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Abstract

Oblivious transfer is a cryptographic primitive involving two non-trusting commu-
nicating parties. Since it is a basic building block for any two-party computation,
it is a quite powerful and important cryptographic functionality and thus topic of
various research investigations in the classical as well as in the quantum setting. It
was unfortunately shown that oblivious transfer can in neither setting be done with
information-theoretic security. However, in the quantum case, it is possible to limit
the cheating probabilities of unrestricted dishonest parties.

The most well-known variant is 1-out-of-2 oblivious transfer, where the sender
sends two bits and the receiver receives one of them without the sender learning
which one was received. While this has been the primary focus of investigations,
there exist other variants of the protocol which have been less studied. This thesis
focuses on two such variants, XOR oblivious transfer and Rabin oblivious transfer.

Different quantum protocols for these two variants are presented and analysed
for their security against cheating parties. Calculating the cheating probabilities in
general for non-interactive XOR oblivious transfer with symmetric states, the opti-
mality of the presented XOR oblivious transfer protocol is shown. Non-interactive
means that there is only one state transmission from the sender to the receiver who
applies a measurement, and no further communication between the parties. We
further extend the concept of XOR oblivious transfer to the sender not sending two
but n bits and analyse the effect of an increasing n on the participants’ cheating
probabilities.

The reversal of oblivious transfer is also looked at; that is, implementing oblivious
transfer in both directions even if only one of the two communicating parties can
send a quantum state and the other one can only measure. We determine the
reversed protocol versions of a 1-out-of-2 and an XOR oblivious transfer protocol
and show that the protocols’ cheating probabilities remain unchanged.

For Rabin oblivious transfer, both protocols using pure states and protocols using
mixed states are investigated. Comparing them to each other, we determine under
which circumstances the protocol with the pure states outperforms the protocol with
the mixed states and vice versa.
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Chapter 1

Introduction

1.1 Motivation

Secret communication and cryptography have always played a part in people’s af-
fairs. There are plenty of examples in recent as well as in ancient history where
either successful or failed secret communication played a decisive factor in the de-
velopment of events [1]. Cryptography is and always has been an ever-evolving field
that, due to the many and rapid technological developments in the past century,
has not only seen a tremendous change and evolution, but has also become increas-
ingly important and essential for a wider range of users and applications. With the
advances of existing and the development of new technologies, new opportunities as
well as new threats and security risks arise.

The use of quantum mechanics and its special properties for the development of
new technologies has been a major field of study in recent decades [2]. An important
area of research is quantum computing which promises, for some tasks, to surpass the
performance of classical computing. For example, the quantum computing algorithm
called Shor’s factoring algorithm can be used to factor an integer into its prime
factors [3]. Integer factorisation on classical computers is a very complicated and
time-consuming task, which is why this task is called the factorisation problem.
The best classical factorisation algorithm currently known takes exponential time,
in particular, it takes O(exp

(
(64/9)1/3(log n)1/3(log log n)2/3

)
) to factorise an integer

n [4]. Shor’s algorithm on a quantum computer, however, only takes polylogarithmic
time, in particular, O((log n)2(log log n)(log log log n)) [3]. Therefore, it could resolve
the factorisation problem. Since many classical communication and cryptographic
protocols base their security on the factorisation problem, quantum computing is a
significant threat to such protocols.

To be prepared for the time when quantum computing is an acute risk to
these classical protocols, another important area of research, quantum communi-
cation/quantum cryptography, has developed. Its aim is to use quantum mechanics
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Chapter 1: Introduction

to create communication protocols and develop quantum cryptosystems that provide
information-theoretic security, that is, security which cannot be broken by adver-
saries with unlimited computing power. The most famous quantum communication
protocol is quantum key distribution (QKD) [5] which has been the focus of much
research. Quantum key distribution is a protocol in which two parties exchange a
jointly shared secret key whereby the exchange process is secure against third-party
adversaries and can be done with information-theoretic security. QKD is therefore
important for any type of symmetric-key cryptography.

In general, the sending of secret messages using encryption and decryption meth-
ods is the main notion that comes to mind when thinking of the field of cryptogra-
phy. This field, however, has developed rapidly and greatly over the last few decades
and nowadays includes many topics and concepts other than basic encryption and
decryption techniques. With the growth of research in quantum communication,
these new concepts are also investigated when including quantum mechanics and its
properties.

One of the new topics is the cryptographic primitive called oblivious transfer,
a powerful protocol that can be used as basic component to build any two-party
computation [6]. Generally, oblivious transfer protocols are for transmitting secrets
between two untrusting parties. In particular, the aim is for sender Alice to hold
n ≥ 1 secrets and for receiver Bob to obtain 0 ≤ k ≤ n of them (n, k ∈ N) without
Alice being able to learn which of the secrets Bob has received. There are different
variants of oblivious transfer which are specified by n, k, and the nature of the
secrets, that is, are they for example single bits or XORs of several bits or strings
of bits.

In this work, we look at different variants of quantum oblivious transfer and
investigate more general as well as specific protocols for these variants. Analysing
their performance and security, we can identify optimal protocols and compare the
quantum protocols to their classical counterparts.

1.2 Thesis Outline

In the next chapter, Chapter 2, we provide the background for the work. We outline
the research in oblivious transfer and explain the concept of quantum state elimina-
tion, a measurement that will be repeatedly used in the quantum oblivious transfer
protocols in the following chapters. Furthermore, we briefly mention and describe a
few examples of cryptographic primitives other than oblivious transfer.

Chapter 3 covers non-interactive XOR oblivious transfer protocols. We first

2



Chapter 1: Introduction

present and analyse a specific such protocol that uses symmetric pure states. Con-
tinuing on to considering quantum XOR oblivious transfer protocols with symmetric
states in general and deriving the communicating parties’ cheating probabilities, we
can show that the former protocol is actually optimal within the considered frame-
work.

Chapter 4 deals with the reversal of oblivious transfer protocols. Introducing
the concept at first, we then illustrate it by reversing two example protocols. These
protocols are the 1-out-of-2 oblivious transfer protocol presented by Amiri et al. [7]
and the optimal XOR oblivious transfer protocol investigated in Chapter 3.

In Chapter 5, we generalise the XOR oblivious transfer definition to 1-out-of-
n XOR oblivious transfer. Presenting an outline for a non-interactive 1-out-of-n
XOR oblivious transfer protocol, we analyse it for its security against dishonest
communicating parties and for the effect of increasing n. We briefly discuss observed
similarities between 1-out-of-n XOR oblivious transfer and the notion of quantum
retrieval games.

Chapter 6 focuses on another variant of oblivious transfer called Rabin oblivious
transfer. At first, we consider and analyse protocols which use pure states, followed
by looking at a protocol using mixed states. We directly compare these two Rabin
oblivious transfer protocols, investigating if one of them has a security advantage
over the other one.
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Chapter 2

Background

2.1 Oblivious Transfer

Oblivious Transfer (OT) is an important cryptographic primitive. The first time
such a general process was described was by Wiesner in [8] who, at the same time,
also initiated quantum cryptography with this paper. Assuming we have two com-
municating parties, Wiesner described a method whereby one party can send two
different messages using varying polarizations to another party who can receive only
one of these depending on the way the analysers are set up. While he had already
written about this method, that he called “quantum multiplexing”, around 1970,
the paper was not published until 1983 [9]. By that time, the oblivious transfer
process had already been discussed independently by Rabin [10]. His specific type
of oblivious transfer is now known as Rabin OT and describes a particular protocol
situation. In this situation, Alice sends some information to Bob and Bob then ei-
ther learns the information or he does not learn anything while Alice will not know
which of the two cases has occurred. A few years later, Even et al. [11] presented
another type of OT, the 1-out-of-2 oblivious transfer (1-2 OT). In such a protocol,
Alice sends two bits of information to Bob. While Bob learns one and only one of
these, Alice stays ignorant of which one he has obtained. It is apparent that this
type resembles the general description of Wiesner’s “quantum multiplexing”.

The oblivious transfer primitive is often integrated as a subprotocol in other,
more extensive protocols. Rabin [10], for example, used OT in one step of the
exchange of secrets protocol he introduced and Even et al. [11] implemented it
in order to perform a contract signing protocol. Consequently, the importance of
oblivious transfer for multi-party computations became apparent. It was Kilian
[6] who proved that any two-party computation can actually be implemented with
oblivious transfer as a basic building block, i.e. OT is universal.

4



Chapter 2: Background

2.1.1 Different Variants of Oblivious Transfer

Further development of the primitive of oblivious transfer has led to various specifi-
cations and generalisations of oblivious transfer. Hence, there exist several different
variants in addition to the previously mentioned 1-out-of-2 OT and Rabin OT,
which, due to the fact that here the receiver either receives something or nothing,
is also called all-or-nothing OT. To mention but a few, there are variations such as
1-out-of-n OT where one of n potential secret information is transmitted to Bob
while keeping Alice ignorant of which one it is [12], or 1-out-of-2 string OT where
Alice’s secret information are not single bits but strings of several bits length (dis-
cussed, for instance, in Ref. [13]). There is also Generalised OT in which Alice’s
two secret bits are used as inputs for a one-bit function and Bob decides which of
the potential one-bit functions (Boolean functions) he wants to learn the value of
while he stays ignorant of the input bits themselves and Alice does not learn which
function he chose [13]. Another variation of OT that has been defined and played
a role in the literature, is XOR oblivious transfer (XOT). XOT extends the regular
1-out-of-2 OT by also including the exclusive-or (XOR) of the transmitted bits as a
potential value the receiver Bob can obtain [13].

Classically, the variants are equivalent despite their differences. In Ref. [14], it
has been proven that classical Rabin OT and classical 1-out-of-2 OT are equivalent
and several other papers have dealt with the equivalence of other OT variations to
1-out-of-2 OT in the classical setting [15, 16]. Relations and reductions between
cryptographic tasks in the classical setting do not, however, necessarily hold in the
quantum setting [17]. If or to what extent these equivalencies then hold is unclear.
So, for instance, He andWang [18] claim to have proven that the equivalence between
Rabin OT and 1-out-of-2 OT does not hold in the quantum setting.

2.1.2 Impossibility of Unconditional Security

Over the years, considerable research in oblivious transfer protocols has been con-
ducted both in the classical as well as in the quantum setting. In the classical
setting, it has been shown that it is possible to have information-theoretic secure
multi-party protocols if less than a third of the communication parties is dishon-
est [19, 20]. That is, if for n participants less than n/3 try to cheat by actively
deviating from the protocol, these dishonest parties will neither succeed in gaining
additional information nor in influencing the output of the remaining parties in any
way. Oblivious transfer, however, is a protocol between only two parties, so, when
one of them is dishonest, the requirement is not satisfied. Thus, it is not possible
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to classically achieve oblivious transfer with information-theoretic security and the
hope was put in quantum oblivious transfer.

Mayers [21] and Lo [22], however, presented impossibility results regarding infor-
mation-theoretic quantum OT. In Ref. [21], Mayers proved that quantum bit com-
mitment (BC) is not implementable with information-theoretic security without
introducing any restrictions. A BC protocol consists of two phases, a commit phase
where the sender Alice commits to one certain bit and a reveal phase where the
receiver Bob learns that bit. The essential part is that Bob cannot learn the com-
mitted bit before the reveal phase and Alice cannot change the bit anymore after
she has committed to it. That Mayers’ impossibility result also holds for quantum
OT can be concluded since, on one hand, OT can be used to implement BC due to
its universality and, on the other hand, quantum BC can be used to obtain quan-
tum OT protocols [23, 24]. In both of these cases, the insecurity of quantum OT
is entailed. Lo [22] has proven a more general impossibility result, namely that no
one-sided quantum two-party computation is information-theoretically secure. In
general, a one-sided two-party computation has the characteristic that only one of
the two communication partners obtains the final result while the other one learns
nothing about it. Thus, this applies exactly to the primitive of oblivious transfer
and Lo’s impossibility result holds for it. Furthermore, he also briefly looked at two-
sided two-party computations where both parties learn the final output but nothing
about the input from the respective other person except for what they can deduce
from the final output. Also for this concept, he has shown the insecurity for some
particular such functions. This result has been extended by a proof showing that,
for any two-sided quantum two-party computation, when the protocol is perfectly
secure against one cheating party, the other party can cheat perfectly and vice versa
[25].

He and Wang [26] present a Rabin OT protocol based on quantum entanglement
that they claim is unconditionally secure since it does not satisfy certain assumptions
made in the impossibility results by Mayers [21] and Lo [22]. This claim, however,
is not correct and valid and successful cheating strategies for both dishonest Alice
and dishonest Bob can be developed [27].

2.1.3 Limitations and Restrictions for Improving Security

Since the impossibility of unconditional secure quantum OT has been determined
[21, 22], possible restrictions and assumptions for OT protocols which can make them
information-theoretically secure, have been considered and different approaches have
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Chapter 2: Background

been examined.
It has been shown that information-theoretically secure BC is possible in a rela-

tivistic setting where the protocol is constrained by the theory of special relativity
[28], thus, disproving Mayers’ presumption that his obtained impossibility result
holds for any quantum BC, no matter if in the nonrelativistic or relativistic scenario
[21]. An exception to this information-theoretic feasibility of relativistic quantum
BC is the so-called bit commitment with a certificate of classicality (BCCC) [29]. In
other quantum BC protocols, a mixture α |0〉+ β |1〉 can be sent by the committing
party Alice, that is, she basically can commit to a probability distribution. The
significant characteristic of a BCCC protocol is that Alice can only choose whether
to commit to |0〉 or |1〉, i.e. setting α = 1 and β = 0 or α = 0 and β = 1. Here,
even a relativistic setting cannot achieve quantum BCCC with information-theoretic
security.

Since BC can be used to create OT, the possibility of using secure relativistic
BC to also achieve the desired security level for quantum OT has been investi-
gated. In Ref. [30], the security of the BC based OT construction presented in Ref.
[24] was examined when using a relativistic quantum BC. It was concluded that
this method does not help to achieve information-theoretically secure quantum OT,
though. Indeed, it was generally shown that oblivious transfer cannot be achieved
with information-theoretic security even when including restrictions imposed by spe-
cial relativity [31, 32].

A special case is the relativistic 1-out-of-2 OT in Minkowski spacetime called
space-time constrained oblivious transfer (SCOT) [33]. This is a quantum variation
of OT that has been proven to be information-theoretically secure since the impossi-
bility results do not apply here due to Minkowski causality. In particular, the reason
why this special case does not fall under the impossibility results is that the defini-
tion of OT is slightly modified. That is, while the receiver should never be able to
learn the bit(s) he did not receive in normal OT, the receiver can and is allowed to
learn these bit(s) outside the relevant space-time region in SCOT. Even though the
experimental realisation of the quantum SCOT protocol in Minkowski spacetime in
Ref. [33] is not feasible with current technology, there has been a development of
another SCOT protocol which is implementable with existing technological devel-
opments [34]. The results of these papers have been further extended to 1-out-of-m
space-time constrained OT in Ref. [35].

Another possibility to limit OT protocols is to impose restrictions on the quan-
tum storage. Explicitly, there exist two different models, the bounded-quantum-
storage model [36] and the noisy-quantum-storage model [37]. In the first model,
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the quantum storage is bounded by the number of qubits that can be stored in quan-
tum memory. Its effectiveness has been shown with three protocols implementing
Rabin OT in the bounded-quantum-storage model and the model was proven to be
secure as an honest party does not need any quantum memory but a dishonest one
would need to store at least half of the transmitted qubits to cheat successfully [36].
The size of the available storage can even be expanded further as demonstrated in
Ref. [38], where an oblivious transfer protocol was presented that is secure even
when a dishonest party can store all but a small fraction of the transmitted states.
The second model arose out of the first and can be seen as a generalisation of it.
Instead of limiting the number of qubits that can be stored, it is assumed that there
is some noise present in the quantum storage. Hence, every qubit stored there will
be subject to noise, resulting in some decoherence. As an example, a (sender-) ran-
domized Rabin OT where the sender does not select the two input bits but is given
them by the protocol, is proposed in Ref. [37] and its security is analysed in the
noisy-quantum-storage model. The security proof included only individual attacks
on the individual qubits obtained in the protocol, so, in Ref. [39], the proof was
generalised to cover security against arbitrary attacks.

The security proofs of the protocols in the aforementioned models assume that
the quantum devices used are transparent in the sense that their actions are per-
fectly known, i.e. the exact measurements and state preparations are known [40].
This, however, cannot always be guaranteed leading to the introduction of the con-
cept of device-independence [41]. Device-independence (DI) refers to regarding the
quantum devices as black boxes where the actual inner working of these is unknown
and tested as part of the protocol. This assumption can be used to achieve se-
cure OT with methods given in Ref. [41]. Full DI protocols yield many difficulties
when trying to implement them, thus, a weaker concept, the measurement-device
independence (MDI), has been developed [40]. In this concept, only the measure-
ment devices are regarded as black boxes which is much more practical. Ribeiro
and Wehner [40] considered quantum OT protocols with the restriction of MDI and
have found that some of them are secure while others are not, depending primarily
on the photon sources used (whether the honest parties use perfect or imperfect
single photon sources) but also on some general assumptions underlying the pro-
tocols. Measurement-device independent protocols (for quantum key distribution
and other types of protocols) have been experimentally implemented [42, 43]. Only
recently, progress has also been made on the experimental realisation of the more
challenging concept of device-independence and proof-of-principle demonstrations
for DI quantum key distribution have been presented [44, 45].

8
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2.1.4 Lower Bounds for Cheating Probabilities

In addition to the research on which limitations could be imposed to obtain information-
theoretically secure quantum OT, the best lower bounds for the cheating prob-
abilities that can be achieved by imperfect quantum OT with unrestricted par-
ties/adversaries, have been investigated. Imperfect thereby means that either one
or both parties are able to cheat better than with just a random guess, but their
cheating probabilities are limited.

Chailloux et al. [46] proved that there is a constant lower bound on the opti-
mal cheating probability for any quantum OT protocol. In particular, at least one
of the communicating parties has a cheating strategy with which he/she can suc-
ceed with a probability of at least 0.5852. For this, they defined cheating Alice as
wanting to learn which information the receiver Bob has learnt and cheating Bob
as wanting to learn all the transmitted bits. This bound has also been considered
for 1-out-of-2 quantum OT especially, for which the concept of semi-honest OT was
introduced [47]. A semi-honest receiver should learn as much as he would when
he acts honestly, i.e. the requirement is for him to get to know one of the bits
with certainty and then to try to learn the other bit as well. The lower bound was
increased and it was shown that max(P (Alice cheating), P (Bob cheating)) ≥ 2/3,
that is, the optimal cheating probability for any semi-honest quantum OT is at least
2/3. This bound has been rederived independently and differently in Ref. [7], which
considers any cheating strategy and not just necessarily semi-honest ones. For the
special case where, in an honest implementation of a protocol, the states in the
final step are pure and symmetric, the lower bound increases to 0.749 [7]. This pa-
per also presents the cheating-probability-wise best known quantum 1-out-of-2 OT,
where P (Alice cheating) = 3/4 and P (Bob cheating) = 0.729. With this result, the
heretofore best known 1-out-of-2 OT protocol in Ref. [46] has been surpassed since
there P (Alice cheating) = 3/4 and P (Bob cheating) = 3/4. No known quantum
1-out-of-2 OT protocol, however, has come close to the 2/3 boundary. Nonetheless,
these results have shown that quantum OT, even though not perfect, is still better
than classical OT since classically one of the parties can always cheat perfectly [47].
It is possible though to decrease the average cheating probabilities of the parties in
classical 1-out-of-2 OT when considering a probabilistic combination of a protocol
where Alice can cheat perfectly and Bob only with a random guess and a proto-
col where Bob can cheat perfectly and Alice only with a random guess. In such a
combined protocol, neither party cheats perfectly and the lowest average cheating
probability achievable for both is 3/4.

9
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XOR oblivious transfer has also generated interest in the past few years years.
The quantum OT protocol in Ref. [46] is presented for a 1-out-of-2 OT version,
but briefly mentioned also is how it can be used for XOT. In Ref. [48], this pro-
tocol has been looked at in the specific XOT setting and its cheating probabilities
have been shown to be equal to P (Alice cheating) = 1/2 and P (Bob cheating) =

3/4. Apart from this, [48] also investigated the concept of device-independence for
XOT protocols and presents a specific DI XOT protocol with cheating probabilities
P (Alice cheating) = 0.96440 and P (Bob cheating) = 0.99204.

Osborn and Sikora [49], by further investigating the impossibility results con-
cerning quantum protocols for secure function evaluation in Refs. [22, 25], present a
general lower bound on the cheating probabilities of any such protocol. They apply
it to different specific protocols, thereby also to different oblivious transfer variants
such as 1-out-of-n oblivious transfer or XOR oblivious transfer. It is, however, not
known if these bounds are attainable, that is, if there actually exist protocols that
are tight with them.

Another line of research is to consider incomplete oblivious transfer protocols.
Usually regarded are protocols where, if both parties are honest, the receiver Bob
always gets a correct outcome, thus they are called complete protocols. A failure
probability is included in incomplete protocols, that is, Bob sometimes gets an
incorrect outcome, even when he and Alice are both honest. Since it is possible to
lower the cheating probabilities for a non-zero failure probability, it is of interest
to explore these incomplete protocols. In Ref. [50], incomplete 1-out-of-2 oblivious
transfer protocols, where Alice cannot cheat at all, were considered and analysed
with respect to lowering Bob’s cheating probability and the failure probability.

2.2 Other Cryptographic Primitives

There are many other cryptographic primitives for multi-party (two-party) compu-
tations besides oblivious transfer and many of them are also studied in quantum
settings. One of these primitives is bit commitment which has already been men-
tioned and described in the previous subsection. Others are for example private
information retrieval, which in a sense is closely related to oblivious transfer, and
coin flipping, a cryptographic primitive that is often used as part of larger protocols.
These two primitives are introduced in more detail in the following subsections.
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2.2.1 Private Information Retrieval

The notion of private information retrieval (PIR) was first introduced by Chor et al.
[51] and addresses the matter of how a user querying a database can privately retrieve
the information he/she is seeking. That is, how can a user retrieve a bit xi stored in
an n-bit database x = x1, ..., xn without revealing any information about the chosen
i ∈ {1, ..., n} to the server that holds the database. The most obvious solution is for
the server to send the whole database to the user. This solution, however, requires n
bits to be sent. Thus, Chor et al. [51] investigated more efficient solutions involving
k ≥ 2 servers that cannot communicate with each other and where all k servers have
a copy of the database. In the considered schemes, it is required that none of the k
individual servers gets any information about i when the user sends a query to all
of the servers and computes the bit of interest xi from their replies.

Gertner et al. [52] extended private information retrieval to symmetrically pri-
vate information retrieval (SPIR) where not only the user’s privacy but also the
server’s privacy matters. Hence, when the user queries the database, the only in-
formation about the content of the database he/she should obtain is one single bit.
As already noted in Ref. [52], this SPIR concept is highly related to the oblivious
transfer variant 1-out-of-n OT [12]; the user is supposed to learn one and only one
bit of n potential bits while the server is kept ignorant of which bit the user has
learnt. It was later proven that actually any PIR protocol with one server (i.e.
k = 1) can be reduced to a 1-out-of-n OT protocol [53].

Aside from the investigation of these concepts in the classical setting, research
has also been conducted on PIR and SPIR in the quantum setting and protocols for
quantum private information retrieval (QPIR) [54, 55] and quantum symmetrically
private information retrieval (QSPIR) [56] were developed. A different version of
QSPIR, called the quantum private query (QPQ), was introduced by Giovannetti et
al. [57]. The definition of such schemes differs to the original SPIR definition in that,
rather than guaranteeing the user’s privacy as incorporated part of the protocol, the
user adds a test to his/her query with which it can be determined if the server has
tried to learn anything about the user’s query. Hence, in QPQ, the user queries a
database and the server’s reply consists of the answer to the query and a quantum
certificate certifying that the server has not acquired any information about the
user’s query.
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2.2.2 Coin Flipping

Coin flipping is another cryptographic primitive involving non-trusting parties. The
concept of protocols for coin flipping between parties at different locations was first
presented by Blum [58]. The idea of these protocols is for two or more communi-
cating parties to output an agreed uniformly random bit while being at different
locations and not trusting each other. There are two different types: strong coin
flipping and weak coin flipping. In strong coin flipping, no party should be able to
bias the coin toward any outcome. In weak coin flipping, however, the preferred
outcome for each party is known and it should only be prevented that any party can
bias the coin toward their preferred outcome.

It is impossible to have unconditional secure coin flipping protocols in the clas-
sical setting [59] as well as in the quantum setting [22]. However, while in classical
protocols the cheating probability is never less than 1, there are lower bounds for
the cheating probabilities in quantum coin flipping protocols. Kitaev [60] has proven
that the lower bound for cheating probabilities for quantum strong coin flipping pro-
tocols is 1/

√
2 and a protocol that gets arbitrarily close to this bound was presented

in Ref. [61]. On the other hand, Mochon [62] has shown that there exist quantum
weak coin flipping protocols with cheating probabilities of 1/2 + ε, where ε > 0 can
be arbitrarily small; so quantum weak coin flipping protocols can get very close to
achieving information-theoretic security.

Progress in coin flipping has also been made on the experimental side. For ex-
ample, the quantum coin flipping protocol proposed in Ref. [63] was experimentally
realised [64] and was shown to be better than classical coin flipping protocols at
communication distances suitable for metropolitan area communication networks.

2.3 Quantum State Elimination

Quantum state elimination is a measurement that eliminates rather than identifies
a quantum state [65]. It is less known than the more common quantum state dis-
crimination [66] where the focus is on identifying what state a quantum system has.
In quantum state elimination, the aim is to exclude states, that is, to learn which
state the quantum system has not been prepared in.

Minimum-error state elimination on a given set of states is equivalent to minimum-
error state discrimination on a related set of states which consist of mixtures of the
original states [67], but such an equivalence does not exist for unambiguous state
elimination and unambiguous state discrimination. In unambiguous quantum state
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elimination, one wants to learn with certainty in which state the quantum system
has not been prepared in by unambiguously excluding states. Such a measure-
ment is always possible when allowing for the possibility that sometimes there is
also an inconclusive result. In Ref. [68], unambiguous quantum state elimination
was considered for qubit sequences, also covering elimination of one or two states
out of four two-qubit states. The measurements presented in this paper were later
experimentally realised [69].

Unambiguous quantum state elimination measurements can be used for appli-
cations in quantum communication. For instance, it was applied in a protocol for
quantum digital signatures [70] and it has also been used for oblivious transfer. That
is, the 1-out-of-2 oblivious transfer protocol in Ref. [7] is based on an honest Bob
implementing an unambiguous quantum state elimination measurement to obtain
one of the two possible bits.
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Chapter 3

Non-interactive Quantum XOR Obliv-
ious Transfer

3.1 Introduction

As mentioned in the previous chapter, one variant of oblivious transfer is XOR
oblivious transfer (XOT) [13]. In XOT, the sender Alice has two bits x0 and x1 and
the receiver Bob will obtain one bit xb, where b ∈ {0, 1, 2} and x2 = x0 ⊕ x1; see
Figure 3.1. Alice is not supposed to learn which bit Bob has learnt, and Bob is not
supposed to be able to learn more than this one bit.

Figure 3.1: XOR oblivious transfer from Alice to Bob.

In this chapter, we look at non-interactive quantum XOR oblivious transfer
with symmetric pure states. Non-interactive means that there is only one state
transmission from the sender to the receiver who applies a measurement to get
his/her output. In the usual definition of XOR oblivious transfer, Bob chooses if
he wants to receive the first bit, the second bit, or their XOR, i.e. he picks the
value of b uniformly at random. Due to the non-interactivity of these protocols, this
active choice is not a direct part of the quantum protocol but added by classical
post-processing. We describe the classical post-processing here and show that it
does not increase cheating probabilities.

The security of the protocols in this chapter is analysed by calculating the cheat-
ing probabilities for Alice and Bob. A dishonest Alice and a dishonest Bob are
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therefore defined in the following way.

Dishonest Alice:
A cheating Alice wants to learn which of the three bits Bob has learnt, i.e. has he
received x0, x1, or x2. In other words, she wants to learn b.

Dishonest Bob:
A cheating Bob wants to not only learn one bit but all three of them.

Note that, in the XOT case, it is sufficient for a dishonest Bob to learn two of the
bits, as he will be able to deduce the third bit from the other two. That is, when he
learns for example x0 and x1, he will also know x0 ⊕ x1 and similarly for the other
bit combinations.

The work in this chapter, including the protocol presented, its analysis, and the
general investigation of non-interactive quantum XOT protocols using symmetric
pure states, was presented and published in Ref. [71]. The specific XOT protocol
was further also described in Ref. [72]. Here, we add details about how the results
were derived and computed.

3.2 Optimal XOT Protocol Using Symmetric Pure

States

In this section, we look at a specific non-interactive quantum XOR oblivious transfer
protocol based on symmetric pure states. As a matter of fact, the protocol presented
here is optimal among non-interactive protocols using symmetric pure states as
shown in Section 3.3.

Furthermore, this protocol is also experimentally realisable [71], having been
realised in the case when the communicating parties are both honest as well as in
the cases where one of them is dishonest. Both Alice’s and Bob’s optimal cheating
strategies, which we identify and analyse in this section, have been implemented.
The feasibility of the protocol has hence been shown and the experimental results
are in very good agreement with the theoretical results. More details about the
experiment can be found in Section 3.4.

3.2.1 The Protocol

In the protocol, sender Alice encodes her two bit values (x0, x1) ∈ {0, 1} in a re-
spective qutrit state |φx0x1〉 and receiver Bob applies a quantum state elimination
measurement.
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In order to be able to learn either x0, x1, or x0 ⊕ x1 with certainty, the states
|φx0x1〉 need to be chosen in a way that it is possible to unambiguously exclude two
of them. At the same time, it should not be possible to unambiguously determine
which single state was received, so that it is impossible to perfectly learn both x0

and x1. This means that the four states |φx0x1〉 need to be non-orthogonal to each
other. One set of states that satisfies these criteria is

|φ00〉 =
1√
3

(|0〉+ |1〉+ |2〉), |φ01〉 =
1√
3

(|0〉 − |1〉+ |2〉),

|φ11〉 =
1√
3

(|0〉 − |1〉 − |2〉), |φ10〉 =
1√
3

(|0〉+ |1〉 − |2〉). (3.1)

These non-orthogonal pure states are symmetric, in the sense that |φ01〉 = U |φ00〉,
|φ11〉 = U2 |φ00〉, and |φ10〉 = U3 |φ00〉 for the unitary

U =

1 0 0

0 0 −1

0 1 0

 , (3.2)

for which it holds that U4 = 1.
After Alice has sent to Bob the state corresponding to her bits chosen uniformly

at random (x0, x1) ∈ {0, 1}, Bob makes an unambiguous quantum state elimination
measurement to exclude two out of the four possible states. There are six different
pairs of states he can exclude, whereby each excluded pair corresponds to learning
either x0, x1, or x0 ⊕ x1, with either the value 0 or 1. Constructing Bob’s measure-
ment operators requires the six states that are each orthogonal to a pair of states
in Eq. (3.1). The measurement operators are then proportional to projectors onto
these six states, normalised so that their sum is equal to the identity matrix. For in-
stance, Bob will get outcome bit x0 = 0 when the excluded states are |φ11〉 and |φ10〉
and the corresponding measurement operator for this is ΠA = 1

4
(|0〉+ |2〉)(〈0|+ 〈2|);

similarly for the other outcomes. Table 3.1 shows the measurement operators with
their respective excluded pair of states and deduced output bit for Bob.

