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Abstract

In this thesis we study the algebra and the geometry of two-dimensional Artin

groups under various aspects. First, we solve the problem of acylindrical hyper-

bolicity, by proving that all the two-dimensional Artin groups that are not triv-

ially non-acylindrically-hyperbolic are acylindrically hyperbolic. In particular,

we prove that every non-spherical Artin group of dimension 2 has trivial centre.

Then, we study the structure of parabolic subgroups of large-type Artin groups,

and prove various results about their combinatorial structure. We notably show

that any intersection of parabolic subgroups is again a parabolic subgroup. Fi-

nally, we study the isomorphisms between Artin groups of large-type, and we

prove that the family of large-type free-of-in�nity Artin groups is rigid. We also

fully describe the automorphism groups of these Artin groups.
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Chapter 1

Introduction

Geometric group theory is a branch of mathematics whose principle is to under-

stand �nitely generated groups by making them act on suitable spaces. When

the spaces at play are well-behaved, one would like to infer from the geometric

and topological properties of the space algebraic properties for the group.

Geometric group theory takes its origin from combinatorial group theory in

the 1880's, with the early work of Dyck, Klein and Poincaré, who started studying

by their presentations �nitely presented groups, such as fundamental groups of

closed manifolds. In the early 20th century, the celebrated word, conjugacy and

isomorphism problems formulated by Dehn and Tietze drew even more attention

to the branch.

A fruitful approach has been to study group actions, and thus groups, through

the prism of curvature. A prime example of that is the notion of hyperbolic groups

introduced by Gromov in the 1980's ([45]). Geometric group theory has since then

become a more and more popular theme of interest. Today the branch is highly in-

terdisciplinary, mixing group theory, low-dimensional topology, Riemannian and

hyperbolic geometry, formal languages, and even probabilistic approaches.

While it is interesting to study group actions on metric spaces, it is also

interesting to see groups as metric spaces themselves by means of their Cayley

graphs. In that setting, the notion of hyperbolicity encapsulates the idea of a

group having large-scale negative curvature. Hyperbolicity is a powerful property,

that has strong geometric and algebraic implications for a group. Although in

a sense most �nitely presented groups are hyperbolic, a lot of groups are not

hyperbolic (for instance, any group containing a Z2 subgroup). Amongst them
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Chapter 1 � Introduction

however, many behave in a fashion that shares a lot of features with hyperbolic

groups. In recent years, various authors have actively worked on notions that

capture a weaker form of non-positive curvature, like acylindrical hyperbolicity,

CAT(0)-ness, or systolicity.

The goal of the present thesis is to study a large family of groups called Artin

groups through the eyes of geometric group theory. Artin groups, or Artin-Tits

groups, were introduced by Tits ([90]) as �extensions� of Coxeter groups, who are

themselves a generalisation of the symmetry groups of the regular polyhedras.

Consider a simplicial graph Γ and suppose that every edge between two vertices

a and b has integer coe�cient mab ¥ 2. Then Γ de�nes an Artin group AΓ

whose generators are the vertices of Γ, and for which there is a relation of the

form aba � � � � bab � � � (with mab terms on each side) every time there is an edge

connecting a and b. The rank of AΓ is the cardinality of V pΓq, and is assumed

to be �nite. The Coxeter group associated with Γ is the group WΓ obtained

from AΓ by additionally requiring every generator to have order 2. While Coxeter

groups are generated by �re�ections� of order 2, in Artin groups the �re�ections�

have in�nite order.

The class of Artin groups encompasses a large spectrum of groups that can

be seen as interpolations between free groups (a discrete graph) and free abelian

groups (a complete graph whose labels are all 2). It contains classes such as the

right-angled Artin groups (those whose only permitted coe�cients are 2), the

braid groups (the braid relation having coe�cient 3), and many others.

Coxeter groups are well understood. For instance, they are known to have

solvable word and conjugacy problem ([91], [64]), to have �nite centres (isomor-

phic to pZ{2Zqn) ([59]), to be CAT(0) groups ([74])) and to be virtually torsion-

free (Tits proved they were linear in characteristic 0, and Selberg's Lemma states

that such groups are virtually torsion-free). On the other hand, Artin groups re-

main quite mysterious. We recall that an Artin group AΓ is said to be reducible

if Γ is a 2-join, that is, a join of two non-trivial subgraphs such that every edge

of the join has coe�cient 2 (when this happens, AΓ can be decomposed as a

direct product). Then, even the simplest questions cannot yet be solved in full

generality:
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Chapter 1 � Introduction

Conjecture 1.1. Consider an Artin group AΓ. Then:

(1) AΓ is torsion-free.

(2) If AΓ is irreducible and WΓ is in�nite, then the centre of AΓ is trivial.

(3) AΓ has solvable word and conjugacy problem.

(4) AΓ satis�es the Kpπ, 1q conjecture.
These conjectures are explained in more details in Section 2.4.2 (we also refer

the reader to [26] for a survey on open questions about Artin groups). Despite

not much being known in general, a lot is known about certain classes of Artin

groups. We give here three classes of Artin groups for which substantial progress

has been made:


 Spherical Artin groups. An Artin group AΓ is spherical if its associated

Coxeter group WΓ is �nite.


 Artin groups of dimension 2. The dimension of an Artin group AΓ is the

maximal integer n such that any choice of n vertices of Γ spans a subgraph Γ1 � Γ

such that AΓ1 is a spherical Artin group. The class of 2-dimensional Artin groups

includes the class of large Artin groups (those with coe�cients at least 3).


 Artin groups of type FC. An Artin group AΓ is said to be of type FC if

every complete subgraph Γ1 � Γ generates an Artin group AΓ1 of spherical type.

Note that spherical Artin groups and right-angled Artin groups are of type FC.

Spherical Artin groups are well understood, notably thanks to the existence

of a normal form ([38],[37],[35]). Artin groups of dimension 2 and of type FC are

also well understood, and satisfy all of the above conjectures ([28], [42], [41], [58],

[22]).

There has recently been an increasing interest in understanding the geometry

of Artin groups. In particular, the action of an Artin group on a space with

properties that encode some kind of non-positive curvature. While free groups

are the only Artin groups to be hyperbolic (every other Artin group contains

a Z2 subgroup), even the �least� negatively curved Artin group, i.e. the free

abelian groups, are non-positively curved. There is a reasonable belief that all

Artin groups should be non-positively curved in a way or another. Similar to

their algebraic and algorithmic behaviour, the geometry of Artin groups remains

very mysterious as well. For instance, it is not known whether the following

conjectures hold in general:

3



Chapter 1 � Introduction

Conjecture 1.2. Consider an Artin group AΓ. Then:

(1) AΓ is CAT(0), i.e. acts properly and cocompactly on a CAT(0) space.

(2) If AΓ is irreducible, the central quotient AΓ{ZpAΓq is acylindrically hyperbolic.

There are partial results to the above conjectures. For instance, Conjecture

1.2.(1) has been proved to hold for right-angled Artin groups ([27]), some classes

of 2-dimensional Artin groups ([7], [14], [48]) or spherical Artin groups of rank

3 ([13]). As regards to Conjecture 1.2.(2), it is known to hold for Artin groups

of spherical type ([33]). It is then enough to look at what happens when the

group is non-spherical. In that case, since the centre ZpAΓq is conjectured to be

trivial, the question essentially comes down to asking whether AΓ is acylindrically

hyperbolic. Many results are of this type. For instance, Charney and Morris-

Wright proved that Artin groups AΓ whose de�ning graph Γ is not a join are

acylindrically hyperbolic [28]. In [75], Martin and Przytycki also showed that

2-dimensional Artin groups of hyperbolic type (whose associated Coxeter groups

are hyperbolic) are acylindrically hyperbolic.

Before exposing the results obtained in this thesis we want to bring light on

the general methods we use. Many natural spaces associated to Artin groups have

been introduced and studied over the years. The structure of most of these spaces

comes from the combinatorics of important subgroups of Artin groups called

parabolic subgroups, that are �smaller� Artin groups embedded in the main

group and arising from subgraphs of the main de�ning graph. A prime example is

themodi�ed Deligne complex due to Deligne ([34]), and extended by Charney

and Davis ([27]). For an Artin group AΓ, this space noted DΓ is a combinatorial

complex that arises from the combinatorial structure of the spherical parabolic

subgroups of AΓ. This complex has become a central tool to understand the

structure and geometry of Artin groups, and is at the heart of this thesis.

We now expose the various themes and results of this thesis in more details.

All the results obtained concern Artin groups of dimension 2.
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Chapter 1 � Introduction

Acylindrical hyperbolicity

The notion of acylindrical hyperbolicity was recently introduced by Osin ([80]). A

group G is said to be acylindrically hyperbolic if it is not virtually cyclic and

has an acylindrical action on a hyperbolic space with unbounded orbits. Roughly

speaking, acylindrically hyperbolic groups may not be hyperbolic, but still have

�hyperbolic directions�. The condition of acylindrical hyperbolicity merges many

previously known results, bringing together classes such as mapping class groups,

OutpFnq for n ¥ 2, many CAT(0) groups and most of 3-manifold groups. Nev-

ertheless, acylindrical hyperbolicity is still strong enough to ensure interesting

properties for the group. For instance, acylindrically hyperbolic groups have �-

nite centres and contain non-abelian free subgroups ([80]).

In this thesis we answer the question of acylindrical hyperbolicity for all Artin

groups of dimension 2:

Theorem 1.3. Every irreducible 2-dimensional Artin group of rank at least 3 is

acylindrically hyperbolic.

Acylindrically hyperbolic groups can never be decomposed as direct products

of in�nite groups. Therefore, a �rst consequence of Theorem 1.3 is that for 2-

dimensional Artin groups, decomposability as a direct product is equivalent to

irreducibility, which can directly be �read� from their de�ning graph:

Corollary 1.4. A 2-dimensional Artin group AΓ can be decomposed as a non-

trivial direct product if and only if it is irreducible (equivalently, Γ is a 2-join).

Note that acylindrically hyperbolic groups also have �nite centres. Along

with the fact that 2-dimensional Artin groups are torsion-free, this proves that

the Artin groups from Theorem 1.3 actually have trivial centre. This gives a new

proof of Conjecture 1.1.(2), which could already be deduced from [42] although

it is not explicitly stated:

Corollary 1.5. Artin groups of dimension 2 and rank at least 3 have trivial cen-

tre. Moreover, all irreducible Artin groups AΓ of dimension 2 have acylindrically

hyperbolic central quotient AΓ{ZpAΓq.
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Parabolic subgroups

It is hard to imagine working with Artin groups without having to mention

parabolic subgroups. These subgroups are not only the most �natural� kind of

subgroups for an Artin group relatively to a given de�ning graph, but they are

also incredibly useful in studying Artin groups.

Coxeter groups also admit parabolic subgroups whose de�nition is analogous

to that of Artin groups. However, the combinatorics of parabolic subgroups of

Coxeter groups are well-understood in general. For instance, it is known that the

intersection of any subset of parabolic subgroups is itself a parabolic subgroup

([84]). By contrast, the analogous property for Artin groups is open in general:

Conjecture 1.6. Let AΓ be any Artin group. Then the set of parabolic subgroups

of AΓ is stable under arbitrary intersections.

This conjecture has been proved true for braid groups using relations between

parabolic subgroups of braid groups and isotopy classes of non-degenerated simple

closed multicurves in mapping class groups of punctured disks. This result was

recently generalised to all Artin groups of spherical type using Garside theory

([23]). For Artin groups of type FC, it was shown that the intersection of two

parabolic subgroups of spherical type is again a parabolic subgroup of spherical

type ([73]). However, the case of general parabolic subgroups remains open.

Besides being interesting on their own, such results about parabolic subgroups

can be valuable tools in studying the structure of Artin groups. For instance, the

positive answer to Conjecture 1.6 for spherical Artin groups was a key ingredient

in the proof that Artin groups of type FC satisfy the Tits alternative ([77]).

In a joint work with Cumplido and Martin, we studied the combinatorics of

the parabolic subgroups of large-type Artin groups, and proved the following:

Theorem 1.7. Let AΓ be a large-type Artin group. Then the intersection of

an arbitrary subset of parabolic subgroups of AΓ is itself a parabolic subgroup.

Moreover, the set of parabolic subgroups of AΓ is a lattice for the inclusion.

A direct consequence of this theorem is that every subset of AΓ is contained

in a unique minimal parabolic subgroup. This generalises to large-type Artin

groups the notion of parabolic closure known for Coxeter groups ([84]) and

Artin groups of spherical type ([23]).

6
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The approach we use to prove Theorem 1.7 is geometric in nature. We asso-

ciate to each Artin group AΓ a simplicial complex XΓ called its Artin complex.

This complex allows for a geometric study the parabolic subgroups of AΓ, as they

correspond to stabilisers of simplices of the complex. In particular, studying inter-

sections of parabolic subgroups can be done if we have a su�ciently strong control

over the (combinatorial) geodesics of XΓ between two simplices. This is possible

for large-type Artin groups, as we show that these complexes are non-positively

curved in an appropriate sense. The key geometric result is the following:

Theorem 1.8. Let AΓ be a large-type Artin group of rank at least 3. Then the

Artin complex XΓ is systolic.

As an application, we solve the conjugacy stability problem for parabolic

subgroups of large-type Artin groups. A subgroup H of a group G is called

conjugacy stable if two elements of H conjugated in G are always conjugated

in H. This problem had already been solved for parabolic subgroups of spherical

Artin groups ([21]), generalising pre-existing results for braid groups ([44]).

Theorem 1.9. Let AΓ1 be a standard parabolic subgroup of a large-type Artin

group AΓ. Then AΓ1 is not conjugacy stable in AΓ if and only if there exist

vertices of Γ1 that are connected by an odd-labelled path in Γ and that are not

connected by an odd-labelled path in Γ1.

As another application, we show that parabolic subgroups of large-type Artin

groups are stable under taking roots, a result whose analogue for Artin groups of

spherical type was proved in [23].

Theorem 1.10. Let AΓ be a large-type Artin group, let P be a parabolic subgroup

of AΓ, and let g P AΓ. If g
n P P for some integer n � 0, then g P P .

Beside the intersection properties of parabolic subgroups, the previous results

rely on understanding the �xed-point sets and normalisers of parabolic subgroups.

Their structure has been studied by various authors, but the results are a bit

hidden in the literature. In the case of large-type Artin groups, our approach

provides a unifying perspective that allows us to recover all these results within a

single framework, giving an explicit description of every normaliser of parabolic

subgroups of a large-type Artin group (see Theorem 4.5).
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Isomorphism problem

A very natural goal for Artin and Coxeter groups is to want to answer the iso-

morphism problem, which is that of determining which de�ning graphs give

rise to isomorphic Artin or Coxeter groups. A strong notion to consider is that

of rigidity. An Artin or a Coxeter group is said to be rigid if it cannot be ob-

tained from two non-isomorphic graphs. In [15], the authors proved that Artin

and Coxeter groups are not rigid in general: two non-isomorphic graphs that are

obtainable from each others by a series of �diagram twists� give rise to isomor-

phic Artin groups and Coxeter groups. For Coxeter groups, it was even showed

that diagram twists are not the only way such a phenomenon can occur ([85]),

although the question remains open for Artin groups. That said, studying the

rigidity of Artin and Coxeter groups is essential for classes of groups in which

there are no such twists. Coxeter groups have been well studied in that regard,

and partial answers to the isomorphism problem have been obtained (see [78],

[20]). However, not much is known for Artin groups, outside of right-angled

Artin groups ([36]), and some large-type Artin groups ([32]).

The usually more accessible problem is to ask whether there are some classes

of Artin groups in which we can solve the isomorphism problem and eventually

show rigidity. A class of Artin groups is called rigid if two non-isomorphic graphs

of the class always generate non-isomorphic Artin groups. Note that the rigidity

of a class of Artin groups does not imply that Artin groups of the class are rigid.

Question 1.11. What classes of Artin groups are rigid?

For instance, the class of right-angled Artin groups has been proved to be

rigid ([36]). In fact, every right-angled Artin group is itself rigid. The question of

rigidity is inherently related to the study of isomorphisms between Artin groups.

A natural next step in the theory is to try to understand these isomorphisms

completely, which essentially comes down to understanding the automorphism

groups of the Artin groups. Although Artin groups have been more and more

studied over the past three decades, the study of the automorphisms of Artin

groups has turned out to be quite di�cult. The most famous results that are not

only about free groups or free abelian groups are that of right-angled Artin groups

([36], [88], [65]). The situation becomes even more complicated when introducing

8
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non-commuting relations. Prior to our work, the only results on Artin groups

that are not right-angled concerned the class of �connected large-type triangle-

free� Artin groups introduced by Crisp in [32].

In this thesis, we give a partial answer to Question 1.11 by studying large-

type Artin groups. The class of large-type Artin groups is known to not be

rigid, hence why part of our study focuses on large-type Artin groups that are

also free-of-in�nity (i.e. mab   8 for all a, b P V pΓq). In [43], Godelle and

Paris made explicit the interests of looking at free-of-in�nity Artin groups. They

proved that if one can solve any of the �rst three points of Conjecture 1.1 for all

free-of-in�nity Artin groups, then one can solve the corresponding conjecture for

all Artin groups. It is thus natural to want to �rst study the Artin groups that

are free-of-in�nity. In our case, we obtained the following result of rigidity:

Theorem 1.12. The class of large-type free-of-in�nity Artin groups is rigid. In

other words, if AΓ and AΓ1 are two large-type free-of-in�nity Artin groups, then

AΓ and AΓ1 are isomorphic if and only if Γ and Γ1 are isomorphic.

As a consequence of studying the isomorphisms between Artin groups, we are

also able to recover a precise description of their automorphism groups:

Theorem 1.13. Let AΓ be a large-type free-of-in�nity Artin group of rank at

least 3. Then AutpAΓq is generated by the conjugations, the graph-induced auto-

morphisms, and the global involution. In particular, OutpAΓq is �nite.

While it is not possible to extend the two previous theorems to all large-

type Artin groups (see [32]), we also prove a strong result of rigidity that holds

for all large-type Artin groups. To our knowledge, this is the only result about

isomorphisms that concerns all large-type Artin groups.

Theorem 1.14. Let AΓ and AΓ1 be two large-type Artin groups of rank at least

3. Then any isomorphism ϕ : AΓ Ñ AΓ1 induces a bijection between the set of

spherical parabolic subgroups of AΓ and the set of spherical parabolic subgroups of

AΓ1.

Theorem 1.14 has many consequences outside of being a precious tool for

proving Theorem 1.12 and Theorem 1.13. For instance, it implies that any iso-

9
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morphism between large-type Artin groups sends standard generators onto con-

jugates of standard generators. This gives a form of rigidity of the automorphism

group.

While proving Theorem 1.12 and Theorem 1.13, we use the previous result of

rigidity of the spherical parabolic subgroups and �nd a way to �reconstruct� the

associated Deligne complex in a purely algebraic manner, i.e. in a way does not

depend on the choice of de�ning graph for AΓ, but only on the abstract structure

of the group. In particular, we show that isomorphic large-type free-of-in�nity

Artin groups have isomorphic Deligne complexes (see Theorem 5.4). We also give

an explicit classi�cation of all the subgroups of large-type Artin groups that are

isomorphic to dihedral Artin groups (see Theorem 5.5).

