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Abstract

In this thesis we study the algebra and the geometry of two-dimensional Artin
groups under various aspects. First, we solve the problem of acylindrical hyper-
bolicity, by proving that all the two-dimensional Artin groups that are not triv-
ially non-acylindrically-hyperbolic are acylindrically hyperbolic. In particular,
we prove that every non-spherical Artin group of dimension 2 has trivial centre.
Then, we study the structure of parabolic subgroups of large-type Artin groups,
and prove various results about their combinatorial structure. We notably show
that any intersection of parabolic subgroups is again a parabolic subgroup. Fi-
nally, we study the isomorphisms between Artin groups of large-type, and we
prove that the family of large-type free-of-infinity Artin groups is rigid. We also

fully describe the automorphism groups of these Artin groups.
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Chapter 1

Introduction

Geometric group theory is a branch of mathematics whose principle is to under-
stand finitely generated groups by making them act on suitable spaces. When
the spaces at play are well-behaved, one would like to infer from the geometric
and topological properties of the space algebraic properties for the group.
Geometric group theory takes its origin from combinatorial group theory in
the 1880’s, with the early work of Dyck, Klein and Poincaré, who started studying
by their presentations finitely presented groups, such as fundamental groups of
closed manifolds. In the early 20th century, the celebrated word, conjugacy and
isomorphism problems formulated by Dehn and Tietze drew even more attention

to the branch.

A fruitful approach has been to study group actions, and thus groups, through
the prism of curvature. A prime example of that is the notion of hyperbolic groups
introduced by Gromov in the 1980’s ([45]). Geometric group theory has since then
become a more and more popular theme of interest. Today the branch is highly in-
terdisciplinary, mixing group theory, low-dimensional topology, Riemannian and
hyperbolic geometry, formal languages, and even probabilistic approaches.

While it is interesting to study group actions on metric spaces, it is also
interesting to see groups as metric spaces themselves by means of their Cayley
graphs. In that setting, the notion of hyperbolicity encapsulates the idea of a
group having large-scale negative curvature. Hyperbolicity is a powerful property,
that has strong geometric and algebraic implications for a group. Although in
a sense most finitely presented groups are hyperbolic, a lot of groups are not

hyperbolic (for instance, any group containing a Z? subgroup). Amongst them
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Chapter 1 — Introduction

however, many behave in a fashion that shares a lot of features with hyperbolic
groups. In recent years, various authors have actively worked on notions that
capture a weaker form of non-positive curvature, like acylindrical hyperbolicity,

CAT(0)-ness, or systolicity.

The goal of the present thesis is to study a large family of groups called Artin
groups through the eyes of geometric group theory. Artin groups, or Artin-Tits
groups, were introduced by Tits (|90]) as “extensions” of Coxeter groups, who are
themselves a generalisation of the symmetry groups of the regular polyhedras.
Consider a simplicial graph I" and suppose that every edge between two vertices
a and b has integer coefficient my, > 2. Then I' defines an Artin group Ar
whose generators are the vertices of I', and for which there is a relation of the
form aba --- = bab--- (with my, terms on each side) every time there is an edge
connecting a and b. The rank of Ar is the cardinality of V(I'), and is assumed
to be finite. The Coxeter group associated with I' is the group Wr obtained
from Ar by additionally requiring every generator to have order 2. While Coxeter
groups are generated by “reflections” of order 2, in Artin groups the “reflections”
have infinite order.

The class of Artin groups encompasses a large spectrum of groups that can
be seen as interpolations between free groups (a discrete graph) and free abelian
groups (a complete graph whose labels are all 2). It contains classes such as the
right-angled Artin groups (those whose only permitted coefficients are 2), the
braid groups (the braid relation having coefficient 3), and many others.

Coxeter groups are well understood. For instance, they are known to have
solvable word and conjugacy problem (|91], [64]), to have finite centres (isomor-
phic to (Z/2Z)") (]59]), to be CAT(0) groups (|74])) and to be virtually torsion-
free (Tits proved they were linear in characteristic 0, and Selberg’s Lemma states
that such groups are virtually torsion-free). On the other hand, Artin groups re-
main quite mysterious. We recall that an Artin group Ar is said to be reducible
if ' is a 2-join, that is, a join of two non-trivial subgraphs such that every edge
of the join has coefficient 2 (when this happens, Ar can be decomposed as a
direct product). Then, even the simplest questions cannot yet be solved in full

generality:
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Conjecture 1.1. Consider an Artin group Ar. Then:

(1) Ar is torsion-free.

(2) If Ar is irreducible and Wt is infinite, then the centre of Ar is trivial.
(3) Ar has solvable word and conjugacy problem.

(4) Ar satisfies the K (m, 1) conjecture.

These conjectures are explained in more details in Section m (we also refer
the reader to [26] for a survey on open questions about Artin groups). Despite
not much being known in general, a lot is known about certain classes of Artin
groups. We give here three classes of Artin groups for which substantial progress
has been made:

e Spherical Artin groups. An Artin group Ar is spherical if its associated
Coxeter group Wr is finite.

e Artin groups of dimension 2. The dimension of an Artin group Ar is the
maximal integer n such that any choice of n vertices of I' spans a subgraph IV < I’
such that Ar is a spherical Artin group. The class of 2-dimensional Artin groups
includes the class of large Artin groups (those with coefficients at least 3).

e Artin groups of type FC. An Artin group Ar is said to be of type FC if
every complete subgraph I € I' generates an Artin group Ar of spherical type.
Note that spherical Artin groups and right-angled Artin groups are of type FC.

Spherical Artin groups are well understood, notably thanks to the existence
of a normal form ([38],[37],[35]). Artin groups of dimension 2 and of type FC are
also well understood, and satisfy all of the above conjectures (|28], [42], [41], [58],
[22)).

There has recently been an increasing interest in understanding the geometry
of Artin groups. In particular, the action of an Artin group on a space with
properties that encode some kind of non-positive curvature. While free groups
are the only Artin groups to be hyperbolic (every other Artin group contains
a Z? subgroup), even the “least” negatively curved Artin group, i.e. the free
abelian groups, are non-positively curved. There is a reasonable belief that all
Artin groups should be non-positively curved in a way or another. Similar to
their algebraic and algorithmic behaviour, the geometry of Artin groups remains
very mysterious as well. For instance, it is not known whether the following

conjectures hold in general:
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Conjecture 1.2. Consider an Artin group Ar. Then:
(1) Ar is CAT(0), i.e. acts properly and cocompactly on a CAT(0) space.
(2) If Ar isirreducible, the central quotient Ar/Z(Ar) is acylindrically hyperbolic.

There are partial results to the above conjectures. For instance, Conjecture
[1.2/(1) has been proved to hold for right-angled Artin groups ([27]), some classes
of 2-dimensional Artin groups (|7], [14], [48]) or spherical Artin groups of rank
3 (|13]). As regards to Conjecture (2), it is known to hold for Artin groups
of spherical type (|33]). It is then enough to look at what happens when the
group is non-spherical. In that case, since the centre Z(Ar) is conjectured to be
trivial, the question essentially comes down to asking whether Ar is acylindrically
hyperbolic. Many results are of this type. For instance, Charney and Morris-
Wright proved that Artin groups Ar whose defining graph I' is not a join are
acylindrically hyperbolic [28]. In [75|, Martin and Przytycki also showed that
2-dimensional Artin groups of hyperbolic type (whose associated Coxeter groups

are hyperbolic) are acylindrically hyperbolic.

Before exposing the results obtained in this thesis we want to bring light on
the general methods we use. Many natural spaces associated to Artin groups have
been introduced and studied over the years. The structure of most of these spaces
comes from the combinatorics of important subgroups of Artin groups called
parabolic subgroups, that are “smaller” Artin groups embedded in the main
group and arising from subgraphs of the main defining graph. A prime example is
the modified Deligne complex due to Deligne (|34]), and extended by Charney
and Davis (|27]). For an Artin group Ar, this space noted Dr is a combinatorial
complex that arises from the combinatorial structure of the spherical parabolic
subgroups of Apr. This complex has become a central tool to understand the

structure and geometry of Artin groups, and is at the heart of this thesis.

We now expose the various themes and results of this thesis in more details.

All the results obtained concern Artin groups of dimension 2.
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Acylindrical hyperbolicity

The notion of acylindrical hyperbolicity was recently introduced by Osin ([80]). A
group G is said to be acylindrically hyperbolic if it is not virtually cyclic and
has an acylindrical action on a hyperbolic space with unbounded orbits. Roughly
speaking, acylindrically hyperbolic groups may not be hyperbolic, but still have
“hyperbolic directions”. The condition of acylindrical hyperbolicity merges many
previously known results, bringing together classes such as mapping class groups,
Out(F},) for n = 2, many CAT(0) groups and most of 3-manifold groups. Nev-
ertheless, acylindrical hyperbolicity is still strong enough to ensure interesting
properties for the group. For instance, acylindrically hyperbolic groups have fi-
nite centres and contain non-abelian free subgroups (|80]).

In this thesis we answer the question of acylindrical hyperbolicity for all Artin

groups of dimension 2:

Theorem 1.3. Fvery irreducible 2-dimensional Artin group of rank at least 3 is

acylindrically hyperbolic.

Acylindrically hyperbolic groups can never be decomposed as direct products
of infinite groups. Therefore, a first consequence of Theorem is that for 2-
dimensional Artin groups, decomposability as a direct product is equivalent to

irreducibility, which can directly be “read” from their defining graph:

Corollary 1.4. A 2-dimensional Artin group Ar can be decomposed as a non-

trivial direct product if and only if it is irreducible (equivalently, T is a 2-join).

Note that acylindrically hyperbolic groups also have finite centres. Along
with the fact that 2-dimensional Artin groups are torsion-free, this proves that
the Artin groups from Theorem actually have trivial centre. This gives a new
proof of Conjecture [I.1](2), which could already be deduced from [42] although
it is not explicitly stated:

Corollary 1.5. Artin groups of dimension 2 and rank at least 3 have trivial cen-
tre. Moreover, all irreducible Artin groups Ar of dimension 2 have acylindrically

hyperbolic central quotient Ar/Z(Ar).
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Parabolic subgroups

It is hard to imagine working with Artin groups without having to mention
parabolic subgroups. These subgroups are not only the most “natural” kind of
subgroups for an Artin group relatively to a given defining graph, but they are
also incredibly useful in studying Artin groups.

Coxeter groups also admit parabolic subgroups whose definition is analogous
to that of Artin groups. However, the combinatorics of parabolic subgroups of
Coxeter groups are well-understood in general. For instance, it is known that the
intersection of any subset of parabolic subgroups is itself a parabolic subgroup

([84]). By contrast, the analogous property for Artin groups is open in general:

Conjecture 1.6. Let Ar be any Artin group. Then the set of parabolic subgroups

of Ar is stable under arbitrary intersections.

This conjecture has been proved true for braid groups using relations between
parabolic subgroups of braid groups and isotopy classes of non-degenerated simple
closed multicurves in mapping class groups of punctured disks. This result was
recently generalised to all Artin groups of spherical type using Garside theory
(|23]). For Artin groups of type FC, it was shown that the intersection of two
parabolic subgroups of spherical type is again a parabolic subgroup of spherical
type (|73]). However, the case of general parabolic subgroups remains open.

Besides being interesting on their own, such results about parabolic subgroups
can be valuable tools in studying the structure of Artin groups. For instance, the
positive answer to Conjecture for spherical Artin groups was a key ingredient
in the proof that Artin groups of type FC satisfy the Tits alternative ([77]).

In a joint work with Cumplido and Martin, we studied the combinatorics of

the parabolic subgroups of large-type Artin groups, and proved the following:

Theorem 1.7. Let Ar be a large-type Artin group. Then the intersection of
an arbitrary subset of parabolic subgroups of Ar is itself a parabolic subgroup.

Moreover, the set of parabolic subgroups of Ar is a lattice for the inclusion.

A direct consequence of this theorem is that every subset of Ar is contained
in a unique minimal parabolic subgroup. This generalises to large-type Artin
groups the notion of parabolic closure known for Coxeter groups (|84]) and

Artin groups of spherical type ([23]).



Chapter 1 — Introduction

The approach we use to prove Theorem is geometric in nature. We asso-
ciate to each Artin group Ar a simplicial complex Xt called its Artin complex.
This complex allows for a geometric study the parabolic subgroups of Ar, as they
correspond to stabilisers of simplices of the complex. In particular, studying inter-
sections of parabolic subgroups can be done if we have a sufficiently strong control
over the (combinatorial) geodesics of X between two simplices. This is possible
for large-type Artin groups, as we show that these complexes are non-positively

curved in an appropriate sense. The key geometric result is the following:

Theorem 1.8. Let Ar be a large-type Artin group of rank at least 3. Then the

Artin complex Xt is systolic.

As an application, we solve the conjugacy stability problem for parabolic
subgroups of large-type Artin groups. A subgroup H of a group G is called
conjugacy stable if two elements of H conjugated in GG are always conjugated
in H. This problem had already been solved for parabolic subgroups of spherical
Artin groups (|21]), generalising pre-existing results for braid groups ([44]).

Theorem 1.9. Let A be a standard parabolic subgroup of a large-type Artin
group Ar. Then Arp is not conjugacy stable in Ar if and only if there exist
vertices of I that are connected by an odd-labelled path in T' and that are not
connected by an odd-labelled path in I".

As another application, we show that parabolic subgroups of large-type Artin
groups are stable under taking roots, a result whose analogue for Artin groups of

spherical type was proved in [23].

Theorem 1.10. Let Ar be a large-type Artin group, let P be a parabolic subgroup
of Ar, and let g € Ar. If g™ € P for some integer n # 0, then g € P.

Beside the intersection properties of parabolic subgroups, the previous results
rely on understanding the fixed-point sets and normalisers of parabolic subgroups.
Their structure has been studied by various authors, but the results are a bit
hidden in the literature. In the case of large-type Artin groups, our approach
provides a unifying perspective that allows us to recover all these results within a
single framework, giving an explicit description of every normaliser of parabolic

subgroups of a large-type Artin group (see Theorem [4.5)).

7
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Isomorphism problem

A very natural goal for Artin and Coxeter groups is to want to answer the iso-
morphism problem, which is that of determining which defining graphs give
rise to isomorphic Artin or Coxeter groups. A strong notion to consider is that
of rigidity. An Artin or a Coxeter group is said to be rigid if it cannot be ob-
tained from two non-isomorphic graphs. In [15], the authors proved that Artin
and Coxeter groups are not rigid in general: two non-isomorphic graphs that are
obtainable from each others by a series of “diagram twists” give rise to isomor-
phic Artin groups and Coxeter groups. For Coxeter groups, it was even showed
that diagram twists are not the only way such a phenomenon can occur (|85]),
although the question remains open for Artin groups. That said, studying the
rigidity of Artin and Coxeter groups is essential for classes of groups in which
there are no such twists. Coxeter groups have been well studied in that regard,
and partial answers to the isomorphism problem have been obtained (see [78§],
[20]). However, not much is known for Artin groups, outside of right-angled
Artin groups (|36]), and some large-type Artin groups ([32]).

The usually more accessible problem is to ask whether there are some classes
of Artin groups in which we can solve the isomorphism problem and eventually
show rigidity. A class of Artin groups is called rigid if two non-isomorphic graphs
of the class always generate non-isomorphic Artin groups. Note that the rigidity

of a class of Artin groups does not imply that Artin groups of the class are rigid.
Question 1.11. What classes of Artin groups are rigid?

For instance, the class of right-angled Artin groups has been proved to be
rigid ([36]). In fact, every right-angled Artin group is itself rigid. The question of
rigidity is inherently related to the study of isomorphisms between Artin groups.
A natural next step in the theory is to try to understand these isomorphisms
completely, which essentially comes down to understanding the automorphism
groups of the Artin groups. Although Artin groups have been more and more
studied over the past three decades, the study of the automorphisms of Artin
groups has turned out to be quite difficult. The most famous results that are not
only about free groups or free abelian groups are that of right-angled Artin groups

([36], [88], [65]). The situation becomes even more complicated when introducing
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non-commuting relations. Prior to our work, the only results on Artin groups
that are not right-angled concerned the class of “connected large-type triangle-

free” Artin groups introduced by Crisp in [32].

In this thesis, we give a partial answer to Question by studying large-
type Artin groups. The class of large-type Artin groups is known to not be
rigid, hence why part of our study focuses on large-type Artin groups that are
also free-of-infinity (i.e. my < o for all a,b € V(I')). In [43]|, Godelle and
Paris made explicit the interests of looking at free-of-infinity Artin groups. They
proved that if one can solve any of the first three points of Conjecture for all
free-of-infinity Artin groups, then one can solve the corresponding conjecture for
all Artin groups. It is thus natural to want to first study the Artin groups that

are free-of-infinity. In our case, we obtained the following result of rigidity:

Theorem 1.12. The class of large-type free-of-infinity Artin groups is rigid. In
other words, if Ar and Ap are two large-type free-of-infinity Artin groups, then

Ar and Ar: are isomorphic if and only if I' and I are isomorphic.

As a consequence of studying the isomorphisms between Artin groups, we are

also able to recover a precise description of their automorphism groups:

Theorem 1.13. Let Ar be a large-type free-of-infinity Artin group of rank at
least 3. Then Aut(Ar) is generated by the conjugations, the graph-induced auto-

morphisms, and the global involution. In particular, Out(Ar) is finite.

While it is not possible to extend the two previous theorems to all large-
type Artin groups (see [32]), we also prove a strong result of rigidity that holds
for all large-type Artin groups. To our knowledge, this is the only result about

isomorphisms that concerns all large-type Artin groups.

Theorem 1.14. Let Ar and Ar be two large-type Artin groups of rank at least
3. Then any isomorphism ¢ : Ar — A induces a bijection between the set of

spherical parabolic subgroups of Ar and the set of spherical parabolic subgroups of

Ap.

Theorem has many consequences outside of being a precious tool for
proving Theorem and Theorem [[.13] For instance, it implies that any iso-
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morphism between large-type Artin groups sends standard generators onto con-
jugates of standard generators. This gives a form of rigidity of the automorphism
group.

While proving Theorem and Theorem we use the previous result of
rigidity of the spherical parabolic subgroups and find a way to “reconstruct” the
associated Deligne complex in a purely algebraic manner, i.e. in a way does not
depend on the choice of defining graph for Ar, but only on the abstract structure
of the group. In particular, we show that isomorphic large-type free-of-infinity
Artin groups have isomorphic Deligne complexes (see Theorem . We also give
an explicit classification of all the subgroups of large-type Artin groups that are

isomorphic to dihedral Artin groups (see Theorem [5.5)).

Chapter [2| serves as a preliminary chapter. We will start by recalling some
basic notions of geometric group theory, before introducing in more details the
various notions of curvature that we will use throughout this thesis. We then
define the notion of complex of groups, that will be used to construct several key
simplicial complexes. Finally, we recall the basic notions and conjectures related
to Artin groups in more details.

Chapter [3] is dedicated to the study of acylindrical hyperbolicity for Artin
groups of dimension 2, and follows the results of [93]. Along the way, we will
also prove results of independent interests concerning the links of vertices in the
Deligne complexes of these Artin groups. These results were a key ingredient
that Hagen, Martin and Sisto used to prove that extra-large type Artin groups
are hierarchically hyperbolic (|53]).

Chapter [4is a joint work with Cumplido and Martin, and contains the results
of [29]. There we will show the various results concerning the combinatorial struc-
ture of parabolic subgroups of large-type Artin groups that we exposed earlier in
the introduction.

Finally in Chapter [5] we will focus on the question of rigidity for large-type
Artin groups, following the results of [94]. This starts with a in-depth study of
all the dihedral Artin subgroups of these Artin groups. We then obtain stronger
results about large-type free-of-infinity Artin groups, classifying their automor-

phisms and proving the rigidity of the class.

10



Chapter 2

Preliminaries

In this chapter we introduce most of the standard definitions and results that will
be used in this thesis. In Section 2.1l we introduce the most basic notions about
metric spaces, simplicial complexes and some associated group actions. Section
is dedicated to various notions of non-positive curvature for spaces and groups.
In Section we introduce the notion of complexes of groups. Finally, in Section

2.4] we will be talking about Artin groups in more details.

2.1 Basic notions

In this section we introduce the most basic notions about groups as metric spaces,
geodesics, abstract simplicial complexes and piecewise-euclidean simplicial com-
plexes. We partially follow |17, Chapter I, Chapter II|. Throughout this section
we suppose that G is a group generated by a finite set S.

2.1.1 Groups as metric spaces

Definition 2.1.1. The free group on S is the group Fs whose elements are the
reduced words in the alphabet S1i{s™! | s € S}. We denote by ¢ the epimorphism
¢ : Fs — G that sends every word w to the corresponding element ¢(w) of the
group. A subset R < Fs of words is called a set of relations for G if the smallest
normal subgroup ((R)) of Fg containing every element of R is precisely the kernel

of ¢. In that case, GG is said to have presentation

G =(S|R).

11
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A reduced word w = s;---s,, where sy,---,s, € S, is said of have length

¢(w) =n = 0. This yields a notion of length for elements of G, saying that

((g) = min{l(w) | we Fs : p(w) = g}.

In other words, the length of ¢ is the length of the shortest word representing the

element g. This defines a metric on G known as the word metric:
ds(g,h) = min{l(w) | w € Fs : p(w) = g~"h}.

The use of the word metric makes any finitely generated group into a metric
space. Although this metric space is discrete (the distance between two elements
is always an integer), one can extend this space to a metric graph by means of

the corresponding Cayley graph:

Definition 2.1.2. The Cayley graph Cays(G) of G with respect to S is the
graph whose vertices are the elements of GG, and for which there is an edge of

length 1 between g and h if and only if g 'he S St

Note that when restricting to the vertex set of Cays(G), the word metric and
the metric induced from the Cayley graph coincide. A prime feature of Cayley
graphs is that despite being seemingly highly dependent on the choice of (finite)
generating set, all the Cayley graphs are “equivalent” in a way. This is made more

precise in the following definition and proposition:

Definition 2.1.3. Let X and Y be two metric spaces. A map f: X — Y is
called a quasi-isometric embedding if there are constants A > 1, B > 0 such

that for every p,q € X, we have

1

~dx(p.a) = B<dy(f(p), f(a)) < A-dx(p,q) + B.

If additionally there exists a constant C' = 0 such that the C-neighbourhood of

Im(f) is the whole of Y, then f is called a quasi-isometry.

Proposition 2.1.4. Let G be a group with finite generating sets S and S’. Then
the spaces Cays(G) and Cays (G) are quasi-isometric.

12
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We now introduce some basic notions about metric spaces. Let (X, d) be such

a space.

Definition 2.1.5. Let J be a connected subset of R. A curve v : J — X is called
a geodesic if for every t,t' € J we have d(v(t),v(t')) = |t' — t|. The space X is
called geodesic if for every pair (x,y) € X? there exists a geodesic vy : [0, D] —» X
for which y(0) = x and (D) = y, and it is called uniquely geodesic if this

geodesic is always unique.

Remark 2.1.6. The Cayley graph of any group G is always a geodesic space.

However it is not uniquely geodesic, except when G is free.

One would like to define from a metric d on a space X the lengths of curves

on X.

Definition 2.1.7. Let 7 : [a,b] — X be a curve (or path) in X. The length of v
is defined by

n—1
{(7y) = sup {Z d(y(t:),v(tix1)) | In=0:3Hg=a<t; <--- <ty = b} .
i=0

2.1.2 Piecewise-Euclidean simplicial complexes

In this section we introduce simplicial complexes, and more precisely piecewise-

Euclidean simplicial complexes. We start with a more general definition:

Definition 2.1.8. An abstract simplicial complex X consists of the following
data.

(1) A non-empty set V called the set of vertices of X.

(2) A collection S of finite non-empty subsets A € V' called the set of simplices
of X, and satisfying:

(2.1) for every v € V, we have {v} €S ;

(2.2) for any simplex A € S and any non-empty set A’ € A we have A’ € S.
One often refers A as an n-simplex if |[A] = n + 1 (alternatively, we say A has
dimension n). An abstract simplicial complex Y is a subcomplex of X if the
vertex set of Y is a subset of V' and if every simplex of Y is a simplex of X. A

subcomplex of a simplex A that is itself a simplex is called a face of A.

13
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One often thinks of a simplicial complex in a geometric way, and not purely
as an abstract set of vertices and simplices. Therefore we would like to be able
to realise a given abstract simplicial complex geometrically. This is the goal of

the next definition.

Definition 2.1.9. Consider an abstract simplicial complex X with vertex set V
and simplex set S. Let R" be the real vector space with basis V. The geometric

realisation |A| of a simplex A € S is the set of points in RY of the form

DAv,  with A, €[0,1] and > A, =1.
vEA vEA
The geometric realisation of X is the subset | X| of RV obtained as the union

of the geometric realisations of all the simplices of X.

Remark 2.1.10. (1) For the sake of having a lighter writing, we will often not
distinguish an abstract simplicial complex X from its geometric realisation | X/,
and we will simply call either of them a simplicial complex.

(2) The space obtained by looking at the union of all the simplices of dimension
at most n of a simplicial complex X is called the n-skeleton of X and is denoted

X,

So far we have not defined any topology nor any metric on our simplicial
complexes. We do this now. Note that in this thesis we will mostly focus on
simplicial complexes whose simplices are Euclidean, hence the following definition

is specific to that case.

Definition 2.1.11. A piecewise-Euclidean simplicial complex is a space
obtained as follows.

(1) Start with a simplicial complex X with vertex set V' and simplex set S.

(2) Choose a set Shapes(X) of Euclidean geodesic simplices of finite dimension,
where an Euclidean geodesic simplex of dimension n is the convex hull of
n + 1 affinely independent points in E”.

(3) For every simplex A € S, choose an affine isomorphism fa : A — A, where
A'is an element of Shapes(X), and require this isomorphism to be such that for
every face A’ of A, the map fi' o far is an isometry from A’ onto its image in

A. Then, define a metric on A by pushing the metric coming from A through

14
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fa. The resulting space is a simplicial complex in which every simplex has been

given an Fuclidean metric.

While simplices in a piecewise-FEuclidean simplicial complexes come with as-

sociated Euclidean metrics, we still have to define a metric on the whole space.

Definition 2.1.12. Let X be a piecewise-Euclidean simplicial complex, and let
xz,y € X. Then a map 7 : [a,b] — X is called a simplicial curve if there are

to =a < t;,< -+ <t,_1 <b=t,such that for every i € {0,--- ,n — 1}, the

image of the restriction v; :== v is contained in a single simplex of X. The

[titit]

length of v is then defined by

() = 3 1),

where £(7;) is the length of the curve v; on its given simplex, as computed in

Definition [2.1.7] We can then put a pseudo-metric on X by saying that
dx(x,y) = inf{l() | v is a simplicial curve connecting x and y}.

Note that when Shapes(X) is finite, then the above map d is a true metric and
the space (X, d) is a complete geodesic space [17, Chapter 1.7].

Finally, we would like to bring light on the different types of actions that
naturally appear in geometric group theory, as well as on the types of actions
that will be the most common in this thesis. Our first definition concerns actions

on simplicial complexes:

Definition 2.1.13. Let X and Y be two simplicial complexes. Amap f: X - Y
is called a simplicial map if the image through f of the vertices of any simplex
of X span a simplex of Y. The map f is called a simplicial isomorphism if it
is simplicial and bijective. The action of a group G on a simplicial complex X
is called simplicial if for every g € G the action map x — ¢ - x is a simplicial

isomorphism.

Remark 2.1.14. Let f : X — Y be a simplicial isomorphism between two

piecewise-Euclidean simplicial complexes and suppose that the restriction of f to

15



Chapter 2 — Preliminaries

any simplex of X is an isometry onto its image. Then f is a global isometry from

XtoY.

Our next definitions apply to simplicial complexes, although it doesn’t cost

more to introduce them in a more general setting.

Definition 2.1.15. Let GG be a group acting on a topological space X. Then we
say that:

(1) G acts on X by isometries if X is a metric space and for every g € G the
action map x — ¢ - x is an isometry;

(2) G acts properly on X if for every compact set K < X the set
lge G| Kn(g-K)# T}

is finite;

(3) G acts cocompactly on X if there exists a compact set K € X such that

Jg - K=X.
geG
Equivalently, the quotient space X /G is compact.
The action of G on X is called geometric if G acts properly and cocompactly

by isometries.

Geometric group theory is marked by two predominant kinds of actions, the
first kind of action being the geometric actions. When a group G acts geo-
metrically on a proper geodesic metric space X, the group and the space are
quasi-isometric (this is known as the Svarc-Milnor lemma). Studying these kind
of actions is essential to understand notions such as hyperbolicity, CAT(0)-ness
(see Section and many other properties related to groups. The second kind
of actions that have been intensely studied are actions that are cocompact and by
isometries but not necessarily proper. A prime example of this kind of actions is
the Bass-Serre theory developed in the 1970’s (see [87]). In particular, the actions
associated with fundamental groups of graphs of groups and complexes of groups
(see Section are very often not proper. The group actions involved in this

thesis are mostly of this second kind.
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The last definitions we would like to introduce are associated with group
actions by isometries. As it turns out, these actions are particularly well-behaved

when the space under study is a piecewise-Euclidean simplicial complex.

Definition 2.1.16. Consider an action of G' by isometries on a metric space X.

The translation length of an element g € G is defined as

l9l] := nf{dx (2,9 - 2) [ 2 € X}.

The (potentially empty) set of points x € X for which the translation length of g

is reached is called the minset of g, and is denoted by

Min(g) ={xe X | dx(z,g-z) =||9/|}.

Proposition 2.1.17. [17, Chapter II.6] Let G be a group acting by simpli-
cial isometries on a connected piecewise-Fuclidean simplicial complex X with

Shapes(X) finite. Then for every g € G the set Min(g) is non-empty.

Definition 2.1.18. Let GG be a group acting by simplicial isometries on a con-
nected piecewise-Euclidean simplicial complex X with Shapes(X) finite, and let
g € G. In regards to Proposition there are two possibilities:

(1) If ||g|| = 0, then g is called elliptic. In that case, g fixes pointwise a non-
trivial set of points of X. This set is called the fixed set of g and is denoted by
Fixz(g) (note that Fiz(g) = Min(g)).

(2) If ||g|| > 0, then g is called hyperbolic. In that case, g admits at least one

geodesic called an axis of ¢, that is, a geodesic v in which we have

Vo e, dx(z,9-7) = ||g]|

Note that every axis of ¢ is contained inside of Min(g).

2.2 Curvature

The idea of using curvature to study groups first emerged in the late 19th cen-
tury from the study of groups acting on spaces that we thought had interesting

curvature-like properties. This was notably permitted by the recent work on
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hyperbolic geometry and soon Riemannian geometry. Although not being for-
malised before the mid to late 20th century, many noticed that when a group
acts nicely (for instance, geometrically) on a space with specific curvature con-
ditions, there is a set of tools that can be used to describe various properties of
the group itself. Today the study of groups by means of curvature-like proper-
ties has greatly developed, notably when the curvature is non-positive. A lot of
different notions of non-positive curvature emerged following Gromov’s hyperbol-
icity condition introduced in the 1980’s. In this section, we describe four of these
conditions.

Hyperbolicity is a strong group property of negative curvature that inspired
most of the conditions of non-positive curvature today. This thesis does not
revolve around the hyperbolicity condition as no Artin group (except the free
groups) are hyperbolic. Nevertheless, it is still an important notion to men-
tion. Acylindrical hyperbolicity is a generalisation of hyperbolicity that has been
proved for many groups, including various Artin groups. This notion will be at the
centre of Chapter 3 The CAT(0) property is a strong property of non-positive
curvature that is well-suited for geodesic spaces. It is a central notion of this
thesis, and notably of Chapter [3|and Chapter[5] Finally, systolicity is a combina-
torial analogue of the CAT(0) property, that works usually better when studying

high-dimensional simplicial complexes. It will play a central role in Chapter

2.2.1 Hyperbolicity

The theory of hyperbolic groups was introduced by Gromov in 1987 (|45]|). His
inspirational work highly participated to the growth of geometric group theory
and led numerous mathematicians to work on various notions of non-positive cur-
vature for groups. The hyperbolic condition emanates from the wish to formalise
the idea that certains groups (seen as metric spaces) behave in a way that shares a
lot of similarities with negatively curved spaces coming from classical hyperbolic

geometry. We define this notion thereafter.

Definition 2.2.1. Let X be a geodesic metric space and let 6 = 0. Then X is
d-hyperbolic if any geodesic triangle [z,y] U [y, 2] U [z, z] is 0-thin, that is, any

of the three sides is contained in the union of the d-neighbourhoods of the other
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two sides.

Figure 2.1: A J-thin triangle.

We thereafter give a few examples of the most basic hyperbolic spaces.

Example 2.2.2. The following spaces are d-hyperbolic for some o > 0:

(1) Bounded spaces: take d to be at least the diameter of the space.

(2) Trees and real-trees: any geodesic triangle is degenerate, hence these spaces
are 0-hyperbolic.

(3) The hyperbolic plane H? with its usual metric is In(1 + +/2)-hyperbolic.

For a finitely generated group GG, one can define a notion of hyperbolicity from
the notion of d-hyperbolicity of its Cayley graphs. As it turns out, the condition
of hyperbolicity for G does not depend on the choice of finite generating set
associated to which the Cayley graph corresponds. This comes from the fact that
the Cayley graphs of G are all quasi-isometric with each others (see Proposition

2.1.4), along with the following theorem:

Theorem 2.2.3. Let X and Y be two quasi-isometric metric spaces. If X is

d-hyperbolic for some § = 0 then Y 1is A\-hyperbolic for some A = 0.
Thus, one can simply define the notion of hyperbolicity as follows:

Definition 2.2.4. Let G be finitely generated group. Then G is hyperbolic
if there is a finite generating set S such that Cays(G) if d-hyperbolic for some
6 =0.

Remark 2.2.5. A group G will be called elementary hyperbolic if it is virtu-
ally cyclic.

We now give some examples of hyperbolic groups.
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Theorem 2.2.6. The following groups are hyperbolic:

(1) Finite groups: their Cayley graphs are bounded.

(2) More generally, elementary hyperbolic groups are hyperbolic.

(8) Free-groups: their Cayley graphs relatively to the standard generators are
trees.

(4) Groups acting geometrically on H?, such as cocompact Fuchsian groups.

(5) Fundamental groups of closed surfaces of negative Euler characteristic.

(6) Groups acting properly discontinuously on locally finite trees.

(7) Certain small cancellation groups such as C'(1/6) groups.

(8) Many random groups (|79], |24]). In that sense, “most” groups are hyperbolic.

Thereafter we give some major consequences of being a hyperbolic group.

Theorem 2.2.7. Let G be a (non-elementary) hyperbolic group. Then:

(1) G satisfies the Tits alternative, i.e. either it is virtually solvable, or it has
non-abelian free subgroups.

(2) G is finitely presented and has solvable word problem ({17, Chapter IIL.T'.2]).
(3) G has exponential growth rate.

(4) G is biautomatic.

Even though a lot of groups are hyperbolic, there are many groups that arise
naturally which are not hyperbolic. For instance, any group containing a sub-
group isomorphic to Z? cannot be hyperbolic. However, many groups still behave
in a fashion that shares a lot of features with hyperbolic groups. Some of these

notions are made explicit in the following sections.

2.2.2 Acylindrical hyperbolicity

The notion of acylindricity goes back to Sela ([86]) and gives conditions on the
diameter of fixed-set points of elements associated with group actions on trees.

In the more general case of metric spaces, the definition is due to Bowditch ([12]):

Definition 2.2.8. A group G is said to act acylindrically on a space X if for
every R > 0, there exist N > 0, L > 0 such that

Ve,ye X, d(z,y) = L= |{ge G | d(z,g92) < R, d(y,9y) < R}| < N.
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One can see this condition as a kind of properness of the action of G on X x X,

minus a “thick diagonal”.

> L

Figure 2.2: The condition of acylindrical hyperbolicity. Points at distance at least
L must be such that the size of the intersection of their “R-quasi-stabilisers” is
uniformly bounded by N.

The definition of acylindrical hyperbolicity itself is due to Osin (|80]):

Definition 2.2.9. A group G is said to be acylindrically hyperbolic if it is
not virtually cyclic and has an acylindrical action with unbounded orbits on a

hyperbolic space.

While acylindrically hyperbolic groups are not hyperbolic in general, the no-
tion of acylindrical hyperbolicity comes from the idea of a group having “hyper-
bolic directions”. The notion of acylindrical hyperbolicity unifies many previously
studied notions. For a start, it generalises the condition of weak acylindricity in-
troduced by Hamenstddt (]50]). It is also related to the existence of weakly
contracting elements in the sense of Sisto (|89]). Last but not least, it is a gener-
alisation of the notion of weak proper discontinuity (WPD) introduced by Bestv-
ina and Fujiwara (|10]), that resembles the condition of acylindricity although the
action only needs to be acylindrical in the direction of (quasi) axes of hyperbolic

elements:

Definition 2.2.10. Let GG be a group acting on a geodesic metric space X. We
say h € GG is a WPD element if

Ve,Vz e X,AM e N : |[{ge G | d(z, gz) < &,d(hM(z), gh™ (2)) < £}| < o0.

If every hyperbolic element is WPD then we say G acts on X weakly properly

discontinusouly.
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Merging these different notions, the notion of acylindrical hyperbolicity also

merges many classes of groups:

Theorem 2.2.11. [80]

(1) Non-elementary hyperbolic groups are acylindrically hyperbolic.

(2) Non-virtually-cyclic relatively hyperbolic groups with proper peripheral sub-
groups are acylindrically hyperbolic.

(3) All but a finite number of mapping class groups of connected oriented surfaces
are acylindrically hyperbolic, and the other ones are finite.

(4) The outer space Out(F, ) is acylindrically hyperbolic for n = 2.

(5) Groups acting properly on a proper CAT(0) space with rank 1 elements are

either virtually cyclic or acylindrically hyperbolic.

While being a weaker property than hyperbolicity, acylindrically hyperbolic

groups still satisfy a lot of interesting properties:

Theorem 2.2.12. [80] Let G be an acylindrically hyperbolic group. Then:

(1) G has finite centre.

(2) For every decomposition G = Gy x Gy as a direct product one of Gy or Gy is
finite.

(3) For every decomposition G = Gy --- Gy, as a product of subgroups one of the
G;’s must be acylindrically hyperbolic.

(4) G contains non-abelian free normal subgroups.

(5) G is SQ-universal, that is, every countable group embeds as a subgroup in
some quotient of G.