Having determined both an honest Alice’s states as given in Eq. (3.1) and an
honest Bob’s measurement operators (Table 3.1), we can summarise and outline the
XOR oblivious transfer protocol’s procedure as follows.

1. Alice uniformly at random chooses the bits (x0, x1) ∈ {0, 1} and sends the
corresponding state |φx0x1〉 to the receiver Bob.
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2. Bob performs an unambiguous quantum state elimination measurement, ex-
cluding two of the possible states with certainty, from which he can deduce
either x0, x1, or x2 = x0 ⊕ x1.

Outcome bit Eliminated states Measurement operator

x0 = 0 |φ11〉 and |φ10〉 ΠA = 1
4
(|0〉+ |2〉)(〈0|+ 〈2|)

x0 = 1 |φ00〉 and |φ01〉 ΠB = 1
4
(|0〉 − |2〉)(〈0| − 〈2|)

x1 = 0 |φ11〉 and |φ01〉 ΠC = 1
4
(|0〉+ |1〉)(〈0|+ 〈1|)

x1 = 1 |φ00〉 and |φ10〉 ΠD = 1
4
(|0〉 − |1〉)(〈0| − 〈1|)

x2 = 0 |φ01〉 and |φ10〉 ΠE = 1
4
(|1〉+ |2〉)(〈1|+ 〈2|)

x2 = 1 |φ00〉 and |φ11〉 ΠF = 1
4
(|1〉 − |2〉)(〈1| − 〈2|)

Table 3.1: Bob’s measurement operators, the respective eliminated states, and
thereof deduced outcome bits.

3.2.2 Equivalence between Semi-random XOT and Standard

XOT

In oblivious transfer, the sender and receiver are usually presumed to choose their
inputs uniformly at random, i.e. the values for the bits (x0, x1) for Alice and the value
for b for Bob. The price for the non-interactivity, however, is that, in the execution
of the quantum protocol, Bob cannot actively choose if he wants to receive the first
bit, the second bit, or their XOR. That is, here, Bob does not have an input but he
will obtain one of the three outcomes at random, that is, he obtains either x0, x1,
or x0 ⊕ x1 with a probability of 1/3 each.

This notion of a party randomly obtaining outputs that, in standard oblivious
transfer protocols, are their respective inputs, has already been explored for 1-2
OT. Chailloux et al. [46] defined random 1-out-of-2 oblivious transfer, where Alice
and Bob get the random outputs (x0, x1) or b, respectively, and showed that it is
equivalent to standard 1-out-of-2 oblivious transfer, where these outputs are their
respective inputs. Amiri et al. [7] defined semi-random 1-out-of-2 oblivious transfer,
where Bob gets the random output b, and showed that it is equivalent to not only
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standard 1-out-of-2 oblivious transfer, where this output is his input, but also to
random 1-out-of-2 oblivious transfer as described in Ref. [46].

In accordance with this and using the terminology in Ref. [7], the XOT protocol
in the previous subsection can be de facto classified as a semi-random XOT protocol.
A semi-random XOR oblivious transfer protocol is generally defined as follows.

Definition 3.1 (Semi-random XOR oblivious transfer). Semi-random XOT is a
two-party protocol where

1. Alice chooses her input bits (x0, x1) ∈ {0, 1} uniformly at random, thereby
specifying also their XOR x2 = x0 ⊕ x1, or she chooses Abort.

2. Bob outputs the value b ∈ {0, 1, 2} and a bit y, or Abort.

3. If both parties are honest, then they never abort, y = xb, Alice has no in-
formation about b, and Bob has no information about x(b+1) mod 3 or about
x(b+2) mod 3.

Using similar arguments as in Refs. [7] and [46], it is possible to prove that
semi-random and standard XOR oblivious transfer are equivalent up to classical
post-processing. That is, implementing semi-random XOT with cheating probabili-
ties AOT and BOT allows realisation of standard XOT with the same cheating prob-
abilities and vice versa; similarly as for 1-2 OT. So, adding classical post-processing
enables Bob to nevertheless actively (but randomly from Alice’s point of view) choose
whether he wants to learn x0, x1, or x2 = x0 ⊕ x1 without affecting either party’s
cheating probability.

Proposition 3.1. Having a semi-random XOT protocol with cheating probabilities
AOT and BOT is equivalent to having a standard XOT protocol with the same
cheating probabilities.

Proof. We examine both directions, i.e. constructing a semi-random XOT protocol
from a standard XOT protocol, and constructing a standard XOT protocol from a
semi-random XOT protocol. That is, the situation where the parties possess means
to implement standard XOT, but both of them instead wish to implement semi-
random XOT, or vice versa.

Case 1: Let P be a standard XOT protocol with cheating probabilities AOT (P ) and
BOT (P ). A semi-random XOT protocol Q with the same cheating probabilities can
be constructed in the following way:
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1. Alice picks (x0, x1) ∈ {0, 1} uniformly at random. Bob generates b ∈ {0, 1, 2}
uniformly at random (in a way so that he no longer actively chooses b).

2. Alice and Bob perform the XOT protocol P where Alice inputs x0, x1, and
x2 = x0 ⊕ x1 and Bob inputs b. Let y be Bob’s output.

3. Alice and Bob abort in Q if and only if they abort in P . Otherwise, the
outputs of protocol Q are (b, y) for Bob.

Evidently, Q implements semi-random XOT if both parties follow the protocol.
Furthermore, because of the way Q is constructed, Alice can cheat in Q if and only
if she can cheat in P , and the same for Bob cheating. Cheating probabilities for Alice
and Bob are therefore equal in P and Q, AOT (Q) = AOT (P ) and BOT (Q) = BOT (P ).

Case 2: Let P be a semi-random XOT protocol with cheating probabilities AOT (P )

and BOT (P ). A standard XOT protocol Q with the same cheating probabilities can
be constructed in the following way:

1. Alice has inputs X0, X1, with X2 = X0⊕X1, and Bob has input B ∈ {0, 1, 2}.

2. Alice and Bob perform the semi-random XOT protocol P where Alice inputs
x0, x1, with x2 = x0 ⊕ x1, whereby she chooses (x0, x1) ∈ {0, 1} uniformly at
random. Let (b, y) be Bob’s outputs.

3. Bob sends r = (b+B+B) mod 3 to Alice. Let x′c = x(c+r) mod 3 for c ∈ {0, 1, 2}.

4. Alice sends (s0, s1) to Bob, whereby sc = x′c⊕Xc for c ∈ {0, 1} and s2 = s0⊕s1.
Let y′ = y ⊕ sB.

5. Alice and Bob abort in Q if and only if they abort in P . Otherwise, the output
of protocol Q is y′ for Bob.

If Alice and Bob are both honest, then y = xb holds true. Note that x′B = x(B+r) mod 3

= x(B+b+B+B) mod 3 = xb. Hence,

y′ = y ⊕ sB = xb ⊕ sB = x′B ⊕ x′B ⊕XB = XB, (3.3)

i.e. y′ is indeed equal to XB. This also holds for B = 2 since

s2 =s0 ⊕ s1 = x′0 ⊕X0 ⊕ x′1 ⊕X1 = x0 ⊕ x1 ⊕X0 ⊕X1 = x2 ⊕X2 = x′2 ⊕X2.

(3.4)
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The following is true with respect to the classical post-processing described in steps
3 and 4 and security against Alice and Bob:

• If Alice is honest, she knows r but has no information about b. From r =

(b + B + B) mod 3 she can deduce that 2B = (r − b) mod 3 but she cannot
obtain any information about B from this. Hence, the classical post-processing
does not give an honest Alice any more information about which bit Bob has
obtained.

• If Alice is dishonest, she can correctly guess b with probability AOT (P ). She
knows r. Since 2B = (r − b) mod 3, guessing 2B, equivalently guessing B, is
equivalent to guessing b. Therefore, AOT (Q) = AOT (P ).

• If Bob is honest, he knows s0, s1, s2 = s0 ⊕ s1, and r but has no information
about x(b+1) mod 3 and x(b+2) mod 3. He cannot learn anything about the other
two of Alice’s bits, X(B+1) mod 3 and X(B+2) mod 3, since

X(B+1) mod 3 = x′(B+1) mod 3 ⊕ s(B+1) mod 3 = x(B+1+r) mod 3 ⊕ s(B+1) mod 3

= x(b+1) mod 3 ⊕ s(B+1) mod 3,

X(B+2) mod 3 = x′(B+2) mod 3 ⊕ s(B+2) mod 3 = x(B+2+r) mod 3 ⊕ s(B+2) mod 3

= x(b+2) mod 3 ⊕ s(B+2) mod 3. (3.5)

Hence, the classical post-processing does not give an honest Bob any more
information about the other two bits Alice has sent.

• If Bob is dishonest, he can guess x(b+1) mod 3 and x(b+2) mod 3 with probabil-
ity BOT (P ). He knows s0, s1, s2 = s0 ⊕ s1, and r. Since sc = x′c ⊕ Xc =

x(c+r) mod 3 ⊕ Xc for c ∈ {0, 1, 2}, Xc = x(c+r) mod 3 ⊕ sc and, for Bob, guess-
ing (X0, X1, X2) is equivalent to guessing (x0, x1, x2). Therefore, BOT (Q) =

BOT (P ).

�

Step 3 and Step 4 in the second case of the proof describe the classical post-
processing that needs to be added to a semi-random XOT protocol to realise a
standard XOT protocol. The process can be illustrated more clearly. Alice’s actual
input bits are (X0, X1) with X2 = X0 ⊕X1, while the uniformly at random chosen
bits (x0, x1) with x2 = x0 ⊕ x1 are only “dummy” values. The semi-random XOT
protocol is implemented using these “dummy” values (x0, x1). In the first part of
the classical post-processing, Step 3, Bob defines a variable r whose value will tell
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Alice how to permute the order of the bits xi for i ∈ {0, 1, 2}, and the bits in new
order are called x′c for c ∈ {0, 1, 2}. She will then compute and send the bits (s0, s1)

to Bob, from which he can learn the bit XB that he wants to learn. That is, when
r = 0, then b = B and the order of the bits is right, i.e. (x′0, x

′
1, x
′
2) = (x0, x1, x2).

So Alice does not need to change anything before computing and sending (s0, s1).
When r = 1, however, b 6= B and the order of the bits needs to be shifted once to
the left, i.e. (x′0, x

′
1, x
′
2) = (x1, x2, x0), before Alice can compute and send (s0, s1).

Also when r = 2, b 6= B and the order of the bits needs to be shifted once to the
right, i.e. (x′0, x

′
1, x
′
2) = (x2, x0, x1), before Alice can compute and send (s0, s1). Bob

has output (b, y) from the semi-random XOT protocol and wants to learn the bit
XB. He receives (s0, s1), where s2 = s0 ⊕ s1 holds for all r ∈ {0, 1, 2}. The value of
sB will tell him what he needs to do with y in order to learn his chosen bit. That
is, when sB = 0, then the value of y matches the value of XB and he does not do
anything. However, when sB = 1, then he needs to flip the bit y to get the correct
value for XB.

3.2.3 Dishonest Bob

Let us suppose that Bob is dishonest and wants to cheat. Bob cheating is defined
as him wanting to know all three bits, i.e. the first bit, the second bit, and their
XOR. Since knowledge of the values of any two of these bits implies knowledge of
the value of the third one, Bob aims, without loss of generality, to correctly guess
both x0 and x1 which in turn implies knowledge of x2 = x0 ⊕ x1.

Note that by following the protocol honestly and then randomly guessing the
value of the bit(s) that he did not obtain, a dishonest Bob can always cheat with
a probability of at least 1/2. Bob’s best cheating strategy though is to distin-
guish between honest Alice’s states in Eq. (3.1) with minimum error. The optimal
minimum-error measurement in this case is the square-root measurement (SRM),
also called pretty good measurement [73, 74], since he wants to distinguish between
equiprobable and symmetric states.

Thus, the measurement operator corresponding to a state |φx0x1〉 is

Πx0x1 = ρ−1/2
average |φx0x1〉 〈φx0x1| ρ−1/2

average, (3.6)

where the average density matrix sent from Alice to Bob is

ρaverage =
∑

x0,x1=0,1

px0x1 |φx0x1〉 〈φx0x1| =
1

3
1 (3.7)
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since Alice sends each one of the four possible states with equal probability and so
px0x1 = 1/4 ∀x0, x1 ∈ {0, 1}. Specifically, dishonest Bob’s measurement operators
are then given by Πx0x1 = 1

4
|φx0x1〉 〈φx0x1 | for each state |φx0x1〉, respectively, and

his cheating probability Bq
OT is

Bq
OT =

1

4

∑
x0,x1=0,1

Tr(Πx0x1 |φx0x1〉 〈φx0x1|) =
3

4
. (3.8)

3.2.4 Dishonest Alice

Let us suppose that Alice is dishonest and wants to cheat. Alice cheating is defined
as her wanting to know which of the three bits Bob has obtained, i.e. whether he
has learnt the first bit, the second bit, or their XOR.

Note that, by following the protocol honestly and then randomly guessing whether
Bob has obtained x0, x1, or x2 = x0 ⊕ x1, a dishonest Alice can always cheat with
a probability of at least 1/3. Otherwise, there are two different types of protocols
that can be considered. In one of them, Bob tests the states Alice sends to him and,
in the other one, Bob does not apply any testing. If Bob does not test, a dishonest
Alice can send him any state that suits her best. However, if Bob tests, this can re-
strict Alice’s available cheating strategies. The particular testing process considered
here is similar to the testing process in the 1-out-of-2 oblivious transfer protocol in-
vestigated by Amiri et al. [7]. For this process, Alice has to send Bob a sequence of
states and Bob then picks a fraction of them for which he asks Alice to declare what
they are. He makes an appropriate measurement on these states and checks if his
measurement results match with Alice’s declarations. When Bob is testing, Alice’s
average cheating probability is obtained as opposed to her cheating probability for
each individual state transmission. In general, when Bob is not testing, dishonest
Alice can cheat at least as well as when Bob is applying some testing.

No testing by Bob

We first consider the case where Bob does no testing. A dishonest Alice can then
choose to send any state for which the probability of Bob obtaining either x0, x1,
or x2 is maximised. In general, Bob’s probability to receive the outcome associated
with his measurement operator Πk

B is Tr(Πk
Bρ

j), when ρj was sent. To maximise this
probability, it is best for Alice to send him the eigenstate of Πk

B corresponding to its
largest eigenvalue. The largest eigenvalue of Bob’s relevant measurement operators
will yield Alice’s cheating probability.
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Looking at Bob’s measurement operators, we note that ΠA and ΠB correspond
to Bob obtaining the first bit, ΠC and ΠD to Bob obtaining the second bit, and ΠE

and ΠF to Bob obtaining their XOR. Hence, these pairwise combinations need to be
considered, i.e. ΠA + ΠB = (|0〉 〈0|+ |2〉 〈2|)/2, ΠC + ΠD = (|0〉 〈0|+ |1〉 〈1|)/2, and
ΠE+ΠF = (|1〉 〈1|+|2〉 〈2|)/2. All three pairwise added measurement operators have
eigenvalues (1/2, 1/2, 0). Bob’s probability to obtain the first bit is then maximal
and equal to 1/2, when Alice sends Bob any superposition of |0〉 and |2〉. Similarly,
Bob’s probability to obtain the second bit is maximal and equal to 1/2, when Alice
sends Bob any superposition of |0〉 and |1〉, and Bob’s probability to obtain the XOR
is maximal and equal to 1/2, when Alice sends Bob any superposition of |1〉 and |2〉
We can conclude that, with no testing by Bob, Alice can cheat with probability of
at most AqOT = 1/2.

Bob testing

Next, we consider the case where Bob tests Alice’s states, whereby Alice wants
to make sure that her cheating stays undetected. Since this places restrictions on
dishonest Alice’s choice of states to send, this generally might lower Alice’s cheating
probability. For this particular protocol, though, we will see that the cheating
probability for Alice actually remains the same.

For Bob to carry out the testing, it is necessary to implement not only one
instance of the XOT protocol but multiple instances. Following the method in [7],
Alice transmits not only one but N states. Bob randomly chooses a small fraction
F of the states, where 0 < F � 1. He asks Alice to declare what these selected
states are and measures them in the basis where one of the basis states is the state
Alice declared. Bob then checks if his results confirm Alice’s declaration. If he finds
any mismatches, Bob aborts the protocol. Otherwise, he discards the tested states
and proceeds with the protocol for the remaining N(1− F ) states.

In order to always pass Bob’s tests, a dishonest Alice has to send a superposi-
tion of the states she is supposed to send, entangled with some system she keeps.
Generally, such a state is

|Φcheat〉 = a |0〉Alice⊗|φ00〉+b |1〉Alice⊗|φ01〉+c |2〉Alice⊗|φ11〉+d |3〉Alice⊗|φ10〉 , (3.9)

where {|0〉Alice , |1〉Alice , |2〉Alice , |3〉Alice} is an orthonormal basis for the system Alice
keeps and |a|2 + |b|2 + |c|2 + |d|2 = 1. Alice can then ensure that, whenever she is
tested, she can prepare one of the states she is supposed to send by measuring her
system in this basis; i.e. she will always be able to declare a state matching Bob’s
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information if she is asked to do so.
Whenever she is not tested, Alice, however, measures her system in the way that

maximises her probability to correctly guess which bit Bob has obtained. After Bob
has made his unambiguous quantum state elimination measurement, Alice’s system
is prepared in one of three states, depending on whether Bob has obtained x0, x1,
or x2 = x0 ⊕ x1. That is,

ρ0 =
1

pA + pB
TrBob[(ΠA + ΠB)1/2 |Φcheat〉 〈Φcheat| (ΠA + ΠB)1/2], (3.10)

where pA + pB = Tr[|Φcheat〉 〈Φcheat| (ΠA + ΠB)] = 1/3, and analogously for ρ1 and
ρ2. The states she needs to distinguish between are therefore

ρ0 =


|a|2 ab∗ 0 0

a∗b |b|2 0 0

0 0 |c|2 cd∗

0 0 c∗d |d|2

 ,

ρ1 =


|a|2 0 0 ad∗

0 |b|2 bc∗ 0

0 b∗c |c|2 0

a∗d 0 0 |d|2

 ,

ρ2 =


|a|2 0 −ac∗ 0

0 |b|2 0 −bd∗

−a∗c 0 |c|2 0

0 −b∗d 0 |d|2

 , (3.11)

corresponding to Bob obtaining x0, x1, or x2 = x0 ⊕ x1, and all three states occur
with equal probability 1/3.

Alice’s optimal measurement is a minimum-error measurement. Thus, she will
want to make the states as distinguishable as possible when choosing the values
for a, b, c, and d. Since the probabilities of all three state are independent of the
constants a, b, c, and d, it is optimal for Alice to choose their values in a way to
minimise the pairwise fidelities between the states, making them as distinct and
hence as distinguishable as possible. Because any complex phase factors can be
absorbed into the kets |0〉Alice , |1〉Alice , |2〉Alice , |3〉Alice, the constants a, b, c, and d

can be assumed to be real numbers without loss of generality. It can be shown that
for real a, b, c, and d, the pairwise fidelities between the ρi, for i ∈ {0, 1, 2}, are
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minimised when the variables are all equal, i.e. when a = b = c = d = 1/2.
Alice’s basis states can be realised as two-qubit states, in particular, |0〉Alice ≡

|00〉, |1〉Alice ≡ |01〉, |2〉Alice ≡ |10〉, and |3〉Alice ≡ |11〉. For a = b = c = d = 1/2, the
states in Eq. (3.11) can be rewritten as

ρ0 =
1

2
1⊗ |+〉 〈+| = 1

2
|++〉 〈++|+ 1

2
|−+〉 〈−+| ,

ρ1 =
1

2

∣∣Ψ+
〉 〈

Ψ+
∣∣+

1

2

∣∣Φ+
〉 〈

Φ+
∣∣ =

1

2
|++〉 〈++|+ 1

2
|−−〉 〈−−| ,

ρ2 = |−〉 〈−| ⊗ 1

2
1 =

1

2
|−−〉 〈−−|+ 1

2
|−+〉 〈−+| , (3.12)

where |±〉 = (|0〉± |1〉)/
√

2 and the Bell states |Ψ+〉 = (|01〉+ |10〉)/
√

2 and |Φ+〉 =

(|00〉+ |11〉)/
√

2.
Looking at the states in Eq. (3.12), we note that they are all diagonal in the{
|++〉 , |−+〉 , |−−〉

}
basis. Thus, a measurement in this basis ought to be optimal.

Alice’s measurement operators in the three-dimensional subspace spanned by the
states she has, can for instance be picked as

Π0 =
1

2
|++〉 〈++|+ 1

2
|−+〉 〈−+| ,

Π1 =
1

2
|++〉 〈++|+ 1

2
|−−〉 〈−−| ,

Π2 =
1

2
|−−〉 〈−−|+ 1

2
|−+〉 〈−+| . (3.13)

Summing up these measurement operators together with the “unused” projector
|+−〉 〈+−| gives the identity operator. As a side note, we point out that the “unused”
state could be a different basis state when a, b, c, and d get multiplied with suitable
phase factors or when the basis states are permuted.

An optimal minimum-error measurement needs to satisfy the Helstrom condi-
tions [66]

Πj(pjρj − pkρk)Πk = 0 ∀j, k, and
∑
j

pjρjΠj − pkρk ≥ 0 ∀k. (3.14)

It can be shown that the states in Eq. (3.12) and the measurement operators in Eq.
(3.13) satisfy these conditions. Therefore, we can conclude that this is an optimal
measurement and Alice’s maximal cheating probability AqOT is given by

AqOT =
1

3

[
Tr(ρ0Π0) + Tr(ρ1Π1) + Tr(ρ2Π2)

]
=

1

2
. (3.15)
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This is the same success probability as in the case where Bob is not testing.
It further confirms that choosing a = b = c = d = 1/2 is optimal, since Alice
cannot cheat more often when Bob is testing the states she sends, than she can
when he is not testing her states. Testing by Bob therefore does not lower Alice’s
cheating probability in this protocol and can be omitted. Alice’s cheating probability
AqOT = 1/2 is then not just valid as her average cheating probability over multiple
instances of OT, but it is valid for each individual instance of OT.

3.2.5 Comparison to a Classical XOT Protocol

In this subsection, we compare the quantum XOT protocol to a classical protocol.
For this purpose, we define a classical protocol which is a combination of two trivial
classical protocols. In one of the trivial protocols, Alice can cheat perfectly, and,
in the other one, Bob can cheat perfectly. These two trivial protocols are defined
similar to the two “bad” classical XOT protocols presented in Ref. [48].

Protocol 1: Alice has the two bits (x0, x1), and chooses to send Bob either one of
the individual bits x0 or x1 or their XOR x2 = x0 ⊕ x1. Afterwards she “forgets”
what she has sent.

Here, Alice can obviously cheat perfectly with probability 1. Bob, on the other
hand, can only cheat with probability 1/2 by guessing one of the bits that he did
not receive, and getting the third by means of taking the XOR of the two bits he
now holds.

Protocol 2: Alice sends all of (x0, x1, x2 = x0 ⊕ x1) to Bob, who chooses one of
these bits to read and discards the others without looking at them.

Here, Bob can obviously cheat perfectly with probability 1 by reading out both the
bits x0 and x1. Alice, however, can only cheat with probability 1/3 by guessing
which bit Bob has chosen to read out.

To generate the classical XOT protocol to which we will compare the quantum
protocol, we will combine these trivial protocols using a method described in Ref.
[47]. In this method, Alice and Bob conduct an unbalanced weak coin flipping pro-
tocol whose outcome will specify which protocol gets implemented. This ultimately
results in:

Protocol 3: Protocol 1 is implemented with probability s and Protocol 2 is imple-
mented with probability (1− s).
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Alice’s and Bob’s cheating probabilities in Protocol 3 are

AcOT = s(1) + (1− s)1

3
=

1

3
+

2

3
s

Bc
OT = s

1

2
+ (1− s)(1) = 1− 1

2
s. (3.16)

This yields a trade-off relation f t(AcOT , B
c
OT ) = c1A

c
OT + c2B

c
OT when choosing

the values for the constants c1 and c2 such that s gets eliminated. That is,

f t(AcOT , B
c
OT ) = 3AcOT + 4Bc

OT = 3

(
1

3
+

2

3
s

)
+ 4

(
1− 1

2
s

)
= 5. (3.17)

If a quantum protocol beats that bound, f t(AqOT , B
q
OT ) < f t(AcOT , B

c
OT ) = 5,

then it achieves a quantum advantage over the considered protocol. For the quantum
protocol in this section, Alice’s cheating probability is AqOT = 1/2 and Bob’s cheating
probability is Bq

OT = 3/4. So the trade-off relation is

f t(AqOT , B
q
OT ) = 3AqOT + 4Bq

OT = 4.5. (3.18)

Obviously 4.5 < 5, therefore, the quantum protocol does indeed have a quantum
advantage over the considered classical protocol.

3.3 Quantum XOT with Symmetric States

As mentioned earlier, the protocol considered in Section 3.2 can be said to be optimal
among non-interactive protocols using symmetric pure states. This is shown here by
considering quantum XOR oblivious transfer with symmetric pure states in general
and analysing the cheating probabilities for Alice and Bob in these protocols.

The quantum XOT protocols we consider satisfy the following properties.

1. They are non-interactive protocols, in which Alice encodes her bit values x0

and x1 into a quantum state |ψx0x1〉 and sends it to Bob, who measures it.

2. Alice’s states |ψx0x1〉 are pure and symmetric. That is, for some unitary U ,
where U4 = 1, it holds that |ψ01〉 = U |ψ00〉, |ψ11〉 = U |ψ01〉, and |ψ10〉 =

U |ψ11〉.

3. Each one of Alice’s four bit combinations is chosen with an equal probability
of 1/4.
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4. Bob obtains either x0, x1, or x2 = x0 ⊕ x1 with an equal probability of 1/3,
when measuring each state |ψx0x1〉.

Regarding conditions one and two, if we have interactive protocols, where Bob needs
to distinguish between symmetric states in the final step of the protocol, then the
results are also valid lower bounds on the cheating probabilities for these protocols.
With regards to conditions three and four, assuming equiprobability for the inputs
and outputs is more sensible than considering biased inputs and/or outputs, because
any bias can be exploited by cheating parties. Hence, biased protocols, even though
generally of course also possible, are usually not considered.

The states |ψx0x1〉 sent by an honest Alice, need to be picked in a way that it
is always possible for Bob to correctly obtain one output, i.e. either x0 or x1 or
x2 = x0 ⊕ x1. Furthermore, we specified that they are pure and symmetric states
and, for a set of such states, the pairwise overlaps satisfy

〈ψ01|ψ00〉 = 〈ψ11|ψ01〉 = 〈ψ10|ψ11〉 = 〈ψ00|ψ10〉 = F,

〈ψ00|ψ11〉 = 〈ψ01|ψ10〉 = G. (3.19)

The eigenvalues of the unitary U are the 4th roots of unity and, thus, U2 has eigen-
values ±1 only. Since |ψ11〉 = U2 |ψ00〉, G is always real, whereas F is in general
complex.

Honest Bob’s measurement consists of six measurement operators denoted by
Π0∗, Π1∗, Π∗0, Π∗1, ΠXOR=0, and ΠXOR=1 for Bob getting outcome x0 = 0, x0 = 1,
x1 = 0, x1 = 1, x2 = 0, and x2 = 1, respectively. The probability of obtaining
outcome m is given by 〈ψij|Πm |ψij〉 for m ∈ {0∗, 1∗, ∗0, ∗1,XOR = 0,XOR = 1}
and i, j ∈ {0, 1}. When an outcome is possible, this probability should be equal to
1/3 and, when it is not possible, equal to 0.

In order for honest Bob to be able to correctly learn either x0, x1, or x2 =

x0 ⊕ x1 with probability 1/3 each, the states need to be distinguishable enough,
which requires |F | ≤ 1/3 and |G| ≤ 1/3 to hold.

Proposition 3.2. For Bob to correctly learn either the first bit, the second bit, or
their XOR, whereby each of these outcomes occurs with a probability of 1/3, it is
necessary to hold that

|F | ≤ 1

3
and |G| ≤ 1

3
. (3.20)
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Proof. The measurement operators Πm can be expressed in terms of their eigenvalues
and eigenvectors. For instance, Π0∗ =

∑
k λk |λk〉 〈λk| and similar for the other

operators. Looking at the state |ψ10〉, it holds that

0 = 〈ψ10|Π0∗ |ψ10〉 =
∑
k

λk| 〈ψ10|λk〉 |2, (3.21)

thus, we have 〈ψ10|λk〉 = 0 ∀k. For other states and measurement operators, we
can derive analogous conditions and we can use these conditions to re-express the
overlaps in Eq. (3.19). That is, we, for example, have

F = 〈ψ01|ψ00〉 = 〈ψ01|
∑
m

Πm |ψ00〉 = 〈ψ01|Π0∗ |ψ00〉 . (3.22)

Proceeding analogously for the other states’ overlaps, all the relations in Eq. (3.19)
can be rewritten as

〈ψ01|Π0∗ |ψ00〉 = 〈ψ11|Π∗1 |ψ01〉 = 〈ψ10|Π1∗ |ψ11〉 = 〈ψ00|Π∗0 |ψ10〉 = F,

〈ψ00|ΠXOR=0 |ψ11〉 = 〈ψ01|ΠXOR=1 |ψ10〉 = G. (3.23)

Defining the vectorsX andY with elements xk =
√
λk 〈ψ01|λk〉 and yk =

√
λk 〈ψ00|λk〉,

respectively, then

|X|2 =
∑
k

λk| 〈ψ01|λk〉 |2 =
1

3
and |Y|2 =

∑
k

λk| 〈ψ00|λk〉 |2 =
1

3
. (3.24)

So it has to hold that

|F |2 =
∣∣∣∑

k

λk 〈ψ01|λk〉 〈λk|ψ00〉
∣∣∣2 =

∣∣∣∑
k

xky
∗
k

∣∣∣2 ≤ |X|2|Y|2 =
1

9
. (3.25)

Therefore, |F | ≤ 1/3 and it can be analogously proven that also the condition
|G| ≤ 1/3 has to hold. �

With these conditions and relations in mind, we look at the cheating probabilities
for Alice and Bob in the next subsections. Generally speaking, we will notice that,
when the states sent by an honest Alice become more distinguishable, Bob’s cheating
probability will increase while Alice’s cheating probability will decrease. Vice versa
is true when honest Alice’s states become less distinguishable. Thus, there is a
trade-off between Alice’s and Bob’s cheating probabilities in XOT, as is also the
case for 1-2 OT [7, 46, 47].
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3.3.1 Bob’s Cheating Probability

A dishonest Bob wants to learn all three bits, so his aim is to guess both bits x0 and
x1 which implies knowledge of the bit x0 ⊕ x1 as well, as explained in Subsection
3.2.3. Just as for the specific XOT protocol in the previous section, Bob can always
cheat with a probability of at least 1/2 by following the protocol honestly and then
guessing at random the value(s) of the bit(s) he did not receive. Bob’s optimal
cheating strategy, however, is the one that minimises the probability of wrongly
distinguishing between honest Alice’s states, i.e. a minimum-error measurement.
As before, since the states are equiprobable and symmetric, his best minimum-error
measurement is the square-root measurement (SRM) [73, 74] with measurement
operators

Πx0x1 = ρ−1/2
average |ψx0x1〉 〈ψx0x1| ρ−1/2

average, (3.26)

where ρaverage = (1/4)
∑

x0,x1=0,1 |ψx0x1〉 〈ψx0x1| is the average density matrix sent
from Alice to Bob.

