the well

known Newton-Raphson method. In the one-dimensional case, the method attempts to

solve the equation f(x) = 0 iteratively, starting with a initial guess, x0. Successive

values of x are then generated until a value, x∗, is reached at which the equation is

approximately solved to a certain prescribed tolerance. The series of iterations takes

the form

xn+1 = xn −
f(xn)

f ′(xn)
. (25)

For example, assume we want to find the root of the function f(x) = x3 + x− 1, known

to be x∗ ≈ 0.6823278 to eight decimal places. Starting with x0 = 1 as our initial guess,
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using Eq. (25) we obtain

x1 = 0.75, x2 = 0.68604651, x3 = 0.68233958, x4 = 0.6823278,

thus converging to x∗ in four iterations to the prescribed tolerance of eight decimal

places. Convergence, is however, not guaranteed, and particularly in more complicated

settings an appropriate choice of starting point is extremely important, and must be

chosen carefully.

The generalization of the method to N variables with N equations finds the root

of a vector-valued function F : RN → RN , and amounts to solving the linear system

J (xn) (xn+1 − xn) = −F (xn) , (26)

at each iteration for the unknown xn+1 −xn, where J is the N ×N Jacobian matrix of

the system, defined as

Jij =
∂Fi

∂xj
. (27)

Constructing the Jacobian matrix of a given system is not always an easy task,

but is relatively straightforward for the system of equations that arises when using the

spectral method to solve an ODE. Another advantage of this method. As described,

in this case, the system to be solved, F , will be composed of the residual R evaluated

at the Gauss-Chebyshev points (12), and the boundary conditions, and will in general

involve u, ux and uxx. Our unknowns are the spectral coefficients αj. Thus, to facilitate

the computation of the Jacobian, we may use the chain rule

Jij =
∂Fi

∂αj

=
∂Fi

∂u

∂u

∂αj

+
∂Fi

∂ux

∂ux
∂αj

+
∂Fi

∂uxx

∂uxx
∂αj

, (28)

and only then substitute the spectral expansions for the function u. This process is

easily generalizable to a system of differential ODEs/PDEs (rather than a single one)∗.
As previously stated, when using a Newton-Raphson method, the choice of initial

guess to the spectral coefficients is extremely important, because a non-appropriate

choice will likely result in non-convergence of the algorithm. A good initial guess can

sometimes be difficult to obtain, especially when dealing with systems of PDEs, where

the number of coefficients is large (for our specific black holes problem, typically of

O (103) coefficients). A good way of tackling this issue stems from a good understanding

of the problem in question. For example, from an effective field theory point of view, a

Kerr black hole is probably a good approximation to a black hole solution in modified

theories. Therefore, since we have a closed-form expression for a Kerr black hole, an

interpolation of this solution can used to generate an initial guess for the spectral

coefficients in modified theories.

∗One must be careful when labelling the spectral coefficients of the different functions as it might

be a source of errors.
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3 Black Holes – Metric ansatz, The Kerr Solution, Boundary Conditions,

and Connection with the Numerical Approach

We will now apply the methods described in the previous sections to black hole

physics and approximately solve the coupled PDEs that arise when obtaining stationary

solutions in a given theory of gravity.

We will focus on a particular ansatz for the black hole spacetime written in quasi-

isotropic coordinates with line-element

ds2 = −fN 2dt2 +
g

f

[
h
(
dr2 + r2dθ2

)
+ r2 sin2 θ

(
dφ− W

r
(1−N ) dt

)2
]
, (29)

which is stationary, axisymmetric, and circular. Here f , g, h and W are dimensionless

functions of the radial and angular coordinates r and θ, and

N ≡ N (r) = 1− rH
r
,

where rH is the (coordinate) location of the event horizon. The spatial coordinates

range over the intervals

r ∈ [rH ,∞[, θ ∈ [0, π], φ ∈ [0, 2π]. (30)

In order for the line-element to be a solution to the theory of gravity at hand, the

functions, f , g, h and W must satisfy a set of PDEs that result from the field equations

of the theory.

The spacetime presented possesses two Killing vector fields, k = ∂t and Φ = ∂φ,

and the linear combination

ξ = ∂t + ΩH∂φ, (31)

where ΩH is the angular velocity of the horizon (to be defined below), is orthogonal to

and null on the event horizon. This Lewis-Papapetrou form for the metric is motivated

by the discussion of Ref. [54], which asserts that the above metric ansatz is consistent

for a generic theory of gravity provided that its solutions can be obtained perturbatively

from a solution in the general relativity limit. Note that our form of the metric functions

on the line element of Eq. (29) differ somewhat from the standard form used in other

works (see e.g. [13–15,21,23,24,26,28,48]). The reasons for this will become clearer once

we make a connection to our numerical approach, and are related to numerical accuracy

issues.

3.1 General Relativity – The Kerr Black Hole

To begin, let us consider the known Kerr black hole, which is the solution to the

stationary and axisymmetric field equations of GR in vacuum. For completeness,

we present its charged generalization, the Kerr-Newman solution of electrovacuum in

Appendix A. The Kerr black hole solves the field equations

Gµν = 0, (32)
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where Gµν is the Einstein tensor, which follow from the Einstein-Hilbert action

S =
1

16π

∫
d4x

√
−gR, (33)

where R is the Ricci scalar of the metric gµν . With the ansatz of Eq. (29) the Kerr

black hole solution reads

f =
(
1 +

rH
r

)2 A
B
,

g =
(
1 +

rH
r

)2

,

h =
A2

B
,

W =
2M (Mr + r2 + r2H)

rHr3B

√
M2 − 4r2H

(34)

where

A =
2Mr (Mr + (r2 + r2H)) + (r2 − r2H)

2

r4
− (M2 − 4r2H)

r2
sin2 θ,

B =

(
A+

(M2 − 4r2H)

r2
sin2 θ

)2

− (r2 − r2H)
2
(M2 − 4r2H)

r6
sin2 θ,

(35)

andM is the ADM mass of the black hole. The total angular momentum per unit mass,

a, of the solution is related to M and rH via

rH =

√
M2 − a2

2
≡ M

2

√
1− χ2, (36)

where we have defined the dimensionless spin

χ ≡ a/M = J/M2. (37)

The massM and total angular momentum J can be read off from the metric components

as r → ∞, where

gtt = −fN 2 +
g (1−N )2W 2

f
sin2 θ = −1 +

2M

r
+O

(
r−2

)
,

gtφ = −gr (1−N )W

f
sin2 θ = −2J

r
sin2 θ +O

(
r−2

)
,

(38)

leading to

f = 1− 2 (M − rH)

r
+O

(
r−2

)
,

W =
2J

rHr
+O

(
r−2

)
.