Chapter 2 serves as a preliminary chapter. We will start by recalling some

basic notions of geometric group theory, before introducing in more details the

various notions of curvature that we will use throughout this thesis. We then

de�ne the notion of complex of groups, that will be used to construct several key

simplicial complexes. Finally, we recall the basic notions and conjectures related

to Artin groups in more details.

Chapter 3 is dedicated to the study of acylindrical hyperbolicity for Artin

groups of dimension 2, and follows the results of [93]. Along the way, we will

also prove results of independent interests concerning the links of vertices in the

Deligne complexes of these Artin groups. These results were a key ingredient

that Hagen, Martin and Sisto used to prove that extra-large type Artin groups

are hierarchically hyperbolic ([53]).

Chapter 4 is a joint work with Cumplido and Martin, and contains the results

of [29]. There we will show the various results concerning the combinatorial struc-

ture of parabolic subgroups of large-type Artin groups that we exposed earlier in

the introduction.

Finally in Chapter 5 we will focus on the question of rigidity for large-type

Artin groups, following the results of [94]. This starts with a in-depth study of

all the dihedral Artin subgroups of these Artin groups. We then obtain stronger

results about large-type free-of-in�nity Artin groups, classifying their automor-

phisms and proving the rigidity of the class.

10



Chapter 2

Preliminaries

In this chapter we introduce most of the standard de�nitions and results that will

be used in this thesis. In Section 2.1 we introduce the most basic notions about

metric spaces, simplicial complexes and some associated group actions. Section

2.2 is dedicated to various notions of non-positive curvature for spaces and groups.

In Section 2.3 we introduce the notion of complexes of groups. Finally, in Section

2.4 we will be talking about Artin groups in more details.

2.1 Basic notions

In this section we introduce the most basic notions about groups as metric spaces,

geodesics, abstract simplicial complexes and piecewise-euclidean simplicial com-

plexes. We partially follow [17, Chapter I, Chapter II]. Throughout this section

we suppose that G is a group generated by a �nite set S.

2.1.1 Groups as metric spaces

De�nition 2.1.1. The free group on S is the group FS whose elements are the

reduced words in the alphabet S\ts�1 | s P Su. We denote by ϕ the epimorphism

ϕ : FS � G that sends every word w to the corresponding element ϕpwq of the
group. A subset R � FS of words is called a set of relations for G if the smallest

normal subgroup xxRyy of FS containing every element of R is precisely the kernel

of ϕ. In that case, G is said to have presentation

G � xS | Ry.

11
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A reduced word w :� s1 � � � sn, where s1, � � � , sn P S, is said of have length

`pwq � n ¥ 0. This yields a notion of length for elements of G, saying that

`pgq :� mint`pwq | w P FS : ϕpwq � gu.

In other words, the length of g is the length of the shortest word representing the

element g. This de�nes a metric on G known as the word metric:

dSpg, hq � mint`pwq | w P FS : ϕpwq � g�1hu.

The use of the word metric makes any �nitely generated group into a metric

space. Although this metric space is discrete (the distance between two elements

is always an integer), one can extend this space to a metric graph by means of

the corresponding Cayley graph:

De�nition 2.1.2. The Cayley graph CaySpGq of G with respect to S is the

graph whose vertices are the elements of G, and for which there is an edge of

length 1 between g and h if and only if g�1h P S \ S�1.

Note that when restricting to the vertex set of CaySpGq, the word metric and

the metric induced from the Cayley graph coincide. A prime feature of Cayley

graphs is that despite being seemingly highly dependent on the choice of (�nite)

generating set, all the Cayley graphs are �equivalent� in a way. This is made more

precise in the following de�nition and proposition:

De�nition 2.1.3. Let X and Y be two metric spaces. A map f : X Ñ Y is

called a quasi-isometric embedding if there are constants A ¥ 1, B ¥ 0 such

that for every p, q P X, we have

1

A
� dXpp, qq �B ¤ dY pfppq, fpqqq ¤ A � dXpp, qq �B.

If additionally there exists a constant C ¥ 0 such that the C-neighbourhood of

Impfq is the whole of Y , then f is called a quasi-isometry.

Proposition 2.1.4. Let G be a group with �nite generating sets S and S 1. Then

the spaces CaySpGq and CayS1pGq are quasi-isometric.

12
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We now introduce some basic notions about metric spaces. Let pX, dq be such
a space.

De�nition 2.1.5. Let J be a connected subset of R. A curve γ : J Ñ X is called

a geodesic if for every t, t1 P J we have dpγptq, γpt1qq � |t1 � t|. The space X is

called geodesic if for every pair px, yq P X2 there exists a geodesic γ : r0, Ds Ñ X

for which γp0q � x and γpDq � y, and it is called uniquely geodesic if this

geodesic is always unique.

Remark 2.1.6. The Cayley graph of any group G is always a geodesic space.

However it is not uniquely geodesic, except when G is free.

One would like to de�ne from a metric d on a space X the lengths of curves

on X.

De�nition 2.1.7. Let γ : ra, bs Ñ X be a curve (or path) in X. The length of γ

is de�ned by

`pγq :� sup

#
n�1̧

i�0

dpγptiq, γpti�1qq | Dn ¥ 0 : Dt0 :� a ¤ t1 ¤ � � � ¤ tn :� b

+
.

2.1.2 Piecewise-Euclidean simplicial complexes

In this section we introduce simplicial complexes, and more precisely piecewise-

Euclidean simplicial complexes. We start with a more general de�nition:

De�nition 2.1.8. An abstract simplicial complex X consists of the following

data.

(1) A non-empty set V called the set of vertices of X.

(2) A collection S of �nite non-empty subsets ∆ � V called the set of simplices

of X, and satisfying:

(2.1) for every v P V , we have tvu P S ;

(2.2) for any simplex ∆ P S and any non-empty set ∆1 � ∆ we have ∆1 P S.
One often refers ∆ as an n-simplex if |∆| � n � 1 (alternatively, we say ∆ has

dimension n). An abstract simplicial complex Y is a subcomplex of X if the

vertex set of Y is a subset of V and if every simplex of Y is a simplex of X. A

subcomplex of a simplex ∆ that is itself a simplex is called a face of ∆.

13
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One often thinks of a simplicial complex in a geometric way, and not purely

as an abstract set of vertices and simplices. Therefore we would like to be able

to realise a given abstract simplicial complex geometrically. This is the goal of

the next de�nition.

De�nition 2.1.9. Consider an abstract simplicial complex X with vertex set V

and simplex set S. Let RV be the real vector space with basis V . The geometric

realisation |∆| of a simplex ∆ P S is the set of points in RV of the form

¸
vP∆

λvv , with λv P r0, 1s and
¸
vP∆

λv � 1.

The geometric realisation of X is the subset |X| of RV obtained as the union

of the geometric realisations of all the simplices of X.

Remark 2.1.10. (1) For the sake of having a lighter writing, we will often not

distinguish an abstract simplicial complex X from its geometric realisation |X|,
and we will simply call either of them a simplicial complex.

(2) The space obtained by looking at the union of all the simplices of dimension

at most n of a simplicial complex X is called the n-skeleton of X and is denoted

Xpnq.

So far we have not de�ned any topology nor any metric on our simplicial

complexes. We do this now. Note that in this thesis we will mostly focus on

simplicial complexes whose simplices are Euclidean, hence the following de�nition

is speci�c to that case.

De�nition 2.1.11. A piecewise-Euclidean simplicial complex is a space

obtained as follows.

(1) Start with a simplicial complex X with vertex set V and simplex set S.

(2) Choose a set ShapespXq of Euclidean geodesic simplices of �nite dimension,

where an Euclidean geodesic simplex of dimension n is the convex hull of

n� 1 a�nely independent points in En.

(3) For every simplex ∆ P S, choose an a�ne isomorphism f∆ : ∆ Ñ ∆, where

∆ is an element of ShapespXq, and require this isomorphism to be such that for

every face ∆1 of ∆, the map f�1
∆ � f∆1 is an isometry from ∆1 onto its image in

∆. Then, de�ne a metric on ∆ by pushing the metric coming from ∆ through

14
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f∆. The resulting space is a simplicial complex in which every simplex has been

given an Euclidean metric.

While simplices in a piecewise-Euclidean simplicial complexes come with as-

sociated Euclidean metrics, we still have to de�ne a metric on the whole space.

De�nition 2.1.12. Let X be a piecewise-Euclidean simplicial complex, and let

x, y P X. Then a map γ : ra, bs Ñ X is called a simplicial curve if there are

t0 � a   t1,  � � �   tn�1   b � tn such that for every i P t0, � � � , n � 1u, the
image of the restriction γi :� γ|rti,ti�1s

is contained in a single simplex of X. The

length of γ is then de�ned by

`pγq :�
n�1̧

i�0

`pγiq,

where `pγiq is the length of the curve γi on its given simplex, as computed in

De�nition 2.1.7. We can then put a pseudo-metric on X by saying that

dXpx, yq :� inft`pγq | γ is a simplicial curve connecting x and yu.

Note that when ShapespXq is �nite, then the above map d is a true metric and

the space pX, dq is a complete geodesic space [17, Chapter I.7].

Finally, we would like to bring light on the di�erent types of actions that

naturally appear in geometric group theory, as well as on the types of actions

that will be the most common in this thesis. Our �rst de�nition concerns actions

on simplicial complexes:

De�nition 2.1.13. Let X and Y be two simplicial complexes. A map f : X Ñ Y

is called a simplicial map if the image through f of the vertices of any simplex

of X span a simplex of Y . The map f is called a simplicial isomorphism if it

is simplicial and bijective. The action of a group G on a simplicial complex X

is called simplicial if for every g P G the action map x ÞÑ g � x is a simplicial

isomorphism.

Remark 2.1.14. Let f : X Ñ Y be a simplicial isomorphism between two

piecewise-Euclidean simplicial complexes and suppose that the restriction of f to
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any simplex of X is an isometry onto its image. Then f is a global isometry from

X to Y .

Our next de�nitions apply to simplicial complexes, although it doesn't cost

more to introduce them in a more general setting.

De�nition 2.1.15. Let G be a group acting on a topological space X. Then we

say that:

(1) G acts on X by isometries if X is a metric space and for every g P G the

action map x ÞÑ g � x is an isometry;

(2) G acts properly on X if for every compact set K � X the set

tg P G | K X pg �Kq � Hu

is �nite;

(3) G acts cocompactly on X if there exists a compact set K � X such that

¤
gPG

g �K � X.

Equivalently, the quotient space X{G is compact.

The action of G on X is called geometric if G acts properly and cocompactly

by isometries.

Geometric group theory is marked by two predominant kinds of actions, the

�rst kind of action being the geometric actions. When a group G acts geo-

metrically on a proper geodesic metric space X, the group and the space are

quasi-isometric (this is known as the �varc�Milnor lemma). Studying these kind

of actions is essential to understand notions such as hyperbolicity, CAT(0)-ness

(see Section 2.2) and many other properties related to groups. The second kind

of actions that have been intensely studied are actions that are cocompact and by

isometries but not necessarily proper. A prime example of this kind of actions is

the Bass-Serre theory developed in the 1970's (see [87]). In particular, the actions

associated with fundamental groups of graphs of groups and complexes of groups

(see Section 2.3) are very often not proper. The group actions involved in this

thesis are mostly of this second kind.
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The last de�nitions we would like to introduce are associated with group

actions by isometries. As it turns out, these actions are particularly well-behaved

when the space under study is a piecewise-Euclidean simplicial complex.

De�nition 2.1.16. Consider an action of G by isometries on a metric space X.

The translation length of an element g P G is de�ned as

||g|| :� inftdXpx, g � xq | x P Xu.

The (potentially empty) set of points x P X for which the translation length of g

is reached is called the minset of g, and is denoted by

Minpgq :� tx P X | dXpx, g � xq � ||g||u.

Proposition 2.1.17. [17, Chapter II.6] Let G be a group acting by simpli-

cial isometries on a connected piecewise-Euclidean simplicial complex X with

ShapespXq �nite. Then for every g P G the set Minpgq is non-empty.

De�nition 2.1.18. Let G be a group acting by simplicial isometries on a con-

nected piecewise-Euclidean simplicial complex X with ShapespXq �nite, and let

g P G. In regards to Proposition 2.1.17, there are two possibilities:

(1) If ||g|| � 0, then g is called elliptic. In that case, g �xes pointwise a non-

trivial set of points of X. This set is called the �xed set of g and is denoted by

Fixpgq (note that Fixpgq �Minpgq).
(2) If ||g|| ¡ 0 , then g is called hyperbolic. In that case, g admits at least one

geodesic called an axis of g, that is, a geodesic γ in which we have

@x P γ, dXpx, g � xq � ||g||.

Note that every axis of g is contained inside of Minpgq.

2.2 Curvature

The idea of using curvature to study groups �rst emerged in the late 19th cen-

tury from the study of groups acting on spaces that we thought had interesting

curvature-like properties. This was notably permitted by the recent work on
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hyperbolic geometry and soon Riemannian geometry. Although not being for-

malised before the mid to late 20th century, many noticed that when a group

acts nicely (for instance, geometrically) on a space with speci�c curvature con-

ditions, there is a set of tools that can be used to describe various properties of

the group itself. Today the study of groups by means of curvature-like proper-

ties has greatly developed, notably when the curvature is non-positive. A lot of

di�erent notions of non-positive curvature emerged following Gromov's hyperbol-

icity condition introduced in the 1980's. In this section, we describe four of these

conditions.

Hyperbolicity is a strong group property of negative curvature that inspired

most of the conditions of non-positive curvature today. This thesis does not

revolve around the hyperbolicity condition as no Artin group (except the free

groups) are hyperbolic. Nevertheless, it is still an important notion to men-

tion. Acylindrical hyperbolicity is a generalisation of hyperbolicity that has been

proved for many groups, including various Artin groups. This notion will be at the

centre of Chapter 3. The CAT(0) property is a strong property of non-positive

curvature that is well-suited for geodesic spaces. It is a central notion of this

thesis, and notably of Chapter 3 and Chapter 5. Finally, systolicity is a combina-

torial analogue of the CAT(0) property, that works usually better when studying

high-dimensional simplicial complexes. It will play a central role in Chapter 4.

2.2.1 Hyperbolicity

The theory of hyperbolic groups was introduced by Gromov in 1987 ([45]). His

inspirational work highly participated to the growth of geometric group theory

and led numerous mathematicians to work on various notions of non-positive cur-

vature for groups. The hyperbolic condition emanates from the wish to formalise

the idea that certains groups (seen as metric spaces) behave in a way that shares a

lot of similarities with negatively curved spaces coming from classical hyperbolic

geometry. We de�ne this notion thereafter.

De�nition 2.2.1. Let X be a geodesic metric space and let δ ¥ 0. Then X is

δ-hyperbolic if any geodesic triangle rx, ys Y ry, zs Y rz, xs is δ-thin, that is, any
of the three sides is contained in the union of the δ-neighbourhoods of the other
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two sides.

Figure 2.1: A δ-thin triangle.

We thereafter give a few examples of the most basic hyperbolic spaces.

Example 2.2.2. The following spaces are δ-hyperbolic for some δ ¥ 0:

(1) Bounded spaces: take δ to be at least the diameter of the space.

(2) Trees and real-trees: any geodesic triangle is degenerate, hence these spaces

are 0-hyperbolic.

(3) The hyperbolic plane H2 with its usual metric is lnp1�?
2q-hyperbolic.

For a �nitely generated group G, one can de�ne a notion of hyperbolicity from

the notion of δ-hyperbolicity of its Cayley graphs. As it turns out, the condition

of hyperbolicity for G does not depend on the choice of �nite generating set

associated to which the Cayley graph corresponds. This comes from the fact that

the Cayley graphs of G are all quasi-isometric with each others (see Proposition

2.1.4), along with the following theorem:

Theorem 2.2.3. Let X and Y be two quasi-isometric metric spaces. If X is

δ-hyperbolic for some δ ¥ 0 then Y is λ-hyperbolic for some λ ¥ 0.

Thus, one can simply de�ne the notion of hyperbolicity as follows:

De�nition 2.2.4. Let G be �nitely generated group. Then G is hyperbolic

if there is a �nite generating set S such that CaySpGq if δ-hyperbolic for some

δ ¥ 0.

Remark 2.2.5. A group G will be called elementary hyperbolic if it is virtu-

ally cyclic.

We now give some examples of hyperbolic groups.
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Theorem 2.2.6. The following groups are hyperbolic:

(1) Finite groups: their Cayley graphs are bounded.

(2) More generally, elementary hyperbolic groups are hyperbolic.

(3) Free-groups: their Cayley graphs relatively to the standard generators are

trees.

(4) Groups acting geometrically on H2, such as cocompact Fuchsian groups.

(5) Fundamental groups of closed surfaces of negative Euler characteristic.

(6) Groups acting properly discontinuously on locally �nite trees.

(7) Certain small cancellation groups such as C 1p1{6q groups.
(8) Many random groups ([79], [24]). In that sense, �most� groups are hyperbolic.

Thereafter we give some major consequences of being a hyperbolic group.

Theorem 2.2.7. Let G be a (non-elementary) hyperbolic group. Then:

(1) G satis�es the Tits alternative, i.e. either it is virtually solvable, or it has

non-abelian free subgroups.

(2) G is �nitely presented and has solvable word problem ([17, Chapter III.Γ.2]).

(3) G has exponential growth rate.

(4) G is biautomatic.

Even though a lot of groups are hyperbolic, there are many groups that arise

naturally which are not hyperbolic. For instance, any group containing a sub-

group isomorphic to Z2 cannot be hyperbolic. However, many groups still behave

in a fashion that shares a lot of features with hyperbolic groups. Some of these

notions are made explicit in the following sections.

2.2.2 Acylindrical hyperbolicity

The notion of acylindricity goes back to Sela ([86]) and gives conditions on the

diameter of �xed-set points of elements associated with group actions on trees.

In the more general case of metric spaces, the de�nition is due to Bowditch ([12]):

De�nition 2.2.8. A group G is said to act acylindrically on a space X if for

every R ¥ 0, there exist N ¡ 0, L ¡ 0 such that

@x, y P X, dpx, yq ¥ Lñ |tg P G | dpx, gxq ¤ R, dpy, gyq ¤ Ru| ¤ N.
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One can see this condition as a kind of properness of the action of G on X �X,

minus a �thick diagonal�.

Figure 2.2: The condition of acylindrical hyperbolicity. Points at distance at least
L must be such that the size of the intersection of their �R-quasi-stabilisers� is
uniformly bounded by N .

The de�nition of acylindrical hyperbolicity itself is due to Osin ([80]):

De�nition 2.2.9. A group G is said to be acylindrically hyperbolic if it is

not virtually cyclic and has an acylindrical action with unbounded orbits on a

hyperbolic space.

While acylindrically hyperbolic groups are not hyperbolic in general, the no-

tion of acylindrical hyperbolicity comes from the idea of a group having �hyper-

bolic directions�. The notion of acylindrical hyperbolicity uni�es many previously

studied notions. For a start, it generalises the condition of weak acylindricity in-

troduced by Hamenstädt ([50]). It is also related to the existence of weakly

contracting elements in the sense of Sisto ([89]). Last but not least, it is a gener-

alisation of the notion of weak proper discontinuity (WPD) introduced by Bestv-

ina and Fujiwara ([10]), that resembles the condition of acylindricity although the

action only needs to be acylindrical in the direction of (quasi) axes of hyperbolic

elements:

De�nition 2.2.10. Let G be a group acting on a geodesic metric space X. We

say h P G is a WPD element if

@ε, @x P X, DM P N : |tg P G | dpx, gxq   ε, dphMpxq, ghMpxqq   εu|   8.