(6) Every s-normal subgroup H of G is acylindrically hyperbolic, where H < G
1| =

is s-normal in G if |H ngHg~ oo for every g € G.

Checking whether an action is acylindrical can be tough, as it essentially comes
down to controlling the geodesics between two metric balls. Instead, one usually
looks for an “acylindrical direction” in the action, more precisely a WPD element
with a strongly contracting orbit, from which one can construct an acylindrical
action on a larger space. This can be achieved using a criterion from Bestvina,
Bromberg and Fujiwara (see Theorem [2.2.15). We need one definition before

introducing this criterion:
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Definition 2.2.13. Let X be a geodesic metric space, let Y be a subset of X, and
let B = 0. Let now my : X — Y denote the nearest point projection onto Y. Then
Y is said to be B-contracting if for every point z € X\Y and for every k > 0 such
that the ball Bx(x,k) does not intersect Y, we have diam(wy(Bx(z,k)) < B.
An element h of a group G acting on X is said to have B-contracting orbit if

h acts hyperbolically and the axes of h are B-contracting.

Example 2.2.14. (1) For any element h € Isom(H?) acting hyperbolically on
H? there is a B > 0 such that h has a B-contracting orbit.

(2) A contrario, no element h € Isom(E?) admits a B-contracting orbit.

Theorem 2.2.15. [6, Theorem H] Let G be a group acting on a geodesic metric
space X such that h € G is a hyperbolic WPD element with B-contracting orbit.
Then G 1is either virtually cyclic or acylindrically hyperbolic.

That approach proposed by the above theorem was followed to prove the
acylindrical hyperbolicity of different classes of groups (|9],[47],[72]). Note that
Theorem does not require to make explicit an acylindrical action, nor to
act on a hyperbolic space. That said, this condition remains hard to check when
the space acted upon is not locally compact. In Chapter |3, we study acylindrical
hyperbolicity by means of a criterion from Martin (|[67]) that resembles Theorem
but that works well when looking at actions on spaces that are not locally

compact (see Theorem [3.4)).

2.2.3 The CAT(0) property

In the 1940’s, Aleksandrov formulated a condition of curvature for all geodesic
spaces that was directly inspired from the notion of curvature in Riemannian
geometry. This condition was later formalised by Gromov as the CAT (k) condi-
tion, named in reference to Cartan, Aleksandrov, and Toponogov. While being
rather easy to state, the CAT (k) condition allows to extend to all geodesic spaces
the notion of curvature by comparing the triangles of a geodesic space to those
of the 2-dimensional Riemannian manifold of constant curvature x. A particu-
larly interesting case, and one on which this thesis will intensely focus, is that of
CAT(0) spaces. We recall this condition in full details thereafter. In this section,
we follow parts of [17, Chapter II|.
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Definition 2.2.16. Let X be a geodesic space and let T == [z, y] U |y, 2] U [z, 2]
be a geodesic triangle in X. Then a comparison triangle for 7' is a triangle
T = [7,5]) U [y, Z] U[Z, ] in the Euclidean plane E? for which we have dx (r,y) =
dg2(T,7), dx(y,2) = dg=(y,Z) and dx(z,z) = dg2(Z,7). Note that any point
p € T naturally corresponds to a unique point p € T called the comparison point
of pin T.

The space X is said to be CAT(0) if any geodesic triangle T := [z, y] U [y, z] U
[z, ] is “thinner” than a comparison triangle T in E?, that is, for every pair of

points p,q € T, we have dx(p,q) < dg=(p, Q).

y® 9 Ttz yeT e

Figure 2.3: The CAT(0) condition. The triangle T is a comparison triangle for
T in E2

Remark 2.2.17. An important thing to notice is that CAT(0) spaces are always

uniquely geodesic.

Example 2.2.18. The following spaces are CAT(0) spaces:

(1) Universal cover of non-positively curved compact manifolds.

(2) Euclidean buildings.

(3) Simply connected cubical complexes in which links of simplices are flag sim-

plicial complexes.

The following definition and theorem allow to rephrase the CAT(0) condition

into a more local condition:

Definition 2.2.19. A metric space X is said to have curvature < 0 if it is
locally CAT(0), i.e. for every x € X there is a k > 0 such that the ball Bx(z, k)
is a CAT(0) space.

Theorem 2.2.20. (17, Chapter I1.5] Let X be a piecewise- Euclidean simplicial

complex with Shapes(X ) finite. Then the following are equivalent:
(1) X is CAT(0);
(2) X is uniquely geodesic;

24



Chapter 2 — Preliminaries

(3) X has curvature < 0 and contains no isometrically embedded loops;

(4) X has curvature < 0 and is simply connected.

Checking whether an Euclidean simplicial complex is CAT(0) is much easier
in dimension 2 than in higher dimension. This is due to Lemma below.
First we need to introduce two very useful notions that encapsulate the notion of
neighbourhoods for simplices in a simplicial complex. These notions will be used

throughout the thesis.

Definition 2.2.21. Let X be a simplicial complex and let o be a simplex of X.
The star of ¢ in X is the subcomplex Stx (o) defined as the union of all the
simplices of X that contain o. The link of o in X is the subcomplex Lkx (o)
defined as the union of the simplices of Stx (o) that are disjoint from o.

Let now z be any point of X, and let ¢ := supp(x) be the smallest simplex
of X containing x. Then the star Stx(z) of = is the star of o, and the link of
x is the subcomplex Lkx(x) defined as the union of the simplices of Stx(x) that

don’t contain z.

Definition 2.2.22. Let X be a piecewise-Euclidean 2-dimensional simplicial
complex. Then the only links that are not trivial nor discrete are the links
of vertices (and more generally points) of X. In that case, the link Lkx(z) of
a point x € X is a subcomplex of X isomorphic to a graph. While this graph
inherits a metric from the ambient space X, we define another metric on Lkx(z)
called the link metric or the angular metric as follows:

o for every edge o of Lkx(z) and every points p, g € o, the distance dpi, (2)(p, q)
between p and ¢ is defined as the angle Z,(|z,p], [z, q]), where [z,p] and [z, q]
are the (unique) geodesics of X connecting = to p and ¢ respectively (note that
this angle can be mesure in a single simplex that isometrically embeds into E?);

e the metric on Lky(x) is obtained from gluing the metrics of the simplices of
Lkx(z), as done in Definition [2.1.12]

Definition 2.2.23. Let X be a piecewise-Euclidean 2-dimensional simplicial
complex and let x be any point of X. Let also v and 7' be two geodesics meeting
at . Let € > 0 be small enough so that the sphere Sx(z,¢) is contained inside of
Stx(x) and so that v and +' intersect Sx(x,¢) at two points p and ¢ respectively.

The sphere Sx(x,¢) can be seen as a graph affinely isomorphic to Lkx (), and we
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push the link metric of Lkx(x) (see Definition [2.2.22)) onto Sx(x,¢) through that
affine isomorphism. We call this metric dg, ;). The angle Z,(v,7") between

and 7' at x is defined as

Ly(7,7") = dsy (a0 (s Q)

Definition 2.2.24. Let X be a metric space, and consider the family €2 of all
the isometrically embedded (equivalently, non-contractible) loops v : [a,b] — X
in X. Then the systole of X is defined by

sys(X) == inf{l(y) | v € Q}.

Lemma 2.2.25. [17, Chapter I1.5] Let X be a piecewise-Euclidean 2-dimensional
simply connected simplicial complex with Shapes(X ) finite. Then X is CAT(0) if
and only if for every vertex v € X, the length of an isometrically embedded loop

in Lkx(v) is at least 2w (in other words, sys(Lkx(v)) = 27 ).

As with the notion of hyperbolicity, the notion of CAT(0) spaces gives rise to
a notion of CAT(0) groups:

Definition 2.2.26. A group G is said to be CAT(0) if it acts geometrically on a
CAT(0) space.

Example 2.2.27. The following are CAT(0) groups:

(1) The free abelian groups Z" (acting naturally on R™).

(2) The free groups F,, (acting on their usual Cayley graphs).

(3) Fundamental groups of closed surfaces of non-positive Euler characteristic
(

acting on their universal cover).

2.2.4 Systolicity

In the early 2000’s, people such as Haglund, Januszkiewicz and Swiatkowski in-
troduced new notions of non-positive curvature for simplicial complexes ([51],
[61]). In 2006, Januszkiewicz and Swiatkowski formalised a more general notion
of non-positive curvature for simplicial complexes by means of two conditions

known as k-largeness and k-systolicity (|62]). Their study can be thought of as
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an extension of small cancellation theory to higher dimensions. Despite not being
equivalent to the CAT(0) condition, systolic spaces (resp. groups) share a lot of
features with CAT(0) spaces (resp. groups). Hence why this notion can be seen
as a combinatorial analogue of the CAT(0) condition. One of the useful things
about this notion is that it does not require the presence of a metric on the space
of study. Contrary to the CAT(0) condition which can be very hard to check
for spaces of high dimension, the notion of systolicity often behaves nicely in any
dimension.

Recall that if v is a simplicial path in the 1-skeleton of a simplicial complex
X, then the simplicial length of v is simply the number ¢(v) of edges contained
in . The systole of a simplicial complex X is defined in a similar fashion as in
Definition [2.2.24] although the simplicial complex X is not required to hold a

metric. The next definitions can be found in (|62]):

Definition 2.2.28. The systole of a simplicial complex X is the minimal sim-
plicial length of a non-homotopically-trivial loop in its 1-skeleton X, For

ke {3,..., 00}, we say that a simplicial complex X is locally k-large if
sys(Lkx(A)) = k

for all simplices A € X. We say that X is k-large if it is locally k-large and
sys(X) = k. The complex X is k-systolic if it is connected, simply-connected

and locally k-large. Finally, X is called systolic if it is 6-systolic.

Definition 2.2.29. A group G is k-systolic if it acts simplicially, properly dis-
continuously and cocompactly on a k-systolic simplicial complex. It is systolic

if it is k-systolic for some k > 6.

The notion of systolicity was partially inspired from the wish to answer to
a question asked independently by Moussong, Gromov and Bestvina ([46], [74])
who suggested there was a bound on the (cohomological) dimension a hyperbolic
Coxeter group could have. This was proved wrong in [62|, where the authors
gave examples of hyperbolic Coxeter groups with arbitrary high cohomological
dimension. They also proved that these Coxeter groups were systolic. In [57], the

authors also proved that large-type Artin groups were systolic groups.
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The notion of systolicity has many consequences for a space. For instance,
systolic spaces have path-fixing properties and fixed-point theorems similar to
what can happen in other types of non-positively curved spaces such as CAT(0)
spaces. Some of these properties will turn out to be very useful in Chapter [4]
where they will be given in full details. For now, we only decide to give the

following theorem:

Theorem 2.2.30. [62, Theorem 4.1] Any finite dimensional systolic simplicial

complex is contractible.

Systolic and k-systolic groups also behave is a nice way. This is highlighted
by the following two theorems, which should convince the reader on the strength

of systolic geometry.
Theorem 2.2.31. Any 7-systolic group is word-hyperbolic.
Theorem 2.2.32. Any systolic group is biautomatic.

Consequences of hyperbolicity are given in Section Biautomaticity on
its own also implies interesting properties. For instance, biautomatic groups have
quadratic isoperimetric inequalities, their abelian subgroups are undistorted, and

their solvable subgroups are virtually abelian.

2.3 Simple complexes of groups

Let G be a group acting by isometries on a simplicial complex X, and suppose that
the action admits a fundamental domain Y that is strict, that is, two points of YV
never lie in the same orbit. Then one can reconstruct X only from looking at GG, Y,
and the stabilisers of the simplices of Y. The data of these stabilisers subgroups
can be put together in a system called a complex of groups, that resembles the
notion of graphs of groups coming from Bass-Serre theory (although complexes
of groups work in higher dimension). We introduce these notions in full details

thereafter. For additional information, we refer the reader to |17, Chapter 11.12].

Definition 2.3.1. A simple complex of groups G(Q) over a poset (i.e. par-
tially ordered set) Q consists of:
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(1) For each element o € Q, a group G, called the local group at o.

(2) For each 7 < o, an injective morphism ., : G, — G, such that

T<0o< p:>z/}‘rp = wTUwO'p'

A simple morphism ¢ from G(Q) to a group G is a map written as ¢ : G(Q) —
GG that associates to each element o € Q a morphism ¢, : G, — G such that if
T < o then ¢, = ©,1¥,,. The map ¢ is said to be injective on the local groups if
¢, 1s injective for each 0 € Q. The direct limit of the system (G,,1,,) is the

—

group G(Q) defined by

5(—9\) = (¥oealo) /{¢m(h) = h,Vhe G,,¥(r,0) : 7 <o}

This group is called the fundamental group of the complex of groups G(Q).

Example 2.3.2. (1) A n-dimensional simplex of groups is a complex of groups
over the poset of the faces of a simplex of dimension n. More precisely, if A is a
simplex of dimension n with faces F7,--- ., F,,, a face of codimension k in A can

be written in a unique way as an intersection

F] = ﬂFl’

=

where I < {1,--- ,n}is such that |I| = k. To obtain a simplex of groups, associate
with every face F7 a local group G'p, and with every inclusion F; € F; an injective
morphism Yp,p, : Gp, <= GF,. A triangle of groups is a simplex of groups with
n = 2 (see Figure 2.4 for an example).

(2) Let A be an equilateral triangle in the Euclidean plane E?, and let a, b
and ¢ denote the isometries of the plane defined by doing symmetries along the
different edges of A. Let now G be the subgroup of Isom(E?) generated by a, b
and c (note that G acts on E? by isometries). Let Q be the poset of simplices
of A, and for every simplex o € Q, let G, be the subgroup of G corresponding
to the stabiliser of ¢. Finally, for two simplices 7 < o, let 1., be the natural
inclusion of G, into G,. Then the system (G,, ¥, ) is the simple triangle of groups
G(Q) described in Figure The fundamental group of G(Q) is precisely the
(Coxeter) group G.
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Figure 2.4: Triangle of (Coxeter) groups with fundamental group G. The local
group corresponding to the face is {1}, those corresponding to the edges are the
cyclic groups {a) = Z/27Z, {by = Z/2Z and {c) = Z/27Z, and those corresponding
to the vertices are the dihedral groups {a,b) = Ds, {a,c) = D3 and {b,c) = Ds.
The maps are just the natural inclusions.

Definition 2.3.3. Let X be a simplicial complex and let P be the poset formed
by the simplices of X. Let G be a group acting simplicially on X, and suppose
that the fundamental domain Y of this action is strict, i.e. such that distinct
points of Y always lies in distinct orbits. Let now Q :={c € P | o € Y}. We can
recover a complex of groups G(Q) in the following way :

e To each element o € Q corresponds a subgroup G, of G which is the stabiliser
of o through the action of G.

e To every inclusion 7 € ¢ corresponds a map ., : G, — G, that is the natural
inclusion of the corresponding stabilisers.

The complex of groups G(Q) is then defined as

G(Q) = {(Gavwﬂ'a) | o,T € Q, T C U}.

Notice that the inclusions ¢, : G, — G give a simple morphism ¢ : G(Q) - G
that is injective on the local groups. A complex of groups G(Q) is said to be
strictly developable if there exists a simplicial complex X and a simplicial
action of G on X with strict fundamental domain some subcomplex Y, such that

the complex of groups recovered in the previous way is precisely G(Q).

Definition 2.3.4. Let Y be a simplicial complex and let Q be the poset of its
simplices. Let now G(Q) be a complex of groups and let ¢ : G(Q) — G be a

simple morphism to some group G, that is injective on the local groups. The
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development D(Y, ¢) of Y along ¢ is defined by
D(Y,p)=GxY /_

where (g,2) ~ (¢',2') <= z = 2’ and g '¢’ belongs to the local group of the
simplex supp(x). In particular, if G = /(5), then the space D(Y, p) is called
the universal cover of G(Q) with fundamental domain Y. This space is always

connected and simply connected (|17, Theorem I1.12.20]).

We have just seen in Definition that any strictly developable complex
of group admits a simple morphism that is injective on the local groups. Using

Definition [2.3.4] one can prove that this is actually an equivalence:

Theorem 2.3.5. (17, Theorem I1.12.18] A complex of groups G(Q) is strictly

developable if and only if the natural simple morphism ¢ : G(Q) — G(Q) is

wnjective on the local groups.

Remark 2.3.6. The situation exposed in Theorem [2.3.5| can be synthesised as
follows. The space X = G xY /~ is a simplicial complex on which G acts in
such a way that the stabiliser of a simplex of the form (1, o) is precisely G,. The

stabiliser of a simplex of the form (g, c) is gG,g7'.

Example 2.3.7. (1) The triangle of groups described in Figure [2.4]is developable.
This comes from the fact that the natural inclusions of the various subgroups into
G form a simple morphism ¢ : G(Q) — G/(a) that is injective on the local groups.

(2) Consider the poset Q with 5 elements that is described in Figure From
this poset we create a complex of groups G(Q) in the following way. The local
group corresponding to the central vertex is trivial, the local groups corresponding
to the right-most vertex is isomorphic to Z2, and all the other local groups are
isomorphic to Z. The maps coming from the upper and lower vertices to the
left-most vertex are the identity maps, and the map coming from the upper
(resp. lower) vertex to the right-most vertex is the identity onto the first (resp.
the second) standard generator of the Z? group. It is not hard to see that the
fundamental group of this complex of groups is CT(Q\) ~ Z (in the quotient, each
of the five generators are identified). In particular, there is no injection from the

local group of the right-most vertex into this fundamental group, and thus the

map ¢ : G(Q) — Z cannot be simple. This complex of groups is not developable.

31



Chapter 2 — Preliminaries

SN

(€) <—{1}——=(s,1)

ANV

Figure 2.5: Example of a non-developable complex of groups G(Q). The maps
are the inclusions described in Example [2.3.7,(2).

2.4 Artin groups

In this section we recall the basic notions surrounding Artin groups, giving more

details than in the introduction.

2.4.1 Definitions

We start by recalling the definition of an Artin group:

Definition 2.4.1. Let I' be a (finite) simplicial graph with vertex set V(I') and
edge set E(I'), and suppose that every edge e®* € E(T) is given a coefficient
Map € {2,3,4,---}. Then I" defines an Artin group Ar whose presentation is
given by

Ap=( V(@) | aba--: = bab--: Ve e E(T) ).

Mqp terms  mgp terms
We set mg, = o0 when the vertices a and b are not connected by an edge. The
elements of V(I") are called the standard generators of Ar. The rank of Ar
is the cardinality of V (I'), that is, the number of standard generators of Ar. The

graph I' also defines a Coxeter group W whose presentation is given by

Wr=(V({I)|s*=1YseV(), and aba--- = bab---,¥e™ € BE(I') ).

Mgy terms Mep terms

The graph I' is called the defining graph of Ar and Wr.

Remark 2.4.2. There is a natural projection Ar — Wt that restricts to the
identity on the standard generators. The kernel of that projection is often called

the pure Artin group associated with I".
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Example 2.4.3. Artin groups form a large family of groups, that range from free
abelian groups to free groups. Some examples or more complicated Artin groups

are given in Figure |2.6

2 * 2

Figure 2.6: Three graphs defining Artin groups. On the left: the graph defining
the braid group B4 on four strands. In the middle: the graph defining an Artin
group isomorphic to Z + Z?. The decomposition of the graph in its connected
components is highlighted. On the right: the graph defining an Artin group iso-
morphic to F, x F,, where F; represents the free group on 2 generators. The
decomposition of the graph as a 2-join is highlighted.

One of the most basic tools when working with Artin groups is to consider
their parabolic subgroups, which are subgroups corresponding to subgraphs of
the defining graph. Before giving an explicit definition of these subgroups, we

recall the following very useful theorem of Van der Lek:

Theorem 2.4.4. [92] Let T be a graph defining an Artin group Ar, let S be a
subset of V(T'), and let T be the subgraph of T' spanned by the vertices of S. Then

the subgroup of Ar generated by S is isomorphic to the Artin group Ar.

Remark 2.4.5. (1) A subgraph of I' spanned by a subset S < V(I") will be called
induced, or induced by S.

(2) For an induced subgraph I" of T', we will just write Ap to talk about the
subgroup of Ar generated by V(I"). Reciprocally, if Ar is an Artin group, the

notation Ap will always be used to describe the subgroup of Ar generated by

V().

Definition 2.4.6. Let Ar be an Artin group. A subgroup of Ar is called a
standard parabolic subgroup if it is of the form A/, where I is an induced
subgraph of I'. A subgroup P of Ar is a parabolic subgroup of Ar if it is

conjugated to a standard parabolic subgroup of Ar.
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Definition 2.4.7. A parabolic subgroup P of Ar will be said to be of type n
if P = gAprg™! for some element g € Ar and the number of vertices in V(I") is
n. When we care about the precise structure of the subgraph I, we will also say

the parabolic subgroup P has type I".

Remark 2.4.8. If A is a standard parabolic subgroup of type 2 with standard
generators a,b € V(I'), then we will write A, to talk about Ap. This kind
of parabolic subgroup is called a dihedral Artin subgroup if 3 < my, < 0.
Similarly if A has type 3 with standard generators a,b,c € V(I'), then we will

write A,y instead of Ap.

2.4.2 Main questions

Despite having a relatively simple presentation, the majority of Artin groups re-
main quite mysterious in general. In this section we present the main conjectures
about Artin groups, as well as where the research stands towards proving them,
prior to our work.

A reason why most of the conjectures about Artin groups remain open in
general is that the family of Artin groups is so wide that it is hard to create
an argument that works for all Artin groups at once. When working on Artin
groups, one usually restricts to a specific class of Artin groups, which allows the
use of more specific tools.

Consider any defining graph I' and its associated Artin group Ar. On one
hand, if the graph I" has connected components I'y, - -- , 'y, then the Artin group
Ar can be decomposed as a free product Ap = Ap, »---« Ap, (see Figure .
On the other hand, if the graph I" can be decomposed as a join of subgraphs
I'y, -+, 'y such that every edge of the join is labelled by a 2, then Ar can be
decomposed as a direct product Ap = Ap, x --- x Ap, (see Figure . When
this happens, I' is a 2-join, and the Artin group Ar is called reducible. It is
called irreducible otherwise. When Ar admits such a decomposition as a free
product or as a direct product, most of the information regarding Ar can be
obtained by looking at the subgroups of the form Ap, individually. This is why
most results about Artin groups assume without loss of generality that the Artin

groups are irreducible and have connected defining graphs. Finally, most results
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also assume that the Artin groups have rank at least 3, as Artin groups of rank

< 2 are very well understood already.

The first family of Artin groups to talk about is the family of spherical Artin
groups. An Artin group Ar is called spherical if the associated Coxeter group Wr
is finite. The family of spherical Artin groups contains the family of braid groups,
and can be seen as the “simplest” kind of Artin groups. Although their rank
can be arbitrary large, Artin groups of spherical type are very-well understood.
This is largely due to the existence of a (Garside) normal form ([38],[37],[35]).
Understanding the spherical Artin groups is essential to understand other types
of Artin groups. For a general Artin group Ar, the combinatorics of the spherical
(standard) parabolic subgroups of Ar can be used to define the so-called “Deligne

complex”; which has become an essential tool in the theory of Artin groups (see

Section [2.4.3)).

The second family we want to talk about is the family of 2-dimensional Artin
groups, on which this thesis heavily focuses. By definition, the dimension of
an Artin group is the maximal rank its spherical parabolic subgroups can have.
In particular, the dimension of an Artin group is also the (simplicial) dimension
of its associated Deligne complex. It is also conjectured that the dimension of
any Artin group equals its cohomological dimension, although this is still open
in general. We want to highlight that there is a very pratical way to see directly
from its defining graph whether a given Artin group has dimension 2, as is given

by the following theorem.

Theorem 2.4.9. Let Ar be an Artin group. Then the following are equivalent:
(1) The mazximal rank of a spherical parabolic subgroup of Ar is 2;
(2) The subgroups of Ar isomorphic to Z™ satisfy n < 2;
(3) For every triplet of generators a,b,c € V(I'), we have
1 1 1

+ + < L
Map Mge Mpe

Note the the third point in the above theorem simply says that every 3-cycle
in I' must be labelled with three coefficients whose sum of inverses is no greater

than 1. The class of 2-dimensional Artin group has been well-studied over the
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years. A prime feature of these groups is that their associated Deligne complexes
are 2-dimensional, which makes it much easier to study than in higher dimension.

The class of 2-dimensional Artin groups contain other well-studied classes,
such as the class of large-type Artin groups (every coefficient is at least 3), the
class of extra large-type Artin groups (every coefficient is at least 4), or even
the class of XXL Artin groups (every coefficient is at least 5). Many results have
been obtained for these classes, both by proving the corresponding groups are
non-positively curved, or by using the non-positive curvature properties of group

actions to recover information about the groups themselves.

The last family of Artin groups we want to mention is the family of Artin
groups of type FC (short for “Flag Complex”). An Artin group Ar is said to be
of type FC if every complete subgraph I of ' generates an Artin subgroup Ar
of spherical type. Although Artin groups of type FC can be of arbitrary high
dimension, their good combinatorial properties make it so that their associated
Deligne complex is somewhat well-understood. In particular, there are a lot of
geometric tools that can be used to study Artin groups of type FC, and hence
much is known about them. This family includes the aforementioned family of
spherical Artin groups, as well as the intensely studied class of right-angled
Artin groups, which are the Artin groups in which the only permitted coefficients
are 2 or co. However right-angled Artin groups are rather specific within the
spectrum of all Artin groups, and people usually study them using tools that can
be quite different from all the other families of Artin groups. Finally, we want to
highlight that the intersection between the class of 2-dimensional Artin groups
and the class of Artin groups of type F'C is precisely the class of triangle-free
Artin groups, i.e. the Artin groups Ar where the graph I'" does not contain any

3-cycle.

We now come back to enunciating the mains conjectures about Artin groups.

Note that all the conjectures stated below are open in general.

The first conjecture is the most easily-stated and concerns the torsion of ele-
ments in Artin groups. An element g of a group G is said to be torsion if there
is an n # 0 such that ¢" = 1. The group G is called torsion-free if it contains

no non-trivial torsion element.
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Conjecture 2.4.10. Every Artin group is torsion-free.

The second conjecture concerns the centres of Artin groups. Spherical Artin
groups are known to have non-trivial centres, that are isomorphic to Z™ for some
n = 1. If we assume the Artin groups are also irreducible, their centre become
isomorphic to Z and generated by the so-called “Garside element”. The centres

of non-spherical Artin groups remain more mysterious.

Conjecture 2.4.11. Every irreducible non-spherical Artin group has trivial cen-

tre.

The third conjecture has an algorithmic flavor. A group G with finite gener-
ating set S is said to have solvable word problem if there exists an algorithm
that takes as input any word w € Fyg, and tells in a finite time whether w repre-
sents the identity in G or not. The group G is said to have solvable conjugacy
problem if there is an algorithm that can say in a finite time whether any two
words w,v € Fg correspond to conjugated elements of G. Note that solving the

conjugacy problem directly solves the word problem.

Conjecture 2.4.12. Every Artin group has solvable word and conjugacy prob-

lems.

We now come back to parabolic subgroups. These subgroups are probably
the most-studied subgroups of Artin groups. Each of them is itself isomorphic
to a smaller Artin group (by Theorem , and they are thought to have a
very nice combinatorial behaviour. Many questions can be asked about parabolic
subgroups. Can they be defined purely algebraically? Are they conjugacy stable?
Are they root stable? A powerful way to obtain many results concerning parabolic
subgroups of Artin groups is first to study their intersecting properties. This leads

to the following conjecture:

Conjecture 2.4.13. The set of parabolic subgroups of any Artin group is closed

under (arbitrary) intersections.

Note that the analogue conjecture for Coxeter groups has been proved to be
true in general (|84]).

The next two conjectures have a geometric flavor or non-positive curvature.
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Conjecture 2.4.14. Every Artin group is CAT(0).

The CAT(0) property is not the only non-positive curvature property that
Artin groups are thought to have. In fact, there has been much progress in
the past few years in proving that (some) Artin groups are acylindrically hy-
perbolic. Irreducible spherical Artin groups have infinite centres, and thus can
never be acylindrically hyperbolic. However, their central quotients Ar / Z(Ar)
are acylindrically hyperbolic (|33]). For non-spherical Artin groups, the following

has been conjectured:

Conjecture 2.4.15. Every irreducible non-spherical Artin group is acylindrically

hyperbolic.

Note that acylindrically hyperbolic groups have finite centres, and that finite
torsion-free subgroups are trivial. Consequently, proving that an Artin group Ar
is acylindrical hyperbolicity and torsion-free directly proves that it has trivial

centre.

We now want to compile briefly the state of the research regarding the above

conjectures, priori to the work done in this thesis.

Theorem 2.4.16. The above conjectures have been proved for the following classes
of Artin groups (we only state the results that are mazimal):

Congjecture [2.4.10] (torsion-free-ness): 2-dimensional Artin groups and Artin groups
of type FC ([27]).

Congecture [2.4.11] (trivial centres): 2-dimensional Artin groups, Artin groups of

type FC and Artin groups whose defining graphs are not the star of a single vertex

(142], [41]. [28])-
Congecture [2.4.19 (word and conjugacy problems): 2-dimensional Artin groups and
Artin groups of type FC ([58], [22]).

Conjecture [2.4.15 (intersections of parabolic subgroups): spherical Artin groups ([25]).
Congecture [2.4.14] (CAT(0)-ness): right-angled Artin groups, spherical Artin groups

of rank 3 (/13]), some 2-dimensional Artin groups (|7], [14)]), XXL Artin groups
(148]), the n-strand braid groups for n < 6 ([16], [49]) and 3-dimensional Artin
groups of type FC ([5]).

Congecture [2.4.13] (acylindrical hyperbolicity): Artin groups whose defining graphs
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are not joins (J28]), 2-dimensional Artin groups of hyperbolic type ([75]), triangle-
free Artin groups (/63]), and Euclidean Artin groups ([19]).

2.4.3 The Deligne complex

The modified Deligne complex, often simply called the Deligne complex, is a
combinatorial complex associated with an Artin group Ar that as turned out
to be extremely useful to understand the group itself. This complex is defined
in terms of the combinatorics of the (standard) spherical parabolic subgroups of
Ar. When the Artin group is 2-dimensional, its Deligne complex has dimension 2,
which makes the construction of the complex slightly easier. It is this definition
that we will introduce thereafter and use for the rest of the thesis. The definition
in the more general case can be found in [27], or equivalently, in Remark

below.

Definition 2.4.17. Let Ar be a 2-dimensional Artin group of rank at least 3. In
the barycentric subdivision I'y,,. of I', we denote by v, the vertex corresponding to
a standard generator a € V(I'), and by v, the vertex corresponding to an edge of
[' connecting two standard generators a and b. Let now Kt be the 2-dimensional
complex obtained by coning-off I'y,,. We call the apex of this cone vy. We define
the type of a vertex v € Kt to be 0 if v = vg, 1 if v = v, for some a € V(I'),
and 2 if v = v, for some a,b € V(I'). We endow K1 with the structure of a
complex of groups in the following way. The local groups associated with vy,
v, and vy, are respectively {1}, (a) and A,. The natural inclusions of the local
groups {1} < (ay < A, define the maps of the complex of groups. Let Q be
the poset of the standard parabolic subgroups of Ar that are spherical, ordered
by inclusion. One can easily see that K is a geometric realisation of Q. Then
the simple morphism is the map ¢ : G(Q) — Ar that is given by the natural
inclusion of the spherical standard parabolic subgroups into Ar. One can easily
notice using Definition that the fundamental group of G(Q) is precisely
Ar. The development of K along ¢ is a 2-dimensional space called the Deligne
complex associated to Ar. We will denote that space by Dr. By Theorem [2.4.4]
the fundamental group of the complex of groups Kr is exactly Ar, and hence the

Deligne complex of a 2-dimensional Artin group is always connected and simply
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connected (see Definition [2.3.4).

We briefly name the different subcomplexes of K. An edge of K is denoted
eq if it connects vy and v, €4 if it connects vg and vy, and e, qp if it connects v,
and vg,. A 2-dimensional simplex of K, also called a base triangle, is denoted
by Tgp if it is spanned by the vertices vy, v, and v,. Note that any translate
g - T, will also be called a base triangle. We now recall the Moussong metric on

Dr (see [27]). First, we define the angles of every base triangle T, by:

™ ™

T T
Lo (v, V) 1= Loa (Vg Var) 1= 53 Ly (Vs va) = 5 =

2-mab’ 2-mab'

Since these angles add up to 7, one can choose a Fuclidean triangle with the
above angles. In particular, every base triangle is Euclidean. Fixing the length
of every edge of the form e, to be 1, one can recover the length of every edge
in Kr (and thus in Dr) using basic trigonometry. The Moussong metric on Kp
is obtained by gluing the Euclidean metrics coming from every base triangle T,
(see Definition . This extends to a metric on Dr. Note that both K and

Dr are piecewise-Euclidean simplicial complexes (see Section [2.1.2)).

A
a 3 b
X A (a) b
c
A, s Ay Va

Figure 2.7: On the left: A graph I' defining a 2-dimensional Artin group Ar.
In the centre: K, seen as a complex of groups. On the right: K, seen as a 2-
dimensional subcomplex of Dr, along with partial notations of its vertices, edges
and faces. The vertices and edges have been given a colour that correspond to
the type of their local group (or stabiliser): black for the trivial group, red for an
infinite cyclic group, and green for a dihedral Artin group.

Following Definition the Deligne complex Dr can also be described as
the space

DF:AFXKF/N,

where (g,2) ~ (¢',2') <= z = 2’ and g~'¢’ belongs to the local group of the

simplex supp(x). The group Ar acts naturally on itself via left multiplication,
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and this induces an action of Ar on Dr by simplicial morphisms with strict

fundamental domain K.

abaKr = abaKr,

abK r baK T

Figure 2.8: Part of the Deligne complex Dr associated with the graph I' from
Figure 2.7 For drawing purposes we only drew the edges that have non-trivial
stabiliser.

The Deligne complex was first studied in relation with the K (r, 1)-conjecture
for Artin groups, a topological conjecture that is equivalent to the contractibility

of the Deligne complex:

Conjecture 2.4.18. For every Artin group Ar, the associated Deligne complex

Dr is contractible.

An important consequence of this conjecture is that it implies for every Artin
group Ar the existence of a finite-dimensional K(Ar, 1)-space, which also forces
the group Ar to be torsion-free. A solution that has turned out to be quite fruitful
to show Conjecture for various Artin groups has been to show that their

associated Deligne complexes are CAT(0) (see [27]).

We now give several useful remarks regarding the geometric structure of the

Deligne complex.

Remark 2.4.19. In light of Definition [2.4.17 the barycentric subdivision I,
of T' can be seen as a subgraph of Dr: it is the boundary of the fundamental
domain K. In particular, the edges and vertices of ', can be seen as edges and
vertices of Kt and thus of Dp. They are precisely the edges and vertices whose

local groups are the non-trivial spherical standard parabolic subgroups of Ar.
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Remark 2.4.20. Another pheraps more combinatorial way to look at the Deligne
complex is the following. Let Ar be any Artin group. Then the Deligne complex
Dr is the simplicial complex defined as follows:

e The vertex set of Dr is the poset of left-cosets of the standard parabolic sub-
groups of Ar that are spherical.

e There is a (n—1)-simplex between vertices of Dr corresponding to the left-cosets

G1Ar,, ..., gnAr, whenever there is a sequence of inclusions ¢, Ar, < --- < ¢1 Ar,.

Remark 2.4.21. A natural question to ask is what do the links of vertices of Dr
look like? In light of |17, Construction 11.12.24], the link Lkp.(v) around a ver-
tex v € Kt only depends on the development of the local groups around v. More
specifically, the link Lkp_.(v) is isomorphic to the development D( Lk, (v), (1,)e.)
of the link Lk, (v) along the natural inclusion maps (¢, )., : G, — G, where e
is an edge from v to Lkp.(v) and e, := e N Lk, (v). In particular, we can give a
more precise geometric description of the links of vertices in Dr:

o Type 0: Lkp, (vg) is the development of Lkg.(vg) over the trivial maps (¢, )e,
{1} — {1} and (Yuy)e,, : {1} = {1}. Notice that Lkg,(v) is the graph Iy, from
Remark [2.4.19] and hence Lkp,(vg) is just the barycentric subdivision of T'. By

construction, the lengths of edges in Lkp.(vg) are given by

™ ™

g(ea,ab) = ng('vavvab) = § - 2. m b.

o Type 1: Lkp.(v,) is the development of Lkg;.(v,) over the maps (¢, )e, : {1} <
{ay and (Yy, )e, o : @) = {a). It is not hard to see that Lkg; (v,) is just a n,-pod
centered at vy, where n, = |{b € V(I')\{a} | ma < o0}|. In particular, Lkp,(v,)
is the quotient Lkx;(va) x {a) /~, where (z,a™) ~ (y,a™) if and only if either
T =y = vy for some b e V(I')\{a} with my, < o0 or z = y and n = m. Notice
that by construction, every edge e has length 2, (vgr, vap) = 7/2 in Lkpp(v,).

Cab -
{1} = Aa, (Yo )enns : @) = Ay and (Y, )e, o, : <b) = Aap. The link Lkg. (Vap)

is simply a tree Ty that consists of the two edges e, and e,. Consider the Bass-

e Type 2: Lkp, (vap) is the development of Lk (vap) over the three maps (¢,,,)

Serre tree T over T = e, U ¢, with its associated local groups and maps. In
other words, T' is the barycentric subdivision of the Bass-Serre tree associated to

the splitting {a) = (b). Then the development of Tj over the previously described
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maps is just the quotient of 7' by ((aba - - = bab- - -)), because the previous maps
Mab Mab

inject into

AagFab — o).
b /<<aba bab---»)

Mad Map

Notice by construction that the lengths of edges in Lkp.(vq) are given by

™

Vs e {a,b}, l(es) = Ly, (vg,vs) =

2 -mab'

Figure 2.9: Part of the links of the vertices of type 0, 1 and 2 respectively, from
left to right. The links are drawn in blue. For drawing purposes, we wrote v
instead of vg.

Using the description of links seen in Remark [2.4.21] Charney and Davis proved
the following:

Theorem 2.4.22. |27, Proposition 4.4.5] Let Ar be a 2-dimensional Artin
group of rank at least 3. Then its Deligne complex Dy is CAT(0).