Using an approach from [75, 76], the success probability of the SRM for n
equiprobable symmetric states can be calculated by

Psuccess =
1

n2

( n∑
k=1

√
λk

)2

, (3.27)

where λk are the eigenvalues of the Gram matrix for the set of states. The elements
of the Gram matrix Γ are given by Γij = 〈ψi|ψj〉, that is, the overlaps between the
states. Thus, for Alice’s four states, the Gram matrix is

Γ =


1 F G F ∗

F ∗ 1 F G

G F ∗ 1 F

F G F ∗ 1

 (3.28)

and its eigenvalues are λ0 = 1−F+G−F ∗, λ1 = 1−G+iF−iF ∗, λ2 = 1+F+G+F ∗,
and λ3 = 1 − G − iF + iF ∗. Substituting these eigenvalues into Eq. (3.26), Bob’s
cheating probability BOT is

BOT =
1

16

(√
1 +G− 2 ReF +

√
1−G− 2 ImF

+
√

1 +G+ 2 ReF +
√

1−G+ 2 ImF
)2

. (3.29)

We can make the following observations about the consequences of certain values
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for F and G on Bob’s cheating probability.

• BOT stays unchanged when F → −F , while G is kept the same.

• Fixing the absolute values |F | and |G|, BOT is minimised for real F (i.e.
ImF = 0) if G ≤ 0 and for purely imaginary F (i.e. ReF = 0) if G ≥ 0.

• When |F | and |G| decrease, BOT increases, because the states become more
distinguishable for smaller |F | and |G|. In particular, if F = G = 0, then
BOT = 1 and the states are perfectly distinguishable.

• On the other hand, if |F | and |G| are equal to their maximum of 1/3 (see Eq.
(3.20)), BOT = 3/4, the lowest value it can attain here.

3.3.2 Alice’s Cheating Probability without Testing by Bob

A dishonest Alice wants to know if Bob has learnt x0, x1, or x2 = x0 ⊕ x1. As in
the specific XOT protocol in the previous section, Alice can always cheat with a
probability of at least 1/3 by following the protocol honestly and then randomly
guessing which output Bob has received.

When Bob is not doing any testing, Alice wants to maximise Bob’s probability
to obtain a certain outcome. Her best cheating strategy is to send Bob the pure
state within the subspace spanned by the states she sends when she is honest, for
which Bob’s probability to obtain either the first bit (b = 0), the second bit (b = 1),
or their XOR (b = 2) is maximised. Such a state can be written as

|Ψcheat〉 = α |ψ00〉+ β |ψ01〉+ γ |ψ11〉+ δ |ψ10〉 , (3.30)

where the coefficients α, β, γ, δ ∈ C are chosen so that the state is normalised.
Using the conditions in Eq. (3.23), Bob’s probabilities to obtain outcome b = i

when measuring |Ψcheat〉, P (b = i) for i ∈ {0, 1, 2}, can be expressed as

P (b = 0) = 〈Ψcheat|Π0∗ + Π1∗ |Ψcheat〉

=
1

3
(|α|2 + |β|2 + |γ|2 + |δ|2) + (αβ∗ + γδ∗)F + (α∗β + γ∗δ)F ∗,

P (b = 1) = 〈Ψcheat|Π∗0 + Π∗1 |Ψcheat〉

=
1

3
(|α|2 + |β|2 + |γ|2 + |δ|2) + (α∗δ + βγ∗)F + (αδ∗ + β∗γ)F ∗,

P (b = 2) = 〈Ψcheat|ΠXOR=0 + ΠXOR=1 |Ψcheat〉

=
1

3
(|α|2 + |β|2 + |γ|2 + |δ|2) + (α∗γ + β∗δ + αγ∗ + βδ∗)G. (3.31)
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Since dishonest Alice’s aim is to maximise one of these probabilities, she needs
to pick the values for α, β, γ, and δ in a way to achieve this, while at the same time
satisfying the normalisation condition which is P (b = 0) +P (b = 1) +P (b = 2) = 1.

The expressions for Bob’s probabilities P (b = i) with i ∈ {0, 1, 2} in Eq. (3.31)
can be written in terms of vectors and a matrix. In particular,

P (b = i) = (α∗, β∗, γ∗, δ∗)Mi(α, β, γ, δ)
T , (3.32)

where i ∈ {0, 1, 2} and the respective matrices are

M0 =


1/3 F ∗ 0 0

F 1/3 0 0

0 0 1/3 F ∗

0 0 F 1/3

 ,

M1 =


1/3 0 0 F

0 1/3 F ∗ 0

0 F 1/3 0

F ∗ 0 0 1/3

 ,

M2 =


1/3 0 G 0

0 1/3 0 G

G 0 1/3 0

0 G 0 1/3

 . (3.33)

Using these expressions for the probabilities, the normalisation condition can be
written as

(α∗, β∗, γ∗, δ∗)(M0 +M1 +M2)(α, β, γ, δ)T = 1. (3.34)

This equation describes an ellipsoid in a four-dimensional complex space and,
similarly, when defining constants C0, C1, C2 ∈ R and setting P (b = 0) = C0, P (b =

1) = C1, and P (b = 2) = C2, these probabilities are ellipsoids in a four-dimensional
complex space. Using this geometrical interpretation, we derive Alice’s cheating
probability, when Bob is not testing, as a function of F and G. To find the maximum
value that P (b = i) can attain while satisfying the normalisation constraint, we need
to look for the value of Ci for which the two ellipsoids are tangent to each other,
when expressed in the same basis. This value for Ci is the largest value for it for
which the normalisation ellipsoid in Eq. (3.34) and the ellipsoid for P (b = i) still
have common points.
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The first step is to rescale the principal axes of the normalisation ellipsoid so that
they all have the same length and, thereby, transform the ellipsoid into a sphere in
four-dimensional complex space. In particular, the sphere should have a radius of
one, i.e. all its semi-axes should have length one. Later, we will also rescale the
other ellipsoids in the same way so that they are transformed into the same basis as
the normalisation ellipsoid.

Expressing an ellipsoid in terms of the eigenvalues and eigenvectors of its corre-
sponding matrix, gives information about the principal axes. That is, in the eigen-
basis of the corresponding matrix, the ellipsoid can be expressed as

∑
i λi|xi|2 = C.

The λi are thereby the eigenvalues of the matrix and the reciprocals of the squares
of the semi-axes, the xi are the eigenvectors of the matrix and the coordinates of the
principal axes expressed in the eigenbasis, and C is a constant. For such an ellipsoid,
the lengths of the semi-axes are specified by

√
C/λi. To rescale the principal axes of

the normalisation ellipsoid, we need the eigenvalues and eigenvectors of the matrix
(M0 +M1 +M2). This matrix is circulant and has normalised eigenvectors

|λ0〉 =
1

2
(1, 1, 1, 1)T , |λ1〉 =

1

2
(1, i,−1,−i)T ,

|λ2〉 =
1

2
(1,−1, 1,−1)T , |λ3〉 =

1

2
(1,−i,−1, 1)T (3.35)

with their respective eigenvalues

λ0 = 1 +G+ 2 ReF, λ1 = 1−G+ 2 ImF,

λ2 = 1 +G− 2 ReF, λ3 = 1−G− 2 ImF. (3.36)

We transform the normalisation ellipsoid, i.e. scale its coordinates so that it co-
incides with a sphere, by first diagonalising its corresponding matrix. The resulting
diagonal matrix has the eigenvalues as its elements. Dividing them by the respective
eigenvalues, that is, by themselves, yields the ellipsoid which is a sphere of radius
one in four-dimensional complex space. Defining a matrix V whose columns are the
eigenvectors given in Eq. (3.35), and a diagonal matrix with elements equal to the
square-roots of the eigenvalues in Eq. (3.36), i.e. Dsq = diag(

√
λ0,
√
λ1,
√
λ2,
√
λ3),

allows expressing this whole process as

D−1
sq V

†(M0 +M1 +M2)V D−1
sq = diag(1, 1, 1, 1). (3.37)

In order to obtain the largest value possible for Ci while satisfying the condition
that the normalisation ellipsoid and the ellipsoid of Mi still share some points, we
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need to transform the matrix Mi into the same basis as (M0 + M1 + M2). This
“squashes” the ellipsoid corresponding to the matrix Mi. The largest value for Ci
is then attained when the shortest principal axis of the transformed ellipsoid for
Mi also has length one. This results in the normalisation ellipsoid (now a sphere)
being contained within this transformed ellipsoid. Since generally the lengths of the
semi-axes are given by

√
C/λi, it is necessary to consider the largest eigenvalue λmax

for the shortest semi-axis. Because the length of this shortest semi-axis needs to be
equal to one, it must hold that λmax = C. Thus, we first transform the matricesM0,
M1, and M2 accordingly and then calculate their eigenvalues. After transformation
D−1
sq V

†MiV D
−1
sq for i ∈ {0, 1, 2}, the matrices become

M̃0 =



(1/3)+ReF
1+G+2 ReF

0 i ImF√
(1+G)2−4(ReF )2

0

0 (1/3)+ImF
1−G+2 ImF

0 −iReF√
(1−G)2−4(ImF )2

−i ImF√
(1+G)2−4(ReF )2

0 (1/3)−ReF
1+G−2 ReF

0

0 iReF√
(1−G)2−4(ImF )2

0 (1/3)−ImF
1−G−2 ImF

 ,

M̃1 =



(1/3)+ReF
1+G+2 ReF

0 −i ImF√
(1+G)2−4(ReF )2

0

0 (1/3)+ImF
1−G+2 ImF

0 iReF√
(1−G)2−4(ImF )2

i ImF√
(1+G)2−4(ReF )2

0 (1/3)−ReF
1+G−2 ReF

0

0 −iReF√
(1−G)2−4(ImF )2

0 (1/3)−ImF
1−G−2 ImF

 ,

M̃2 =


(1/3)+G

1+3G+2 ReF
0 0 0

0 (1/3)−G
1−G+2 ImF

0 0

0 0 (1/3)+G
1+G−2 ReF

0

0 0 0 (1/3)−G
1−G−2 ImF

 . (3.38)

The matrices M̃0 and M̃1 share the same eigenvalues, that is,

λ̃00/02 = λ̃10/12 =
1

(1 +G)2 − 4(ReF )2

[
1

3
(1 +G)− 2(ReF )2

±
√(1

3
+G

)2

(ReF )2 + [(1 +G)2 − 4(ReF )2](ImF )2

]
,
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λ̃01/03 = λ̃11/13 =
1

(1−G)2 − 4(ImF )2

[
1

3
(1−G)− 2(ImF )2

±
√(1

3
−G

)2

(ImF )2 + [(1−G)2 − 4(ImF )2](ReF )2

]
, (3.39)

where the + sign is used for λ̃00, λ̃10, λ̃01, and λ̃11 and the − sign is used for λ̃02,
λ̃12, λ̃03, and λ̃13. Since the eigenvalues for b = 0 and b = 1 are identical, we will,
for simplicity, from now on only refer to the ones for b = 0, which then yield the
valid probability for both cases.

Obviously, the eigenvalues with the + sign are larger. Depending on which of
λ̃00 or λ̃01 is the larger eigenvalue, the value in question gives the largest possible
probability for P (b = 0) and P (b = 1), i.e.

P (b = 0)max = P (b = 1)max = max(λ̃00, λ̃01). (3.40)

The transformed matrix M̃2 is diagonal, hence the eigenvalues can be read off
from the elements along the main diagonal, yielding

λ̃20 =
(1/3) +G

1 +G+ 2 ReF
, λ̃21 =

(1/3)−G
1−G+ 2 ImF

,

λ̃22 =
(1/3) +G

1 +G− 2 ReF
, λ̃23 =

(1/3)−G
1−G− 2 ImF

. (3.41)

When ReF is smaller than zero, then λ̃20 > λ̃22 and vice versa otherwise. Similarly,
when ImF is smaller than zero, then λ̃21 > λ̃23 and vice versa otherwise. Since
only the larger eigenvalues are of interest, we can combine them, changing their
denominators, as [(1/3) +G]/[1 +G− 2|ReF |] and [(1/3)−G]/[1−G− 2| ImF |].
Furthermore, we can calculate in terms of ReF and ImF the values of G for which
these expressions intersect, and, by plotting them, we can confirm which expression
is larger for G values greater or smaller than the G values at the intersection. That
is, the largest possible probability for P (b = 2) is

P (b = 2)max =


(1/3) +G

1 +G− 2|ReF |
if G ≥ | ImF | − |ReF |

2− 3|ReF | − 3| ImF |
(1/3)−G

1−G− 2| ImF |
if G <

| ImF | − |ReF |
2− 3|ReF | − 3| ImF |

.

(3.42)

All in all, Alice’s cheating probability when Bob is not testing is then given by
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the maximum of Eqns. (3.40) and (3.42), that is,

AOT = max(P (b = 0)) = P (b = 1), P (b = 2)). (3.43)

In order to be able to get a better understanding about the expressions describing
Alice’s cheating probability, we plot AOT in terms of ReF and ImF , when fixing
G = −1/3, G = −1/6, and G = 0, in Figure 3.2.

We can make the following observations about the consequences of certain values
for ReF , ImF , and G on Alice’s cheating probability.

• The sign of ReF and ImF does not have influence on AOT as either their
absolute values are used or they are squared.

• When interchanging ReF and ImF and simultaneously changing G to −G,
then AOT remains unchanged.

• When |F | and |G| increase, AOT increases.

We look in more detail at what the best choices for F and G are in Subsection
3.3.4. In the analysis, we will consider Alice’s cheating probability with and without
testing by Bob as well as Bob’s cheating probability.

3.3.3 Alice’s Cheating Probability with Testing by Bob

Next, we will look at Alice’s cheating probability when Bob is implementing some
testing procedure. The testing method is the same as in Subsection 3.2.4 for the
specific XOT protocol. That is, Bob tests a fraction of the states Alice sends him,
and checks if they are what she claims they are.

Since Alice does not want Bob to detect that she is cheating, she needs to always
pass Bob’s tests, which she can do when she sends an equal superposition of the
states she is supposed to send, entangled with a system she keeps on her side. Such
a state is of the form

|Ψcheat〉 = a |0〉A ⊗ |ψ00〉+ b |1〉A ⊗ |ψ01〉+ c |2〉A ⊗ |ψ11〉+ d |3〉A ⊗ |ψ10〉 , (3.44)

where {|0〉A , |1〉A , |2〉A , |3〉A} is an orthonormal basis for the system Alice keeps
and |a|2 + |b|2 + |c|2 + |d|2 = 1. When Alice measures her system in this basis, she
prepares one of the states she is supposed to send to Bob, thus, she can always pass
his tests.
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(a) (d)

(b) (e)

(c) (f)

Figure 3.2: Alice’s cheating probability as given by the maximum expressions in
Eqns. (3.40) and (3.42) fixing certain values of G. That is, in (a) and (d), we have
G = −1/3, in (b) and (e), we have G = −1/6, and, in (c) and (f), we have G = 0.
The plots in the first column, i.e. (a), (b), and (c), show the top view of their 3D
counterparts in the second column, i.e. (d), (e), and (f), respectively.

We suspect that it is optimal for Alice to have a = b = c = d = 1/2, so all four
constants are set equal to 1/2 in further calculations. Even if these values are not
optimal, this will nevertheless give a lower bound on Alice’s cheating probability.
After honest Bob has done his measurement, described by the measurement opera-
tors Π0∗, Π1∗, Π∗0, Π∗1, ΠXOR=0, and ΠXOR=1, on the system he received, Alice’s A
system is prepared in one of three states, depending on whether Bob has obtained
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x0, x1, or x2 = x0 ⊕ x1. That is,

µb=0
A =

1

p0∗ + p1∗
TrBob[(Π0∗ + Π1∗)

1/2 |Ψcheat〉 〈Ψcheat| (Π0∗ + Π1∗)
1/2], (3.45)

where p0∗+p1∗ = Tr[|Ψcheat〉 〈Ψcheat| (Π0∗+Π1∗)] = 1/3, and analogously for µb=1
A and

µb=2
A . Using the conditions given in Eq. (3.23), the states Alice needs to distinguish

between can be expressed as

µb=0
A =

1

4


1 3F 0 0

3F ∗ 1 0 0

0 0 1 3F

0 0 3F ∗ 1

 ,

µb=1
A =

1

4


1 0 0 3F ∗

0 1 3F 0

0 3F ∗ 1 0

3F 0 0 1

 ,

µb=2
A =

1

4


1 0 3G 0

0 1 0 3G

3G 0 1 0

0 3G 0 1

 , (3.46)

corresponding to Bob obtaining x0, x1, or x2 = x0 ⊕ x1, and all three states occur
with equal probability 1/3.

The states in Eq. (3.46) are mirror-symmetric; the unitary transformation that
takes |0〉 → |3〉, |3〉 → |2〉, |2〉 → |1〉, and |1〉 → |0〉, interchanges µb=0

A and µb=1
A with

each other while keeping µb=2
A unchanged. For some sets of mirror-symmetric states,

the optimal minimum-error measurement is known [77, 78] but this set of states is
not one of them.

We can, however, obtain Alice’s optimal minimum-error measurement by making
use of a basis transform that block-diagonalises all three µb=iA with i ∈ {0, 1, 2}.
First of all, note that Alice’s basis states can be realised as two-qubit states |0〉A ≡
|00〉, |1〉A ≡ |01〉, |2〉A ≡ |10〉, and |3〉A ≡ |11〉 and this is the same as using the
{|++〉 , |+−〉 , |−+〉 , |−−〉} basis, where |±〉 = (|0〉±|1〉)/

√
2. This is the basis that

we will use as the “primary” basis for the rest of the calculations.
Now, applying the unitary transformation U that is proportional to a 4 × 4
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Hadamard-Walsh matrix,

U =
1

2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 , (3.47)

to the states in Eq. (3.46), i.e. Uµb=iA U † for i ∈ {0, 1, 2}, changes the density
matrices to

µb=0
A =

1

4


1 + 3 ReF −3i ImF 0 0

3i ImF 1− 3 ReF 0 0

0 0 1 + 3 ReF −3i ImF

0 0 3i ImF 1− 3 ReF

 ,

µb=1
A =

1

4


1 + 3 ReF 3i ImF 0 0

−3i ImF 1− 3 ReF 0 0

0 0 1− 3 ReF −3i ImF

0 0 3i ImF 1 + 3 ReF

 ,

µb=2
A =

1

4


1 + 3G 0 0 0

0 1 + 3G 0 0

0 0 1− 3G 0

0 0 0 1− 3G

 . (3.48)

As indicated, the basis transform made all three density matrices block-diagonal
and we can deduce the optimal minimum-error measurement. In particular, Alice
first needs to perform a projective measurement on the subspaces corresponding to
each block and then, depending on the outcome, she needs to distinguish between
the three density matrices in the relevant subspace. Considering that the density
matrices are written in the {|++〉 , |+−〉 , |−+〉 , |−−〉} basis, the two subspaces are
the one where the first qubit is |+〉, and the one where the first qubit is |−〉. Thus,
Alice needs to measure the first qubit in the {|+〉 , |−〉} basis, in order to determine
the relevant subspace.

In the next step, Alice wants to distinguish between the three density matri-
ces in the relevant subspace. Thus, we examine them in order to find the optimal
measurement within each subspace. Since µb=2

A is proportional to an identity ma-
trix in both subspaces, no further additional measurement will provide any more
information about the likelihood that this was the state Alice held. Therefore, we
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focus on how best to distinguish the other two density matrices in the subspaces.
In the subspace belonging to the outcome |+〉 for the first qubit, the elements that
disagree for µb=0

A and µb=1
A , are the ones on the off-diagonals. So, projecting onto

|R〉 = (|+〉 + i |−〉)/
√

2 and |L〉 = (|+〉 − i |−〉)/
√

2 allows distinguishing between
them. On the other hand, in the subspace belonging to the outcome |−〉 for the first
qubit, the elements that disagree for µb=0

A and µb=1
A , are the ones on the diagonal and

they can be distinguished by measuring the second qubit in the {|+〉 , |−〉} basis as
well.

Still in the basis {|++〉 , |+−〉 , |−+〉 , |−−〉}, Alice’s optimal measurement oper-
ators for the minimum-error measurement are therefore

Π+R = |+R〉 〈+R| = 1

2


1 −i 0 0

i 1 0 0

0 0 0 0

0 0 0 0

 , Π−+ = |−+〉 〈−+| =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 ,

Π+L = |+L〉 〈+L| = 1

2


1 i 0 0

−i 1 0 0

0 0 0 0

0 0 0 0

 , Π−− = |−−〉 〈−−| =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 .

(3.49)

The probability of a certain outcome x when Alice holds µb=iA , with i ∈ {0, 1, 2}
and x ∈ {+R,+L,−+,−−}, is P (x|µb=iA ) = Tr(Πxµ

b=i
A ). Thus,

P (+R|µb=0
A ) = P (+L|µb=1

A ) =
1

4
(1 + 3 ImF ),

P (+L|µb=0
A ) = P (+R|µb=1

A ) =
1

4
(1− 3 ImF ),

P (+L|µb=2
A ) = P (+R|µb=2

A ) =
1

4
(1 + 3G),

P (−+ |µb=0
A ) = P (−− |µb=1

A ) =
1

4
(1 + 3 ReF ),

P (−− |µb=0
A ) = P (−+ |µb=1

A ) =
1

4
(1− 3 ReF ),

P (−+ |µb=2
A ) = P (−− |µb=2

A ) =
1

4
(1− 3G). (3.50)

Depending on the outcome Alice obtained, she will always choose the most likely
value for b. Which b is the most likely can, however, vary since the probabilities
depend on the values of ReF , ImF , and G. First note that, for µb=0

A and µb=1
A ,
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opposite outcomes, i.e. +R and +L or −+ and −−, have the same probability.
The same outcome for µb=0

A and µb=1
A has different probabilities though and which

probability is larger depends on if ImF or ReF is greater or smaller than zero. For
instance, for outcome +R, µb=0

A is more likely when ImF > 0, but µb=1
A is more likely

when ImF < 0. Thus, we combine the probabilities for certain outcomes when either
µb=0
A or µb=1

A was held by Alice, into (1 + 3| ImF |)/4 and (1 + 3|ReF |)/4. These are
used in the following analysis determining which expressions from Eq. (3.50) are
larger for certain values of ReF , ImF , and G.

G > 0 G ≤ 0

|G| < | ImF | 1 + 3G < 1 + 3| ImF | 1 + 3G < 1 + 3| ImF |

|G| > | ImF | 1 + 3G > 1 + 3| ImF | 1 + 3G < 1 + 3| ImF |

|G| < |ReF | 1− 3G < 1 + 3|ReF | 1− 3G < 1 + 3|ReF |

|G| > |ReF | 1− 3G < 1 + 3|ReF | 1− 3G > 1 + 3|ReF |

Summarising and combining the results from Eq. (3.50) and the consequences
of certain values for F and G presented in the table above allows bounding Alice’s
cheating probability AOT by

AOT ≥

1
3

+ 1
2
| ImF |+ 1

2
max(|ReF |, |G|) for G ≤ 0

1
3

+ 1
2
|ReF |+ 1

2
max(| ImF |, |G|) for G > 0.

(3.51)

We can make the following observations about the consequences of certain values
for F and G on Alice’s cheating probability.

• AOT stays unchanged when F → −F , while G is kept the same.

• Fixing the absolute values |F | and |G|, AOT is minimised for real F (i.e.
ImF = 0) if G ≤ 0 and for purely imaginary F (i.e. ReF = 0) if G ≥ 0.

• The bound, if G = 0, is the same for a real F and a purely imaginary F , as
long as they have the same |F |.

• When |F | and |G| increase, AOT increases.

This demonstrates the trade-off between Alice’s and Bob’s cheating probabilities
since AOT increases when |F | and |G| increase, while BOT decreases when |F | and
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|G| increase. The trade-off was the same for a dishonest Alice with no testing by
Bob. For fixed absolute values |F | and |G|, however, the same options that will
minimise AOT here, also minimise BOT as shown in Subsection 3.3.1.

3.3.4 Optimal Sets of States

Since the condition in Eq. (3.20), that |F |, |G| ≤ 1/3, needs to hold for Bob to
correctly obtain one of the three possible outcomes, this restricts the range for the
overlaps. The question remains as to what conclusions are possible about the best
values for the overlaps and, hence, the optimal sets of states to use in the considered
kind of XOT protocols.

As already mentioned in Subsection 3.3.1, Bob’s cheating probability reaches its
minimum BOT = 3/4 when both |F | and |G| are equal to their maximum value of
1/3. Since G is real, this means that we have either G = −1/3 or G = 1/3. F ,
however, can be a complex number, so, in order to obtain the best values for F , we
need to include its phase in the consideration. That is, we set

F =
1

3
eiθF =

1

3
(cos θF + i sin θF ), (3.52)

which means that ReF = 1
3

cos θF and ImF = 1
3

sin θF . Substituting these into the
expression for Bob’s cheating probability in Eq. (3.29), gives

BOT =


1

24

(√
2− cos θF +

√
2 + cos θF +

√
1− sin θF +

√
1 + sin θF

)2 if G = +
1

3

1

24

(√
1− cos θF +

√
1 + cos θF +

√
2− sin θF +

√
2 + sin θF

)2 if G = −1

3
.

(3.53)

BOT = 3/4, when θF = (2n + 1)π/2, where n ∈ {0, 1}, in the first case and
when θF = (n + 1)π, where n ∈ {0, 1}, in the second case. Thus, the best overlap
combinations to restrict a dishonest Bob are either G = 1/3 and F = ±i/3 or
G = −1/3 and F = ±1/3.

Because of the trade-off between Alice’s and Bob’s cheating probabilities, we
know that having |F | and |G| as large as possible is generally the worst choice
against a dishonest Alice. However, decreasing |F | and |G| will increase BOT which
is already rather high at 3/4. Thus, we will fix |F | = |G| = 1/3 and check which
phase for F is then the best to choose, depending on if G is greater or smaller than
zero.

In the case where Bob is not testing if Alice cheats, Bob’s probabilities to obtain
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b = 0, b = 1, or b = 2 in Eq. (3.31) can be rewritten. Substituting in F = |F |eiθF ,
the equation for P (b = 0) becomes

P (b = 0) =
1

3
(|α|2 + |β|2 + |γ|2 + |δ|2) + |F |(αβ∗eiθF + γδ∗eiθF + α∗βe−iθF + γ∗δe−iθF )

=

(
1

3
− |F |

)
(|α|2 + |β|2 + |γ|2 + |δ|2) + |F |(|αeiθF + β|2 + |γeiθF + δ|2)

(3.54)

and, similarly, P (b = 1) and P (b = 2) can be rewritten as

P (b = 1) =

(
1

3
− |F |

)
(|α|2 + |β|2 + |γ|2 + |δ|2) + |F |(|αe−iθF + δ|2 + |β + γe−iθF |2),

P (b = 2) =

(
1

3
− |G|

)
(|α|2 + |β|2 + |γ|2 + |δ|2) + |G|(|α± γ|2 + |β ± δ|2),

(3.55)

where, in the equation for P (b = 2), the + sign is used when G > 0 and the − sign
is used when G < 0.

A cheating Alice wants to minimise two of these equations, while maximising the
third one. For |F | = |G| = 1/3, Alice can actually set P (b = 2) and either P (b = 0)

or P (b = 1) equal to zero while simultaneously having a probability of 1 for the
remaining b. The only exceptions are when G = 1/3 and F = ±i/3 or G = −1/3

and F = ±1/3. Thus, unless one of these four combinations for the overlaps are
picked, Alice can cheat perfectly when |F | = |G| = 1/3.

For instance, when G = 1/3, dishonest Alice can pick α = −δeiθF = βeiθF = −γ
which will result in P (b = 1) = P (b = 2) = 0. At the same time, P (b = 0) = 1 due to
the normalisation condition. However, when e2iθF = −1, then P (b = 0) cannot equal
1, so the normalisation condition cannot be satisfied and the chosen relationship
between α, β, γ, and δ is not a valid choice for Alice. When θF = (2n+ 1)π/2 with
n ∈ {0, 1}, e2iθF = −1 holds and in this case F = ±i/3.

Similarly, it can be shown that it is necessary to have θF = (n + 1)π with n ∈
{0, 1}, i.e. F = ±1/3, in order to avoid perfect cheating by Alice when G = −1/3.
In these cases, Alice’s cheating probability with no testing by Bob equals AOT = 1/2.

Furthermore, also for a dishonest Alice with testing by Bob, these same choices
for θF are optimal. We can conclude this from the observation made at the end of
Subsection 3.3.3 that, for fixed |F | and |G|, it is best to choose ImF = 0 if G ≤ 0

and ReF = 0 if G ≥ 0; i.e. have a real F when G = −1/3 and a purely imaginary
F when G = 1/3. These choices yield Alice’s cheating probability AOT = 1/2, when
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Bob is testing.
Therefore, we can say that states which satisfy these overlap combinations are

optimal among non-interactive XOT protocols with symmetric pure states. We
present sets of such states below. Note that the set of states for F = 1/3 and
G = −1/3 is the same as in the protocol in Section 3.2, thus, confirming that this
protocol is indeed optimal as was already indicated in that section.

G = −1/3, F = 1/3

|φ00〉 =
1√
3

(|0〉+ |1〉+ |2〉), |φ01〉 =
1√
3

(|0〉 − |1〉+ |2〉),

|φ11〉 =
1√
3

(|0〉 − |1〉 − |2〉), |φ10〉 =
1√
3

(|0〉+ |1〉 − |2〉). (3.56)

G = −1/3, F = −1/3

|φ00〉 =
1√
3

(|0〉+ |1〉+ |2〉), |φ01〉 =
1√
3

(− |0〉 − |1〉+ |2〉),

|φ11〉 =
1√
3

(|0〉 − |1〉 − |2〉), |φ10〉 =
1√
3

(− |0〉+ |1〉 − |2〉). (3.57)

G = +1/3, F = i/3

|φ00〉 =
1√
3

(|0〉+ |1〉+ |2〉), |φ01〉 =
1√
3
i(|0〉 − |1〉 − |2〉),

|φ11〉 =
1√
3

(|0〉+ |1〉 − |2〉), |φ10〉 =
1√
3
i(|0〉 − |1〉+ |2〉). (3.58)

G = +1/3, F = −i/3

|φ00〉 =
1√
3

(|0〉+ |1〉+ |2〉), |φ01〉 =
1√
3
i(|0〉 − |1〉+ |2〉),

|φ11〉 =
1√
3

(|0〉+ |1〉 − |2〉), |φ10〉 =
1√
3
i(|0〉 − |1〉 − |2〉). (3.59)

With closer inspection of the states in these sets, we realise that they actually
all come down to the same four density matrices which are only assigned to different
bit value encodings for the different cases of the overlaps. That is, for instance,
|φ01〉 〈φ01| for G = −1/3 and F = 1/3 is equal to |φ10〉 〈φ10| for G = −1/3 and
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F = −1/3 and similar for other states and overlap combinations. Thus, these sets
of states are fundamentally the same, only differing in the global phases of some of
the states in the sets. Starting from the set of states in Eq. (3.56) and correctly
tweaking the overall phase of some of the states, allows determining other sets of
states that satisfy the other optimal overlap combinations of F and G.