If every hyperbolic element is WPD then we say G acts on X weakly properly

discontinusouly.
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Merging these di�erent notions, the notion of acylindrical hyperbolicity also

merges many classes of groups:

Theorem 2.2.11. [80]

(1) Non-elementary hyperbolic groups are acylindrically hyperbolic.

(2) Non-virtually-cyclic relatively hyperbolic groups with proper peripheral sub-

groups are acylindrically hyperbolic.

(3) All but a �nite number of mapping class groups of connected oriented surfaces

are acylindrically hyperbolic, and the other ones are �nite.

(4) The outer space Out(Fn) is acylindrically hyperbolic for n ¥ 2.

(5) Groups acting properly on a proper CAT(0) space with rank 1 elements are

either virtually cyclic or acylindrically hyperbolic.

While being a weaker property than hyperbolicity, acylindrically hyperbolic

groups still satisfy a lot of interesting properties:

Theorem 2.2.12. [80] Let G be an acylindrically hyperbolic group. Then:

(1) G has �nite centre.

(2) For every decomposition G � G1 �G2 as a direct product one of G1 or G2 is

�nite.

(3) For every decomposition G � G1 � � �Gn as a product of subgroups one of the

Gi's must be acylindrically hyperbolic.

(4) G contains non-abelian free normal subgroups.

(5) G is SQ-universal, that is, every countable group embeds as a subgroup in

some quotient of G.

(6) Every s-normal subgroup H of G is acylindrically hyperbolic, where H ¤ G

is s-normal in G if |H X gHg�1| � 8 for every g P G.

Checking whether an action is acylindrical can be tough, as it essentially comes

down to controlling the geodesics between two metric balls. Instead, one usually

looks for an �acylindrical direction� in the action, more precisely a WPD element

with a strongly contracting orbit, from which one can construct an acylindrical

action on a larger space. This can be achieved using a criterion from Bestvina,

Bromberg and Fujiwara (see Theorem 2.2.15). We need one de�nition before

introducing this criterion:
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De�nition 2.2.13. Let X be a geodesic metric space, let Y be a subset of X, and

let B ¥ 0. Let now πY : X Ñ Y denote the nearest point projection onto Y . Then

Y is said to beB-contracting if for every point x P XzY and for every k ¡ 0 such

that the ball BXpx, kq does not intersect Y , we have diampπY pBXpx, kqq ¤ B.

An element h of a group G acting on X is said to have B-contracting orbit if

h acts hyperbolically and the axes of h are B-contracting.

Example 2.2.14. (1) For any element h P IsompH2q acting hyperbolically on

H2 there is a B ¥ 0 such that h has a B-contracting orbit.

(2) A contrario, no element h P IsompE2q admits a B-contracting orbit.

Theorem 2.2.15. [6, Theorem H] Let G be a group acting on a geodesic metric

space X such that h P G is a hyperbolic WPD element with B-contracting orbit.

Then G is either virtually cyclic or acylindrically hyperbolic.

That approach proposed by the above theorem was followed to prove the

acylindrical hyperbolicity of di�erent classes of groups ([9],[47],[72]). Note that

Theorem 2.2.15 does not require to make explicit an acylindrical action, nor to

act on a hyperbolic space. That said, this condition remains hard to check when

the space acted upon is not locally compact. In Chapter 3, we study acylindrical

hyperbolicity by means of a criterion from Martin ([67]) that resembles Theorem

2.2.15, but that works well when looking at actions on spaces that are not locally

compact (see Theorem 3.4).

2.2.3 The CAT(0) property

In the 1940's, Aleksandrov formulated a condition of curvature for all geodesic

spaces that was directly inspired from the notion of curvature in Riemannian

geometry. This condition was later formalised by Gromov as the CAT(κ) condi-

tion, named in reference to Cartan, Aleksandrov, and Toponogov. While being

rather easy to state, the CAT(κ) condition allows to extend to all geodesic spaces

the notion of curvature by comparing the triangles of a geodesic space to those

of the 2-dimensional Riemannian manifold of constant curvature κ. A particu-

larly interesting case, and one on which this thesis will intensely focus, is that of

CAT(0) spaces. We recall this condition in full details thereafter. In this section,

we follow parts of [17, Chapter II].
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De�nition 2.2.16. Let X be a geodesic space and let T :� rx, ys Y ry, zs Y rz, xs
be a geodesic triangle in X. Then a comparison triangle for T is a triangle

T :� rx, ysYry, zsYrz, xs in the Euclidean plane E2 for which we have dXpx, yq �
dE2px, yq, dXpy, zq � dE2py, zq and dXpz, xq � dE2pz, xq. Note that any point

p P T naturally corresponds to a unique point p P T called the comparison point

of p in T .

The space X is said to be CAT(0) if any geodesic triangle T :� rx, ysYry, zsY
rz, xs is �thinner� than a comparison triangle T in E2, that is, for every pair of

points p, q P T , we have dXpp, qq ¤ dE2pp, qq.

Figure 2.3: The CAT(0) condition. The triangle T is a comparison triangle for
T in E2.

Remark 2.2.17. An important thing to notice is that CAT(0) spaces are always

uniquely geodesic.

Example 2.2.18. The following spaces are CAT(0) spaces:

(1) Universal cover of non-positively curved compact manifolds.

(2) Euclidean buildings.

(3) Simply connected cubical complexes in which links of simplices are �ag sim-

plicial complexes.

The following de�nition and theorem allow to rephrase the CAT(0) condition

into a more local condition:

De�nition 2.2.19. A metric space X is said to have curvature ¤ 0 if it is

locally CAT(0), i.e. for every x P X there is a k ¥ 0 such that the ball BXpx, kq
is a CAT(0) space.

Theorem 2.2.20. [17, Chapter II.5] Let X be a piecewise-Euclidean simplicial

complex with Shapes(X) �nite. Then the following are equivalent:

(1) X is CAT(0);

(2) X is uniquely geodesic;
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(3) X has curvature ¤ 0 and contains no isometrically embedded loops;

(4) X has curvature ¤ 0 and is simply connected.

Checking whether an Euclidean simplicial complex is CAT(0) is much easier

in dimension 2 than in higher dimension. This is due to Lemma 2.2.25 below.

First we need to introduce two very useful notions that encapsulate the notion of

neighbourhoods for simplices in a simplicial complex. These notions will be used

throughout the thesis.

De�nition 2.2.21. Let X be a simplicial complex and let σ be a simplex of X.

The star of σ in X is the subcomplex StXpσq de�ned as the union of all the

simplices of X that contain σ. The link of σ in X is the subcomplex LkXpσq
de�ned as the union of the simplices of StXpσq that are disjoint from σ.

Let now x be any point of X, and let σ :� supppxq be the smallest simplex

of X containing x. Then the star StXpxq of x is the star of σ, and the link of

x is the subcomplex LkXpxq de�ned as the union of the simplices of StXpxq that
don't contain x.

De�nition 2.2.22. Let X be a piecewise-Euclidean 2-dimensional simplicial

complex. Then the only links that are not trivial nor discrete are the links

of vertices (and more generally points) of X. In that case, the link LkXpxq of
a point x P X is a subcomplex of X isomorphic to a graph. While this graph

inherits a metric from the ambient space X, we de�ne another metric on LkXpxq
called the link metric or the angular metric as follows:


 for every edge σ of LkXpxq and every points p, q P σ, the distance dLkXpxqpp, qq
between p and q is de�ned as the angle =xprx, ps, rx, qsq, where rx, ps and rx, qs
are the (unique) geodesics of X connecting x to p and q respectively (note that

this angle can be mesure in a single simplex that isometrically embeds into E2);


 the metric on LkXpxq is obtained from gluing the metrics of the simplices of

LkXpxq, as done in De�nition 2.1.12.

De�nition 2.2.23. Let X be a piecewise-Euclidean 2-dimensional simplicial

complex and let x be any point of X. Let also γ and γ1 be two geodesics meeting

at x. Let ε ¡ 0 be small enough so that the sphere SXpx, εq is contained inside of

StXpxq and so that γ and γ1 intersect SXpx, εq at two points p and q respectively.
The sphere SXpx, εq can be seen as a graph a�nely isomorphic to LkXpxq, and we
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push the link metric of LkXpxq (see De�nition 2.2.22) onto SXpx, εq through that

a�ne isomorphism. We call this metric dSXpx,εq. The angle =xpγ, γ1q between γ
and γ1 at x is de�ned as

=xpγ, γ1q :� dSXpx,εqpp, qq.

De�nition 2.2.24. Let X be a metric space, and consider the family Ω of all

the isometrically embedded (equivalently, non-contractible) loops γ : ra, bs Ñ X

in X. Then the systole of X is de�ned by

syspXq :� inft`pγq | γ P Ωu.

Lemma 2.2.25. [17, Chapter II.5] Let X be a piecewise-Euclidean 2-dimensional

simply connected simplicial complex with Shapes(X) �nite. Then X is CAT(0) if

and only if for every vertex v P X, the length of an isometrically embedded loop

in LkXpvq is at least 2π (in other words, syspLkXpvqq ¥ 2π).

As with the notion of hyperbolicity, the notion of CAT(0) spaces gives rise to

a notion of CAT(0) groups:

De�nition 2.2.26. A group G is said to be CAT(0) if it acts geometrically on a

CAT(0) space.

Example 2.2.27. The following are CAT(0) groups:

(1) The free abelian groups Zn (acting naturally on Rn).

(2) The free groups Fn (acting on their usual Cayley graphs).

(3) Fundamental groups of closed surfaces of non-positive Euler characteristic

(acting on their universal cover).

2.2.4 Systolicity

In the early 2000's, people such as Haglund, Januszkiewicz and �wi¡tkowski in-

troduced new notions of non-positive curvature for simplicial complexes ([51],

[61]). In 2006, Januszkiewicz and �wi¡tkowski formalised a more general notion

of non-positive curvature for simplicial complexes by means of two conditions

known as k-largeness and k-systolicity ([62]). Their study can be thought of as
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an extension of small cancellation theory to higher dimensions. Despite not being

equivalent to the CAT(0) condition, systolic spaces (resp. groups) share a lot of

features with CAT(0) spaces (resp. groups). Hence why this notion can be seen

as a combinatorial analogue of the CAT(0) condition. One of the useful things

about this notion is that it does not require the presence of a metric on the space

of study. Contrary to the CAT(0) condition which can be very hard to check

for spaces of high dimension, the notion of systolicity often behaves nicely in any

dimension.

Recall that if γ is a simplicial path in the 1-skeleton of a simplicial complex

X, then the simplicial length of γ is simply the number `pγq of edges contained
in γ. The systole of a simplicial complex X is de�ned in a similar fashion as in

De�nition 2.2.24, although the simplicial complex X is not required to hold a

metric. The next de�nitions can be found in ([62]):

De�nition 2.2.28. The systole of a simplicial complex X is the minimal sim-

plicial length of a non-homotopically-trivial loop in its 1-skeleton Xp1q. For

k P t3, . . . ,8u, we say that a simplicial complex X is locally k-large if

syspLkXp∆qq ¥ k

for all simplices ∆ � X. We say that X is k-large if it is locally k-large and

syspXq ¥ k. The complex X is k-systolic if it is connected, simply-connected

and locally k-large. Finally, X is called systolic if it is 6-systolic.

De�nition 2.2.29. A group G is k-systolic if it acts simplicially, properly dis-

continuously and cocompactly on a k-systolic simplicial complex. It is systolic

if it is k-systolic for some k ¥ 6.

The notion of systolicity was partially inspired from the wish to answer to

a question asked independently by Moussong, Gromov and Bestvina ([46], [74])

who suggested there was a bound on the (cohomological) dimension a hyperbolic

Coxeter group could have. This was proved wrong in [62], where the authors

gave examples of hyperbolic Coxeter groups with arbitrary high cohomological

dimension. They also proved that these Coxeter groups were systolic. In [57], the

authors also proved that large-type Artin groups were systolic groups.
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The notion of systolicity has many consequences for a space. For instance,

systolic spaces have path-�xing properties and �xed-point theorems similar to

what can happen in other types of non-positively curved spaces such as CAT(0)

spaces. Some of these properties will turn out to be very useful in Chapter 4,

where they will be given in full details. For now, we only decide to give the

following theorem:

Theorem 2.2.30. [62, Theorem 4.1] Any �nite dimensional systolic simplicial

complex is contractible.

Systolic and k-systolic groups also behave is a nice way. This is highlighted

by the following two theorems, which should convince the reader on the strength

of systolic geometry.

Theorem 2.2.31. Any 7-systolic group is word-hyperbolic.

Theorem 2.2.32. Any systolic group is biautomatic.

Consequences of hyperbolicity are given in Section 2.2.1. Biautomaticity on

its own also implies interesting properties. For instance, biautomatic groups have

quadratic isoperimetric inequalities, their abelian subgroups are undistorted, and

their solvable subgroups are virtually abelian.

2.3 Simple complexes of groups

LetG be a group acting by isometries on a simplicial complexX, and suppose that

the action admits a fundamental domain Y that is strict, that is, two points of Y

never lie in the same orbit. Then one can reconstructX only from looking atG, Y ,

and the stabilisers of the simplices of Y . The data of these stabilisers subgroups

can be put together in a system called a complex of groups, that resembles the

notion of graphs of groups coming from Bass-Serre theory (although complexes

of groups work in higher dimension). We introduce these notions in full details

thereafter. For additional information, we refer the reader to [17, Chapter II.12].

De�nition 2.3.1. A simple complex of groups GpQq over a poset (i.e. par-
tially ordered set) Q consists of:
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(1) For each element σ P Q, a group Gσ called the local group at σ.

(2) For each τ   σ, an injective morphism ψτσ : Gσ ãÑ Gτ such that

τ   σ   ρ ùñ ψτρ � ψτσψσρ.

A simple morphism ϕ from GpQq to a group G is a map written as ϕ : GpQq Ñ
G that associates to each element σ P Q a morphism ϕσ : Gσ Ñ G such that if

τ   σ then ϕσ � ϕτψτσ. The map ϕ is said to be injective on the local groups if

ϕσ is injective for each σ P Q. The direct limit of the system pGσ, ψτσq is the
group{GpQq de�ned by

{GpQq :� p�σPQGσq
M
tψτσphq � h, @h P Gσ, @pτ, σq : τ   σu .

This group is called the fundamental group of the complex of groups GpQq.

Example 2.3.2. (1) A n-dimensional simplex of groups is a complex of groups

over the poset of the faces of a simplex of dimension n. More precisely, if ∆ is a

simplex of dimension n with faces F1, � � � , Fn, a face of codimension k in ∆ can

be written in a unique way as an intersection

FI :�
£
iPI

Fi,

where I � t1, � � � , nu is such that |I| � k. To obtain a simplex of groups, associate

with every face FI a local group GFI
and with every inclusion FI � FJ an injective

morphism ψFIFJ
: GFJ

ãÑ GFI
. A triangle of groups is a simplex of groups with

n � 2 (see Figure 2.4 for an example).

(2) Let ∆ be an equilateral triangle in the Euclidean plane E2, and let a, b

and c denote the isometries of the plane de�ned by doing symmetries along the

di�erent edges of ∆. Let now G be the subgroup of IsompE2q generated by a, b

and c (note that G acts on E2 by isometries). Let Q be the poset of simplices

of ∆, and for every simplex σ P Q, let Gσ be the subgroup of G corresponding

to the stabiliser of σ. Finally, for two simplices τ   σ, let ψτσ be the natural

inclusion ofGσ intoGτ . Then the system pGσ, ψτσq is the simple triangle of groups

GpQq described in Figure 2.4. The fundamental group of GpQq is precisely the

(Coxeter) group G.
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Figure 2.4: Triangle of (Coxeter) groups with fundamental group G. The local
group corresponding to the face is t1u, those corresponding to the edges are the
cyclic groups xay � Z{2Z, xby � Z{2Z and xcy � Z{2Z, and those corresponding
to the vertices are the dihedral groups xa, by � D3, xa, cy � D3 and xb, cy � D3.
The maps are just the natural inclusions.

De�nition 2.3.3. Let X be a simplicial complex and let P be the poset formed

by the simplices of X. Let G be a group acting simplicially on X, and suppose

that the fundamental domain Y of this action is strict, i.e. such that distinct

points of Y always lies in distinct orbits. Let now Q :� tσ P P | σ � Y u. We can

recover a complex of groups GpQq in the following way :


 To each element σ P Q corresponds a subgroup Gσ of G which is the stabiliser

of σ through the action of G.


 To every inclusion τ � σ corresponds a map ψτσ : Gσ ãÑ Gτ that is the natural

inclusion of the corresponding stabilisers.

The complex of groups GpQq is then de�ned as

GpQq :� tpGσ, ψτσq | σ, τ P Q, τ � σu.

Notice that the inclusions ϕσ : Gσ Ñ G give a simple morphism ϕ : GpQq Ñ G

that is injective on the local groups. A complex of groups GpQq is said to be

strictly developable if there exists a simplicial complex X and a simplicial

action of G on X with strict fundamental domain some subcomplex Y , such that

the complex of groups recovered in the previous way is precisely GpQq.

De�nition 2.3.4. Let Y be a simplicial complex and let Q be the poset of its

simplices. Let now GpQq be a complex of groups and let ϕ : GpQq Ñ G be a

simple morphism to some group G, that is injective on the local groups. The
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development DpY, ϕq of Y along ϕ is de�ned by

DpY, ϕq :� G� Y {� ,

where pg, xq � pg1, x1q ðñ x � x1 and g�1g1 belongs to the local group of the

simplex supppxq. In particular, if G � {GpQq, then the space DpY, ϕq is called

the universal cover of GpQq with fundamental domain Y . This space is always

connected and simply connected ([17, Theorem II.12.20]).

We have just seen in De�nition 2.3.3 that any strictly developable complex

of group admits a simple morphism that is injective on the local groups. Using

De�nition 2.3.4, one can prove that this is actually an equivalence:

Theorem 2.3.5. [17, Theorem II.12.18] A complex of groups GpQq is strictly

developable if and only if the natural simple morphism ϕ : GpQq Ñ {GpQq is

injective on the local groups.

Remark 2.3.6. The situation exposed in Theorem 2.3.5 can be synthesised as

follows. The space X :� G� Y {� is a simplicial complex on which G acts in

such a way that the stabiliser of a simplex of the form p1, σq is precisely Gσ. The

stabiliser of a simplex of the form pg, σq is gGσg
�1.

Example 2.3.7. (1) The triangle of groups described in Figure 2.4 is developable.

This comes from the fact that the natural inclusions of the various subgroups into

G form a simple morphism ϕ : GpQq Ñ{GpQq that is injective on the local groups.

(2) Consider the poset Q with 5 elements that is described in Figure 2.5. From

this poset we create a complex of groups GpQq in the following way. The local

group corresponding to the central vertex is trivial, the local groups corresponding

to the right-most vertex is isomorphic to Z2, and all the other local groups are

isomorphic to Z. The maps coming from the upper and lower vertices to the

left-most vertex are the identity maps, and the map coming from the upper

(resp. lower) vertex to the right-most vertex is the identity onto the �rst (resp.

the second) standard generator of the Z2 group. It is not hard to see that the

fundamental group of this complex of groups is{GpQq � Z (in the quotient, each

of the �ve generators are identi�ed). In particular, there is no injection from the

local group of the right-most vertex into this fundamental group, and thus the

map ϕ : GpQq Ñ Z cannot be simple. This complex of groups is not developable.