In particular, Conjecture [2.4.18 has been solved by Charney and Davis for all
2-dimensional and FC-type Artin groups (|27]). It has also recently been solved
for all affine Artin groups ([81]).
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Acylindrical hyperbolicity

This chapter corresponds to the publication [93]. We thank the anonymous referee

for proposing a strategy for improving and making optimal Proposition

The goal is this chapter is to study the acylindrical hyperbolicity of 2-dimensional
Artin groups. By construction, every reducible Artin group Ar decomposes as a
direct product of infinite groups and hence can never be acylindrically hyperbolic,
by Theorem [2.2.12](2). Restricting to irreducible Artin groups, it is known that
the ones that the ones that are spherical have an infinite cyclic centre, and hence
cannot be acylindrically hyperbolic either, by Theorem [2.2.12](1). However, their
central quotients are acylindrically hyperbolic ([33]). It is thus enough to study
the 2-dimensional Artin groups that are irreducible and non-spherical. These
groups are all conjectured to be acylindrically hyperbolic (see Conjecture .

Recall that within the world of 2-dimensional Artin groups, being non-spherical
is equivalent to having rank at least 3. In this chapter, we prove the following

result:

Theorem 3.1. Every irreducible 2-dimensional Artin group of rank at least 3 is

acylindrically hyperbolic.

For instance, it was not known whether the rather simple following 2-dimensional

Artin group was acylindrically hyperbolic:
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Figure 3.1: Example of an Artin group for which acylindrical hyperbolicity was
not previously known.

Note that 2-dimensional Artin groups are torsion-free (see Theorem [2.4.16).
In particular, if a 2-dimensional Artin group Ar decomposes as a direct product
of two non-trivial factors Ar = H; x H, then the two factors must be infinite.
By Theorem [2.2.12](2), this imply that Ap cannot be acylindrically hyperbolic.
Therefore, an immediate corollary of the previous theorem is that decomposability

as a direct product can actually be “read” from the graph I':

Corollary 3.2. A 2-dimensional Artin group Ar can be decomposed as a non-

trivial direct product if and only if it is irreducible (equivalently, T is a 2-join).

Recall that acylindrically hyperbolic groups have finite centres (|80]). Thus it
follows from Theorem that irreducible 2-dimensional Artin groups of rank at
least 3 have finite centres. Since they have no torsion, their centres are actually
trivial. This also holds if Ar is reducible, as 2-dimensional reducible Artin groups
are direct products of free groups, hence have trivial centres. If Ar is irreducible
and has rank 2 then it is a dihedral Artin group with coefficient at least 3, and
Ar/Z(Ar) is virtually a free group (|14],[30]), hence acylindrically hyperbolic.

Putting together everything that we just discussed, we are able to give a new

proof of Conjecture [2.4.11}

Corollary 3.3. Artin groups of dimension 2 and rank at least 3 have trivial cen-
tre. Moreover, all irreducible Artin groups Ar of dimension 2 have acylindrically

hyperbolic central quotient Ar/Z(Ar).

In general proving acylindrical hyperbolicity can be quite hard. The criterion
developed by Bestvina, Bromberg and Fujiwara (see Theorem allows to
construct from a (non-necessarily acylindrical) action on a (non-necessarily hy-
perbolic) space an acylindrical action on a hyperbolic space. It hence allows to

prove that the group under study is either acylindrically hyperbolic or virtually
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cyclic. This criterion is however not very well-suited for group actions on spaces
that are not locally compact, were checking that an element is WPD can be rather
tough.

In this chapter, we focus on the action of Artin groups of dimension 2 on
their Deligne complexes. Unfortunately, the Deligne complex is not locally com-
pact, which make the use of the aforementioned criterion harder. To bypass that
problem we will use a criterion of Martin ([67]) that uses a variant of the WPD
condition, generalising to higher dimension a result of [72]| for groups acting on

trees. We recall this criterion thereafter, in a slightly more specific form:

Theorem 3.4. [67, Theorem B] Let X be a CAT(0) simplicial complez, to-
gether with an action by simplicial isomorphisms of a group G. Assume that there
exists a vertex v of X with stabiliser G, such that:

(1) The orbits of G, on the link Lkx(v) are unbounded, for the associated angular
metric.

(2) G, is weakly malnormal in G, i.e. there is some g € G such that G, N gG,g™*
18 finite.

Then G 1is either virtually cyclic or acylindrically hyperbolic.

The proof of Theorem [3.1] has two major steps. First, we show that if Ar is not
right-angled then there exists a vertex v in the Deligne complex D associated to
the Artin group Ar that satisfies Theorem [3.4](1). Then, we show geometrically
that the stabiliser of this vertex is weakly malnormal in Ar, satisfying Theorem

3.41(2). The result then follows from Theorem

This chapter is organised as follows. In Section [B.1I, we study the link of

vertices in the Deligne complex and prove the following result:

Proposition 3.5. Let Ar be a 2-dimensional Artin group of rank at least 3 with
Deligne complex Dr. Suppose that there exists a type 2 vertex vy € Dr whose
stabiliser Aqy, has coefficient 3 < mgy, < 0. Then:

(1) The orbits of A, on Lkp.(ve) are unbounded.

(2) More precisely, the orbits of {g) on Lkp.(va) are quasi-isometrically embedded
if and only if g € A is not trivial, nor the conjugate of a power of one of the

standard generators a or b.
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Note that when applied to our specific case, the first hypothesis of Theorem
is exactly the first result of Proposition so that we a priori don’t need to
prove Proposition [3.5](2). However, Proposition [3.5(2) remains interesting on its
own, as it has for instance been used by Hagen, Martin and Sisto to prove that
extra-large type Artin groups are virtually hierarchically hyperbolic ([53]).

In Section we reduce the question of asking whether a dihedral Artin
subgroup A, of Ar is weakly malnormal to a geometric question (see Lemma
. The existence of weakly malnormal subgroups turns out to be implied by
a simple geometric condition on the geodesics in the complex. We are able to
show that this condition holds for all irreducible 2-dimensional Artin groups of
rank at least 3 (assuming they are not free nor right-angled, see Lemma. In
particular, we show that the local group G, is weakly malnormal in Ar, i.e. that
G, satisfies Theorem [3.41(2). We can then use Theorem and prove Theorem

B.1] as an immediate consequence.

3.1 Links of vertices in the Deligne complex

A precise description of the links of vertices in the Deligne complex was given
in Remark Although we got an idea of what these links look like, much
remains to be proved, especially for links associated with type 2 vertices of the
complex. The goal of this section is to get a better understanding of the links
Lkp.(vap) of vertices of type 2 in Dr, and ultimately to prove Proposition .
Although checking that the first condition of Theorem is satisfied is rather
easy (see Lemma , proving the second point of Proposition will require

a much more in-depth study.

3.1.1 Reformulating Proposition 3.3 in terms of syllabic

lengths

In this section we reformulate Proposition into a more accessible problem (see
Proposition [3.1.3). We begin with the following definition, that will be useful

throughout all the section:

Definition 3.1.1. Let G be a group with generating set S, and let ¢ : Fs - G
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be the natural surjection from the free group over S onto G (see Definition [2.1.1)).
e Every word w € Fs can be written uniquely as w = sj' -- - s*, assuming s; € A,
s; # si+1 and 1; € Z\{0}. Then the syllabic length of w is {s(w) = n.
e For every element g € G we define the syllabic length of g as (s(g) =
min{ls(w) | p(w) = g}

Recall that in the Deligne complex Dr associated with an Artin group Ar,
the stabilisers of vertices of type 2 (ex: v,) are dihedral Artin groups (ex: Ag).
The following lemma makes a connection between the syllabic length of elements

g € Ay and the distances in the link Lkp,.(ve), according to the angular metric
(see Definition [2.2.22]).

Lemma 3.1.2. Let vy be a path in Lkp.(ve) joining vy and gug for some g € Agp,
and suppose that the edges of v are e,, a™e,, a™ ey, a™b™ey, -+, a0 - x"e,,
in that order, where x € {a,b} and n; € Z\{0}. Let now w := a™b" ---x™. Then

U(y) = s - Us(w). Furthermore, diy, (v,) (Vg 9Vg) = - Ls(g)-

ab
Proof: First of all, recall that the local group at v, is {a), and hence the set of
edges of Lkp,(va) meeting at v, is {a”e, | k € Z}. This proves that e, and a™e,
are indeed consecutive to one another, meeting at v,. Of course, a™' e, and a™ ¢,
are also consecutive to one another, meeting at a™vg. A similar argument shows
that the edges in the statement of the lemma consecutively meet each others. As

Ar acts by isometries on Lkp.(vap), it is clear that the length of every edge of v

™

5 . Because the
‘Mab

is either ¢(e,) or {(ep), both of which turn out to be equal to

number of edges in 7 is precisely 2 - £s(w), we get £(7) = 7= - ls(w)
Notice that every path « joining vy and gvgy corresponds to a word w that
satisfies p(w) = g, where ¢ : Fy, — Agp is the natural projection. The distance

between vy and gvg is the length of the shortest of these paths, hence

™ ™

Ls(w) | pw) = g} =

Map Map

deDF (Uab)(U®7 gU@) = min{ ) gS(g)'

O]

One important consequence of the previous lemma is that we can reformulate
Proposition in terms of syllabic lengths of elements in the local group of a
vertex of type 2. We will prove Proposition[3.5|by proving the following equivalent

proposition:
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Proposition 3.1.3. Let Ar be a 2-dimensional Artin group of rank at least 3 with
Deligne complex Dr. Suppose that there exists a vertex vy, € Dr whose stabiliser
A has coefficient 3 < my, < o0. Then:

(1) The set {s(g) | g € Aw} is unbounded.

(2) More precisely, the syllabic length (s(g"™) grows linearly in n if and only if g €
Ay 18 not trivial, nor the conjugate of a power of one of the standard generators

a orb.

Remark 3.1.4. Recall that we say that a sequence {u,},>o grows linearly in n

if they are constants B > A > 0 and C' = 0 such that for any n > 0 we have
An—C <u, < Bn+C.

The next lemma shows that Proposition[3.1.3}(1), and thus Proposition[3.5] (1),
are satisfied. This result will be very useful in the proof of Theorem It shows
that if Ar has a coefficient mg, > 3, then the vertex v, satisfies the first hypoth-
esis of Theorem [3.41

Lemma 3.1.5. Consider an Artin group A, with coefficient 3 < my, < 0. Then
{ls(g) | g€ Aw} is unbounded.

Proof: It is known that the quotient A, of Ag by its centre is virtually iso-
morphic to the free group F,,, for some m > 2 ([14],]30]). In particular, A, is
acylindrically hyperbolic. Suppose now that there exists a constant N = 0 such
that for every g € A, one has 5(g) < N, and assume without loss of generality
that N is even. This means that Ay, = (a){(by---{a)b) (where the product has
N terms). In particular, A, = {a) (by---{ay (by. Using Theorem .(3), we
know that one of @ or @ must be acylindrically hyperbolic, which is impossible,
as they are cyclic subgroups of A,,. Therefore, {(s(g), g € Ay} is unbounded. []

Strategy: The goal of the rest of this section is to understand more those links
of the form Lkp.(va), i.e. the links of vertices of type 2 in Dr. In particular, we
will be able through a more precise analysis of these links to prove Proposition

3.1.3[(2), and thus Proposition [3.5(2).
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We now set for the rest of this section A, to be a dihedral Artin group
with coefficient 3 < m < o0. One can easily see that for any element g € A,
the syllabic length ¢s(g™) is always bounded above by a linear function, such as
¢(w) - n for instance, where w is any word representing g and ¢(-) is the usual
length function on words (see Definition 2.1.1)). Therefore we will only focus on
finding a linear lower bound for £s(g").

Our approach is mostly geometric: we study the action of A,, on a graph T
(see Definition . In particular, we show that the distance of translation
induced by an element g € A, gives a lower bound on the syllabic length of g (see
Lemma [3.1.13). It then follows immediately that any element g € A, that acts
hyperbolically on 7' is such that ls(g™) admits a linear lower bound in n, giving
Proposition [3.1.3[(2) for such elements. It then feels natural to want to determine
which elements act hyperbolically on T. This will be achieved in Lemma

It remains to study the elements that do not act hyperbolically on T They
all act elliptically and come in two forms: the elements that are conjugate to
powers of a standard generator (modulo an element of the centre), and the (non-
trivial) elements which admit powers that belong to the centre of A,. When
their "central part" is trivial, the elements g of the first kind are easily shown to
satisfy (s(¢") < K, for a constant K, that does not depend on n. However, the
elements of the first kind that don’t have a trivial central part and the elements
of the second kind have a different behaviour. As will be recalled later, the centre
of A,y only contains powers of the Garside element of A,,, which motivates a
more in-depth study of the syllabic length of such powers. The method that we
use for that last point is more algebraic, and rely on a more direct study of the
syllabic length of words, notably using the Garside normal form of elements. As a
consequence, we will show that the remaining elliptic elements g are such that the
syllabic length £5(g") also admits a linear lower bound in n (see Lemma [3.1.18]).
Alltogether, this will conclude the proof of Proposition [3.1.3]

3.1.2 The action of the local group on T.

Our first goal is to define a tree 1" on which A, acts nicely with a trivial action of
the centre Z(Agy). This will be done throughout the next definitions and lemmas.

Let us first introduce few notations and recall notions about normal forms and
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centres in dihedral Artin groups.

Notations: e For two words u,u’ € F,, representing the same element g € A,
we will simply write u = v’ instead of ¢(u) = ¢(u'). Similarly, for g € A, we
will write u = ¢ instead of p(u) = g.

e We will write (a,b; k) to denote the alternating sequence of the letters a and
b, starting with a and of length &, and we will write A, and A, to describe the

words (a,b;m) € Fy, and (b, a;m) € Fy;, respectively. More explicitely,

A, =aba--- and Ay :=bab---.
—— —

m terms m terms

e For a word u € F,;,, we denote by u the word obtained from u by replacing

every a” by 0" and every 0" by a". Moreover, we will denote by u the element

u if m is even

34
i

u if mis odd

One can easily notice that for any word u € F;, we have A*! .4 =7 - A¥L,

Definition 3.1.6. For a dihedral Artin group A,, with coefficient 3 < my, < o0,

the Garside element is the element A € A, defined by
A=A, =7y ()

A strict non-trivial subword of A, or of Ay is called an atom. It is a standard
result ([38], [37], [35]) that for every element g € Ay, there is a word Gars(g) € Fyp
called the Garside normal form of g that satisfies Gars(g) = ¢ and such that
one can write

Gars(g) = uy -+ uy, - W,

where the u; are atoms such that the last letter of each u; matches with the first
letter of u;,1, and where W = AN for some N € Z is a product of terms of the
form AF! and AF'. This word is not unique, however the atoms of the above

decomposition are uniquely defined, and so is V.
At last, we recall that the centre Z(Ay) of Ay was described in [18], and takes
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the form

(A) if m is even,
Z(Aw) =

(A% if m is odd.
We now come back to constructing the desired space. The space that we first
define is due to |8, Section 2.1]. One can also recover an equivalent definition by

quotient of the space described in [69, Figure 6].

Definition 3.1.7. Let us consider the simplicial complex Y defined by the fol-
lowing (see Figure [3.2):

Vertices: The vertex set of YV is the set of cosets

V= Aw [(a) = {9(D) | g € Au:

A convenient representative for a vertex g(A) is the product of the atoms of the
Garside normal form of g. This representative is the unique that is in Garside
normal form yet does not contain any subword of the form A*! for some x € {a, b}.

We will denote it g,. In this setup, we can see V' as the set {g. | g € Auw}-

Simplices: For every collection gi., - , gr. of vertices, the set {gia, - , gre} Spans
a k-simplex if and only if for all 7,5 € {1,--- ,k}, there is an atom z such that
Gie - T = Jjs OF Gjo - T = gjs. Note that because atoms are subwords of A, or Ay,

every k-simplex is contained in a maximal m-simplex, where m is the coefficient

of Ay (see Figure [3.2).

The group A, acts naturally on V: if h € Ay, and g{A) € V, then h - g(A) =
hg(A). This action extends to a simplicial and cocompact action of Ay, on Y,
that is transitive on the vertices (see [§]). Note that Z(Ag) acts trivially on V,
and thus on Y.

Definition 3.1.8. We define a new graph 7" by the following. The set of vertices
of T is the union of two sets: the set V' of vertices of Y, and the set V'’ of maximal
simplices of Y (i.e. the m-simplices). Then, we put an edge between a vertex
ge € V and a vertex {gi., -+, gme} € V' if and only if g, € {g1e, -, gm.}). Note
that 7' can naturally be seen as a subspace of Y (see Figure .
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Lemma 3.1.9. The graph T 1is a tree, and the stabiliser of any edge e < T is
precisely Z(Aap)-

Proof: The atoms in the Garside normal form of any element are unique, and this
gives Y a structure of tree of m-simplices (see Figure , where the Y-distance
between any vertex g, and 1, is precisely the number of atoms in g, (note that
the T-distance is twice that amount). The reason m-simplices appear is because
once given a non-trivial vertex g., there are (m —1) different ways one can add an
atom on the right side of g, (assuming this atom starts with a letter that differs
from the last letter of g,. In particular, Y retracts on a tree described in Figure
B.2] and that tree is precisely T

Let now e be any edge of T. Because the action is transitive on the ver-
tex set V, we may as well assume that e contains 1,. The other vertex of
e corresponds to one of the two simplices S, = {l.,a., -+, (a,b;m — 1)} or
Sp = {le;be, -, (bya;m — 1),}. Let now g € Ay and suppose that g - e = e.
Then in particular g fixes 1,, so we have g-(A) = (A), and thus g € (A). If m is
even, we are done. If m is odd, it is enough to show that A does not fix e, which

is clear because it sends S, onto Sy and vice versa. O

Remark 3.1.10. The valence of a vertex v of T' is easy to determine. If v € V,
then v belongs to exactly two m-simplices of Y, so the valence of v in T is 2. If
v € V', then v corresponds to a m-simplex of Y, hence is connected to exactly m

vertices of Y, and its valence in T is m.

ba. ab. ba,

a.a.ab,
ba.ab,

b.b, ab. ba,

Figure 3.2: Let m = 3. In black: Part of the simplicial complex Y with its set of
vertices V. In pink: Part of the tree 7', that is a deformation retract of Y. The
axis v, € T is drawn with the thicker line.
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Lemma 3.1.11. The elements of A acting elliptically on T are precisely the
elements g € Aqy, for which there exists an N # 0 such that g~ € Z(Aw). All the

other elements act hyperbolically.

Proof: Suppose first that ¢ € Z(Au). Then ¢V acts trivially on T, so g has
finite orbits. In particular these orbits are bounded, so g acts elliptically.

Suppose now that g acts elliptically. Then g fixes a vertex v of T. By Remark
v has at most m neighbours, so g™ fixes the neighbourhood of v. In par-
ticular, g™ fixes a vertex h(A) of Y (either v, or a vertex in its neighbourhood).
The equation g™ - h{(A) = h({A) gives g™ = hAKh~! for some K € Z. We obtain
g™ = hAKpL = AK€ Z(Ay).

All other elements act hyperbolically because we have a simplicial isometric
action on a tree. ]

Recall that we are interested in studying the syllabic length of elements of
Ay relatively to the standard generators a and b, and in reducing the problem
of syllabic lengths to a problem of distances in our space. Unfortunately, one
can travel an arbitrary large distance in T using a single syllable, because the
generators a and b act hyperbolically on T' (see Figure . To deal with that

problem, we decide to cone-off such axes, and their translates:

Definition 3.1.12. Let s € {a,b}. We denote by 7, the axis of s in T, i.e. the
bi-infinite geodesic line going through all the vertices of the form s*(A) for all
k € Z. Let us now define a graph T as the cone-off of the tree T along the family
of axes h - s, for all h € Ay and s € {a,b}. More precisely:

e Start with 7', and add a new vertex vy, s for every axis of the form h - ,, for all
h e Ay and s € {a,b}. We only add one vertex if two axes define the same line,
even if they go in opposite directions.

e Connect every vertex vy, s to every vertex of the corresponding axis h - vs.

The following lemma justify the study of the cone-off f, as it gives a lower bound

on the syllabic length of an element of A, in terms of distances in T.

Lemma 3.1.13. Let g € Ay,. Then

o4



Chapter 3 — Acylindrical hyperbolicity

Proof: The argument is similar to that of Lemma Let k := ls(g). By the

triangle inequality, it is enough to prove that there is a sequence of vertices
v = 1,, V1, -+, Vg1, Vpi=g- 1,

such that dz(v;,v;41) < 2. To do so, let a™b" --- 2™ be a word representing g,

where x € {a,b} and n; € Z\{0}, and let
Gi = amb g

where y; € {a, b} is the appropriate letter. Consider now the vertices v; defined by
v; := ¢g; - 1,, so that vy = 1, and vy = ¢g-1,. Because A, acts on T by isometries,

we have for any 0 <1 < k

df(vi:UiJrl) = df(gi Lo, Giv1 - 1-) = df(luy?ﬂl : 1-)-

Note that y;ff is just a power of a standard generator y; 1 € {a, b}, which means
1, and y{fll -1, both belong to the axis v, ,. By definition of f, such vertices lie

within distance 2 of each others. It follows that dz(v;, v;41) < 2. ]

As explained in the strategy of this section, the previous lemma immediately
gives Proposition MQ) for elements of Ay, acting hyperbolically on 7. The

goal of the next lemma is to classify these elements:

Lemma 3.1.14. The elements of Ay, acting elliptically on T are precisely the
elements g € Ay satisfy one of the following:

(1) g="h-s"-h71-W for some N € Z, s € {a,b} and W € Z(Aw);

(2) There exists an N # 0 such that g~ € Z(Au).

All the other elements act hyperbolically.

Proof: Let g € Ay If g satisfies (2), then it already acts elliptically on T' by
Lemma so it acts elliptically on T too. If g satisfies (1), it is not hard to see
that g fixes the vertex h - s, hence acts elliptically on T. We now suppose that g
does not satisfy any of these properties. We already know by Lemma that
g acts hyperbolically on 7', with an axis that we call 7,. We begin by stating the

following "small cancellation" claim, which gives the desired result for g. Then,
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we proceed on proving that g actually satisfies the hypotheses of the claim.

Claim: Suppose that there exists a K > 0 such that for every h € A, and every
s € {a, b}, the subtree y defined by ~y := 7, N h - 75 has diameter at most K. Then
g acts hyperbolically on T.

Proof of the Claim: Since g acts hyperbolically on T', it is enough to show that

there is a constant C' > 0 such that for all vertices z,y € v,, we have

Let %T,y be the (unique) geodesic connecting = and y in T, and let M be the
minimal number of axes of the form h - v, required to cover all edges of %T’ Y
completely. Let also D := da(z,y). Since every edge has length 1, this means
we can reach z from y by using D edges e,--- ,ep of T. Let Zg, -+ ,Tp be the
vertices these edges go through (in that order), and let 2, - -, z,, be the subset
of the above vertices corresponding to those belonging to T' (with ro < -+ < rp/).
Then the vertices z,, and z,,, always belong to a common axis. Indeed, if
riv1 — 7; = 1, then the two vertices are the two endpoints of a common edge of
T. On the other hand, if r;41 —r; = 2, then there is at least one vertex x; € f\T
that lies between z,, and z,,,,. By definition of T, the neighbours of z; both lie
on a common axis. In other words, we must have r;;; —r; = 2, and z,, and ,,,
belong to a common axis. Let now v € T be the path obtained by connecting
the vertices of the form z,, through the corresponding axes. Then 7 is a subtree
of T containing = and y. It is convex, hence must contain the geodesic ’yf,y. This
means we found a way to cover v, and thus vf’y, with D’ < D axes. By definition
of M and D, we obtain
dz(z,y) = M. (+=)

By hypothesis, there is no axis of the form h - v, that covers a subgraph of V;f’y
of diameter more than K. In particular then, one must use at least dr(z,y)/K
such axes in order to cover 77 completely. This means M > dp(z,y)/K. We
conclude using () that ds(z,y) = dr(x,y)/K, satisying (¢). This finishes the

proof of the claim.

We now check that the hypothesis of the claim is satisfied. Suppose that
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no such constant K exists. Then there is an axis h - v, such that the subtree
v = 7y N h - has diameter at least 2 - ||g|| + 1, where ||g|| is the translation
length of g when acting on 7. Since 7 has diameter at least 2 - ||g|| + 1, there
is an edge e € v whose distance in 1" to any of the two enpoints of ~ is at least
llg]|. Note that e is a segment of 7,, so ¢ - e belongs to v, as well. By definition,
the distance in T between e and ¢ - e is at most ||g||, which means that g - e
belongs to v as well. In particular, g - e belongs to h - 7. Note that the action
of g respects the bipartite structure of 7', and thus its translation length ||g|| is
an even number. Note on the other hand that the translation length of h-s-h™1
when acting on T is exactly 2 (because its translation length when acting on Y
is 1). Since g - e belongs to h - s, this means there is some constant M such that

g - e coincides with h - s™ - h=1 . ¢ (actually, M = £[|g||/2). We get the equation

g-e=h-sM.pt.e

In particular, the element g=' - h - sM . p7!

Z(Aap) by Lemma [3.1.9, We obtain g = h-s™ - h=1 - W for some W € Z(Au).
This is absurd by hypothesis. O

stabilises e, hence must belong to

3.1.3 The syllabic length of powers of the Garside element

We are now interested in the study of the elements of A,, that act elliptically on
f, which have been described in Lemma Our goal will be to give a linear
lower bound on the syllabic length of powers of the Garside element (see Lemma
B.1.18). The method is more algebraic, and we decide to briefly recall how one
can obtain the Garside normal form of an element g € A, (see |71, Section 4] for

a similar description).

Algorithm 3.1.15. Let g € Ay, and let u € Fyy, be any word satisfying u = g.

Then one can obtain Gars(g) from u in two steps:

Step 1: If there is no occurence of a subword of the form AX' in u, for some
x € {a, b}, or if all such occurences appear consecutively on the right-most part of

u, go to Step 2. Otherwise, consider the left-most occurence of a AX' subword in
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u, and write

uzvl-A;—rl-vg,

for the appropriate subwords vy,vy € Fy,. Let
u' = vy - Ty - AT

and note that v = u = g. Then replace u with u', and proceed through Step 1

again.

Step 2: At this point, we have a word u that doesn’t contain any subword of the

form ALY, except potentially on its right-most part. This means u takes the form

x

where each u; is an atom or the inverse of atom, and W is a product of terms of
the form A and AiF'. Moreover, for every 1 < i < n—1, the last letter of u; and
the first letter of u; 1 either have opposite sign, or agree. If there is no negative
letter (i.e. a= or b™1) in uy - - - u,, terminate the algorithm. Otherwise, the word
Uy - - Uy, contains at least one subword that is the inverse of an atom. Locate the
left-most subword u; of this form. Without loss of generality, u; = (a=', 071 k)

for some 1 < k <m (if u; starts with b=1 instead, proceed symmetrically). Write
w=uy-uig - (@b E) - W

and let

~

I . . —~— ~ -1
W=y uimy - (byasm — k) Gy, o W A

for some x € {a,b}. One can check that ' =u = g. Replace u by ', and proceed

through Step 2 again.

Example 3.1.16. Let m := 3, and let u := aba?b~'a"'baba*b*ab. We denote by
u; the word obtained after the i-th Step of Algorithm [3.1.15 Then:

up = ba b a3 A LA A,
us = b*al AL A,
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If we decompose the resulting word according to Definition [3.1.6, we obtain
Gars(u) =b-b-b-ba-a-a- AN, = b*a’bababa.

Lemma 3.1.17. Let u € F,, and suppose that u = A" for some n # 0. Then u

contains a subword of the form AT! for some x € {a,b}.

Proof: The proof uses the strategy of Algorithm [3.1.15] Suppose that u does
not contain any subword of the form A*! with z € {a,b}. By definition, when
giving u as an input, the first step of Algorithm is trivial. Starting with
the second step of the algorithm, this means we can decompose u in a product
of atoms, inverses of atoms, and a power of the Garside element (see Algorithm

FLTH)

uw=uy---up- W

When applying the second step of the algorithm until the algorithm terminates,
every atom u; yields an atom wu that is either u; or 4;, and every inverse of an
atom w; yields an atom u} that is either u} or @;*, where u} is the unique atom
such that u; = u} - A;! for some z € {a,b}. Note that for every 1 < i < k, u; is

trivial if and only if «} is trivial. We obtain the Garside normal form of A™:
Gars(A") = uj -~ uy - W/,

for an appropriate W’. Recall that one can find trivial Garside normal forms
for A", such as Gars(A") = A” for x € {a,b}. By unicity of the atoms in the
decomposition of Gars(A”™), we obtain that all the u} are trivial, and thus so are

the u;. In particular, u = 1, which is absurd. O
Lemma 3.1.18. For anyn€ Z, {s(A") = (m —2) - |n|.

Proof: This is clear if n = 0. Since {s(A™) = (s(A™"), it is enough to prove
that the result holds for n > 0. Let u € F,, be any word representing A™. It is
enough to show that

ls(u) = (m —2) -n.

We now consider the string of words wug, uq, us, - - - uy € Fy defined by induction

as follows. We first set ug := u. By Lemma |3.1.17] ug contains a subword of the
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form AZ! for some z; € {a, b}, so we can decompose ug as
Ug = Up,1 * A;il * Up,2,
for the appropriate words ug 1, u02 € Fyp. We then set
Uy = Up, * ﬂo\é

Note that u; - AX! = wg. If uy is trivial, set A\ = 1 and stop here. Otherwise,
u, = A™?! with n +1 # 0, so we can apply Lemma again and follow the
same construction as above and obtain a word uy satisfying up - ALl = u; for
some x5 € {a,b}. As long as u; # 1, we continue to construct words u;,; in the
fashion described above. The words obtained satisfy w;,; - ATl = w; for some

Ti+1

z;i11 € {a,b}. Note that

m syl.

k1 syl. ko syl.
— +1 ~
Uy = U1 - A;i e, and wip = ugnc Uig,
- ~ 7
>k1+ko+m—2 syl. <ki+ka syl.

so eventually

ls(u;) = ls(uipr) + (m —2).

This means each word u;,; is syllabically shorter than u; by at least (m — 2)
syllables. In particular, this process has to stop after a finite number A of steps.

The final word, u,, satisfies

A
uy - HAiI =u=A".

i=1

In particular then, u, represents a power of A, but does not contain any subword
of the form AX! for some z € {a,b}. By Lemma [3.1.17] this means uy is the

trivial word. We obtain
A
HA;—ZI =A"= \>=n.
i=1

Trying to sum up the previous arguments, we have:

(1) For 0 < i < A—1, each wu;44 is syllabically shorter than u; by at least (m — 2)
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syllables. In particular, uy is syllabically shorter than w by at least A(m — 2)
syllables.

(2) uy is trivial.

(3) A= n.

Altogether, this gives a bound on the syllabic length of w:

Q) (2) @)
ls(u) = ls(uy) + A(m —2) £ AX(m—2) = (m —2) - n.

We are now able to prove the main Propositions:

Proof of Proposition [3.5/(2) and Proposition [3.1.3](2): We first recall that
the two statements are equivalent, thanks to Lemma([3.1.2] Therefore we will only
care on proving Proposition [3.1.3}(2). We divide the proof in four different cases.
In all cases except the first one, we will give a linear lower bound of /s(¢") in
terms of n. In all that follows, h is an element of Ay, s € {a,b} is a standard

generator, and W is an element of the centre Z(Agp).

Case 1: g=h-s*-h7L Let M = {s(h) = ls(h™'). Then for any n € Z, we have

gs(gn) = gg(h : Skn : hil) < gg(h) + ﬁg(sk”) + eg(hil) =M+14+M=2M+1.

Case 2: g =h-s*-h~'- W with W # 1. Then there is a ¢ # 0 such that g =
h-st-h™ 1A% Let gy :=h-s*-h7! then g" = (go - AY)" = g7 - A?. On one

hand we know by Case 1 that {s(gg) is uniformly bounded for all n = 0. On the
other hand, ¢s(A?") grows linearly in n, by Lemma [3.1.18, Putting these two

facts together shows that £5(g") grows linearly as well.

Case 3: AN # 0: g™ € Z(Ay). By hypothesis, there is a ¢ # 0 such that gV =
AY. By Lemma [3.1.18] this means the quantity fs(¢™™) grows linearly in n.

In particular, the quantity fs(g"1¥!) grows linearly in n as well (for a smaller
constant). Note that the difference between (5(g") and £s(g™1¥1) is uniformly
bounded by the constant L := max{ls(¢’) | i = 0,--- , N — 1}. It follows that

ls(g™) also grows linearly in n.

Case 4: We are in none of the previous cases. Then by Lemma [3.1.14] g acts hy-
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perbolically on T. In particular, the quantity dz(1.,¢" - 1,) grows linearly. We
conclude with Lemma (3.1.13] ]

3.2 On the geometry of the action

Let Ar be a 2-dimensional Artin group of rank at least 3, and let Dr be its
Deligne complex. Our goal is to show that there exists a vertex v € Dr, and an

element g € Ar satisfying the two hypotheses of Theorem [3.4]

3.2.1 The augmented Deligne complex

We have seen in Proposition [3.5](1) that a strong enough condition for v to
satisfy the first hypothesis of Theorem is to require that its local group G, is
a dihedral Artin group A,, with coefficient 3 < my, < oc0. When such a vertex
v exists, it only remains to show that there exists an element g € Ar such that
AapyngAgpg b is finite (i.e. trivial because dihedral Artin groups are torsion-free).

Our main geometric tool in order to find such an element is the following lemma:

Lemma 3.2.1. Let G be a group acting by simplicial isomorphisms on a CAT(0)
simplicial complex X of dimension 2. Let v e X, g € G and denote by G, the
stabiliser of a point p e X. If the unique geodesic v between v and gv goes through
a point with trivial stabiliser, then G, N G, = {1}.

Proof: Any element of G,nG,, fixes v and gv, hence fixes (pointwise) the unique
geodesic v between them. This means that G, n G4, = G.,. Let p € v be a point

with trivial stabiliser. Then we have
GynGgp=G, <G, = {1}.

[]
Strategy: The strategy of this section is led by the previous lemma. It is not
hard to see that if v € Dr is a vertex with stabiliser A,,, then the stabiliser
of gv for some g € Ar is exactly gA,g !, Suppose additionally that v satisfies
Theorem .(1), which holds as soon as A, is large. Our goal will be to construct

a geodesic between v and some gv that contains a point with trivial stabiliser.
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In the case of the Deligne complex, every point that lies in the interior of a base
triangle T or an edge e, or ey has trivial stabiliser, hence it is enough to show
that v goes through the interior of such a triangle or edge. In some cases, this
will turn out to be quite difficult to prove. However, everything will be more
manageable when working in some augmented version of the Deligne complex

(see Definition 3.2.3)).

The next Proposition will give the structure of the different cases we will en-

counter:

Proposition 3.2.2. Let Ar be a 2-dimensional Artin group of rank at least 3,
and suppose that T is connected and that Ar is not a right-angled Artin group.
Then there exist three distinct generators a,b,c € S such that my, € {3,4,---},

Mae € {2,3,4, -}, my. € {2,3,4,--- 0} and

where % = 0. Moreover, we are in exactly one of the following situation:

(1) There is a triplet (a,b,c) as before that satisfies my. < .

(2) There is no triplet (a,b,c) as before with my. < oo, but there is one thal
satisfies my. = 0. Moreover, the graph T'° obtained from T' by adding an edge e
with coefficient 6 is such that Apse has dimension 2.

(3) We are not in the first two situations, and I' contains a cycle vy with coefficients
(2,2,2,n) for somen = 3, such that vy is full, in the sense that it does not contain

any non-homotopically-trivial strict subcycle.

Proof : We begin by proving the first statement. Because Ar is not right-
angled, there is an edge e in ' with coefficient my, € {3,4,---}. As I is con-
nected and has at least 3 vertices, e® has a neighbouring edge in I, say e,
with coefficient m,. € {2,3,4,---}. Since Ar has dimension 2, the last coefficient

mpe € {2,3,4, -, 00} satisfies:

1 1 1
+—+—<
Map Mgc My

Let’s now prove that we are in exactly one of the three cases. The three cases are

exclusive by definition, so it is enough to show that if we are not in one of the
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first two situations, then we must be in the third. To prove this, pick a triplet of
the form mgy, € {3,4,- -}, mae € {2,3,4, -}, mp. = 0. By hypothesis, the graph
I'*¢ obtained from I' by adding an edge e with coefficient 6 is such that Ape. is

not 2-dimensional. This means that there is a generator d € S such that

11 1
—+—+

> 1.
6 Mpg  Meg

This is only possible if mp; = m.q = 2. Notice that m,y = 00, otherwise the triplet
(a,b,d) would satisfy (1). This means that we have a full cycle (e, e, e )
with coefficients (2,2,> 2,> 3) in I'. If m,. = 2, we are done. Suppose that
Mae = 3, and add an edge e of coefficient 6. Since Araa is not 2-dimensional by

hypothesis and since

1

- + + - = 1,
6 Mep Mg

1 1 1

S —+— <1,
6 Mgc Meg

then there must be a fifth generator e € S such that

11 1
- +

> 1.
6 Mae Mge

For the same reasons as before, we have m,. = mg. = 2 and m,., = . Hence

there is a full cycle (€2, e®, e e2¢) with coefficients (2,2,2,> 3) in T. ]

Recall that our goal in order to prove Theorem is to apply Theorem [3.4]
For an irreducible 2-dimensional Artin group Ar of rank at least 3, it turns out
that the Deligne complex Dr is exactly the space that we want to act on, at least
in the first and third cases or Proposition Unfortunately, in the second
case of Proposition the space Dr is not fit to apply our main geometric
tool that is Lemma [3.2.1] The reason, as will be seen later, is that we would
like to have three generators a,b,c € S for which all the triangles Typ, Tha, The,
Ty, Tee, and T,. belong to Dr. This is not the case when my. = co. However,
notice that in the second case of Proposition the complex obtained from
Dr by adding the vertices of the form guy. and their attached triangles ¢7;., g7
is 2-dimensional by hypothesis. This slightly bigger complex, as defined in the
next definition, will be the one to look at when using Lemma and Theorem
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in that case.

Definition 3.2.3. Let Ar be a 2-dimensional Artin group of rank at least 3
with Deligne complex Dr and fundamental domain Ky. We call the structure of
complex of groups on Kt inherited from Definition the usual complex of
groups associated with K.