(39)

Note that the Kerr black hole in the quasi-isotropic coordinate system presented in Eq.

(29) can be obtained from the standard textbook Boyer-Lindquist coordinates solution

with the radial coordinate transformation

rBL = r +M +
M2 − a2

4r
= r

(
1 +

M

r
+
r2H
r2

)
. (40)
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The inverse transformation is given by

r =
1

2

(
rBL −M +

√
(rBL −M)2 − 4r2H

)
. (41)

3.2 Boundary Conditions

To solve the set of PDEs that result from the field equations in a particular theory

of gravity, suitable boundary conditions should be imposed. These are obvious if an

exact solution, such as the Kerr solution, is known by a trivial examination of the

metric functions. However, in more intricate cases in modified gravity lacking an exact

solution the boundary conditions must be found with a careful examination of the field

equations and employing suitable expansions of the involved functions near the domain

boundaries. For example if theories possess a GR limit when some parameter tends to

zero, an expansion about the Kerr solution is possible. With this process, we find that

in all cases to be discussed in this work within modified gravity theories, the metric

functions must obey the same boundary conditions as the Kerr solution does. These

conditions are summarized next.

(i) Axis boundary conditions: Axial symmetry and regularity of the solutions

on the symmetry axis θ = 0, π, imply the following boundary conditions

∂θf = ∂θg = ∂θh = ∂θW = 0, for θ = 0, π. (42)

Moreover, the absence of conical singularities further imposes that on the symmetry

axis

h = 1, for θ = 0, π. (43)

All solutions to be discussed in this work are are also symmetric with respect to a

reflection on the equatorial plane θ = π/2. Therefore, as was discussed above, it is

enough to consider the range θ ∈ [0, π/2] and one of the boundary conditions becomes

∂θf = ∂θg = ∂θh = ∂θW = 0, for θ = π/2. (44)

(ii) Event horizon boundary conditions: The black hole solutions discussed

here possess an event horizon located at a surface with constant radial variable r = rH .

The boundary conditions that the metric functions f , g and h obey at r = rH are

f − rH∂rf = 0

g + rH∂rg = 0,

∂rh = 0.

(45)

The reason for the Robin-type boundary conditions that the functions f and g obey

comes from the inclusion of the N 2 factor in front of f in the coefficient that multiplies

dt2 in the metric ansatz, Eq. (29). This factor is chosen such that these functions do not

contain a double-zero in a near-horizon expansion, allowing for more accurate solutions
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in this region, and therefore, a more accurate extraction of horizon physical quantities

such as the area and temperature of the event horizon. We find that there are (at least)

two possibilities for the condition that the function W should obey at the horizon, one

of which must be chosen appropriately such that the number of input parameters is kept

at two∗
W = rHΩH (46)

or

W − rH
2
∂rW = 0, (47)

where ΩH is a constant interpreted as the angular velocity of the event horizon, which

in the case of a Kerr black hole is given by

ΩKerr
H =

√
M2 − 4r2H

2M (M + 2rH)
=
χ2 − 1 +

√
1− χ2

4rHχ
. (48)

(iii) Asymptotic boundary conditions: Requiring asymptotic flatness (i.e.,

that as r → ∞, our solution approaches the Minkowski spacetime), the functions f , g,

and h obey

lim
r→∞

f = lim
r→∞

g = lim
r→∞

h = 1. (49)

Similarly to the boundary conditions at the event horizon, we find (at least) two suitable

conditions for the function W

lim
r→∞

W = 0, (50)

or, from the asymptotic expansion of Eq. (39)

lim
r→∞

rHr
2∂rW + 2M2χ = 0 ⇔ lim

r→∞

r2

2rH
∂rW +

(
1 +

r2

2rH
∂rf

)2

χ = 0. (51)

3.3 Connection with the numerical approach

To recap, the field equations of a gravitational theory once applied to the line element

of Eq. (29) will result in a set of non-linear coupled elliptic PDEs in r and θ subject

to the boundary conditions described above. Our objective is to solve this system of

PDEs numerically using a spectral method. For this we introduce the compactified

radial coordinate

x = 1− 2rH
r
, (52)

mapping the range r ∈ [rH ,∞[ to

x ∈ [−1, 1]. (53)

With the compactified coordinate, the radial boundary conditions change, and we

proceed to give the new conditions next.

∗The “input parameters” are the parameters needed to uniquely define a solution, this is discussed

fully below in Sec. 3.3
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Event horizon boundary conditions: The boundary conditions that the metric

functions f , g and h now obey are

f − 2∂xf = 0,

g + 2∂xg = 0,

∂xh = 0,

(54)

for x = −1. For the function W , the first possibility (Eq. (46)) remains unchanged

(W |x=1 = rHΩH), whereas the second becomes

W − ∂xW = 0, (55)

at x = −1.

Asymptotic boundary conditions: The asymptotic boundary conditions the

functions f , g, and h are now

f = g = h = 1, for x = 1 (56)

Asymptotically, function W now obeys either

W = 0, (57)

or

∂xW + (1 + ∂xf)
2 χ = 0, (58)

at x = 1.

With our compactified radial coordinate, and given the symmetries of our problem∗,
a suitable spectral expansion for the black hole metric functions (collectively denoted

by F = {f, g, h,W}) is given by

F (k) =
Nx−1∑
i=0

′
Nθ−1∑
j=0

′
α
(k)
ij Ti(x) cos (2jθ) , (59)

where Nx and Nθ are the resolutions in the radial and angular coordinates. Note that,

as discussed above, the angular boundary conditions are automatically satisfied by this

expansion (c.f. Table 1).

As mentioned previously, we will usually use the Kerr metric itself to set our

initial guess when working with modified theories of gravity, and to do so we will

need the expression for the spectral coefficients that follow from an interpolation of

a two-dimensional function u(x, θ), which is given by

αij =
4

NxNθ

Nx−1∑
k=0

Nθ−1∑
l=0

u(xk, θl)Ti(xk) cos (2jθl) , (60)

∗From now on we consider only the cases with even parity with respect to θ = π/2.
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Figure 5. Choosing (rH ,ΩH) as input parameters, for fixed rH , two branches exist.

where xk and θl are given in Eqs. (12) and (17) respectively.