31



Chapter 2 � Preliminaries

Figure 2.5: Example of a non-developable complex of groups GpQq. The maps
are the inclusions described in Example 2.3.7.(2).

2.4 Artin groups

In this section we recall the basic notions surrounding Artin groups, giving more

details than in the introduction.

2.4.1 De�nitions

We start by recalling the de�nition of an Artin group:

De�nition 2.4.1. Let Γ be a (�nite) simplicial graph with vertex set V pΓq and
edge set EpΓq, and suppose that every edge eab P EpΓq is given a coe�cient

mab P t2, 3, 4, � � � u. Then Γ de�nes an Artin group AΓ whose presentation is

given by

AΓ :� x V pΓq | aba � � �loomoon
mab terms

� bab � � �loomoon
mab terms

, @eab P EpΓq y.

We set mab :� 8 when the vertices a and b are not connected by an edge. The

elements of V pΓq are called the standard generators of AΓ. The rank of AΓ

is the cardinality of V pΓq, that is, the number of standard generators of AΓ. The

graph Γ also de�nes a Coxeter group WΓ whose presentation is given by

WΓ :� x V pΓq | s2 � 1, @s P V pΓq, and aba � � �loomoon
mab terms

� bab � � �loomoon
mab terms

, @eab P EpΓq y.

The graph Γ is called the de�ning graph of AΓ and WΓ.

Remark 2.4.2. There is a natural projection AΓ � WΓ that restricts to the

identity on the standard generators. The kernel of that projection is often called

the pure Artin group associated with Γ.
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Example 2.4.3. Artin groups form a large family of groups, that range from free

abelian groups to free groups. Some examples or more complicated Artin groups

are given in Figure 2.6.

Figure 2.6: Three graphs de�ning Artin groups. On the left: the graph de�ning
the braid group B4 on four strands. In the middle: the graph de�ning an Artin
group isomorphic to Z � Z2. The decomposition of the graph in its connected
components is highlighted. On the right: the graph de�ning an Artin group iso-
morphic to F2 � F2, where F2 represents the free group on 2 generators. The
decomposition of the graph as a 2-join is highlighted.

One of the most basic tools when working with Artin groups is to consider

their parabolic subgroups, which are subgroups corresponding to subgraphs of

the de�ning graph. Before giving an explicit de�nition of these subgroups, we

recall the following very useful theorem of Van der Lek:

Theorem 2.4.4. [92] Let Γ be a graph de�ning an Artin group AΓ, let S be a

subset of V pΓq, and let Γ1 be the subgraph of Γ spanned by the vertices of S. Then

the subgroup of AΓ generated by S is isomorphic to the Artin group AΓ1.

Remark 2.4.5. (1) A subgraph of Γ spanned by a subset S � V pΓq will be called
induced, or induced by S.

(2) For an induced subgraph Γ1 of Γ, we will just write AΓ1 to talk about the

subgroup of AΓ generated by V pΓ1q. Reciprocally, if AΓ is an Artin group, the

notation AΓ1 will always be used to describe the subgroup of AΓ generated by

V pΓ1q.

De�nition 2.4.6. Let AΓ be an Artin group. A subgroup of AΓ is called a

standard parabolic subgroup if it is of the form AΓ1 , where Γ1 is an induced

subgraph of Γ. A subgroup P of AΓ is a parabolic subgroup of AΓ if it is

conjugated to a standard parabolic subgroup of AΓ.
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De�nition 2.4.7. A parabolic subgroup P of AΓ will be said to be of type n

if P � gAΓ1g
�1 for some element g P AΓ and the number of vertices in V pΓ1q is

n. When we care about the precise structure of the subgraph Γ1, we will also say

the parabolic subgroup P has type Γ1.

Remark 2.4.8. If AΓ1 is a standard parabolic subgroup of type 2 with standard

generators a, b P V pΓq, then we will write Aab to talk about AΓ1 . This kind

of parabolic subgroup is called a dihedral Artin subgroup if 3 ¤ mab   8.

Similarly if AΓ1 has type 3 with standard generators a, b, c P V pΓq, then we will

write Aabc instead of AΓ1 .

2.4.2 Main questions

Despite having a relatively simple presentation, the majority of Artin groups re-

main quite mysterious in general. In this section we present the main conjectures

about Artin groups, as well as where the research stands towards proving them,

prior to our work.

A reason why most of the conjectures about Artin groups remain open in

general is that the family of Artin groups is so wide that it is hard to create

an argument that works for all Artin groups at once. When working on Artin

groups, one usually restricts to a speci�c class of Artin groups, which allows the

use of more speci�c tools.

Consider any de�ning graph Γ and its associated Artin group AΓ. On one

hand, if the graph Γ has connected components Γ1, � � � ,Γk, then the Artin group

AΓ can be decomposed as a free product AΓ � AΓ1 � � � � � AΓk
(see Figure 2.6).

On the other hand, if the graph Γ can be decomposed as a join of subgraphs

Γ1, � � � ,Γk such that every edge of the join is labelled by a 2, then AΓ can be

decomposed as a direct product AΓ � AΓ1 � � � � � AΓk
(see Figure 2.6). When

this happens, Γ is a 2-join, and the Artin group AΓ is called reducible. It is

called irreducible otherwise. When AΓ admits such a decomposition as a free

product or as a direct product, most of the information regarding AΓ can be

obtained by looking at the subgroups of the form AΓi
individually. This is why

most results about Artin groups assume without loss of generality that the Artin

groups are irreducible and have connected de�ning graphs. Finally, most results

34



Chapter 2 � Preliminaries

also assume that the Artin groups have rank at least 3, as Artin groups of rank

¤ 2 are very well understood already.

The �rst family of Artin groups to talk about is the family of spherical Artin

groups. An Artin group AΓ is called spherical if the associated Coxeter groupWΓ

is �nite. The family of spherical Artin groups contains the family of braid groups,

and can be seen as the �simplest� kind of Artin groups. Although their rank

can be arbitrary large, Artin groups of spherical type are very-well understood.

This is largely due to the existence of a (Garside) normal form ([38],[37],[35]).

Understanding the spherical Artin groups is essential to understand other types

of Artin groups. For a general Artin group AΓ, the combinatorics of the spherical

(standard) parabolic subgroups of AΓ can be used to de�ne the so-called �Deligne

complex�, which has become an essential tool in the theory of Artin groups (see

Section 2.4.3).

The second family we want to talk about is the family of 2-dimensional Artin

groups, on which this thesis heavily focuses. By de�nition, the dimension of

an Artin group is the maximal rank its spherical parabolic subgroups can have.

In particular, the dimension of an Artin group is also the (simplicial) dimension

of its associated Deligne complex. It is also conjectured that the dimension of

any Artin group equals its cohomological dimension, although this is still open

in general. We want to highlight that there is a very pratical way to see directly

from its de�ning graph whether a given Artin group has dimension 2, as is given

by the following theorem.

Theorem 2.4.9. Let AΓ be an Artin group. Then the following are equivalent:

(1) The maximal rank of a spherical parabolic subgroup of AΓ is 2;

(2) The subgroups of AΓ isomorphic to Zn satisfy n ¤ 2;

(3) For every triplet of generators a, b, c P V pΓq, we have

1

mab

� 1

mac

� 1

mbc

¤ 1.

Note the the third point in the above theorem simply says that every 3-cycle

in Γ must be labelled with three coe�cients whose sum of inverses is no greater

than 1. The class of 2-dimensional Artin group has been well-studied over the
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years. A prime feature of these groups is that their associated Deligne complexes

are 2-dimensional, which makes it much easier to study than in higher dimension.

The class of 2-dimensional Artin groups contain other well-studied classes,

such as the class of large-type Artin groups (every coe�cient is at least 3), the

class of extra large-type Artin groups (every coe�cient is at least 4), or even

the class of XXL Artin groups (every coe�cient is at least 5). Many results have

been obtained for these classes, both by proving the corresponding groups are

non-positively curved, or by using the non-positive curvature properties of group

actions to recover information about the groups themselves.

The last family of Artin groups we want to mention is the family of Artin

groups of type FC (short for �Flag Complex�). An Artin group AΓ is said to be

of type FC if every complete subgraph Γ1 of Γ generates an Artin subgroup AΓ1

of spherical type. Although Artin groups of type FC can be of arbitrary high

dimension, their good combinatorial properties make it so that their associated

Deligne complex is somewhat well-understood. In particular, there are a lot of

geometric tools that can be used to study Artin groups of type FC, and hence

much is known about them. This family includes the aforementioned family of

spherical Artin groups, as well as the intensely studied class of right-angled

Artin groups, which are the Artin groups in which the only permitted coe�cients

are 2 or 8. However right-angled Artin groups are rather speci�c within the

spectrum of all Artin groups, and people usually study them using tools that can

be quite di�erent from all the other families of Artin groups. Finally, we want to

highlight that the intersection between the class of 2-dimensional Artin groups

and the class of Artin groups of type FC is precisely the class of triangle-free

Artin groups, i.e. the Artin groups AΓ where the graph Γ does not contain any

3-cycle.

We now come back to enunciating the mains conjectures about Artin groups.

Note that all the conjectures stated below are open in general.

The �rst conjecture is the most easily-stated and concerns the torsion of ele-

ments in Artin groups. An element g of a group G is said to be torsion if there

is an n � 0 such that gn � 1. The group G is called torsion-free if it contains

no non-trivial torsion element.
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Conjecture 2.4.10. Every Artin group is torsion-free.

The second conjecture concerns the centres of Artin groups. Spherical Artin

groups are known to have non-trivial centres, that are isomorphic to Zn for some

n ¥ 1. If we assume the Artin groups are also irreducible, their centre become

isomorphic to Z and generated by the so-called �Garside element�. The centres

of non-spherical Artin groups remain more mysterious.

Conjecture 2.4.11. Every irreducible non-spherical Artin group has trivial cen-

tre.

The third conjecture has an algorithmic �avor. A group G with �nite gener-

ating set S is said to have solvable word problem if there exists an algorithm

that takes as input any word w P FS, and tells in a �nite time whether w repre-

sents the identity in G or not. The group G is said to have solvable conjugacy

problem if there is an algorithm that can say in a �nite time whether any two

words w, v P FS correspond to conjugated elements of G. Note that solving the

conjugacy problem directly solves the word problem.

Conjecture 2.4.12. Every Artin group has solvable word and conjugacy prob-

lems.

We now come back to parabolic subgroups. These subgroups are probably

the most-studied subgroups of Artin groups. Each of them is itself isomorphic

to a smaller Artin group (by Theorem 2.4.4), and they are thought to have a

very nice combinatorial behaviour. Many questions can be asked about parabolic

subgroups. Can they be de�ned purely algebraically? Are they conjugacy stable?

Are they root stable? A powerful way to obtain many results concerning parabolic

subgroups of Artin groups is �rst to study their intersecting properties. This leads

to the following conjecture:

Conjecture 2.4.13. The set of parabolic subgroups of any Artin group is closed

under (arbitrary) intersections.

Note that the analogue conjecture for Coxeter groups has been proved to be

true in general ([84]).

The next two conjectures have a geometric �avor or non-positive curvature.
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Conjecture 2.4.14. Every Artin group is CAT(0).

The CAT(0) property is not the only non-positive curvature property that

Artin groups are thought to have. In fact, there has been much progress in

the past few years in proving that (some) Artin groups are acylindrically hy-

perbolic. Irreducible spherical Artin groups have in�nite centres, and thus can

never be acylindrically hyperbolic. However, their central quotients AΓ

M
ZpAΓq

are acylindrically hyperbolic ([33]). For non-spherical Artin groups, the following

has been conjectured:

Conjecture 2.4.15. Every irreducible non-spherical Artin group is acylindrically

hyperbolic.

Note that acylindrically hyperbolic groups have �nite centres, and that �nite

torsion-free subgroups are trivial. Consequently, proving that an Artin group AΓ

is acylindrical hyperbolicity and torsion-free directly proves that it has trivial

centre.

We now want to compile brie�y the state of the research regarding the above

conjectures, priori to the work done in this thesis.

Theorem 2.4.16. The above conjectures have been proved for the following classes

of Artin groups (we only state the results that are maximal):

Conjecture 2.4.10 (torsion-free-ness): 2-dimensional Artin groups and Artin groups

of type FC ([27]).

Conjecture 2.4.11 (trivial centres): 2-dimensional Artin groups, Artin groups of

type FC and Artin groups whose de�ning graphs are not the star of a single vertex

([42], [41], [28]).

Conjecture 2.4.12 (word and conjugacy problems): 2-dimensional Artin groups and

Artin groups of type FC ([58], [22]).

Conjecture 2.4.13 (intersections of parabolic subgroups): spherical Artin groups ([23]).

Conjecture 2.4.14 (CAT(0)-ness): right-angled Artin groups, spherical Artin groups

of rank 3 ([13]), some 2-dimensional Artin groups ([7], [14]), XXL Artin groups

([48]), the n-strand braid groups for n ¤ 6 ([16], [49]) and 3-dimensional Artin

groups of type FC ([5]).

Conjecture 2.4.15 (acylindrical hyperbolicity): Artin groups whose de�ning graphs
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are not joins ([28]), 2-dimensional Artin groups of hyperbolic type ([75]), triangle-

free Artin groups ([63]), and Euclidean Artin groups ([19]).

2.4.3 The Deligne complex

The modi�ed Deligne complex, often simply called the Deligne complex, is a

combinatorial complex associated with an Artin group AΓ that as turned out

to be extremely useful to understand the group itself. This complex is de�ned

in terms of the combinatorics of the (standard) spherical parabolic subgroups of

AΓ. When the Artin group is 2-dimensional, its Deligne complex has dimension 2,

which makes the construction of the complex slightly easier. It is this de�nition

that we will introduce thereafter and use for the rest of the thesis. The de�nition

in the more general case can be found in [27], or equivalently, in Remark 2.4.20

below.

De�nition 2.4.17. Let AΓ be a 2-dimensional Artin group of rank at least 3. In

the barycentric subdivision Γbar of Γ, we denote by va the vertex corresponding to

a standard generator a P V pΓq, and by vab the vertex corresponding to an edge of

Γ connecting two standard generators a and b. Let now KΓ be the 2-dimensional

complex obtained by coning-o� Γbar. We call the apex of this cone vH. We de�ne

the type of a vertex v P KΓ to be 0 if v � vH, 1 if v � va for some a P V pΓq,
and 2 if v � vab for some a, b P V pΓq. We endow KΓ with the structure of a

complex of groups in the following way. The local groups associated with vH,

va and vab are respectively t1u, xay and Aab. The natural inclusions of the local

groups t1u � xay � Aab de�ne the maps of the complex of groups. Let Q be

the poset of the standard parabolic subgroups of AΓ that are spherical, ordered

by inclusion. One can easily see that KΓ is a geometric realisation of Q. Then

the simple morphism is the map ϕ : GpQq Ñ AΓ that is given by the natural

inclusion of the spherical standard parabolic subgroups into AΓ. One can easily

notice using De�nition 2.3.1 that the fundamental group of GpQq is precisely

AΓ. The development of KΓ along ϕ is a 2-dimensional space called the Deligne

complex associated to AΓ. We will denote that space by DΓ. By Theorem 2.4.4,

the fundamental group of the complex of groups KΓ is exactly AΓ, and hence the

Deligne complex of a 2-dimensional Artin group is always connected and simply
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connected (see De�nition 2.3.4).

We brie�y name the di�erent subcomplexes of KΓ. An edge of KΓ is denoted

ea if it connects vH and va, eab if it connects vH and vab and ea,ab if it connects va

and vab. A 2-dimensional simplex of KΓ, also called a base triangle, is denoted

by Tab if it is spanned by the vertices vH, va and vab. Note that any translate

g � Tab will also be called a base triangle. We now recall the Moussong metric on

DΓ (see [27]). First, we de�ne the angles of every base triangle Tab by:

=vabpvH, vaq :� π

2 �mab

; =vapvH, vabq :� π

2
; =

H
pva, vabq :� π

2
� π

2 �mab

.

Since these angles add up to π, one can choose a Euclidean triangle with the

above angles. In particular, every base triangle is Euclidean. Fixing the length

of every edge of the form es to be 1, one can recover the length of every edge

in KΓ (and thus in DΓq using basic trigonometry. The Moussong metric on KΓ

is obtained by gluing the Euclidean metrics coming from every base triangle Tst

(see De�nition 2.1.12). This extends to a metric on DΓ. Note that both KΓ and

DΓ are piecewise-Euclidean simplicial complexes (see Section 2.1.2).

Figure 2.7: On the left: A graph Γ de�ning a 2-dimensional Artin group AΓ.
In the centre: KΓ, seen as a complex of groups. On the right: KΓ, seen as a 2-
dimensional subcomplex of DΓ, along with partial notations of its vertices, edges
and faces. The vertices and edges have been given a colour that correspond to
the type of their local group (or stabiliser): black for the trivial group, red for an
in�nite cyclic group, and green for a dihedral Artin group.

Following De�nition 2.3.4, the Deligne complex DΓ can also be described as

the space

DΓ � AΓ �KΓ {� ,

where pg, xq � pg1, x1q ðñ x � x1 and g�1g1 belongs to the local group of the

simplex supppxq. The group AΓ acts naturally on itself via left multiplication,
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and this induces an action of AΓ on DΓ by simplicial morphisms with strict

fundamental domain KΓ.

Figure 2.8: Part of the Deligne complex DΓ associated with the graph Γ from
Figure 2.7. For drawing purposes we only drew the edges that have non-trivial
stabiliser.

The Deligne complex was �rst studied in relation with the Kpπ, 1q-conjecture
for Artin groups, a topological conjecture that is equivalent to the contractibility

of the Deligne complex:

Conjecture 2.4.18. For every Artin group AΓ, the associated Deligne complex

DΓ is contractible.

An important consequence of this conjecture is that it implies for every Artin

group AΓ the existence of a �nite-dimensional KpAΓ, 1q-space, which also forces

the group AΓ to be torsion-free. A solution that has turned out to be quite fruitful

to show Conjecture 2.4.18 for various Artin groups has been to show that their

associated Deligne complexes are CAT(0) (see [27]).

We now give several useful remarks regarding the geometric structure of the

Deligne complex.

Remark 2.4.19. In light of De�nition 2.4.17, the barycentric subdivision Γbar

of Γ can be seen as a subgraph of DΓ: it is the boundary of the fundamental

domain KΓ. In particular, the edges and vertices of Γbar can be seen as edges and

vertices of KΓ and thus of DΓ. They are precisely the edges and vertices whose

local groups are the non-trivial spherical standard parabolic subgroups of AΓ.
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Remark 2.4.20. Another pheraps more combinatorial way to look at the Deligne

complex is the following. Let AΓ be any Artin group. Then the Deligne complex

DΓ is the simplicial complex de�ned as follows:


 The vertex set of DΓ is the poset of left-cosets of the standard parabolic sub-

groups of AΓ that are spherical.


 There is a pn�1q-simplex between vertices ofDΓ corresponding to the left-cosets

g1AΓ1 , . . . , gnAΓn whenever there is a sequence of inclusions gnAΓn � � � � � g1AΓ1 .