Let now I'* be the same graph as I', except that we add an edge e with
coefficient 6 between s and t if my = c0. Consider now the 2-dimensional complex

Krst obtained from Definition [2.4.17] for the group Ars:. In other words,

KF if Mgt < 0O
Kl"st =

KF UTst UES lf Mg = 0O,

where the angle at vy in Ty or Tj, is set to be 5 if my = 0. We now want to

1
realise Ar as the fundamental group of a complex of groups over Krst. Doing so,
we will give Krst a structure of complex of groups, which may differ from the one
coming from Definition 2.4.17] When mg < o0, Krst = K, and we proceed as
in Definition 2.4.17 K« is simply the usual complex of groups associated with
Ar. When mg = oo however, Kt is a strict subcomplex of Krs:, and we carry
the usual complex of groups associated with Ar from Kr onto the corresponding
subcomplex of Krs. We still have to describe the local group at v, and the
associated maps. We just set this local group to be the free group Fy; of rank 2.
The associated maps are the obvious morphisms that inject {1}, (s) and {¢) into
Fy. We call this structure of complex of group given to Krs: the augmented
complex of groups associated with Ar (relatively to s and t).

If mg < oo, the augmented complex of groups associated with Ar coincides
with its usual complex of groups. If my = oo, the augmented complex of groups
associated with Ar is the same as the one we would get if we took the usual
complex of groups associated with Ars:, but then replaced the local group Ay at
vy, that is a dihedral Artin group with coefficient 6, by the free group F;. Note
that in both cases, the 2-dimensional complex under the augmented complex of
groups associated with Ar is Kpse. The universal cover D of this complex of

groups is called the augmented Deligne complex of Ar (relatively to s and
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t). In particular, in the light of Definition [2.4.17, we have
Dlﬁt = AF X KFst /N’

where (g,2) ~ (¢,2') <= z = 2’ and g '¢’ belongs to the local group of the
smallest simplex of Krst that contains x. The action of Ar on itself induces an
action of Ar on Dff by simplicial morphisms with strict fundamental domain

K]_"st.

Figure 3.3: Let I' be a graph defined as a square with vertices a, b, ¢ and d, such
that my. = o0. On the left: The usual complex of groups associated with Ar.
In the centre: The augmented complex of groups associated with Ar relatively to
a and c. On the right: The usual complex of groups associated with Apac.

Note that the first two complexes of groups share the same fundamental groups,
and the last two complexes of groups share the same underlying 2-dimensional
complex.

Remark 3.2.4. (1) If my < oo, the augmented Deligne complex Dff and the
Deligne complex Dr agree.

(2) If mg = oo, then D! differs from Drst, as the fundamental groups of their
associated complexes of groups are not the same: the former is Ar while the lat-
ter is Apst. In particular, D! decomposes as a quotient of Ar x Kpst, while Drst
decomposes as a quotient of Apst X Kprst. Note however that the fundamental
domains of these complexes are the same, as 2-dimensional complexes.

(3) It is important to notice that if a,b,s,t are four (non-necessarily all dis-
tinct) generators of Ar satisfying (a,b) # (s,t) and mg, < 0, then Lkp.(vae) =
Lkpst (vap) (see Figure for instance). In particular, results such as Lemma

or Proposition [3.5](1) also hold for v, if we replace Dr by Dj'.

Lemma 3.2.5. Let Ar be a 2-dimensional Artin group of rank at least 3, and
suppose that we are in the second case of Proposition[3.2.3. Then the augmented
Deligne complex D¥ of Ar is CAT(0).
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Proof: By hypothesis Are. has dimension 2, hence its associated Deligne complex
Dree is CAT(0) (Theorem [2.4.22). We want to show that DY is CAT(0). By
Lemma [2.2.25 and up to reducing to the fundamental domain, it is enough to

show that every vertex v € KT satisfies
sys(Lkpee(v)) = 2m. ()
Notice that if v # vy, then
Lkppe(v) = Lkp,,, (v),

and thus (x) follows from the fact that Dre. is CAT(0), along with Lemma[2.2.25]

If v = vy, then the local group at v is the free group Fj. by definition. We
can do a similar analysis as the one done in Remark 2.4.21] This time, the maps
of the development inject into the free group Fj.. Therefore, the link Lk:Dlzlc (Upe)
is isomorphic to the barycentric subdivision of the Bass-Serre tree above the
segment of groups with local groups (b) and {(c¢) on the vertices and {1} on the

edge. In particular, Lk . (vpe) is simply-connected, i.e. has infinite systole.  []

3.2.2 Finding appropriate weakly malnormal subgroups

We are now ready to prove the following lemma, that shows the existence of ap-

propriate weakly malnormal subgroups of Ar, one of the requirements of Theorem

B.4l

Lemma 3.2.6. Let Ar be a 2-dimensional Artin group of rank at least 3, and
suppose that I' is connected and that Ar is not a right-angled Artin group. Then
there exists an Artin subgroup Ag with coefficient 3 < my, < o0 and an element

g € Ar such that Ay N gAwg ' = {1}.

Proof: By Proposition we know that we either have three generators
a,b,c e V(I') that satisfy exactly one of the following:

(1) map, mge € {3,4,---} and my, € {3,4,--- ,0};

(2) mge =2, mgp € {3,4, -+ -} and my. € {5,6,--- ,0};

(3) Mae = 2, Mgp = Mpe = 4.

Or we have four generators a,b,c,d € V(I') satisfying:
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(4) The cycle (e, e e e) is full in ' and has coefficients (2,2,2,n) with
n = 3.

Let A be the abstract complex (see Figure defined by:

e In the situations (1), (2) and (3), A = Top U Tpa U Tpe O Tep U T U T

e In the situation (4), A =Ty U Tpa U Tpe U Tepy U Tog U Tye U Ty O Tog.

Note that in either case, the points in the interior of A have trivial stabilisers.
Also note that we don’t have to look at the augmented Deligne complex in the
situations (1) and (2) if mp. < o, and neither do we in the situations (3) and
(4). However in those cases my. < oo, and hence D¥ = Dr, so it will just be

convenient to write DX to cover all cases.

Tbc Tdc
Aw il

Figure 3.4: A in the case (1), (2), (3) (on the left) and (4) (on the right).

Let now P be an abstract complex defined by P := Fo /~, where P, is defined
depending on the situations given in the beginning of the proof by:
(1) Py = A u(cA).
(2) Py = A 1 (cA) u (cbA) i (cbeA).
(3) Py :=Au(cA)u(cbA) L (cbeA) L (cbaA) i (ebealA) L (cbeabA) Li (cbeabeA).
(4) Py = A u (cA) u (dA) u (cdA).
And where ~ corresponds to the gluing shown in Figure 3.5] i.e. P is obtained
from Py by gluing the different copies of A along some of their edges (drawn in

blue in Figure [3.5)).
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Uab
vﬂ
Uab [ ’ A
cA Vap
A
cA cbA A dA
cbcA <cbaA
cbA )
cbea
cheA boah cA cdA
CUab cbev,y, cheapeA cdvgp
cbeabcv N

Figure 3.5: Polygon P in the four different cases, from left to right.

A priori, we can’t be sure that there are no additional gluings happening in D%,
so we don’t want to look at P as a subcomplex of D, but we want instead look

at P through the natural map f: P — D that maps P to D¥.

Claim 1: P is isometrically embedded in D¥.

Proof of Claim 1: In the light of [25, Lemma 1.4], it is enough to show that for
every p € P, the induced map f, : Lkp(p) — Lk pye (p) is m-distance preserving,
i.e. that

V.T, ye LkP(p)a dep(p)(I>y) =T = deDlzlc(P)(fp(x)a fp(y)) = .

There are two different situations:
o If p e Pisin the orbit of vy, then Lkpp (p) is just the augmented defining
graph ' with the appropriate metric (see Definition and Remark [2.4.21)).

Notice that, any edge e = e; o * €, from s to t in '’ has length

Ue™) =2+ Log(vy,vg) = 7 — njt > g

according to the metric on Lk (p). Since Lkp(p) is simply the full cycle in '
corresponding to the triangle (e®, e, %) (in the situations (1), (2) and (3)) or
to the square (e, e, e e®) (in the situation (4)), we can apply [25, Lemma
1.6] and conclude that the map f, : Lkp(p) < Lkpu(p) is m-distance preserving.
o If p e P is not in the orbit of vy, then it is not hard to see from Remark
that every full cycle in Lkp(p) has length exactly 27. In particular, the map
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fp must be m-preserving, otherwise we would be able to build an isometrically
embedded cycle in LkD?c (p) of length strictly less than 27, contradicting the
CAT(0)-ness of D¥ (Theorem [2.4.22] Lemma and Lemma [2.2.25). This
finishes the proof of Claim 1.

We can now use |25, Lemma 1.4] and conclude that P is isometrically em-

bedded in X. In particular, geodesics in P project to geodesics in X through f.

Claim 2: Ay N gAwg ' = {1} for some g € Ar.

Proof: Notice that P is CAT(0) by Lemma In particular, it is uniquely
geodesic. Let v be the geodesic in P defined depending on the situations given
in the beginning of the proof by:

(1) v

(2) v is the geodesic going from vy, to cbcvg.
(3) v

is the geodesic going from vy, to cvgy.

is the geodesic going from vy, to cbcabcvyy,.

(4) v is the geodesic going from vy, to cdvgy.

Note that v is also geodesic in DY, by the previous claim. Thanks to Lemma
B.2.1] it is enough to show that v goes through the interior of some gyA contained
in P. Consider either of the four situations and suppose that it is not the case.
Then in particular v would be contained in the 1-skeleton of P. It is not hard
to check, since we know every angle in P by construction, that there must be a
vertex v in «y that satisfies Z7(y) < 7. This is not possible, as v is a geodesic

and P is CAT(0). This finishes the proof of Claim 2, and of the lemma. O

We have worked through everything that was required in order to use our

main criterion, that is Theorem [3.40 We can now prove our main Theorem:

Theorem 3.2.7. Fvery irreducible 2-dimensional Artin group of rank at least 3

18 acylindrically hyperbolic.

Proof: Let Ar be an irreducible 2-dimensional Artin group of rank at least 3. We
can assume that I" is connected, as otherwise Ar splits as a free product Ar, = Ar,
of infinite groups hence is acylindrically hyperbolic. We can also assume that Ap
is not a right-angled Artin group, as every irreducible right-angled Artin group
that is not cyclic is acylindrically hyperbolic (|80l Section §]).
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Let a, b, ¢ € V(I') be the three generators obtained in the proof of Lemmal3.2.6]
and consider the action of Ar on its augmented Deligne complex D¥. Note that
the latter is CAT(0) by Lemma[3.2.5 and Lemma[2.4.22] Since mg;, = 3, we know
from Proposition(l) and Remark that the orbits of Ay, on Lk ppe (vap) are
unbounded. Moreover, we know from Lemma that there exists an element
g € Ar such that Ay N gAgg™ = {1}. Therefore, we can apply Theorem and
conclude that Ar is either virtually cyclic or acylindrically hyperbolic. That Ap
is not virtually cyclic is clear because it contains Z? subgroups (Theorem .
L]
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Parabolic subgroups

This chapter corresponds to the pre-publication [29], and is a joint work with

Maria Cumplido and Alexandre Martin.

Parabolic subgroups form a natural class of subgroups that has been playing
an increasing role in the geometric study of Artin groups in recent years. Hence
why understanding their combinatorics has become a topic of interest on its
own. Although parabolic subgroups are thought to have a nice combinatorial
behaviour, most of the main questions about them remain open in general. In
this chapter we consider Artin groups of large-type and prove in that case that

the parabolic subgroups do behave nicely. Our main theorem is the following:

Theorem 4.1. Let Ar be a large-type Artin group. Then the intersection of
an arbitrary subset of parabolic subgroups of Ar is itself a parabolic subgroup.

Moreover, the set of parabolic subgroups of Ar is a lattice for the inclusion.

Let Ar be a large-type Artin group. Our strategy for studying the parabolic
subgroups of Ar is geometric. To Ar we associate a simplicial complex called its
Artin complex X, whose geometry resembles that of the Deligne complex (see
Section , except that the Artin complex is constructed from the combina-
torics of all strict parabolic subgroups of Ar, and not just the spherical ones. In
this complex, every strict parabolic subgroup appears as the stabiliser of some
simplices, and can thus be studied geometrically. The Artin complex associated
with an Artin group can be very high-dimensional, although we are able to under-
stand some of its geometric properties using tools coming from systolic geometry

(see Section [2.2.4)).
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Theorem 4.2. Let Ar be a large-type Artin group of rank at least 3. Then its

Artin complex Xr is systolic.

Large-type Artin groups were recently shown to be systolic groups ([57]).
However, we emphasise that the systolic geometry appearing here is of a rather
different nature. The systolic complex associated to Ar considered by Huang-
Osajda is essentially a (thickened) Cayley graph of Ar for the standard generating
set, and as such is quasi-isometric to Ar. By contrast, the Artin complex Xr
studied here is quasi-isometric to the Cayley graph of Ar with respect to all its
proper parabolic subgroups, and in particular the action of Ar on Xr is cocompact

but far from being proper.

Using Theorem 4.1} we are also able to solve the problem of conjugacy stability
for parabolic subgroups. A subgroup H of a group G is conjugacy stable if for
every pair of elements g, h € H such that ¢ = a~'ha for some a € G there is a

(€ H such that g = 37'hB3. We obtain the following result:

Theorem 4.3. Let A be a standard parabolic subgroup of a large-type Artin
group Ar. Then Ap is not conjugacy stable in Ar if and only if there exist
vertices a and b of I that are connected by an odd-labelled path in T' and that are
not connected by an odd-labelled path in I

Note that the previous theorem generalises to all parabolic subgroups of large-
type Artin groups, as conjugacy stability is preserved under subgroup conjuga-
tions. Another application of Theorem and of the sytolicity of the Artin

complex is that parabolic subgroups are root stable:

Theorem 4.4. Let Ar be a large-type Artin group, let P be a parabolic subgroup
of Ar, and let g € Ar. If g" € P for some non-zero integer n, then g € P.

Studying the intersection properties of parabolic subgroups relies on under-
standing the sets of fixed-points and the normalisers of parabolic subgroups. In
particular, a consequence of our work is that we are able to recover the struc-
ture of the normaliser of every parabolic subgroup of a large-type Artin group.
Although these normalisers had already been studied by preceding authors, our
approach allows to recover these results independently and to give an explicit

description of these normalisers.
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Theorem 4.5. Let Ar be a large-type Artin group and let P be a parabolic sub-
group of Ar

o If type(P) = 2, then N(P) = P.

o Iftype(P) = 1, then N(P) splits as a direct product of the form N(P) = P x F,
where F is a finitely-generated free group. Moreover, there is an explicit descrip-

tion of a basis of F' (see Corollary for details).

The structure of normalisers of parabolic subgroups in Artin groups of large
type had already been investigated by Paris and Godelle, although it is a bit
hidden in their papers. In [82], the conjugation of standard parabolic subgroups
is described by an algorithm. In particular, we know that the only pairs of
different irreducible standard parabolic subgroups that can be conjugated are the
spherical ones. In the large case, as all parabolic subgroups are irreducible and
the only spherical parabolic subgroups are the dihedral ones, the situation is as
follows: A and Arpr» are conjugate if and only if [V = I'” or [V and I'” are vertices
that correspond to standard generators a and b respectively, such that a and b are
connected in T" by an odd-labelled path. Using [42, Definition 4.1, Corollary 4.12],
we know that the conjugating elements between two (possibly equal) standard
parabolic subgroups A and Ap» must be the product of an element in Ar and
an element associated to the previous path. If IV has type at least 2, such a
path does not exists and then N(Ap) = Ap. If T” has type 1, the description
of the normaliser is similar to the one given in Corollary [£.3.17] However, the
description Godelle gives there is set-theoretic and does not describe the direct
product structure.

The structure of the normaliser of cyclic parabolic subgroups for large-type
Artin groups (and more generally 2-dimensional Artin groups) had been obtained,
albeit under a different name, in |75, Proposition 4.5]. Moreover, a basis of the

corresponding free group had been stated as a remark, but without details.

We organise this chapter as follows. In Section we introduce the Artin
complex of a general Artin group, and show that its local structure is particularly
well-behaved, in the sense that the links of simplices are themselves (smaller)
Artin complexes. We then use this local structure to prove Theorem Section
4.2] exploits the systolic geometry of the Artin complex to prove Theorem [4.1] In
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Section we study the geometry of fixed-point sets of parabolic subgroups in
order to prove Theorem Finally, we prove Theorem and Theorem in
Section (.4l

4.1 Systolicity of the Artin complex

The goal of this section is to introduce our main geometric object, that is the
Artin complex associated to an Artin group. Later on, we present some of its basic

properties, and we show its systolicity for the case of large-type Artin groups.

Definition 4.1.1. Consider an Artin group Ar of rank n > 2, and a simplex Sr
of dimension n—1. We define a simplex of groups over St as follows. The simplex
Sr is given a trivial local group. There is a one-to-one correspondence between
the standard generators s; € V(') and the codimension 1 faces of Sr, and we
denote by A, these codimension 1 faces. In particular, A, is given the local
group {s;». Changing the codimension, there is a bijection between the strict
subsets of V(I') and the faces of Sr. Every face of K of codimension k can be

written uniquely as the intersection

Arpr = ﬂ A, for some I" induced strict subgraph of I with |[V/(I")| = k.
si€V(I)

The face A is then given the local group Ar.. The morphism associated to an
inclusion of faces Ar» < Ay is the natural inclusion ¢¥ripr : Apr < A, Let O be
the poset of standard parabolic subgroups of Ar ordered with natural inclusion.
As each Ap is itself an Artin group, there is a simple morphism ¢ : G(Q) — Ar
given by inclusion. The complex Xt := D(Sr, ¢) obtained by development of Sr
along ¢ is called the Artin complex associated to Ar (see Definition .

The action of Ar on Xt is without inversions and cocompact, with strict
fundamental domain a single simplex which is isomorphic to Sr. To avoid any
confusion, we will from now on denote by Sr the quotient space and by Ay its
faces, and we will denote by St a chosen fundamental domain of Xt and by Ap
its faces. For every simplex A of X, there is a unique induced subgraph IV < T’
such that A is the same orbit as Ap. We say that the simplex A is of type I".

In light of Definition [2.3.4] the Artin complex X can also be described by
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the following:
Xr = Ar x K/~7

where (g,z) ~ (¢/,2') < z = 2’ and g~'¢’ belongs to the simplex supp(x).

As for the Deligne complex, there is an equivalent definition of the Artin

complex in terms of the combinatorics of the parabolic subgroups:

Remark 4.1.2. Consider the following combinatorial complex Pr:

e The vertex set of Pr is the poset of left-cosets of all the strict standard parabolic
subgroups of Ar.

e There is a (n—1)-simplex between vertices of Dr corresponding to the left-cosets
G1Ar,, ..., gnAr, whenever there is a sequence of inclusions ¢, Ar, < --- < g1 Ar,.

Then Pr is exactly the barycentric subdivision of Xr.

Note that the Artin complex resembles to the Deligne complex (see Section
2.4.3)), although in the Artin complex we consider all the (strict) parabolic sub-

groups, and not only the ones that are spherical.

Lemma 4.1.3. Let Ar be an Artin group and let Xt be its Artin complex. Then
Xt is connected. Additionally, if Ar has rank at least 3, then Xr is simply-

connected.

Proof: This is a consequence of Definition [2.3.4L X is connected because the
Artin group Ar is generated by its standard parabolic subgroups. Moreover, if
Ar has rank at least 3, then Ar is the colimit of its strict standard parabolic

subgroups, by Theorem [2.4.4] and thus Xt is simply-connected. O

Lemma 4.1.4. Let Ar be an Artin group with Artin compler Xr. Then the link
of a simplex of type I is isomorphic to the Artin complex X associated to the

Artin group Arp.

Proof: By [17, Construction 11.12.24], it is possible to describe the link of a
simplex in the development of a complex of groups as the development of an
appropriate subcomplex of groups (as we did in Remark [2.4.21). We explain
below how this applies to Xr.

The link of A in Sp is a simplex of dimension |V (T')’| — 1, whose poset of

faces is isomorphic to the poset of proper subsets of I ordered with the inclusion.
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The complex of groups G(Sr) induces a complex of groups on the link Lkrg(zp/).
Moreover, there is a simple morphism @ : G(Lkg(zp/)) — Ap given by the

family of homomorphisms

(901“')1“" : Apw 1@5 Ap.

It follows from the construction described in |17, Construction 11.12.24] that the
link of Lkx.(Ar) is isomorphic to the development D(Lkg (Ar),¢s). Note
that the induced complex of groups on Lkg(zpr) is naturally isomorphic to the
complex of groups associated to Ap in Definition [{.1.1 Moreover, the simple
morphism @ coincides with the simple morphism used in Definition to
define the Artin complex X . Putting everything together, it now follows that
the link Lkx.(Ap) is isomorphic to Xp.

This argument generalises in a straightforward way to any simplex gAr of

Xt of type I'. ]

We now move towards proving Theorem that is, proving that the Artin
complex associated with any Artin group of large type is systolic. For more details
about systolicity, we refer the reader to Section [2.2.4] The main result we prove

about the geometry of the Artin complex is the following:

Theorem 4.1.5. Let Ar be an Artin group of rank at least 3. If all coefficients
in Ar are at least k € {3,..., 00}, then its Artin complexr Xv is 2k-systolic. In

particular, if Ar is of large type, then Xr s systolic.
In order to prove this theorem, we need the following lemma:

Lemma 4.1.6. Let Ar be an Artin group on two generators a,b with coefficient

Map € {3, ..., 0} and Artin complex Xr. Then sys(Xr) = 2mg.

Proof: If m,, = oo, it follows directly from the definition of the Artin complex
that Xr is the Bass-Serre tree associated to the splitting (a) = (b). The result is
then immediate. Let us now assume that m,;, < c0. Let e be the edge in Xt whose
vertices x, y correspond to the cosets (ay and (b). Let v be a non-backtracking
loop in Xp. Since Xt is a bipartite graph coloured by the cosets of {(a) and <{b)

respectively, the length of v is even. Denote by eg, eq, ..., ex the edges of v. Since

7



Chapter 4 — Parabolic subgroups

the action of Ar on Xr is transitive on edges, let us assume that ey = e. Note
that the action of {a) is transitive on the set of edges around x, and so is the
action of (b) on the edges around y. Assume without loss of generality that
first goes through z, i.e. e; and ¢y share the vertex x. Then e; must be of the
form a"'e, for some r; € Z\{0}. Note that the edges e; and ey then share the
vertex a"'y. The action of a"(bya™"" is transitive on the set of edges around a"y,
thus ey must of the form a"b™e, for some ry € Z\{0}. We continue this process

by induction until v stops. In particular, the final edge e is of the form
ambw - aﬁ«—lbrk

for some ry,...,r # 0. Since e = e as v is a loop, we get a"'b™ ---a"™ 1D e = e.
Since Stab(e) = {1}, it follows that a™b" - --a"+=1b"* must be trivial in Ar. But
it is also a non-trivial word, as v is not homotopically trivial. By [1, Lemma 6],
we must have k > 2my;,. Hence, the combinatorial length of 7 is |y| = k = 2myg.

O

Proof of Theorem [4.1.5t We will prove by induction on the number |V (T')| of
generators of the Artin groups Ar that their associated Artin complexes X are
2k-systolic.

If [V(T')| = 3, we know from Lemma that X is connected and simply
connected. It only remains to show that for all g € Ar, for all induced subgraph
I < T, the simplex g - Ap is such that Lkx.(g - Ar) is 2k-large. If |V/(I")] = 2,
then the link Lkx.(g - Ar) is isomorphic to the Artin complex X associated to
the Artin group Ap (Lemma , and the latter is 2k-large by Lemma m
The cases |[V(I')| = 0 or 1 are trivial.

Let us now assume that |[V(I')] > 3 and that every Artin complex Ap with
[ an induced subgraph of T is 2k-systolic. Again, we know from Lemma [4.1.3]
that Xr is connected and simply connected, so it only remains to show that for
all g € Ap, for all induced subgraph I'' < I', the simplex ¢ - Ap is such that
Lkx.(g-Ar) is 2k-large. If |V(I')| = 2, then Lk(g- Ap, Xr) is isomorphic to the
Artin complex X associated to the Artin group Ap (Lemmald.1.4)). The latter is
2k-systolic by the induction hypothesis, hence is 2k-large as well (|62, Proposition
1.4]). Once again, the cases |V(I")| = 0 or 1 are trivial. O
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4.2 Intersection of parabolic subgroups

The aim of this section is to use the systolicity of the Artin complex of an Artin
group of large type to prove Theorem [4.1] Most of the work will be to prove the
Theorem below.

Definition 4.2.1. Let P, and P, be two parabolic subgroups of an Artin group
Ar such that P, € P,. We say that P, is a parabolic subgroup of P if P, € P,

is conjugate to an inclusion of standard parabolic subgroups Ar» < Ap.

Theorem 4.2.2. Let Ar be an Artin group of large-type. Then:

(1) The intersection of two parabolic subgroups of Ar is again a parabolic subgroup
of Ar.

(2) If Py and Py are two parabolic subgroups of Ar such that Py S Ps, then Py is

a parabolic subgroup of Ps.

Note that the second item in the previous theorem is already a result of [42].
However, we believe the reader may be interested in recovering this result directly
from our perspective.

First notice that the Artin complex allows us to understand geometrically the

parabolic subgroups of Ar, via the following correspondence:

Lemma 4.2.3. Let Ar be an Artin group of rank at least 3 and let Xr be its
associated Artin complex. Then:

(1) The strict parabolic subgroups of Ar are exactly the stabilisers of simplices of
Xr.

(2)Let A be a simplex of Xr. The parabolic subgroups of Stabx.(A) are exactly

the stabilisers of the simplices that contain A.

Proof: By construction, every strict standard parabolic subgroup Ar is precisely
the stabiliser of some simplex A/ lying on the fundamental domain St of X,
and vice versa. Moreover, any parabolic subgroup of the form gAprg=' is the
stabiliser of the simplex g - A for some g € Ar. To prove the first claim, notice
that any simplex of Xt can be expressed as ¢’ - A’, where A’ is in St and ¢’ € Ar.

Let us now prove the second claim. On the one hand, let P be a parabolic
subgroup of Stabx.(A). Up to conjugation, we can suppose that A lies in Sr

and that P is the stabiliser of a simplex A’ that also lies in K. Now notice
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that, by construction of the fundamental domain, this implies that A’ contains
A, as we desired. On the other hand, note that if A” is a simplex that con-
tains A, then we can find an element g € Ar such that g - A” belongs to Sr.
Hence ¢'Stabx,.(A")g'™' < ¢'Stabx,.(A)g'! is an inclusion of standard parabolic

subgroups, as we wanted to prove. O

Remark 4.2.4. The previous correspondence is not a bijection between the
parabolic subgroups of Ar and the simplices of its Artin complex, as two dis-

tinct simplices may have the same stabiliser.

Secondly, we mention the following result from systolic geometry that will be

used in our proof:

Lemma 4.2.5. Let G be a group acting without inversions on a systolic complex
Y, and let H be a subgroup of G. Suppose that H fizes two vertices v and v' of

Y. Then H fizes pointwise every combinatorial geodesic between v and vy.

Proof: We prove the result by induction on the combinatorial distance between
vand v'. If d(v,v") = 1, the result is immediate, as there is a unique edge between
v and v’. Suppose by induction that the result is true for vertices at distance at
most n = 1, and let v, v’ be two vertices of Y at distance n+1. Since Y is systolic,
it follows from [62, Corollary 7.5] that the combinatorial ball of radius n around
V', denoted By (v',n), is a convex subset of Y in the sense of |62, Definition 7.1].
Moreover, by |62, Lemma 7.7|, this combinatorial ball intersects the combinatorial
ball By (v, 1) along a single simplex. This implies that there exists a simplex A
of Y containing v, and such that every combinatorial geodesic from v to v’ starts
with an edge of A. In particular, we define A’ as the simplex of Y spanned by
the first edges of all the combinatorial geodesics from v to v'. Since H fixes v and
v', H preserves the set of combinatorial geodesics from v to v’, and in particular
H stabilises A’. Since GG acts on Y without inversion, it follows that H fixes A’
pointwise.

Let v be a combinatorial geodesic from v to v'. By the above, H fixes the
first edge e of v. Let v; be the vertex of e distinct from v. We have that H
fixes v; and ¢’, and these two vertices are at combinatorial distance n. By the
induction hypothesis, H fixes pointwise the portion of v between v; and v’, and

it now follows that H fixes pointwise all of . This concludes the induction. []
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Proof of Theorem The two points of the Theorem are trivial if one of
the two parabolic subgroups is either the whole group or trivial. So we suppose
both parabolic subgroups are proper. We will prove the theorem by induction on
the rank n of Ar.

If n =2, Ar is an Artin group on two generators a, b and there are two cases
to consider. If m,, < oo, then Ar is a spherical Artin group, so the first point of
the theorem follows from |23, Theorem 9.5] and the second point of the theorem
follows from [40, Theorem 0.2]|. If m, = oo, then Ar is a free group on two
generators a,b. Moreover, the proper parabolic subgroups are either trivial or
infinite cyclic. Since the action of Ar on the Bass-Serre tree associated to the
splitting {a) = (b) has trivial edge stabilisers, it follows that two distinct proper
parabolic subgroups intersect trivially. Thus the two points of the theorem follow
immediately.

Let us now assume that the result is known for large-type Artin groups of
rank < n with n > 2, and let Ar be a large-type Artin group of rank n + 1. Let

Xt be its associated Artin complex.

Claim 1: Let eq,...,e; be a combinatorial path p in Xy. Then there exists a

simplex A of Xr containing the edge e; such that

ﬂ Stabx,.(e;) = Stabx.(A).

1<i<k
Proof of Claim 1: We will prove the claim by induction on k. If £ = 1, p is just
the edge e; and the proof is trivial. Now suppose that the claim is true for £ and
let us prove it for £ + 1. By applying the induction hypothesis to the subpath

ée,...,e, we will then have

ﬂ Stabx,.(e;) = Stabx.(A") n Stabx,.(ex11),

1<i<k+1

where A’ is a simplex containing the edge e;. Let v be a vertex contained
in both e, and e;4;. By Lemma [£.2.3] this means that both Stabx.(A’) and
Stabx,(ex41) are parabolic subgroups of Staby,.(v). Also, up to conjugacy, Stab(v)
is an Artin group on n generators. Therefore, by the induction hypothesis

on n, Stabx.(A’") n Stabx,(ex+1) is a parabolic subgroup of Stab(v) contained
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in Stabx.(ex+1), so it is a parabolic subgroup of Stabx,.(ex.1). Geometrically,
Stabx.(A") N Stabx,(er1) is the stabiliser of some simplex containing ey, 1. This

finishes the proof of Claim 1.

Claim 2: Let A; and A,y be two simplices of Xr. Then there exists a simplex A
of Xr containing A, such that Stabx. (A1) N Stabx.(Az) = Stabx.(A).

Proof of Claim 2: Let A’ be any simplex of X1 and let Vs be the set of vertices
of A’ As the action of Ar on Xt is without inversions, we have that Stabx.(A') =
Nwev,, Stab(w). Define a combinatorial path p that is the concatenation of the
three following paths: a combinatorial path p; that travels along every vertex
in Va,; a combinatorial geodesic p, between the endpoint of p; and Va,; and
a combinatorial path that starts in the endpoint of py and travels along every
vertex in Vj,. Denote the endpoint of p by v and let E, be the set of edges of p.

Then, using Claim 1 and Lemma [4.2.5] we obtain

Staby, (A1) n Stabx, (Do) = (] Stabx,(w) = () Stabx,(e) = Stabx,.(A),
weVa, UVa, c€E,

for some simplex A containing v. Now we need to show that A contains also A,.

Notice that Stabx,.(As) contains Stabx,. (A) and both Stabx.(Ay) and Stabx,.(A)

are parabolic subgroups of Stabx.(v). This group is, up to conjugacy, an Artin

group on n generators. So by using the induction hypothesis on n, Stabx.(A)

is a parabolic subgroup of Stabx.(Asz), which means that we can choose A to

contain A,. This finishes the proof of Claim 2.

In particular, note that Claim 2 together with Lemma implies that the
parabolic subgroups of Ar are stable under intersection, proving the first point

of the Theorem.

Claim 3: For every pair of simplices A; and Ay of Xt such that Stabx. (A1) <
Stabx,.(As), there exists a simplex A of X containing A, such that Stabx,. (A1) =
Stabx,.(A).

Proof of Claim 3: Just notice that Stabx.(A;) = Stabx,. (A1) N Stabx,.(As),
so by Claim 2 there is a simplex A containing A, such that Stabx.(A;) =
Stabx,.(A). This finishes the proof of Claim 3.
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We now explain why this claim implies that Ar satisfies the second point of
the Theorem. Let P, and P, be two parabolic subgroups of Ar such that P, € P,.
By Lemmathere are simplices A; and Ay of Ar such that P, = Stabx,.(A;)
and P, = Stabx,.(Az). By Claim 3, there exists a simplex A of X1 containing A,
such that Stabx. (A1) = Stabx.(A). Again by Lemma this means that P,

is a parabolic subgroup of P,, as we wanted to prove. ]

Remark 4.2.6. Notice that the only place where the systolic geometry was
used in the previous proof is the argument coming from Lemma that says
that if an element fixes two simplices, then it fixes pointwise a combinatorial
path between these simplices. Therefore, a strong enough requirement to prove
Theorem for any Artin group Ar is to have this fixing-path condition in its

Artin complex Xr.

We can generalise some interesting results concerning parabolic subgroups

that were previously shown for spherical Artin groups (|23]):

Corollary 4.2.7. Let Ar be an Artin group of large type. Then, an arbitrary
intersection of parabolic subgroup of Ar is a parabolic subgroup. In particular,
(1) For a subset B < Ar, there is a unique minimal parabolic subgroup of Ar
(with respect to the inclusion) containing B ;

(2) The set of parabolic subgroups of Ar is lattice with respect to the inclusion.

The strategy will be the same standard argument used in [23]. We can find
the generalised FC version of the first statement for spherical parabolic subgroups
in [73].

Proof of Corollary [4.2.7; Let P be an arbitrary set of parabolic subgroups
of Ar and let Q = (] P. The set @ is contained in every parabolic subgroup
in P, so by Theorefr;fp, we just need to prove that () is equivalent to a
finite intersection of parabolic subgroups. Notice that every parabolic subgroup
is expressed as the conjugate of some standard parabolic subgroup. Since Ar is a
countable group and standard parabolic subgroups of Ar are finitely generated,

the set of parabolic subgroups of Ar is countable. In particular, P is countable.

Enumerate the elements in P = {P;, P, P5,...} and let

Qm: ﬂ Pz

1<is<m

83



Chapter 4 — Parabolic subgroups

By Theorem all @,,’s belong to P. As @ = Nien@m, we need to show that
the set {Q,, | m € N} is finite.

Let X1 be the Artin complex of Ar. Notice that we have a descending chain

Q1202032 ....

By doing an induction on the Claim 3 in the proof of Theorem [1.2.2] one can
easily see that if Stabx.(A;) 2 Stabx.(As) 2 Stabx.(As)..., the dimension
of A; has to be strictly bigger than the dimension of A; ;. As the dimension of
Xr is finite, the chain cannot be infinite. Therefore, () is the minimal parabolic

subgroup on P.

We now prove the two statements of Corollary To see the first statement,
just assume that P = {P| B < P}. For the second statement let P, and P, be
any two parabolic subgroups of Ar. We need a maximal parabolic subgroup R;
contained in P; and P, and a minimal parabolic subgroup Ry containing P; and
Ps. By all the previous discussion, we can set R; = P n P, and R, is the minimal

parabolic subgroup in P when P = {P| P, u P, € P}. O

4.3 Normalisers and fixed-point sets of parabolic
subgroups

The goal of this section is to prove Theorem In all this section we consider
an Artin group Ar of rank at least 3. For a parabolic subgroup P of Ar, we
denote by Fiz(P) (or Fizxx,.(P) if we wish to highlight the ambient complex) the
fixed-point set of P in Xp. Since Ar acts on Xt without inversions, Fiz(P) is a
subcomplex of Xp. The connection between the normaliser N(P) of a parabolic

subgroup P and its fixed-point set Fiz(P) is given by the following:

Lemma 4.3.1. Let P be a parabolic subgroup of Ar. Then the normaliser N (P)
of P satisfies
N(P) = Stab(Fiz(P)).

In addition, an element of Ar belongs to N(P) if and only if it sends some

mazximal simplex of Fix(P) to some mazimal simplex of Fix(P).
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Proof: (<) Let g € N(P), that is, gP = Pg, and let v € Fiz(P). Then

P-(g-v)=g-(P-v)=g-v.

In particular, g-v € Fiz(P) and thus g € Stab(Fiz(P)). (2) Let g € Stab(Fixz(P))
and let A € Fiz(P) be a maximal simplex in the sense that Stab(A) = P. Then
g- A€ Fiz(P), thus

P-(g-A)=g-A.

In particular, gPg ! fixes A, hence gPg~' < P. In other words, g € N(P). [

The key geometric result to prove Theorem by means of studying fixed-

point sets is the following:

Proposition 4.3.2. Let Ar be a large-type Artin groups, and let P be a parabolic
subgroup of Ar of type S’.

o If|S'| = 2, then Fix(P) is a single simplex.

o If |S"| =1, then Fix(P) is a subcomplex whose dual graph is a simplicial tree
(see Definition[{.3.8 for the terminology).

The proof of the above proposition will be split into two cases. We first

mention a useful observation that will allow for proofs by induction:

Lemma 4.3.3. For a simplex A of Fix(P) of type I'", the link Lkpipy(A) is

isomorphic to Firx,,(P).

Proof: We have Lkpiypy(0) = Fix(P)nLkx. (o). Since Lkx, (o) is equivariantly
isomorphic to X by Lemma [4.1.4] the previous intersection is thus isomorphic
to Fizx,, (P). O

We start with the case of a parabolic subgroup P of type at least 2.

Lemma 4.3.4. Let A be a standard parabolic subgroup of type at least 2. Then
Fix(Ap) is a single simplex A such that Stab(A) = Ap.

Proof: We begin with the following claim:

Claim: If a subcomplex Y of Xt is such that all of its links are simplices or empty,

then Y itself is a simplex.
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Proof of the Claim: If Y is not a simplex, then it contains a combinatorial
path u, v, w that forms a geodesic of Xy. The two vertices u, w define two vertices
of Lky(v) at distance at least 2 by assumption, hence Lky (v) is not a simplex,

which proves the Claim.