Each Kerr black hole is uniquely described by two input parameters. For example,

in the presentation given in Eq. (34), these are the location of the event horizon rH
and the ADM mass M . We have seen, however, in expressions (36) and (48) that they

are related to the dimensionless spin χ and the horizon angular velocity ΩH . Therefore,

using the correct parametrization, the Kerr solution can be described by any input pair

chosen from rH , ΩH , χ, andM . In the numerical approach, in a theory agnostic setting,

one input parameter that must be used is rH because it enters directly the metric ansatz

and the definition of our compactified coordinate x. We have, however, freedom in the

choice of the other input parameter in the numerics. To the best of our knowledge, so

far in the literature for similar problems [13–15, 21, 23, 24, 26, 28, 48], the other input

parameter has always been chosen as the event horizon angular velocity ΩH . Using this

input pair (rH ,ΩH), we find compatibility with the boundary conditions for the function

W if we choose Eqs. (46) and (57) at the horizon and infinity, respectively. Then, in

the case of a Kerr black hole, one finds that for a fixed value of rH , two branches of

solutions exist, as shown in Fig. 5. This follows from inverting the relation (48). The

first branch of solutions starts at a vanishing value of ΩH (for fixed rH) and exists until

rHΩH =

√
5
√
5− 11

4
√
2

≈ 0.0750708, (61)

at which point

χ =

√√
5− 1

2
≈ 0.786151. (62)

Then, a second branch appears, and ΩH tends backwards towards zero. As ΩH → 0 on

this second branch, extremal solutions are approached. The existence of two branches

of solutions is not unique to Kerr, and is observed as well in the modified theories
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Figure 6. Fiducial grid with Nx×Nθ = 11×5, highlighted in blue. The field equations

(residuals) are evaluated in the blue region, with the boundary conditions imposed on

the red region. The yellow highlight concerns the imposition of the condition of Eq.

(43).

of gravity to be discussed in this work. We note that the numerical procedure gets

rather difficult as near-extremal solutions are approached, as our metric ansatz with the

described boundary conditions is not compatible with extremal solutions.

A novel approach that we can also adopt is to choose the pair (rH , χ) as the input

pair. This input pair is compatible with the W boundary conditions of Eqs. (55)

and (58) while maintaining the number of input parameters at two. We often find it

very convenient to use the dimensionless spin as an input parameter, for example when

exploring domains of existence, or simply when working on a single solution where a

certain χ is wanted. Our numerical spectral method is not only powerful because high

accuracy solutions are produced, but also because highly non-linear boundary conditions

can be handled with ease (which is the case of the boundary condition of Eq. (58)).

To solve the system of field equations subject to the discussed boundary conditions

we must construct a suitable grid. This is done as follows. We assume a resolution

Nx ×Nθ. The discrete grid points in the x direction are chosen according to Eq. (12),

where we take N = Nx − 2, together with the boundary points x = −1 and x = 1, such

that the total number of points in the x direction is Nx∗. In θ, our points are chosen as

in Eq. (17), where we take N = Nθ. The x and θ points together form the schematically

shown in Fig. (6), in blue. Assuming there are a total number, Nfuncs, of functions to

solve for, there are Nfuncs × Nx × Nθ degrees of freedom (spectral coefficients) in the

problem, as seen in the spectral expansion of Eq. (59). For each value of θ in the grid

at the x boundaries we impose for each function the horizon and asymptotic boundary

conditions as discussed before. This gives us a total of Nfuncs × 2×Nθ equations (Fig.

6, in red). The remaining Nfuncs × (Nx − 2) × Nθ equations come from imposing the

Nfuncs residuals resulting from the field equations at each non-boundary x value, for

each θ. The number of degrees of freedom is then equal to the number of equations to

solve, as it should. A small caveat – the absence of conical singularities imposes that

Eq. (43) must be obeyed (i.e. for our coordinate range, h = 1 at θ = 0). While we

∗This approach is also called boundary-bordering in the spectral methods’ literature.
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could leave this condition outside the numerical scheme and use it as another test to the

code, we find that imposing it allows obtaining solutions with (much) higher accuracy.

In our particular implementation, therefore, we have swapped the evaluation of one of

the residuals at θ = 0 (for all interior values of x)∗ with the condition of Eq. (43), see

Fig. 6 in yellow.

3.3.1 Numerical Approach: A summary Here we summarize our numerical approach

for clarity. To solve the field equations, some preliminary work must be done. First,

we employ the metric ansatz of Eq. (29) which contains four unknown functions, f ,

g, h, and W . Plugging this metric ansatz onto the field equations of the theory, leads

to a set of non-linear coupled PDEs that depend on the functions and their first and

second derivatives (F , ∂rF , ∂2rF , ∂θF , ∂2θF , ∂rθF). The set of field equations is then

expressed in terms of the compactified coordinate x defined in Eq. (52) and put in

residual form (i.e., R (x, θ, ∂F) = 0). The same is done for the appropriate boundary

conditions as discussed. This part of the process is usually done resorting to a computer

algebra system such as Mathematica, Maple or SageMath†. Our code, which can be

found at [44], includes detailed examples demonstrating how to derive the elliptic field

equations for the two theories we will discuss: General Relativity and Einstein-Scalar-

Gauss-Bonnet gravity. These examples are implemented using Mathematica. They

serve as a valuable reference and can be easily adapted to different contexts. Due to

their complexity, these elliptic equations can consist of hundreds or even thousands of

independent terms, hence we won’t present them here. The residuals (and appropriate

Jacobian) are then exported to a Julia coding file in order to solve the problem using

the developed numerical infrastructure. Each function is expanded in a spectral series

given by Eq. (59) and the input parameters are then specified (depending on the chosen

boundary conditions for the function W ). To successfully solve the field equations, a

good initial guess must be provided to our Newton solver. For this, we interpolate the

functions of the known Kerr solution using Eq. (60), obtaining appropriate spectral

coefficients to be provided as a good initial guess. If new fields are present, as is the

case with modified theories, we typically take advantage of perturbative solutions and

interpolate them as a guess. Convergence is assumed once the norm difference between

the spectral coefficients of two successive iterations is less than a certain prescribed

tolerance.

To speed up the solver, the values of our basis functions and their first and second

derivatives are calculated at all the grid points and stored, such that no repeated

evaluations are performed. Another optimization that we found particularly impactful

was to store the values on the grid of the trigonometric functions that typically appear

in the residuals, sin θ and cos θ.

∗We empirically found that any of the field equations should equally valid to remove for this process,

resulting in similar outcomes
†In this work we have used Mathematica along with the OGRe package [55] to obtain the explicit

field equations of many theories.
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Once a solution is obtained, physical quantities can be extracted from it as we

discuss in the next section, and the solution can be used for numerous investigations.