Remark 2.4.21. A natural question to ask is what do the links of vertices of DΓ

look like? In light of [17, Construction II.12.24], the link LkDΓ
pvq around a ver-

tex v P KΓ only depends on the development of the local groups around v. More

speci�cally, the link LkDΓ
pvq is isomorphic to the developmentDpLkKΓ

pvq, pψvqe
q
of the link LkKΓ

pvq along the natural inclusion maps pψvqe
 : Ge ãÑ Gv, where e

is an edge from v to LkDΓ
pvq and e
 :� eXLkKΓ

pvq. In particular, we can give a

more precise geometric description of the links of vertices in DΓ:


 Type 0: LkDΓ
pvHq is the development of LkKΓ

pvHq over the trivial maps pψvHqea :

t1u ãÑ t1u and pψvHqeab : t1u ãÑ t1u. Notice that LkKΓ
pvq is the graph Γbar from

Remark 2.4.19, and hence LkDΓ
pvHq is just the barycentric subdivision of Γ. By

construction, the lengths of edges in LkDΓ
pvHq are given by

`pea,abq � =vHpva, vabq �
π

2
� π

2 �mab

.


 Type 1: LkDΓ
pvaq is the development of LkKΓ

pvaq over the maps pψvaqea : t1u ãÑ
xay and pψvaqea,ab : xay ãÑ xay. It is not hard to see that LkKΓ

pvaq is just a na-pod
centered at vH, where na :� |tb P V pΓqztau | mab   8u|. In particular, LkDΓ

pvaq
is the quotient LkKΓ

pvaq � xay {� , where px, anq � py, amq if and only if either

x � y � vab for some b P V pΓqztau with mab   8 or x � y and n � m. Notice

that by construction, every edge eab has length =vapvH, vabq � π{2 in LkDΓ
pvaq.


 Type 2: LkDΓ
pvabq is the development of LkKΓ

pvabq over the three maps pψvabqeab :

t1u ãÑ Aab, pψvabqea,ab : xay ãÑ Aab and pψvabqeb,ab : xby ãÑ Aab. The link LkKΓ
pvabq

is simply a tree T0 that consists of the two edges ea and eb. Consider the Bass-

Serre tree T over T0 � ea Y eb with its associated local groups and maps. In

other words, T is the barycentric subdivision of the Bass-Serre tree associated to

the splitting xay � xby. Then the development of T0 over the previously described
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maps is just the quotient of T by xxaba � � �loomoon
mab

� bab � � �loomoon
mab

yy, because the previous maps

inject into

Aab � Fab

O
xxaba � � �loomoon

mab

� bab � � �loomoon
mab

yy .

Notice by construction that the lengths of edges in LkDΓ
pvabq are given by

@s P ta, bu, `pesq � =vabpvH, vsq �
π

2 �mab

.

Figure 2.9: Part of the links of the vertices of type 0, 1 and 2 respectively, from
left to right. The links are drawn in blue. For drawing purposes, we wrote v
instead of vH.

Using the description of links seen in Remark 2.4.21, Charney and Davis proved

the following:

Theorem 2.4.22. [27, Proposition 4.4.5] Let AΓ be a 2-dimensional Artin

group of rank at least 3. Then its Deligne complex DΓ is CAT(0).

In particular, Conjecture 2.4.18 has been solved by Charney and Davis for all

2-dimensional and FC-type Artin groups ([27]). It has also recently been solved

for all a�ne Artin groups ([81]).
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Acylindrical hyperbolicity

This chapter corresponds to the publication [93]. We thank the anonymous referee

for proposing a strategy for improving and making optimal Proposition 3.5.

The goal is this chapter is to study the acylindrical hyperbolicity of 2-dimensional

Artin groups. By construction, every reducible Artin group AΓ decomposes as a

direct product of in�nite groups and hence can never be acylindrically hyperbolic,

by Theorem 2.2.12.(2). Restricting to irreducible Artin groups, it is known that

the ones that the ones that are spherical have an in�nite cyclic centre, and hence

cannot be acylindrically hyperbolic either, by Theorem 2.2.12.(1). However, their

central quotients are acylindrically hyperbolic ([33]). It is thus enough to study

the 2-dimensional Artin groups that are irreducible and non-spherical. These

groups are all conjectured to be acylindrically hyperbolic (see Conjecture 2.4.15).

Recall that within the world of 2-dimensional Artin groups, being non-spherical

is equivalent to having rank at least 3. In this chapter, we prove the following

result:

Theorem 3.1. Every irreducible 2-dimensional Artin group of rank at least 3 is

acylindrically hyperbolic.

For instance, it was not known whether the rather simple following 2-dimensional

Artin group was acylindrically hyperbolic:
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Figure 3.1: Example of an Artin group for which acylindrical hyperbolicity was
not previously known.

Note that 2-dimensional Artin groups are torsion-free (see Theorem 2.4.16).

In particular, if a 2-dimensional Artin group AΓ decomposes as a direct product

of two non-trivial factors AΓ � H1 � H2 then the two factors must be in�nite.

By Theorem 2.2.12.(2), this imply that AΓ cannot be acylindrically hyperbolic.

Therefore, an immediate corollary of the previous theorem is that decomposability

as a direct product can actually be �read� from the graph Γ:

Corollary 3.2. A 2-dimensional Artin group AΓ can be decomposed as a non-

trivial direct product if and only if it is irreducible (equivalently, Γ is a 2-join).

Recall that acylindrically hyperbolic groups have �nite centres ([80]). Thus it

follows from Theorem 3.1 that irreducible 2-dimensional Artin groups of rank at

least 3 have �nite centres. Since they have no torsion, their centres are actually

trivial. This also holds if AΓ is reducible, as 2-dimensional reducible Artin groups

are direct products of free groups, hence have trivial centres. If AΓ is irreducible

and has rank 2 then it is a dihedral Artin group with coe�cient at least 3, and

AΓ{ZpAΓq is virtually a free group ([14],[30]), hence acylindrically hyperbolic.

Putting together everything that we just discussed, we are able to give a new

proof of Conjecture 2.4.11:

Corollary 3.3. Artin groups of dimension 2 and rank at least 3 have trivial cen-

tre. Moreover, all irreducible Artin groups AΓ of dimension 2 have acylindrically

hyperbolic central quotient AΓ{ZpAΓq.

In general proving acylindrical hyperbolicity can be quite hard. The criterion

developed by Bestvina, Bromberg and Fujiwara (see Theorem 2.2.15) allows to

construct from a (non-necessarily acylindrical) action on a (non-necessarily hy-

perbolic) space an acylindrical action on a hyperbolic space. It hence allows to

prove that the group under study is either acylindrically hyperbolic or virtually
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cyclic. This criterion is however not very well-suited for group actions on spaces

that are not locally compact, were checking that an element is WPD can be rather

tough.

In this chapter, we focus on the action of Artin groups of dimension 2 on

their Deligne complexes. Unfortunately, the Deligne complex is not locally com-

pact, which make the use of the aforementioned criterion harder. To bypass that

problem we will use a criterion of Martin ([67]) that uses a variant of the WPD

condition, generalising to higher dimension a result of [72] for groups acting on

trees. We recall this criterion thereafter, in a slightly more speci�c form:

Theorem 3.4. [67, Theorem B] Let X be a CAT(0) simplicial complex, to-

gether with an action by simplicial isomorphisms of a group G. Assume that there

exists a vertex v of X with stabiliser Gv such that:

(1) The orbits of Gv on the link LkXpvq are unbounded, for the associated angular

metric.

(2) Gv is weakly malnormal in G, i.e. there is some g P G such that GvXgGvg
�1

is �nite.

Then G is either virtually cyclic or acylindrically hyperbolic.

The proof of Theorem 3.1 has two major steps. First, we show that if AΓ is not

right-angled then there exists a vertex v in the Deligne complex DΓ associated to

the Artin group AΓ that satis�es Theorem 3.4.(1). Then, we show geometrically

that the stabiliser of this vertex is weakly malnormal in AΓ, satisfying Theorem

3.4.(2). The result then follows from Theorem 3.4

This chapter is organised as follows. In Section 3.1, we study the link of

vertices in the Deligne complex and prove the following result:

Proposition 3.5. Let AΓ be a 2-dimensional Artin group of rank at least 3 with

Deligne complex DΓ. Suppose that there exists a type 2 vertex vab P DΓ whose

stabiliser Aab has coe�cient 3 ¤ mab   8. Then:

(1) The orbits of Aab on LkDΓ
pvabq are unbounded.

(2) More precisely, the orbits of xgy on LkDΓ
pvabq are quasi-isometrically embedded

if and only if g P Aab is not trivial, nor the conjugate of a power of one of the

standard generators a or b.
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Note that when applied to our speci�c case, the �rst hypothesis of Theorem

3.4 is exactly the �rst result of Proposition 3.5, so that we a priori don't need to

prove Proposition 3.5.(2). However, Proposition 3.5.(2) remains interesting on its

own, as it has for instance been used by Hagen, Martin and Sisto to prove that

extra-large type Artin groups are virtually hierarchically hyperbolic ([53]).

In Section 3.2, we reduce the question of asking whether a dihedral Artin

subgroup Aab of AΓ is weakly malnormal to a geometric question (see Lemma

3.2.1). The existence of weakly malnormal subgroups turns out to be implied by

a simple geometric condition on the geodesics in the complex. We are able to

show that this condition holds for all irreducible 2-dimensional Artin groups of

rank at least 3 (assuming they are not free nor right-angled, see Lemma 3.2.6). In

particular, we show that the local group Gv is weakly malnormal in AΓ, i.e. that

Gv satis�es Theorem 3.4.(2). We can then use Theorem 3.4 and prove Theorem

3.1 as an immediate consequence.

3.1 Links of vertices in the Deligne complex

A precise description of the links of vertices in the Deligne complex was given

in Remark 2.4.21. Although we got an idea of what these links look like, much

remains to be proved, especially for links associated with type 2 vertices of the

complex. The goal of this section is to get a better understanding of the links

LkDΓ
pvabq of vertices of type 2 in DΓ, and ultimately to prove Proposition 3.5.

Although checking that the �rst condition of Theorem 3.4 is satis�ed is rather

easy (see Lemma 3.1.5), proving the second point of Proposition 3.5 will require

a much more in-depth study.

3.1.1 Reformulating Proposition 3.3 in terms of syllabic

lengths

In this section we reformulate Proposition 3.5 into a more accessible problem (see

Proposition 3.1.3). We begin with the following de�nition, that will be useful

throughout all the section:

De�nition 3.1.1. Let G be a group with generating set S, and let ϕ : FS � G
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be the natural surjection from the free group over S onto G (see De�nition 2.1.1).


 Every word w P FS can be written uniquely as w � sr11 � � � srnn , assuming si P A,

si � si�1 and ri P Zzt0u. Then the syllabic length of w is `Spwq :� n.


 For every element g P G we de�ne the syllabic length of g as `Spgq :�
mint`Spwq | ϕpwq � gu.

Recall that in the Deligne complex DΓ associated with an Artin group AΓ,

the stabilisers of vertices of type 2 (ex: vab) are dihedral Artin groups (ex: Aab).

The following lemma makes a connection between the syllabic length of elements

g P Aab and the distances in the link LkDΓ
pvabq, according to the angular metric

(see De�nition 2.2.22).

Lemma 3.1.2. Let γ be a path in LkDΓ
pvabq joining vH and gvH for some g P Aab,

and suppose that the edges of γ are ea, a
n1ea, a

n1eb, a
n1bn2eb, � � � , an1bn2 � � � xnkex,

in that order, where x P ta, bu and ni P Zzt0u. Let now w :� an1bn2 � � � xnk . Then

`pγq � π
mab

� `Spwq. Furthermore, dLkDΓ
pvabqpvH, gvHq � π

mab
� `Spgq.

Proof: First of all, recall that the local group at va is xay, and hence the set of

edges of LkDΓ
pvabq meeting at va is takea | k P Zu. This proves that ea and an1ea

are indeed consecutive to one another, meeting at va. Of course, an1ea and an1eb

are also consecutive to one another, meeting at an1vH. A similar argument shows

that the edges in the statement of the lemma consecutively meet each others. As

AΓ acts by isometries on LkDΓ
pvabq, it is clear that the length of every edge of γ

is either `peaq or `pebq, both of which turn out to be equal to π
2�mab

. Because the

number of edges in γ is precisely 2 � `Spwq, we get `pγq � π
mab

� `Spwq
Notice that every path γ joining vH and gvH corresponds to a word w that

satis�es ϕpwq � g, where ϕ : Fab � Aab is the natural projection. The distance

between vH and gvH is the length of the shortest of these paths, hence

dLkDΓ
pvabqpvH, gvHq � mint π

mab

� `Spwq | ϕpwq � gu � π

mab

� `Spgq.

l

One important consequence of the previous lemma is that we can reformulate

Proposition 3.5 in terms of syllabic lengths of elements in the local group of a

vertex of type 2. We will prove Proposition 3.5 by proving the following equivalent

proposition:
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Proposition 3.1.3. Let AΓ be a 2-dimensional Artin group of rank at least 3 with

Deligne complex DΓ. Suppose that there exists a vertex vab P DΓ whose stabiliser

Aab has coe�cient 3 ¤ mab   8. Then:

(1) The set t`Spgq | g P Aabu is unbounded.
(2) More precisely, the syllabic length `Spgnq grows linearly in n if and only if g P
Aab is not trivial, nor the conjugate of a power of one of the standard generators

a or b.

Remark 3.1.4. Recall that we say that a sequence tunun¥0 grows linearly in n

if they are constants B ¥ A ¡ 0 and C ¥ 0 such that for any n ¥ 0 we have

An� C ¤ un ¤ Bn� C.

The next lemma shows that Proposition 3.1.3.(1), and thus Proposition 3.5.(1),

are satis�ed. This result will be very useful in the proof of Theorem 3.1. It shows

that if AΓ has a coe�cient mab ¥ 3, then the vertex vab satis�es the �rst hypoth-

esis of Theorem 3.4.

Lemma 3.1.5. Consider an Artin group Aab with coe�cient 3 ¤ mab ¤ 8. Then

t`Spgq | g P Aabu is unbounded.

Proof: It is known that the quotient Aab of Aab by its centre is virtually iso-

morphic to the free group Fm, for some m ¥ 2 ([14],[30]). In particular, Aab is

acylindrically hyperbolic. Suppose now that there exists a constant N ¥ 0 such

that for every g P Aab, one has `Spgq   N , and assume without loss of generality

that N is even. This means that Aab � xayxby � � � xayxby (where the product has

N terms). In particular, Aab � xay xby � � � xay xby. Using Theorem 2.2.12.(3), we

know that one of xay or xby must be acylindrically hyperbolic, which is impossible,

as they are cyclic subgroups of Aab. Therefore, t`Spgq, g P Aabu is unbounded. l

Strategy: The goal of the rest of this section is to understand more those links

of the form LkDΓ
pvabq, i.e. the links of vertices of type 2 in DΓ. In particular, we

will be able through a more precise analysis of these links to prove Proposition

3.1.3.(2), and thus Proposition 3.5.(2).
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We now set for the rest of this section Aab to be a dihedral Artin group

with coe�cient 3 ¤ m   8. One can easily see that for any element g P Aab,
the syllabic length `Spgnq is always bounded above by a linear function, such as

`pwq � n for instance, where w is any word representing g and `p�q is the usual

length function on words (see De�nition 2.1.1). Therefore we will only focus on

�nding a linear lower bound for `Spgnq.
Our approach is mostly geometric: we study the action of Aab on a graph pT

(see De�nition 3.1.12). In particular, we show that the distance of translation

induced by an element g P Aab gives a lower bound on the syllabic length of g (see

Lemma 3.1.13). It then follows immediately that any element g P Aab that acts
hyperbolically on pT is such that `Spgnq admits a linear lower bound in n, giving

Proposition 3.1.3.(2) for such elements. It then feels natural to want to determine

which elements act hyperbolically on pT . This will be achieved in Lemma 3.1.14.

It remains to study the elements that do not act hyperbolically on pT . They

all act elliptically and come in two forms: the elements that are conjugate to

powers of a standard generator (modulo an element of the centre), and the (non-

trivial) elements which admit powers that belong to the centre of Aab. When

their "central part" is trivial, the elements g of the �rst kind are easily shown to

satisfy `Spgnq ¤ Kg for a constant Kg that does not depend on n. However, the

elements of the �rst kind that don't have a trivial central part and the elements

of the second kind have a di�erent behaviour. As will be recalled later, the centre

of Aab only contains powers of the Garside element of Aab, which motivates a

more in-depth study of the syllabic length of such powers. The method that we

use for that last point is more algebraic, and rely on a more direct study of the

syllabic length of words, notably using the Garside normal form of elements. As a

consequence, we will show that the remaining elliptic elements g are such that the

syllabic length `Spgnq also admits a linear lower bound in n (see Lemma 3.1.18).

Alltogether, this will conclude the proof of Proposition 3.1.3.

3.1.2 The action of the local group on pT .

Our �rst goal is to de�ne a tree T on which Aab acts nicely with a trivial action of

the centre ZpAabq. This will be done throughout the next de�nitions and lemmas.

Let us �rst introduce few notations and recall notions about normal forms and
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centres in dihedral Artin groups.

Notations: 
 For two words u, u1 P Fab representing the same element g P Aab,
we will simply write u � u1 instead of ϕpuq � ϕpu1q. Similarly, for g P Aab, we
will write u � g instead of ϕpuq � g.


 We will write pa, b; kq to denote the alternating sequence of the letters a and

b, starting with a and of length k, and we will write ∆a and ∆b to describe the

words pa, b;mq P Fab and pb, a;mq P Fab respectively. More explicitely,

∆a :� aba � � �loomoon
m terms

and ∆b :� bab � � �loomoon
m terms

.


 For a word u P Fab, we denote by u the word obtained from u by replacing

every an by bn and every bn by an. Moreover, we will denote by ru the element

ru :�
$&% u if m is even

u if m is odd

One can easily notice that for any word u P Fab, we have ∆�1 � u � ru �∆�1.

De�nition 3.1.6. For a dihedral Artin group Aab with coe�cient 3 ¤ mab   8,

the Garside element is the element ∆ P Aab de�ned by

∆ � ∆a � ∆b. p�q

A strict non-trivial subword of ∆a or of ∆b is called an atom. It is a standard

result ([38], [37], [35]) that for every element g P Aab, there is a word Garspgq P Fab
called the Garside normal form of g that satis�es Garspgq � g and such that

one can write

Garspgq � u1 � � �un �W,

where the ui are atoms such that the last letter of each ui matches with the �rst

letter of ui�1, and where W � ∆N for some N P Z is a product of terms of the

form ∆�1
a and ∆�1

b . This word is not unique, however the atoms of the above

decomposition are uniquely de�ned, and so is N .

At last, we recall that the centre ZpAabq of Aab was described in [18], and takes
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the form

ZpAabq �

$'&'%x∆y if m is even,

x∆2y if m is odd.

We now come back to constructing the desired space. The space that we �rst

de�ne is due to [8, Section 2.1]. One can also recover an equivalent de�nition by

quotient of the space described in [69, Figure 6].

De�nition 3.1.7. Let us consider the simplicial complex Y de�ned by the fol-

lowing (see Figure 3.2):

Vertices: The vertex set of Y is the set of cosets

V :� Aab
M
x∆y � tgx∆y | g P Aabu.

A convenient representative for a vertex gx∆y is the product of the atoms of the

Garside normal form of g. This representative is the unique that is in Garside

normal form yet does not contain any subword of the form ∆�1
x for some x P ta, bu.

We will denote it g
. In this setup, we can see V as the set tg
 | g P Aabu.