Recall from Lemma that for a simplex A of Fiz(P) corresponding
to a simplex of type I', the link Lkpipy(A) is isomorphic to Fizx,,(P). If
[V(D\V(I')| = 1, then Fiz(P) must be a single vertex v, as if it weren’t, it
would follow from the convexity of Fiz(P) (Lemma that P fixes an edge
of Xr, which is impossible since in that case P is a maximal proper parabolic
subgroup of Ar. Fiz(Ar) being a single simplex now follows by induction on
[V(I\V(I'")| = 1 by applying the above Claim. The dimension of Fiz(Ar) is
|[V(T)\V(I')| — 1, so by maximality its stabiliser has to be Ap. O]

Corollary 4.3.5. If P is a parabolic subgroup of Ar of type at least 2, then
N(P)=P.

Proof: By Lemma we know that N(P) = Stab(Fixz(P)). Moreover, we
know from Lemma that there is a simplex A in Xr such that Fiz(P) = A
and Stab(A) = P. In particular,

N(P) = Stab(Fiz(P)) = Stab(A)=P.

O]

We now move to the case of a parabolic subgroup of type 1. We start with

the following general observation:
Lemma 4.3.6. Let P be a parabolic subgroup of Ar. Then Fix(P) is contractible.
The proof of this lemma will rely on the following notion of convexity from [62]:

Definition 4.3.7. A subcomplex Y of a simplicial complex X is 3-convex if
every pair of vertices of Y that are adjacent in X are adjacent in Y, and every
combinatorial geodesic of length 2 with endpoints in Y is contained in Y. It is

locally 3-convex if for every simplex o of Y, the link Lky (o) is 3-convex in

Lk’x((f).
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Proof of Lemma [4.3.6; By Lemma [£.2.5] Fiz(P) contains every geodesic
between two vertices of Fiz(P). In particular, it is connected and 3-convex,
hence locally 3-convex by |62, Fact 3.3.1]. By [62, Lemma 7.2], Fiz(P) is thus
contractible. ]

It turns out that such fixed-point sets have a very simple geometry. We

introduce the following:

Definition 4.3.8. Le P be a parabolic subgroup of type 1 of Ar. The dual
graph Tp of Fixz(P) is defined as follows:

e Vertices of Tp correspond to the simplices of Fiz(P) of type IV with |[V(I")]| =1
(called type 1 vertices) or of type I with |V (I")| = 2 (called type 2 vertices).
e We put an edge between a type 1 vertex A and a type 2 vertex A’ whenever
A c A.

e Finally, Tp is the subgraph obtained by removing the type 2 vertices that have
valence 1.

We think of T as a subgraph of the first barycentric subdivision of Fixz(P).
Lemma 4.3.9. The dual graph Tp is a simplicial tree.

In a nutshell, the proof of Lemma goes as follows: We construct a

sequence of subcomplexes
Xo2X1 22X,

where X is the first barycentric subdivision of Fixz(P) and X} = Tp, and such
that for each 0 < ¢ < k — 1, X;;, is a deformation retract of X;. Since X
is contractible by Lemma [4.3.6] it will then follow that the graph Tp is also
contractible, hence is a tree.

We will need the following standard result from algebraic topology to construct

deformation retractions:

Lemma 4.3.10. Let X be a simplicial complez, and let v be a vertex of X whose
link Lkx(v) is contractible. Then the subcompler spanned by X —v is a deforma-

tion retract of X.

Proof: Since the star Stx(v) is isomorphic to a cone over Lkx (v), we first notice

that X is obtained from X — v by coning-off the contractible link Lkx(v). Recall
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that for a simplicial complex Y and a contractible subcomplex Z, the quotient
map Y — Y /Z obtained by collapsing Z to a point is a homotopy equivalence

(see [52, Proposition 0.17]). We thus have the following commutative diagram:

X—-v < X
(X—-v)/Lkx(v) —— X/5tx(v)

where both vertical arrows are homotopy equivalences since Lkx(v) and its
cone Stx(v) are contractible. Thus, the inclusion X —v — X is a homotopy
equivalence, and it follows from [52, Corollary 0.20] that the subcomplex spanned

by X — v is a deformation retract of X. O

Proof of Lemma[4.3.9} Consider the barycentric subdivision Fiz(P)' of Fiz(P).
A vertex v of Fiz(P)' corresponds to a simplex of Fiz(P); We will call the dimen-
sion of the corresponding simplex the height of v. For every 0 < k < |V(T)| — 2,
we define the subcomplex X of Fiz(P)’ spanned by the vertices of height at least
k. In particular, X, = Fiz(P)" and Xy ()—2 is a subgraph of Fiz(P)' containing
Tp. We now show that for every 0 < k < |V(I')] — 3, Xg41 is a deformation
retract of Xj;. Notice that X}, is obtained from Xj.; by adding for every vertex v
of height k the star Sty, (v), which is isomorphic to a simplicial cone over the
link Lkx, (v). Let v be a vertex of height 0 < k < |V/(I")| — 3. This vertex corre-
sponds to a simplex A of Fixz(P) of type I for some induced subgraph I < T’
with |[V(I')'| = 3. Note that a vertex of X}, adjacent to v must have height greater
than k by construction, hence the link Lk, (v) is isomorphic to the first barycen-
tric subdivision of Lkpiz(py(A). In particular, Lkx, (v) is isomorphic to the first
barycentric subdivision of Fizx_(P) by Lemma and hence is contractible
by Lemma [4.3.6] It thus follows from Lemma that X}, is a deformation
retract of X1 U Stx, (v). Since for two distinct vertices v, v’ of height k, the
subcomplexes X1 U Sty, (v) and Xy U Stx, (V') intersect along Xy.1, we can

glue the various deformation retractions into a deformation retraction of

Xk = Xk+1 U U Sth, (’U)

height(v)=k
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onto Xi11. Thus, for every 0 < k < |V(I')| — 3, Xj41 is a deformation retract of
Xj. Thus, the graph Xy (-2 is a deformation retract of X, = Fiz(P)". Since
the latter complex is contractible by Lemma so is the graph Xy -2,
and it follows that Xy () —2 is a tree. Finally, Tp is obtained from Xy ) _2 by
removing the type 2 vertices that have valence 1. Thus, Tp is a deformation

retract of Xy )2, hence Tp is a tree. O

Note that since N(P) = Stab(Fiz(P)) by Lemmal4.3.1, N(P) acts on Fiz(P),

hence on the dual tree Tp. We will use this action to prove the following:

Lemma 4.3.11. The normaliser N(P) of P splits as a direct product P x F,

where F' is a finitely generated free group.

Remark 4.3.12. It can be shown that the tree Tp is N(P)-equivariantly isomor-
phic to the standard tree associated to P as considered in |75, Definition 4.1].
In particular, the proof of Lemma is essentially the same as the proof of
[75, Lemma 4.5]. We however include a proof formulated in our setting for the

sake of self-containment.

Since P is a normal subgroup of N(P) acting trivially on T by construction
of Fixz(P), we can look at the induced action of N(P)/P on Tp. We will use this
action to completely describe the normaliser N(P). We first need the following

result:

Lemma 4.3.13. For the action of N(P)/P on Tp we have:
o Type 1 vertices of Tp have a trivial stabiliser.

o Type 2 vertices of Tp have an infinite cyclic stabiliser.

Proof: We first recall that the centre of a dihedral Artin group A,, with 3 <
ma, < 00 is an infinite cyclic subgroup, whose generator is a power of the Garside
element A, as described in Definition [3.1.6]

A type 1 vertex v of Tp corresponds to a maximal simplex of Fiz(P). Such
a simplex has stabiliser P by construction, hence Staby(py/p(v) is trivial. Let v
be a type 2 vertex of Tp of type A.q. This vertex corresponds to a simplex with
associated coset gA.q for some g € Ap. Tt follows from |75, Lemma 4.5] and the

structure of the centre of dihedral Artin groups that we have:
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e If m.q is even, then

Stabn(pyp(v) = 9Z(Aw)g™" = (gAag™";

e If m.q is odd, then

Stabnpyp(v) = gZ(Aca)g " = (gAZg™ ).

We are now ready to prove Lemma [4.3.11

Proof of Lemma [4.3.11} Since two type 1 vertices of Tp corresponding to
cosets of the same standard parabolic subgroup are in the same N(P)-orbit,
hence in the same N(P)/P orbit, it follows that the action of N(P)/P on Tp is
cocompact. Thus, N(P) acts cocompactly and without inversion on a simplicial
tree. By Lemma the stabilisers of type 1 vertices are trivial (hence so are
the stabilisers of edges) and the stabilisers of type 2 vertices are infinite cyclic.
It thus follows from Bass-Serre theory that N(P)/P is a finitely-generated free
group, and thus N(P) splits as a direct product P x F, where F is a finitely
generated free group. O

We now move towards finding an explicit basis of these normalisers. Finding
an explicit basis for the free subgroup appearing in Theorem [4.5]is now a standard
application of Bass-Serre theory, which was stated as a remark without further
justification in |75, Remark 4.6]. We first start by describing a fundamental

domain for the action, as well as the quotient space Tp/N(P).

Definition 4.3.14. Let I be the first barycentric subdivision of I'. Recall that
a vertex of I corresponding to a generator a of Ar will is denoted v® and is
said to be of type 1, while a vertex of [” corresponding to an edge of I' between
generators a and b will be denoted v® and will be said to be of type 2. Let Iy 0dd
denote the maximal connected subgraph of I' that contains the vertex a and only
odd-labelled edges. Let I'p be the graph obtained from the disjoint union of all
the edges of I" that contain a vertex of I', oaq, by the following identification. If

such an edge e (e’ respectively) of I contains a vertex v (v’ respectively) such
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that v, v’ correspond to the same vertex of Iy o4, then v and v are identified and

define the same vertex of I'p.

Some examples of the graph ['p are given in Figure 4.1, when the underlying

defining graph is a triangle.

Definition 4.3.15. Let ¢ be an edge of I'p between a type 1 vertex v¢ and a
type 2 vertex v°?, for ¢, d spanning an edge of I'. We denote by € the edge of Tp
between the vertex {c) and the vertex A.4. Choose an orientation of each edge of
I'. For each oriented loop of I'p based at v, we denote by ey, ..., e, the oriented

sequences of edges of I' crossed by 7, and we define
= AR A,

where the sign for each Garside element A., depends on whether v follows the
orientation of e;.

We now choose a spanning tree 7 of ['p, which we think of as being based
at v®. For a vertex v of I'p, we denote v, the oriented geodesic of 7 from v* to
v. Let e be an edge of I'p. If e is contained in 7, let v be the vertex of e closest
to v® in 7. If e is not contained in 7, let v be the vertex of e closest to v* in I'p

(as I'p is bipartite). We denote g, = g,,, and we set

Yp = U GuC.

6CFP

This defines a connected subtree of Tp.

Lemma 4.3.16. The subtree Yp is a fundamental domain for the action of N(P)
on Tp, and the quotient Tp/N(P) is isomorphic to Tp.

Proof: An edge of Tp corresponds to a pair consisting of a maximal simplex of
Tp (of type ¢ for some ¢ € V(T")) and one of its codimension 1 faces (of type cd for
some d € V(I') adjacent to ¢). We thus mention the following useful fact, which

is an immediate consequence of Lemma [4.3.1}

Fact: Two edges of Tp in the same Ar-orbit are also in the same N(P)-orbit.
Let us first show that Yp is a fundamental domain for the action of N(P) (and
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Defining graph I’

Induced graph
of groups on I,

Rank and basis of F,
with N(P) =2 PXF

z °
L AaARAL
~ = </_\,_ff-‘/i‘l be Am >

Therank of Fis 4 and a
basis of F is given by:

{Ac%b’ Az%cf AacA SCA;cly AabA bcA ac}

AaApAg)  (AaclpcAi)

The rank of F is 4 and a
basis of F is given by:

{Aizlbl Az%cf AabAbcA;blr AacA bcA ;cl }

Therank of Fis 2 and a
basis of F is given by:

A
“a) Aac) (A Age)
b c
The rank of Fis 3 and a
Ay (A2, basis of F is given by:
{Aab:AgclAacAbcA;cl}
b c
(A acApcA c:cl >

Figure 4.1: Examples of computations of normalisers of the parabolic subgroup
P = {a), for various large-type Artin groups of rank 3. Type 2 vertices of I'p
are indicated in bold in the second column and come with their infinite cyclic
stabilisers. The group element in blue corresponds to the element of a basis of
F' coming from the fundamental group of I'p. Note that the structure of the
normaliser for large-type Artin groups of rank 3 depends only on the parity of
the labels and not on the labels themselves, so the above cases cover all possible

cases.
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hence N(P)/P) on Tp. The fact that Yp is connected, hence a subtree of Thp,
is a consequence of the construction. By construction of the various edges €, it
thus follows that the edges of Yp are in different Ar-orbits, and in particular in
different N(P)-orbits. Now let e be an edge of Th. Its type 1 vertex is of type
¢, for some ¢ € V(I') such that {¢) and {a) are conjugated. It thus follows from
[82] that ¢ € V(I';04a), and it then follows that e is in the Ap-orbit, hence the
N(P)-orbit, of an edge of Yp. Thus, Yp is a fundamental domain for the action
of N(P) (and hence N(P)/P) on Tp. We now want to study the quotient space

Tp/N(P). Let us analyse the action of N(P)/P on Tp at a local level. Let v be a
vertex of Tp of type c € V(I'). By the above remark, we will assume up to to the
action of N(P) that this vertex corresponds to the codimension 1 simplex of Xt
corresponding to g,{(c). By construction of Tp, the codimension 1 faces of A that
correspond to a type 2 vertex of Tp adjacent to v are the simplices corresponding
to the parabolic subgroups g,A.; with d connected to cin I'. Let v be a vertex of
Tp of type A.q where ¢,d span an edge of I'. Up to the action of N(P), we will
assume that this vertex corresponds to the simplex with associated coset g, A.q.
Then it follows from Lemma that we have:

o If mq is even, then all the edges of T containing v are in the same (A 4)-orbit.
o If m.q is odd, then there are exactly two N(P)-orbits of edges of Tp containing
v, corresponding to the (A2 )-orbits of the maximal simplices of type {c} and {d}
respectively.

The description of the quotient Tp/N (P) now follows from this local description.
]

As mentioned earlier, the fundamental group N(P)/P of this graph of groups
over ['p is a free group, and by Bass-Serre theory a basis for it is obtained by
choosing a generator of each (infinite cyclic) stabiliser of vertex of dihedral type,
as well as a family of elements corresponding to a basis of the fundamental group

of I'p. We now explain how to construct explicitly these elements.

(1) For each vertex v of Yp of type A4, a generator of

Stabn(pyp(v) = 9uZ(Aca)gy
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is given by
Go - A2 g, b i meg is odd,

C

o - Deg - gv_1 otherwise.

(2) A basis of m1(I'p) is in bijection with the edges of 'y — 7. Let e be such an
edge, joining a type 1 vertex v° and a type 2 vertex v°¢, and let ¢’ be the edge
joining v? and v°. Then the edges g,c A€ and g,«& of Yp contain two type
2 vertices in the same N(P)-orbit, and the geodesic of Yp between these
two vertices project to a loop of I'p crossing e exactly once that represents
the element

gue - AL - g € N(P).

Note that this element is of the form g¢,, for some combinatorial v containing
e. Thus, a family of elements for point (2) is given by the family of elements

g when 7 runs over a basis of I'p.

We finally obtain the following:

Corollary 4.3.17. The normaliser N(P) splits as a direct product N(P) = P x
F, where F is a finitely-generated free group with a basis given by the following

family of elements:

e for every vertex v°* of I'p, the element

Go - A2, - g7t if meg is odd,

C

Go - Deq - g5t otherwise.

e for each combinatorial loop v based at v, in a chosen basis of I'p, the element

G- 0

In Figure [4.1] we give examples for various Artin groups of rank 3 of the

normalisers of standard generators.

4.4 Conjugacy stability and root stability

We are now ready to prove Theorem and Theorem [4.4 In this section, Ar
denotes as usual a large-type Artin group of rank at least 3. By Corollary [4.2.7]

we can define the following subgroups of Ar:
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Definition 4.4.1. Let X € Apr. The minimal parabolic subgroup Pg contain-

ing B is called the parabolic closure of X.

As is turns out, the parabolic closure of a set B € Ar behaves well under
conjugacy as illustrated by the following result, which generalises an analogous

statement for spherical Artin groups (|23]):

Lemma 4.4.2. Let B < Ar and o € Ar. Then
Pa—lBa = O(ilPBOé.

In particular, if g and h are conjugate, their parabolic closures correspond to

stabilisers of simplices of Xt with the same dimension.

Proof: It is obvious that o 'Pga contains o !Ba. We need to prove that this
parabolic subgroup is the minimal one containing a~'Ba. Let ) be any parabolic
subgroup containing o 'Ba. As aQa ! contains B, Pp € aQa !. Therefore,

a 1Pga C Q. ]

We are finally able to prove Theorem [£.3] that we restate below for the sake of

clarity:

Theorem 4.4.3. Let A be a standard parabolic subgroup of a large-type Artin
group Ar. Then A s not conjugacy stable in Ar if and only if there exist
vertices a and b of I'' that are connected by an odd-labelled path in T' and that are
not connected by an odd-labelled path in T

Proof: Let g and h be two elements of A that are conjugated by an element
a € Ap. As P, P, < Ap, by Theorem [4.2.2there must be two induced subgraphs
[,y cIMand 3, 8" € Ap such that P, = 7' Ap, S and P, = 3" ' Ar, /. Since P,
and Pj, are conjugate by Lemma Ar, and Ar, have to be conjugate. In
Section 4.3 we have seen that if Ap, has type at least 2 then I'y = I'y. Also, if I'y
has type 1, then either I'y = I'y, or I'; and I's are vertices of I' connected by an

odd-labelled path in I'. Thus, there are two possibilities:

(1) Suppose that P, = 8 'Ap 8 and P, = /" 'Ar, 8, with I’y € T an induced
subgraph and 3," € Ap. Then (Ba)™'Ar, (Ba) = B~ 'Ar, 8 and BaB~! nor-
malises Ar,. If Ar, has rank at least 2, then by Corollary N(Ar,) = Ar, <
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Ap, so a € Ap. If Ap, has rank 1 then ¢ = 8 'af and h = /" 1af’ for some

a € V(I'), and they are conjugate by 371" € Ap. (2) Suppose that g = v~ ta™y

and h = 71"y, 7,7 € Ap, where a,b € V(T') are connected in T’ by an odd-
labelled path. Then, there is an element of Ar conjugating a to b. If there is an
odd-labelled path in I connecting a to b, then there is an element ¢ in A that
conjugates a to b. Thus, v~ 'cy’ conjugates g to h . On the contrary, if there is
no such a path in I, there is no element in A conjugating a to b. Since the
parabolic closures of g and h are respectively v~ '{a)y and v'~'(b)y’, by Lemma
there is no element in Ap conjugating g to h. This is then the only case in
which Ar is not conjugacy stable in Ar. [1 We also prove Theorem [4.4] that

states that the parabolic closure of an element g is stable when taking roots and

powers of g. This generalises to large-type Artin groups a result of [23].

Theorem 4.4.4. Let Ar be a large-type Artin group of rank at least 2, and let
g € Ar. Then for every n € Z\{0} we have P, = Pyn. In particular, if g" € P
then g€ P.

Before coming to the proof of this Theorem, we first introduce the following

lemma. Tts result and its proof are analogous to [31, Theorem 7.3].

Lemma 4.4.5. Let G be a group acting by simplicial automorphisms on a systolic
complex X. Suppose that there is a vertex v e X whose orbit Gv is finite. Then

there exists a simplex of X that is invariant under the action of G.

Proof: The statement of [31, Theorem 7.3| is given for a finite group G. However,
their proof only uses the finiteness of G to obtain a finite G-orbit, out of which
they construct an invariant simplex. In particular, their proof generalises without

any change to the case of an infinite group GG with a finite G-orbit. Il

Proof of Theorem We show by induction on the rank |[V(T')| of Ar
that P, = Ppn. If [V(I')] = 2, Ar is a dihedral Artin group. In particular, it is
spherical, and the result follows from |23, Corollary 8.3|. Let now [V(I')] = 3,
and suppose that P, # Pyn. Since Pyn S P,, there is a chain of inclusions of the

form

PgnnggAF.
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Claim: We have P, & Ar.

Proof of the Claim: Since P & Ap, the set Fixx.(P») is non-empty. In

particular, g™ is elliptic, and thus ¢ has finite orbits, as for every point v € Fix(g"),

(g v ={v,gv,g%v, - ,g" "v}.

By Lemma [4.4.5] g must stabilise some simplex A in Xp. Because the action of
Ar on Xy is without inversions, g must fix A pointwise. In other words, Fix(g)

is non-empty, hence P, & Ar. This finishes the proof of the Claim. Now we have

P, = hArh=! for some h € Ar and an induced subgraph I < I". Notice that
h™'Pjuh & h'Ph = Ap,

and thus Py-ignp, & P19, = Ap by Lemma [f.4.2] As Ap has stricly lower
rank than Ap, we can use the induction hypothesis on Xy. This yields P,-1g, =
Py—1gnp. In particular, one has P, = Py» by Lemma , which is a contradiction.

This proves the main point of the theorem. The last point of the theorem is

now immediate. []
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Chapter 5

Rigidity and automorphisms

The goal of this chapter is to give a partial answer to the isomorphism problem
raised in the introduction. Let us recall that an Artin group Ar is said to be free-
of-infinity if m,, # oo for all a,b € V(I'). In this chapter, we study the rigidity
of large-type Artin groups, and more specifically large-type Artin groups that are

also free-of-infinity. Our main result is the following:

Theorem 5.1. The class of large-type free-of-infinity Artin groups s rigid. In
other words, if Ar and A are two large-type free-of-infinity Artin groups, then

Ar and Ay are isomorphic if and only if I' and I are isomorphic.

Our work on isomorphisms between large-type free-of-infinity Artin group
is closely related with the study of the automorphisms of these Artin groups.
In particular, we describe completely the automorphism group and the outer

automorphism group of every large-type free-of-infinity Artin group:

Theorem 5.2. Let Ar be a large-type free-of-infinity Artin group of rank at least
3. Then Aut(Ar) is generated by the conjugations, the graph-induced automor-

phisms, and the global involution. In particular, Out(Ar) is finite.

Note that it is not possible to extend Theorem and Theorem to all
large-type Artin groups, as this bigger family is known to not be rigid and to
contain other types of automorphisms (see [32]). In spite of that, we are still able
to prove that all large-type Artin groups admit a weaker form of rigidity. The
next result we obtain concerns the isomorphisms of large-type Artin groups in

general.
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Theorem 5.3. Let Ar and Ap be two large-type Artin groups of rank at least
3. Then any isomorphism ¢ : Ar — Ap induces a bijection between the set of

spherical parabolic subgroups of Ar and the set of spherical parabolic subgroups of

Apr.

In addition to being a principal tool in the proofs of Theorem and The-
orem [1.13] the consequences of Theorem [I.14] are various. For a start, it implies
that any isomorphism ¢ : Ap — Ap between large-type Artin groups sends the
standard generators of Ar onto conjugates of standard generators of Ar». When
I' = I, this gives a form a rigidity of the automorphisms of Ar, that is in clear
contrast with classes such as right-angled Artin groups, in which the automor-
phism group contains transvections. Another consequence of Theorem is that
the spherical parabolic subgroups of a large Artin group can be defined in a
purely algebraic way, in the sense that they only depend on the abstract group
structure and not on a specific choice of defining graph for the group. When the
Artin group considered is large but also free-of-infinity, we find a way to “recon-
struct” its associated Deligne complex in a purely algebraic manner. We obtain

the following result:

Theorem 5.4. Let Ar and Ar be two large-type free-of-infinity Artin groups
of rank at least 3, with Deligne complexes Dr and Dr.. Then any isomorphism
w : Ar — A induces a natural simplicial isomorphism . : Dr — Drs that can

be described explicitly.

We now bring light on the strategy we use to prove the aforementioned results.
The key ingredient into proving Theorem [5.1]and Theorem [5.2)is Theorem If
we find a way to reconstruct the Deligne complexes of (some) Artin groups with
purely algebraic objects, then any isomorphism between these Artin groups will
preserve the structure of the algebraic objects, and hence preserve the Deligne
complexes themselves. This kind of approach was originally used by Ivanov (|60])
to study the automorphisms of mapping class groups, and has since then been
extended to other groups like Higman’s group (|68|) or graph products of groups
(I39D)-

We now consider a large-type Artin group Ar. A first step into reconstruct-

ing the associated Deligne complex Dr is to reconstruct the type 2 vertices of
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the complex. These vertices are in one-to-one correspondence with the non-free
parabolic subgroups of type 2 of Ar. We know that these subgroups are dihedral
Artin subgroups of Ar. However, this is not a strong enough condition to de-
scribe them purely algebraically. As it turns out, reconstructing these parabolic
subgroups in a purely algebraic manner is made quite complicated by the exis-
tence of dihedral Artin subgroups of “exotic” type, which do not correspond to
vertices of type 2 in the original Deligne complex. A large part of our work has
for goal to find a way to describe these exotic dihedral Artin subgroups explicitly,
which then allows us to differentiate them from the dihedral Artin subgroups that

correspond to the type 2 vertices of Dr. Doing so, we will prove the following:

Theorem 5.5. Let Ar be a large-type Artin group of rank at least 3, and let H
be a subgroup of Ar that is isomorphic to a dihedral Artin group. Then H is
conjugated into one of the following:

(1) {a,by, where a,be V(L) satisfy mg, < 0.

(2) {b,abcy, where a,b,c € V(') satisfy may = Mge = My = 3.

The next step into reconstructing Dr algebraically is to characterise the type 1
vertices of the complex. Unfortunately, the correspondence between the parabolic
subgroups of type 2 of Ar and the type 2 vertices of Dr established at the previous
step has no chance to work for type 1 vertices. This is because every parabolic
subgroups of type 1 of Ar corresponds to infinitely many type 1 vertices of Dr, so
there is no hope into building a bijection between these subgroups and the type
1 vertices of Dr.

When the Artin groups considered are large and free-of-infinity, we find an-
other way to reconstruct the type 1 vertices of Dr algebraically. Our strategy
involves characterising every type 1 vertex of Dr through the (finite) set of type
2 vertices it is connected to. This process comes in very handy, because it allows
to immediately state when a type 1 and a type 2 vertices should be connected,
which helps reconstructing part of the edges of Dr too. At this point, we will
already have reconstructed a rather large subcomplex of Dr. We will finally be

able to reconstruct Dr entirely by exploiting the geometry of this subcomplex.

The structure of this chapter is as follows. In Section we consider large-

type Artin groups. We introduce various algebraic and geometric tools and no-
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tions about parabolic subgroups, normalisers, and dihedral Artin subgroups, that
will be used through the rest of the chapter. Section is dedicated to an in-
depth study of the centralisers of hyperbolic elements of Ar, and to the action of
these centralisers on the minset of the corresponding hyperbolic elements. In this
section, we will develop central tools that will be used to study the dihedral Artin
subgroups of Ar in the next section. In Section we describe all the dihedral
Artin subgroups of large-type Artin groups explicitly, proving Theorem [5.5] We
also find a way to differentiate the dihedral Artin subgroups that correspond to
type 2 vertices of Dr from those that don’t, which ultimately allows to recover
Theorem [5.3] In Section we suppose that our large-type Artin groups are
also free-of-infinity, and we reconstruct the Deligne complex in a purely algebraic
manner. Finally in Section [5.5] we use this algebraic description of the Deligne
complex to recover Theorem [5.4] Theorem and Theorem

5.1 Preliminaries.

This section serves as an introduction to many general notions that we will use
throughout this chapter. Section is oriented around the introduction of
basic tools about the algebraic structure of the parabolic subgroups and their
connection with the geometry of the Deligne complex. In Section we will
talk briefly about dihedral Artin subgroups, introducing some of the material
that will be needed in Section As explained at the beginning of this chapter,
studying the dihedral Artin subgroups is crucial because they appear as stabilisers
of vertices in the Deligne complex.

We want to highlight that throughout this chapter, the notation Ar will always

be used to denote an Artin group whose rank is at least 3.

5.1.1 Parabolic closure, type and normalisers.

In this section we introduce various tools that will be useful throughout the

chapter. First of all, we want to introduce a one-dimensional subcomplex of Dr
that will be a central tool in Sections and This is the goal of the

next definition.

Definition 5.1.1. The set of points in Dr whose stabiliser is non-trivial is a
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graph that is the union of all the edges of the form ¢ - e, 4, Where a,b € V(I
and g € Ap. It is a strict subset of the 1-skeleton D(Fl) of Dr, that we will call the
essential 1-skeleton and denote by Dl(})_ess (on Figure the edges that are

drawn are exactly those of the essential 1-skeleton D7),

Remark 5.1.2. The fact that Dr is the union of the translates ¢ - Kt for all
g € Ar has two direct consequences:

(1) Since the set of points of D7 that also belong to the fundamental domain
Ky is the boundary Iy, of Kt, the graph D%l)fess is the union of the translates
g - Dypar, for all g € Ar.

(2) Since KT is the cone-off of I'y,,., the Deligne complex Dr can be obtained from

DS)‘@” by coning-off the translates g - [y, for all g € Ar.

We now extend the definition of type we introduced for parabolic subgroups
(see Definition [2.4.7)) and vertices in the Deligne complex (see Definition [2.4.17))

to arbitrary sets in Ar and arbitrary points in Dr:

Definition 5.1.3. For an arbitrary subset X < Ar, we define the type of X to
be the type of its parabolic closure Px. The type of a point p € Dr is defined to
be the type of its stabiliser G,,.

Remark 5.1.4. (1) The definition of type introduced in Definition is an
extension of that given in Definition 2.4.17} In other words, the vertices of type
i €{0,1,2} from Definition also have type ¢ relatively to Definition [5.1.3]
(2) The type of a point p € Dr always belongs to {0, 1,2}. By construction, p has
type 2 if and only if it is a type 2 vertex ; it has type 1 if and only if it belongs
to D(Fl)fess but doesn’t have type 2 ; and it has type 0 otherwise.

We recall the following definition, that can be seen as an extension of Defini-

tion 2118t

Definition 5.1.5. The fixed set of an element g € Ar acting on Dr is the set

Fix(g) = {pe Dr | g-p=p}.

The fixed set of a subset X < Ar is the set

Fiz(X):={pe Dr |Vge X, g-p=p} = [ | Fiz(g).

geX
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The following lemma will be useful to describe the relation between the type of

an element g € Ar and its fixed set Fiz(g).

Lemma 5.1.6. [32, Lemma 8] Let Ar be a 2-dimensional Artin group, and let
g € Ar. Then we can classify Fix(g) in the following way:

o If type(g) = 0, then g =1 and Fiz(g) = Dr.

o If type(g) = 1, then g is elliptic and there are two elements a € V(I') and
h e Ar such that P, = h{ayh'. In particular, Fiz(g) is the tree hFiz(a).

o If type(g) = 2, then g is elliptic and there are three elements a,b € V(I") and
h € Ar such that P, = hAuh™t. In particular, Fiz(g) is the vertex hvg.

o If type(g) = 3, then g is hyperbolic and Fix(g) is empty.

Definition 5.1.7. The tree hF'iz(a) from Lemma will be called the stan-
dard tree associated with P, = h{ayh .

Lemma 5.1.8. Let g € Ap. Then Fix(g) = Fiz(P,).

Proof: Recall that

In particular the inclusion Fiz(P,) < Fiz(g) is clear. We prove the other inclu-
sion. We know from Lemma that P,, € P, < Fixz(hy) € Fix(hy). By
definition, every element h € P, has a parabolic closure satisfying P, = F,, which

yields Fiz(g) € Fixz(h). It follows that

Fiz(P)) = () Fiz(h) 2 Fiz(g).

hePy

[

Corollary 5.1.9. Let Ar be a large-type Artin group, let g € Ar, and let n # 0.
Then type(g) = type(g™) and Fix(g) = Fix(g™).

Proof: The first statement is immediate from Theorem [4.4.4l The second state-
ment follows from Lemma [5.1.8] and Theorem [4.4.4}

Fiz(g) = Fiz(P,) = Fix(Py) = Fiz(g").
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We now introduce a geometric method that allows under mild hypotheses to
determine whether two elements of the groups are the same in a very efficient

manner. We first need the following definition:

Definition 5.1.10. Consider the morphism ¢ : Fy (1) — Z sending every gener-
ator to 1. Every relation r of Ar is in the kernel of ¢, so the map descends to a
quotient map ht : Ar — Z. For any element h € Ar, we call ht(h) the height of
h.

Lemma 5.1.11. Let p € Dr be a point of type at most 1, and let hy, hy € Ar be
two elements with same height and satisfying hy - p = ho - p. Then hy = hs.

Proof: First note that hyhy'-p = p and thus hyhy' € G,. In particular, the result
is trivial if type(p) = 0. So we suppose that type(p) = 1, i.e. that there are two
elements s € V(I') and g € Ar such that G, = g(s)g!. Since hih,' € G,, then
hihy' = gs™g~! for some m € Z. On one hand h; and hy have the same height,
so hihy! has height 0. On the other hand, the height of gs™g 'is 1+m —1 = m.
This means m = 0 and hlhz_1 = 1. O]

We now move towards understanding more normalisers and centralisers of ele-
ments of large-type Artin groups, in particular in relation to their type. The
following lemma is the analogue of Lemma for the Deligne complex instead

of the Artin complex:

Lemma 5.1.12. Let Ar be a 2-dimensional Artin group, let S be a subset of Ar
with non-trivial fized set in Dr, and let N(S) denote the normaliser of S in Ar.
Then

N(S) € Stab(Fiz(S)).

Assume additionally that 3p € Fixz(S) such that G, = S. Then
N(S) = Stab(Fiz(S)).
Proof: (<) Let g € N(S), that is, g5 = Sg, and let p € Fiz(S). Then
S-(g-p)=9-(5-p)=g-p

In particular, g - p € Fiz(S) and thus g € Stab(Fiz(S)).
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(2) Let g € Stab(Fixz(S)) and let p € Fiz(S) be such that G, = S. Then
g-pe Fix(9), ie.

S-(g-p)=g-p
In particular, g~'Sg fixes p, hence g7'Sg € G, = S. In other words, g € N(S).
L]

Lemma 5.1.13. Let Ar be a large-type Artin group, let g € Ar be such that
type(g) < 1, and let C(g) be the centraliser of g in Ar. Then for any n # 0 we

have

Proof: The result is trivial if type(g) = 0, so we suppose that type(g) = 1. The

following inclusions are clear:
N(P,)) 2C(g9) = C(g9") = N(Py).

We know by Theorem that N(P;) = N(P,»), so it is enough to show that
N(P,) = C(g). The argument is similar to that of Lemma [.1.11} because
P, = {g), any h € N(P,) satisfies h{gyh~* = {g), hence conjugates g to some
hgh=! = g™ with m € Z. It is then easy comparing heights to see that we must

have m = 1 and thus hg = gh. O

We finally state the following useful result:

Proposition 5.1.14. Let Ar be a large-type Artin group with two parabolic sub-
groups P and P'. If P and P’ have the same type and P < P’, then P = P'.

Proof: This follows directly from Theorem [4.2.2](2), along with the fact that
the only parabolic subgroup of P’ that has the maximal number of standard

generators is P’ itself. OJ

5.1.2 Dihedral Artin subgroups.

We now come to a first study of the dihedral Artin subgroups of a large-type Artin
group Ar. In this section we introduce some of the notions that will allow us to

further study these subgroups in Section [5.2] and Section [5.3] Although dihedral
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Artin subgroups have already been talked about in Chapter 3 and Chapter 4] we

decide here to recall their exact definition:

Definition 5.1.15. We say that H is a dihedral Artin subgroup of Ar if there

exists an isomorphism f from A,, to H for some 3 < m < oo, where

A — S/ t/ Slt,S/---Zt,S,t,"' )
m )
—— ————
m terms m terms

When there is no ambiguity, we will write s := f(s'), t .= f(¥'), so that H is
the subgroup of Ar generated by s and ¢t. For m’ := lem(m,2)/2, the element
2" = (s't')™ is generating the centre of A, (see Definition [3.1.6)), and thus the

element z := f(2') generates the centre of H.

Let now Ar be a large-type Artin group, and let H be an arbitrary dihedral Artin
subgroup of Ar. The two following lemmas will be useful to describe the type of

H.
Lemma 5.1.16. In H we have type(z) = type(st) = 2.

Proof: Because z = (st)™, the equality type(z) = type(st) simply comes from
Theorem [4.4.4] Suppose now that type(z) < 1. Then C(z) = C(st) by Lemma
Note that every element of H commutes with z, and thus we have s €
C(z) = C(st). In particular then, s commutes with st and hence with ¢. The

elements s and t generate H, so H must be abelian. This is absurd. ]

Lemma 5.1.17. Let g,h € Ar be elements satisfying type(g) = 2 and type(h) =
3. Then g and h dont commute.

Proof: If g and h commuted, then h would stabilise the fixed set of g, by Lemma

5.1.12] Because g has type 2, we know from Lemma that Fiz(g) is a single
vertex, that h must then fix. This contradicts Lemma because h has type

at least 3. ]

Definition 5.1.18. We say that a dihedral Artin subgroup H of Ar is classical

if type(z) = 2 and exotic if type(z) = 3.

Corollary 5.1.19. A classical dihedral Artin subgroup can never contain an ez-

otic dihedral Artin subgroup, and vice-versa.
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Proof: This is a consequence of Lemma [5.1.17] Classical dihedral Artin sub-
groups of Ar always contain elements of type 2, but never contain elements of
type at least 3, while exotic dihedral Artin subgroup of Ar always contain ele-
ments of type at least 3, but never contain elements of type 2. The result follows.

]

Definition 5.1.20. We say that a dihedral Artin subgroup H of Ar is maximal

if it is not strictly contained in another dihedral Artin subgroup of Ar.

Remark 5.1.21. A nice consequence of Corollary [5.1.19|is that it is equivalent
to say that a dihedral Artin subgroup is maximal amongst all dihedral subgroups,

and to say that it is maximal amongst classical (or exotic) dihedral subgroups.

Our next goal is to classify explicitly all the classical maximal dihedral Artin
subgroups of Ar (see Corollary |5.1.23)). The exotic dihedral Artin subgroups will
be studied intensely throughout Section [5.2] and Section

Lemma 5.1.22. Fvery classical dihedral Artin subgroup H of Ar has type 2.
This means there are two standard generators a,b € V(I') and an element g € Ar

such that H € gAug "

Proof: Because type(z) = 2, P, = gAyg ' for some generators a,b € V(T') and
some element g € Apr. This means that z acts on Dr by fixing the vertex guv.