3.4 Experimental Implementation

As mentioned at the beginning of this chapter, the XOT protocol in Section 3.2 has
been optically implemented in a proof-of-principle experiment, including not only
the realisation of the protocol when both parties are honest, but also of the optimal
cheating strategies of dishonest parties [71].

In the experimental setup, a heralded single-photon source was used on the
sender Alice’s side. Time-correlated photon pairs were generated. One photon was
used as the heralding photon and the other one was used as the “message” photon to
encode Alice’s quantum states using half-wave plates and calcite beam displacers.
The encoding is based on the spatial and polarisation degrees of freedom of the
“message” photon. That is, there are two output ports with one horizontally and one
vertically polarised mode each and the basis states |0〉 , |1〉, and |2〉 are represented
by three of the four possible output port/mode-combinations. In order to prevent
a dishonest Alice from making use of the fourth output port/mode-combination, a
linear polariser needs to be placed in the input port corresponding to the output
port with the unused mode. In the proof-of-principle experiment realised in Ref.
[71], this was, however, deliberately left out to simplify the setup.

On the receiver Bob’s side, a generalised quantum measurement needed to be
implemented. This was accomplished by extending the Hilbert space with auxiliary
basis states that were represented by additional modes added on Bob’s side using
half-wave plates, beam displacers, and polarising beam-splitters. The single-photon
detection was carried out as coincidence measurement where the heralding photon
was used as trigger signal and the coincidence window was set as 2.5ns.

A detailed scheme of the experimental setup is shown in Figure 3.3, taken from
Ref. [71]. The cut between the sender’s and the receiver’s side passes between the
half-wave plates 1 and 2, which are still on the sender’s side, and the half-wave plate
3, which is the first element on the receiver’s side. The angles of the wave-plates
need to be set to certain values to realise the protocol with honest parties. When
one of the parties cheats, then the associated cheating strategy is implemented by
modifying the angles of the wave-plates of this dishonest party as necessary.
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Figure 3.3: Schematic of the experimental setup for the XOT protocol (taken from
Ref. [71]). The half-wave plates are depicted by the narrow green rectangles labeled
with the black numbers, the larger semi-transparent cyan rectangles are the beam
displacers, and the square on the right-hand side is a polarising beam-splitter. The
small orange rectangles represent glass plates used for phase compensation, the gray
half-circles are the detectors, and the insets display the arrangement of the respective
half-wave plates.

On the theoretical side, we assumed that the protocol works faultless and is
complete, i.e., when both parties are honest, Bob always gets the correct output.
In the experimental realisation, however, there were naturally some sources of ex-
perimental error that had to be dealt with. For instance, one of these sources is
connected to the detectors. On rare occasion, at most once in 2000 measurements,
more than one detector clicked with the trigger signal. In these cases, one of the
measurement results was chosen at random and only that one was counted. Other
sources of experimental error were the unequal fiber-coupling efficiencies and the
unequal efficiencies of the single-photon detectors used. In compensation for both
these inequalities, detection electronics were utilised. Another example for a source
of experimental error was that the optical losses in different optical paths differed
slightly. There was nothing done to directly compensate for this irregularity, though.

All in all, this optical implementation demonstrates the feasibility of the XOT
protocol. The optimal cheating strategies of dishonest parties were also shown to
be experimentally realisable and the cheating probabilities obtained by the exper-
imental measurements agreed very well with the predicted theoretical values in all
cases.

3.5 Conclusion

In Section 3.3, we looked at quantum XOR oblivious transfer protocols with sym-
metric states in general. To analyse how well a dishonest Alice or a dishonest Bob
can do in these protocols, we looked at their optimal cheating strategies and derived
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equations for their cheating probabilities, depending on the overlaps of the states
Alice is supposed to send when following the protocol honestly. This analysis led to
finding four combinations of values for the overlaps which are optimal in the sense
that they achieve the lowest possible cheating probability for Bob, which is 3/4, and,
when given that Bob’s cheating probability is 3/4, also the lowest possible cheating
probability for Alice, which is then 1/2. A further advantage of the protocols using
these particular overlaps for honest Alice’s states, is that Alice’s cheating probability
is the same no matter if Bob tests or not, making any added testing pointless. The
protocols with these overlaps can hence be said to be optimal among non-interactive
XOT protocols using symmetric pure states.

One of these protocols is the protocol that was investigated in Section 3.2 and
the results for Alice’s and Bob’s cheating probabilities confirm the results in the sub-
sequent section. Comparing this protocol to a classical XOT protocol showed that
there is a quantum advantage. We presented the classical post-processing that needs
to be added to this non-interactive XOT protocol in order to enable Bob to actively
choose which of the three bits he wants to learn. Even though the non-interactivity
makes addition of this extra step necessary in order to realise a standard XOT
protocol, the advantage of the non-interactivity is that no entanglement is needed.
Entanglement is a resource frequently used in quantum protocols, such as in an
interactive XOT protocol presented by Kundu et al. [48]. As a matter of fact,
the protocol by Kundu et al. and the one presented in Section 3.2 are related; in
Ref. [71], it is shown how one can be derived from the other. Entanglement, how-
ever, complicates experimental implementation. Not making use of entanglement
in the non-interactive protocol hence simplifies its implementation and it was in-
deed demonstrated in Ref. [71] that this non-interactive protocol is experimentally
feasible.
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Chapter 4

Reversed Quantum Oblivious Trans-
fer

4.1 Introduction

Reversing a protocol describes the concept of implementing a protocol between two
parties in both directions without changing their physical role, i.e. their actions.
Imagine a protocol where party A encodes some information and sends the encoding
to party B; A is both the functional sender (sending the information) and physical
sender (physically sending the encoding). Party B receives the encoding and can
decode it to retrieve the information; B is both the functional receiver (receiving the
information) and the physical receiver (physically receiving the encoding). When
reversing such a protocol, party A sends party B some encoding which will tell
A some information; A is the functional receiver (receiving the information) while
remaining the physical sender (physically sending the encoding). Party B receives
the encoding that encoded some of B’s information which was shared with A; B is
the functional sender (sending the information) while remaining the physical receiver
(physically receiving the encoding).

We further illustrate this concept by describing the reversal process specifically
with regard to non-interactive quantum oblivious transfer protocols. For this, we
differentiate more explicitly between the functional and physical roles. Following
convention, the functional sender (sending x0x1) will be referred to as Alice and the
functional receiver (receiving xb) as Bob. The physical sender (sending the quantum
state) will be referred to as Sender and the physical receiver (making a measurement
on the received state) as Receiver.

In Figure 4.1, oblivious transfer is implemented as usual in the upper part of the
graphic, while it is reversed in the lower part of the graphic. Thereby, the physical
Sender is always on the left and the physical Receiver is always on the right. The
concept of OT is to send some of the information of a bit string x0x1 to someone
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Figure 4.1: Oblivious transfer between Alice and Bob in the unreversed (top) and
reversed (bottom) versions.

who will only receive the partial information xb; the party with all of the information
x0x1 is the functional sender in OT and the party with the partial information xb is
the functional receiver in OT. We note that Alice is always the one with x0x1, i.e.
the functional sender, and Bob is always the one obtaining xb, i.e. the functional
receiver. While the Receiver of the quantum state in the unreversed version is Bob
who obtains xb, the Receiver of the quantum state in the reversed version is Alice
who gets x0x1. Alice as the Sender of the quantum state in the unreversed version
sends a quantum state encoding x0x1, but Bob as the Sender of the quantum state
in the reversed version sends a quantum state encoding xb. Thus, the physical roles
of Alice and Bob swap when reversing oblivious transfer, while their functional roles
remain unchanged.

The reversal process is particularly helpful when the two communicating parties
do not have the same computational or technological power. For instance, only one
of the two might have the ability to prepare and send quantum states and/or the
other one might be the only one who can detect quantum states. In this situation,
by reversing the protocol, it would still be possible to implement the protocol in both
directions. The concept of reversing the protocol in the case of classical oblivious
transfer was studied in Ref. [79].

In the next sections, we present two reversed protocols, one of them a 1-out-of-2
oblivious transfer protocol described in Ref. [7] and the other one the XOR oblivious
transfer protocol described in Section 3.2 of the previous chapter. Thereby, we
observe that the reversal process has a common effect on the cheating probabilities
of the functional and physical roles.

The above differentiation between the functional and physical roles will be used in
the remainder of this chapter, especially when examining the cheating probabilities.
The functional sender referred to as Alice has cheating probability AOT and the
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functional receiver referred to as Bob has cheating probability BOT. For the physical
roles, we denote the Sender’s cheating probability as POT(Sender) and the Receiver’s
cheating probability as POT(Receiver).

Parts of this chapter were presented and published in Ref. [71]. In particular, the
work about the reversal of the XOT protocol was presented, but also the reversal
of the 1-out-of-2 OT protocol in Ref. [7] was briefly described and its cheating
probabilities were stated. The two reversed protocols were further also outlined in
Ref. [72]. Here, we add details about how the results were derived and computed.

4.2 Reversing a 1-out-of-2 OT Protocol

The protocol considered and reversed here, was presented by Amiri et al. [7]. It is a
semi-random 1-2 OT protocol using a quantum state elimination measurement and
can be changed into a standard 1-2 OT protocol, where Bob can actively choose if
he wants to learn x0 or x1, by adding classical post-processing as described in Ref.
[46]. This protocol is defined as follows.

1. The Sender Alice uniformly at random chooses the bits (x0, x1) ∈ {0, 1} and
encodes them according to the mapping 00→ |00〉, 01→ |++〉, 11→ |11〉, and
10 → |−−〉, where |±〉 = (|0〉 ± |1〉)/

√
2. She sends the applicable quantum

state to Bob.

2. The Receiver Bob measures the first qubit in the Z basis and the second qubit
in the X basis. He can then with certainty rule out two of the possible states
and can thus deduce either x0 or x1.

In order to restrict Alice’s cheating probability, a testing scheme is added to this
protocol [7]. Otherwise, a dishonest Alice would be able to cheat perfectly. The test-
ing scheme is the same as in Chapter 3, where the protocol needs to be implemented
multiple rounds, some testing and some regular XOT rounds, and where, in the
testing rounds, the receiver Bob checks if the quantum states Alice sends agree with
their declared identity. This results in Alice’s cheating probability being an average
cheating probability and, in particular, dishonest Alice can cheat on average with
probability Aunreversed

1-2 OT = P unreversed
1-2 OT (Sender) = 0.75. A dishonest Bob can cheat with

probability Bunreversed
1-2 OT = P unreversed

1-2 OT (Receiver) ≈ 0.729 with a minimum-error mea-
surement on each individual bit, where in this case the square-root measurement is
optimal since honest Alice’s state are equiprobable and symmetric.
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When reversing the protocol, Bob becomes the Sender of the quantum state and
Alice the Receiver of the quantum state who measures, while still implementing
1-out-of-2 OT from Alice to Bob. The protocol then proceeds as follows.

1. Bob uniformly at random chooses the bit b ∈ {0, 1} and a random bit y ∈
{0, 1}, thereby determining xb = y. He encodes this information according
to the mapping x0 = 0 → |00〉, x0 = 1 → |11〉, x1 = 0 → |++〉, and
x1 = 1→ |−−〉, where |±〉 = (|0〉±|1〉)/

√
2, and sends the applicable quantum

state to Alice.

2. Alice measures one qubit in the Z basis and the other one in the X basis,
whereby the order of the two measurements is randomised; that is, Alice will
measure Z ⊗ X with a probability of 1/2 and, otherwise, she will measure
X⊗Z. The outcomes of her measurements determine the values of her classical
bits, her Z measurement result determining x0 and her X measurement result
determining x1, and her results are derived according to the mapping |0+〉 →
00, |0−〉 → 01, |1−〉 → 11, and |1+〉 → 10.

In Step 1 of the reversed protocol, when picking the value for b, an honest Bob
randomly chooses if he wants to know the result of Alice’s Z measurement (b = 0)
or of her X measurement (b = 1). He will be able to predict the outcome for the
chosen measurement with certainty, but will have no information about the other
outcome. The randomisation of the order of Alice’s measurements in Step 2 is
important to restrict a dishonest Bob’s cheating. If Alice were to use a fixed order
of her measurements, Bob could cheat perfectly by sending a state that “fits” the
measurement; for instance, if he knows Alice will measure Z ⊗X, he can send |0+〉
and will then perfectly know both of Alice’s bit values. Later, by selecting her Z
measurement to refer to x0 and her X measurement to x1, Alice ensures that the
values of her bits x0x1 match with the measurement outcomes Bob expects, that is,
the correct measurement is done for xb.

This is different to the unreversed version of the protocol where, without testing,
Alice as the Sender of the quantum state can cheat perfectly no matter if Bob as
the Receiver of the quantum state randomises the order of his measurements or
not [7]. That is, randomisation does not restrict a dishonest Alice’s cheating in
the unreversed protocol and testing by the Receiver of the quantum state (Bob) is
needed to limit her available cheating strategies.

Since the functional roles remain unchanged in the reversed version of the pro-
tocol, also the aims of the dishonest parties remain unchanged; that is, a dishonest
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Alice still wants to learn Bob’s b and a dishonest Bob still wants to learn all of Al-
ice’s bits and not only xb. In the following subsections, we examine how well Alice
and Bob can cheat in the reversed 1-2 OT protocol described.

4.2.1 Dishonest Receiver

If Alice is dishonest, she wants to learn Bob’s b. To do so she will have to distinguish
between the sets of states {|00〉 , |11〉} and {|++〉 , |−−〉} since the first bit x0, thus
b = 0, is associated with the Z measurement and the second bit x1, thus b = 1, is
associated with the X measurement. Bob sends each of the four possible states with
equal probability, so Alice needs to distinguish between the two equiprobable states
ρ0 = 1

2
(|00〉 〈00| + |11〉 〈11|) and ρ1 = 1

2
(|++〉 〈++| + |−−〉 〈−−|). The optimal

measurement to do so is a minimum-error measurement, in particular the Helstrom
measurement [80], and the success probability of this measurement yields Alice’s
cheating probability

Areversed
1-2 OT = P reversed

1-2 OT (Receiver) = 1− 1

2

[
1− 1

2
Tr(|ρ1 − ρ0|)

]
=

3

4
, (4.1)

where |σ| =
√
σ†σ.

Looking at the functional role, Alice’s cheating probability is the same in the
reversed and in the unreversed protocol versions, that is, Areversed

1-2 OT = Aunreversed
1-2 OT = 3/4.

The security against the physical Receiver, i.e. the party who physically obtains the
quantum state and applies a measurement on it, however, is slightly worse in the
reversed protocol than in the unreversed one, where the Receiver of the quantum
state (Bob) can cheat with probability Bunreversed

1-2 OT = P unreversed
1-2 OT (Receiver) ≈ 0.729 [7].

That is, because, in the unreversed 1-2 OT protocol, the Receiver of the quantum
state wants to distinguish between all four states {|00〉 , |++〉 , |11〉 , |−−〉} to learn
both x0 and x1 and not only between the two sets {|00〉 , |11〉} and {|++〉 , |−−〉}.
The former is a little harder to do and Bob succeeds with a slightly smaller cheating
probability.

4.2.2 Dishonest Sender

If Bob is dishonest, he wants to learn all of Alice’s bits. As the physical Sender, he
can cheat by sending a quantum state different to one of the four he is supposed
to send. We look at two situations, one with a testing Receiver and one without
any testing by the Receiver. When Alice (here the Receiver of the quantum state)
applies no testing, Bob can cheat by sending whatever state suits him best, but,
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when Alice applies some testing, Bob needs to implement a cheating strategy with
which he can pass Alice’s test since he does not want his cheating to be detected.

No testing by the Receiver

If the Receiver Alice applies no testing, Sender Bob’s choice of quantum state has no
restrictions entailed from the need to pass some testing scheme and he can choose
to send the state that will maximise his cheating probability. Bob knows that Alice
will measure Z ⊕X half of the time and X ⊕Z the other half of the time and thus
he knows her measurement operators that can be expressed as

ΠA
00 =

1

2
|0+〉 〈0+|+ 1

2
|+0〉 〈+0| , ΠA

01 =
1

2
|0−〉 〈0−|+ 1

2
|−0〉 〈−0| ,

ΠA
11 =

1

2
|1−〉 〈1−|+ 1

2
|−1〉 〈−1| , ΠA

10 =
1

2
|1+〉 〈1+|+ 1

2
|+1〉 〈+1| . (4.2)

For some state σ, Alice will obtain outcome x0x1 with probability Tr(ΠA
x0x1

σ) and,
given that he sent σ, Bob can cheat with a probability at most equal to the prob-
ability of Alice’s most likely result. This probability is maximised by sending the
eigenstate corresponding to the largest eigenvalue of Alice’s measurement operator
ΠA
x0x1

, whereby the eigenvalue will then yield Bob’s cheating probability.
The four operators ΠA

00,Π
A
01,Π

A
11, and ΠA

10 all have eigenvalues (3/4, 1/4, 0, 0) and
therefore Breversed

1-2 OT = P reversed
1-2 OT (Sender) = 3/4. Bob can achieve this probability for

the outcomes 00, 01, 11, and 10 by sending one of the following states

|Φ00〉 =

√
2

3
|00〉+

√
1

6

(
|01〉+ |10〉

)
, |Φ01〉 =

√
2

3
|00〉 −

√
1

6

(
|01〉+ |10〉

)
,

|Φ11〉 =

√
2

3
|11〉 −

√
1

6

(
|01〉+ |10〉

)
, |Φ10〉 =

√
2

3
|11〉+

√
1

6

(
|01〉+ |10〉

)
,

(4.3)

which are the eigenstates of the largest eigenvalue of ΠA
00,Π

A
01,Π

A
11, and ΠA

10, respec-
tively.

Thus, the cheating probability of the physical Sender is the same as in the un-
reversed 1-2 OT protocol, Aunreversed

1-2 OT = P unreversed
1-2 OT (Sender) = 3/4 [7]. While the

unreversed protocol needs testing to achieve this cheating probability, the reversed
protocol does not need any testing. This means that 3/4 is the cheating probability
of the Sender of the quantum state for every single round in the reversed protocol,
while it is only the average cheating probability in the unreversed protocol.
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Testing by the Receiver

If the Receiver Alice applies some testing, Sender Bob’s cheating strategies are re-
stricted to the ones which will guarantee that he passes the test. Hence, we examine
if this can lower the physical Sender’s cheating probability in the reversed protocol.
Receiver Alice’s applied testing method is the same as the one that was considered
previously and that was also used for the unreversed version of the protocol [7].
That is, Bob sends N states to Alice who chooses a small fraction F of them to test,
where 0 < F � 1. For these selected states, Bob needs to declare their identity and
Alice then makes a measurement in a basis where one basis state is the one Bob
declared. If Alice’s results all agree with Bob’s declarations, she discards the states
used for testing and continues with the OT protocol for the remaining N(1 − F )

states. Otherwise, if there are any mismatches, Alice aborts the protocol.
In order to always pass Alice’s test, Bob will have to send a superposition of

the states he is supposed to send entangled with a system that he keeps on his
side. This will enable him to always declare a state that will match Alice’s testing
measurement, when asked to do so. A state of such a form is

|Ψcheat〉 = a |0〉B ⊗ |00〉+ b |1〉B ⊗ |++〉+ c |2〉B ⊗ |11〉+ |3〉B ⊗ |−−〉 , (4.4)

where {|0〉B , |1〉B , |2〉B , |3〉B} is an orthonormal basis for the system Bob keeps and
|a|2+|b|2+|c|2+|d|2 = 1. If it is not a testing round, Alice will make the measurement
described by her measurement operators in Eq. (4.2) and this will prepare Bob’s
system on his side in one of four states, depending on if Alice has obtained outcome
00, 01, 11, or 10. When Alice’s outcome is 00, for instance, the unnormalised state
conditionally prepared on Bob’s side will be

1

2
(〈0+|Ψcheat〉+ 〈+0|Ψcheat〉) =

1√
2

(a |0〉B + b |1〉B) (4.5)

and similarly for the other three states. Thus, Bob will have to distinguish between
the pure states

|θ00〉 =
1√

|a|2 + |b|2
(a |0〉B + b |1〉B), |θ01〉 =

1√
|a|2 + |d|2

(a |0〉B + d |3〉B),

|θ11〉 =
1√

|c|2 + |d|2
(c |2〉B + d |3〉B), |θ10〉 =

1√
|b|2 + |c|2

(b |1〉B + c |2〉B), (4.6)

corresponding to Alice obtaining 00, 01, 11, or 10. These states occur with proba-
bilities (|a|2 + |b|2)/2, (|a|2 + |d|2)/2, (|c|2 + |d|2)/2, and (|b|2 + |c|2)/2, respectively.
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To distinguish between multiple states, it generally intuitively holds that the
less equiprobable the states are, the better, since one can be more certain to guess
correctly when one of the states occurs more often than the others. However, by
choosing the constants a, b, c, and d in a way such that the prior probabilities of
the states in Eq. (4.6) are less equal, some of their pairwise overlaps become rather
large, that is, the states will be closer together. This results in increasing difficulty
to distinguish between them. Hence, it appears to be best for a dishonest Bob to
choose the constants in such a way that the prior probabilities of the states are all
the same, that is, having them equiprobable with a probability of 1/4 each. While
this condition holds true for values such as a = c = 1/

√
2, b = d = 0 and similar,

such a choice will result in always two of the states being equal to each other; for
example |θ00〉 = |θ01〉 and |θ11〉 = |θ10〉 with the above mentioned choice. Hence, an
additional condition is to pick a, b, c, and d so, that the four states in Eq. (4.6) are
distinct to some extent, i.e. no pairwise overlaps of 1.

A choice that Bob can make to fulfil these conditions is to pick a = b = c = d =

1/2. The equiprobable states he needs to distinguish between are then given by

|θ00〉 =
1√
2

(|0〉B + |1〉B), |θ01〉 =
1√
2

(|0〉B + |3〉B),

|θ11〉 =
1√
2

(|2〉B + |3〉B), |θ10〉 =
1√
2

(|1〉B + |2〉B). (4.7)

These states are symmetric. That is, for the unitary

U =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 , (4.8)

for which it holds that U4 = 1, we have |θ01〉 = U |θ00〉, |θ11〉 = U2 |θ00〉, and
|θ10〉 = U3 |θ00〉.

To distinguish between multiple states with the lowest probability to be wrong,
the optimal measurement is a minimum-error measurement. Since the states in Eq.
(4.7) are equiprobable, pure, and symmetric, the square-root measurement is Bob’s
optimal minimum-error measurement. The measurement operators of the square-
root measurement can be calculated by Πi = piρ

−1/2
total ρiρ

−1/2
total ∀i, whereby pi is the

prior probability of a certain state ρi and ρtotal =
∑

i piρi [66].
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The measurement operators here are

Π00 =
1

16


α α −1 −1

α α −1 −1

−1 −1 β β

−1 −1 β β

 , Π01 =
1

16


α −1 −1 α

−1 β β −1

−1 β β −1

α −1 −1 α

 ,

Π11 =
1

16


β β −1 −1

β β −1 −1

−1 −1 α α

−1 −1 α α

 , Π10 =
1

16


β −1 −1 β

−1 α α −1

−1 α α −1

β −1 −1 β

 , (4.9)

where α = 3+2
√

2 and β = 3−2
√

2 and Πij is the respective measurement operator
for |θij〉, ∀i, j ∈ {0, 1}. The Sender Bob’s cheating probability for a testing Alice is
then

Breversed
1-2 OT = P reversed

1-2 OT (Sender) =
4∑
i=0

piTr(Πiρi) = 4× 1

32
(3 + 2

√
2) ≈ 0.729. (4.10)

This is a lower probability than in the case of a dishonest Bob with no testing
by Alice and we can conclude that testing can indeed lower the physical Sender’s
cheating probability in the reversed protocol. Just as in the unreversed protocol
with testing, this is an average cheating probability for the Sender of the quantum
state.

With respect to the functional role, the added testing means that the cheating
probability of Bob in the reversed protocol stays the same as in the unreversed
protocol, that is, Breversed

1-2 OT = Bunreversed
1-2 OT ≈ 0.729. The security against the physical

Sender, i.e. the party who physically sends the quantum state, with testing by the
physical Receiver is slightly better in the reversed protocol than in the unreversed
one. In the unreversed protocol, the testing scheme lowers the cheating probability
of the Sender of the quantum state to Aunreversed

1-2 OT = P unreversed
1-2 OT (Sender) = 3/4 [7].

This makes intuitive sense. After the physical Receiver has made a measurement
on |Ψcheat〉 (Eq. (4.4)), the number of states that are prepared on the physical
Sender’s side and that the Sender of the quantum state needs to distinguish between,
is smaller in the unreversed case than in the reversed one. For the unreversed
protocol, the physical Sender, who in this case wants to learn b ∈ {0, 1}, needs to
only distinguish between two states, while, in the reversed case, the physical Sender,
who wants to learn (x0, x1) ∈ {0, 1}, needs to distinguish between four states.
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4.3 Reversing an XOT Protocol

Here, the XOR oblivious transfer protocol that was presented in Chapter 3, is re-
versed. The unreversed version of this protocol is defined in Section 3.2 and its
cheating probabilities are Aunreversed

XOT = P unreversed
XOT (Sender) = 1/2 for Sender Alice

and Bunreversed
XOT = P unreversed

XOT (Receiver) = 3/4 for Receiver Bob. For this protocol, the
testing scheme was not needed as a dishonest Sender Alice can cheat as well when
there is no testing by the Receiver Bob, as when there is testing.

When reversing the XOT protocol, Bob becomes the Sender of the quantum state
and Alice the Receiver who applies a measurement on the received state, while still
implementing XOT from Alice to Bob. The reversed XOT protocol is then carried
out as follows.

1. Bob uniformly at random chooses b ∈ {0, 1, 2} and a random bit y ∈ {0, 1},
thereby determining xb = y. He sends to Alice the appropriate one of the six
quantum states

|φx0=0〉 =
1√
2

(|0〉+ |2〉), |φx1=0〉 =
1√
2

(|0〉+ |1〉), |φx2=0〉 =
1√
2

(|1〉+ |2〉),

|φx0=1〉 =
1√
2

(|0〉 − |2〉), |φx1=1〉 =
1√
2

(|0〉 − |1〉), |φx2=1〉 =
1√
2

(|1〉 − |2〉).

(4.11)

2. Alice performs a measurement on the state she has received from Bob, learning
the bit values (x0, x1). Her measurement operators ΠA

x0x1
are

ΠA
00 =

1

4
(|0〉+ |1〉+ |2〉)(〈0|+ 〈1|+ 〈2|),

ΠA
01 =

1

4
(|0〉 − |1〉+ |2〉)(〈0| − 〈1|+ 〈2|),

ΠA
11 =

1

4
(|0〉 − |1〉 − |2〉)(〈0| − 〈1| − 〈2|),

ΠA
10 =

1

4
(|0〉+ |1〉 − |2〉)(〈0|+ 〈1| − 〈2|). (4.12)

As in the unreversed XOT protocol, when both parties act honestly, Alice will
have two bits, but will not know whether Bob knows her first bit, her second bit, or
their XOR. Bob will have one of x0, x1, or x2 = x0⊕ x1, but will not know anything
else, since he can only deduce one bit of information with certainty based on the
state he has sent (if he is honest).
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Just as when reversing the 1-2 OT protocol, the aims of the dishonest parties
stay the same when reversing the XOT protocol, since the functional roles remain
unchanged. Hence, a dishonest Alice wants to learn Bob’s b and a dishonest Bob
wants to learn all of Alice’s bits and not only xb. In the following subsections, we
examine how well Alice and Bob can cheat in the described reversed XOT protocol.

4.3.1 Dishonest Receiver

If Alice is dishonest, she wants to learn Bob’s b, i.e. did he learn the value of the
first bit, the second bit, or their XOR. In this case, this means that she will have to
distinguish between the sum of the two states for x0, the sum of the two states for
x1, and the sum of the two states for x2. Thus, Alice needs to distinguish between
the three states

ρx0 =
1

2
|φx0=0〉 〈φx0=0|+

1

2
|φx0=1〉 〈φx0=1| =

1

2
|0〉 〈0|+ 1

2
|2〉 〈2| ,

ρx1 =
1

2
|φx1=0〉 〈φx1=0|+

1

2
|φx1=1〉 〈φx1=1| =

1

2
|0〉 〈0|+ 1

2
|1〉 〈1| ,

ρx2 =
1

2
|φx2=0〉 〈φx2=0|+

1

2
|φx2=1〉 〈φx2=1| =

1

2
|1〉 〈1|+ 1

2
|2〉 〈2| . (4.13)

The honest Sender Bob sends each of the six states in Eq. (4.11) with equal prob-
ability of 1/6, so the three mixed states above all have prior probability 1/3. They
are all diagonal in the {|0〉 , |1〉 , |2〉} basis, so a measurement in this basis is likely
optimal. One choice of measurement operators for a minimum-error measurement
by Alice is

Πx0 =
1

2
(|0〉 〈0|+ |2〉 〈2|),

Πx1 =
1

2
(|0〉 〈0|+ |1〉 〈1|),

Πx2 =
1

2
(|1〉 〈1|+ |2〉 〈2|). (4.14)

This is indeed an optimal measurement since the conditions an optimal minimum-
error measurement needs to satisfy [66], hold for these measurement operators; i.e.

Πj(pjρj − pkρk)Πk = 0 ∀j, k,∑
j

pjρjΠj − pkρk ≥ 0 ∀k (4.15)

hold true for the measurement operators in Eq. (4.14). So, the Receiver Alice’s
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cheating probability is

Areversed
XOT = P reversed

XOT (Receiver) =
2∑
i=0

piTr(Πxiρxi) = 3× 1

3

(
1

2

)
=

1

2
. (4.16)

When considering the functional role, the cheating probability in the reversed
version of the protocol is the same as in the unreversed version, that is, Areversed

XOT =

Aunreversed
XOT = 1/2. The physical Receiver in the unreversed protocol can cheat with

a higher probability, Bunreversed
XOT = P unreversed

XOT (Receiver) = 3/4, than in the reversed
version though. Intuitively this makes sense as the Receiver of the quantum state
in the unreversed version (Bob) wants to know all of the Sender Alice’s bits and
hence has to distinguish between the four states in Eq. (3.1) in Section 3.2, whereas
the Receiver of the quantum state in the reversed version (Alice) only needs to
distinguish between the three states in Eq. (4.13).

4.3.2 Dishonest Sender

If Bob is dishonest, he wants to learn all of Alice’s bits, i.e. the first bit, the second
bit, and their XOR. Since knowledge of any two of the bits x0, x1, or x2 = x0 ⊕ x1

implies knowledge about the third bit, Bob’s aim is to learn the values of two of the
bits. Without loss of generality, it is possible to pick x0 and x1, thus Bob wants
to learn which of the four two-bit combinations Alice has obtained. As previously
in the case of a dishonest physical Sender, we consider two situations: one, where
the physical Receiver of the state (here Alice) tests the state, and one, where the
physical Receiver of the state does not test.