Simplices: For every collection g1
, � � � , gk
 of vertices, the set tg1
, � � � , gk
u spans
a k-simplex if and only if for all i, j P t1, � � � , ku, there is an atom x such that

gi
 � x � gj
 or gj
 � x � gi
. Note that because atoms are subwords of ∆a or ∆b,

every k-simplex is contained in a maximal m-simplex, where m is the coe�cient

of Aab (see Figure 3.2).

The group Aab acts naturally on V : if h P Aab and gx∆y P V , then h � gx∆y :�
hgx∆y. This action extends to a simplicial and cocompact action of Aab on Y ,

that is transitive on the vertices (see [8]). Note that ZpAabq acts trivially on V ,

and thus on Y .

De�nition 3.1.8. We de�ne a new graph T by the following. The set of vertices

of T is the union of two sets: the set V of vertices of Y , and the set V 1 of maximal

simplices of Y (i.e. the m-simplices). Then, we put an edge between a vertex

g
 P V and a vertex tg1
, � � � , gm
u P V 1 if and only if g
 P tg1
, � � � , gm
u). Note
that T can naturally be seen as a subspace of Y (see Figure 3.2).
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Lemma 3.1.9. The graph T is a tree, and the stabiliser of any edge e � T is

precisely ZpAabq.

Proof: The atoms in the Garside normal form of any element are unique, and this

gives Y a structure of tree of m-simplices (see Figure 3.2), where the Y -distance

between any vertex g
 and 1
 is precisely the number of atoms in g
 (note that

the T -distance is twice that amount). The reason m-simplices appear is because

once given a non-trivial vertex g
, there are pm�1q di�erent ways one can add an

atom on the right side of g
 (assuming this atom starts with a letter that di�ers

from the last letter of g
. In particular, Y retracts on a tree described in Figure

3.2, and that tree is precisely T .

Let now e be any edge of T . Because the action is transitive on the ver-

tex set V , we may as well assume that e contains 1
. The other vertex of

e corresponds to one of the two simplices Sa :� t1
, a
, � � � , pa, b;m � 1q
u or

Sb :� t1
, b
, � � � , pb, a;m � 1q
u. Let now g P Aab and suppose that g � e � e.

Then in particular g �xes 1
, so we have g � x∆y � x∆y, and thus g P x∆y. If m is

even, we are done. If m is odd, it is enough to show that ∆ does not �x e, which

is clear because it sends Sa onto Sb and vice versa. l

Remark 3.1.10. The valence of a vertex v of T is easy to determine. If v P V ,
then v belongs to exactly two m-simplices of Y , so the valence of v in T is 2. If

v P V 1, then v corresponds to a m-simplex of Y , hence is connected to exactly m

vertices of Y , and its valence in T is m.

Figure 3.2: Let m :� 3. In black: Part of the simplicial complex Y with its set of
vertices V . In pink: Part of the tree T , that is a deformation retract of Y . The
axis γa � T is drawn with the thicker line.
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Lemma 3.1.11. The elements of Aab acting elliptically on T are precisely the

elements g P Aab for which there exists an N � 0 such that gN P ZpAabq. All the
other elements act hyperbolically.

Proof: Suppose �rst that gN P ZpAabq. Then gN acts trivially on T , so g has

�nite orbits. In particular these orbits are bounded, so g acts elliptically.

Suppose now that g acts elliptically. Then g �xes a vertex v of T . By Remark

3.1.10, v has at most m neighbours, so gm! �xes the neighbourhood of v. In par-

ticular, gm! �xes a vertex hx∆y of Y (either v, or a vertex in its neighbourhood).

The equation gm! �hx∆y � hx∆y gives gm! � h∆Kh�1 for some K P Z. We obtain

g2m! � h∆2Kh�1 � ∆2K P ZpAabq.
All other elements act hyperbolically because we have a simplicial isometric

action on a tree. l

Recall that we are interested in studying the syllabic length of elements of

Aab relatively to the standard generators a and b, and in reducing the problem

of syllabic lengths to a problem of distances in our space. Unfortunately, one

can travel an arbitrary large distance in T using a single syllable, because the

generators a and b act hyperbolically on T (see Figure 3.2). To deal with that

problem, we decide to cone-o� such axes, and their translates:

De�nition 3.1.12. Let s P ta, bu. We denote by γs the axis of s in T , i.e. the

bi-in�nite geodesic line going through all the vertices of the form skx∆y for all
k P Z. Let us now de�ne a graph pT as the cone-o� of the tree T along the family

of axes h � γs, for all h P Aab and s P ta, bu. More precisely:


 Start with T , and add a new vertex vh,s for every axis of the form h � γs, for all
h P Aab and s P ta, bu. We only add one vertex if two axes de�ne the same line,

even if they go in opposite directions.


 Connect every vertex vh,s to every vertex of the corresponding axis h � γs.

The following lemma justify the study of the cone-o� pT , as it gives a lower bound
on the syllabic length of an element of Aab in terms of distances in pT .
Lemma 3.1.13. Let g P Aab. Then

d
pT p1
, g � 1
q ¤ 2 � `Spgq.
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Proof: The argument is similar to that of Lemma 3.1.2. Let k :� `Spgq. By the

triangle inequality, it is enough to prove that there is a sequence of vertices

v0 :� 1
, v1, � � � , vk�1, vk :� g � 1


such that d
pT pvi, vi�1q ¤ 2. To do so, let an1bn2 � � � xnk be a word representing g,

where x P ta, bu and ni P Zzt0u, and let

gi :� an1bn2 � � � yni
i ,

where yi P ta, bu is the appropriate letter. Consider now the vertices vi de�ned by

vi :� gi � 1
, so that v0 � 1
 and vk � g � 1
. Because Aab acts on pT by isometries,

we have for any 0 ¤ i   k

d
pT pvi, vi�1q � d

pT pgi � 1
, gi�1 � 1
q � d
pT p1
, yn�1

i�1 � 1
q.

Note that yn�1
i�1 is just a power of a standard generator yi�1 P ta, bu, which means

1
 and yn�1
i�1 � 1
 both belong to the axis γyi�1

. By de�nition of pT , such vertices lie

within distance 2 of each others. It follows that d
pT pvi, vi�1q ¤ 2. l

As explained in the strategy of this section, the previous lemma immediately

gives Proposition 3.1.3.(2) for elements of Aab acting hyperbolically on pT . The

goal of the next lemma is to classify these elements:

Lemma 3.1.14. The elements of Aab acting elliptically on pT are precisely the

elements g P Aab satisfy one of the following:

(1) g � h � sN � h�1 �W for some N P Z, s P ta, bu and W P ZpAabq;
(2) There exists an N � 0 such that gN P ZpAabq.
All the other elements act hyperbolically.

Proof: Let g P Aab. If g satis�es p2q, then it already acts elliptically on T by

Lemma 3.1.11, so it acts elliptically on pT too. If g satis�es p1q, it is not hard to see

that g �xes the vertex h � γs, hence acts elliptically on pT . We now suppose that g

does not satisfy any of these properties. We already know by Lemma 3.1.11 that

g acts hyperbolically on T , with an axis that we call γg. We begin by stating the

following "small cancellation" claim, which gives the desired result for g. Then,
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we proceed on proving that g actually satis�es the hypotheses of the claim.

Claim: Suppose that there exists a K ¡ 0 such that for every h P Aab and every

s P ta, bu, the subtree γ de�ned by γ :� γgXh �γs has diameter at most K. Then

g acts hyperbolically on pT .
Proof of the Claim: Since g acts hyperbolically on T , it is enough to show that

there is a constant C ¡ 0 such that for all vertices x, y P γg, we have

C � dT px, yq ¤ d
pT px, yq. p�q

Let γTx,y be the (unique) geodesic connecting x and y in T , and let M be the

minimal number of axes of the form h � γs required to cover all edges of γTx,y

completely. Let also D :� d
pT px, yq. Since every edge has length 1, this means

we can reach x from y by using D edges e1, � � � , eD of pT . Let x0, � � � , xD be the

vertices these edges go through (in that order), and let xr0 , � � � , xrD1 be the subset

of the above vertices corresponding to those belonging to T (with r0   � � �   rD1).

Then the vertices xri and xri�1
always belong to a common axis. Indeed, if

ri�1 � ri � 1, then the two vertices are the two endpoints of a common edge of

T . On the other hand, if ri�1 � ri ¥ 2, then there is at least one vertex xj P pT zT
that lies between xri and xri�1

. By de�nition of pT , the neighbours of xj both lie

on a common axis. In other words, we must have ri�1 � ri � 2, and xri and xri�1

belong to a common axis. Let now γ � T be the path obtained by connecting

the vertices of the form xri through the corresponding axes. Then γ is a subtree

of T containing x and y. It is convex, hence must contain the geodesic γTx,y. This

means we found a way to cover γ, and thus γTx,y, with D
1 ¤ D axes. By de�nition

of M and D, we obtain

d
pT px, yq ¥M. p��q

By hypothesis, there is no axis of the form h � γs that covers a subgraph of γTx,y

of diameter more than K. In particular then, one must use at least dT px, yq{K
such axes in order to cover γTx,y completely. This means M ¥ dT px, yq{K. We

conclude using p��q that d
pT px, yq ¥ dT px, yq{K, satisying p�q. This �nishes the

proof of the claim.

We now check that the hypothesis of the claim is satis�ed. Suppose that
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no such constant K exists. Then there is an axis h � γs such that the subtree

γ :� γg X h � γs has diameter at least 2 � ||g|| � 1, where ||g|| is the translation

length of g when acting on T . Since γ has diameter at least 2 � ||g|| � 1, there

is an edge e � γ whose distance in T to any of the two enpoints of γ is at least

||g||. Note that e is a segment of γg, so g � e belongs to γg as well. By de�nition,

the distance in T between e and g � e is at most ||g||, which means that g � e
belongs to γ as well. In particular, g � e belongs to h � γs. Note that the action

of g respects the bipartite structure of T , and thus its translation length ||g|| is
an even number. Note on the other hand that the translation length of h � s � h�1

when acting on T is exactly 2 (because its translation length when acting on Y

is 1). Since g � e belongs to h � γs, this means there is some constant M such that

g � e coincides with h � sM � h�1 � e (actually, M � �||g||{2). We get the equation

g � e � h � sM � h�1 � e.

In particular, the element g�1 � h � sM � h�1 stabilises e, hence must belong to

ZpAabq by Lemma 3.1.9. We obtain g � h � sM � h�1 �W for some W P ZpAabq.
This is absurd by hypothesis. l

3.1.3 The syllabic length of powers of the Garside element

We are now interested in the study of the elements of Aab that act elliptically onpT , which have been described in Lemma 3.1.14. Our goal will be to give a linear

lower bound on the syllabic length of powers of the Garside element (see Lemma

3.1.18). The method is more algebraic, and we decide to brie�y recall how one

can obtain the Garside normal form of an element g P Aab (see [71, Section 4] for

a similar description).

Algorithm 3.1.15. Let g P Aab, and let u P Fab be any word satisfying u � g.

Then one can obtain Garspgq from u in two steps:

Step 1: If there is no occurence of a subword of the form ∆�1
x in u, for some

x P ta, bu, or if all such occurences appear consecutively on the right-most part of

u, go to Step 2. Otherwise, consider the left-most occurence of a ∆�1
x subword in
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u, and write

u � v1 �∆�1
x � v2,

for the appropriate subwords v1, v2 P Fab. Let

u1 :� v1 � rv2 �∆�1
x ,

and note that u1 � u � g. Then replace u with u1, and proceed through Step 1

again.

Step 2: At this point, we have a word u that doesn't contain any subword of the

form ∆�1
x , except potentially on its right-most part. This means u takes the form

u � u1 � � �un �W,

where each ui is an atom or the inverse of atom, and W is a product of terms of

the form ∆�1
a and ∆�1

b . Moreover, for every 1 ¤ i ¤ n�1, the last letter of ui and

the �rst letter of ui�1 either have opposite sign, or agree. If there is no negative

letter (i.e. a�1 or b�1) in u1 � � �un, terminate the algorithm. Otherwise, the word

u1 � � �un contains at least one subword that is the inverse of an atom. Locate the

left-most subword ui of this form. Without loss of generality, ui � pa�1, b�1; kq
for some 1 ¤ k   m (if ui starts with b

�1 instead, proceed symmetrically). Write

u � u1 � � �ui�1 � pa�1, b�1; kq � ui�1 � � �un �W,

and let

u1 :� u1 � � �ui�1 � pb, a;m� kq � �ui�1 � � ��un ��W �∆�1
x

for some x P ta, bu. One can check that u1 � u � g. Replace u by u1, and proceed

through Step 2 again.

Example 3.1.16. Let m :� 3, and let u :� aba2b�1a�1baba2b4ab. We denote by

ui the word obtained after the i-th Step of Algorithm 3.1.15. Then:

u1 � ba�1b�1a2b3∆a∆b∆a

u2 � b4a3∆b∆a
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If we decompose the resulting word according to De�nition 3.1.6, we obtain

Garspuq � b � b � b � ba � a � a �∆b∆a � b4a3bababa.

Lemma 3.1.17. Let u P Fab and suppose that u � ∆n for some n � 0. Then u

contains a subword of the form ∆�1
x for some x P ta, bu.

Proof: The proof uses the strategy of Algorithm 3.1.15. Suppose that u does

not contain any subword of the form ∆�1
x with x P ta, bu. By de�nition, when

giving u as an input, the �rst step of Algorithm 3.1.15 is trivial. Starting with

the second step of the algorithm, this means we can decompose u in a product

of atoms, inverses of atoms, and a power of the Garside element (see Algorithm

3.1.15):

u � u1 � � �uk �W

When applying the second step of the algorithm until the algorithm terminates,

every atom ui yields an atom u1i that is either ui or rui, and every inverse of an

atom ui yields an atom u1i that is either u
�
i or rui�, where u�i is the unique atom

such that ui � u�i � ∆�1
x for some x P ta, bu. Note that for every 1 ¤ i ¤ k, ui is

trivial if and only if u1i is trivial. We obtain the Garside normal form of ∆n:

Garsp∆nq � u11 � � �u1k �W 1,

for an appropriate W 1. Recall that one can �nd trivial Garside normal forms

for ∆n, such as Garsp∆nq � ∆n
x for x P ta, bu. By unicity of the atoms in the

decomposition of Garsp∆nq, we obtain that all the u1i are trivial, and thus so are

the ui. In particular, u � 1, which is absurd. l

Lemma 3.1.18. For any n P Z, `Sp∆nq ¥ pm� 2q � |n|.

Proof: This is clear if n � 0. Since `Sp∆nq � `Sp∆�nq, it is enough to prove

that the result holds for n ¡ 0. Let u P Fab be any word representing ∆n. It is

enough to show that

`Spuq ¥ pm� 2q � n.

We now consider the string of words u0, u1, u2, � � �uλ P Fab de�ned by induction

as follows. We �rst set u0 :� u. By Lemma 3.1.17, u0 contains a subword of the
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form ∆�1
x1

for some x1 P ta, bu, so we can decompose u0 as

u0 � u0,1 �∆�1
x1
� u0,2,

for the appropriate words u0,1, u0,2 P Fab. We then set

u1 :� u0,1 ��u0,2.

Note that u1 � ∆�1
x1

� u0. If u1 is trivial, set λ � 1 and stop here. Otherwise,

u1 � ∆n�1 with n � 1 � 0, so we can apply Lemma 3.1.17 again and follow the

same construction as above and obtain a word u2 satisfying u2 � ∆�1
x2

� u1 for

some x2 P ta, bu. As long as ui � 1, we continue to construct words ui�1 in the

fashion described above. The words obtained satisfy ui�1 � ∆�1
xi�1

� ui for some

xi�1 P ta, bu. Note that

ui �
k1 syl.hkkikkj
ui,1 �

m syl.hkkikkj
∆�1
xi

�
k2 syl.hkkikkj
ui,2looooooooooooomooooooooooooon

¥k1�k2�m�2 syl.

, and ui�1 � ui,1 � �ui,2looomooon
¤k1�k2 syl.

,

so eventually

`Spuiq ¥ `Spui�1q � pm� 2q.

This means each word ui�1 is syllabically shorter than ui by at least pm � 2q
syllables. In particular, this process has to stop after a �nite number λ of steps.

The �nal word, uλ, satis�es

uλ �
λ¹
i�1

∆�1
xi
� u � ∆n.

In particular then, uλ represents a power of ∆, but does not contain any subword

of the form ∆�1
x for some x P ta, bu. By Lemma 3.1.17, this means uλ is the

trivial word. We obtain

λ¹
i�1

∆�1
xi
� ∆n ùñ λ ¥ n.

Trying to sum up the previous arguments, we have:

(1) For 0 ¤ i ¤ λ� 1, each ui�1 is syllabically shorter than ui by at least pm� 2q
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syllables. In particular, uλ is syllabically shorter than u by at least λpm � 2q
syllables.

(2) uλ is trivial.

(3) λ ¥ n.

Altogether, this gives a bound on the syllabic length of u:

`Spuq
p1q¥ `Spuλq � λpm� 2q p2q� λpm� 2q p3q¥ pm� 2q � n.

l

We are now able to prove the main Propositions:

Proof of Proposition 3.5.(2) and Proposition 3.1.3.(2): We �rst recall that

the two statements are equivalent, thanks to Lemma 3.1.2. Therefore we will only

care on proving Proposition 3.1.3.(2). We divide the proof in four di�erent cases.

In all cases except the �rst one, we will give a linear lower bound of `Spgnq in
terms of n. In all that follows, h is an element of Aab, s P ta, bu is a standard

generator, and W is an element of the centre ZpAabq.

Case 1: g � h � sk � h�1. Let M :� `Sphq � `Sph�1q. Then for any n P Z, we have

`Spgnq � `Sph � skn � h�1q ¤ `Sphq � `Spsknq � `Sph�1q �M � 1�M � 2M � 1.

Case 2: g � h � sk � h�1 �W with W � 1. Then there is a q � 0 such that g �
h � sk � h�1 � ∆q. Let g0 :� h � sk � h�1, then gn � pg0 � ∆qqn � gn0 � ∆qn. On one

hand we know by Case 1 that `Spgn0 q is uniformly bounded for all n ¥ 0. On the

other hand, `Sp∆qnq grows linearly in n, by Lemma 3.1.18. Putting these two

facts together shows that `Spgnq grows linearly as well.

Case 3: DN � 0 : gN P ZpAabq. By hypothesis, there is a q � 0 such that gN �
∆q. By Lemma 3.1.18, this means the quantity `SpgNnq grows linearly in n.

In particular, the quantity `SpgN �t n
N

uq grows linearly in n as well (for a smaller

constant). Note that the di�erence between `Spgnq and `SpgN �t n
N

uq is uniformly

bounded by the constant L :� maxt`Spgiq | i � 0, � � � , N � 1u. It follows that

`Spgnq also grows linearly in n.

Case 4: We are in none of the previous cases. Then by Lemma 3.1.14, g acts hy-
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perbolically on pT . In particular, the quantity d
pT p1
, gn � 1
q grows linearly. We

conclude with Lemma 3.1.13. l

3.2 On the geometry of the action

Let AΓ be a 2-dimensional Artin group of rank at least 3, and let DΓ be its

Deligne complex. Our goal is to show that there exists a vertex v P DΓ, and an

element g P AΓ satisfying the two hypotheses of Theorem 3.4.