Because s and z commute, we have
28 QUap = S+ 2 QUgp = S * GUgp-

Therefore z fixes s - gug, S0 we must have s - guy, € Fiz(z). By Lemma
Fix(z) = Fix(P,) = gug. This means the two vertices guy, and s - gug, coin-
cide, i.e. s fixes gug. On the other hand, we know from Corollary that
Fix(z) = Fix(st). Since z fixes the vertex gug, then st must also fix this vertex.
Consequently, both s and st fix guvg,. In particular, t = s~ 1(st) also fixes gug.

Since s and t generate H, this means H fixes gug, i.e. H € gAwg . O

Corollary 5.1.23. The set of classical maximal dihedral Artin subgroups of Ar
is precisely the set of non-free parabolic subgroups of type 2 of Ar, i.e. the set

{gAwg™" | a,be V(') : mg < o0, g€ Ar}.
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Proof: (2) Consider a subgroup H = gA,g ' of Ar as described above. It is
clear that H is a dihedral Artin subgroup, because 3 < my, < o as Ar is large.
H is also clearly classical. Let H' be a dihedral subgroup of Ar that satisfies
H' = H. By Corollary H' must be classical. By Lemma then, H
and H' both have type 2. Since H' 2 H, Proposition gives H' = H. This
proves that H is maximal.

() Let H be a classical maximal dihedral Artin subgroup of Ar. We know
by Lemma that there are elements a,b € V(I') and g € Ar such that
H < gAug~'. Note that gA,g~" is maximal by the first point. Since H is

maximal too, we must have an equality. O

5.2 Centralisers of hyperbolic elements.

Let Ar be alarge type Artin group and let H be an exotic dihedral Artin subgroup
of Ar. The centre of H is generated by an element z of type at least 3, i.e. a
hyperbolic element. Since H < C(z), it is relevant in order to understand H to
want to understand centralisers of elements like z. The goal of this section is to
do exactly that, and ultimately to prove Proposition in which we describe
under mild hypotheses on z the algebraic structure of the centraliser C'(z). These
hypotheses will always be satisfied for hyperbolic elements that generate centres
of exotic dihedral Artin subgroups of Ar, so our strategy will apply to these
subgroups.

We now briefly explain how we are able to describe these centralisers. Our
approach is heavily geometric. If 2 generates the centre of an exotic dihedral Artin
subgroup H, then its type is at least 3. In particular, z acts on Dr hyperbolically
and its minset Min(z) is non-trivial (see Definition 2.1.16). As it turns out,
Min(z) is preserved under the action of C'(z) (and hence that of H). Moreover,
Min(z) decomposes as the product T xR of a tree with the real line (see Theorem
and Lemma [5.2.3). We will prove that the tree 7 has two nice geometric
features: it contains an infinite line, and it contains a vertex of valence at least 3
(see Lemma |5.2.5]).

For a start, the first feature forces the minset of z to contain a flat plane. Such

a situation is only possible if up to conjugation, z belongs to a Artin subgroup
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Agpe whose coefficients are all 3. In particular then, Min(z) lies inside the Deligne
sub-complex Dy, © Dr. The study of Min(z) will then reduce to studying a
parabolic subgroup of type 3 of Ar (see Lemma . Using the second feature
will allow for a precise study of the geometry of Min(z), from which we deduce

an explicit algebraic description of C(z) (see Proposition |5.2.21)).

5.2.1 Transverse-trees, motivations and first results.

Let Ar be an Artin group of large-type, and let z € Ar be any element acting
hyperbolically on Dr (i.e. any element of type at least 3). The goal of this section
is to prove the aforementioned Lemmal5.2.5land Lemma[5.2.6] A nice consequence
of these two lemmas will be that if Ar is of large type and of hyperbolic type,
then Ar contains no exotic dihedral Artin subgroup at all. In that case, one can
directly move to Section However the situation is more complicated when
Ar is of large-type but not of hyperbolic type (i.e. when I contains 3-cycles with
coefficients (3,3, 3)). This broader case will be dealt with throughout Section [5.2]

The structure of minsets in a more general setting has been studied by Bridson
and Haefliger, so we start by recalling two very useful theorems, that we adapt

to our situation:

Theorem 5.2.1. (17, Chapter I1.6] Min(z) is a closed, convexr and non-empty
subspace of Dr (in particular, it is CAT(0)). It is isometric to a direct product
T x R on which z acts trivially on the first component, and as a translation on
the second component. The azes of z are in bijection with the points of T, so
that every azis v of z decomposes as u = u x R, where u is a point of T. In
particular, the axes of h are parallel to each others, and their union is precisely
Min(h). Furthermore, the centraliser C(z) leaves Min(z) invariant sending azes
to azes. It is such that the action of any element g € C(z) on Min(z) decomposes
as an isometry (g1, g2) of T x R, where go is simply a translation. In particular,

C(z) preserves T as well.
The next Theorem is known as the Flat Strip Theorem:

Theorem 5.2.2. [17, Chapter I1.2] Let u and v be two parallel geodesic lines
in Dr. Then their convex hull ¢(u,v) in Dr is isometric to a flat strip [0, D] x R,

where D is the distance between u and v.
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We will be able to show later on that under reasonable hypotheses, the set T
is a simplicial tree (see Lemma [5.2.12| and Corollary [5.2.24)). For now, and with

our current hypotheses, we will only show that 7 is a real-tree:
Lemma 5.2.3. The space T s a real-tree, i.e. a 0-hyperbolic space.

Proof: Suppose that 7 is not O-hyperbolic. Then there is a triangle T' < T
that is not a tripod. Since Dr is simply-connected and T is not a tripod, one
can fill the interior of T with non-trivial 2-dimensional balls. In particular then,
Min(z) =T x R € Dr must contain 3-dimensional balls. This contradicts the

fact that Dr is 2-dimensional. ]
Definition 5.2.4. We call 7 the transverse-tree of z in Dr.

As explained at the beginning of the section, if z is an element generating the
centre of an exotic dihedral Artin group H, then H < C(z), and Theorem m
applies: H acts on Min(z) and on the associated transverse-tree T in a nice way.
In such a situation, 7 has nice properties, as made explicit in the statement of
the next lemma. Since our main reason for studying the minset of hyperbolic
elements is to understand the case of exotic dihedral Artin subgroups, we will
throughout the rest of this section assume some of the properties inherited by the

transverse-trees associated with such subgroups.

Lemma 5.2.5. Let H be an exotic dihedral Artin subgroup of Ar, and consider
the set Min(z) associated with the central element z of H. Then the transverse-
tree T associated with z contains an infinite line and has a vertexr of valence at

least 3.

Proof: Let us denote by s and ¢ the standard generators of H (see Definition
[5.1.15)). Suppose that 7" does not contain an infinite line. Then any element that
acts preserving T is elliptic (no element creates an axis in 7). Using Theorem
[(.2.1] this means any element of C(z) acts elliptically on 7. In particular, the
elements st and ts act on 7 with non-trivial fixed sets. Suppose these fixed sets
are disjoint. A classical ping-pong argument shows that the product (st)-(ts) acts
hyperbolically on 7, which contradicts the fact that every element of C(z) acts
elliptically. This means the fixed sets of st and ts intersect non-trivially. Let u be

a vertex of 7 fixed by both st and ts. Then st and ts both act like translations
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when restricted to u (see Theorem [5.2.1). They have the same direction and the
same translation length, because (st)™ = z = (ts)™. In particular, if 2 is any
point of type at most 1 in u, we have (st) - x = (ts) - z. Note that st and ts have
the same height, so we obtain st = ts by Lemma This is absurd, and
hence T contains an infinite line.

We now show that 7 has a vertex of valence at least 3. Suppose that it
doesn’t, i.e. every vertex of 7 has valence at most 2. Then T is contained in
an infinite line. But 7 also contains an infinite line by the previous point, so it
must be precisely that line. This means Min(z) = 7 x R is a flat plane. Using
Theorem [5.2.1} we know that the elements s and ¢t act on Min(z) = T x R
like isometries that restrict to translations on the R-component. Depending on
whether the action on the T-component is hyperbolic or elliptic (with order 2),
each of the elements s or t acts on Min(z) either as a pure translation, or as a
(possibly trivial) glide reflection. In any case, the squares s* and ¢* act like pure
translations on Min(z). In particular, their actions commute. Since there are
points in Min(z) with trivial stabilisers, this mean s* and t* commute as elements

of the group, absurd. O

We now move towards the most important result of the beginning of Section
b.2l We show that under mild hypotheses on T, that we recall are satisfied for
exotic dihedral Artin groups by Lemma [5.2.5 the study of Min(z) reduces to
the study of an Artin subgroup A,. S Ar an its associated Deligne subcomplex

Dabc - DF~

Lemma 5.2.6. Let z € Ar be a hyperbolic element and suppose that its transverse-
tree T contains an infinite line. Then up to conjugation of z, there are three
generators a,b,c € V(') satisfying may = Mge = Mpe = 3 such that z € Agpe.
Moreover, the Deligne complex Dy associated with the Artin (sub)group Agpe is

isometrically embedded into Dr, and contains Min(z).
Proof: By Lemma T is a real-tree, that we suppose contains an infinite

line L. In particular, Min(z) contains the infinite plane P := L x R.

Claim 1: Let g - Ty, be a base triangle and suppose that there is a point z in
the interior of g - T, that is contained in P. Then g - T,, is contained in P. In

particular, P is a union of base triangles.
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Proof of Claim 1: Let y # x be a point in g - Ty, let v be the geodesic connecting

x to y in Dr, and let d = dp.(x,y) = ¢(7). Because = belongs to the interior
of g - Ty, there is an € > 0 such that the ball Bp (z,¢) is a planar disk and is
contained inside g - T, as well. The ball Bp(z,¢) is also a planar disk, as P is
an infinite plane. This means the natural inclusion Bp(z,e) € Bp.(z,¢) is an
equality. Let z := v n Bp(x,¢). Because P is a flat plane, there is a (unique)

geodesic 7' of P that satisfies the following:
7/ starts at x, passes through z, and has length d. ()

Note that P is a convex subset of Min(z), which itself is convex in Dr by Theorem
b.2.1] In particular then, 7' is a geodesic of Dr too. It is not hard to see that
7 is the unique there is only one geodesic in Dr that satisfies (), and that this
geodesic is . This means v = +/. In particular, y € v = 7/ < P. This proves
g- T, S p. The fact that P is a union of base triangles follows. This finishes the
proof of Claim 1.

Since Dg) is not dense in Dr, there is a point = of type 0 in P that belongs to
the interior of a base triangle of the form g- T, for some elements a,b € V(I') and
g € Ar. By Claim 1 then, P contains g - Tp. Note that Min(gzg™') = gMin(z),

1

so up to replacing z with gzg~", we will suppose that ¢ = 1. In particular, P

contains Ty, and vg.

Claim 2: The base triangles containing vg in P form a polygon K = T, u
Toa © Toe U Try U The U Ty, that is described in Figure p.1] for some generators

a, b, c e V(I') satisfying mgp, = mege. = myp. = 3.

Proof of Claim 2: P contains vg, so there is a small enough € > 0 such that the

neighbourhood Bp(vg,€) is contained in the fundamental domain Kr, hence in
an union of base triangles of the form Ty (in fact, any € < 1 works). We consider
the angles around vg in P, i.e. for each of the above triangle T;; we consider the
angle

™ ™

Lv@ (6576515) ==

2 2-my

Because Ar is large, every such angle is at least § — & = Z. On one hand, the

minimal length of a non-trivial cycle in the barycentricsubdivision Iy, of I' is 6,
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and thus the link Lkp(vg) contains no non-trivial cycle with strictly less than 6
edges. In particular, there must be at least 6 base triangles around vy in P. On
the other hand P is an Euclidean plane, hence the sum of all the angles around v
in P is exactly 2m. The only possibility is that there are exactly 6 base triangles
around vy in P, and that the angles are all precisely Z. This means the local
groups of the type 2 vertices around vy in P are all dihedral Artin subgroups
with coefficient 3. We obtain the situation described in Figure [5.1] This finishes

the proof of Claim 2.

One can easily notice that the polygon K is itself a flat (equilateral) triangle.
It is the subcomplex of the fundamental domain K corresponding to the sub-
graph of I' spanned by the vertices a, b and c¢. The previous reasonning can be
applied around any point of P that does not belong to Dg). Consequently, any
such point is contained in a flat triangle K’ := ¢'- (Ts; 0 Tys U T O Ty O T O Ty),
where ¢’ € Ar and s,t,r € V(I') are such that mg = mg, = my, = 3. In particu-
lar, P is tiled with these “larger” equilateral triangles. We will call such polygons

principal triangles, to distinguish them from base triangles.

Claim 3: The standard generators s, t and r associated with any principal triangle
K’ of P are the same standard generators a, b and ¢ as the ones associated with
the first principal triangle K. In particular, every principal triangle K’ is the

g'-translate of K, for some ¢’ € Ay, and the element z belongs to Agp..

Proof of Claim 3: Let Fy := K, and let P, 1 be the union of the principal triangles

of P that are either in P, or that share an edge with a principal triangle of P,.
Note that P = r}grolo P,. We assign a colour to each of the three sides of K. (see
Figure . We extend this system of colour to P by giving to an edge of a
principal triangle the colour of its unique translate in K. We show by induction
on n that this is well-defined, i.e. that such edges always have a translate in K.
The argument is elementary, and relies on completing colours in P,;; from the
colours in P, (see Figure [p.1]). If two edges with different colours (say the ones
corresponding to distinct generators s,t € {a,b,c}) meet at a vertex, then one

can find the colour of the 6 edges around that vertex (they will be an alternating

sequence of the colours associated with s and ¢).
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Tbc ch

RE T,

n/3

Tab Tac /\ /\

Figure 5.1: On the left: The principal triangle K, which is equal to Fp.
In the centre: P,. On the right: P,.;, with P, highlighted in gray.

Note that if two principal triangles g; - K and g, - K share an edge then there is
some s € {a,b,c} and k # 0 such that g; - s* = gy. Starting at K, this shows by
induction that any principal triangle K’ is actually the ¢’-translate of K, where
g’ is a product of powers of a, b and c¢. In particular then, ¢’ € Au.. Let us
now consider vy € P. We know that z acts trivially on 7. In particular, it
acts trivially on L, hence preserves P. This means z - vy € P. By the previous

argument, we must have z € A,,.. This finishes the proof of Claim 3.

Claim 4: D is isometrically embedded into Dr, and it contains Min(z).

Proof of Claim 4: The first statement is a result of Charney (|25], Lemma 5.1), so

we only prove that Dg. contains Min(z). The principal triangle K is precisely
the intersection Kt n Dy, hence belongs to Dg,.. Since every ¢'-translate of K
belongs to Dy, when ¢’ € Ay, the plane P is contained inside of Dy, by Claim
3. Let now y be any point of Min(z) that is not in P. Then y projects to a
point ¥ of 7 that is not in L. Because T is a real-tree, there is a unique geodesic
segment Ly that joins ¥ and L in 7. They meet at some vertex Z € L that cuts L
in two pieces Ly U Ly = L. Consider now the union L' := Ly u Lq, and consider
the half-plane P’ := L' x R. We know the colour of all the edges in P’ that belong
to the half-plane P, := L; x R = P’ n P. A similar induction process as the one
in the proof of Claim 3 allows to extend the system of colour from P; to P’. In
particular, the same arguments as the ones used in the proof of Claim 3 apply.
Consequently, the whole of Min(z) is tiled with principal triangles (or part of
principal triangles) that are translates of K through elements of Ag,.. It follows

that Min(z) S Dgp.. This finishes the proof of Claim 4, and of the Lemma.
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} . < Min(z)
g cT
<>< L Ly
| O
2 L
‘// ...... *—— ... I
! P < Xape L, z L,

Figure 5.2: Extending the tiling of P to a tiling of Min(z). The left of the picture
represents what happens in Min(z), while the right of the picture represents what
happens in 7. The plane P that we already tiled is in the foreground, while the
half-plane P’ we want to tile is highligthed in purple. OJ

Remark 5.2.7. Lemma [5.2.5| along with Lemma [5.2.6 already prove that large
Artin groups of hyperbolic type do not have exotic dihedral Artin subgroups.

Lemma 5.2.8. Let z be a hyperbolic element whose associated transverse-tree
contains an infinite line. We know by Lemma that up to conjugation, z €
Agpe for some appropriate standard generators a,b,c € V(). Let x be any point
of Min(z), and let g be an element of Ar that sends x onto another point of

Min(z). Then g € Aupe. In particular, C(z) S Agpe.

Proof: First of all, we know by Lemma that Min(z) € Dgp.. Let v be
any path in Min(z) connecting = and g - x. We use an argument similar to the
one used in the proof of Claim 3 of Lemma [5.2.6] Let z1,- - ,x, be the points
of type 1 and 2 that ~ crosses, in the correct order. Then there is an element
9 = q1---g, with g; € G,, that sends = to g - . The local groups G,,’s are
contained in A.,. because they are local groups of points of Dg,., so eventually
g € Age. Note that ¢’ and ¢ both send z onto ¢ - . This means there are two
elements h; € G, and hy € Gy, such that g = hy - ¢’ - hy. Because x and ¢ -«
belong to Dgy., the local groups G, and G, are also contained in Ag.. Finally,
g is a product of three elements of A, hence belongs to Agpe.

If g € C(z), then g preserves Min(z) by Theorem and thus g € Ay, by
the previous point. This shows C'(2) S Agpe. H
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5.2.2 The structure of Min(h) and of T.

Let Ar be an Artin group of large type, and let z € Ar be any element acting
hyperbolically on Dr. The goal of this section is to study the valence of vertices
in the transverse-tree 7 associated with z. We suppose for the whole section
that 7 contains an infinite line (this will always be satisfied when z generates the
centre of an exotic dihedral Artin subgroup of Ar, by Lemma. In particular
then, Lemma [5.2.6|applies, and the situation becomes easier to understand: up to
conjugation, Min(z) S D, where a,b,c € V(I') are three generators satisfying
Map = Mae = Mpe = 3. As motivated by Lemma [5.2.§] we will then mostly be
looking at the action of Ag. on Dy, forgetting about the rest of the action of
Ar on Dr (unless specified otherwise). In light of that, the principal triangles
in Dy are the translates of the corresponding fundamental domain K (see the
proof of Lemma . We will also call the sides of theses principal triangles
edges, even though they initially come from the union of two edges of the form

esst and eg 5. Our main goal is to show the following:

Corollary 5.2.9. Let u be an axis of z. Then:
Case 1: fge Ap\{1} : u € Fix(g). Then u has valence at most 2 in T.
Case 2: 3g € Ar\{1} : uw € Fixz(g). Then u has infinite valence in T .

We will prove this result by distinguishing three cases about the structure of axes

of z. The result of Corollary will directly follow from Lemmas [5.2.10] [5.2.17
and [5.2.20, We begin with the following lemma:

Lemma 5.2.10. Every azxis u & Dgz)c_ess of z corresponds to a point u whose

valence i T is at most 2.

Proof: Let us consider an axis u & D(%)C_ess of z. We want to show that @ has
valence at most 2 in 7, i.e. that there is some € > 0 such that the ball By (u,¢)
is isometric to an interval of the real line. A direct consequence of Theorem
is that Ve > 0, Vax € u, the ball By(u,¢) is isomorphic to the quotient
Botin(z)(2,€) /| where two points z,y € Min(z) are equivalent if and only if
they belong to a common axis. In particular, it is enough to find some ¢ > 0
and x € u for which Bjin(.)(,€) is contained in a planar disk. Finally, since

Bitin(z)(x,€) < Bp,,.(2,¢€), it is enough to show that Bp,, (z,¢) is a planar disk.
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We divide the problem in two cases:

e Suppose first that u ¢ DS)Z Then u contains a point = that belongs to the
interior of a base triangle of the form g - T§,. It is then clear that there is a small
enough € > 0 such that Bp,, (z,¢) is a planar disk.

e Suppose now that u < D(%)C It is not hard to see with a bit of Euclidean
geometry that up to symmetry, there are only two kinds of lines in Min(z) that
are contained inside D((I?C (see Figure . Furthermore, there is only one of
these two kinds that does not belong to D'} (the blue line on Figure . In
particular, we directly see that u contains an edge of the form g - ey connecting a
vertex of type 0 to a vertex of type 2. Let now x € u be any point in the interior
of this edge. Then there is a small enough € > 0 such that Bp,, (z,¢) is a planar

disk, because g - eg is by construction contained in exactly two base triangles:

g+ Ty and g - Ti,.

ASASASTAN

SNENENEN

Figure 5.3: The two different types of line that are contained into DS)Z The red
D(l)_ess, while the blue line doesn’t. ]

line belongs to D,

One would probably like at this point to be able to see T as a simplicial tree
and not just as a real-tree. While it is indeed true that 7 carries a somewhat
natural structure of simplicial tree (assuming additional hypotheses on T), it is
not that easy to prove. In particular, we don’t know at this point whether 7 has
leaves. As it turns out, we will be able to prove later on that 7 does not have

any leaf (assuming the same additionnal hypotheses on 7). For now, we focus on
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proving that 7 has a “simplicial-like” structure, as described by Lemma [5.2.12]
We start by defining the vertices of T

Definition 5.2.11. We define the set of vertices of T to be the (possibly empty)
D(l)fess.

set of points uw whose corresponding axis u is contained inside D,

Lemma 5.2.12. If w is a vertex of T, the set of vertices of T is exactly the set
of points of T whose distance to w s in 3-7Z. In particular, vertices are isolated,

and every point of T of valence at least 3 is a vertex.

Proof: Let w be a vertex of 7, and let ¥ be any point of 7 distinct from w. Up to
using an inductive argument, it is enough to show that if U is the 3-neighbourhood
of w in T, then the vertices of U that are not w are precisely the points of U that

are at distance 3 from w.

(1)—ess
abc

in the proof of Lemma [5.2.10, this is only possible if v has the form described
by the red line in Figure Let now ¥ € U be a point distinct from u. By
Theorem u and v are parallel, so v can be seen as a line in Figure that

By hypothesis @ is a vertex of 7, which means that v € D . As stated

is parallel to u. It is not hard to see that the closest line to u that is parallel to u
and belongs to D{})"°*" is the vertical black line in the centre of Figure . With
a bit of Euclidean geometry, one can determine that its distance to u is 3. In
particular, v is a vertex of U distinct from w if and only if it is at distance exactly
3 from w. This shows the desired property, and shows as well that vertices of T

are isolated.

Let now @ be a point of valence at least 3 in 7. By Lemma [5.2.10] the

(1)—ess

whe > which essentially means u is a vertex.

corresponding axis u belongs to D

[

Remark 5.2.13. We say two vertices of 7 are adjacent if there is no other

vertices between them, i.e. if they lie at distance 3 from each others.

Definition 5.2.14. Let ¢ - K and h - K be two principal triangles of Dg,. that
share an edge. Then g='h = s* for some standard generator s € {a,b,c} and
k # 0. This defines a system of arrows on the principal triangles of D, in the
following way:

(1) Put a single arrow from g - K to h - K whenever g~'h = s;
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(2) Put a double arrow between ¢g- A and h- A whenever g 'h = s* with |k| > 2.
Finally, we say a subset of D, is a principal hexagon if it is the union of 6
principal triangles {g; - K }e(1,.. ¢y around a common type 2 vertex v of Dgy. such

that g; - K shares an edge with g;.1 - K [mod 6].

Lemma 5.2.15. The system of arrows on a principal hexagon necessarily has

one of the two forms described in Figure[5.4):

Figure 5.4: The two possible systems of arrows on a principal hexagon, up to
symmetries or rotations of the hexagon.

Proof: Consider a principal hexagon obtained as the union of 6 principal triangles
gi - K, with i € {1,---,6}. Two adjacent principal triangles ¢; - K and g¢;41 -
K [mod 6] share an edge, so g; 'gi+1 = s for some standard generator s; € V/(T).

In particular, we have

ki ko ks ki ks k - - - - _ _
s1'85783° 81857 56" = (91 92)(93 ' 93) (95 ' 94) (91" 95) (95 ' 96) (95 '91) = 1, (¥)
where all the k; are non-zero. Note that the edges between the various principal
triangles all meet at a common type 2 vertex of D,,., whose local group is a
conjugate of A, for two standard generators ¢ and r in {a,b, c}. This means the
s;’s are not just any standard generators: they are an alternating sequence of ¢

and r. In particular, (+) becomes

thipheghs phaghs ke — 1

As it turns out, there are very few options on the powers k;’s for such an equality
to be possible. These have been classified in |76, Lemma 3.1], and any choice of

possible k;’s give rise to one of the two systems of arrows described in Figure [5.4]

0
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Remark 5.2.16. One may be able to use Lemma [5.2.15| even if the subset we
look at is only part of a principal hexagon. This happens for instance as soon as

the centre of the hexagon belongs to the interior of the given subset.

(1)—ess

Lemma 5.2.17. Let u be an axis of z for which we suppose that uw S D,

but there is no element g € Auwe\{1} such that uw < Fix(g). Then T has valence
at most 2 in T.

Proof: Suppose that @ e T has valence at least 3. We will find a contradiction.
Because there is no g € Ar\{1} such that u € Fiz(g), there exist two consecutive
edges e and €' in u that don’t have the same stabilisers, i.e. G, # Go. The
intersection v = e N €' is a vertex of the form v = h - vy for some s,t € {a,b,c}
and h € Ar. By hypothesis, any neighbourhood of @ in 7 contains at least
3 distinct segment meeting at w. These segments lift to infinite strips in the
product Min(z) = T x R, and the union of any two of these three strips contains
a big enough part of an hexagon of simplices in order to apply Lemma (see
Remark [5.2.16)).

We consider (part of) the neighbourhood of v, as described in Figure [5.5] We
claim that the only double arrows can appear in this neighbourhood is on edges
of u. Indeed, if say the blue half-hexagon had a double arrow between its two
upper triangles, then the red and green half-hexagons would have double arrows
between their two lower triangles, by Lemmal[5.2.15] We then have a contradiction
to Lemma by looking at the hexagon obtained from gluing the red and the
green half-hexagons together. From Lemma [5.2.15] again, the two single arrows
in the blue half-polygon points towards the same direction. This means that up

to replacing s and t by their inverses, we are in the following situation:
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u u

e s

Figure 5.5: On the left: The three half-hexagons around u. In the middle: The
only possible system of arrows on the half-hexagons, up to horizontal symmetry.
On the right: Some of the simplices around u. The stabilisers of the edges of
these simplices can directly be determined from the simplices they belong to.

It is not hard to see that this yields a contradiction, because
Ge = (hst) -(s)-(hst) ' =h-{t)-h ' =G..

O]

Lemma 5.2.18. Let z € Ar be any hyperbolic element, let u be an axis of z, and
let Stab(u) be the set of elements of Ar that stabilises u. Then:
If 3g € Ap\{1} : u € Fiz(g), then

Stab(u) = (zy) = Z,

where zy acts on u like a non-trivial translation with mintmal translation length.

If 3g € Ar\{1} : uw € Fix(g), then without loss of generality g is the conjugate of

a generator, and

Stab(u) = {g) x {z) = Z?,
where zy acts on u like a non-trivial translation with minimal translation length.

Proof: Let Fiz(u) be the normal subgroup of Stab(u) consisting of elements of
Ar that fix u pointwise, and let Stab(u) = Stab(u) /sz(u) It is not hard to
see that Fixz(u) belongs to the centre of Stab(u). So by construction, Stab(u)

can be obtained as a central extension of the following short exact sequence

{1} - Fiz(u) — Stab(u) — Stab(u) — {1}. ()
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Claim: Stab(u) is a discrete subgroup of the group Isom(u) of isometries of u,

that consists only of translations.

Proof of the Claim: It is easy to check that Stab(u) acts faithfully on u hence is

isomorphic to a subgroup of Isom(u). Let zoFix(u) € Stab(u). Then zoFix(u)
acts like a simplicial isometry of the axis u. This already shows W is a
discrete group. To prove that it consists only of translations, we must show that
zoFiz(u), and thus zp, does not act as a reflection on u. Suppose that zy does
act like a symmetry on w. Then z2 acts trivially on u. Let x € u be any point

but the central point of the symmetry. Then we have 22 € G, but 2o ¢ G,. This
contradicts Theorem [4.4.4] and finishes the proof of the Claim.

As a discrete group of translations of the real line, the quotient group W
is isomorphic to Z. It is generated by a shortest possible translation along u,
that takes the form zoFiz(u) for some zg € Stab(u). Let us now come back to
the study of Fix(u):
Case 1: #g € Ap\{1} : u = Fiz(g). We either have u & D&Y7 or 4 = DIV

In the first case, there is an x € u with trivial local group, and thus Fiz(u) <
Fiz(x) = {1}. In the second case, there must be two consecutive edges e1,e2 S u
with distinct cyclic local groups. By Theorem [£.1] the intersection of these two
local groups is a parabolic subgroup. It is strictly contained inside any of the
two cyclic local groups, hence is trivial. Since Fiz(u) fixes both edges, it must

be trivial too. In both of the cases we obtain Stab(u) = Stab(u) = {(2p).
Case 2: g € Ap\{1} : u € Fiz(g). First note by Lemma that g has to satisfy

type(g) = 1. By Corollary we may as well suppose that g is just a conjugate
of a generator. Then Fiz(u) has to be cyclic, otherwise we would have edges in u
with non-cyclic local group. This means the inclusion {g) € Fiiz(u) is an equality.

Plugging Fiz(u) = (g) and Stab(u) = Z in (=) gives the short exact sequence

By [54, Theorem 3.16|, the equivalence classes of possible central extensions for
(x+) are in one-to-one correspondence with the elements of the cohomology group
H?*(Z;Z) = {1}. This means there is only one such extension, and it is the abelian

group Z2. We obtain Stab(u) = {g) x {20y = Z*. O
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Remark 5.2.19. (1) If the transverse-tree associated with z contains an infinite
line, then one can apply Lemma to any element g € Stab(u) and any point
x € u, and obtain that g € Ag.. This shows Stab(u) S Agpe-

(2) The choice of zy in the above proof is made up to multiplication with an

element of Fix(u), i.e. with a power of g.

Lemma 5.2.20. Let u be an azis of z and suppose that there exists an element g €
Ar\{1} such that u < Fix(g). Then u has infinite valence in T. More precisely,
and in the light of Lemma[5.2.18, there is an appropriate choice of zy € Ar such
that we have Stab(u) = (gyx{zo0) S Aae (for appropriate a,b,c € V(I')) and such
that {g) acts transitively on the set of edges around u and zy acts trivially on the

set of edges around .

Proof: We first recall that z is supposed to be such that 7 contains an infinite
line. We are under the hypotheses of Lemma and there are three standard
generators a, b, c € V(I') satisfying mgp = mg. = my. = 3 such that z € Ay and
Min(z) € Dgape. In particular, Dy, is tiled by principal triangles.

Our first goal is to describe By (u, ). Most ideas are similar to the arguments
used in the proof of Lemma [5.2.10l However, we will here use slightly more
specific tools, as defined thereafter. For any x € D, any subset Y € Dy, and
any € > 0, we define the principal ball BY (z,¢) to be the intersection between
the ball By (x,¢) and the set of all principal triangles of D, that contain x.
For any given x € u, there is always a small enough ¢ such that the two balls
agree. Recall that any principal triangle of Min(z) projects to a segment of length
exactly 3 in 7. Following the arguments used in the proof of Lemma for

any point x € u and any € < 3, we have
BT(E, 6) >~ Bﬁ;m(z)(xa 5) /N. (*)

Because u € Fiz(g), we know from Lemma that we can assume without
loss of generality that g is the conjugate of a generator and that Fiz(u) = (g) = Z.
Consider a type 1 point x in u, whose local group G, is precisely (g). In D,
the action of the stabiliser of an edge on the set of principal triangles containing
that edge is transitive on the set of principal triangles containing that edge. This

means the principal ball B}, (z,3) is the union of principal triangles {D;}icz,
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around u, for which we have g - D; = D, (see Figure [5.6).

Claim: By, .\(z,3) = Bp, (z,3).

Proof of the Claim: The inclusion "€" is trivial, so we show the other inclusion.

To do so, consider the 3-neighbourhood of win 7. Since 7 connected with infinite
diameter, the neighbourhood BY (@, 3) contains at least one segment of length 3,
that lifts to a strip of width 3 around u. Therefore we can assume that Dy is
contained in Bj(z)(2,3). Let now v be any axis of z going through Dy but
distinct from u (see Figure [5.6). On one hand, the line ¢ - v is an axis of g'zg~.
On the other hand, the elements g and z commute by Lemma [5.2.18] and thus
g'zg~" = z. This means g' - v is just another axis of z, hence belongs to Min(z).
Because v intersects Dy, the axis ¢* - v intersects D;. Since this argument works
for any axis v of h going through Dy, the conjugation by ¢; send the union of
such axes to another union of axes of h. The first union contains Dy, while the
second contains D;. This proves we have D; € Min(z). The argument works
for any i € Z, so the principal triangles {D;};cz all belong to Min(z), and thus

Bp,,.(@,3) S B,y (x,3). This finishes the proof of the Claim.

Using (x), the above Claim, and the description of B}, (v,3), we see that
By (u,3) is a tree whose segments incoming from @ form a set of edges {e;}icz
that satisfies g - ¢; = €;.1. It only remains to show that 2z, can be chosen such
that it fixes e; pointwise, for all ¢ € Z. Let B; be the strip corresponding to the
lift e; x R of the edge e; to Min(z) (see Figure [p.6)), and let e be the common
edge of the principal triangle D;. As z, stabilises u, the edge z; - e also belongs to
u. In particular, zo - Dy intersects u along that edge, which means 2, - Dy belongs
to one of the strips, say By. Up to replacing 2z by 2o - ¢~* in the light of Remark
5.2.19/(2), we can assume that & = 0. This means that zy - Dy € By. Taking the

quotient yields zq - g = €g, and lifting again gives 2o - By = By. This also implies
ZO'Bi:ZO'(gi'BO):gi'(ZO'BO) Zgi'Boszw
In particular, zy - e; = ;. Since zy preserves each e; and fixes w, it must fix each

e; pointwise. ]
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Fix(u) = (g)

Figure 5.6: The geometric representation of the arguments used in the proof of
Lemma [5.2.20] The left of the picture represents what happens in Min(z), while
the right of the picture represents what happens in 7.

5.2.3 Algebraic description of centralisers.

Let Ar be an Artin group of large type, and let z € Ar be any hyperbolic element.
We suppose as in the previous section that the transverse-tree 7 associated with
z contains an infinite line, but we now also suppose that it contains a vertex
with valence at least 3 (note that it must then have infinite valence, by Corollary
5.2.9)). The goal of this section is to use that second hypothesis for an even more
precise study. As it turns out, the structure of z, C'(z) and 7 under these two

hypotheses is very rigid. Our goal is to prove the following:

Proposition 5.2.21. Suppose that T contains an infinite line and has a vertex
of valence at least 3. Then up to conjugation, z = (abcabc)™ for some n # 0.

Moreover, if we set zy == abcabe, then there is a short exact sequence of the form

{1} = oy = C(2) > Clz) = {1}, (+)

where

C(z) = C(2) /<Z0> =~ (b)» (<abC>/<ZO>) ~ 7+ (Z)27).
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In particular, C(2) is a central extension defined by (x). Moreover, T is isometric
to the Bass-Serre tree above the natural segment of groups described by the free

product Z. * (Z /927).

We recall that 7 is supposed throughout this section to contain an infinite line

and a vertex of infinite valence. We begin with the following Lemma:

Lemma 5.2.22. Up to permutation of the elements of the set {a,b,c}, and up
to conjugation by an element of Ag., the element z is given by z = (abcabe)™ for

some n € Z\{0}. Moreover if u is any vertex of T with infinite valence, then the

corresponding element zy € Stab(u) from Lemma|5.2.20) is zy := abcabe.

Proof: Because T contains a vertex of infinite valence, there must be an axis u
of z such that u € Fiz(g) for some element g € Ar\{1}, by Corollary 5.2.9] The
element ¢ has type 1, and belongs to Ag. by Remark [5.2.19/(1). In particular,
up to conjugation by an element of A,., we can assume that ¢ is a standard
generator of A, say b for instance. This means u € Fix(b).

Recall by Lemma that 7 has infinitely many adjacent vertices in 7T, so
we let u; and uy be two distinct such vertices (see Figure . Since 7 contains
an infinite line, one of these two vertices admits at least one other neighbouring
vertex, that we call u3 (see Figure [5.7). By Lemma the elements of Ap
that fix u pointwise form a subgroup Fiz(u) = (b) that acts transitively on the
set of edges around u. In particular, the convex hull ¢(uy, ) is the image of the
convex hull ¢(u, uz) under an element b, with k # 0. Since u has infinite valence,
we can assume without loss of generality that u; has been chosen so that |k| > 2.
In particular, there are double arrows along u, as described in Figure [5.7

Note that any principal hexagon that splits in two half-hexagons around u

carries a system of arrows whose single arrows all point towards the same direction

(see Figure[5.7). This is due to Lemma [5.2.15
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uq u Un Us uq Us

Figure 5.7: The axes uy, u, us and ug of z, along with a partial system of arrows
around u.

Claim: The arrows between the principal triangles of the convex hull ¢(u, uy) are

single arrows and they all point towards the same direction.

Proof of Claim: Suppose that we have in c(u, us) arrows that don’t point to-
wards the same direction. We will show in the following steps that this yields a
contradiction. The different steps refer to Figure [5.8

Step 1: In order to respect the assumption and the previous statement, there must
be two consecutive hexagons around u whose single arrows don’t point towards
the same direction. So without loss of generality, there are two single arrows
pointing towards each others (the blue arrows), say into a principal triangle h- K.
Step 2: Use Lemma to complete the hexagon as drawn (red arrows). Note
that the horizontal arrows could be double arrows (in which case every horizon-
tal arrow crossing us must be a doulbe arrow as well), but this doesn’t change
anything on the rest of the argument.

Step 3: Use Lemma again to complete the hexagons as drawn (orange ar-
rows).

Step 4: Proceed by induction repeating Step 2 and Step 3 to complete every other

hexagon and determine every arrow in the interior of c(uq, us).
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zi zi
% <<;

Figure 5.8: The proof of the Claim. The principal triangle h - K is highlighted in
grey.

On the left: Step 1 (blue arrows), Step 2 (red arrows) and Step 3 (orange arrows).
On the right: The first iteration of Step 4 (green arrows and then purple arrows).
We can apply Step 4 infinitely many time and determine all the arrows in the
interior of c(uy, us).