No testing by the Receiver

If the Receiver Alice applies no testing, Sender Bob’s optimal cheating strategy is
similar to previous cases with a cheating Sender of the quantum state with no testing
by the Receiver of the quantum state. That is, Bob will maximise his cheating
probability by sending the eigenstate corresponding to the largest eigenvalue of
Alice’s measurement operators.

Alice’s measurement operators ΠA
x0x1

for (x0, x1) ∈ {0, 1} given in Eq. (4.12)
all have eigenvalues (3/4, 0, 0). The corresponding eigenvectors are the pure-state
projectors which the measurement operators are proportional to. Hence, Bob needs
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to send one of the states

|Φ00〉 =
1√
3

(|0〉+ |1〉+ |2〉), |Φ01〉 =
1√
3

(|0〉 − |1〉+ |2〉),

|Φ11〉 =
1√
3

(|0〉 − |1〉 − |2〉), |Φ10〉 =
1√
3

(|0〉+ |1〉 − |2〉) (4.17)

to achieve a cheating probability of Breversed
XOT = P reversed

XOT (Sender) = 3/4.
Comparing to the unreversed version of the XOT protocol, the cheating proba-

bility of the functional role remains unchanged, Breversed
XOT = Bunreversed

XOT = 3/4. The
cheating probability of the physical role, however, changes. In particular, it in-
creases P reversed

XOT (Sender) = 3/4 > P unreversed
XOT (Sender) = 1/2. The increase in the

cheating probability of the physical Sender makes intuitive sense since the Sender of
the quantum state in the unreversed version, who wants to learn b ∈ {0, 1, 2}, needs
to distinguish between three states, while the Sender of the quantum state in the
reversed version wants to learn (x0, x1) ∈ {0, 1} and so needs to distinguish between
four states.

Testing by the Receiver

If the Receiver Alice is testing, Sender Bob needs to send a state with which he
passes Alice’s test. The testing scheme is analogous to the one applied by Bob in the
unreversed XOT protocol and in the discussed 1-2 OT protocol. Alice tests a fraction
of the states she receives to see if her measurement results match Bob’s declarations
for this fraction of states. She aborts the protocol if there are any mismatches, and
otherwise continues with the XOT protocol for the remaining states.

As before, this will restrict Bob’s cheating strategies and his optimal one will be
to send a superposition of the states in Eq. (4.11) entangled with a system he keeps
on his side. This is a state of the form

|Φcheat〉 = a |0〉B ⊗ |φx0=0〉+ b |1〉B ⊗ |φx0=1〉+ c |2〉B ⊗ |φx1=0〉

+ d |3〉B ⊗ |φx1=1〉+ e |4〉B ⊗ |φx2=0〉+ f |5〉B ⊗ |φx2=1〉 , (4.18)

where {|0〉B , |1〉B , |2〉B , |3〉B , |4〉B , |5〉B} is an orthonormal basis for the system Bob
keeps and |a|2 + |b|2 + |c|2 + |d|2 + |e|2 + |f |2 = 1. If it is not a testing round, Alice
will apply her measurement described by the measurement operators in Eq. (4.12).
By this, Bob’s system on his side is prepared in one of four states, depending on
whether Alice has obtained 00, 01, 11, or 10. The states he needs to distinguish
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between are the pure states

|θ00〉 =
1√

|a|2 + |c|2 + |e|2
(
a |0〉B + c |2〉B + e |4〉B

)
,

|θ01〉 =
1√

|a|2 + |d|2 + |f |2
(
a |0〉B + d |3〉B − f |5〉B

)
,

|θ11〉 =
1√

|b|2 + |d|2 + |e|2
(
b |1〉B + d |3〉B − e |4〉B

)
,

|θ10〉 =
1√

|b|2 + |c|2 + |f |2
(
b |1〉B + c |2〉B + f |5〉B

)
, (4.19)

corresponding to Alice obtaining 00, 01, 11, or 10. The states occur with probabili-
ties (|a|2+|c|2+|e|2)/2, (|a|2+|d|2+|f |2)/2, (|b|2+|d|2+|e|2)/2, and (|b|2+|c|2+|f |2)/2

for |θ00〉, |θ01〉, |θ11〉, and |θ10〉, respectively.
When considering which choice of values for the constants a, b, c, and d is best, the

same issue as for a dishonest Sender of the quantum state with testing Receiver of the
quantum state in Subsection 4.2.2 arises. That is, even though generally it seems
sensible to have unequal prior probabilities for the states we need to distinguish
between, making one of the states here occur more often than the others will lead
to some of the states in Eq. (4.19) being very close to each other with some of the
pairwise overlaps rather large. Hence, we expect that it is best for dishonest Bob
to choose the constants such that the states are all equiprobable with a probability
of 1/4, for example, a = b = c = d = e = f = 1/

√
6. We prove below that this is

indeed an optimal choice for the values of these constants.
Substituting a = b = c = d = e = f = 1/

√
6 into Eq. (4.19), the states’

pairwise overlaps match the pairwise overlaps of the states an honest Sender sends
in the unreversed version of the XOT protocol (see Section 3.2). Thus, |θ00〉, |θ01〉,
|θ11〉, and |θ10〉 are equivalent to these states and dishonest Bob needs to distinguish
between

|φ00〉 =
1√
3

(|0〉+ |1〉+ |2〉), |φ01〉 =
1√
3

(|0〉 − |1〉+ |2〉),

|φ11〉 =
1√
3

(|0〉 − |1〉 − |2〉), |φ10〉 =
1√
3

(|0〉+ |1〉 − |2〉), (4.20)

corresponding to Alice obtaining 00, 01, 11, or 10, and where each state occurs with
a probability of 1/4.

Bob’s best measurement is once again a minimum-error measurement. The
square-root measurement is optimal, as the states are equiprobable and symmet-
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ric and the measurement operators can be calculated [73, 74] to be

Π00 =
3

4
|φ00〉〈φ00| , Π01 =

3

4
|φ01〉〈φ01| , Π11 =

3

4
|φ11〉〈φ11| , Π10 =

3

4
|φ10〉〈φ10| .

(4.21)

With this measurement, Sender Bob’s cheating probability, when Receiver Alice
is testing the states he has sent to her, is

Breversed
XOT = P reversed

XOT (Sender) =
1

4

1∑
i,j=0

Tr(Πijρij) =
3

4
. (4.22)

We can conclude that the choice for a, b, c, d, e, and f is an optimal choice, since
Bob can never cheat with a higher probability when Alice tests a fraction of the
states Bob sends her, than he can do when Alice does not test any of his states.
Since Breversed

XOT = P reversed
XOT (Sender) = 3/4 also for the case with no tests by the

Receiver, there is no better way for Bob to choose the constants a, b, c, d, e, and f .
Though, there might be other choices that do just as well.

Thus, as in the unreversed case, any testing by the Receiver of the quantum
state does not help to lower the Sender’s cheating probability and can be omitted.
Breversed

XOT = P reversed
XOT (Sender) = 3/4 is therefore valid for every individual round of

reversed XOT and is not only an average bound as was the case for the better
cheating probability in 1-2 OT. Also valid here are the conclusions and comparisons
in the previous Subsection 4.3.2 where no testing was applied by the Receiver of the
quantum state, that is, the cheating probability of the physical role changes while
the cheating probability of the functional role remains unchanged when reversing.

4.3.3 Experimental Implementation

As aforementioned, this reversed XOT protocol was presented in Ref. [71]. Apart
from the analysis of the protocol and its cheating probabilities, this includes an
experimental implementation of the protocol with honest communicating parties
and of the cheating strategies of dishonest parties.

The experimental setup for the realisation of the reversed XOT protocol is the
same as the one for the unreversed XOT protocol and was described in more detail
in Section 3.4. As Alice is the receiver now and Bob the sender, their roles, however,
interchange. That is, Bob has the single-photon source and encodes the state and
Alice implements the generalised measurement and carries out the photon detection.
Once again, it is the angles of the wave-plates and their set values which are modified
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and differ depending on if the reversed protocol is implemented with two honest
parties or with a dishonest party.

Generally, the experiment demonstrates the feasibility of the reversed XOT pro-
tocol and of the relevant cheating strategies of dishonest parties. Also in this case,
the experimental results obtained for the cheating probabilities agreed very well with
the predicted theoretical values for the cheating probabilities.

4.4 Classical Post-Processing for Reversed Proto-

cols

Since the reversed versions of the oblivious transfer protocols are non-interactive,
same as the unreversed versions, the Receiver (here Alice) cannot choose the values
of the bits x0, x1, and thus also not x2 = x0 ⊕ x1 in the case of XOR oblivious
transfer. However, similar to the post-processing for the unreversed protocols (see
Chapter 3 for the XOT protocol and [7] for the 1-2 OT protocol), post-processing
can also be added to the reversed versions in order to enable the Receiver of the
quantum state to have an active choice of the values of his/her inputs.

The post-processing is straightforward and involves only classical communication
from Alice to Bob. Suppose Alice has obtained the two bits (x0, x1) from the reversed
protocol, but her desired bits are (X0, X1). If either x0 or x1 is not the bit value she
wants, she needs to ask Bob to flip the corresponding bit value, if he holds it. This
obviously gives Bob no more information about Alice’s bit values (X0, X1). Alice’s
steps in the classical post-processing are thereby analogous to Alice’s steps in the
construction of semi-random 1-2 OT from random 1-2 OT as shown by Amiri et al.
[7].

A reversed oblivious transfer protocol including classical post-processing as de-
scribed above can be defined more formally.

1. Alice has input bits (X0, X1) (with X2 = X0 ⊕X1 for XOT).

2. Sender Bob uniformly at random chooses b ∈ {0, 1} (or b ∈ {0, 1, 2} for XOT)
and a random bit y ∈ {0, 1}, thereby determining xb = y. He encodes this in-
formation according to the protocol’s mapping and sends the applicable quan-
tum state to Alice.

3. Receiver Alice makes the measurement of the executed oblivious transfer pro-
tocol and obtains output (x0, x1).
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4. Alice calculates tc = xc ⊕ Xc for c ∈ {0, 1} (it also holds for t2 = t0 ⊕ t1 =

x0 ⊕X0 ⊕ x1 ⊕X1 = x2 ⊕X2 for XOT) and sends (t0, t1) to Bob.

5. Bob has his chosen value for b and the random value y. He calculates his final
output y′ = y ⊕ tb (for XOT, if b = 2, then y′ = y ⊕ t2 = y ⊕ t0 ⊕ t1).

The bits (t0, t1) and by extension also t2, can be seen as bits that let Bob know
if he has to flip the bit he holds or not; i.e., if tb = 0, Bob does not have to flip the
bit, but, if tb = 1, then he has to flip it to match the value of Alice’s Xb.

The examined classical post-processing works both for non-interactive reversed
1-2 OT and non-interactive reversed XOT. We now formally prove that it can be
done without affecting the cheating probabilities of dishonest parties. The proof
uses arguments similar to those in Refs. [7, 46].

Proposition 4.1. There exists classical post-processing for non-interactive reversed
1-out-of-2 and XOR oblivious transfer protocols which enables the Receiver of the
quantum state to actively choose the values of his/her inputs, but does not change
the cheating probabilities of dishonest parties.

Proof. Assume that a non-interactive reversed oblivious transfer protocol P is exe-
cuted, with cheating probabilities AOT (P ) for a dishonest Alice and BOT (P ) for a
dishonest Bob. By implementing P , the Receiver Alice gets outputs (x0, x1). Her
chosen bits, however, are (X0, X1), so she defines tc = xc ⊕ Xc for c ∈ {0, 1} and
sends (t0, t1) to Sender Bob. For XOT, X2 = X0 ⊕X1, x2 = x0 ⊕ x1, and hence it
holds that t2 = t0 ⊕ t1 = x0 ⊕X0 ⊕ x1 ⊕X1 = x2 ⊕X2. By implementing P , Bob
has his chosen input b and a random bit y used to determine xb = y, which specified
which quantum state he sends to Alice in P . After receiving (t0, t1) from Alice, Bob
calculates his final output y′ = y ⊕ tb. For XOT, when Bob’s b = 2, his output is
y′ = y ⊕ t2 = y ⊕ t0 ⊕ t1.

If both, Alice and Bob, are honest, then y′ = Xb. This is because, using defini-
tions xb = y and tb = xb ⊕Xb, then

y′ = y ⊕ tb = xb ⊕ xb ⊕Xb = Xb (4.23)

and, in the case of b = 2 in XOT,

y′ = y ⊕ t2 = x2 ⊕ t0 ⊕ t1 = x2 ⊕ x0 ⊕X0 ⊕ x1 ⊕X1 = x2 ⊕ x2 ⊕X2 = X2. (4.24)

The following is true with respect to the classical post-processing and security
against Alice and Bob:
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• By implementing P , an honest Alice will learn (x0, x1), but nothing about
b. Since Alice receives no communication from Bob during the classical post-
processing, it provides her with no new information about what bit Bob has
obtained.

• If Alice is dishonest, she can correctly learn b with probability AOT (P ). Since
there is no communication from Bob to Alice during the classical post-processing,
it does not increase her cheating probability and it stays equal to AOT (P ).

• By implementing P , an honest Bob will know b and the bit xb. In the classical
post-processing, he gets (t0, t1) and calculates his final bit Xb = xb ⊕ tb. This
will not give him more information about Xb̄ since Xb̄ = xb̄ ⊕ tb̄ and he does
not know xb̄. Thus, the classical post-processing does not give an honest Bob
any more information about Alice’s other bit(s).

• If Bob is dishonest, he can correctly guess Alice’s other bit(s) xb̄ with prob-
ability BOT (P ). He knows (t0, t1) and that Xb = xb ⊕ tb. Since he does not
know anything about xb̄ and it holds that Xb̄ = xb̄ ⊕ tb̄, he cannot learn any-
thing about Xb̄. He can only correctly guess Xb̄ with the same probability
as xb̄. Hence, the classical post-processing does not increase Bob’s cheating
probability and it stays equal to BOT (P ).

�

4.5 Conclusion

In this chapter, we have presented the concept of reversing a protocol, illustrating it
by means of oblivious transfer. We applied the concept to two particular protocols,
a 1-2 OT protocol [7] and the XOT protocol described in Chapter 3, and analysed
the reversed protocol versions for their cheating probabilities. Thereby, we made
the following discovery: when reversing a protocol, the cheating probabilities of the
functional roles remain unchanged while the cheating probabilities of the physical
roles swap.

When summarising the cheating probabilities for the different roles in the 1-2
OT protocol and XOT protocol in tables, this becomes obvious. The subtables in
Table 4.1 show that, in both the protocols (left table for 1-2 OT and right table
for XOT), the cheating probabilities of the functional roles, Alice and Bob, stay the
same, while the cheating probabilities of the physical roles, Sender and Receiver of
the quantum state, swap. This presumably stems from the fact that, when reversing
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a protocol, the functional roles stay the same and, therefore, also the aims of the
cheating parties.

1-2 OT A1-2 OT B1-2 OT

P1-2 OT(Sender) 3/4 0.729
P1-2 OT(Receiver) 3/4 0.729

XOT AXOT BXOT

PXOT(Sender) 1/2 3/4
PXOT(Receiver) 1/2 3/4

Table 4.1: Tables summarising the cheating probabilities for the physical and func-
tional roles. The left table is for the 1-2 OT protocol and the right table for the XOT
protocol, whereby within these tables always the diagonal cells are a pair; i.e. the
upper left and lower right cells correspond to the cheating probabilities in the unre-
versed versions and the lower left and upper right cells to the cheating probabilities
in the reversed versions.

We also showed a classical post-processing that can be added to the non-interactive
reversed protocol versions to enable the physical Receiver (here Alice) to actively
choose her values for x0 and x1. It is valid for both 1-2 OT and XOT and we proved
that the classical post-processing can be carried out without affecting the cheating
probabilities of dishonest parties.

Further work on the topics in this chapter can include applying the reversal
process to other protocols than oblivious transfer and examining which conditions
generally have to hold for a protocol to be reversable. Moreover, it might be inter-
esting to examine the exact reason why the cheating probabilities of the functional
roles remain unchanged when reversing a protocol, that is, what happens on the
“mathematical level” to cause this effect.
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Chapter 5

Generalising Quantum XOR Oblivi-
ous Transfer

5.1 Introduction

The XOR oblivious transfer protocols considered so far in the previous chapters
followed the concept of 1-out-of-2 oblivious transfer in the sense that Alice has a
string of two classical bits. 1-2 OT can be generalised to 1-out-of-n oblivious transfer
[12], where Alice has a string consisting of n classical bits and Bob can learn the
value of one of the n bits. With this in mind, we generalise XOR oblivious transfer
in this chapter. Instead of having Bob learn one of two bits or their XOR, the
assumption is that Alice has a classical string of length n and Bob can learn either
the value of one of the n bits or the pairwise XOR of any two of the bits.

We at first formally define such a generalised XOR oblivious transfer protocol
and then present a protocol outline for 1-out-of-n XOT based on unambiguous quan-
tum state elimination. Determining equations for the cheating probabilities for a
dishonest Alice and a dishonest Bob in a protocol following this outline, allows inves-
tigation of how these probabilities change with increasing n. Lastly, we discuss the
similarities of 1-out-of-n XOR oblivious transfer to the concept of quantum retrieval
games [81].

5.2 1-out-of-n XOR Oblivious Transfer

In 1-out-of-n XOR oblivious transfer (1-n XOT), Alice has a string of n input bits
xi ∈ {0, 1}, where i ∈ {1, ..., n}, n ∈ N, and n ≥ 2, and Bob chooses to learn either
the value of one of the n bits or of one of the

(
n
2

)
= 1

2
n(n − 1) pairwise XORs.

Ideally, Alice does not know which information Bob has learnt, and Bob does not
learn anything more about the other bits. A dishonest Alice aims to learn what
information, that is, which bit xi or pairwise XOR xi ⊕ xj for i, j ∈ {1, ..., n} and
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i 6= j, Bob has received. A dishonest Bob, on the other hand, aims to learn all of
the n bits, which will then also imply knowledge about all the pairwise XORs.

We can assume that Bob is equally likely to choose to learn any of the n bits
or any of the

(
n
2

)
= 1

2
n(n − 1) pairwise XORs and Alice is equally likely to have

any of the 2n possible bit strings as input. These assumptions are valid and sensible
since biased protocols, where some of Bob’s choices or Alice’s inputs are more likely
than others, have an additional weak point for cheating parties who can exploit any
occurring bias.

Guessing Bob

If Bob wants to learn about all n bits in Alice’s string, which will then also tell him
about all of the XORs, he can always use a guessing strategy to do so, just as in 1-2
XOT. Following the protocol honestly, he will then guess the values of the remaining
bits that he did not choose to learn the value of. Note that, when Bob chooses to
learn the value of a pairwise XOR, he will still need the same number of guesses to
learn the whole bit string. That is, he will have to guess the value of one of the two
bits composing the XOR value he knows, which will then also give him the value of
the other bit in the XOR, plus additionally he will have to guess the values of the
remaining n − 2 bits. Thus, all in all, Bob will have to guess the values of n − 1

bits and his guessing probability Bg
OT , where the superscript g indicates it being a

guessing probability, is

Bg
OT =

1

2n−1
. (5.1)

Guessing Alice

If Alice wants to learn which information Bob has chosen to learn, she can also
always do so by using a guessing strategy. That is, she follows the protocol honestly
and then guesses the most-likely outcome for Bob afterwards. In 1-n XOT, Bob
has n bits and

(
n
2

)
= 1

2
n(n − 1) pairwise XORs to choose from, so in total he has

n + 1
2
n(n − 1) = 1

2
n(n + 1) possible outcomes. Since we assume that all of these

outcomes are equally likely to occur, we know that Alice’s guessing probability AgOT
is given by

AgOT =
2

n(n+ 1)
. (5.2)

This type of protocol is formalised by defining 1-out-of-n XOR oblivious transfer
as follows.
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Definition 5.1 (1-out-of-n XOR oblivious transfer). A 1-out-of-n XOR oblivious
transfer protocol is a two-party protocol between a sender Alice and a receiver Bob,
where

• Alice’s input is a string consisting of n bits xi ∈ {0, 1}, where i ∈ {1, ..., n},
n ∈ N, and n ≥ 2, and Bob has an input b ∈ {1, ..., n, n+ 1, ..., n+ 1

2
n(n− 1)}.

At the start of the protocol, Alice has no information about b and Bob has no
information about any of the xi in Alice’s string.

• The protocol ends, when either Bob outputs y or he or Alice Abort.

• If both parties are honest, then they never Abort and y = xb, where, if b ∈
{n+ 1, ..., n+ 1

2
n(n− 1)}, Bob learns about a pairwise overlap, that is

xn+1 = x1 ⊕ x2, xn+2 = x1 ⊕ x3, . . . , xn+n−1 = x1 ⊕ xn,

xn+n = x2 ⊕ x3, x2n+1 = x2 ⊕ x4, . . . , xn+ 1
2
n(n−1) = xn−1 ⊕ xn.

Furthermore, Alice has no information about b and Bob has no information
about any of the other xb̄.

• Alice’s cheating probability, where 0 ≤ εA ≤ 1− AgOT , is

AOT := sup{P (Alice correctly guesses b) ∧ Bob does not Abort}

=
2

n(n+ 1)
+ εA . (5.3)

• Bob’s cheating probability, where 0 ≤ εB ≤ 1−Bg
OT , is

BOT := sup{P (Bob correctly guesses all n bits xi ∧ Alice does not Abort}

=
1

2n−1
+ εB . (5.4)

When a cheating strategy other than the simple guessing strategy is applied,
the cheating probability for a dishonest party usually increases. The probability of
successfully cheating that can be achieved on top of the probability of just guessing
correctly, is represented by εA and εB for a dishonest Alice and a dishonest Bob,
respectively. For Alice’s and Bob’s cheating probabilities, all cheating strategies
available to them are considered and the suprema are taken over all of them, in
order to get the least upper bound. The relevant cheating strategies in both cases
are ultimately the ones yielding the largest εA for Alice or the largest εB for Bob.
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5.3 Non-interactive 1-out-of-n XOT Protocol

In this section, we give an outline for a non-interactive 1-out-of-n quantum XOT
protocol based on honest Alice sending pure states and honest Bob performing an
unambiguous quantum state elimination measurement. Since the protocol is based
on quantum state elimination, Bob does not get the choice of which information xb
he wants to learn, but he gets an output at random. Hence, using the terminology
in Ref. [7], this is a semi-random 1-out-of-n XOR oblivious transfer protocol. Anal-
ogous to the specific Definition 3.1 about semi-random 1-2 XOT, the general case is
defined as follows.

Definition 5.2 (Semi-random 1-out-of-n XOR oblivious transfer). A semi-random
1-out-of-n XOR oblivious transfer protocol is a two-party protocol between a sender
Alice and a receiver Bob, where

1. Alice chooses her input string consisting of n bits xi ∈ {0, 1}, for i ∈ {1, ..., n},
n ∈ N, and n ≥ 2, uniformly at random, or she chooses Abort.

2. Bob outputs the value b ∈ {1, ..., n, n + 1, ..., n + 1
2
n(n − 1)} and a bit y, or

Abort.

3. If both parties are honest, then they never abort and y = xb, where, if b ∈
{n+ 1, ..., n+ 1

2
n(n− 1)}, Bob learns about a pairwise overlap, that is

xn+1 = x1 ⊕ x2, xn+2 = x1 ⊕ x3, . . . , xn+n−1 = x1 ⊕ xn,

xn+n = x2 ⊕ x3, x2n+1 = x2 ⊕ x4, . . . , xn+ 1
2
n(n−1) = xn−1 ⊕ xn.

Furthermore, Alice has no information about b and Bob has no information
about any of the other xb̄.

By adding classical post-processing, we can realise standard 1-out-of-n XOT,
where Bob can make an active (but random from Alice’s point of view) choice about
which xb he receives. This will not change the cheating probabilities of either party.
Generalising Proposition 3.1 and its proof (using similar arguments as in Refs. [7]
and [46]), we can show that general semi-random 1-n XOT is equivalent to standard
1-n XOT up to classical post-processing and this is valid for any n ≥ 2.

Proposition 5.1. Having a semi-random 1-out-of-n XOT protocol with cheating
probabilities AOT and BOT is equivalent to having a standard 1-out-of-n XOT pro-
tocol with the same cheating probabilities.
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Proof. We examine both directions, i.e. constructing a semi-random 1-n XOT pro-
tocol from a standard 1-n XOT protocol and constructing a standard 1-n XOT
protocol from a semi-random 1-n XOT protocol. That is, the situation where the
parties possess means to implement standard 1-out-of-n XOT, but both of them
instead wish to implement semi-random 1-out-of-n XOT, or vice versa.

Case 1: Let P be a standard 1-n XOT protocol with cheating probabilities AOT (P )

and BOT (P ). We can construct a semi-random 1-n XOT protocol Q with the same
cheating probabilities in the following way:

1. Alice picks x1, x2, ..., xn ∈ {0, 1} uniformly at random. Bob generates b ∈
{1, 2, ..., n, n+ 1, ..., n+ 1

2
n(n− 1)} uniformly at random (in a way so that he

no longer actively chooses b).

2. Alice and Bob perform the 1-nXOT protocol P where Alice inputs x1, x2, ..., xn,
and all pairwise XORs xi ⊕ xj, where i, j ∈ {1, 2, ..., n} and i 6= j, and Bob
inputs b. Let y be Bob’s output.

3. Alice and Bob abort in Q if and only if they abort in P . Otherwise, the
outputs of protocol Q are (b, y) for Bob.

Evidently, Q implements semi-random 1-n XOT if both parties follow the protocol.
Furthermore, because of the way Q is constructed, Alice can cheat in Q if and only if
she can cheat in P , and the same for a cheating Bob. Cheating probabilities for Alice
and Bob are therefore equal in P and Q, AOT (Q) = AOT (P ) and BOT (Q) = BOT (P ).

Case 2: Let P be a semi-random 1-n XOT protocol with cheating probabilities
AOT (P ) and BOT (P ). We can construct a standard 1-n XOT protocol Q with
the same cheating probabilities in the following way:

1. Alice has inputs X1, X2, ..., Xn, with Xn+1 = X1 ⊕ X2, Xn+2 = X1 ⊕ X3, ...,
Xn+ 1

2
n(n−1) = Xn−1 ⊕ Xn and Bob has input B ∈ {1, 2, ..., n, n + 1, ..., n +

1
2
n(n− 1)}.

2. Alice and Bob perform the semi-random 1-n XOT protocol P where Alice
inputs x1, x2, ..., xn, with xn+1 = x1 ⊕ x2, xn+2 = x1 ⊕ x3, ..., xn+ 1

2
n(n−1) =

xn−1 ⊕ xn, whereby she chooses x1, x2, ..., xn ∈ {0, 1} uniformly at random.
Let (b, y) be Bob’s outputs.

3. Bob sends r = (b+ [n− 1 + 1
2
n(n− 1)]×B) mod [n+ 1

2
n(n− 1)] to Alice. Let

x′c = x(c+r) mod [n+ 1
2
n(n−1)] for c ∈ {1, 2, ..., n, n+ 1, ..., n+ 1

2
n(n− 1)}.
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4. Alice sends (s1, s2, ..., sn) to Bob, whereby sc = x′c⊕Xc for c ∈ {1, 2, ..., n} and
the pairwise XORs sn+1 = s1 ⊕ s2, sn+2 = s1 ⊕ s3, ..., sn+ 1

2
n(n−1) = sn−1 ⊕ sn.

Let y′ = y ⊕ sB.

5. Alice and Bob abort in Q if and only if they abort in P . Otherwise, the output
of protocol Q is y′ for Bob.

If Alice and Bob are honest, then y = xb. Note that x′B = x(B+r) mod [n+ 1
2
n(n−1)] =

x(B+b+[n−1+ 1
2
n(n−1)]×B) mod [n+ 1

2
n(n−1)] = xb. Hence,

y′ = y ⊕ sB = xb ⊕ sB = x′B ⊕ x′B ⊕XB = XB, (5.5)

i.e. y′ is indeed equal to XB. This also holds for the pairwise XORs, that is, when
B ∈ {n+ 1, n+ 2, ..., n+ 1

2
n(n− 1)}, since for

sl = si ⊕ sj = x′i ⊕Xi ⊕ x′j ⊕Xj = xi ⊕ xj ⊕Xi ⊕Xj = xl ⊕Xl = x′l ⊕Xl (5.6)

when xl = xi ⊕ xj holds for l ∈ {n + 1, n + 2, ..., n + 1
2
n(n− 1)}, i, j ∈ {1, 2, ..., n},

and i 6= j.
The following is true with respect to the classical post-processing described in steps
3 and 4 and security against Alice and Bob:

• If Alice is honest, she knows r but has no information about b. From r =

(b + [n − 1 + 1
2
n(n − 1)] × B) mod [n + 1

2
n(n − 1)] she can deduce that [n −

1 + 1
2
n(n − 1)]B = (r − b) mod [n + 1

2
n(n − 1)] but she cannot obtain any

information about B from this. Hence, the classical post-processing does not
give an honest Alice any more information about which bit Bob has obtained.

• If Alice is dishonest, she can correctly guess b with probability AOT (P ). She
knows r. Since [n− 1 + 1

2
n(n− 1)]B = (r − b) mod [n+ 1

2
n(n− 1)], guessing

[n − 1 + 1
2
n(n − 1)]B, equivalently guessing B, is equivalent to guessing b.

Therefore, AOT (Q) = AOT (P ).

• If Bob is honest, he knows r, (s1, s2, ..., sn), and the pairwise XORs sn+1 =

s1 ⊕ s2, sn+2 = s1 ⊕ s3, ..., sn+ 1
2
n(n−1) = sn−1 ⊕ sn. But he has no information

about the bits xb̄ mod [n+ 1
2
n(n−1)]. He cannot learn anything about the other
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[n+ 1
2
n(n− 1)− 1] of Alice’s bits, XB̄ mod [n+ 1

2
n(n−1)], since

XB̄ mod [n+ 1
2
n(n−1)] = x′

B̄ mod [n+ 1
2
n(n−1)]

⊕ sB̄ mod [n+ 1
2
n(n−1)]

= x(B̄+r) mod [n+ 1
2
n(n−1)] ⊕ sB̄ mod [n+ 1

2
n(n−1)]

= xb̄ mod [n+ 1
2
n(n−1)] ⊕ sB̄ mod [n+ 1

2
n(n−1)]. (5.7)

Hence, the classical post-processing does not give an honest Bob any more
information about the other two bits Alice has sent.

• If Bob is dishonest, he can guess the bits xb̄ mod [n+ 1
2
n(n−1)] with probabil-

ity BOT (P ). He knows r, (s1, s2, ..., sn), and the pairwise XORs sn+1 =

s1 ⊕ s2, sn+2 = s1 ⊕ s3, ..., sn+ 1
2
n(n−1) = sn−1 ⊕ sn. We have sc = x′c ⊕

Xc = x(c+r) mod [n+ 1
2
n(n−1)] ⊕ Xc for c ∈ {1, 2, ..., n} and, when xl = xi ⊕ xj

holds, sl = si ⊕ sj = x′l ⊕ Xl = x(l+r) mod [n+ 1
2
n(n−1)] ⊕ Xl for l ∈ {n +

1, n + 2, ..., n + 1
2
n(n − 1)}, i, j ∈ {1, 2, ..., n}, and i 6= j. Thus, Xc =

x(c+r) mod [n+ 1
2
n(n−1)] ⊕ sc as well as Xl = x(l+r) mod [n+ 1

2
n(n−1)] ⊕ sl, and, for

Bob, guessing (X1, X2, ..., Xn, Xn+1, ..., Xn+ 1
2
n(n−1)) is equivalent to guessing

(x1, x2, ..., xn, xn+1, ..., xn+ 1
2
n(n−1)). Therefore, BOT (Q) = BOT (P ).