3.2.1 The augmented Deligne complex

We have seen in Proposition 3.5.(1) that a strong enough condition for v to

satisfy the �rst hypothesis of Theorem 3.4 is to require that its local group Gv is

a dihedral Artin group Aab with coe�cient 3 ¤ mab   8. When such a vertex

v exists, it only remains to show that there exists an element g P AΓ such that

AabXgAabg�1 is �nite (i.e. trivial because dihedral Artin groups are torsion-free).

Our main geometric tool in order to �nd such an element is the following lemma:

Lemma 3.2.1. Let G be a group acting by simplicial isomorphisms on a CAT(0)

simplicial complex X of dimension 2. Let v P X, g P G and denote by Gp the

stabiliser of a point p P X. If the unique geodesic γ between v and gv goes through

a point with trivial stabiliser, then Gv XGgv � t1u.

Proof: Any element of GvXGgv �xes v and gv, hence �xes (pointwise) the unique

geodesic γ between them. This means that Gv XGgv � Gγ. Let p P γ be a point

with trivial stabiliser. Then we have

Gv XGgv � Gγ � Gp � t1u.

l

Strategy: The strategy of this section is led by the previous lemma. It is not

hard to see that if v P DΓ is a vertex with stabiliser Aab, then the stabiliser

of gv for some g P AΓ is exactly gAabg�1. Suppose additionally that v satis�es

Theorem 3.4.(1), which holds as soon as Aab is large. Our goal will be to construct

a geodesic between v and some gv that contains a point with trivial stabiliser.
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In the case of the Deligne complex, every point that lies in the interior of a base

triangle Tst or an edge es or est has trivial stabiliser, hence it is enough to show

that γ goes through the interior of such a triangle or edge. In some cases, this

will turn out to be quite di�cult to prove. However, everything will be more

manageable when working in some augmented version of the Deligne complex

(see De�nition 3.2.3).

The next Proposition will give the structure of the di�erent cases we will en-

counter:

Proposition 3.2.2. Let AΓ be a 2-dimensional Artin group of rank at least 3,

and suppose that Γ is connected and that AΓ is not a right-angled Artin group.

Then there exist three distinct generators a, b, c P S such that mab P t3, 4, � � � u,
mac P t2, 3, 4, � � � u, mbc P t2, 3, 4, � � � ,8u and

1

mab

� 1

mac

� 1

mbc

¤ 1,

where 1
8

:� 0. Moreover, we are in exactly one of the following situation:

(1) There is a triplet pa, b, cq as before that satis�es mbc   8.

(2) There is no triplet pa, b, cq as before with mbc   8, but there is one that

satis�es mbc � 8. Moreover, the graph Γbc obtained from Γ by adding an edge ebc

with coe�cient 6 is such that AΓbc has dimension 2.

(3) We are not in the �rst two situations, and Γ contains a cycle γ with coe�cients

p2, 2, 2, nq for some n ¥ 3, such that γ is full, in the sense that it does not contain

any non-homotopically-trivial strict subcycle.

Proof : We begin by proving the �rst statement. Because AΓ is not right-

angled, there is an edge eab in Γ with coe�cient mab P t3, 4, � � � u. As Γ is con-

nected and has at least 3 vertices, eab has a neighbouring edge in Γ, say eac,

with coe�cient mac P t2, 3, 4, � � � u. Since AΓ has dimension 2, the last coe�cient

mbc P t2, 3, 4, � � � ,8u satis�es:

1

mab

� 1

mac

� 1

mbc

¤ 1.

Let's now prove that we are in exactly one of the three cases. The three cases are

exclusive by de�nition, so it is enough to show that if we are not in one of the
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�rst two situations, then we must be in the third. To prove this, pick a triplet of

the form mab P t3, 4, � � � u, mac P t2, 3, 4, � � � u, mbc � 8. By hypothesis, the graph

Γbc obtained from Γ by adding an edge ebc with coe�cient 6 is such that AΓbc is

not 2-dimensional. This means that there is a generator d P S such that

1

6
� 1

mbd

� 1

mcd

¡ 1.

This is only possible ifmbd � mcd � 2. Notice thatmad � 8, otherwise the triplet

pa, b, dq would satisfy (1). This means that we have a full cycle pebd, ecd, eac, eabq
with coe�cients p2, 2,¥ 2,¥ 3q in Γ. If mac � 2, we are done. Suppose that

mac ¥ 3, and add an edge ead of coe�cient 6. Since AΓad is not 2-dimensional by

hypothesis and since
1

6
� 1

mab

� 1

mbd

¤ 1,

1

6
� 1

mac

� 1

mcd

¤ 1,

then there must be a �fth generator e P S such that

1

6
� 1

mae

� 1

mde

¡ 1.

For the same reasons as before, we have mae � mde � 2 and mce � 8. Hence

there is a full cycle peae, ede, ecd, eacq with coe�cients p2, 2, 2,¥ 3q in Γ. l

Recall that our goal in order to prove Theorem 3.1 is to apply Theorem 3.4.

For an irreducible 2-dimensional Artin group AΓ of rank at least 3, it turns out

that the Deligne complex DΓ is exactly the space that we want to act on, at least

in the �rst and third cases or Proposition 3.2.2. Unfortunately, in the second

case of Proposition 3.2.2, the space DΓ is not �t to apply our main geometric

tool that is Lemma 3.2.1. The reason, as will be seen later, is that we would

like to have three generators a, b, c P S for which all the triangles Tab, Tba, Tbc,

Tcb, Tca, and Tac belong to DΓ. This is not the case when mbc � 8. However,

notice that in the second case of Proposition 3.2.2, the complex obtained from

DΓ by adding the vertices of the form gvbc and their attached triangles gTbc, gTcb

is 2-dimensional by hypothesis. This slightly bigger complex, as de�ned in the

next de�nition, will be the one to look at when using Lemma 3.2.1 and Theorem
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3.4 in that case.

De�nition 3.2.3. Let AΓ be a 2-dimensional Artin group of rank at least 3

with Deligne complex DΓ and fundamental domain KΓ. We call the structure of

complex of groups on KΓ inherited from De�nition 2.4.17 the usual complex of

groups associated with KΓ.

Let now Γst be the same graph as Γ, except that we add an edge est with

coe�cient 6 between s and t ifmst � 8. Consider now the 2-dimensional complex

KΓst obtained from De�nition 2.4.17 for the group AΓst . In other words,

KΓst :�

$'&'%KΓ if mst   8
KΓ Y Tst Y Tts if mst � 8,

where the angle at vst in Tst or Tts is set to be π
12

if mst � 8. We now want to

realise AΓ as the fundamental group of a complex of groups over KΓst . Doing so,

we will give KΓst a structure of complex of groups, which may di�er from the one

coming from De�nition 2.4.17. When mst   8, KΓst � KΓ, and we proceed as

in De�nition 2.4.17: KΓst is simply the usual complex of groups associated with

AΓ. When mst � 8 however, KΓ is a strict subcomplex of KΓst , and we carry

the usual complex of groups associated with AΓ from KΓ onto the corresponding

subcomplex of KΓst . We still have to describe the local group at vst and the

associated maps. We just set this local group to be the free group Fst of rank 2.

The associated maps are the obvious morphisms that inject t1u, xsy and xty into
Fst. We call this structure of complex of group given to KΓst the augmented

complex of groups associated with AΓ (relatively to s and t).

If mst   8, the augmented complex of groups associated with AΓ coincides

with its usual complex of groups. If mst � 8, the augmented complex of groups

associated with AΓ is the same as the one we would get if we took the usual

complex of groups associated with AΓst , but then replaced the local group Ast at

vst, that is a dihedral Artin group with coe�cient 6, by the free group Fst. Note

that in both cases, the 2-dimensional complex under the augmented complex of

groups associated with AΓ is KΓst . The universal cover Dst
Γ of this complex of

groups is called the augmented Deligne complex of AΓ (relatively to s and
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t). In particular, in the light of De�nition 2.4.17, we have

Dst
Γ :� AΓ �KΓst {� ,

where pg, xq � pg1, x1q ðñ x � x1 and g�1g1 belongs to the local group of the

smallest simplex of KΓst that contains x. The action of AΓ on itself induces an

action of AΓ on Dst
Γ by simplicial morphisms with strict fundamental domain

KΓst .

Figure 3.3: Let Γ be a graph de�ned as a square with vertices a, b, c and d, such
that mac � 8. On the left: The usual complex of groups associated with AΓ.
In the centre: The augmented complex of groups associated with AΓ relatively to
a and c. On the right: The usual complex of groups associated with AΓac .
Note that the �rst two complexes of groups share the same fundamental groups,
and the last two complexes of groups share the same underlying 2-dimensional
complex.

Remark 3.2.4. (1) If mst   8, the augmented Deligne complex Dst
Γ and the

Deligne complex DΓ agree.

(2) If mst � 8, then Dst
Γ di�ers from DΓst , as the fundamental groups of their

associated complexes of groups are not the same: the former is AΓ while the lat-

ter is AΓst . In particular, Dst
Γ decomposes as a quotient of AΓ �KΓst , while DΓst

decomposes as a quotient of AΓst � KΓst . Note however that the fundamental

domains of these complexes are the same, as 2-dimensional complexes.

(3) It is important to notice that if a, b, s, t are four (non-necessarily all dis-

tinct) generators of AΓ satisfying pa, bq � ps, tq and mab   8, then LkDΓ
pvabq �

LkDst
Γ
pvabq (see Figure 3.3 for instance). In particular, results such as Lemma

3.1.2 or Proposition 3.5.(1) also hold for vab if we replace DΓ by Dst
Γ .

Lemma 3.2.5. Let AΓ be a 2-dimensional Artin group of rank at least 3, and

suppose that we are in the second case of Proposition 3.2.2. Then the augmented

Deligne complex Dbc
Γ of AΓ is CAT(0).
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Proof: By hypothesis AΓbc has dimension 2, hence its associated Deligne complex

DΓbc is CAT(0) (Theorem 2.4.22). We want to show that Dbc
Γ is CAT(0). By

Lemma 2.2.25, and up to reducing to the fundamental domain, it is enough to

show that every vertex v P KΓbc
satis�es

syspLkDbc
Γ
pvqq ¥ 2π. p�q

Notice that if v � vbc then

LkDbc
Γ
pvq � LkD

Γbc
pvq,

and thus p�q follows from the fact that DΓbc is CAT(0), along with Lemma 2.2.25.

If v � vbc, then the local group at v is the free group Fbc by de�nition. We

can do a similar analysis as the one done in Remark 2.4.21. This time, the maps

of the development inject into the free group Fbc. Therefore, the link LkDbc
Γ
pvbcq

is isomorphic to the barycentric subdivision of the Bass-Serre tree above the

segment of groups with local groups xby and xcy on the vertices and t1u on the

edge. In particular, LkDbc
Γ
pvbcq is simply-connected, i.e. has in�nite systole. l

3.2.2 Finding appropriate weakly malnormal subgroups

We are now ready to prove the following lemma, that shows the existence of ap-

propriate weakly malnormal subgroups of AΓ, one of the requirements of Theorem

3.4.

Lemma 3.2.6. Let AΓ be a 2-dimensional Artin group of rank at least 3, and

suppose that Γ is connected and that AΓ is not a right-angled Artin group. Then

there exists an Artin subgroup Aab with coe�cient 3 ¤ mab   8 and an element

g P AΓ such that Aab X gAabg
�1 � t1u.

Proof: By Proposition 3.2.2, we know that we either have three generators

a, b, c P V pΓq that satisfy exactly one of the following:

(1) mab,mac P t3, 4, � � � u and mbc P t3, 4, � � � ,8u;
(2) mac � 2, mab P t3, 4, � � � u and mbc P t5, 6, � � � ,8u;
(3) mac � 2, mab � mbc � 4.

Or we have four generators a, b, c, d P V pΓq satisfying:
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(4) The cycle pebc, ecd, ead, eabq is full in Γ and has coe�cients p2, 2, 2, nq with

n ¥ 3.

Let ∆ be the abstract complex (see Figure 3.4) de�ned by:


 In the situations (1), (2) and (3), ∆ :� Tab Y Tba Y Tbc Y Tcb Y Tca Y Tac.


 In the situation (4), ∆ :� Tab Y Tba Y Tbc Y Tcb Y Tcd Y Tdc Y Tda Y Tad.

Note that in either case, the points in the interior of ∆ have trivial stabilisers.

Also note that we don't have to look at the augmented Deligne complex in the

situations (1) and (2) if mbc   8, and neither do we in the situations (3) and

(4). However in those cases mbc   8, and hence Dbc
Γ � DΓ, so it will just be

convenient to write Dbc
Γ to cover all cases.

Figure 3.4: ∆ in the case (1), (2), (3) (on the left) and (4) (on the right).

Let now P be an abstract complex de�ned by P :� P0 {� , where P0 is de�ned

depending on the situations given in the beginning of the proof by:

(1) P0 :� ∆\ pc∆q.
(2) P0 :� ∆\ pc∆q \ pcb∆q \ pcbc∆q.
(3) P0 :� ∆\pc∆q\ pcb∆q\ pcbc∆q\ pcba∆q\ pcbca∆q\ pcbcab∆q\ pcbcabc∆q.
(4) P0 :� ∆\ pc∆q \ pd∆q \ pcd∆q.
And where � corresponds to the gluing shown in Figure 3.5, i.e. P is obtained

from P0 by gluing the di�erent copies of ∆ along some of their edges (drawn in

blue in Figure 3.5).
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Figure 3.5: Polygon P in the four di�erent cases, from left to right.

A priori, we can't be sure that there are no additional gluings happening in Dbc
Γ ,

so we don't want to look at P as a subcomplex of Dbc
Γ , but we want instead look

at P through the natural map f : P Ñ Dbc
Γ that maps P to Dbc

Γ .

Claim 1: P is isometrically embedded in Dbc
Γ .

Proof of Claim 1: In the light of [25, Lemma 1.4], it is enough to show that for

every p P P , the induced map fp : LkP ppq Ñ LkDbc
Γ
ppq is π-distance preserving,

i.e. that

@x, y P LkP ppq, dLkP ppqpx, yq ¥ π ñ dLk
Dbc

Γ
ppqpfppxq, fppyqq ¥ π.

There are two di�erent situations:


 If p P P is in the orbit of vH, then LkDbc
Γ
ppq is just the augmented de�ning

graph Γbc with the appropriate metric (see De�nition 3.2.3 and Remark 2.4.21).

Notice that, any edge est � es,st � et,st from s to t in Γbc has length

`pestq � 2 �=Hpvs, vstq � π � π

mst

¥ π

2
,

according to the metric on LkDbc
Γ
ppq. Since LkP ppq is simply the full cycle in Γbc

corresponding to the triangle peab, eac, ebcq (in the situations (1), (2) and (3)) or

to the square pebc, ecd, ead, eabq (in the situation (4)), we can apply [25, Lemma

1.6] and conclude that the map fp : LkP ppq ãÑ LkDbc
Γ
ppq is π-distance preserving.


 If p P P is not in the orbit of vH, then it is not hard to see from Remark 2.4.21

that every full cycle in LkP ppq has length exactly 2π. In particular, the map
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fp must be π-preserving, otherwise we would be able to build an isometrically

embedded cycle in LkDbc
Γ
ppq of length strictly less than 2π, contradicting the

CAT(0)-ness of Dbc
Γ (Theorem 2.4.22, Lemma 3.2.5 and Lemma 2.2.25). This

�nishes the proof of Claim 1.

We can now use [25, Lemma 1.4] and conclude that P is isometrically em-

bedded in X. In particular, geodesics in P project to geodesics in X through f .

Claim 2: Aab X gAabg
�1 � t1u for some g P AΓ.

Proof: Notice that P is CAT(0) by Lemma 2.2.25. In particular, it is uniquely

geodesic. Let γ be the geodesic in P de�ned depending on the situations given

in the beginning of the proof by:

(1) γ is the geodesic going from vab to cvab.

(2) γ is the geodesic going from vab to cbcvab.

(3) γ is the geodesic going from vab to cbcabcvab.

(4) γ is the geodesic going from vab to cdvab.

Note that γ is also geodesic in Dbc
Γ , by the previous claim. Thanks to Lemma

3.2.1, it is enough to show that γ goes through the interior of some g0∆ contained

in P . Consider either of the four situations and suppose that it is not the case.

Then in particular γ would be contained in the 1-skeleton of P . It is not hard

to check, since we know every angle in P by construction, that there must be a

vertex v in γ that satis�es =P
v pγq   π. This is not possible, as γ is a geodesic

and P is CAT(0). This �nishes the proof of Claim 2, and of the lemma. l

We have worked through everything that was required in order to use our

main criterion, that is Theorem 3.4. We can now prove our main Theorem:

Theorem 3.2.7. Every irreducible 2-dimensional Artin group of rank at least 3

is acylindrically hyperbolic.

Proof: Let AΓ be an irreducible 2-dimensional Artin group of rank at least 3. We

can assume that Γ is connected, as otherwise AΓ splits as a free product AΓ1 �AΓ2

of in�nite groups hence is acylindrically hyperbolic. We can also assume that AΓ

is not a right-angled Artin group, as every irreducible right-angled Artin group

that is not cyclic is acylindrically hyperbolic ([80, Section 8]).
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Let a, b, c P V pΓq be the three generators obtained in the proof of Lemma 3.2.6,

and consider the action of AΓ on its augmented Deligne complex Dbc
Γ . Note that

the latter is CAT(0) by Lemma 3.2.5 and Lemma 2.4.22. Since mab ¥ 3, we know

from Proposition 3.5.(1) and Remark 3.2.4 that the orbits of Aab on LkDbc
Γ
pvabq are

unbounded. Moreover, we know from Lemma 3.2.6 that there exists an element

g P AΓ such that AabX gAabg�1 � t1u. Therefore, we can apply Theorem 3.4 and

conclude that AΓ is either virtually cyclic or acylindrically hyperbolic. That AΓ

is not virtually cyclic is clear because it contains Z2 subgroups (Theorem 2.4.9).

l
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Chapter 4

Parabolic subgroups

This chapter corresponds to the pre-publication [29], and is a joint work with

María Cumplido and Alexandre Martin.

Parabolic subgroups form a natural class of subgroups that has been playing

an increasing role in the geometric study of Artin groups in recent years. Hence

why understanding their combinatorics has become a topic of interest on its

own. Although parabolic subgroups are thought to have a nice combinatorial

behaviour, most of the main questions about them remain open in general. In

this chapter we consider Artin groups of large-type and prove in that case that

the parabolic subgroups do behave nicely. Our main theorem is the following:

Theorem 4.1. Let AΓ be a large-type Artin group. Then the intersection of

an arbitrary subset of parabolic subgroups of AΓ is itself a parabolic subgroup.

Moreover, the set of parabolic subgroups of AΓ is a lattice for the inclusion.

Let AΓ be a large-type Artin group. Our strategy for studying the parabolic

subgroups of AΓ is geometric. To AΓ we associate a simplicial complex called its

Artin complex XΓ, whose geometry resembles that of the Deligne complex (see

Section 2.4.3), except that the Artin complex is constructed from the combina-

torics of all strict parabolic subgroups of AΓ, and not just the spherical ones. In

this complex, every strict parabolic subgroup appears as the stabiliser of some

simplices, and can thus be studied geometrically. The Artin complex associated

with an Artin group can be very high-dimensional, although we are able to under-

stand some of its geometric properties using tools coming from systolic geometry

(see Section 2.2.4).