<

The system of arrows in c(ug, 1) then takes the following form: every arrow above
h- K points downwards, and every arrow below h- K points upwards. In particular
then, the simplex h- K is the only simplex of ¢(u, us) that has two arrows pointing
inside. However, such a property should be inherited by z - (h - K) too, which
contradicts uniqueness. This yields a contradiction to the assumption made at

the beginning of the proof of the Claim, which eventually proves the Claim.

Let now ey be the edge that corresponds to the intersection of K with u. Note
that eg € Fixz(b), so there is a b"-translate of K that is contained in c(u, ug), for
some r € Z. By a similar argument as the one of the claim in the proof of Lemma
we know that the translate b™" - ¢(u, us) is contained in Min(z) as well.
So up to applying b~", we can suppose that K itself is contained in c(u,us). By
the above Claim, all the arrows in ¢(u, uy) are single arrows pointing towards the
same direction. We colour every edge of ¢(u, uz) so that two edges share the same

colour if and only if they are in the same orbit. It is then easy to see from Figure
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that the other edges {eg}rez of u that are in the orbit of ey take the form

(abcabe)® - eq:

abcabc | K

e1 = abcabc - ey \_/

=

Figure 5.9: The edges of u in the orbit of ey can be obtained from ey by applying

a power of (abcabc). In particular, the elements (abcabc)™ send an edge of u of

a given colour to the closest edges in u with the same colour.

The element abcabc acts on u as a translation of minimal length, and hence we
can set zp = abcabc, in the light of Lemma It remains to show that zj
acts trivially on the set of edges around @ in 7. This follows from the fact that
it preserves the strip described in Figure [5.9| and preserves u. It must then fix
one of the edges around @ in 7, and thus all edges around u, by Lemma [5.2.20]
Finally, z = ™ - (abcabc)™ for some m,n € Z with n # 0, by Lemma [5.2.18] Note
that z acts trivially on the set of edges around @, but any b™ - (abcabc)™ with

non-trivial m doesn’t. This forces m = 0, and thus z = (abcabc)”. O

Corollary 5.2.23. The orbit of any vertex u of infinite valence under the action
of C(2) is precisely the set of vertices of T. In particular, every vertex of T has

infinite valence.

Proof: Let u be an axis of z and let g € C(2). First of all, if w < D'} then

g-uc Dgi?;ess, because the action is simplicial. In the quotient space 7, this
means ¢ sends vertices of T to other vertices of 7. It is not hard to see from
Figure that the element abc sends the axis u onto one of its neighbours v; (it

acts as a vertical symmetry of the strip described in Figure [5.9). Moreover, we
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know by Lemma [5.2.20| that v; is in the orbit of all the other neighbours v; of @,
for j € Z. This proves that every vertex that is adjacent to u is in the orbit of
u. In particular, these vertices have infinite valences, so we can repeat the above

process inductively. This yields the desired result. O

Corollary 5.2.24. T has no leaf, hence is a simplicial tree (with edge length 3)

on which C(z) acts simplicially.

Proof: Suppose that 7 is a leaf of 7. It is easy to see using Lemma that
there is a unique vertex v € T that is the closest to @, and that the distance
between the two points is bounded by 3. Note that v has infinite valence by
Corollary[5.2.23] If the distance between u and v was strictly less than 3, we would
obtain a contradiction with Lemma [5.2.20] so this distance must be precisely

3. By Lemma [5.2.12] then, w must also be a vertex. It has infinite valence by

Corollary [5.2.23] hence cannot be a leaf, by Lemma[5.2.20, C(z) acts simplicially
on 7T because it preserves its set of vertices, by Corollary [5.2.23]

We now have everything we need in order to prove Proposition [5.2.21] which we

do now.

Proof of Proposition |5.2.21; The first statement comes from Lemma [5.2.22]
to which we refer for the following arguments. Let u be the axis of A that is
contained in Fix(b), let w := abc - u and let v the axis of z that is equidistant

from v and w:

u v w
abcabc -|K 3
jabc-K
K

Figure 5.10: The convex hull c¢(u, w), with the principal triangle K < Kr.

130



Chapter 5 — Rigidity and automorphisms

We say that a segment of T is a half-edge if its length is half that of an edge of
T and if one of its endpoints is a vertex of 7. Let now v € T be the half-edge
[@,7]. We first prove the following:

Claim: (1) All the half-edges of 7 are in the same C(z)-orbit.

(2) The element b(z) € C(z) acts on T with fixed point @. Moreover, T has
infinite valence and (b){zy) acts transitively on the set of edges around 7.

(3) The element abe{z) € C(h) acts on T with fixed point 7. Moreover, T has
valence 2 and {abc){zg) acts transitively on the set of edges around .

(4) Any element of C'(z) that fixes v belongs to (2).

Proof of the Claim: (1) Consider two half-edges v, and ~,. We know from
Corollary that the vertices of T are all in the same C/(z)-orbit. So up to
action of C'(z) we can assume that v; and 72 both contain the vertex u. Now the
action of (by < C(z) is transitive on the half-edges around u (see Lemma [5.2.20)),
so 7, and 7, are in the same orbit.

(2) We know that u has infinite valence, by Corollary The element b(zj)
preserves u and fixes @, because u S Fiz(b) and 2y € Stab(u). The subgroup
(b)zpy acts transitively on the set of vertices around u, by Lemma [5.2.20]

(3) We know that ¥ has valence at most 2, by Corollary [5.2.9] This valence must
actually be exactly 2, because T contains the segment [, w] around 7. On one
hand, (zp) acts trivially on the set of edges around @, by Lemma . On the
other hand, it is easy to see that the element abc sends u onto w, and reciprocally.
In particular, abe preserves v and fixes U. Together, this means {abc){zy) fixes T
and acts transitively on the two edges around v.

(4) Let g € C(2) and suppose that g fixes v pointwise. Then g preserves u. Using
Lemma [5.2.20| and the fact that g acts trivially on a non-trivial part of an edge

around u, the only possibility is that g is a power of z.

We come back to proving the main statement. The half-edge v is a strict fun-

damental domain of the action of C(z) on T, by (1). Moreover, the various

stabilisers under the action of C'(z) are (b)(zy) for the vertex @, {abc){zy) for the
vertex T, and (zp) for the half-edge v, by (2), (3) and (4). Note that in C(z),
these stabilisers are isomorphic to Z for w, (Z /27,) for v and {1} for 5. The result

follows using classical Bass-Serre theory. OJ
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Remark 5.2.25. One can directly see from Proposition [5.2.21| that C'(z) does
not depend on the value of n. In particular, C((abcabc)™) = C(abcabc).

5.3 Classifying the dihedral Artin subgroups.

The goal of the present section is to prove Theorem which we will do after
having proved Theorem Besides being interesting on its own, Theorem
has important consequences, as will be seen in Section and Section

The strategy in order to prove Theorem is to describe the spherical
parabolic subgroups of any large-type Artin group Ar in a “purely algebraic”
manner, i.e. in a way that is preserved under isomorphisms. Large-type Artin
groups are 2-dimensional, so their spherical parabolic subgroups are either di-
hedral Artin subgroups, or infinite cyclic subgroups. Clearly all infinite cyclic
subgroups are not parabolic. Pheraps more surprisingly, Ar also contains di-
hedral Artin subgroups that are not parabolic subgroups, in general. In other
words, some exotic dihedral Artin subgroups described in Definition do
exist, as soon as Ar is not of hyperbolic type. What we would like to do is to
be able to differentiate the classical dihedral Artin subgroups from these exotic
dihedral Artin subgroups by a criterion that is purely algebraic.

Note that the classical dihedral Artin subgroups that we are interested into are
always maximal, as ensured by Corollary So we will only care to differen-
tiate between classical and exotic dihedral Artin subgroups of Ar amongst those
that are maximal. Any exotic dihedral Artin subgroup H of Ar is contained in
the centraliser of a hyperbolic element z generating its centre. These centralisers
have being intensely studied throughout Section [5.2] In particular, we were able
to give exact presentations of such centralisers (see Proposition . Showing
that these centralisers are themselves exotic maximal dihedral Artin subgroups
will directly imply that no other exotic maximal dihedral Artin subgroup exists,
giving a precise classification of all exotic maximal dihedral Artin subgroups (see
Theorem 5.5)). This is the goal of Section m

The goal of Section is to describe an algebraic property that is always
satisfied for exotic maximal dihedral Artin subgroups but is never satisfied for

classical maximal dihedral Artin subgroups, allowing us to differientiate the two
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kind of maximal dihedral Artin subgroups purely algebraically (see Corollary

5.3.12). We will then prove Theorem

5.3.1 Maximality and presentation.

Let Ar be an Artin group of large-type. The centre of any exotic dihedral Artin
subgroup H of Ar is generated by an element z € Ar for which H € C(z). We saw
in Section that in this situation the element z takes the form z = (abcabc)”
where a,b, c € V(T') satisfy mg, = mg. = my. = 3 and n # 0. We also describe in

Proposition [5.2.21] the way C'(z) can be obtained as a central extension.

Let us now come back to a more general case, and consider three standard
generators V(I') satisfying mg. = mg. = my. = 3. We start with the following

lemma:

Lemma 5.3.1. C(abcabe) = (b, abc).

Proof: Tt is not hard to check that {b,abcy = C(abcabc), so we prove the other
inclusion. Let g € C'(abcabc), and let u be the axis of abcabe that belongs to Fiz(b)
(see Section [5.2.3). By Theorem [5.2.1]the line g-u is also an axis of abcabe (which
corresponds to a vertex in the associated transverse-tree). By Proposition
then, there is an element w € {b, abc) such that w-u = g-u. It follows that w and
g must agree, up to an element h € Stab(u). By Lemma and Section [5.2.3]
Stab(u) decomposes as a product Stab(u) = (by x {abcabcy < (b, abc). Finally, g

is a product of two elements of (b, abc), hence belongs to (b, abc) as well. ]

Remark 5.3.2. Let H := {(s,t) be the subgroup of Ar generated by
s:=>b'and t:=b-abc.

If we let z := abcabc, then we have z = stst = tsts. Moreover, we know from
Lemma [(.3.1] that
H = {b,abcy = C(abcabc) = C(z).

We want to show two things:

(1) H really defines a dihedral Artin subgroup of Ar. This is the goal of Lemma
H.3.3

(2) H is maximal. This will be done in Lemma [5.3.4]
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Lemma 5.3.3. H is a dihedral Artin subgroup of Ar.

Proof: Recall that H = C(z), and consider the short exact sequence
B >2Z—0C0k) -2« (2/2z) — {1}, ()

coming from Proposition |5.2.21| and defining the central extension C(z). By
[54, Theorem 3.16|, the equivalence classes of central extensions of the form (x)

are in one-to-one correspondence with elements of the cohomology group
HYZ+(%)22);2) = H*Z;Z)®H*((Z/22):Z) = (Z/2z).

It follows there are, up to isomorphism, exactly two distinct central extensions

satisfying (x), one of which is C(z). These two groups are the following:
(Z+(%/27)) x Z and Ay,

where A, is the dihedral Artin group with coefficient 4. Indeed, the direct product
is cleary a fitting central extension, while Ay is a fitting extension by |14, Lemma
1]. The first group has torsion while the second doesn’t. In particular then C(z)

must be isomorphic to the second group, i.e. Aj. O
Lemma 5.3.4. H is mazimal amongst the dihedral Artin subgroups of Ar.

Proof: We know from Lemma that H is an exotic dihedral Artin subgroup
of Ar. Let H' be a dihedral Artin subgroup of Ar satisfying H' © H. Our goal
is to show that H' = H. We know by Corollary [5.1.19| that H’ must also be an

exotic subgroup with centre generated by an element z’. We have the following:
abce C(z)=H< H < C(2). (»)
In particular, the element abc commutes with z’, which means 2’ preserves Min(abc)

by Theorem

Claim: Min(abc) is a single axis, described by the line v in Figure [5.10}

Proof of the Claim: We already know from the proof of Proposition [5.2.21
that the line v of Figure is an axis of abc. If v’ is another axis of abc, then
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v and v’ are parallel, and the convex hull ¢(v,v") is a union of axes of abc (see
Theorem [5.2.1). In particular then, there is an axis ¢” distinct from v that is
arbitrary close to v, say at distance ¢ < 1. This axis must belongs to the convex
hull ¢(u, w) described in Figure[5.10f However the element abc acts on this convex
hull as a glide reflection around v, whose minset must then only be the central

line v. This gives a contradiction, which finishes the proof of the Claim.

Recall that 2’ preserves Min(abc) = w. In particular then, Lemma
applies: 2’ € Stab(u) = {(zo), where 2z, is a shortest translation preserving wv.
It is not hard to notice that abc is such a shortest translation, i.e. that 2’ is
actually a power of abc. Now the element 2z’ described by Lemma has
height 6n for some n € Z\{0}. Comparing with the heights of powers of abe, this
means we must have 2’ = (abc)®™ = (abcabe)™. Finally, using Remark we
obtain C(z') = C((abcabe)™) = C(abcabc) = C(z). Together with (), this shows
H = H’, as wanted. ]

Corollary 5.3.5. The exotic maximal dihedral subgroups of Ar are exactly the

subgroups that are conjugated to centralisers of the form
C(z) = (b, abc),

where z = abcabe for some generators a,b,c € V(I') satisfying may, = mg. =

Mpye = 3.

Proof: That such a centraliser C'(z) is dihedral and maximal follows from Lemma
and Lemma [5.3.4] For the converse, Lemma along with Lemma
show that the centre of any exotic dihedral subgroup H of Ar is generated by
an element of the form z = (abcabc)™ for some n # 0 and some a,b,c € V(I
satisfying mgq, = mg. = my. = 3. In particular then, H < C(z) = C(abcabe) by
Remark [5.2.25] The centraliser C'(abcabe) is dihedral and maximal by Lemma
5.3.3and Lemma [5.3.4] and thus maximality of H shows that H = C(abcabe). [

We can now put together the various results we proved to recover Theorem

4.5k

135



Chapter 5 — Rigidity and automorphisms

Theorem 5.3.6. Let Ar be a large-type Artin group of rank at least 3, and let
H be a dihedral Artin subgroup of Ar. Then H is conjugated into one of the
following:

(1) {a, by, where a,b e V(') satisfy mgq, < co.

(2) {b,abcy, where a,b,c € V(') satisfy map = Mae = My = 3.

Proof: Let H be a dihedral Artin subgroup of Ar. We only need to look at what
happens when H is maximal. Now H is either classical or exotic, and a direct

use of Lemma [5.1.22| and Corollary finishes the proof of the theorem.  []

5.3.2 Algebraic differentiation of dihedral Artin subgroups.

In Section we have been able to describe precisely all the maximal exotic
dihedral Artin subgroups of Ar. By Corollary they are the centralisers of
the form C(z) = (b, abc) for appropriate generators. We would like to be able
to differentiate these subgroups from the classical maximal dihedral Artin sub-
groups with a purely algebraic condition, i.e. a condition that is preserved under
isomorphisms. The goal of this section is to do precisely that. The next definition
introduces the algebraic notion that will allow us to make such a differentiation.
As a consequence, we will be able to prove that spherical parabolic subgroups of
a large-type Artin group can be defined purely algebraically and are preserved

under isomorphisms to other large-type Artin groups (see Theorem [5.3.13)).

Definition 5.3.7. A maximal dihedral Artin subgroup H; of Ar has isolated
intersections if there exists a maximal dihedral Artin subgroup Hy < Ar distinct
from H; such that there is no other maximal dihedral Artin subgroup Hs < Ar

distinct from H, and H, for which
H, n Hy € Hs.

Remark 5.3.8. The notion of being a dihedral Artin subgroup, the notions of
intersection or inclusion, and the notion of maximality are all preserved under
isomorphisms. In particular, being a maximal dihedral Artin subgroup with no

isolated intersections is preserved through isomorphisms as well.

Our goal is to show that the maximal dihedral Artin subgroups of Ar with
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isolated intersection are exactly those that are exotic.

Lemma 5.3.9. Let Hy be an exotic maximal Artin subgroup of Ar. Then Hp has

1solated intersections.
We begin by proving the following lemma:

Lemma 5.3.10. Let h € Ar be a hyperbolic element and suppose that no azis of
h is contained in D%l)_ess, and that the transverse-tree T of h contains an infinite
line. Then Min(h) is a plane that consists of all the lines of Dr parallel to u. In

particular, this applies to the element h = babc.

Proof: We first prove the general statement. By Lemma [5.2.10] every point
of 7 has valence 2. It follows that 7 is an infinite line, and that Min(h) is a
flat plane. Suppose that there is a line w in Dr that is parallel to an axis u of
h, yet doesn’t belong to Min(h). By Theorem there is a flat strip that
connects u to w. Let now v be the line in this strip that cuts the strip into two
thinner strips: the strip ¢(u, v) that belongs to Min(h) and the strip c¢(v, w) that
intersects Min(h) only along v. Since Min(h) is a plane, there must then be at
least 3 distinct non-overlapping flat strips meeting at v: one one each side of v
in Min(h), and the strip ¢(v,w). In particular then, for any ¢ > 0 and any point
x € v, the neighbourhood Bp.(x, ¢) is never just a flat disk. Because v & D(Fl)_ess,
this contradicts the arguments given in the proof of Lemma [5.2.10] This means
no such line w exists, i.e. all lines parallel to u are in Min(h).

To check that this applies to the element h := babc is rather elementary. To
picture the situation, an axis of h is described by the blue line in Figure [5.3] call
this axis u. The element z := abcabc commutes with & by Lemma [5.3.1] hence
acts on Min(h) and on the transverse-tree 7 associated with h. It is not hard to
check that the action of abcabc on T is hyperbolic, proving that 7 contains an
infinite line. In particular, Min(h) is a flat plane. Any other axis of h is parallel
to u, and it is not hard using Theorem the tiling of Min(h) that such a line
can never belong to DS)“”S (see Figure . O

Proof of Lemma [5.3.9: By Corollary we can suppose up to conjugation
that Hy = (b,abcy, where a,b,c € V(I') satisfy mg, = mee = mp. = 3. Let

us now define another exotic maximal dihedral Artin subgroup H, of Ar by
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H, = {a, bac), and note that H, is distinct from H;. It is enough to prove that if
Hj is a exotic maximal dihedral Artin subgroup of Ar such that Hy n Hy € Hj,
then H; = H; or H3 = H,.

Let h := babc = abac, and note that h € H; n Hy, < Hs. We know by
Lemma[5.3.10] that P := Min(h) is a plane. Note that the exact structure of this
plane is not hard to determine, and is described in Figure We first want to
show that if z3 is an element generating the centre of Hj, then P is contained in
Min(z3). To do so, note that h € H3 = C(z3), by Corollary In particular,
h acts on the transverse-tree 73 of z3, by Theorem It is clear that the
direction of h and that of z3 are not the same, simply because the axes of z3 are

parallel to lines in Dg)_ess

when the axes of h aren’t. In particular then, A must
act on T3 hyperbolically, with an axis that we call v3. Consider now the plane
P = ~v3 x R € Min(z3). To prove that P is contained in Min(z3) is then a

consequence of the following:

Claim: P = P".

Proof of the Claim: We first show that A preserves both P and P’. On one
hand, h preserves P = Min(h) by definition. On the other hand, Theorem [5.2.1]
tells us that the action by isometry of h on T3 x R decomposes as a couple (hy, ho)
where h; corresponds to the action by isometry of A on 73, and hs corresponds
to a translation of the R component. The action of h; restricts to an action on
~3, and thus the action of h restricts to an action on 73 x R = P’.

We now prove that P and P’ intersect. Suppose that P and P’ are disjoint,
and let M x M’ be the subset of P x P’ of couple of points (z,y) minimising
the distance between P and P’. Let now (z,y) € M x M’. Since P and P’ are
preserved by the action of h, the couple (h-x,h - y) belongs to P x P'. Because
the action is via isometries, distance between h - x and h -y is the same as that
between x and y. In particular, it is minimising as well, and (h-z, h-y) € M x M.
Repeating this process shows that M and M’ respectively contain the lines £ and
¢ respectively defined by the orbits of = and y under (h). Note that because they
respectively belong to M and M’, the lines ¢ and ¢’ are at constant distance from
each others, i.e. they are parallel. Now /¢ is an axis of h, and ¢ is a line that

is parallel to ¢. By Corollary [5.3.10| then, ¢ must be an axis of h as well. This
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means ¢/ © P, absurd. So P and P’ must intersect.

Consider now a point z € P n P'. Because h preserves both P and P’, the
element h -z belongs to P n P’ too. In particular, the line ¢ defined by the orbit
of z under (h) belongs to both P and P’. Now P’ can be covered by lines that are
all parallel to ¢. In particular, any such line must belong to P, by Lemma [5.3.10}
This shows P’ € P. Since the two sets are infinite planes, we obtain P = P/,

which finishes the proof of the Claim.

We just proved that the plane P described in Figure is included inside of
Min(z3). We want to determine the possible values of z3, by looking at its action
on this plane. We have at least two useful pieces of information:

(a) The element z3 acts trivially on 73, hence preserves the strips in Min(z3) that
follow the direction of z3. We know from Section that these strips live along
infinite lines of D(Fl)fess. So the principal triangle K (labelled by “1” on Figure
5.11)) must be sent by z3 to another principal triangle z3 - K that also belongs
to that strip, i.e. that can be obtained from K by following a line of D(Fl)_ess.
Looking at Figure [5.11] there are only 6 possible strips along which z3 can move
K, i.e. 6 possible directions for the action of z3 on P. They are highlighted in
blue in Figure [5.11

(b) By Corollary , the element generating the centre of Hj takes the form
g-strstr-g~! for some element g € Ar and some generators s, t,r € V(T') satisfying
Mg = Mg = My = 3. This means z3 is either this element, or its inverse. In

particular, the height of 23 is ht(z3) = £6. The principal triangles h- K for which
ht(h) = £6 are highlighted in green in Figure [5.11]

The previous observation implies that the only possibilities for z3 are:
23 = (abcabe)™ = ()" or zz = (bacbac)™ = (z9)* .
We obtain

H; = C(z3) = C(#1) = Hy or Hy=C(z3) = C(22) = Hs.
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abcabe bacbac

abcab bacba
abca bab bacb

abc

17 -1
as_ba 'c =
ac'h

-1
adba " cb™\/ac ba? ac

(ac)™\|/(be) ™!

(bac)~/'| \(acb)~
cbac)™ cabc)™

chac), cabc),

achac)\! abcabe)s!

Figure 5.11: A precise description of (some of) the principal triangles of P. For

[{3P%]

drawing purposes, we only wrote “g” when talking about a principal triangle of
the form ¢g - K. In blue are highlighted the principal triangles of P that satisfy
the condition (a). In green are highlighted the principal triangles g - K of P that
satisfy condition (b), i.e. for which ht(g) = £6. The axis of babc is highlighted
in red. ]

Lemma 5.3.11. Let H; be a classical maximal dihedral Artin subgroup of Ar.

Then H; does not have isolated intersections.

Proof: We know by Lemmal5.1.22] that there are standard generators a,b € V(T')
such that up to conjugation, H; < A,. Let now Hy be any maximal dihedral
Artin subgroup of Ar distinct from H; but intersecting H; non-trivially. We need
to show that there is a maximal dihedral Artin subgroup Hjs of Ar distinct from

H1 and Hg, for which H1 M H2 - Hg.

Claim 1: Any non-trivial element in H; n Hs has type 1.

Proof of Claim 1: Let h € H; n Hy be a non-trivial element. Every element
of H; has type at most 2 because H; is classical, so we only have to show that
type(h) # 2. Suppose the opposite, i.e. that type(h) = 2. Then H; must
be classical, by Corollary The parabolic closure P, has type 2 and is
contained inside both H; and H,. Since H; and H, also have type 2, we can use
Proposition to obtain H, = P, = H,, a contradiction. This finishes the
proof of Claim 1.
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Claim 2: H; n Hs is cyclic.

Proof of Claim 2: If H, is classical, then any element g € H; n Hy fixes the
fixed sets of H; and of Hy. These fixed sets are type 2 vertices, by Lemma [5.1.6),
and they are distinct because H; and H, are distinct. Because the action is by
isometries, the element g must also fix (pointwise) the geodesic between these
two vertices. Such a geodesic contains a point p of type at most 1, and this point
is fixed by any g € H; n Hs. In particular, H; n Hs is contained in the stabiliser
of p. This stabiliser is cyclic, so we get the desired result.

Let now Hs be exotic, and suppose that H;n Hs is not cyclic. Let 2z, be an element
generating the centre of Hy, and let g, ¢’ € Hy n Hy. The elements g and ¢’ have
type 1 by Claim 1. In particular, they both act elliptically on the transverse-tree
Ty associated with zp. If the fixed sets of g and ¢’ on 75 are disjoints, a classical
ping-pong argument shows that the product gg’ acts hyperbolically on 75, hence
must have type 3. Since gg' € Hy n Hy, we get a contradiction to Claim 1. This
means g and ¢’ fix a common point u of 73. In particular, g and ¢’ both belong
to the subgroup Stab(u) described in Lemma . They are of type 1, so they
must both be powers of the element generating Fiz(u). In particular, g and ¢

belong to a common cyclic group. This finishes the proof of Claim 2.

Look now at the intersection H; n Hj, and let g be an element generating
this intersection. Because type(g) = 1, we know that Fiz(g) is a standard tree
in Dr, by Lemma [5.1.6l There are infinitely many type 2 vertices on Fiz(g).
Their associated local groups are maximal dihedral Artin subgroups of Ar by

Corollary [5.1.23] They are all distinct yet contain (g). It follows there is a
maximal dihedral Artin subgroup Hs of Ar distinct from both H; and H, such
that <g> =H; n Hy € Hs. []

Corollary 5.3.12. Let H be a mazximal dihedral Artin subgroup of Ar. Then
H is classical <= H does not have isolated intersection .

Proof: This directly follows from Lemma [5.3.9 and Lemma [5.3.11} O]

We would like to note the important consequences of Corollary [5.3.12, While

being a classical maximal dihedral Artin subgroup of Ar depends on the type of
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the elements in the subgroup and thus on the presentation of the group itself, not
having isolated intersections is defined purely algebraically and hence preserved
by isomorphisms, as emphasised in Remark [5.3.8] These two properties however
agree, by Corollary By Corollary [5.1.23] this means the set of non-free
parabolic subgroups of type 2 of Ar can be described purely algebraically, and
is preserved under isomorphisms. We are now able to prove the main result of

Section that is, Theorem

Theorem 5.3.13. Let Ar and Ar be two large-type Artin groups of rank at least
3. Then any isomorphism ¢ : Ar — A induces a bijection between the set of

spherical parabolic subgroups of Ar and the set of spherical parabolic subgroups of

Ap.

Proof: A direct consequence of the discussion preceding Theorem [5.3.13|is that
@ induces a bijection between the set of non-free parabolic subgroups of type 2
of Ar and that of Ar». We want to prove that this also holds for the parabolic

subgroups of type 1. To do so, we first prove the following.

Claim: The set of parabolic subgroups of type 1 of Ar (resp. of Ap) coincides
with the set of proper non-trivial intersections of non-free parabolic subgroups of

type 2 of Ar (resp. of Ap).

Proof of Claim: (2) By Theorem [£.1] the intersection of non-free parabolic
subgroups of type 2 of Ar is always a parabolic subgroup. If such an intersection
is proper and non-trivial, the resulting parabolic subgroup is always of type 1
(use Proposition [5.1.14)).

(<) Consider a parabolic subgroup H of type 1 of Ar. Then H = h{a)h~' for
some a € V(I') and some h € Ar. By Lemma Fix(H) is the standard
tree hFiz(a). Let v and v' be two distinct type 2 vertices of hFixz(a). The local
groups G, and G, are parabolic subgroups of type 2 of Ar. They are not free
and they are distinct, because their fixed sets are non-empty and disjoint (see
Lemma . By Theorem [4.1| their intersection G, n GG,y is also a parabolic
subgroup of Ar. It is strictly contained into G, and G, but it is not trivial,
so it is a parabolic subgroup of type 1 (use Proposition . The inclusion
H < G, n G, along with by Proposition finally gives H = G, n G,». This
finishes the proof of the Claim.
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The fact that ¢ induces a bijection between the set of parabolic subgroups of type
1 of Ar and that of Ap is now a direct consequence from the fact that it induces
a bijection between the non-free parabolic subgroups of type 2, from the above
Claim, and from the fact that being a proper non-trivial intersection is preserved
under isomorphisms. Finally, every spherical parabolic subgroup of Ar (resp. of
Ar) is either a non-free parabolic subgroup of type 2 or a parabolic subgroup
of type 1, because Ar (resp. Ar) is large hence 2-dimensional. This proves the

main statement of the Theorem. O

Corollary 5.3.14. Let Ar and Ap be two large-type Artin groups of rank at
least 3, and suppose that there is an isomorphism ¢ : Ar — Arp. Then for every
generator s € V(I') there exists a generator t € V(I") and an element g € Ap

such that p(s) = gt*tg=.

Proof: We know by Theorem [5.3.13|that ¢ sends the parabolic subgroups of type
1 of Ar onto parabolic subgroups of type 1 of Ar. This means o((s)) = g{t)g~*
for an appropriate t € V(I") and g € Ap. In particular, ¢ sends any generator of

{s) to a generator of g(t)g~!. The result follows. O

Remark 5.3.15. A direct consequence of Corollary [5.3.14] when Ar = A is that

the automorphism group Aut(Ar) does not contain any transvection.

5.4 Reconstructing the Deligne complex algebraically.

The parabolic subgroups of an Artin group Ar do not purely depend on the
group itself, but heavily depend on the prescribed set of standard generators of
the group. In particular, the Deligne complex Dr associated with Ar also heavily
depends on this set of standard generators. In Section we saw that the set of
non-free parabolic subgroups of type 2 of Ar can be defined with a purely algebraic
condition, that does not depend on this set of standard generators (see Theorem
[(.3.13). Geometrically, this means one can define the type 2 vertices of Dr purely
algebraically. The goal of the present section is to extend this construction to the
whole complex Dr, reconstructing the other vertices, the edges and the simplices
of the complex in a purely algebraic way.

Even for the seemingly simplest objects, like the type 1 vertices of Dr, the

above problem remains complicated. For instance, the correspondence that exists
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between the type 2 vertices of Dr and the non-free parabolic subgroups of type 2
of Ar has no analogue for type 1 vertices. Indeed, a parabolic subgroup of type
1 of Ar corresponds to a standard tree in Dr. This tree contains infinitely many
edges, and there is no obvious way to differentiate algebraically two type 1 edges
of this tree, because they have the same stabiliser.

In this section, we will require not only that Ar is of large-type, but also
that its defining graph is complete. In other words, we require that every pair
of distinct standard generators a,b € V(I') has a coefficient 3 < mg, < . Such
large-type Artin groups are said to also be free-of-infinity. We start by explaining

the notations that we will use throughout the section:

Strategy and notation: As previously mentioned, the strategy of this section
is to reconstruct the different vertices, edges and simplices of Dr in a purely alge-
braic way. Our strategy can be divided in four steps. At each step, the goal will
be to introduce a set of algebraic objects that “corresponds” to a set of geometric
objects of Dr. These various correspondences will be made explicit through maps
that will be bijections, graph isomorphisms or simplicial isomorphisms, depend-
ing on the context. We sum up the various notations that will be used in the

following table:

Geometric Definition Algebraic Associated

. - Picture
object equivalent map

The set of type 2
v D : -V
? vertices of Xr. V2 fv,: Dy, 2

2
&
%

\V4 The set of type 1 D ]
' vertices of Xr-. Vi fv,: Dv, = V3

4
%

D |seeDefinition5.1.1| Dy | Fy: Dy — Dh-ess

5
:

Dr See Definition 2.4.17 Dr F :Dr—Dr

S
o

Vs

Figure 5.12: Notations used to describe the various geometric and algebraic ob-
jects that will be used in Section [5.4]
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5.4.1 Reconstructing Dg)_ess.

This first section covers the first three steps of the algebraic reconstruction of
Dr. The first step will be to build an algebraic equivalent of the set V5 of type
2 vertices of Dr. This is a direct consequence of the results obtained at the end
of Section The second step will be to build an algebraic equivalent of the set
Vi of type 1 of Dr. Finally, the third step will be to describe when the algebraic
objects corresponding to the type 2 vertices should be “adjacent” to the algebraic
objects corresponding to the type 1 vertices. This will allow us to reconstruct
DS)‘“S algebraically.

We let in this section Ar be any large-type free-of-infinity Artin group. We
start with the following definition:

Definition 5.4.1. We define Dy, to be the set of classical maximal dihedral Artin

subgroups of Ar.

Note that Dy, can equivalently be defined as the set of non-free parabolic sub-
groups of type 2 of Ar, by Corollary 5.1.23] Following the work done in Section
5.3 we know that the elements of Dy, are precisely the maximal dihedral Artin
subgroups of Ar that have no isolated intersection (see Definition [5.3.7jand Corol-
lary [.3.12). In particular, Dy, can be defined purely algebraically from Ar (see

Remark |5.3.8)).

Lemma 5.4.2. The map fy, : Dy, — Vs defined as follows is a bijection:
(1) For every subgroup H € Dy,, fv,(H) is the fized set Fixz(H);
(2) For every vertex v € Va, f‘}Ql (v) is the local group G,.

Proof: This directly follows from Lemma [5.1.6] O]

We now come to the harder part of Section [5.4.1} reconstructing the type 1
vertices of Dr algebraically. We start with the following definition:

Definition 5.4.3. A couple of subgroups (Hy, Hy) € Dy, x Dy, is said to have

the adjacency property if there exists a subgroup Hs € Dy, such that we have

(A1) H; n H; # {1}, Vi,j e {1,2,3};
mmﬂm:m.
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Definition really is geometric in essence, and the goal of the next lemma is

to highlight that.

Lemma 5.4.4. A couple (Hy, Hy) has the adjacency property relatively to a third
subgroup Hs if and only if the following hold:

(1) The three H;’s are distinct subgroups.

(2) The three intersections (H; ~ H;)’s are parabolic subgroups of type 1, and are
distinct. Equivalently, the sets Fixz(H; n H;) are distinct standard trees.

(3) The standard trees Fiz(H; n H;)’s intersect each others 2-by-2, but the triple-

intersection 18 trivial.

Proof: (=) Suppose that (Hy, Hy) has the adjacency property relatively to a
third subgroup Hs. Let i, 7,k € {1,2,3} be distinct, and suppose that H; = H,.

Then
(42)

{1} H;,n H; mHk—HmHk;é{l}

a contradiction. This proves (1).

In particular, any intersection H; n H; is a proper non-trivial intersection of
parabolic subgroups of type 2 of Ar, hence is a parabolic subgroup of type 1
of Ar (we use the Claim in the proof of Theorem [5.3.13). It follows that each
Fiz(H; n H;) is a standard tree. This proves (2).

Finally, on one hand the three standard trees intersect each others 2-by-2,
as for instance the intersection of Fix(H; n H;) and Fiz(H; n Hy) is the vertex
Fiz(H;). On the other hand, the intersection of the three standard trees is the
intersection of all the 2-by-2 intersections. It is trivial because the three vertices
Fiz(H;), Fiz(H;) and Fiz(Hy) are distinct, as their corresponding subgroups
are. This proves (3).

(<) Suppose that the three subgroups Hy, Hy, H3 € Dy, satisfy the properties
(1), (2) and (3) of the lemma. The fact that all the intersections (H; n H;)’s are
parabolic subgroups of type 1 directly implies (A1).

The subgroups H; n H; and H; n Hy, are parabolic subgroups of type 1 of Ar,
so there intersection is a parabolic subgroup of Ar as well, by Theorem (1.1} By
Proposition [5.1.14] this intersection cannot be a parabolic subgroup of type 1 of
Ar, because H; n H; and H; n Hy, are distinct. So it must be trivial. This imples
(A2). ]
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Proposition 5.4.5. Consider two subgroups Hy, Hy € Dy,. Then the following
are equivalent:

(1) The two type 2 vertices vi,ve of Dr defined by v; = fv,(H;) are at combina-
)—ess

torial distance 2 in Dg

(2) The couple (Hy, Hy) satisfies the adjacency property.

Note that the minimal combinatorial distance one can have between two type 2
vertices of DQH“ is 2, so the previous proposition gives an algebraic description
of when two type 2 vertices of Dr are “as close as possible”. In order to prove
the proposition, we will need the following theorem, which is also known as the

combinatorial Gauss-Bonnet formula:

Theorem 5.4.6. |70, Theorem 4.6] Let M be a 2-dimensional subcomplez of
Dr obtained as the union of finitely many polygons. Let My denote the set of
type 2 vertices that belong to M, and let My denote the set of polygons whose
union 1s exactly M. A corner of a vertex v € My is a polygon of M in which v is
contained, and a corner of a polygon f is a vertex at which two edges of f meet.

Let us also define

Yo € int(My), curv(v) = 21w — Z Zy(c) |,
ceCorners(v)
Yv e My, curv(v) =m — Z Zy(c) |,
ceCorners(v)
Vfe M, curv(f) :=2m — Z (m— Z(f))
ceCorners(f)

Then we have

Z curv(f) + Z curv(v) = 27.

feMs ve Mo

Lemma 5.4.7. Let x be a vertex of type 1 in Dr, i.e. x = g-v, for some g € Ar
and a € V(I'). We recall that Ty, can be seen as the boundary of the fundamental
domain Kr of the action of Ar on Dr, as explained in Remark|2.4.19

Then the star Sth)_ess (x) of x in Dg)_ess is the g-translate of the star
Str,.. (x) of © in Ly, and takes the form of a n-pod for some n = 1. It is
contained in the standard tree Fix(G,), and in any translate of the fundamental

domain that contains x.
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Proof: First notice that St ,0)-ex (z) = Stp, (z) A DV By [17, Construction

11.12.24], the structure of Stp.(z) can be described as the development of a sub-
complex of groups that only depends on the local groups around x. Intersecting
with Dl(})_ess means further restricting to the local groups around z that contain
G,. These local groups are the g-conjugates of the local groups around v,, so
StD(Fl)_e,,»s (x) is the g-translate of Str,  (v,), which is easily seen to be a n-pod,
where n is the number of edges attached to v, in 'y, (equivalently, in T').