3.4 Physical Properties of Stationary and Axisymmetric Black Holes

Once a numerical stationary and axisymmetric black hole solution has been found using

our code, we can extract important quantities of physical relevance. In this section,

we review many of the quantities that one can extract from a solution, some of which

can be used to test the accuracy of our code. We have implemented additional code to

extract all these quantities from a numerical solution.

3.4.1 Quantities of interest Starting with the asymptotic quantities, we have seen

that the mass M and angular momentum J can be extracted from the asymptotic

expansion of Eq. (38) or Eq. (39). In terms of the coordinate x these are given by

M = rH (1 + ∂xf) |x=1, J = −r2H∂xW |x=1. (63)

We remark that such a simple expression for the extraction of J is the reason why we

have defined the function W in this way – such that its decay is of the form ∼ 1/r,

allowing for more accurate results. In a circular spacetime, the zeroth law of black hole

mechanics holds, which means that the surface gravity is constant on the horizon of the

stationary black hole. The surface gravity is defined as κ2 = −1/2(∇µξν)(∇µξν), where

ξ was defined in Eq. (31). The Hawking temperature [56] can then be obtained from

the surface gravity as

TH =
κ

2π
=

1

2πrH

f√
gh

∣∣∣∣
x=−1

. (64)

The induced metric on the horizon is

dΣ2 = hijdx
idxj = r2H

g

f

[
hdθ2 + sin2 θdφ2

]∣∣∣∣
x=−1

, (65)

and from it we can compute several quantities of interest, the most important being the

event horizon area

AH =

∫
H

√
hdθdφ = 2πr2H

∫ π

0

dθ sin θ
g
√
h

f

∣∣∣∣∣
x=−1

. (66)

Also of importance is the entropy, which is given in the Iyer-Wald formalism by [57]

S = −2π

∫
H

δL
δRµναβ

ϵµνϵαβdA

∣∣∣∣
on−shell

, (67)

where ϵµν is the binormal vector to the event horizon surface. In the case of a Kerr

black hole the above expression reduces to the simple form S = AH/4. The horizon and

asymptotic quantities are connected via the Smarr type relation [57–60]

M = 2THS + 2ΩHJ − 2

∫
Σ

d3x
√
−gL

∣∣∣∣
on−shell

. (68)
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The Smarr relation is extremely important when studying numerical solutions as it

provides a test to the code that relates physical quantities obtained on the horizon

and asymptotic regions, allowing us to estimate the accuracy of the numerical method.

Also of interest is the perimetral radius R which is a geometrically significant radial

coordinate such that a circumference along the equatorial plane has perimeter 2πR. It

is related to the coordinate r by

R =
√
gϕϕ

∣∣
θ=π/2

=

√
g

f
r

∣∣∣∣
θ=π/2

. (69)

To explore the horizon geometry, it is useful to define the horizon circumference along

the equator

Le = 2πRH , (70)

and along the poles

Lp = 2

∫ π

0

√
gθθ|x=−1dθ = 2rH

∫ π

0

√
gh

f

∣∣∣∣∣
x=−1

dθ. (71)

With these two quantities, we can define the sphericity

s =
Le

Lp

. (72)

For a Kerr black hole s ≥ 1, with s increasing with spin. That means that spin deforms

the horizon towards oblateness. The linear velocity of the horizon quantifies how fast

the null geodesic generators of the horizon spin relative to a static observer at infinity,

and is given by

vH = ΩHRH . (73)

For a Kerr black hole we have in terms of M and rH

J =M2

√
1−

(
2rH
M

)2

,

TH =
1

4πM
(
1 + M

2rH

) ,
AH = 8πM2

(
1 +

2rH
M

)
Le = 4πM,

Lp = 4M

√
2

(
1 +

2rH
M

)
EllipticE

(
1

2

[
1− 2rH

M

])
,

RH = 2M,

(74)

where EllipticE denotes the complete elliptic integral of the second kind, and we also

note that 2rH/M =
√

1− χ2. The Kerr solution is Ricci flat, and thus the Lagrangian

of GR vanishes on-shell and therefore so does the last term in Eq. (68).
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Figure 7. Ergoregion of a Kerr black hole with χ = 0.3 (orange), χ = 0.6 (green),

and χ = 0.8 (red) visualized on the X − Z plane. The event horizon is shown in blue.

3.4.2 Ergoregion The ergoregion is defined as the domain outside the event horizon

wherein the norm of the asymptotically timelike Killing vector k = ∂t becomes positive,

gµνk
µkν > 0. It is bounded by the event horizon and by the surface where

gtt = −fN 2 +
g (1−N )2W 2

f
sin2 θ = 0. (75)

Within the ergoregion, an object cannot appear stationary with respect to a distant

observer due to the intense frame-dragging.∗ Furthermore, ergoregions raise the

possibility of extracting energy from a black hole via the Penrose process, or superradiant

scattering [61]. Starting from the well-known result for the ergosphere of a Kerr black

hole in Boyer-Lindquist coordinates and inverting the relation of Eq. (40) we obtain

that in quasi-isotropic coordinates the ergosphere of a Kerr black hole is located at

rKerr
E =

rH√
1− χ2

(√
1− χ2 cos2 θ + χ sin θ

)
, (76)

where the subscript “E” refers to “ergoregion”. Due to the symmetries of our problem,

we need only consider the range θ ∈ [0, π/2]. To visualize the ergoregion, we introduce

the coordinates

X =
r

rH
sin θ, Z =

r

rH
cos θ. (77)

In Fig. 7 we observe the ergoregion of a Kerr black holes in the X −Z plane for several

values of dimensionless spin.

∗This immediately follows from the fact that the 4-velocity of a massive particle must be timelike,

gµνu
µuν < 0. Indeed, the worldline of an object standing still at a fixed point implies that u = ∂t, and

if gtt ≥ 0, then gµνu
µuν ≥ 0.
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3.4.3 Petrov type The Petrov classification allows for a kinematic characterization of

the gravitational field in a coordinate independent manner using algebraic properties

of the Weyl tensor Cµναβ, namely its number of distinct principal null directions.

This classification is useful, for example, when searching for exact solutions, or for

a Carter-like constant [62]. Using the Newman-Penrose formalism, the information is

contained in five complex scalars known as the Weyl scalars. With the null tetrad

{lµ, nµ,mµ,mµ}, where lµ and nµ are real, and mµ,mµ are complex conjugate satisfying

the orthonormality conditions lµnµ = 1, mµmµ = −1 and all other products zero, the

Weyl scalars are defined as

ψ0 = −Cµναβl
µmνlαmβ,

ψ1 = −Cµναβl
µnνlαmβ,

ψ2 = −Cµναβl
µmνmαnβ,

ψ3 = −Cµναβl
µnνmαnβ,

ψ4 = −Cµναβn
µmνnαmβ.