�

The protocol that we consider and analyse in the following subsections is a
natural extension from the optimal protocol analysed in Section 3.2, which covers
the specific case where n = 2, i.e. 1-out-of-2 XOT. This extended version of the
non-interactive 1-out-of-n XOT protocol proceeds as follows.

1. Let s = x1x2...xn, where n ≥ 2 and n ∈ N, be Alice’s string of n classical bits
xi ∈ {0, 1}, for i ∈ {1, ..., n}, and she encodes s into the (n + 1)-dimensional
pure quantum state

|φs〉 =
1√
n+ 1

(
|0〉+

n∑
i=1

(−1)xi |i〉
)
. (5.8)

Alice picks each of the possible 2n bit strings with an equal probability of 1/2n.
She sends the state |φs〉 to Bob.

2. Bob applies an unambiguous quantum state elimination measurement on the
received state, excluding 2n−1 states with certainty, from which he can deduce
either one of the bits or one pairwise XOR. The measurement consists of
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2[n+
(
n
2

)
] = n(n+ 1) operators,

Πxi=0 =
1

2n
(|0〉+ |i〉)(〈0|+ 〈i|), Πxi⊕xj=0 =

1

2n
(|i〉+ |j〉)(〈i|+ 〈j|),

Πxi=1 =
1

2n
(|0〉 − |i〉)(〈0| − 〈i|), Πxi⊕xj=1 =

1

2n
(|i〉 − |j〉)(〈i| − 〈j|),

(5.9)

where i, j ∈ {1, ..., n} and i 6= j. That is, there are 2n operators for the
individual bits and 2

(
n
2

)
= n(n − 1) operators for the pairwise XORs. Bob

obtains his output at random and each one of the different results occurs with
an equal probability of 2/[n(n+ 1)].

5.3.1 Dishonest Bob

We consider a dishonest Bob who wants to learn all n bits and, in this way, will also
learn all pairwise XORs. Eq. (5.1) gives the probability for how well Bob can do so
using the guessing strategy, where he follows the protocol honestly and then guesses
the most likely outcome. This is obviously not his best cheating strategy, but he can
maximise the probability to correctly learn all n bits by applying a minimum-error
measurement.

The states in Eq. (5.8) are multiply symmetric, whereby the symmetry unitary
operators are those that either apply a phase shift to a basis |i〉 or not. Since the
states are symmetric and equiprobable, the square-root measurement (SRM) is the
optimal minimum-error measurement [82] and it is possible to calculate this optimal
measurement and associated minimum error probability [73, 74]. The measurement
operators of the SRM are

Πi = piρ
−1/2
total .ρi.ρ

−1/2
total =

n+ 1

2n
ρi , (5.10)

where pi = 1/2n and ρtotal = 1/(n + 1). Each individual measurement operator,
when the corresponding state was sent, has success probability

Tr(Πiρi) = Tr
(n+ 1

2n
ρ2
i

)
=
n+ 1

2n
Tr(ρi) =

n+ 1

2n
. (5.11)

Here we make use of the fact that we have pure states and hence ρ2
i = ρi. Bob’s

cheating probability Bq
OT therefore is

Bq
OT = 2npiTr(Πiρi) =

n+ 1

2n
. (5.12)
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5.3.2 Dishonest Alice

We consider a dishonest Alice who wants to learn which bit or pairwise XOR Bob
has learnt. Eq. (5.2) gives the probability for how well Alice can do so using the
guessing strategy, where she follows the protocol honestly and then guesses the
most likely outcome. While a valid strategy, it is obviously not her best cheating
strategy. When we assume that Bob is not doing any testing, then Alice can send
Bob any state and she will want to send him the pure state within the subspace
spanned by the states she is supposed to send, which maximises Bob’s probability
to obtain a certain outcome. Thus, she needs to consider the pairwise combinations
of Bob’s elimination measurement operators in Eq. (5.9) that refer to the same
output; one for the output with value 0 and the other one for the output with
value 1. By sending the eigenstate that corresponds to the highest eigenvalue of the
combined measurement operators, Alice can maximise Bob’s probability of obtaining
the associated outcome. The eigenvalue will thereby yield Bob’s outcome probability
as well as Alice’s cheating probability.

For the individual bits xi, where i ∈ {1, ..., n},

Πxi=0 + Πxi=1 =
1

n
(|0〉 〈0|+ |i〉 〈i|) (5.13)

and we have the n+1 eigenvalues (1/n, 1/n, 0, ..., 0) with the eigenvectors associated
to the highest (here the non-zero) eigenvalues being |0〉 and |i〉. For the XORs xi⊕xj,
where i, j ∈ {1, ..., n} and i 6= j,

Πxi⊕xj=0 + Πxi⊕xj=1 =
1

n
(|i〉 〈i|+ |j〉 〈j|) (5.14)

and we have the n + 1 eigenvalues (1/n, 1/n, 0, ..., 0) with the eigenvectors associ-
ated to the highest (here the non-zero) eigenvalues being |i〉 and |j〉. Thus, Alice’s
cheating probability AqOT is

AqOT =
1

n
. (5.15)

This cheating probability might be reduced when testing is added. Since this is
not the case for the 1-2 XOT protocol that follows the same protocol outline and
was presented in Section 3.2, it might also be that testing would not reduce Alice’s
cheating probability in the more general case. Nevertheless, Eq. (5.15) gives a valid
upper bound for Alice’s cheating probability.
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5.3.3 Change of Cheating Probabilities with Increasing n

Alice’s and Bob’s cheating probabilities change with increasing n, i.e. with increasing
length of Alice’s bit string. Here, we not only look at and compare the cheating
probabilities in Eqns. (5.12) and (5.15), but also the differences between these and
the respective guessing strategies in Eqns. (5.1) and (5.2).

Figure 5.1: The cheating (filled symbols) and guessing (unfilled symbols) probabili-
ties for Alice and Bob. Alice’s probabilities are plotted by the triangles and Bob’s
probabilities by the circles.

In Figure 5.1, both Alice’s and Bob’s cheating and guessing probabilities are
plotted. For both Alice and Bob, these probabilities decrease and converge towards
0 for an increasing n. Bob’s probabilities (plotted in circles), however, have a steeper
decrease than Alice’s (plotted in triangles). The graphs for AqOT and Bq

OT as well as
the graphs for AgOT and Bg

OT intersect at around n ≈ 4.798. Hence, Bob’s cheating
and guessing probabilities are higher than Alice’s for n ∈ {2, 3, 4} and the other
way round for n ≥ 5. This can be explained by looking at the number of potential
answers for dishonest Alice and dishonest Bob and noticing that 2n−1 > 1

2
n(n + 1)

for n ≥ 5, that is, the number for potential answers for a cheating Bob becomes
larger than for a cheating Alice when n ≥ 5, while it is the other way round for
n ∈ {2, 3, 4}.

Figure 5.2 shows the absolute difference between the guessing and cheating prob-
abilities for Alice (triangles) and Bob (circles). Both graphs reach their maximum
when n = 2 or n = 3, that is, the absolute difference between the guessing and
cheating probabilities is maximal at these values for n. For Alice, the difference be-
tween her guessing and cheating probabilities reaches its maximum of 1/6 there, i.e.
AqOT−A

g
OT = 1/6 when n = 2 or n = 3. For Bob, the difference between his guessing
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and cheating probabilities reaches its maximum of 1/4 there, i.e. Bq
OT −B

g
OT = 1/4

when n = 2 or n = 3. Beyond those points (for n ≥ 4), both graphs tend towards
zero. We can conclude that, while the cheating probability will always be larger than
the guessing probability for both parties, the absolute differences become smaller
for increasing n.

Figure 5.2: Absolute differences of the guessing and cheating probabilities. The plot
with the triangles shows AqOT −A

g
OT and the one with the circles shows Bq

OT −B
g
OT .

This is not the case when considering the relative difference which increases with
increasing n. We note that, even though the absolute differences between cheating
and guessing probabilities differ for Alice and Bob, the relative difference is the same
for both. That is,

AqOT − A
g
OT

AgOT
=
Bq
OT −B

g
OT

Bg
OT

=
n− 1

2
(5.16)

and this linear function is plotted by the stars in Figure 5.3. For comparison, we
also consider and plot the relative differences between the guessing probabilities and
perfect cheating with probability 1. These turn out to differ for Alice and Bob, in
particular,

1− AgOT
AgOT

=
1

2

(
k2 + k − 2

)
,

1−Bg
OT

Bg
OT

= 2k−1 − 1. (5.17)

Both are exponential functions, with the one for Alice having a steeper increase than
the one for Bob. In the ideal case, the relative difference equals zero since the ideal
possible cheating probability is equal to the guessing probability. Figure 5.3 shows
that with increasing n the relative difference of the protocol’s cheating and guessing
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probabilities stays comparatively close to the relative difference of the ideal case,
while it moves further and further away from the relative differences corresponding
to perfect cheating.

Figure 5.3: Relative differences of the guessing and cheating probabilities. The
stars plot the relative difference for (AqOT − AgOT )/AgOT and (Bq

OT − Bg
OT )/Bg

OT .
As comparison, the plots for the relative differences between perfect cheating and
guessing probabilities are included, (1−AgOT )/AgOT shown by the triangles and (1−
Bg
OT )/Bg

OT by the circles.

5.3.4 Comparison to Classical XOT Protocols

Just as for 1-2 XOT, we want to evaluate the performance of the generalised quantum
1-n XOT protocols when compared to classical 1-n XOT protocols. As before, we
define two trivial classical 1-n XOT protocols.

Protocol 1: Alice has the n bits (x1, x2, ..., xn), and chooses to send Bob either one
of the individual bits xi or a pairwise XOR xi ⊕ xj, for i, j ∈ {1, 2, ..., n} and i 6= j.
Afterwards she “forgets” what she has sent.

Here, Alice can obviously cheat perfectly with probability 1, while Bob can only
cheat with probability 1/2n−1 by guessing the remaining n−1 bits that he is missing
to complete the whole bit string (x1, x2, ..., xn) which also implies knowledge of all
the XORs.

Protocol 2: Alice sends all of (x1, x2, ..., xn, x1 ⊕ x2, ..., xn−1 ⊕ xn) to Bob, who
chooses one of these bits to read and discards the others without looking at them.

Here, Bob can obviously now cheat perfectly with probability 1 by reading out at
least the bits x1, x2, ...xn. Alice on the other hand can only cheat with probability
2/[n(n+ 1)] by guessing which bit Bob has chosen to read out.
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We combine these protocols using a method described in Ref. [47]: The outcome
of an unbalanced weak coin flipping protocol conducted by Alice and Bob will spec-
ify which protocol gets implemented. This ultimately results in:

Protocol 3: Protocol 1 is implemented with probability s and Protocol 2 is imple-
mented with probability (1− s).

The cheating probabilities for Alice and Bob in Protocol 3 are

AcOT = s(1) + (1− s) 2

n(n+ 1)
=

2

n(n+ 1)
+ s

(
1− 2

n(n+ 1)

)
Bc
OT = s

1

2n−1
+ (1− s)(1) = 1− s

(
1− 1

2n−1

)
. (5.18)

The trade-off relation f t(AcOT , Bc
OT ) = c1A

c
OT + c2B

c
OT , where the constants c1 and

c2 are chosen so that s gets eliminated, is

f t(AcOT , B
c
OT ) = (2n−1 − 1)n(n+ 1)AcOT + 2n−1[n(n+ 1)− 2]Bc

OT

= 2n−1n(n+ 1)− 2. (5.19)

For the quantum protocol, Eq. (5.15) gives Alice’s cheating probability and Eq.
(5.12) gives Bob’s cheating probability, thus we obtain the trade-off relation

f t(AqOT , B
q
OT ) = (2n−1 − 1)n(n+ 1)AqOT + 2n−1[n(n+ 1)− 2]Bq

OT

= 0.5(n+ 1)[2n − 4 + n(n+ 1)]. (5.20)

To compare the trade-off relations in the quantum and classical case for the
different n, it is sensible to subtract the expression of the trade-off relation of the
guessing probabilities from both f t(AcOT , B

c
OT ) and f t(AqOT , B

q
OT ). The guessing

probabilities are a baseline, showing what is desirable for an ideal protocol, and
they are the same in the quantum and classical case. The difference between the
cheating and the guessing probabilities indicates how successful a cheating strategy
is in comparison to the guessing strategy. So it is of interest how this difference
develops with respect to n and if the quantum or the classical cheating strategies
have a bigger advantage over the guessing strategy.
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The trade-off relation for the guessing probabilities given in Eqns. (5.2) and
(5.1) is

f t(AgOT , B
g
OT ) = (2n−1 − 1)n(n+ 1)AgOT + 2n−1[n(n+ 1)− 2]Bg

OT

= n2 + n+ 2n − 4. (5.21)

Figure 5.4 shows the differences f t(AcOT , Bc
OT )−f t(AgOT , B

g
OT ) and f t(AqOT , B

q
OT )−

f t(AgOT , B
g
OT ) with respect to n. The graph for the function of the difference in the

classical case is always above the one of the difference in the quantum case, that is,
f t(AcOT , B

c
OT ) − f t(AgOT , B

g
OT ) > f t(AqOT , B

q
OT ) − f t(AgOT , B

g
OT ) for n ≥ 2. Hence,

there is a quantum advantage over the considered classical protocol since the quan-
tum cheating strategies offer a smaller advantage over the guessing strategies than
the classical cheating strategies. Furthermore, the quantum advantage increases
with increasing n as the gap between the two graphs widens.

Figure 5.4: Trade-off relations with respect to n of the classical protocol (squares)
and the quantum protocol (diamond) after subtraction of the relation for the guess-
ing probabilities.

5.4 Similarities to Quantum Retrieval Games

There are some cryptographic concepts which exhibit similarities to oblivious trans-
fer. One example was mentioned in Chapter 2. In particular, the cryptographic
primitive of symmetrically private information retrieval [52] is related to the OT
variant 1-out-of-n oblivious transfer. Another concept that has similarities to specif-
ically the variant 1-out-of-n XOT are quantum retrieval games (QRG) [81]. The
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notion of QRGs can be used as building block for quantum protocols and has been
applied as part of quantum money schemes [81, 83, 84].

In a quantum retrieval game, a sender Alice sends to a receiver Bob a quantum
state ρx that encodes some randomly selected bit string x of some length n. The
string x is thereby chosen at random according to a probability distribution p(x).
Bob then measures ρx in order to be able to answer a question about the string,
whereby the goal is for the answer to be correct with the highest possible probability
or in some applications even with certainty [84, 85]. Mathematically, a question is
described as a relation σ. That is, for a set of inputs X and a set of answers A, a
relation σ is a subset of X × A such that (x, a) ∈ σ means that a is a valid answer
to the question described by the relation σ when x is given. More formally, in Ref.
[85], QRGs are defined as follows.

Definition 5.3 (Quantum retrieval game [85]). Let X ⊆ N and A ⊆ N be the
set of inputs and answers, respectively. Let also σ ⊆ X × A be a relation and
{p(x), ρx} be an ensemble of states and their a priori probabilities. Then the tuple
G = (X,A, σ, {p(x), ρx}) is called a quantum retrieval game (QRG). For a given
x ∈ X, an answer a ∈ A is correct if (x, a) ∈ σ.

A specific class of quantum retrieval games is based on the hidden matching
problem (HM) first introduced in Ref. [86].

Definition 5.4 (Hidden matching). Alice has a bit string of length n as input and
Bob has a matching M ∈Mn, whereMn is the set of all perfect (no free nodes, all
paired up) matchings on n nodes. The output should be the tuple < i, j, a >, where
a = xi ⊕ xj for the matching M connecting the nodes xi and xj.

In the class of hidden matching QRGs, the relations σ are described by the
matchings and their answers are the parities of two bits of Alice’s string which are
connected by the respective matching. Alice encodes her bit string x = x1x2...xn,
where n is even, into the n-dimensional pure state [81, 84, 85]

|φx〉 =
1√
n

n∑
i=1

(−1)xi |i〉 . (5.22)

This makes the similarity to 1-out-of-n XOT rather obvious. The state used for
1-n XOT as given in Eq. (5.8) differs from the state in Eq. (5.22) only in that it has
the basis state |0〉 added to it and has an adjusted normalisation factor, i.e. a string
of length n gets encoded into an (n+1)-dimensional state instead. When an XOR of
two bits is the result for the oblivious transfer protocol, then this matches the parity
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between these two bits which is the result in a coinciding hidden matching QRG.
On the other hand, when an individual bit is the result for the oblivious transfer
protocol, then this can still be seen as the XOR or parity between that bit and a
bit x0 describing the power that is applied to a factor of (−1) in front of |0〉. This
means, we can imagine a factor (−1)x0 in front of |0〉 and set x0 = 0 always. The
XOR x0⊕xi (i ∈ {1, ..., n}) then gives the value of the bit xi which is also the same
as the parity, i.e. 0 if xi = x0 or 1 if xi 6= x0.

A difference is that we can have a string of an odd length n in oblivious transfer,
while n needs to be even in hidden matching quantum retrieval games in order to
satisfy the requirement that a matching on n nodes is perfect. Furthermore, in
hidden matching QRGs, only a dishonest sender (Alice) is considered, that is, Alice
wanting to know which parity the receiver (Bob) has learnt. A dishonest receiver is
not of interest in this concept. Arrazola et al. [85] investigated 1-out-of-k hidden
matching quantum retrieval games where k is the number of different matchings.
They bound the cheating probability of a dishonest Alice, deriving the same equation
as the one for Alice’s cheating probability in 1-out-of-n XOT (Eq. (5.15)) but in
terms of the number of relations k instead of in terms of the length of the bit string
n.

5.5 Conclusion

In this chapter, we generalised XOR oblivious transfer to 1-out-of-n XOT, where
Alice encodes a classical string consisting of n bits. Introducing a specific protocol
which is a natural extension of the non-interactive 1-2 XOT protocol considered in
Section 3.2, we calculated Alice’s and Bob’s cheating probabilities as functions of
n. Unsurprisingly, their cheating probabilities decrease with increasing n. This is,
because the increase in length of Alice’s bit string and thus the increase in number
of possible outcomes for Bob, results in larger sets of potential outcomes that the
dishonest party needs to guess correctly from. Comparing this quantum 1-n XOT
protocol to a classical 1-n XOT protocol shows that the quantum advantage over
the considered classical protocol increases with an increasing n. This generalised
XOR oblivious transfer, 1-out-of-n XOT, shows similarities to the notion of hidden
matching quantum retrieval games as was indicated and briefly discussed in the last
subsection.

It is possible to expand on the work in this chapter. The situation of a dishonest
Alice when Bob is testing in the considered 1-n XOT protocol remains unexam-
ined. This examination can answer the open question if testing can decrease Alice’s
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cheating probability or if her cheating probability is independent of any testing and
remains unchanged as in the specific 1-2 XOT case. Also the comparison between
1-out-of-n XOT and hidden matching QRGs can be investigated further to examine
if there is a possible reduction from XOT to hidden matching QRGs.
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Chapter 6

Quantum Rabin Oblivious Transfer

6.1 Introduction

As mentioned in Chapter 2, Rabin oblivious transfer was one of the first oblivious
transfer protocols specified [10] and is also called all-or-nothing oblivious transfer.
In Rabin OT, the sender Alice has a bit x with value 0 or 1 and sends it to the
receiver Bob. Bob will either receive nothing with probability p? or he will receive
the bit with probability 1−p?; see Figure 6.1. Alice is not supposed to learn whether
Bob has obtained the bit or not, and Bob is not supposed to be able to learn a bit
value he did not receive. In the traditional definition of Rabin OT the probability
p? = 1/2, i.e. Bob is equally likely to obtain the bit or to obtain nothing.

Figure 6.1: Rabin oblivious transfer from Alice to Bob.

In this chapter, we first look at Rabin oblivious transfer using pure states and
then at a Rabin OT protocol with mixed states. Focus remains on the category of
non-interactive protocols, that is, protocols where there is only one state transmis-
sion from sender to receiver followed by the receiver’s measurement.

However, analysing the sender’s cheating probability, we discover that, for the
protocols considered in this chapter, testing by the receiver needs to be introduced
to restrict the sender’s cheating probability. Depending on the method of testing,
we might lose the non-interactivity to some extent. That is, if the testing scheme
used is the same as applied in previous chapters, where the receiver checks some
states to make sure they are what the receiver declares them to be, then classical
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communication is added in the testing rounds and leaves us with some interaction
between sender and receiver. We, however, also consider another testing method
not based on interaction between sender and receiver, thus maintaining the non-
interactivity of the protocols.

The security of the protocols in this chapter is analysed by calculating the cheat-
ing probabilities for Alice and Bob. In respect thereof, a dishonest Alice and a
dishonest Bob are defined as:

Dishonest Alice:
A cheating Alice wants to learn if Bob has received the bit or not.

Dishonest Bob:
A cheating Bob wants to always know the value of the bit Alice has sent, even when
he did not receive anything.

6.2 Rabin OT Using Pure States

The simplest way to construct a non-interactive quantum Rabin OT protocol with
pure states is by picking two non-orthogonal pure states in which Alice encodes
her bit value and having Bob make an unambiguous discrimination measurement
so that he can either learn the bit value unambiguously or learn nothing at all.
Such a protocol was considered by Cheong et al. [87]. In this section, we extend
the security analysis to different cheating strategies and look at it from a slightly
different angle. That is, we examine Alice’s cheating probability, whereas Cheong
et al. looked instead at how much a dishonest Alice can decrease or increase the
probability of Bob receiving a bit value. We also include testing by Bob and a direct
comparison with a classical Rabin OT protocol, both of which were not considered
in Ref. [87].

6.2.1 The Protocol

Alice encodes her bit value v ∈ {0, 1} in a respective pure state |ψv〉. Without loss
of generality, we can choose the two pure states

|ψ0〉 = cos θ |0〉+ sin θ |1〉 ,

|ψ1〉 = cos θ |0〉 − sin θ |1〉 , (6.1)

whose overlap is 〈ψ0|ψ1〉 = cos(2θ), where 0◦ ≤ θ ≤ 45◦, and is real. The Rabin OT
protocol is then carried out as follows.
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1. Alice randomly chooses the state |ψ0〉 or |ψ1〉, with a probability of 1/2 each,
and sends it to Bob.

2. Bob performs an unambiguous discrimination measurement on the received
state [88, 89, 90]. His measurement operators are

Π0 =
1

2 cos2 θ

∣∣ψ1

〉 〈
ψ1

∣∣ ,
Π1 =

1

2 cos2 θ

∣∣ψ0

〉 〈
ψ0

∣∣ ,
Π? =

(
1− tan2 θ

)
|0〉 〈0| , (6.2)

with
∣∣ψ0

〉
= sin θ |0〉 − cos θ |1〉 and

∣∣ψ1

〉
= sin θ |0〉 + cos θ |1〉 being the or-

thogonal states to Alice’s states in Eq. (6.1). Π0 corresponds to a bit value of
0, Π1 to a bit value of 1, and Π? to obtaining no bit.

Bob will then obtain an inconclusive result with probability p? = cos(2θ) [88, 89,
90] and will learn the bit value with probability 1− p? = 2 sin2 θ. When looking at
Rabin OT in the traditional definition, where, in an honest implementation of the
protocol, Bob receives no bit with probability 1/2 and receives the bit with proba-
bility 1/2, we need θ = 30◦. Other values for θ, and hence for Bob’s probabilities
to receive the bit or not, are also possible. Analysis of the protocol generally for
0◦ ≤ θ ≤ 45◦ shows for which values of θ Alice’s and Bob’s cheating probabilities
might be better or worse.

6.2.2 Dishonest Bob

First, we look at a cheating Bob who always wants to know which bit Alice has
sent. A cheating strategy that Bob can always apply in any Rabin oblivious transfer
protocol, whether quantum or classical, and that does not require him to deviate
from the protocol, is to follow the protocol honestly and then randomly guess the bit
value whenever he obtains an inconclusive result. We call this the guessing strategy
and use it as a baseline for comparison with Bob’s cheating probability. In an ideal
case, he would not be able to cheat any better than this.

Bob learns the bit value with probability 1 − p? = 2 sin2 θ and, when he does
not obtain the bit, he can guess the value correctly with probability 1/2 since Alice
sends the two states, i.e. chooses the two bit values, with equal probabilities. Thus,
Bob’s guessing probability Bg

pure OT is

Bg
pure OT = 1− 1

2
p? = 1− 1

2
cos(2θ). (6.3)
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Bob can cheat more successfully in the quantum protocol if he does not follow its
steps honestly. His optimal cheating strategy involves him applying a minimum-error
measurement on the received state. This will enable him to distinguish between |ψ0〉
and |ψ1〉 with a minimum probability of being wrong. Bob’s cheating probability
Bq

pure OT can be calculated with the Helstrom bound [80]

Bq
pure OT =

1

2

(
1 +

√
1− p2

?

)
=

1

2

[
1 + sin(2θ)

]
. (6.4)

The measurement with which he can achieve this probability is the projective mea-
surement in the eigenbasis of

(
1
2
|ψ0〉 〈ψ0| − 1

2
|ψ1〉 〈ψ1|

)
. Thus, the measurement

operators are

Π|ψ0〉 =
1

2
(|0〉+ |1〉)(〈0|+ 〈1|) and Π|ψ1〉 =

1

2
(|0〉 − |1〉)(〈0| − 〈1|). (6.5)

In Figure 6.2, we plot Bob’s guessing and cheating probabilities, once in terms of
θ and once in terms of p?. Except for θ = 0◦ and θ = 45◦, where these probabilities
coincide, Bob’s cheating strategy is always better than simply guessing. When
θ = 0◦, then p? = 1 and |ψ0〉 = |ψ1〉, and Bob cannot cheat better than with a
random guess, Bq

pure OT = 1/2 = Bg
pure OT . For θ = 45◦, |ψ0〉 and |ψ1〉 are orthogonal.

Thus, Bob can perfectly distinguish between the two states, Bq
pure OT = 1. However,

in this case p? = 0 so, if he is honest, he would also always receive the bit value,
Bg

pure OT = 1. In the case where θ = 30◦, giving p? = 1/2, Bob’s cheating probability
is relatively high at Bq

pure OT = (2+
√

3)/4 ≈ 0.933, whereas his guessing probability
Bg

pure OT = 3/4.

(a) (b)

Figure 6.2: Bob’s guessing and cheating probabilities as functions of the angle θ (sub-
figure (a)) and as functions of p? (subfigure (b)). His guessing probability Bg

pure OT
is plotted as the solid line and his cheating probability Bq

pure OT as the dashed line.
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6.2.3 Dishonest Alice

For a cheating Alice who wants to know if Bob has received the bit or not, there are
several different cheating strategies that we can consider. Depending on whether
Bob does some testing to check if Alice is cheating, and on how he tests, her optimal
cheating strategy varies. In this subsection, we present different scenarios and the
respective optimal cheating strategies.

First of all, there also exists a guessing strategy for Alice which can be used as
baseline to compare to her cheating probabilities. Alice will not deviate from the
protocol, but follows it honestly and then randomly guesses if Bob has received the
bit or not. In an ideal case, Alice would not be able to cheat any better than this.
Alice knows that Bob receives no bit with probability p? = cos(2θ) and receives the
bit with probability 1 − p?. Thus, she will always guess the more likely of the two
outcomes which will depend on θ. Specifically, for 0◦ ≤ θ ≤ 30◦, p? ≥ 1/2, so Alice
will guess that Bob did not receive the bit, and, for 30◦ ≤ θ ≤ 45◦, p? ≤ 1/2, so she
will guess that he received the bit. Note that, in this case, she also knows which bit
value he obtained since she knows which of the states she has sent. Thus, Alice’s
guessing probability Agpure OT is

Agpure OT = max(1− p?, p?) =

cos(2θ) for 0◦ ≤ θ ≤ 30◦

2 sin2 θ for 30◦ ≤ θ ≤ 45◦.
(6.6)

Alice can perfectly guess Bob’s outcome, that is Agpure OT = 1, when θ = 0◦ since
Bob will never get the bit, or when θ = 45◦ since Bob will always receive the bit. Her
guessing probability is at its minimum Agpure OT = 1/2 when p? = 1/2, corresponding
to θ = 30◦, since Bob is then equally likely to receive the bit or not.

After discussion of Alice’s other cheating scenarios, we will compare the different
cheating probabilities and guessing probability in Figure 6.4.

No testing by Bob

If there is no testing by Bob, Alice is free to send whatever state suits her best.
Looking at honest Bob’s measurement operators in Eq. (6.2), we find that his
inconclusive measurement operator Π? is orthogonal to the state |1〉. Thus, Alice’s
best choice is to always send the state |1〉 and then she will know that Bob will
always receive a bit value. Therefore, without any testing by Bob, Alice can cheat
perfectly, Aqpure OT = 1. In this case, however, Alice is maximally uncertain about
which of the two bit values Bob has obtained.
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Bob testing – Monitoring the occurrence probabilities

A testing strategy for Bob is to keep track of the probabilities of obtaining a bit or
obtaining no bit and to check if they are what he expects them to be. He makes no
further checks, asks Alice for no more information, nor discards any states. Thus,
this testing method does not affect the protocol’s non-interactivity. In order to not
get detected, a cheating Alice needs to choose what she sends Bob in such a way
that the occurrence probabilities for bit with value 0, bit with value 1, and no bit
match Bob’s expectations. Note that, for this test to work, multiple rounds of the
protocol are necessary in order for Bob to be able to obtain the statistics. This
results in the cheating probability calculated here for Alice becoming an average
cheating probability.

Since Alice can be sure that Bob has received a bit, when she sends |1〉, we
suspect that Alice’s best choice of states to distinguish between Bob received a bit
and Bob received no bit are |0〉 and |1〉. We prove that sending a statistical mixture
of theses states is indeed Alice’s optimal cheating strategy here.

Proposition 6.1. Alice’s optimal cheating strategy, when Bob is monitoring the
probabilities, is to send an appropriate statistical mixture of the states |0〉 and |1〉.

Proof. Bob’s measurement operators for the cases bit and no bit are

Πbit = Π0 + Π1 = tan2 θ |0〉 〈0|+ |1〉 〈1| =

(
tan2 θ 0

0 1

)
,

Π? = (1− tan2 θ) |0〉 〈0| =

(
1− tan2 θ 0

0 0

)
. (6.7)

Let us define the states

ρbit =

(
b1 b2

b∗2 1− b1

)
, ρno bit =

(
n1 n2

n∗2 1− n1

)
(6.8)

and assume that Alice sends a mixture of them (0 ≤ x ≤ 1)

ρcheat = xρno bit + (1− x)ρbit =

(
xn1 + (1− x)b1 xn2 + (1− x)b2

xn∗2 + (1− x)b∗2 x(1− n1) + (1− x)(1− b1)

)
.