The inclusion StD(Fl)fess (z) € Fiz(G,) comes from the fact that every lo-
cal group in the star contains G,. Moreover, Sth)_ess(va) < Kr and thus

St y-ess (1) S h - Ky for every h e Ap for which x € h - K. H
T

Proof of Proposition [(1) = (2)]: The vertices v, and vy are at com-
binatorial distance 2 from each others, so there is a type 1 vertex ;s that is

adjacent to both v; and wv,. Let us first suppose that x5 belongs to Kr. By

Lemma [5.4.7, Kt contains the star St a)-ess (x12), and this star is the simplicial
T

neighbourhood of x5 in I'y,.. In particular then, v; and vy are distinct vertices
of T'yer that are adjacent to x15. Because I' is complete, the path joining vy, x
and vy can be completed into a cycle v = (vy, x12, Ve, Tog, U3, £31) of length 6 in
['yar, where the v;’s are type 2 vertices and the x;;’s are type 1 vertices. Let now
Hs = f'(vs). All that’s left to do is to check that the couple (Hy, Hy) satisfies
the adjacency property, with respect to the third group Hs. This directly follow
from Lemma : the H,’s are distinct subgroups, the sets Fix(H; n H;)’s are
distinct standard trees as they contain the type 1 vertex x;; and no other type 1
vertex of 7, and the trees Fiz(H; n H;)’s intersects 2-by-2 along distinct type 2

vertices, hence the triple intersection is trivial.

If x15 does not belong to K, then x15 = ¢ - %12, where Ty5 is a type 1 vertex
of Kr. Proceeding as before on T yields groups H; for i € {1,2,3}. Then one
can recover an analogous reasoning for x,9, using the groups gH,g ! instead, for

ie{1,2,3}.

[(2) = (1)]: Let (H,, Hy) have the adjacency property relatively to a third sub-
group Hs, and let v; == fy,(H;) for i € {1,2,3}. We suppose that the following
Claim holds:
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Claim: Let vy, v and v3 be three distinct type 2 vertices of Dr, and suppose that
the three geodesics connecting the vertices are contained in distinct standard trees
that intersect 2-by-2 but whose triple intersection is empty. Then the triangle
formed by these three geodesics is contained in a single fundamental domain ¢g- K.

In particular, the vertices are at combinatorial distance 2 from each others.

The Claim clearly gives us the desired result, but we still need to show that
the hypotheses of the Claim are satisfied. This is a direct consequence of Lemma
[5.4.4} the three v;’s are distinct, and the three geodesics of the form v;; connecting
v; and v; are contained into the standard trees Fixz(H; n H;). The three ;;’s
intersect 2-by-2, but the triple intersection is empty, by Lemma [5.4.4] again. We
now check that the Claim holds:

Proof of the Claim: Let T be the geodesic triangle connecting v, vy and vs
and let M =T v int(T). We want to prove that M is contained into a single
fundamental domain g - K. To do so we suppose that it is not the case, and we
will exhibit a contraction. We want to apply the Gauss-Bonnet formula on M.
By construction, M is a combinatorial subcomplex of Dr whose simplices are base
triangles of the form g-Ty. To make the use of the Gauss-Bonnet formula easier,
we decide to see M with a coarser combinatorial structure: the one obtained by
removing every edge of type 0 and every vertex of type 0 in M. Note that the
boundary of M is a union of edges of type 1 of Dr, so M is still a subcomplex of
Dr with this new combinatorial structure. It is a union of polygons of Dr whose

boundaries are contained in D7, By Theorem [5.4.6, we have

Z curv(f) + Z curv(v) = 2w, (*)
faces f in M type 2 vertices in M
We rewrite this is a manner that is easier to deal with. Let M be the set of
polygons in M that don’t contain any element of {vy, vy, v3}, MS be the set of
polygons in M that contain at least one of vy, vy or vz, M{ be the set of type 2
vertices in int(M), Mg be the set of type 2 vertices of OM\{vy, vy, v3}, and M¢
be the set {vy,vq,v3} of corners of M. Then:

e Let C% = > curv(f). Consider a polygon f € My, and let m,. be the coefficient
feMi
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of the local group of a corner ¢ of f. Then

curv(f) =2m — 2 (W_i)

ceCorners(f) Me

Note that m. = 3 for all c € Corners(f), so eventually m— - > %” In particular,

f has at least 3 corners, so we obtain

21

curv(f)<27r—3-(3

) =0.

It follows that C% < 0 as well. Note that as soon as one polygon has at least 4
edges, or as soon as the coefficient of one of the local groups is at least 4, we have
curv(f) < 0 and thus C4 < 0.

e Let CY := > curv(v). Because Dr is CAT(0), the systole of the link of any

UeMé
vertex v in Dr is at least 27. In particular, if v € M, the systole of the link of

v in M is at least 27. It follows that the sum of the angles around v in M is at
least 2. In particular, curv(v) < 0 and thus C} < 0.

e Let Cl == > curv(v). Any v e M{ belongs to a side of T' that is a geodesic, so
veMé’

its angle with M must satisfy Z,M > m. It follows that curv(v) = 7 —2£,M <0,
and thus C} < 0 as well.

o Let C§ = > curv(v;) and let C§ = > curv(f). Any corner v; of T'= oM
v €M feMg
belongs to \; = 1 polygons of M. By construction of the Deligne complex, the

angle £, M is precisely \; - 2, where m; > 3 is the coefficient of H;. Each of the

m;’

A; polygons f of M containing v; is such that

m
curv(f) = 2m — (m — £, (f)) — (W_E)
ceCorners(f)\{v;} ¢
() T s
Sm—(m——)=2-(1—5
T (7T ml) (7T 3)
m m
< — -
m; 3

The inequality (+=) comes from the fact that f has at least 2 other corners than

v;, and that the angle at any corner of f is at most 7/3, because every local group
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has coeflicient at least 3. Note that if f has at least 4 edges then we obtain a

strict inequality curv(f) < -~ — %. Summing everything, we obtain

Cs+C5 = Z curv(v;) + Z curv(f)

viEM§ feMs
(xxx) T 7 T
< Z (m=Xi—)+ Z Ai (——=2)
4 m; ‘ m; 3
ie{1,2,3} ie{1,2,3}
T
= 31 — A= <27
T | Z 3 T
i€{1,2,3}

Note that it is easy to check that the inequality (x = *) holds no matter if the
polygons containing the v;’s are distinct or if there are polygons of M that contain
several of the v;’s. We now notice two things. The first is that as soon as one of the
v;’s is contained inside two distinct polygons of M, then A\; > 2 and C§+C¥ < 2.
The second is that if a polygon containing one of the v;’s has at least 4 edges,

then curv(f) < n/m; — m/3 and thus C§ + C§ < 27 as well.

With this setting, the equation (+) becomes:
Ci+ Ci+ Ch + (C§ + C5) = 27

Note that this equation can hold only if the four terms on the left-hand side are
maximal, i.e.:

e % = 0. In particular, every polygon in M is a triangle, whose corners have
local groups with coefficient exactly 3.

e C} = 0. In particular, the sum of the angles around any vertex of M{ is exactly
2.

e C) =0, i.e. the angles along the sides of T are exactly 7.

e C§ + C5 = 2m. In particular, each of the v;’s is contained in a single polygon of

M, which is always a triangle.

By hypothesis M does not contain a single polygon, and it is not hard to see
that in that case there must be polygons in M that do not contain any of the
v;’s (in other words, M3 is non-trivial). The first of the above four points implies
that every polygon in M is a flat equilateral triangle. Since the angles along the

sides of T are exactly 7 and since the sum of the angles around any vertex of M
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is 27, the whole subcomplex M. is actually flat. Let us now consider a triangle
f € MS, and let f’ be the (unique) polygon in M that is adjacent to f in the
sense that f and f’ share an edge (see Figure . Note that f’ is a flat triangle,
whose corners have local groups with coefficient 3. We can now use an argument
similar to the one used in the proof of Claim 3 of Lemma to determine the
coefficients of the local groups of the corners of f (this is done by propagating a
system of colours from f’ to f - see Figure . In particular, the coefficients
of the local groups around f must also be 3, which forces f to be an equilateral
triangle as well. By applying the same argument to the other polygons of Ms,
this shows that the whole of M is actually flat, i.e. isometrically embedded into

A&

SO A

Figure 5.13: Showing that triangles of My are also equilateral and Euclidean. The
simplices that belong to M are highlighted in grey. They are already known to be
equilateral and Euclidean. The edges of f’ are drawn with colours corresponding
to the edges in Kt they are translates of. These colours extend to f, and we can
recover the coefficient of the vertex groups of f.

a flat plane.

We now put a system of arrows on M (see Definition [5.2.14). Consider a
side v of M. By hypothesis, v belongs a standard tree Fiz(g{s)g~') for some

s € V(T') and some g € Ar, and g{(s)g~!

acts transitively on the set of strips
around ~. Thus we can assume that we have double arrows on ~, as drawn on
Figure [5.14] In particular then, all the arrows along v must be simple arrows, by
Lemma We now proceed to determine all the arrows in M:

Step 1: Put double arrows on the sides of M.

Step 2: The arrow between the two topmost triangles of M must be simple by
Lemma We suppose without loss of generality that it is pointing down.
Step 3: Use Lemma to complete the hexagons around this first arrow. We

obtain two new arrows in M.
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Step 4: Use Lemma [5.2.15{ on these two arrows and complete an hexagon of M.
Step 5: Proceed by induction using m 5.2.15] to determine every arrow in M.

&
Sl Fodi

Figure 5.14: Putting a system of arrows on M. On the left: Step 1 (black ar-
rows), Step 2 (blue arrow), Step 3 (green arrows) and Step 4 (orange arrows).
On the right: Step 5 (the induction process, red arrows). The purple hexagon
gives a contradiction to M being more than one triangle. The simplices and ar-
rows not contained in M are drawn with ligther colours.

Finally, we can see that the system of arrows of any of the hexagons along the
bottommost side of M contains two simple arrows pointing away from each other
and pointing towards double arrows (see Figure . This gives a contradiction
to Lemma [5.2.15] It follows that M contains a single triangle. In particular, the

vertices vy, vo and vz are at combinatorial distance 2 from each other. ]

We are now able to define explicitely the algebraic analogue of the type 1 vertices

of DFI

Definition 5.4.8. Let us consider the poset Py(Dy,) of finite sets of distinct
elements of Dy,, ordered by the inclusion. We now define Dy, to be the subset of
P¢(Dy,) of sets {Hy,--- , Hy} satisfying the following:

(P1) Any subset {H;, H;} < {H,---, Hy} is such that (H;, H;) satisfies the ad-
jacency property;

(P2) ﬂ H; # {1};

(P3) {Hl, -, Hy} is maximal in P;(Dy,) with these properties.

As is was the case for the adjacency property, there is also a geometric meaning
behind Definition While we managed to reconstruct the type 2 vertices

of Dr directly from the classical maximal dihedral Artin subgroups of Ar, we
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reconstruct a type 1 vertex x of Dr from the sets of type 2 vertices of Dr that

are adjacent to x. This is made more precise thereafter:

Proposition 5.4.9. The map fy, : Dy, — Vi defined by the following is well-
defined and is a bijection:

(1) For every element {Hy,--- , Hy} € Dy, fv,({Hi, -, Hi}) is the unique vertez
x € Vi that is adjacent to v; = fy,(H;) for every H; € {Hy,--- , Hy}.

(2) For every vertez x € Vi, f'(x) is the set {Hy,---,Hy} € Dy, of all the

subgroups for which v; .= fy,(H;) is adjacent to x.

Proof: We first show that the two maps are well-defined. Then, checking that

the composition of the two maps gives the identity is straightforward.

fv, is well-defined: Let {Hy,--- , Hy} € Dy,. The intersection Hy n --- " Hy, is

an intersection of parabolic subgroups of type 2 of Ar, hence is also a parabolic
subgroup, by Theorem It is proper in any H; and non-trivial by definition,
so it is a parabolic subgroup of type 1 of Ar. The corresponding fixed set T =
Fix(Hy n -+ n Hy) is a standard tree on which all the vertices v; :== fy, (H;) lie.
The convex hull C of all the v;’s in T is a subtree of T'. By hypothesis, any couple
(H;, H;) satisfies the adjacency property. Using Proposition , this means the
combinatorial distance between any two of the vertices defining the boundary of
C'is 2, so C has combinatorial diameter 2. As a tree with diameter 2, C' contains

exactly one vertex that is not a leaf of C, and this vertex must have type 1.

f;ll is well-defined: Let now = € Vi, let {vy,--- v} be the set of all the type 2

vertices that are adjacent to x, and set H; = f;; (v;). We want to check that
{Hy,---,Hg} € Dy, i.e. that the properties (P1), (P2) and (P3) of Definition
are satisfied. First of all, we know that the combinatorial neighbourhood
of z is an n-pod that belongs to Fiz(G,), by Lemma[5.4.7 In particular, all the
v;’s lie on the standard tree Fiz(G,), which means that G, is contained in every
H;. This proves (P2).

Proving (P1) is straightforward if we use Proposition[5.4.5} the v;’s are distinct
but they are all connected to a common vertex z, so the combinatorial distance
between two distinct v;’s is exactly 2.

At last, if {Hy,-- - , H} was not maximal, there would be some Hj, such that

{Hy,--- , Hyi1} satisfies (P1) and (P2) of Definition The vertex vgyq =
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fvo(Hyy1) lies on Fiz(G,) (use (P2)) and is at distance 2 from all the other v;’s
(use (P1)), but is not adjacent to x by hypothesis. This means one can connect v,
and vy through Fiz(G,) but without going through the star of z in Fiz(G,). This
contradicts Fiz(G,) being a tree. Therefore {Hy,--- , Hx} is maximal, proving

(P3). O

Remark 5.4.10. Let H € Dy, {H:,---,Hy} € Dy, and let v == fi,(H), z =
fvu({H1,- -+, H}). Then one can easily deduce from the proof of Proposition
that v and x are adjacent if and only if H € {Hy,--- , Hy}.

We have now reconstructed the algebraic analogue of the type 2 vertices and the
type 1 vertices of Dr (see Lemma and Proposition . To reconstruct
the whole of D%l)fess, we only have left to describe when an element of Dy, and
an element of Dy, should be adjacent. Our method directly follows from Remark

0.4.10)

Definition 5.4.11. We define a graph D; by the following:

(1) The vertex set of Dy is the set Dy, 1 Dy;;

(2) We draw an edge between H € Dy, and {Hy,--- , H.} € Dy, if and only if
He{Hy, -, H}.

Proposition 5.4.12. The bijections fy, and fy, can be extended into a graph

isomorphism Fy : Dy — D(Fl)fess‘

Proof: Let fy, u fy, : Dy, u Dy, — Vo Vi, Then fy, u fy, is a bijection by
Lemma [5.4.2) and Proposition [5.4.9] We only need to show that two elements of
Dy, L1 Dy, are adjacent if and only if their images through fy, L fy, are adjacent.

Notice that

H € Dy, and {Hy,--- , H} € Dy, are adjacent in D,
e, 1)

fVQ(H) and fy, ({H1,- -, Hx}) are adjacent in D(Fl)fess.

5.4.2 Reconstructing Dr.

We saw in the previous section how to reconstruct the graph D(Fl)fess in a purely

algebraic way. In the current section we will reconstruct the whole of Dr alge-
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braically. We suppose throughout this section that Ar is a large-type free-of-
infinity Artin group.

Definition 5.4.13. A subgraph G of Dy or of D)™ is called characteristic
if it is isomorphic to I'y,., as non-labelled graphs. Then we let CS be the set of

characteristic subgraphs of D;.

Lemma 5.4.14. The set of characteristic subgraphs of Dr is precisely the set
{9-Toar | g€ Ar}. In particular, CS = {F; (g Thpar) | g € Ar}.

Proof: We focus on proving the first statement, as the second statement directly
follows from the first one and the use of Proposition [5.4.12] It is clear that every
translate g - 'y, is a characteristic graph, so we only have to show the converse.

We first claim the following:
Claim: Any cycle v < D(Fl)fess of length 6 is contained in a single g-translate of

the fundamental domain Kr.

Proof of the Claim: Recall that D(Fl)fess is a bipartite graph with partition sets

Vo and V;. Consequently v = (1, v12, T2, Va3, T3, U31), Where the x;’s are type 1
vertices and the v;;’s are type 2 vertices of Dr. Consider now the three sub-
geodesics ¢ = (v31,21,v12), Co = (V12, T2, v23) and c3 = (v9g,x3,v31), whose
union is . Each geodesic ¢; is contained in the star Sth)fess(xi), which we
know by Lemma is itself included in the standard tree Fiz(G,). Also note
that the three corresponding standard trees are distinct, or the fact that v is a
cycle of length 6 would contradict either the convexity of the standard trees, or
the fact that they are uniquely geodesic. The three geodesics intersect 2-by-2,
but their triple intersection is empty. We can now use the Claim in the proof
of Proposition and recover that v must be contained in a single translate

g - Kr. This finishes the proof of the Claim.

We now come back to our main problem. Let GG be a characteristic subgraph.
We want to show that G is contained in a single translate g- 'y, for some g € Ar.
First note that because G is isomorphic to I'y,,., the 6-cycles in G correspond to
the barycentric subdivisions of the 3-cycles in I'. In particular, if vy is any 6-
cycle in G and e is any edge in G, there exists a finite string of 6-cycles g, - -,

such that e belongs to 7, and such that 7;,v;.1 share exactly two edges (whose
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union corresponds to a single edge of I'). We know by the Claim that each ~; is
contained in a single translate g; - Kr. We want to show that all the g;’s are the
same element. To do so, we show that for every 0 < ¢ < n we have g; = g;11.

Let M; = ~; U int(v;). We know by the Claim that M; < g, - Kt for some
gi € Ar. The two cycles 7o and 7, share two edges, whose union corresponds to a
single edge of I'. This means M; and M;,; share two edges of Dlg)fess (see Figure
. The convex hull of these two edges belongs to a single translate ¢ - Kr,
yet belongs to both g; - Kr and ¢;41 - Kp. This proves g; = g;»1. In particular,
the edge e belongs to g - K. As this works for every edge e of GG, we obtain
G<cg-Kr.

'Z?]'k U]‘k
M1 Cgiv1 - Kr

Xk

Uk U Urk 12

X

Figure 5.15: The combinatorial subcomplexes M; (on the left) and M; ; (on the
right). Note that M, and M;, share three vertices: x;, v, and zj. In particular,
they share the convex hull of these vertices, that is highlighted in light red.

Finally, G is contained in the intersection Dg)_ess

Nng-Kr = g- Ty, But
G is isomorphic to I, so the previous inclusion is actually an equality, i.e.
G = g- Fbar- []

Definition 5.4.15. Let Dr be the 2-dimensional combinatorial complex defined
by starting with D;, and then coning-off every characteristic graph of D;. The

complex Dr is called the algebraic Deligne complex associated with Ar.

Proposition 5.4.16. The graph isomorphism Fy from Proposition can be
extended to a stmplicial isomorphism F' : Dy — Dr.

Proof: We already know that the map F; of Proposition [5.4.12 gives a graph

—ESS

isomorphism between D; and Dl(}) . The result now follows from the fact that

Dr and Dr can respectively be obtained from D; and D(Fl)_ess by coning-off their
characteristic subgraphs:
e For Dr, this is simply the definition of the complex;

e For Dr, this follows from Lemma [5.4.14] and Remark [5.1.2] ]
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5.5 Rigidity and Automorphism groups.

Consider a large-type free-of-infinity Artin group Ar. In Section 5.4 we introduced
various algebraic objects and proved that the Deligne complex Dr associated with
Ar can be reconstructed in a purely algebraic way. This has many consequences
for the group. First, it means that large-type free-of-infinity Artin groups that
are isomorphic to Ar have essentially the same Deligne complexes (Theorem [3.4)).
We will use this to recover Theorem Then, it means the automorphism group
Aut(Ar) acts on Dr. In particular, we will see that this action can be used to

describe Aut(Ar) explicitly, which will give Theorem [5.2}

Notation: We know that the Deligne complex Dr and the algebraic Deligne
complex Dr associated with Ar are combinatorially isomorphic, by Proposition
To make the notation lighter, we will throughout this section slightly
abuse the notation and identify Dr with Dr, without caring about the simplicial

isomorphism F.

5.5.1 Rigidity and action of Aut(Ar) on the Deligne com-

plex.

The main consequence of Section [5.4] and more specifically of Proposition [5.4.16]
is Theorem [5.4t

Theorem 5.5.1. Let Ar and Ar be two large-type free-of-infinity Artin groups
of rank at least 3, with respective algebraic Deligne complezes Dr and Dy (see
Definition . Then any isomorphism ¢ : Ar — Ap induces a natural
simplicial isomorphism @, : Dr — Drv, that can be described explicitely as follows:
e For an element H € Dy, p.(H) is simply the subgroup p(H).

o Foraset {Hy,---,Hy} € Dy, o.({Hn,--- , Hy}) is the set {p(Hy),- -, p(Hy)};
e For an edge e of DY connecting H to {Hy,--- , Hy}, ¢.(e) is the edge of DY
connecting o«(H) to .({Hy,--- , H}).

e For a simplex f of DI connecting H, {Hy,---,H.} and a vertex of type 0
corresponding to the apexr of a cone over a characteristic graph G, ¢.(f) is the
simplex of DY connecting p.(H), ¢ ({Hy,---,Hy}), and the vertex of type 0

corresponding to the apex of the cone over the characteristic graph p.(G).
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Proof: The result directly follows from the definition of Dr, that was constructed
using algebraic tools that are all preserved under isomorphisms. For the sake of
clarity, we give a more detailed proof thereafter. We do that step by step, referring

the reader to the different notions introduced in the making of Dr:

(1) The type 2 vertices (see Definition [5.4.1)): Dj, is the set of non-spherical parabolic
subgroups of type 2 of Ar. We already know from Theorem [5.3.13|that o, (DEQ) =

Fl
D

(2) The type 1 vertices (see Definition [5.4.8): Dy, is the set of finite subsets of
Dy, that satisfy the three conditions (P1), (P2) and (P3). The first condition
(P1) is phrased in terms of the adjacency property (see Definition [5.4.3)), which is

defined in terms of the existence of a subgroup that satisty two properties (A1) and
(A2). These properties are expressed in terms of intersections of the subgroups
involved. In particular, one can easily check that the adjacency property for a
couple (Hy, Hy) € Dy, x Dy, is satisfied if and only if the adjacency property
for (p(Hi),¢(Hs)) is satisfied in D}, x D},. The property (P2) is defined in
terms of a condition of an intersection of subgroups, which is preserved under
isomorphisms. The property (P3) is a property of maximality, which is also

preserved under isomorphisms. Altogether, we obtain ¢, (D}, ) = Dy .

(3) The essential 1-skeleton (see Definition [5.4.11)): The vertices of D] are the

type 2 and type 1 vertices previously described. The edges of D} are defined
as pairs (H,{H,--- , Hy}) € D}, x Dy, satisfying H € {H,,--- , H,}. This prop-
erty of inclusion is obviously preserved under isomorphisms, and thus we have

P (Dlr) = DF-

(4) The Deligne complex (see Definition [5.4.15)): The simplices of Dr can be seen
as triplets (H,{H1,- -+, Hy},G) € D}, x D}, x CS" satisfying H € {Hy, - , Hy}
and H,{H,,---, H,} € G. We know by point (3) that ¢,(DI) = DI'. We first

check that for any characteristic graph G of D}, the graph ¢,(G) is also a char-
acteristic graph of DI'. To do so, note that G is by definition the barycentric
subdivision of a complete graph on n vertices, where n is the rank of Ar. Since ¢,
induces an isomorphism of D} onto D", the graph ¢, (G) is also the barycentric

subdivision of a complete graph on n vertices. Note that Ar and Ar are isomor-
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phic, so Ar must have rank n as well. It follows that ¢,(G) is a characteristic
graph of D!". Note that the fact that H,{H,,---, H,} € G along with the pre-
vious isomorphism immediately implies that p.(H), p.({H1, -, Hi}) € p.(G),
and thus ¢, also sends the set of simplices of Dr onto the set of simplices of Dry.
Two adjacent simplices in Dr share two vertices, and it is not hard to check that
v, sends these vertices onto adjacent vertices of Dy, and thus sends the simplices

onto adjacent simplices. It follows that ¢,(Dr) = Dr. O

Remark 5.5.2. A direct consequence of Theorem and Proposition [5.4.16
is that every isomorphism ¢ : Ap — A between large-type free-of-infinity Artin

groups yields an isomorphism between the Deligne complexes Dr and Dr.

Corollary 5.5.3. The automorphism group Aut(Ar) acts naturally and combi-

natorially on Dr and thus on Dr.

Proof: This is a direct consequence of Theorem [5.5.1} any automorphism ¢ €
Aut(Ar) induces a natural combinatorial automorphism of Dr, and thus of Dr.

]

Remark 5.5.4. The action of an automorphism ¢ € Aut(Ar) on Dr is entirely
determined by its action on the set of type 2 vertices of the complex. This is
because every simplex of Dr, whether it is a type 1 vertex, an edge, or a 2-
dimensional simplex, is defined algebraically from the set of type 2 vertices of the

complex.

A strong consequence of Theorem is that we can solve the isomorphism
problem for large-type free-of-infinity Artin groups (this is Theorem |5.1)).

Theorem 5.5.5. Let Ar and A be two large-type free-of-infinity Artin groups.
Then Ar and Ay are isomorphic as groups if and only if I' and I are isomorphic

as labelled graphs.

Proof: First note that if Ar has rank 2, then it has a non-trivial centre (see
Definition [3.1.6). In particular, Ap must also have non-trivial centre, which
means it also has rank 2 (use Corollary . It follows that Ar and Ar are both
dihedral Artin groups. Because isomorphic dihedral Artin groups always have the
same coefficients (see [83, Theorem 1.1|), the graphs I" and I must be isomorphic

as labelled graphs.
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Consider an isomorphism ¢ : Ar — Ap. By Theorem [(.5.1) ¢ induces a
simplicial isomorphism ¢, : Dr — D that sends the characteristic subgraphs of
D1 onto the characteristic subgraphs of Dlr’. In particular then, any characteristic
subgraph G of D! is sent to a characteristic subgraph ,(G) of DI'. We state
that the isomorphism ¢, : G — ¢.(G) is label-preserving. Indeed, every type 2
vertex in G corresponds to a classical maximal dihedral Artin subgroup H of Ar
with coefficient say m, and the corresponding type 2 vertex in G’ corresponds to
the dihedral subgroup ¢(H) that also has coefficient m (once again, isomorphic
dihedral Artin groups always have the same coefficients).

By Lemma there are two elements g; € Ar and g € Ap such that
G =g Th and 9. (G) = ¢ - T}, Let ¢y : Tpor — G and g : T}, — 0. (G) be

the isomorphism defined by the action of g and ¢ respectively. It is clear that v

and ¢’ are label-preserving. We obtain a string of label-preserving isomorphisms

—1
Pk Py ’

Thr G2 p(G) 2 T

bar>

which finishes the proof of the Theorem. O

5.5.2 Computing the automorphism groups.

Let Ar be any large-type free-of-infinity Artin group. This section is dedicated
to computing explicitly the automorphism group and the outer automorphism

group of Ar.

Lemma 5.5.6. The group Inn(Ar) of inner automorphisms of Ar acts on Dr
in a natural way: every inner automorphism ¢, : h — ghg™ acts on Dr like the

element g. Moreover Inn(Ar) = Ar.

Proof: We begin by proving the first statement. By Remark [5.5.4] it is enough
to check that this holds when we restrict the action to type 2 vertices of Dr. Let
g € Ar, and let v € V5 be a type 2 vertex of Dr. Then

g vi= (FopgoF 1)(v) = Fpy(Go)) = FlgGug ') = F(Ggo) = g - v.

The fact that Inn(Ar) = Ar is a consequence of Ar having trivial centre (see

Corollary [3.3)). O
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Lemma 5.5.7. Let ¢ be the automorphism of Ar defined by 1(s) :== s~ for every
generator s € V(I'), and let ¢ € Aut(Ar) be any automorphism. Then one of ¢

or ¢ ot is height-preserving.

Proof: By Corollary the automorphism ¢ acts combinatorially on Dr. In
particular, it sends the vertex vg onto the vertex g -vg for some element g € Ar.
Using Lemma [5.5.6] the automorphism ¢ 1 o ¢ fixes vg. Since inner automor-
phisms preserve height, we can suppose up to post-composing by ¢,-1 that ¢
fixes vy. In particular, ¢ preserves I'y,, and thus sends the set of type 1 vertices
of Kt onto itself. Looking at the action of ¢ on Dr, this means ¢ sends any stan-
dard parabolic subgroup of type 1 of Ar onto a similar subgroup. Consequently,
every standard generator must be sent by ¢ onto an element that generates such
a subgroup, i.e. that has height 1 or —1. There are three possibilities:

(1) ht(p(s)) = 1,Vs € V(I'): Then ¢ is heigh-preserving.

(2) ht(p(s)) = —1,Vs € V(I'): Then ¢ o is height-preserving.

(3) Is,t € V(I') : hit(p(s)) =1 and ht(p(t)) = —1: This means there are genera-

tors a,b € V(') such that ¢(s) = a and ¢(t) = b~'. Because Ar is free-of-infinity,
the generators s and ¢, as well as the generators a and b, generate dihedral Artin
subgroups of Ap. Note that p(Ay) = {p(s), (1)) = {a,b™') = Ay. Because ¢
is an isomorphism we must have mg = mgy, (use [83, Theorem 1.1]). Applying ¢

on both sides of the relation sts--- =tst--- yields

abla---=b"tab™t ..

Note that if we put everything on the same side, we obtain a word with 2mg =
2myy, syllables, that is trivial in A,,. The words of length 2m,,;, that are trivial in
Agp have been classified in [76, Lemma 3.1|, and the word we obtained does not

fit this classification, which yields a contradiction. ]

Definition 5.5.8. Let Aut(I') be the group of label-preserving graph automor-
phism of T'. We say that an isomorphism ¢ € Aut(Ar) is graph-induced if
there exists a graph automorphism ¢ € Aut(I") such that @, (I'per) = ¢(Fpar). We
denote by Autgr(Ar) the subgroup of Aut(Ar) consisting of the graph-induced

automorphismes.
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Remark 5.5.9. Notice that with this definition of graph-induced, the graph-
induced automorphisms capture the automorphisms of the group coming from
the graph automorphisms, but also the automorphisms coming from the global

involution ¢.

Lemma 5.5.10. The map F : Autgr(Ar) — Aut(D) x {id, 1} defined by the fol-
lowing 1s a group isomorphism:

Any ¢ € Autgi(Ar) induces an automorphism of Uy, and thus of T'. This iso-
morphism defines the first component of F(p). The second component of F(p)

18 1d if @ is height-preserving, and v otherwise.

Proof: It is easy to check that F defines a morphism, so we show that it de-
fines a bijection by describing its inverse map. Let ¢ € Aut(T') x {id,t}. Then
for any standard generator s € V(I'), the automorphism ¢ sends the vertex v,
corresponding to s onto the vertex ¢(v,) corresponding to a standard generator
that we note s,. Define ¢4 as the (unique) automorphism of Ar that sends every
standard generator s onto the standard generator s,. Note that when acting on
Dr, ¢, restricts to an automorphism of I'y,, that corresponds to the automor-
phism ¢ of I". For € € {0,1} we let F1((¢, 1)) := g 0 (°. It is clear that ¢4 0.°
is graph-induced, and it is easy to check that composing F ! with F on either
side yields the identity. O

We are also able to recover a full description of the automorphism group of

large-type free-of-infinity Artin groups, i.e. Theorem [5.2]

Theorem 5.5.11. Let Ar be a large-type free-of-infinity Artin group of rank at
least 3. Then we have Aut(Ar) = Ap x (Aut(T') x (% /97)) and Out(Ar)
Aut(T) x (% /27,).

Proof: Let ¢ € Aut(Ar). The same argument as the one in the proof of Lemma

lle

shows that up to post-composing with an inner automorphism, we may as

well assume that ¢ preserves ['y,,, i.e. that ¢ is graph-induced. This means
Aut(Ap) = ITLTL(AF) X AUtGI(AF),
Using Lemma [5.5.6| and Lemma [5.5.10 we obtain

Aut(Ap) = Ap x (Aut(D) x {id,1}) = Ap x (Aut(T') x (% /97)).
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In particular, we have

Out(Ar) = Aut(T") x (% /27,).
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Chapter 6

Futures prospects

In this chapter we address several of the questions and problems raised by this

thesis, along with potential strategies of resolution.

Problem 6.1. Solve the problem of acylindrical hyperbolicity for other types of
Artin groups.

Our solution to Problem for 2-dimensional Artin groups (see Theorem [3.1])
uses a criterion from [67] (see Theorem that relies on the CAT(0)-ness of the
space, as well as the local “link condition”, and a more global condition of weak
malnormality. In [27] Charney and Davis proved that the Deligne complexes
associated with Artin groups of type FC are CAT(0). It is thus natural to ask
whether this criterion could be used for Artin groups of type FC. The arguments
I used in Chapter [3| to prove that the link condition holds are not specific to
dimension 2 and it is likely that this condition to also satisfied for Artin groups
of type FC. Then it would only remain to show the existence of appropriate
weakly malnormal subgroups to prove acylindrical hyperbolicity.

Another possible line of enquiry into acylindrical hyperbolicity is to study
the action of Artin groups on suitable CAT(0) cube-complexes. This strategy
was used in |28], where the authors looked at actions of Artin groups on what
they called the “clique-cube complex”. This allowed them to prove acylindrical

hyperbolicity for a lot of Artin groups.

Problem 6.2. Solve the problem of rigidity and describe Aut(Ar) and Out(Ar)

for all large-type Artin groups or all 2-dimensional Artin groups.
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Solving these two problems is quite ambitious, but we firmly believe that
progress towards solving them can be made. Our solution of Problem [6.2]for large-
type free-of-infinity Artin groups relied on reconstructing the Deligne complex in
a purely algebraic way, which allowed to build a good action of Aut(Ar) on the
complex (see Corollary . We believe that the results obtained in Theorem
and Theorem[5.2]can be extended to all large-type Artin groups whose defining
graphs have no separating edges or vertices. If this holds true, it would provide
an optimal statement of rigidity amongst large-type Artin groups, as the presence
of separating edges and vertices allows for diagram twists which give rise to non-
isomorphic graphs defining isomorphic Artin groups. It would also provide a
maximal subclass of large-type Artin groups whose automorphism groups do not
contain “edge twist” isomorphisms (see [32]).

Another approach to study Problem lies in our weaker result of rigidity
that applies to all large-type Artin groups. Indeed, Theorem implies that
the “most complicated” vertices of the Deligne complex (i.e. those of type 2) can
be reconstructed purely algebraically. Tt also implies that automorphisms of the
group send standard trees onto each others. This allows to reconstruct a large
portion of what is known as the coned-off Deligne complex, an extension of the
Deligne complex obtained by coning-off these standard trees. This complex has
already been studied by various authors in the literature (|53], [75]).

In addition to the previous lines of enquiries, we believe that a large portion of
the ideas used in Section [5.2)and Section [5.3|are applicable to 2-dimensional Artin
groups. To be more specific, proving Theorem involved a profound study of
the dihedral Artin subgroups, in which we had to deal with “flats” in the Deligne
complex. The flats in the case of dimension 2 are classified (they correspond to
the possible triangular tiling of the Euclidean plane), and we already know that
most of the arguments we used in Section and Section will generalise to
dimension 2. Hence there is hope to generalise Theorem to 2-dimensional

Artin groups.
Problem 6.3. Classify (some) Artin groups up to quasi-isometries.

This problem is a natural extension the work we did in Chapter [5} In light
of that, a first goal could be to solve Problem for large-type free-of-infinity
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Artin groups. A successful approach to study this problem of quasi-isometric
rigidity is to study the flats and the quasi-flats associated with the group actions.
This strategy was notably used to study right-angled Artin groups and some
2-dimensional Artin groups (|66], [55], [56]).

Another perhaps less direct line of investigation for studying quasi-isometries
between Artin groups is to prove that they are hierarchically hyperbolic. This
notion was introduced a few years ago by Behrstock, Hagen and Sisto in [2]. The
idea is to describe the coarse geometry of a group or a space through a “coordinate
system” that projects onto various hyperbolic spaces. Hierarchical hyperbolicity
gives a strong geometric control over the space, and implies many results that
are not true for weaker forms of non-positive curvature. As it turns out, if one
knows a group is hierarchically hyperbolic, there is a specific strategy that can
be used to study the quasi-isometric rigidity of the given group (see [4], where it
was used for mapping class groups). So far, hierarchical hyperbolicity has been

proved for braid groups, right-angled Artin groups and extra-large Artin groups
(21, 131, [53])-

Question 6.4. Does the Artin complex carry non-positive curvature properties

for classes of Artin groups other than large-type?

Our study of the Artin complex in Chapter {4] raises many questions. For in-
stance, one might wonder whether the Artin complex can be used to study the
parabolic subgroups of other classes of Artin groups. Our main tool in studying
this complex is the fact that it is systolic (Theorem , which only happens
when the Artin group is large. For most of our results however, we don’t need
systolicity itself, but rather geometric properties that are consequences of sys-
tolicity, such as combinatorial paths being fixed (see Lemma or simplices
being preserved (see Lemma . These properties or similar properties are
known to be consequences of other non-positively curved properties.

A partial answer to Question[6.4]has been given by [11], who recently extended
part of our results to some Artin groups of dimension 2 by giving the Artin
complex a structure of systolic-by-function complex. A possible line of enquiry
to extend this result further would be to study metric systolicity, a refinement of

the notion of systolicity that would give a more precise study of the complex.
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Question 6.5. Can we describe the automorphisms of (classes of) Coxeter groups

following the study of the automorphisms of large-type Artin groups?

Most of the tools we use in Chapter [5|are geometric, and rely on a precise study
of the Deligne complex. Coxeter groups have a natural analogue to the Deligne
complex, called the Davis complex. This complex shares a lot of similarities
with the Deligne complex, although it is usually easier to study, as it is locally
finite. The strategy of studying the rigidity of Artin and Coxeter groups (almost)
simultaneously was used successfully in [32], hence we believe there is hope to

apply at least part of our arguments to study Coxeter groups.
Question 6.6. Are large-type Artin groups Hopfian? Are they co-Hopfian?

Recall that a group is said to be Hopfian (resp. co-Hopfian) if every epimor-
phism (resp. monomorphism) of the group is always an automorphism. The two
properties, although being interesting on their own, are consequences of residual
finiteness. Residual finiteness is not known for Artin groups in general, but the
question has brought interest in the past few years. It is natural after having
classified the automorphisms of large-type free-of-infinity Artin groups (see The-
orem to ask whether our ideas can also be used to study epimorphisms and
monomorphisms, hence potentially answering Question for (some) large-type

Artin groups.
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