(78)

With the above scalars, the following Lorentz invariant quantities can be constructed

I = ψ0ψ4 − 4ψ1ψ3 + 3ψ2
2,

J = −ψ3
2 + ψ0ψ2ψ4 + 2ψ1ψ2ψ3 − ψ4ψ

2
1 − ψ0ψ

2
3,

D = I3 − 27J2,

K = ψ2
4ψ1 − 3ψ4ψ3ψ2 + 2ψ3

3,

L = ψ4ψ2 − ψ2
3,

N = 12L2 − ψ2
4I.

(79)

Given the above quantities, it is possible to determine the Petrov type of a given

spacetime. The classification is summarized in Table 2 [63]. In particular, a spacetime is

said to be algebraically special if D = 0. The Kerr(-Newman) spacetime is Petrov type

D. In a numerical setup, we also find useful to introduce the speciality index defined

as [64]

S =
27J2

I3
. (80)

With an appropriate choice of tetrad, following Ref. [64], it is possible to gauge away

ψ1 and ψ3 to zero. Such a tetrad would be for example

lµ =

√
gφφ

2
(
g2tφ − gttgφφ

)
1, 0, 0,−

gtφ +
√
g2tφ − gttgφφ

gφφ

 ,

nµ =

√
gφφ

2
(
g2tφ − gttgφφ

)
1, 0, 0,−

gtφ −
√
g2tφ − gttgφφ

gφφ

 ,

mµ =
1√
2

(
0,

i
√
grr

,
1

√
gθθ

, 0

)
.

(81)
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Type Conditions

O ψ0 = ψ1 = ψ2 = ψ3 = ψ4 = 0

I D ̸= 0

II D = 0, I ̸= 0, J ̸= 0, K ̸= 0, N ̸= 0

III D = 0, I = J = 0, K ̸= 0, L ̸= 0

N D = 0, I = J = K = L = 0

D D = 0, I ̸= 0, J ̸= 0, K = N = 0

Table 2. Summary of Petrov classification.

3.4.4 Marginal Stable Circular Orbits: Light Rings and ISCO The study of marginal

stable circular orbits is highly relevant for the observational properties of black holes.

The innermost stable circular orbit (ISCO) of massive particles is the smallest possible

radius for a stable circular orbit and is often taken to mark the inner edge of an accretion

disk around a black hole. Accelerated charged particles orbiting the black hole emit

synchroton radiation whose physical properties are connected with the frequency of

geodesics at the ISCO. Therefore, physical properties of an astrophysical black hole can

be inferred via measurements of the ISCO through accretion disks.

Light rings are circular null geodesics, typically unstable, allowing light to encircle

a black hole before being scattered to infinity or falling into the event horizon. From

an observational point of view, they are important for observations made with the

Event Horizon Telescope as they are intimately connected with the shadow of the black

hole [65].

To compute the ISCO and light rings we follow Ref. [50]. We start by considering

the line element of Eq. (29) in the form

ds2 = gttdt
2 + grrdr

2 + gθθdθ
2 + gφφdφ

2 + 2gtφdtdφ. (82)

The two independent killing vectors of the spacetime, kµ = ∂t and Φµ = ∂φ, have the

associated conserved reduced energy E and angular momentum L

E = −kµ
dxµ

dλ
= −gttṫ− gtφφ̇,

L = Φµ
dxµ

dλ
= gtφṫ+ gφφφ̇,

(83)

where ≡̇d/dλ. The above expressions can be rearranged in terms of ṫ and φ̇

ṫ =
Egφφ + Lgtφ
g2tφ − gttgφφ

,

φ̇ = −Egtφ + Lgtt
g2tφ − gttgφφ

.

(84)

Considering orbits restricted to the equatorial plane, θ = π/2, the condition associated

with the normalization of the four-velocity of the particles becomes

−ϵ = gttṫ
2 + grrṙ

2 + gφφφ
2 + 2gtφṫφ̇, (85)
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with ϵ = {0, 1,−1} for a massless, massive and tachyon particle, respectively. We

disregard ϵ = −1 from now on. Substituting the expressions of Eq. (84) in the above

condition, and solving for ṙ2, we can define the effective potential

Ueff =
1

grr

(
−ϵ+ E2gφφ + 2ELgtφ + L2gtt

g2tφ − gttgφφ

)
, (86)

such that

ṙ2 = Ueff . (87)

The conditions for a circular orbit are ṙ = 0 and r̈ = 0, from which follows that

Ueff = 0,
dUeff

dr
≡ U ′

eff = 0, (88)

at the location of orbit. The dash denotes a derivative with respect to r. These

conditions can further be rearranged into algebraic equations that must be satisfied

simultaneously
E2gφφ + 2ELgtφ + L2gtt − ϵ

(
g2tφ − gttgφφ

)
= 0,

E2g′φφ + 2ELg′tφ + L2g′tt − ϵ
(
g2tφ − gttgφφ

)′
= 0.

(89)

Light Rings

For a light particle, ϵ = 0. In this case, calculations are simpler than in the massive

case. Solving the first equation for L in (89) and substituting in the second we obtain

g′φφ + 2g′tφ

gtφ ±
√
g2tφ − gttgφφ

gtt

+ g′tt

gtφ ±
√
g2tφ − gttgφφ

gtt

2

= 0, (90)

which is to be evaluated on a radius r. The smallest root of the above equation is the

location of the light ring.

In Boyer-Lindquist coordinates the location of the circular photon orbits of a Kerr

black hole are given by [66]

rLR±
BL = 2M

(
1 + cos

(
2

3
arccos (∓χ)

))
, (91)

where the plus sign refers to co-rotating photons, and the minus sign to counter-rotating

photons. In quasi-isotropic coordinates the location of the circular photon orbits can be

obtained using the inverse transformation in Eq. (41).

ISCO

For a massive particle, ϵ = 1. The ISCO is located at a saddle point of the effective

potential, such that the condition U ′′
eff = 0 should be imposed. This is equivalent to

imposing

E2g′′φφ + 2ELg′′tφ + L2g′′tt − ϵ
(
g2tφ − gttgφφ

)′′
= 0, (92)

in addition to Eq. (89). To find the location of the ISCO, we first solve Eq. (89) for E

and L as functions of the metric functions and their first derivatives, and later substitute
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these onto Eq. (92). Similarly to the light-ring case, we obtain a second order equation

to be solved for r, the smallest root of which corresponds to the location of the ISCO.