(6.9)
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Bob’s measurement probabilities are then given by

Tr(Πbitρcheat) = 1 + (tan2 θ − 1)[xn1 + (1− x)b1],

Tr(Π?ρcheat) = (1− tan2 θ)[xn1 + (1− x)b1] (6.10)

and we know that he expects Tr(Πbitρcheat) = 2 sin2 θ and Tr(Π?ρcheat) = cos(2θ).
This yields the constraint

(1− tan2 θ)[xn1 + (1− x)b1] = cos(2θ). (6.11)

Furthermore, we know Alice’s conditional probabilities of sending a state and then
guessing the outcome correctly. In particular,

Tr(Πbitρbit) = 1 + b1(tan2 θ − 1),

Tr(Π?ρno bit) = n1(1− tan2 θ). (6.12)

However, we need to note that

Tr(Πbitρno bit) = 1− n1(1− tan2 θ) ≥ Tr(Π?ρno bit) (6.13)

for θ ≥ arcsin
(
1/
√

3
)
. Alice’s cheating probability when sending ρcheat is, therefore,

given by one of two equations depending on the angle. For θ ≤ arcsin
(
1/
√

3
)
≈

35.264◦

Aqpure OT = xn1(1− tan2 θ) + (1− x)[1 + b1(tan2 θ − 1)] (6.14)

and for θ ≥ arcsin
(
1/
√

3
)
≈ 35.264◦

Aqpure OT = x[1− n1(1− tan2 θ)] + (1− x)[1 + b1(tan2 θ − 1)]. (6.15)

Using the constraint in Eq. (6.11), Eq. (6.14) can be rewritten as

Aqpure OT = 1− cos(2θ) + x[2n1(1− tan2 θ)− 1]. (6.16)

To maximise this equation, x2n1(1 − tan2 θ) needs to be as large as possible and,
thus, x and n1 need to be chosen as large as possible while satisfying the constraint
xn1 + (1 − x)b1 = cos2 θ deduced from Eq. (6.11). The constraint indicates that
xn1 ≤ cos2 θ and equality holds when b1 = 0. The largest possible value for n1 is
1 and then it follows that x = cos2 θ. The maximised value for Alice’s cheating
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probability given by Eq. (6.14) is then

Aqpure OT = cos2 θ. (6.17)

Similarly, using the constraint in Eq. (6.11) to rewrite Eq. (6.15), gives

Aqpure OT = 1− cos(2θ) = 2 sin2 θ. (6.18)

We can can see that the values for n1, b1, and x do not matter whenever θ ≥
arcsin

(
1/
√

3
)
. Alice will always guess that Bob obtained a bit and her guess will

be correct with the expected occurrence probability. Thus, n1 = 1, b1 = 0, and
x = cos2 θ are optimal and, considering the properties of a density matrix, it follows
that n2 = 0 and b2 = 0. The cheating state is then

ρcheat = cos2 θ |0〉 〈0|+
(
1− cos2 θ

)
|1〉 〈1| . (6.19)

We can further show that this combination also satisfies the requirement that Bob
obtains the first and the second state with equal probabilities since the probabilities
for Bob, when he measures |0〉 or |1〉, are Tr(Π0 |1〉 〈1|) = Tr(Π1 |1〉 〈1|) = 1/2 and
Tr(Π0 |0〉 〈0|) = Tr(Π1 |0〉 〈0|) = 1

2
tan2 θ, i.e. equiprobable for these two outcomes.

�

Thus, we have proven that the states |0〉 and |1〉 are the optimal states for Alice
to use in her cheating strategy when Bob is monitoring the probabilities. She should
send |0〉 with probability x = cos2 θ and |1〉 with probability 1 − x = sin2 θ. Her
cheating probability Aqpure OT is then

Aqpure OT = max(1− p?,
1
2
[1 + p?]) =

cos2 θ for θ ≤ arcsin
(
1/
√

3
)

2 sin2 θ for θ ≥ arcsin
(
1/
√

3
)
.

(6.20)

Up to the intersection of the two cases in Eq. (6.20) at θ = arcsin
(
1/
√

3
)
≈

35.264◦, corresponding to p? = 1/3, Alice follows the strategy where she guesses
that Bob has received no bit when |0〉 is sent, and after the intersection she follows
the strategy where she guesses that he has received a bit when |0〉 is sent. At the
intersection, she can, obviously, use both strategies and achieve the same cheating
probability. When |1〉 is sent, Alice always guesses that Bob has received a bit.

For θ ≥ arcsin
(
1/
√

3
)
, Alice’s cheating probability is equal to her guessing

probability. Using the cheating strategy does, however, give her the advantage that,
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when she sends |1〉, she knows for sure that Bob has received a bit, even though she
will not know which value it was. Alice can cheat perfectly when θ = 0◦ or θ = 45◦.
These are the same values for θ as when she can guess perfectly. As explained earlier,
the traditional definition of Rabin OT, where p? = 1/2 and Bob receives each of the
bit values with equal probability, requires θ = 30◦. For this angle, Aqpure OT = 3/4,
whereby Alice will need to send |0〉 3/4 of the time, guessing no bit, and |1〉 the rest
of the time, guessing that Bob has received a bit.

Bob testing - Checking the states

As seen above, the testing strategy of just monitoring the occurrence probabilities
of the outcomes can restrict Alice’s cheating probability when compared to Bob not
doing any testing. We now check if it can be restricted further by adding another
test. Apart from monitoring the occurrence probabilities, Bob can additionally
also check the states that Alice sends him. This also requires the protocol to be
implemented multiple rounds, consequently yielding an average cheating probability
for Alice. In particular, Alice needs to transmit N states to Bob, so that he can
randomly choose a small fraction F , where 0 < F � 1, of the states to test and
can proceed with the protocol using the remaining N(1− F ) states. Such a testing
strategy was suggested by Amiri et al. [7] and we will refer to it plus the keeping
track of the occurrence probabilities as the full testing scheme. For the fraction of
states Bob chose to test, he will ask Alice to declare their identity and will then
check this declaration by measuring the qubit in the appropriate basis. If any of
his measurement outcomes do not agree with Alice’s declaration, Bob will abort.
Otherwise, Bob will continue the protocol with the remaining N(1 − F ) states,
discarding the ones he had used for testing. As was mentioned at the start of the
chapter, this testing method requires classical communication between Alice and Bob
and, therefore, forfeits the non-interactivity of the whole protocol to some extent.

Alice obviously wants her cheating to stay undetected, thus, she needs to send a
state with which she can always pass Bob’s test. Such a state is the superposition
of the two states she would send when honest, entangled with a system she keeps
on her side. Hence, Alice will send a state of the form

|Ψcheat〉 = a |0〉A |ψ0〉+ b |1〉A |ψ1〉 , (6.21)

where {|0〉A , |1〉A} is an orthonormal basis for the system she keeps, |a|2 + |b|2 = 1,
and a, b ∈ R. Without loss of generality, the parameters a and b can be chosen as
real and positive since any phase factor can always be absorbed into the kets |0〉A
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and |1〉A. When Alice measures her part of the system of |Ψcheat〉 in the {|0〉A , |1〉A}
basis, she will always be able to declare a correct state when Bob tests.

Since Bob also monitors the occurrence probabilities and he expects to receive
the bit values 0 and 1 with the same probability, it would seem to imply that we
need a = b in Eq. (6.21). It is, however, possible for Alice to alternate between
sending two entangled states that are mirror images of each other, that is, two states
where a and b are swapped. In this way, she can achieve equiprobability for the two
bit values on average. Hence, it is sensible to look at a state of the more general
form given in Eq. (6.21).

Alice guessing only whether Bob received a bit or not Bob’s measurement
on his part of |Ψcheat〉 will change Alice’s system into one of two possible states,
depending on whether he has received a bit or not. She will want to distinguish
between these two states which are

ρno bit =

(
|a|2 ab∗

a∗b |b|2

)
and ρbit =

(
|a|2 0

0 |b|2

)
, (6.22)

corresponding to Bob obtaining no bit and to Bob obtaining a bit, respectively. The
first case occurs with probability pno bit = cos(2θ) and the second with probability
pbit = 2 sin2 θ. For her optimal cheating strategy, Alice needs to distinguish between
ρno bit and ρbit with a minimum-error discrimination measurement. Following an
approach in Ref. [91], we calculate Alice’s general cheating probability for this case.

The weighted difference [cos(2θ)ρno bit − 2 sin2 θρbit], using the fact that |a|2 +

|b|2 = 1, has eigenvalues

λ± =
1

2

[
(1− 4 sin2 θ)±

√
(1− 4 sin2 θ)2 + 16 sin2 θ(1− 3 sin2 θ)|ab|2

]
. (6.23)

Alice’s cheating probability Aqpure OT is given by

Aqpure OT = 1− 1

2
(1−

∑
k

|λk|)

=
1

4

[
2 +

∣∣∣∣(1− 4 sin2 θ) +
√

(1− 4 sin2 θ)2 + 16 sin2 θ(1− 3 sin2 θ)|ab|2
∣∣∣∣

+

∣∣∣∣(1− 4 sin2 θ)−
√

(1− 4 sin2 θ)2 + 16 sin2 θ(1− 3 sin2 θ)|ab|2
∣∣∣∣
]
. (6.24)
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This can be further simplified by considering how the terms of the eigenvalues
change for different values of θ. Firstly, note that 1− 4 sin2 θ ≥ 0 when sin θ ≤ 1/2,
thus for θ ≤ 30◦. Similarly, 1 − 3 sin2 θ ≥ 0 when sin θ ≤ 1/

√
3, thus for θ ≤

arcsin
(
1/
√

3
)
≈ 35.264◦. Hence, we need to consider the three ranges 0◦ ≤ θ ≤ 30◦,

30◦ ≤ θ ≤ arcsin
(
1/
√

3
)
, and arcsin

(
1/
√

3
)
≤ θ ≤ 45◦.

1− 4 sin2 θ
√

(1− 4 sin2 θ)2 + 16 sin2 θ(1− 3 sin2 θ)|ab|2
0◦ ≤ θ ≤ 30◦ ≥ 0 ≥ 0 and ≥ |1− 4 sin2 θ|

30◦ ≤ θ ≤ arcsin
(
1/
√

3
)

≤ 0 ≥ 0 and ≥ |1− 4 sin2 θ|
arcsin

(
1/
√

3
)
≤ θ ≤ 45◦ ≤ 0 ≥ 0 and ≤ |1− 4 sin2 θ|

Assume x, y ∈ R, whereby y is always greater than zero while x can also be
negative. Wanting to simplify |x+ y|+ |x− y|, we will generally consider the three
different combinations occurring in the table above.

(1) x ≥ 0, y ≥ 0, and |x| ≤ |y|: |x+ y|+ |x− y| = x+ y − (x− y) = 2y

(2) x ≤ 0, y ≥ 0, and |x| ≤ |y|: |x+ y|+ |x− y| = x+ y − (x− y) = 2y

(3) x ≤ 0, y ≥ 0, and |x| ≥ |y|: |x+y|+ |x−y| = −(x+y)−(x−y) = −2x = 2|x|

Applying these simplifications, allows cancelling terms in Eq. (6.24). We notice that,
for arcsin

(
1/
√

3
)
≤ θ ≤ 45◦, the values of a and b do not affect Alice’s cheating

probability. In particular, we obtain Aqpure OT = 1
2
(1 + |1 − 4 sin2 θ|) and, since

1− 4 sin2 θ ≤ 0 for this range, it simplifies further to Aqpure OT = 1
2
(1− 1 + 4 sin2 θ) =

2 sin2 θ. This is the same as Alice’s guessing probability for this range of θ. Therefore,
Alice’s cheating probability is

Aqpure OT = max

(
1

2

[
1 +

√
(1− 2p?)2 − 4a2b2(1− p?)(1− 3p?)

]
, 1− p?

)

=


1

2

(
1 +

√
(1− 4 sin2 θ)2 + 16 sin2 θ(1− 3 sin2 θ)|ab|2

)
for θ ≤ arcsin

(
1/
√

3
)

2 sin2 θ for θ ≥ arcsin
(
1/
√

3
)
.

(6.25)

Next, we want to determine the optimal choice for a and b. As mentioned, the
second case of Alice’s cheating probability does not depend on a or b, so it is possible
to solely focus on the first case of Eq. (6.25). Alice wants to maximise her cheating
probability, so she will want to maximise the term beneath the square root. All the
terms beneath the square root are positive for θ ≤ arcsin

(
1/
√

3
)
and, considering

θ as a fixed value, we need to maximise the product 16 sin2 θ(1 − 3 sin2 θ)|ab|2. It
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reaches its maximum when a2b2 = a2(1 − a2) is the largest, which happens for
a = 1/

√
2. Hence, dishonest Alice’s best choice is to pick a = b = 1/

√
2.

In this optimum case, Alice wants to distinguish between the pure state and the
uniformly mixed state

ρno bit =

(
1/2 1/2

1/2 1/2

)
= |+〉 〈+| and ρbit =

(
1/2 0

0 1/2

)
=

1

2
1. (6.26)

Substituting a = b = 1/
√

2 into Eq. (6.25) gives Alice’s optimal cheating probability
when Bob is doing the full testing scheme.

Aqpure OT = max(1− p?,
1
2
[1 + p?]) =

cos2 θ for θ ≤ arcsin
(
1/
√

3
)

2 sin2 θ for θ ≥ arcsin
(
1/
√

3
)
.

(6.27)

Once again Alice can cheat perfectly when θ = 0◦ or θ = 45◦. For these two
values of θ, either pno bit or pbit is equal to 0 and the other one equal to 1. So, it
is not surprising that Alice can cheat with probability 1. When θ = 30◦, that is,
p? = 1/2, we have AqOT = 3/4. Alice’s cheating probability is at its minimum with
AqOT = 2/3 when θ = arcsin

(
1/
√

3
)
or p? = 1/3. Whenever θ ≥ arcsin

(
1/
√

3
)
,

Alice’s cheating strategy has the same success as her guessing strategy. That is,
Alice’s cheating probability is equal to her guessing probability.

In general, comparing Eq. (6.20) to Eq. (6.27), we can conclude that Alice’s
cheating probability when Bob is monitoring the occurrence probabilities is exactly
the same as when Bob is doing the full testing scheme (with the optimal values
a = b = 1/

√
2).

This might at first seem surprising, but it can be explained by taking a closer look
at Alice’s cheating state |Ψcheat〉 and her cheating measurement, when Bob is doing
the full testing. If it is not a testing round, Alice cheats by measuring her system of
|Ψcheat〉 in the {|+〉A , |−〉A} basis. And indeed, when a = b = 1/

√
2, the states on

Bob’s side become |0〉 or |1〉, the same states dishonest Alice sends in her optimal
cheating strategy when Bob is monitoring the occurrence probabilities. Thus, it
does not help Bob to do the full testing and he can just monitor the probabilities
which simplifies his testing process. Also Alice does not benefit from sending the
(more complicated) entangled state, but can just choose the cheating strategy of
sending the appropriate statistical mixture of the states |0〉 and |1〉.

We observed that, when dishonest Alice sends |1〉, she can be sure that Bob
will receive a bit while being maximally uncertain about its value. On the other
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hand, in the guessing strategy, Alice will always know for certain which value Bob’s
possible bit has, but cannot be sure if he has received the bit or not. There is no
way for Alice to unambiguously know both, whether Bob has received the bit or
not, and the bit’s value. In her cheating strategy when Bob is doing the full testing,
Alice can unambiguously learn the bit value when she measures her system in the
{|0〉A , |1〉A} basis, hence collapsing her cheating state into one of the two states she
would send when she is honest. Then again, when she measures her system in the
{|+〉A , |−〉A} basis, she can (sometimes) be sure of Bob obtaining a bit, as seen
above. If dishonest Alice wants to additionally also learn the bit value that Bob has
received, she can also get these information with some probability but she needs to
adjust her cheating strategy for this.

Alice guessing also Bob’s bit values In this part, the slightly changed defini-
tion of a dishonest Alice is considered where we assume that dishonest Alice wants
to not only learn if Bob has received the bit or not, but also wants to know what
Bob’s received bit value is. This situation will change her cheating strategy and
cheating probability.

Going back to Alice sending the cheating state in Eq. (6.21), Bob’s measurement
on his part of |Ψcheat〉 will, in this case, change Alice’s system into one of three
possible states, depending on whether he has received the bit with value 0, the bit
with value 1, or no bit. Alice will have to distinguish between

ρno bit =

(
|a|2 ab∗

a∗b |b|2

)
, ρbit 0 =

(
1 0

0 0

)
, ρbit 1 =

(
0 0

0 1

)
, (6.28)

corresponding to Bob obtaining no bit, Bob obtaining the bit with value 0, or the
bit with value 1, respectively. The corresponding probabilities are cos(2θ) for ρno bit,
2|a|2 sin2(θ) for ρbit 0, and 2|b|2 sin2(θ) for ρbit 1.

Finding the optimum minimum-error measurement to distinguish between the
three general states in Eq. (6.28) is not straightforward. We can, however, bound
Alice’s cheating probability by assuming she performs a square-root measurement
(SRM) [73]. This is not necessarily the optimum strategy for her. In fact, it turns out
that for some values of θ and a she can cheat successfully with a higher probability
when using her guessing strategy. Nevertheless, the SRM is a valid strategy, not
detectable by Bob, and will provide a lower bound. The lower bound on Alice’s
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cheating probability given by the SRM can be calculated as

Aqpure OT ≥
(1− p? + 2p2

?)
(

1 + 2ab
√

1−p?
1+p?

)
+ p?

(
6p?a

2b2 1−p?
1+p?
− 1
)

1 + 2ab
√

1− p2
?

=

[
1− cos(2θ) + 2 cos2(2θ)

][
1 + 2ab tan θ

]
+ cos(2θ)

[
6a2b2 tan2 θ cos(2θ)− 1

]
1 + 2ab sin(2θ)

.

(6.29)

To decide which choice for a and b is best for Alice, we will look at the partial
derivative of the bound for Aqpure OT . Substituting in b2 = 1 − a2 and taking the
partial derivative with respect to a, we obtain

δAqpure OT

δa
=

(1− 2a2)[3a
√

1− a2 + (1 + 3a2 − 3a4) sin(2θ)][tan θ − sec θ sin(3θ)]2√
1− a2[1 + 2a

√
1− a2 sin(2θ)]2

.

(6.30)
When a = 1/

√
2, (1−2a2) = 0 for all θ and thus δAqpure OT/δa = 0. It follows that

the plot for the bound of Aqpure OT has an extremum at a = 1/
√

2. We can determine
the nature of the extemum by looking at the plot in Figure 6.3 which illustrates the
gradient for Aqpure OT , i.e. δA

q
pure OT/δa. The extremum at a = 1/

√
2 is a maximum

since δAqpure OT/δa ≥ 0 for a < 1/
√

2 and δAqpure OT/δa ≤ 0 for a > 1/
√

2. Hence,
Alice’s optimal choice for a and b is a = b = 1/

√
2.

Figure 6.3: The partial derivative of Alice’s cheating probability with respect to
a. The orange line at a = 1/

√
2 emphasizes the change of signs for the function

δAqpure OT/δa for the values of a bigger or smaller than 1/
√

2.

97



Chapter 6: Quantum Rabin Oblivious Transfer

For this optimal case, the three states in Eq. (6.28) become

ρno bit =

(
1/2 1/2

1/2 1/2

)
= |+〉 〈+| ,

ρbit 0 =

(
1 0

0 0

)
= |0〉 〈0| ,

ρbit 1 =

(
0 0

0 1

)
= |1〉 〈1| , (6.31)

occurring with probabilities cos(2θ), sin2 θ, and sin2 θ, respectively. We notice that
the unitary operation U for which U |0〉 = |1〉 and U |1〉 = |0〉, interchanges ρbit 0

and ρbit 1 while keeping ρno bit unchanged. That is, the states in Eq. (6.31) are
mirror-symmetric and we can obtain the optimal minimum-error measurement for
them.

The states are those covered in the paper by Andersson et al. [77] rotated by the
angle Θ = 45◦. Thus, the formulas derived there can be used to calculate Alice’s
cheating probability. We need to consider two different cases, depending on if p,
defined as the the prior probability of the two mirror image states, is greater or
smaller than

1

2 + cos Θ(cos Θ + sin Θ)
=

1

3
. (6.32)

For the states in Eq. (6.31), the prior probability of the two mirror image states
ρbit 0 and ρbit 1 is sin2 θ, thus p = sin2 θ. This means that the two cases to consider
will depend on the angle θ. If sin2 θ = 1/3, then θ = arcsin

(
1/
√

3
)
≈ 35.264◦ and

Alice’s cheating probability is

Aqpure OT = max

(
1− p?,

4p2
?

5p? − 1

)
=


4 cos2(2θ)

5 cos(2θ)− 1
for θ ≤ arcsin

(
1/
√

3
)

2 sin2 θ for θ ≥ arcsin
(
1/
√

3
)
.

(6.33)

As before, Alice can cheat perfectly when θ = 0◦ or θ = 45◦. When p? = 2/5,
corresponding to θ = 1

2
arccos(2/5) ≈ 33.211◦, Alice’s cheating probability is at its

minimum with Aqpure OT = 16/25 = 0.64. We get Aqpure OT = 2/3 when θ = 30◦ or θ =

arcsin
(
1/
√

3
)
. Alice’s cheating probability coincides with her guessing probability

whenever θ ≥ 35.264◦ or p? ≤ 1/3. From this angle onwards, it also coincides with
her cheating probability in the standard cheating scenario.

For the special case, where a = 1 and b = 0, the states become ρno bit = |0〉 〈0|,
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ρbit 0 = |0〉 〈0|, and ρbit 1 = |1〉 〈1| with prior probabilities cos(2θ), 2 sin2 θ, and 0.
I.e. Alice can know that Bob never gets the second bit and has to choose between no
bit and the first bit depending on θ since the two states are the same and she cannot
directly distinguish between them. Similarly, for the special case, where a = 0 and
b = 1, the states become ρno bit = |1〉 〈1|, ρbit 0 = |0〉 〈0|, and ρbit 1 = |1〉 〈1| with
prior probabilities cos(2θ), 0, and 2 sin2 θ. I.e. Alice can know that Bob never gets
the first bit and has to choose between no bit and the second bit depending on θ

since the two states are the same and she cannot directly distinguish between them.
These two special cases, where a and b are equal to 0 and 1 and vice versa are

the same for when Alice only wants to distinguish between Bob getting a bit and
him not getting a bit; she will know the bit value for sure if Bob receives it. In other
words, these cases are equivalent to the guessing scenario.

(a) (b)

Figure 6.4: Alice’s guessing and cheating probabilities as functions of the angle
θ (subfigure (a)) and as functions of p? (subfigure (b)). Her guessing probability
Agpure OT is plotted as the solid line. The dashed line shows her cheating probability
when Bob monitors the probabilities or when Bob does the full testing scheme (for
the optimal case where a = b = 1/

√
2). When Bob does not do any testing, Alice’s

cheating probability is shown by the dotted-dashed line. Alice’s cheating probability
in the special case, where Bob does the full testing and Alice wants to not only
distinguish between bit and no bit but also the bit’s values, is plotted by the dotted
line (for the optimal case where a = b = 1/

√
2).

Alice’s guessing probability and her different cheating strategies discussed in this
section are plotted in Figure 6.4 as functions of the angle θ and as functions of p?. For
any kind of testing from Bob and an angle of θ ≥ arcsin

(
1/
√

3
)
≈ 35.264◦, Alice’s

cheating probabilities are the same as her guessing probability. In the cheating
strategies, however, Alice might have some additional knowledge; e.g. when Bob is
monitoring the occurrence probabilities and Alice sends |1〉, she can be sure that
Bob has received a bit value. Comparing the graph where Bob does the full testing
and dishonest Alice cheats with the standard cheating definition to the graph where
Bob does the full testing and dishonest Alice also wants to know which bit value
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Bob obtained when he has received a bit, shows, as expected, that it is harder for
Alice to cheat in the latter case; at least up to θ = arcsin

(
1/
√

3
)
, i.e. p? = 1/3.

Alice’s cheating probability for the special case where she also wants to know
the bit value is based on the optimal values for a and b derived from the lower
bound given by the SRM. Hence, even though we have the optimum minimum-
error measurement for the states when a = b = 1/

√
2, we cannot say for sure if

these values are the best among all possible values of a and b when looking at all
the optimum minimum-error measurements to distinguish between the states in Eq.
(6.28). Thus, the cheating probability and corresponding graph for this special case
can only be considered as a lower bound.

6.2.4 Comparison to Classical Rabin OT

To evaluate the performance of the quantum Rabin OT protocol, we compare it to
a classical Rabin OT protocol obtained by probabilistically choosing between two
simple classical protocols. The probabilistic distribution of the two protocols is es-
tablished by a weak coin flip as in a procedure in Ref. [47], that is, the outcome of
the coin flip determines which of the two simple classical protocols is implemented.
These two protocols are defined as follows.

Protocol 1: Alice holds a bit which is equally likely to have value 0 or 1. She
sends the bit to Bob with probability 1− p? and otherwise does not send anything.
Afterwards she “forgets” what she has done and does not keep a record to track her
action.

Protocol 2: Alice holds a bit which is equally likely to have value 0 or 1. She
sends the bit to Bob who chooses to read it with probability 1− p? and discards it
unread the rest of the time.

Obviously, in these protocols, one of the two parties can always cheat perfectly
without being detected, while the other one can cheat no better than with a random
guess. In particular, in Protocol 1, a dishonest Alice can cheat with probability 1,
whereas a dishonest Bob can only cheat with the guessing probability Bg

OT = 1−p?/2

and, in Protocol 2, a dishonest Bob can cheat with probability 1, whereas a dishonest
Alice can only cheat with the guessing probability AgOT = max(p?, 1− p?).

We define a third protocol, which is a probabilistic mixture of the other two
protocols specified by a weak coin flip as described earlier.
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Protocol 3: Protocol 1 is executed with probability y, and Protocol 2 is executed
with probability (1− y).

The probability for Bob to receive the bit in Protocol 3 is then also equal to 1− p?.
Protocol 3 is a combination of Protocol 1 and Protocol 2, hence, its cheating proba-
bilities can be calculated by combining the cheating probabilities of Protocol 1 and
Protocol 2. In particular, Alice’s and Bob’s cheating probabilities for Protocol 3 are

AcOT =

1− p? + yp? for p? ≤ 1/2

p? + y(1− p?) for p? > 1/2,
(6.34)

Bc
OT = 1− yp?

2
. (6.35)

There is a trade-off relationship between Alice’s and Bob’s cheating probabilities
and the specific relation can be specified by considering sAOT + tBOT , where the
constants s and t are chosen such that y is eliminated from the equation. The
trade-off relations are

f1(AcOT , B
c
OT ) = AcOT + 2Bc

OT = 3− p? for p? ≤ 1/2,

f2(AcOT , B
c
OT ) = p?A

c
OT + 2(1− p?)B

c
OT = (1− p?)

2 + 1 for p? > 1/2. (6.36)

To compare with a quantum protocol, we need to calculate the relation sAOT +

tBOT in terms of p? using the quantum cheating probabilities and the same values
for s and t. Whenever the resulting expression in terms of p? is smaller for the
quantum than for the classical case, we can conclude that the quantum protocol is
better; vice versa is true if the expression is smaller for the classical than for the
quantum case. Using Alice’s cheating probability for the traditional situation where
she only wants to know if Bob has obtained a bit or not, the trade-off relations for
the quantum Rabin OT protocol based on pure states are

f1(Aqpure OT , B
q
pure OT ) =


2− p? +

√
1− p2

? for p? ≤ 1/3

1

2
(3 + p?) +

√
1− p2

? for 1/3 < p? ≤ 1/2,

f2(Aqpure OT , B
q
pure OT ) = 1− (1− p?)

(1

2
p? −

√
1− p2

?

)
for p? > 1/2. (6.37)
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We can now compare the trade-off relations of the quantum and classical case
to see which one is lower. However, in order to better judge the difference between
the classical and quantum expressions, it is sensible to subtract from them the
expressions for the trade-off relations of the guessing probabilities. Alice’s and Bob’s
guessing probabilities are baselines and the same for both the classical and quantum
protocol. Hence, it is essentially the difference between the cheating and guessing
probabilities that will differentiate whether the classical or quantum protocol is more
secure. This advantage, i.e. the additional probability of success, of the cheating
strategies over the guessing strategies can be investigated by looking at the difference
between the trade-off relations for the classical/quantum cheating probabilities and
the trade-off relation for the guessing probabilities. Calculating f1(AgOT , B

g
OT ) and

f2(AgOT , B
g
OT ) for the guessing probabilities, we obtain

f1(AgOT , B
g
OT ) = 3− 2p? for p? ≤ 1/2,

f2(AgOT , B
g
OT ) = 2 + 2p2

? − 3p? for p? > 1/2. (6.38)

In Figure 6.5, the difference fi(AcOT , Bc
OT )−fi(AgOT , B

g
OT ) is plotted as the dotted

line and the difference fi(Aqpure OT , B
c
pure OT )− fi(AgOT , B

g
OT ) as the solid line; for i ∈

{1, 2} and with respect to p?. In order to display continuous graphs, we multiplied
the trade-off relations f2 by a factor of 2. Since this same operation was done for all,
the classical, quantum, and guessing expressions of f2, it does not affect the ratio
between them.

The two graphs intersect at four points over the range of 0 ≤ p? ≤ 1. For 0 <

p? < 5/13 ≈ 0.385 and 4/5 < p? < 1, the curve for the quantum protocol lies below
the curve for the classical protocol, thus, the quantum protocol outperforms the
classical protocol in these regions. That is, the advantage of the cheating strategies
over the guessing strategies is smaller for the quantum protocol making it more
secure than the classical protocol. In the area in between these regions, the curve
for the classical protocol lies below the curve for the quantum protocol, so the
classical protocol is better than the quantum protocol for 5/13 < p? < 4/5. That
is, the advantage of the cheating strategies over the guessing strategies is larger for
the quantum protocol making it less secure than the classical protocol.
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Figure 6.5: Trade-off relations with respect to p? of the classical protocol (dotted)
and the quantum protocol based on pure states (solid) after subtraction of the
relations for the guessing probabilities.

To further investigate the relation between the classical and quantum cheating
probabilities, we can examine how the values for y, the probability of executing
Protocol 1, affect Alice’s and Bob’s cheating probabilities. Plotting the expressions
for the classical and quantum cheating probabilities in the 3D plane with θ and y
on the x-axis and y-axis, results in the planes intersecting each other in a line. This
line describes where the classical and quantum cheating probabilities are equal to
each other. Deriving an expression for this line in terms of θ will yield the y values
for which the cheating probabilities are the same.

At first, we consider a dishonest Alice, looking at the traditional definition of
a cheating Alice, i.e. when she only wants to know if Bob has received the bit or
not, and when Bob is testing. The equality Aqpure OT = AcOT , where A

q
pure OT is given

in Eq. (6.20) and AcOT is given in Eq. (6.34) with p? = cos(2θ) substituted in, is
rearranged to give the following values for y depending on θ.

y =


1/2 for 0◦ ≤ θ ≤ 30◦

[3− sec(2θ)]/2 for 30◦ < θ ≤ arcsin
(
1/
√

3
)

0 for arcsin
(
1/
√

3
)
< θ ≤ 45◦

(6.39)

When, for a given θ, y is larger than the value given by Eq. (6.39), then Alice’s
classical cheating probability increases above the quantum one. This is obvious
because, when y becomes larger, Protocol 1, where Alice can cheat perfectly, is
implemented more often, which entails that Alice’s classical cheating probability
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given in Eq. (6.34) increases. In such a case, the quantum protocol is then better
than the classical protocol with regards to a dishonest Alice.

Looking at a dishonest Bob, the equality Bq
pure OT = Bc

OT , where B
q
pure OT is given

in Eq. (6.4) and Bc
OT is given in Eq. (6.35) with p? = cos(2θ) substituted in, is

rearranged to give the function y = sec(2θ) − tan(2θ). When, for a given θ, y is
smaller than the value given by this function for y in terms of θ, then Bob’s classical
cheating probability increases above the quantum one. This is obvious because, when
y becomes smaller, Protocol 2, where Bob can cheat perfectly, is implemented more
often, which entails that Bob’s classical cheating probability given in Eq. (6.35)
increases. In such a case, the quantum protocol is then better than the classical
protocol with regards to a dishonest Bob.

Figure 6.6: Values for y depending on θ for which Alice’s (solid line) and Bob’s
(dashed line) cheating probabilities coincide in the classical and quantum protocols.
The areas for comparison between the classical and quantum protocols are coloured
differently and are described in the legend on the right hand side.

Plotting the graphs for the values of y as functions of θ in Figure 6.6, gives areas
where either just one or both or neither of the parties have lower, i.e. better, cheating
probabilities in the quantum protocol than in the classical protocol. In particular,
Bob’s function for y is plotted by the dashed line and, for each θ, any value of y below
this dashed line results in Bob’s quantum cheating probability being lower than his
classical cheating probability. Alice’s function for y is plotted by the solid line and,
for each θ, any value of y above this solid line results in Alice’s quantum cheating
probability being lower than her classical cheating probability. The green areas show
which values for y yield a better quantum cheating probability for both Alice and
Bob for a given θ. On the other hand, the combinations of y and θ values that lie
within the red area, are the value combinations for which neither Alice’s nor Bob’s
quantum cheating probability is lower than their respective classical one. This area
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lies in the range of arctan(1/3) ≈ 18.425◦ ≤ θ ≤ arctan(2/3) ≈ 33.690◦, in terms
of p? that is 5/13 ≈ 0.385 ≤ p? ≤ 4/5. The range for p? matches the one in Figure
6.5, where the classical protocol is better than the quantum protocol. For the other
values of θ, where, depending on the value of y, at least one if not even both parties
have a lower quantum than classical cheating probability, these match the ranges in
Figure 6.5, where the quantum protocol outperforms the classical protocol.

6.3 Rabin OT Using Mixed States

In the previous section, we have seen that quantum Rabin oblivious transfer pro-
tocols using pure states are not necessarily better than classical Rabin oblivious
transfer protocols. Hence, the question arises if mixed states can help improve the
performance of the quantum protocols. In this section, we look at a quantum Rabin
oblivious transfer protocol that makes use of mixed quantum states.

Even though the below protocol is defined as a quantum protocol with quantum
states, it can theoretically be implemented using only classical means. As we will see,
the used mixed states and operators only have diagonal elements, so they essentially
represent classical mixtures of states. Nevertheless, it is a valid quantum Rabin OT
protocol using mixed states that can be used to compare to the protocol using pure
states.

Furthermore, it will provide us with another benchmark for the performance of
classical Rabin OT protocols. So far, the classical Rabin OT protocols considered
are based on coin flips which entails that, when the coin flip “chooses” Protocol 2
to be implemented, both parties know that Alice definitely has to send something.
Hence, this does not include protocols where Bob is always uncertain if Alice has
sent something. By the introduction of the statistical distribution in the parties’
actions, we can consider classical Rabin OT protocols where Alice sends the bit with
some probability and Bob reads it with some probability.

6.3.1 The Protocol

Honest Alice encodes her bit value v ∈ {0, 1} in a respective mixed state ρv. The
two mixed states share a part of their ensemble and are orthogonal in the other
part of their ensemble, so that honest Bob’s measurement sometimes results in an
inconclusive outcome, i.e. him not learning the bit value, and sometimes results in
an unambiguous outcome, i.e. him learning the bit value with certainty. The Rabin
OT protocol is then carried out as follows.
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1. Alice randomly chooses one of the two mixed states (0 ≤ r ≤ 1)

ρ0 = (1− r) |0〉 〈0|+ r |1〉 〈1| , ρ1 = (1− r) |0〉 〈0|+ r |2〉 〈2| , (6.40)

with a probability of 1/2 each, and sends it to Bob.

2. Bob performs an unambiguous discrimination measurement on the received
state. His measurement operators are (0 ≤ r ≤ 1)

Π? = |0〉 〈0|+ (1− r) |1〉 〈1|+ (1− r) |2〉 〈2| ,

Π0 = r |1〉 〈1| ,

Π1 = r |2〉 〈2| . (6.41)

The constant r is included for randomisation. In Alice’s states in Eq. (6.40), r
specifies the probabilistic mixture of the pure states in the mixed states’ ensembles
and influences if Bob is more likely to obtain the bit (r > 1/2) or not (r < 1/2).
Including r in the measurement operators in Eq. (6.41), further randomises Bob’s
outcome from Alice’s perspective, since the probabilities for Bob obtaining the bit
or not depend on r. In particular, these probabilities can be calculated to be

P (no bit) =
1

2
[Tr(Π?ρ0) + Tr(Π?ρ1)] = 1− r2,

P (bit) =
1

2
[Tr(Π0ρ0) + Tr(Π1ρ1)] = r2. (6.42)

As before, the probability of Bob not obtaining the bit, i.e. him getting an incon-
clusive result, is p? and here p? = P (no bit) = 1− r2.

The random factors in the states and in the measurement operators do not
necessarily have to be the same factor r, but they could be represented by two
distinct ones. To better compare the protocol here to the Rabin OT protocol with
pure states in Section 6.2, only one free variable is considered. Whereas the free
variable here is the constant r, the free variable in the pure state protocol is the
angle θ. Both these variables have an impact on p? which will be the common
variable with respect to which we will compare the protocols. Another option would
have been to only add randomness to either the states or the measurement operators.
However, choosing, for example r = 1/2, for either the states or the measurement
operators, would narrow the range of p?. In particular, when r = 1/2 in either Eq.
(6.40) or Eq. (6.41), then p? = P (no bit) = 1 − 1

2
r and, since 0 ≤ r ≤ 1 holds,

1/2 ≤ p? ≤ 1. For other values of r this would be similar, but wanting to consider
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the whole range of p? for the comparison we decided to add randomness to both the
states and measurement operators.

6.3.2 Dishonest Bob

A dishonest Bob always wants to know which bit Alice has sent. As per definition,
it is equally likely that honest Alice sends the bit with value 0 and the bit with
value 1. This is also the best thing to do as it maximises Bob’s uncertainty about
which value the bit has and, hence, minimises his probability of correctly guessing
the value in the case where he does not receive the bit.

As in Section 6.2, we first look at Bob’s guessing strategy, that is, the cheating
strategy where Bob follows the protocol honestly and then randomly guesses the
bit value whenever he obtains an inconclusive result. Bob learns the bit value with
probability P (bit) and, when he does not obtain the bit, he can guess its value
correctly with a probability of 1/2. Thus, Bob’s guessing probability Bg

mixed OT is

Bg
mixed OT = P (bit)× 1 + P (no bit)× 1

2
= 1− 1

2
p? =

1

2
+

1

2
r2. (6.43)

When dishonest Bob does not follow the protocol honestly, but applies a different
measurement than he is supposed to, he can increase his cheating probability. His
aim is to minimise the error of distinguishing between ρ0 and ρ1, thus his optimal
cheating strategy is to apply a minimum-error measurement on the states. The
eigenvalues λk of 1

2
(ρ1 − ρ0) are (0,−r/2, r/2), thus, Bob’s cheating probability

Bq
mixed OT is [80]

Bq
mixed OT = 1−

[
1

2
(1−

∑
k

|λk|)
]

=
1

2
(1 +

√
1− p?) =

1

2
+
r

2
. (6.44)

In Figure 6.7, we plot Bob’s cheating and guessing probability, once in terms of
r and once in terms of p?. His guessing and cheating probabilities intersect at r = 0

and r = 1. Everywhere else, his cheating strategy is always more successful. When
r = 0, then p? = 1 and ρ0 = ρ1 meaning that Bob never gets the bit and he can
only cheat with a random guess, Bq

mixed OT = 1/2 = Bg
mixed OT . For r = 1, that is

p? = 0, Bob can cheat perfectly Bq
mixed OT = 1 = Bg

mixed OT because the states in
Eq. (6.40) are orthogonal and, even when he follows the protocol honestly, he will
always receive the bit value. In the traditional Rabin OT task where p? = 1/2, we
have Bq

mixed OT = 1
2
(1 + 1/

√
2) ≈ 0.855 while Bg

mixed OT = 3/4.
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(a) (b)

Figure 6.7: Bob’s guessing and cheating probability as functions of r (subfigure (a))
and as functions of p? (subfigure (b)). His guessing probability Bg

mixed OT is plotted
as the solid line and his cheating probability Bq

mixed OT as the dashed line.

6.3.3 Dishonest Alice

A dishonest Alice wants to know if Bob has received the bit or not. Similarly as
for Bob, Alice can apply a guessing strategy in which she will follow the protocol
honestly and then guess the more likely outcome on Bob’s side, that is, will he receive
the bit or will he receive nothing with a higher probability. Hence, her guessing
probability Agmixed OT is given by the bigger of the probabilities in Eq. (6.42), in
particular,

Agmixed OT = max(1− p?, p?) =

1− r2 for r ≤ 1/
√

2

r2 for r > 1/
√

2.
(6.45)

In the case where Alice guesses that Bob has received the bit, she knows what
value it has since she followed the protocol and knows what state she has sent. The
guessing strategy can usually be outperformed by cheating strategies where Alice
does not follow the protocol honestly. As in previous protocols where we considered
a dishonest sender, we look at two of different situations: one with testing by Bob
and one without testing by Bob. We compare the resulting cheating probabilities
with each other and also with Alice’s guessing probability which is the baseline. All
of these probabilities are plotted in Figure 6.8.

No testing by Bob

When Bob does not test, dishonest Alice can cheat perfectly in this protocol. That
is, because both of Bob’s measurement operators for the bit, i.e. Π0 for the bit of
value 0 and Π1 for the bit of value 1, are orthogonal to |0〉. So, by sending |0〉, she
will always know that Bob has not received a bit. Thus, in the case of no testing by
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Bob, Alice can cheat with probability 1, Aqmixed OT = 1.
Furthermore, if r equals 0 or 1, Alice has even more states that she could send

to Bob to learn his outcome perfectly. If r = 0, Bob will always receive no bit since
p? = 1. This value for r means that Alice’s states are equal, ρ0 = ρ1, and Bob’s
measurement operators Π0 = 0 and Π1 = 0. On the other hand, if r = 1, Bob will
always receive the bit since p? = 0. Alice’s states are then orthogonal and so are
Bob’s measurement operators. Hence, by sending any of the states |0〉, |1〉, or |2〉
when r = 0 or r = 1, Alice knows Bob’s outcome perfectly to the point of also being
able to tell what value the bit has whenever he obtains the bit (r = 1). These values
for r are thus not sensible to pick for this Rabin OT protocol.

Bob testing – Monitoring the occurrence probabilities

A testing strategy that Bob can apply is to monitor the occurrence probabilities
and check if the probabilities of receiving the bit with value 0, the bit with value
1, or no bit are what he expects them to be. Bob will not discard any states nor
will he need any more information from Alice, so this testing procedure will not
affect the non-interactivity of the overall protocol. However, in order to implement
this testing scheme, the protocol needs to be repeated many times and the cheating
probability obtained is an average cheating probability.

For dishonest Alice to maximise the probability of Bob getting a particular out-
come, it is best for her to send him the pure state which is the eigenstate corre-
sponding to the highest eigenvalue of Bob’s measurement operator for this particular
outcome. His measurement operator Π? has eigenvalues (1, 1 − r, 1 − r) with cor-
responding eigenvectors (|0〉 , |1〉 , |2〉), respectively, and his measurement operator
Πbit = Π0+Π1 has eigenvalues (r, r, 0) with corresponding eigenvectors (|1〉 , |2〉 , |0〉),
respectively. Therefore, Alice needs to send an appropriate statistical mixture, which
meets Bob’s expected outcome probabilities, of the states |0〉 , |1〉, and |2〉.

Alice knows that Bob expects P (no bit) = 1− r2 = p? and P (bit) = r2 = 1− p?.
She will need to send |1〉 and |2〉 with equal probability to ensure Bob gets the
bit with value 0 and the bit with value 1 equally often. Thus, she sends |0〉 with
probability x and |1〉 and |2〉 with probability 1

2
(1 − x) each. Bob’s measurement

outcome probabilities are

xTr(Π? |0〉 〈0|) +
1

2
(1−x)(Tr(Π? |1〉 〈1|) +Tr(Π? |2〉 〈2|)) = x+ (1−x)(1− r) (6.46)
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for receiving no bit and

xTr(Πbit |0〉 〈0|) +
1

2
(1− x)(Tr(Πbit |1〉 〈1|) + Tr(Πbit |2〉 〈2|)) = (1− x)r (6.47)

for receiving the bit. In order to meet Bob’s expected probabilities, (1 − x)r = r2

has to hold. Thus, we need x = 1 − r. Noting that Tr(Π? |1〉 〈1|) ≥ Tr(Πbit |1〉 〈1|)
and Tr(Π? |2〉 〈2|) ≥ Tr(Πbit |2〉 〈2|) for r ≤ 1/2, Alice will, for 0 ≤ r ≤ 1/2, guess
that Bob did not receive the bit even when sending state |1〉 or |2〉. Her cheating
probability Aqmixed OT , given by the probability of correctly guessing if Bob did receive
the bit or not, is

Aqmixed OT = max
(
2−

√
1− p? − p?, p?

)
=

1− r2 for r ≤ 1/2

1− r + r2 for r > 1/2.
(6.48)

Figure 6.8 shows the plots for Alice’s guessing probability and for her cheating
probability with and without testing by Bob. Alice’s cheating probability when Bob
is testing, is equal to her guessing probability for p? ≥ 3/4 and r ≤ 1/2. In the
cheating strategy, she might have some additional knowledge since, when she sends
|0〉, she knows for sure that Bob did not receive the bit while in the guessing strategy
it is just the more likely guess. At these points where p? = 3/4 or r = 1/2, Alice’s
cheating probability also reaches its minimum for both the expressions in terms of
r and of p?, in particular, Aqmixed OT = 3/4 there. For the traditional value p? = 1/2,
Aqmixed OT = 1

2
(3−

√
2) ≈ 0.793 whereas Agmixed OT = 1/2.

(a) (b)

Figure 6.8: Alice’s guessing and cheating probabilities as functions of r (subfigure
(a)) and as functions of p? (subfigure (b)). Her guessing probability Agmixed OT is
plotted as the solid line. The dashed line shows her cheating probability when Bob
monitors the probabilities. When Bob does not do any testing, Alice’s cheating
probability is shown by the dotted-dashed line.

110



Chapter 6: Quantum Rabin Oblivious Transfer

6.3.4 Comparison to Classical Rabin OT

We want to compare this quantum Rabin OT protocol based on mixed states with
the classical protocol considered in Subsection 6.2.4. The classical protocol which is
a statistical mixture of two trivial classical protocols and has cheating probabilities
AcOT and Bc

OT given in Eqns. (6.34) and (6.35), respectively, has trade-off relations
f1(AcOT , B

c
OT ) = AcOT + 2Bc

OT and f2(AcOT , B
c
OT ) = p?A

c
OT + 2(1 − p?)B

c
OT as was

presented in Eq. (6.36). For the mixed states protocol, f1(Aqmixed OT , B
q
mixed OT ) and

f2(Aqmixed OT , B
q
mixed OT ) can be calculated to be

f1(Aqmixed OT , B
q
mixed OT ) = 3− p? for p? ≤ 1/2,

f2(Aqmixed OT , B
q
mixed OT ) =


1 + p?(1− p?) + (1− 2p?)

√
1− p? for 1/2 < p? ≤ 3/4

p2
? + (1− p?)(1 +

√
1− p?) for p? > 3/4.

(6.49)

As in Subsection 6.2.4, we will consider the difference between the trade-off
relations for the classical/quantum cheating probabilities and the trade-off relations
for the guessing probabilities. Since the guessing probabilities in terms of p? are the
same for the mixed states quantum Rabin OT protocol as they were for the classical
and pure states quantum protocols, we use the expressions presented in Eq. (6.38).

Figure 6.9: Trade-off relations with respect to p? of the classical protocol (dotted)
and the quantum protocol based on mixed states (solid) after subtraction of the
relations for the guessing probabilities.
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In Figure 6.9, the difference fi(AcOT , Bc
OT )−fi(AgOT , B

g
OT ) is plotted as the dotted

line and the difference fi(Aqmixed OT , B
c
mixed OT ) − fi(AgOT , B

g
OT ) as the solid line; for

i ∈ {1, 2} and with respect to p?. As previously, the trade-off relations f2 are
multiplied by a factor of 2 in order to display continuous graphs.

The two graphs coincide for the range 0 ≤ p? ≤ 1/2, which includes the value
p? = 1/2 that is used for the traditional definition of Rabin OT. But, for p? > 1/2,
the curve for the quantum protocol lies below the curve for the classical protocol.
Hence, we can conclude that the quantum protocol with mixed states does equally
as well as the classical protocol for the first half of the range of p? and then it out-
performs the classical protocol. In terms of the advantage of the cheating strategies
over the guessing strategies, we can say that the advantage when p? > 1/2 is smaller
for the quantum protocol making it more secure than the classical protocol.

In other respects, when bringing to mind that this quantum protocol can also be
viewed as a classical Rabin OT protocol, then the category of classical Rabin OT
protocols it represents seems to provide a better benchmark for the performance of
classical Rabin OT protocols than the considered protocols using coin flips.

6.4 Comparison between Mixed States and Pure

States Protocols

Comparisons of the quantum protocols with the classical protocol have shown that
the mixed states protocol is never worse than the classical protocol, while this is
sometimes the case for the pure states protocol. To get a more thorough picture
about whether mixed states can help to improve quantum Rabin OT protocols, we
will directly compare the mixed states and pure states protocols using the same
trade-off relations specified in Subsections 6.2.4 and 6.3.4.

In particular, we will compare the differences fi(Aqpure OT , B
c
pure OT )−fi(AgOT , B

g
OT )

and fi(Aqmixed OT , B
c
mixed OT )− fi(AgOT , B

g
OT ) for i ∈ {1, 2}. Since the guessing prob-

ability is the same for both the protocol based on pure states and the one based
on mixed states, it is sensible to consider these differences for the same reason as
mentioned in Subsection 6.2.4. We plot the trade-off relation referring to the pure
states protocol as the dashed line and the trade-off relation referring to the mixed
states protocol as the dotted-dashed line in Figure 6.10. Both of them are with
respect to p? and the expressions for f2 are multiplied by 2 to obtain continuous
graphs.
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Figure 6.10: Trade-off relations with respect to p? of the quantum Rabin OT protocol
based on pure states (dashed line) and the quantum Rabin OT protocol based on
mixed states (dotted-dashed line) after subtraction of the relations for the guessing
probabilities.

In Figure 6.10, the two graphs intersect at three points, p? = 0, p? = 5/13 ≈
0.385, and p? = 1. The curve for the pure states protocol is lower in the region
0 < p? < 5/13, while the curve for the mixed states protocol is lower in the region
5/13 < p? < 1. We can deduce that the mixed states protocol is lower than the
pure states protocol for a larger region (8/13 > 5/13). Thus, the advantage of the
cheating strategies over the guessing strategies is, for a larger range of p?, smaller
for the protocol based on mixed states and hence it is more often securer than the
protocol based on pure states.

It is likely that mixed states can indeed help to improve quantum Rabin OT
protocols. This is indicated by the direct comparison between the protocol based on
pure states and the protocol based on mixed states and the additional fact that the
mixed states protocol is never worse than the classical protocol (only equally as well
or better) while the pure states protocol is at times outperformed by the classical
protocol.

Once again viewing the protocol with mixed states as a classical protocol, we
can compare the quantum Rabin OT protocol using pure states to an improved
benchmark. In this case, we conclude that the pure state protocol performs worse
than previously identified as it does no longer surpass performance of the classical
Rabin OT protocol in the region 4/5 < p? < 1 (see Subsection 6.2.4).
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6.5 Further Generalisation of Rabin OT Protocol

Based on Mixed States

As noted earlier, the Rabin oblivious transfer protocol based on mixed states in-
vestigated in Section 6.3 was somewhat constrained. That is, introducing the same
randomisation factor r for both the states sent by an honest Alice and the measure-
ment operators describing the measurement of an honest Bob limited the protocol’s
modifiability to one free variable. In this section, we expand the protocol by con-
sidering two free variables, one randomisation factor q for honest Alice’s states and
another randomisation factor r for honest Bob’s measurement operators. The pro-
tocol can then be described as follows.

1. Alice randomly chooses one of the two mixed states (0 ≤ q ≤ 1)

ρ0 = (1− q) |0〉 〈0|+ q |1〉 〈1| , ρ1 = (1− q) |0〉 〈0|+ q |2〉 〈2| , (6.50)

with a probability of 1/2 each, and sends it to Bob.

2. Bob performs an unambiguous discrimination measurement on the received
state. His measurement operators are (0 ≤ r ≤ 1)

Π? = |0〉 〈0|+ (1− r) |1〉 〈1|+ (1− r) |2〉 〈2| ,

Π0 = r |1〉 〈1| ,

Π1 = r |2〉 〈2| . (6.51)

This means that the probabilities for honest Bob obtaining the bit or not are
expressed as P (bit) = qr and P (no bit) = p? = 1− qr.

Also this more general form of the Rabin OT protocol using mixed states can be
implemented using only classical means. The only difference is that the probability
distributions of Alice’s and Bob’s actions are no longer necessary the same, that is,
Alice’s probability of sending a state and Bob’s probability of reading the state can
be chosen independently from each other.

6.5.1 Security against Alice and Bob

When looking at security against a dishonest Alice or a dishonest Bob, we can
note that their cheating strategies stay the same as their cheating strategies in the
protocol with the common randomisation factor r, but the expressions for their

114



Chapter 6: Quantum Rabin Oblivious Transfer

cheating probabilities change slightly and will be functions in terms of q and r

instead.
A dishonest Bob who always wants to know which value Alice’s bit has, will

apply a minimum-error measurement to distinguish between ρ0 and ρ1 [80] and will
be successful with probability

Bq
general mixed OT =

1

2
+

1

2
q. (6.52)

For a dishonest Alice, in one situation Bob does no testing and, in another, Bob
monitors the probabilities of obtaining the bit or not to verify that they are equal
to the probabilities he expects. In the first case, Alice will, as before, be able to
cheat perfectly by sending |0〉, the orthogonal state to Π0 and Π1, which will result
in Bob never getting the bit. When Bob follows the monitoring procedure, Alice
will need to send a correct statistical mixture of |0〉, |1〉, and |2〉. Following the same
reasoning as in Subsection 6.3.3, we know that (1− x)r = rq needs to hold for the
probability of Bob obtaining the bit and, thus, x = 1− q. A cheating Alice will send
|0〉 with probability x and |1〉 or |2〉 with probability 1

2
(1 − x) each, achieving her

average cheating probability

Aqgeneral mixed OT =

1− qr for r ≤ 1/2

1− q + qr for r > 1/2.
(6.53)

We plot Alice’s and Bob’s cheating probabilities in terms of q and r in Figure
6.11. It shows that r = 1/2 is the best value to minimise Alice’s cheating probability
for any q and, since Bob’s cheating probability is independent of the former variable,
1/2 can be straightforwardly picked as the optimum value for r. It is not quite as
easy with the value for q since this affects both Aqgeneral mixed OT and Bq

general mixed OT .
When q → 0, Bob’s cheating probability tends to 1/2 while Alice’s tends to 1 for
any value of r. On the other hand, when q → 1, Bob’s cheating probability tends
to 1 while Alice’s goes to the minimums attainable with respect to a chosen r. The
seemingly best value appears to be q = 1/2 as this is the middle ground. Also,
the plane created by the two cheating probabilities when taking into account the
larger of the two probabilities for the respective values of r and q, has a dip where
r = q = 1/2. Hence, it seems reasonable to have used r = q = 1/2 in the analysis
of the quantum Rabin OT protocol based on mixed states in Section 6.3 and in the
comparison with the quantum Rabin OT protocol based on pure states in Section
6.4.
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(a)
(b)

Figure 6.11: Alice’s and Bob’s cheating probabilities with respect to q and r. The
plot in (b) is the top view of the 3-dimensional plot in (a).

6.5.2 Protocol Performance when P (no bit) = P (bit)

The dip when r = q = 1/2 mentioned in the previous subsection, coincides with
P (no bit) = 3/4. However, in the traditional definition of Rabin oblivious transfer,
we want P (no bit) = P (bit) = 1/2, that is, Bob receiving the bit or not happens
with equal probability. We investigate here how well the considered protocol does
in this case.

Without loss of generality, the analysis is carried out in terms of r. Since P (bit) =

rq = 1/2, we can set q = 1/2r. However, since it needs to hold that q ≤ 1, we
have 1/2r ≤ 1 and so the range is restricted to 1/2 ≤ r ≤ 1. This results in
1/2 ≤ q ≤ 1 as well and we can conclude that the combinations of r and q that
can yield P (no bit) = P (bit) = 1/2, are restricted to a part of the range of their
possible values. The cheating probabilities in Eqns. (6.52) and (6.53) can then be
reformulated to

Bq
general mixed OT =

1

2
+

1

4r
and Aqgeneral mixed OT =

3

2
− 1

2r
(6.54)

for Bob and Alice, respectively.
Figure 6.12 shows the graphs of these cheating probabilities in terms of r. For

r = 0, Bob (solid line) can cheat perfectly while Alice (dashed line) cannot cheat
any better than with a random guess and vice versa when r = 1. The two cheating
probabilities intersect at r = 3/4 where Aqgeneral mixed OT = Bq

general mixed OT = 5/6 ≈
0.833.
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Figure 6.12: Cheating probabilities for Alice (dashed line) and Bob (solid line) as
functions of r.

6.6 Conclusion

In this chapter, we looked at two quantum Rabin oblivious transfer protocols and
compared them both to a classical Rabin OT protocol as well as to each other.

The protocol considered in Section 6.2 is based on pure states. We analysed its
cheating probabilities and concluded that, in order to restrict a dishonest Alice, Bob
needs to monitor the probabilities of his obtaining a bit and his obtaining no bit and
check if they agree with what he expects. This will result in an average cheating
probability for Alice and the need to implement multiple rounds of the protocol,
where in a single round she could cheat perfectly.

The protocol in Section 6.3 is based on mixed states. Also here, we analysed
the cheating probabilities and concluded that Bob needs to monitor the occurrence
probabilities in order to prevent Alice from cheating perfectly, which results in an
average cheating probability for Alice. The assumption of a common randomisation
factor for honest Alice’s states and honest Bob’s measurement operators was adhered
to in this part. But in Section 6.5, we loosened it and examined the protocol more
generally with a differing randomisation factor for Alice’s states and Bob’s measure-
ment operators. These protocols based on mixed states can be implemented using
only classical means and therefore provide another benchmark for the performance
of classical Rabin OT protocols.

The comparison of the two protocols in Section 6.2 and 6.3 with the classical
protocol, showed that, while the pure states protocol is sometimes worse than the
classical protocol, the mixed states protocol always performs at least as well as the
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classical protocol. The direct comparison of the two protocols in Section 6.4 showed
that there is a range when p? < 5/13, where the pure states protocol is better than
the mixed states protocol. The mixed states protocol outperforms the pure states
one for any value p? > 5/13 though and, thus, is the better protocol for the larger
range of p?. This strengthens the assumption that mixed states can help to improve
the security of quantum Rabin OT protocols.

For further investigation of this assumption, it would be interesting to examine
other quantum Rabin OT protocols based on mixed states in further work and
compare them to the quantum Rabin OT protocol based on pure states as well as
to the benchmark of the performance of classical Rabin OT protocols provided by
the considered quantum Rabin OT protocol based on mixed states.
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Conclusion

The fields of cryptography and communication were extended in recent decades to
include new areas of research: quantum cryptography and quantum communication.
That is, the question about how quantum mechanics and its inherent properties can
benefit and help to create secure communication protocols has become a big area of
investigation. It includes not only the study of protocols in which the threat is an
outside adversary who wants to eavesdrop on secret communications, but also the
study of protocols in which the two communicating parties do not trust each other
and one of them might be an adversary who wants to get more information from
the protocol than he/she is supposed to.

A protocol fitting into the second category is oblivious transfer. Oblivious trans-
fer is a powerful cryptographic primitive since it can be used as basic building block
to realise any two-party computation. Research in the classical setting has shown
that OT cannot be done classically with information-theoretic security. Unfortu-
nately, also in the quantum setting it is not possible to have information-theoretically
secure quantum OT without any restrictions. Nevertheless, also without any re-
strictions it is possible to bound the sender’s and receiver’s cheating probabilities in
quantum oblivious transfer.

In this thesis, we focused on different variants of oblivious transfer, investigating
their security when no restrictions are placed on the dishonest party. We especially
focused on the less investigated variant of XOR oblivious transfer. In Chapter 3 and
Chapter 5, we examined non-interactive XOT protocols. Deriving general bounds
for such protocols based on the use of symmetric pure states, we presented a specific
protocol that was provably optimal among non-interactive XOT protocols using
symmetric pure states. We then further generalised the concept and this specific
protocol to consider XOR oblivious transfer where the sender encodes not only a
string of two classical bits but a string of n classical bits.

Considering the situation when the two communicating parties do not have the
same computational or technological power, but want to implement oblivious trans-
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fer in both directions, we focused on the concept of reversing a protocol in Chapter
4. We reversed a 1-2 OT protocol [7] and the optimal XOT protocol presented in
this thesis and observed that the cheating probabilities are linked to the parties’ role
in the protocol as opposed to their physical action, i.e. being the one sending the
quantum state or the one measuring the quantum state.

In the last part, Chapter 6, we focused on another variant of oblivious transfer,
namely Rabin oblivious transfer. Examining Rabin OT using pure states and then
Rabin OT using mixed states, we at first analysed the protocols separately for their
security and then compared them to each other. We concluded that, for a part
of the probability distribution, that is, the distribution of the probability of the
receiver obtaining the bit or not, the pure states protocol outperforms the mixed
states protocol. For the larger part of the probability distribution, however, the
mixed states protocol outperforms the pure states protocol.

All in all, it can be seen that oblivious transfer remains an area for future research
and many questions remain open. In particular, variants other than the most well-
known and fairly well investigated 1-out-of-2 oblivious transfer variant offer many
avenues for further work. With regards to the variants investigated in this thesis,
future work can built upon and extend the question about a potential connection
between 1-out-of-n oblivious transfer and hidden matching quantum retrieval games
or also the question if quantum Rabin oblivious transfer protocols based on mixed
states perform better than quantum Rabin oblivious transfer protocols based on
pure states. Another topic that can be expanded and provides many still to be
investigated questions is the concept of reversal. It is not only interesting to study
the reversal of protocols other than oblivious transfer, but also to examine the fun-
damentals of this concept, such as which characteristics make a protocol reversible
or if the cheating probabilities of the functional roles always stay the same for any
reversed protocol.
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