In Boyer-Lindquist coordinates the location of the circular massive particle orbits

of a Kerr black hole are given by [66]

rISCO±
BL =M

(
3 + Z2 ∓

√
(3− Z1)(3 + Z1 + 2Z2)

)
, (93)

where
Z1 = 1 +

(
1− χ2

)1/3 [
(1 + χ)1/3 + (1− χ)1/3

]
,

Z2 =
√
3χ2 + Z2

1 ,

and the plus sign refers to co-rotating particles, and the minus sign to counter-rotating

particles. In quasi-isotropic coordinates the location of the circular orbits can be

obtained using the inverse transformation in Eq. (41).

Orbital frequencies at the ISCO and Light Ring

The orbital angular frequency of particles both at the ISCO and light ring is given by

ω± =
φ̇

ṫ
=

−g′tφ ±
√
g′2tφ − g′ttg

′
φφ

g′φφ
, (94)

where the above expression is to be evaluated at the location of the ISCO/light ring,

ω+ is the angular frequency of co-rotating particles and ω− is the angular frequency of

counter-rotating particles. In the case of a Kerr black hole we have

Mω± = ± 1√
48 cos4

(
1
3
arccos (∓χ)

)
+ χ2

, (95)

at the light ring, and

Mω± = ± 1(
rISCO±
BL /M

)3/2 ± χ
, (96)

at the ISCO. The orbital frequency at the ISCO is associated with the cut-off frequency

of the emitted synchrotron radiation generated from accelerated charges in accretion

disks, and the angular frequency at the light ring is related to the time-scale of the

response of the black hole when it is perturbed (real part of the frequency of the black

hole quasi-normal modes) [67].

4 Numerical spinning black hole solutions

In this section we first validate our numerical infrastructure against well-known results,

namely the Kerr black hole, and then proceed to use it to obtain spinning black holes

in a modified gravity theory, the Einstein-scalar-Gauss-Bonnet theory.
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4.1 Validating the code against the Kerr black hole

To validate our numerical infrastructure we will solve the axisymmetric vacuum Einstein

equations to numerically obtain the Kerr solution, and compare with analytical results.

We choose to solve the the following combination of the field equations which diagonalize

the Einstein tensor with respect to the operator ∂2r + r−2∂2θ :

− Eµ
µ + 2E t

t +
2WrH
r2

Eφ
t = 0,

Eφ
t = 0,

Er
r + Eθ

θ = 0,

Eφ
φ − WrH

r2
Eφ

t − Er
r − Eθ

θ = 0.

(97)

In Fig. 8 we present the results for the comparison of the metric functions obtained

numerically with the analytically known ones for a Kerr black hole with χ = 0.6.

Given that in this case the initial guess cannot be the Kerr metric itself, to obtain

the results in Fig. 8 we used a Schwarzschild black hole with comparable rH∗. The

maximum observed error is of O (10−13) for the metric function h, with all other metric

functions being successfully obtained to machine precision. We also explored the whole

domain of existence of Kerr black holes, comparing numerically obtained physically

relevant quantities with analytical ones, see Fig. 9 below. These include the mass

M , angular momentum J , horizon area AH and Hawking temperature TH of the black

holes. Furthermore, we computed the (normalized) Smarr relation in Eq. (68). Overall,

in all quantities we have found remarkable agreement between numerical and analytical

results, with the Smarr relation providing accurate maximum error estimates. We also

observe that errors are higher when the black holes approach the extremal case (χ→ 1).

This is because in the extremal limit, our setup is not valid and another metric änsatz

is needed (see e.g. Ref. [14]).

4.2 Einstein-scalar-Gauss-Bonnet Gravity

Einstein-scalar-Gauss-Bonnet (EsGB) theories of gravity are a popular set of scalar

tensor theories of gravity that have been extensively studied [16–28], and which admit

black hole solutions different to those of GR. Here we use this set of theories to test our

methods and code in a non-trivial, but previously studied setting. EsGB theories are

described by the action

S =
1

16π

∫
d4x

√
−g

(
R− (∇ϕ)2 + α

4
ξ (ϕ)G

)
, (98)

where ϕ is a real scalar field that couples non-minimally to the Gauss-Bonnet term via

the coupling function ξ(ϕ), and where α is a coupling constant with dimensions of length

∗We find the code to be robust against initial guesses, converging quickly even when these are

somewhat (but not extremely) bad.
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Figure 8. Comparison between the numerical and analytical results for a Kerr black

hole with χ = 0.6, using Nx = 42, Nθ = 8. The maximum observed error is of

order O
(
10−13

)
for the function h, with all other functions being obtained to machine

precision. A Schwarzschild black hole was used as an initial guess, and we have used

rH = 1.

squared. No closed-form black hole solutions are known in these models, even in the

static case. One is therefore forced to resort to numerical methods to study black holes

in these theories.

The field equations of the action (98) are

Eµν ≡ Gµν − Tµν = 0, (99)

where

Tµν = ∇µϕ∇νϕ− 1

2
gµν (∇ϕ)2 + αPµανβ∇α∇βξ (ϕ) ,

and

Pαβµν ≡ 1

4
ϵαβγδR

ρσγδϵρσµν = 2 gα[µGν]β + 2 gβ[νRµ]α −Rαβµν ,

is the double-dual Riemann tensor (the square brackets denote anti-symmetrization).

The scalar field equation is

Eϕ ≡ □ϕ+
α

8
ξ̇(ϕ)G = 0, (100)

where the dot denotes differentiation with respect to the scalar field ϕ. In the stationary

and axisymmetric setting, we find that the scalar field is subject to the boundary
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Figure 9. Comparison of numerical results for M , J , AH and TH with analytical

ones, throughout the domain of existence of Kerr black holes. Each point represents a

different black hole solution. Numerical results were obtained using Nx = 50, Nθ = 12.

We observe remarkable agreement and small errors overall.

conditions [49,50]

∂xϕ = 0, x = −1,

ϕ = 0, x = 1,

∂θϕ = 0, θ = 0, π/2,

(101)

while the boundary conditions for the metric functions remain those given above. We

therefore choose the same spectral expansion for the scalar field as we did for the metric

functions.

Black holes in the EsGB theory should obey the Smarr formula (68), which becomes

M +Ms = 2THS + 2ΩHJ, (102)
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where∗
Ms = − 1

4π

∫
d3x

√
−g ξ(ϕ)

ξ′(ϕ)
□ϕ, (103)

and the entropy is given by Eq. (67) that in the EsGB case becomes

S =
AH

4
+
α

8

∫
H

d2x
√
hξ(ϕ)R(2), (104)

where R(2) is the Ricci scalar of the induced metric on the horizon. We will focus on

two coupling examples, the linear coupling

ξ(ϕ) = ϕ, (105)

and the exponential coupling

ξ(ϕ) = eγϕ. (106)

We find that for the exponential coupling the Smarr relation takes a rather simple form

M +Qs/γ = 2THS + 2ΩHJ, (107)

where Qs is the scalar charge of the solution, appearing in the asymptotic expansion of

the scalar field

ϕ ≈ Qs

r
+O

(
r−2

)
.

It can also be proved that for the linear coupling the following relation holds [68]

Qs = 2παTH . (108)

In what follows we use the relations in Eqs. (107) and (108) to address the accuracy

of our numerical solutions for the exponential and linear couplings respectively. This

is necessary as closed-form solutions are unknown. We use the same combination of

field equations as in the Kerr case (Eq. (97)), along with the scalar field equation (100)

to solve the system. To solve the system we use a comparable Kerr black hole as an

initial guess for the metric functions, and for the scalar field we use the perturbative

solution [49,50]

ϕ ≈ α

r2H

415− 1047x+ 942x2 − 358x3 + 51x4 − 3x5

12(−3 + x)6
. (109)

We present the accuracy estimate results (in a part of the domain of existence) using the

Smarr relation for the exponential coupling and the relation in Eq. (108) for the linear

coupling in Fig. 10. We observe that errors, as measured by the relations (107) and

∗This relation can also be written as

Ms =
1

4π

∫
d3x

√
−g (∇ϕ)

2 ∂

∂ϕ

(
ξ(ϕ)

ξ′(ϕ)

)
,

provided the coupling does not obey ξ(ϕ) ∝ ξ′(ϕ) and the scalar field asymptotically vanishes. This

is advantageous from a numerical point of view because no second derivatives of the scalar field are

required, increasing the accuracy in computing Ms.
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Figure 10. Smarr relation (top) and relation in Eq. (108) (bottom) for numerical

solutions in a part of the domain of existence for the theory with the exponential

coupling with γ = 1 and linear coupling, respectively, for different values of α/r2H .

Each point represents a different black hole solution. Numerical results were obtained

using Nx = 50, Nθ = 12. We observe small errors, similarly to the Kerr case.

(108), are small and similar to those presented for the Kerr black hole in Fig. 9, despite

a dramatic increase in the complexity and number of terms in the field equations. Our

results also agree remarkably well with perturbative solutions, such as the ones obtained

in Ref. [50].

As another test to the code, in Figure 11 we plot the accuracy as estimated by

the Smarr relation (107) as a function of both resolutions Nx and Nθ. We observe

exponential convergence, similarly to the toy model presented in Fig. 4. Note that

the Smarr relation provides only an estimate of maximum error – recall the Kerr case,

where most metric functions were actually obtained to a precision of ∼ O (10−16) but

the Smarr relation attained errors on the order of ∼ O (10−13).

To further demonstrate the capabilities of our code, in the following we present

some results for the physical properties of EsGB black holes. A plot of the ergoregion

for a dilaton black hole with γ = 1, χ = 0.1 and α/M2 = 1.15 can be found in Fig.

12. In Fig. 13 we plot |1− S| as a function of x and θ, where S is the speciality index

defined in Eq. (80), for the same EsGB black hole as before, where we can observe that

the spacetime is not algebraically special, being Petrov type I. Spinning EsGB black
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Figure 11. Smarr relation for numerical solutions with a dilaton coupling (γ = 1) as a

function of the resolution in x (left) and θ (right). We observe exponential convergence

to as the resolution is increased.
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Figure 12. Ergosphere for a EsGB dilaton black hole with γ = 1, χ = 0.1 and

α/M2 = 1.15 (red), together with the ergosphere of a Kerr black hole with the same

χ (blue). The event horizon for both is presented in black.

holes were always observed to be Petrov type I.∗
The perimetral location and angular frequencies at the ISCO and light rings of

EsGB dilaton black holes (γ = 1) are compared with those of a Kerr black hole (with

the same χ and M) in Fig. 14. Note that we have neglected any couplings between

the dilaton and matter (see e.g. [48, 69]). We have compared our results in the static

and slowly rotating cases with those in Ref. [69], observing remarkable agreement (in

the appropriate setup). From Fig. 14 we observe differences of a few percent in most

cases, with the most drastic differences occurring for the location of the co-rotating light

ring due to its proximity to the horizon. The qualitative behaviour is as follows: the

perimetral radius of both the ISCO and the light ring decreases with α/M2, and the

∗With our numerical setup, a Kerr black hole typically yields values of |1−S| on the order of 10−15

everywhere, in good agreement with the fact that it is Petrov type D.
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Figure 13. |1 − S| plotted as a function of x and θ, where S is the speciality

index defined in Eq. (80), for a EsGB dilaton black hole with γ = 1, χ = 0.1 and

α/M2 = 1.15. The non-vanishing value of |1− S| demonstrates that the spacetime is

Petrov type I.

opposite happens for the angular frequencies∗. Co-rotating orbits are most affected, and

black hole spin enhances the differences of co-rotating orbits with respect to the Kerr

case.

4.3 Comparison with other codes

Similar codes to the one we have developed in this chapter are scarce. Indeed, most

of the numerical studies of spinning black holes in modified theories of gravity make

use of the non-publicly-available FIDISOL/CADSOL solver [45–47], which implements

a finite difference method together with the root finding Newton-Raphson method. The

solver is written in Fortran and was first developed in the eighties. Works that use the

FIDISOL/CADSOL solver can be found e.g. in Refs. [13–15,21,23,24,26,28,48]. Some

of these works have applied the FIDISOL/CADSOL solver in studies of EsGB gravity,

much like we did here. However, they report an error of order O (10−3), as estimated

by the Smarr relation. In the appendix of Ref. [70], the author gives a comprehensive

overview of the FIDISOL/CADSOL solver, benchmarking it against the Kerr solution,

with results again showing errors several orders of magnitude higher than those presented

in Fig. 9.

More recently, in Ref. [50] the authors developed the eXtreme Partial Differential

Equations Solver (XPDES) code which is publicly available, to address similar problems.

The code is written in C language, and implements a finite difference method to solve

the field equations, similarly to the FIDISOL/CADSOL package. It makes use of the

softwareMaple to export the field equations to many large C programming files. Ref. [50]

∗We note that, similarly to Refs. [49,50], positive coordinate shifts in the location of the ISCO/light

ring were observed. These are, however, not physically relevant and the perimetral radius should be

used, where negative shifts are observed.
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Figure 14. Comparison between EsGB dilaton (γ = 1) and Kerr black holes with

the same χ (and M) regarding the perimetral radius and angular frequencies at the

ISCO (top) and light ring (bottom) as a function of α/M2, in a part of the domain of

existence of solutions.

does not discuss errors as estimated by Smarr relations, instead, they (also) benchmark

their code against the Kerr solution, and compare their EsGB results to perturbative

solutions, finding good agreement. They report typical maximum errors on obtaining

the Kerr solution of O (10−6), which represents a good improvement when compared

with the FIDISOL/CADSOL package, especially given that the XPDES code is open-

source and publicly available.

Our code is written in the Julia programming language, which when compared with

complied languages such as C code makes it logistically easier to use and adapt, and

to implement new models. In our implementation the field equations and boundary

conditions are written in a very simple way. For example, the boundary condition

f − 2∂xf = 0,

is written as a residual in code language as

f − 2 ∗ dfdx.

The code is memory efficient and fast, making use of pseudospectral methods as

explained above, with solutions to the field equations being obtained in the order of
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a few seconds in laptop-class computers. In our (limited) comparisons with the XPDES

code, we found that where our code took only a few seconds the XPDES code would

take minutes to achieve a lower accuracy.

The results of this section, for example in Figs. 9 and 10, show that the accuracy

of our code is many orders of magnitude better than the accuracy presented by either

the FIDISOL/CADSOL package or even the XPDES code.

Once a solution to the field equations has been obtained, our code has built-in

functions to compute all the physical properties of the black holes discussed in section

3.4, therefore allowing for a simple and comprehensive study of different models.

5 Conclusions

In this paper we have reviewed the spectral method for solving differential equations and

subsequently argued that such methods are ideal for finding stationary and axisymmetric

black hole solutions in modified theories of gravity. In particular, they allow complicated

field equations and boundary conditions to be implemented in a straightforward manner.

We showed how this can be done, and have implemented the method in a new code. To

show it in action, and to benchmark its performance against other codes, we applied

the code in the GR setting, and verified that the solution found is extremely close to

the known Kerr black hole. We then applied it to a popular set of modified theories

of gravity, Einstein-scalar-Gauss-Bonnet gravity, where it is known that black hole

solutions different from Kerr exist. In this latter setting we verified the accuracy using

analytical expressions that should hold identically. We found that even in the Gauss-

Bonnet setting our code took just seconds to find accurate spinning black hole solutions.

Within the code we have also implemented many built in functions to calculate

black hole properties of physical interest. In the future, obtained solutions together

with these functions could be used to study a huge range of phenomena observational

interest. Other possible studies include the quasi-normal modes of black hole mergers

(hence permitting realistic data analysis with Bayesian methods), the electromagnetic

emission from accretion disks, black hole shadows, and our code’s solutions could also be

used as seed solutions for numerical evolutions. Given that the code has been completed

only recently, we have, however, not yet applied it widely. Although a first application in

research work to EsGB theories is contained in Ref. [71]. In the future we hope to apply

the code to other theories, such as the so called regularized 4D-Einstein-Gauss-Bonnet

gravity theory [29–37] where thus far spinning black holes have not been found, and

use it to further understand and constrain such theories using the physical properties

described.
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Appendices

Appendix A The Kerr-Newman Black Hole

The Kerr-Newman solution solves the Einstein-Maxwell field equations

Gµν = 2

(
F α
µ Fνα − 1

4
gµνFαβF

αβ

)
. (110)

The Einstein-Maxwell field equations can be obtained with the following action principle

S =
1

16π

∫
d4x

√
−g (R− FµνF

µν) , (111)

where Fµν = ∇µAν − ∇νAµ is the Maxwell tensor. With the ansatz of Eq. (29) the

Kerr-Newman black hole solution reads (in terms of rH , M and Q)

fKN =
(
1 +

rH
r

)2 A
B
,

gKN =
(
1 +

rH
r

)2

,

hKN =
A2

B
,

WKN =
r (2M2 −Q2) + 2M (r2 + r2H)

rHr3B

√
M2 −Q2 − 4r2H

(112)

where

A =
r2 (2M2 −Q2) + 2Mr (r2 + r2H) + (r2 − r2H)

2

r4
− (M2 −Q2 − 4r2H)

r2
sin2 θ,

B =

(
A+

(M2 −Q2 − 4r2H)

r2
sin2 θ

)2

− (r2 − r2H)
2
(M2 −Q2 − 4r2H)

r6
sin2 θ,

(113)

together with the four-potential

Aµdx
µ =

(
Ãt −

WKN

r
(1−N ) Ãφ sin

2 θ

)
dt+ Ãφ sin

2 θdφ, (114)

where

Ãφ =
Qr

(
1 + M

r
+

r2H
r2

)√
M2 −Q2 − 4r2H

r2
(
1 + M

r
+

r2H
r2

)2

+ (M2 −Q2 − 4r2H) cos
2 θ
, (115)

and

Ãt = Φ−
Qr

(
1 + M

r
+

r2H
r2

)
r2

(
1 + M

r
+

r2H
r2

)2

+ (M2 −Q2 − 4r2H) cos
2 θ

+
WKN

r
(1−N ) Ãφ sin

2 θ, (116)
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where Q the electric charge and Φ the electrostatic potential (which can be chosen such

that Ãt|rH = 0). This particular choice of functions Ãt and Ãφ for the vector potential

is such that they are optimised for a numerical setup such as ours.

The total angular momentum (per unit mass), a, of the solution is related to M ,

Q and rH via

rH =

√
M2 − a2 −Q2

2
≡ M

2

√
1− χ2 − q2, (117)

where we have defined the dimensionless charge

q ≡ Q/M. (118)

The electric charge can be read off the asymptotic decay of the temporal part of the

four potential

Ãt = Φ− Q

r
+O

(
r−2

)
. (119)

The Kerr-Newman black hole obeys the well-known Smarr relation

M = 2TS + 2ΩHJ + ΦQ. (120)

Note that the Kerr-Newman black hole in the quasi-isotropic coordinate system

presented in Eq. (29) can be obtained from the standard textbook Boyer-Lindquist

coordinates solution with the radial coordinate transformation

rBL = r +M +
M2 − a2 −Q2

4r
= r

(
1 +

M

r
+
r2H
r2

)
. (121)

Details about marginal stable circular orbits in the Kerr-Newman case can be found in

Refs. [72, 73].
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