72



Chapter 4 � Parabolic subgroups

Theorem 4.2. Let AΓ be a large-type Artin group of rank at least 3. Then its

Artin complex XΓ is systolic.

Large-type Artin groups were recently shown to be systolic groups ([57]).

However, we emphasise that the systolic geometry appearing here is of a rather

di�erent nature. The systolic complex associated to AΓ considered by Huang-

Osajda is essentially a (thickened) Cayley graph of AΓ for the standard generating

set, and as such is quasi-isometric to AΓ. By contrast, the Artin complex XΓ

studied here is quasi-isometric to the Cayley graph of AΓ with respect to all its

proper parabolic subgroups, and in particular the action of AΓ onXΓ is cocompact

but far from being proper.

Using Theorem 4.1, we are also able to solve the problem of conjugacy stability

for parabolic subgroups. A subgroup H of a group G is conjugacy stable if for

every pair of elements g, h P H such that g � α�1hα for some α P G there is a

β P H such that g � β�1hβ. We obtain the following result:

Theorem 4.3. Let AΓ1 be a standard parabolic subgroup of a large-type Artin

group AΓ. Then AΓ1 is not conjugacy stable in AΓ if and only if there exist

vertices a and b of Γ1 that are connected by an odd-labelled path in Γ and that are

not connected by an odd-labelled path in Γ.

Note that the previous theorem generalises to all parabolic subgroups of large-

type Artin groups, as conjugacy stability is preserved under subgroup conjuga-

tions. Another application of Theorem 4.1 and of the sytolicity of the Artin

complex is that parabolic subgroups are root stable:

Theorem 4.4. Let AΓ be a large-type Artin group, let P be a parabolic subgroup

of AΓ, and let g P AΓ. If g
n P P for some non-zero integer n, then g P P .

Studying the intersection properties of parabolic subgroups relies on under-

standing the sets of �xed-points and the normalisers of parabolic subgroups. In

particular, a consequence of our work is that we are able to recover the struc-

ture of the normaliser of every parabolic subgroup of a large-type Artin group.

Although these normalisers had already been studied by preceding authors, our

approach allows to recover these results independently and to give an explicit

description of these normalisers.

73



Chapter 4 � Parabolic subgroups

Theorem 4.5. Let AΓ be a large-type Artin group and let P be a parabolic sub-

group of AΓ


 If typepP q ¥ 2, then NpP q � P.


 If typepP q � 1, then NpP q splits as a direct product of the form NpP q � P �F,
where F is a �nitely-generated free group. Moreover, there is an explicit descrip-

tion of a basis of F (see Corollary 4.3.17 for details).

The structure of normalisers of parabolic subgroups in Artin groups of large

type had already been investigated by Paris and Godelle, although it is a bit

hidden in their papers. In [82], the conjugation of standard parabolic subgroups

is described by an algorithm. In particular, we know that the only pairs of

di�erent irreducible standard parabolic subgroups that can be conjugated are the

spherical ones. In the large case, as all parabolic subgroups are irreducible and

the only spherical parabolic subgroups are the dihedral ones, the situation is as

follows: AΓ1 and AΓ2 are conjugate if and only if Γ1 � Γ2 or Γ1 and Γ2 are vertices

that correspond to standard generators a and b respectively, such that a and b are

connected in Γ by an odd-labelled path. Using [42, De�nition 4.1, Corollary 4.12],

we know that the conjugating elements between two (possibly equal) standard

parabolic subgroups AΓ1 and AΓ2 must be the product of an element in AΓ and

an element associated to the previous path. If Γ1 has type at least 2, such a

path does not exists and then NpAΓ1q � AΓ1 . If Γ1 has type 1, the description

of the normaliser is similar to the one given in Corollary 4.3.17. However, the

description Godelle gives there is set-theoretic and does not describe the direct

product structure.

The structure of the normaliser of cyclic parabolic subgroups for large-type

Artin groups (and more generally 2-dimensional Artin groups) had been obtained,

albeit under a di�erent name, in [75, Proposition 4.5]. Moreover, a basis of the

corresponding free group had been stated as a remark, but without details.

We organise this chapter as follows. In Section 4.1, we introduce the Artin

complex of a general Artin group, and show that its local structure is particularly

well-behaved, in the sense that the links of simplices are themselves (smaller)

Artin complexes. We then use this local structure to prove Theorem 4.2. Section

4.2 exploits the systolic geometry of the Artin complex to prove Theorem 4.1. In
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Section 4.3, we study the geometry of �xed-point sets of parabolic subgroups in

order to prove Theorem 4.5. Finally, we prove Theorem 4.3 and Theorem 4.4 in

Section 4.4.

4.1 Systolicity of the Artin complex

The goal of this section is to introduce our main geometric object, that is the

Artin complex associated to an Artin group. Later on, we present some of its basic

properties, and we show its systolicity for the case of large-type Artin groups.

De�nition 4.1.1. Consider an Artin group AΓ of rank n ¥ 2, and a simplex SΓ

of dimension n�1. We de�ne a simplex of groups over SΓ as follows. The simplex

SΓ is given a trivial local group. There is a one-to-one correspondence between

the standard generators si P V pΓq and the codimension 1 faces of SΓ, and we

denote by ∆si these codimension 1 faces. In particular, ∆si is given the local

group xsiy. Changing the codimension, there is a bijection between the strict

subsets of V pΓq and the faces of SΓ. Every face of K of codimension k can be

written uniquely as the intersection

∆Γ1 :�
£

siPV pΓ1q

∆si for some Γ1 induced strict subgraph of Γ with |V pΓ1q| � k.

The face ∆Γ1 is then given the local group AΓ1 . The morphism associated to an

inclusion of faces ∆Γ2 � ∆Γ1 is the natural inclusion ψΓ1Γ2 : AΓ2 ãÑ AΓ1 . Let Q be

the poset of standard parabolic subgroups of AΓ ordered with natural inclusion.

As each AΓ1 is itself an Artin group, there is a simple morphism ϕ : GpQq ãÑ AΓ

given by inclusion. The complex XΓ :� DpSΓ, ϕq obtained by development of SΓ

along ϕ is called the Artin complex associated to AΓ (see De�nition 2.3.4).

The action of AΓ on XΓ is without inversions and cocompact, with strict

fundamental domain a single simplex which is isomorphic to SΓ. To avoid any

confusion, we will from now on denote by SΓ the quotient space and by ∆Γ1 its

faces, and we will denote by SΓ a chosen fundamental domain of XΓ and by ∆Γ1

its faces. For every simplex ∆ of XΓ, there is a unique induced subgraph Γ1 � Γ

such that ∆ is the same orbit as ∆Γ1 . We say that the simplex ∆ is of type Γ1.

In light of De�nition 2.3.4, the Artin complex XΓ can also be described by
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the following:

XΓ � AΓ �K {� ,

where pg, xq � pg1, x1q ðñ x � x1 and g�1g1 belongs to the simplex supppxq.

As for the Deligne complex, there is an equivalent de�nition of the Artin

complex in terms of the combinatorics of the parabolic subgroups:

Remark 4.1.2. Consider the following combinatorial complex PΓ:


 The vertex set of PΓ is the poset of left-cosets of all the strict standard parabolic

subgroups of AΓ.


 There is a pn�1q-simplex between vertices ofDΓ corresponding to the left-cosets

g1AΓ1 , . . . , gnAΓn whenever there is a sequence of inclusions gnAΓn � � � � � g1AΓ1 .

Then PΓ is exactly the barycentric subdivision of XΓ.

Note that the Artin complex resembles to the Deligne complex (see Section

2.4.3), although in the Artin complex we consider all the (strict) parabolic sub-

groups, and not only the ones that are spherical.

Lemma 4.1.3. Let AΓ be an Artin group and let XΓ be its Artin complex. Then

XΓ is connected. Additionally, if AΓ has rank at least 3, then XΓ is simply-

connected.

Proof: This is a consequence of De�nition 2.3.4. XΓ is connected because the

Artin group AΓ is generated by its standard parabolic subgroups. Moreover, if

AΓ has rank at least 3, then AΓ is the colimit of its strict standard parabolic

subgroups, by Theorem 2.4.4, and thus XΓ is simply-connected. l

Lemma 4.1.4. Let AΓ be an Artin group with Artin complex XΓ. Then the link

of a simplex of type Γ1 is isomorphic to the Artin complex XΓ1 associated to the

Artin group AΓ1.

Proof: By [17, Construction II.12.24], it is possible to describe the link of a

simplex in the development of a complex of groups as the development of an

appropriate subcomplex of groups (as we did in Remark 2.4.21). We explain

below how this applies to XΓ.

The link of ∆Γ1 in SΓ is a simplex of dimension |V pΓq1| � 1, whose poset of

faces is isomorphic to the poset of proper subsets of Γ1 ordered with the inclusion.
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The complex of groups GpSΓq induces a complex of groups on the link LkSΓ

�
∆Γ1
�
.

Moreover, there is a simple morphism ϕΓ1 : GpLkSΓ

�
∆Γ1
�q Ñ AΓ1 given by the

family of homomorphisms

pϕΓ1qΓ2 : AΓ2
ψΓ1Γ2ÝÑ AΓ1 .

It follows from the construction described in [17, Construction II.12.24] that the

link of LkXΓ
p∆Γ1q is isomorphic to the development DpLkSΓ

�
∆Γ1
�
, ϕS1q. Note

that the induced complex of groups on LkSΓ

�
∆Γ1
�
is naturally isomorphic to the

complex of groups associated to AΓ1 in De�nition 4.1.1. Moreover, the simple

morphism ϕΓ1 coincides with the simple morphism used in De�nition 4.1.1 to

de�ne the Artin complex XΓ1 . Putting everything together, it now follows that

the link LkXΓ
p∆Γ1q is isomorphic to XΓ1 .

This argument generalises in a straightforward way to any simplex g∆Γ1 of

XΓ of type Γ1. l

We now move towards proving Theorem 4.2, that is, proving that the Artin

complex associated with any Artin group of large type is systolic. For more details

about systolicity, we refer the reader to Section 2.2.4. The main result we prove

about the geometry of the Artin complex is the following:

Theorem 4.1.5. Let AΓ be an Artin group of rank at least 3. If all coe�cients

in AΓ are at least k P t3, . . . ,8u, then its Artin complex XΓ is 2k-systolic. In

particular, if AΓ is of large type, then XΓ is systolic.

In order to prove this theorem, we need the following lemma:

Lemma 4.1.6. Let AΓ be an Artin group on two generators a, b with coe�cient

mab P t3, . . . ,8u and Artin complex XΓ. Then syspXΓq � 2mab.

Proof: If mab � 8, it follows directly from the de�nition of the Artin complex

that XΓ is the Bass-Serre tree associated to the splitting xay � xby. The result is
then immediate. Let us now assume thatmab   8. Let e be the edge inXΓ whose

vertices x, y correspond to the cosets xay and xby. Let γ be a non-backtracking

loop in XΓ. Since XΓ is a bipartite graph coloured by the cosets of xay and xby
respectively, the length of γ is even. Denote by e0, e1, . . . , ek the edges of γ. Since

77



Chapter 4 � Parabolic subgroups

the action of AΓ on XΓ is transitive on edges, let us assume that e0 � e. Note

that the action of xay is transitive on the set of edges around x, and so is the

action of xby on the edges around y. Assume without loss of generality that γ

�rst goes through x, i.e. e1 and e0 share the vertex x. Then e1 must be of the

form ar1e, for some r1 P Zzt0u. Note that the edges e1 and e2 then share the

vertex ar1y. The action of ar1xbya�r1 is transitive on the set of edges around ar1y,

thus e2 must of the form ar1br2e, for some r2 P Zzt0u. We continue this process

by induction until γ stops. In particular, the �nal edge ek is of the form

ar1br2 � � � ark�1brk

for some r1, . . . , rk � 0. Since ek � e as γ is a loop, we get ar1br2 � � � ark�1brke � e.

Since Stabpeq � t1u, it follows that ar1br2 � � � ark�1brk must be trivial in AΓ. But

it is also a non-trivial word, as γ is not homotopically trivial. By [1, Lemma 6],

we must have k ¥ 2mab. Hence, the combinatorial length of γ is |γ| � k ¥ 2mab.

l

Proof of Theorem 4.1.5: We will prove by induction on the number |V pΓq| of
generators of the Artin groups AΓ that their associated Artin complexes XΓ are

2k-systolic.

If |V pΓq| � 3, we know from Lemma 4.1.3 that XΓ is connected and simply

connected. It only remains to show that for all g P AΓ, for all induced subgraph

Γ1 � Γ, the simplex g �∆Γ1 is such that LkXΓ
pg �∆Γ1q is 2k-large. If |V pΓ1q| � 2,

then the link LkXΓ
pg �∆Γ1q is isomorphic to the Artin complex XΓ1 associated to

the Artin group AΓ1 (Lemma 4.1.4), and the latter is 2k-large by Lemma 4.1.6.

The cases |V pΓ1q| � 0 or 1 are trivial.

Let us now assume that |V pΓq| ¡ 3 and that every Artin complex AΓ1 with

Γ1 an induced subgraph of Γ is 2k-systolic. Again, we know from Lemma 4.1.3

that XΓ is connected and simply connected, so it only remains to show that for

all g P AΓ, for all induced subgraph Γ1 � Γ, the simplex g � ∆Γ1 is such that

LkXΓ
pg �∆Γ1q is 2k-large. If |V pΓ1q| ¥ 2, then Lkpg �∆Γ1 , XΓq is isomorphic to the

Artin complex XΓ1 associated to the Artin group AΓ1 (Lemma 4.1.4). The latter is

2k-systolic by the induction hypothesis, hence is 2k-large as well ([62, Proposition

1.4]). Once again, the cases |V pΓ1q| � 0 or 1 are trivial. l
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4.2 Intersection of parabolic subgroups

The aim of this section is to use the systolicity of the Artin complex of an Artin

group of large type to prove Theorem 4.1. Most of the work will be to prove the

Theorem 4.2.2 below.

De�nition 4.2.1. Let P1 and P2 be two parabolic subgroups of an Artin group

AΓ such that P1 � P2. We say that P1 is a parabolic subgroup of P2 if P1 � P2

is conjugate to an inclusion of standard parabolic subgroups AΓ2 � AΓ1 .

Theorem 4.2.2. Let AΓ be an Artin group of large-type. Then:

(1) The intersection of two parabolic subgroups of AΓ is again a parabolic subgroup

of AΓ.

(2) If P1 and P2 are two parabolic subgroups of AΓ such that P1 � P2, then P1 is

a parabolic subgroup of P2.

Note that the second item in the previous theorem is already a result of [42].

However, we believe the reader may be interested in recovering this result directly

from our perspective.

First notice that the Artin complex allows us to understand geometrically the

parabolic subgroups of AΓ, via the following correspondence:

Lemma 4.2.3. Let AΓ be an Artin group of rank at least 3 and let XΓ be its

associated Artin complex. Then:

(1) The strict parabolic subgroups of AΓ are exactly the stabilisers of simplices of

XΓ.

(2)Let ∆ be a simplex of XΓ. The parabolic subgroups of StabXΓ
p∆q are exactly

the stabilisers of the simplices that contain ∆.

Proof: By construction, every strict standard parabolic subgroup AΓ1 is precisely

the stabiliser of some simplex ∆Γ1 lying on the fundamental domain SΓ of XΓ,

and vice versa. Moreover, any parabolic subgroup of the form gAΓ1g
�1 is the

stabiliser of the simplex g �∆Γ1 for some g P AΓ. To prove the �rst claim, notice

that any simplex of XΓ can be expressed as g1 �∆1, where ∆1 is in SΓ and g1 P AΓ.

Let us now prove the second claim. On the one hand, let P be a parabolic

subgroup of StabXΓ
p∆q. Up to conjugation, we can suppose that ∆ lies in SΓ

and that P is the stabiliser of a simplex ∆1 that also lies in K. Now notice
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that, by construction of the fundamental domain, this implies that ∆1 contains

∆, as we desired. On the other hand, note that if ∆2 is a simplex that con-

tains ∆, then we can �nd an element g P AΓ such that g � ∆2 belongs to SΓ.

Hence g1StabXΓ
p∆2qg1�1 � g1StabXΓ

p∆qg1�1 is an inclusion of standard parabolic

subgroups, as we wanted to prove. l

Remark 4.2.4. The previous correspondence is not a bijection between the

parabolic subgroups of AΓ and the simplices of its Artin complex, as two dis-

tinct simplices may have the same stabiliser.

Secondly, we mention the following result from systolic geometry that will be

used in our proof:

Lemma 4.2.5. Let G be a group acting without inversions on a systolic complex

Y , and let H be a subgroup of G. Suppose that H �xes two vertices v and v1 of

Y . Then H �xes pointwise every combinatorial geodesic between v and v0.

Proof: We prove the result by induction on the combinatorial distance between

v and v1. If dpv, v1q � 1, the result is immediate, as there is a unique edge between

v and v1. Suppose by induction that the result is true for vertices at distance at

most n ¥ 1, and let v, v1 be two vertices of Y at distance n�1. Since Y is systolic,

it follows from [62, Corollary 7.5] that the combinatorial ball of radius n around

v1, denoted BY pv1, nq, is a convex subset of Y in the sense of [62, De�nition 7.1].

Moreover, by [62, Lemma 7.7], this combinatorial ball intersects the combinatorial

ball BY pv, 1q along a single simplex. This implies that there exists a simplex ∆

of Y containing v, and such that every combinatorial geodesic from v to v1 starts

with an edge of ∆. In particular, we de�ne ∆1 as the simplex of Y spanned by

the �rst edges of all the combinatorial geodesics from v to v1. Since H �xes v and

v1, H preserves the set of combinatorial geodesics from v to v1, and in particular

H stabilises ∆1. Since G acts on Y without inversion, it follows that H �xes ∆1

pointwise.

Let γ be a combinatorial geodesic from v to v1. By the above, H �xes the

�rst edge e of γ. Let v1 be the vertex of e distinct from v. We have that H

�xes v1 and v1, and these two vertices are at combinatorial distance n. By the

induction hypothesis, H �xes pointwise the portion of γ between v1 and v1, and

it now follows that H �xes pointwise all of γ. This concludes the induction. l
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Proof of Theorem 4.2.2: The two points of the Theorem are trivial if one of

the two parabolic subgroups is either the whole group or trivial. So we suppose

both parabolic subgroups are proper. We will prove the theorem by induction on

the rank n of AΓ.

If n � 2, AΓ is an Artin group on two generators a, b and there are two cases

to consider. If mab   8, then AΓ is a spherical Artin group, so the �rst point of

the theorem follows from [23, Theorem 9.5] and the second point of the theorem

follows from [40, Theorem 0.2]. If mab � 8, then AΓ is a free group on two

generators a, b. Moreover, the proper parabolic subgroups are either trivial or

in�nite cyclic. Since the action of AΓ on the Bass-Serre tree associated to the

splitting xay � xby has trivial edge stabilisers, it follows that two distinct proper

parabolic subgroups intersect trivially. Thus the two points of the theorem follow

immediately.

Let us now assume that the result is known for large-type Artin groups of

rank ¤ n with n ¥ 2, and let AΓ be a large-type Artin group of rank n� 1. Let

XΓ be its associated Artin complex.

Claim 1: Let e1, . . . , ek be a combinatorial path p in XΓ. Then there exists a

simplex ∆ of XΓ containing the edge ek such that

£
1¤i¤k

StabXΓ
peiq � StabXΓ

p∆q.

Proof of Claim 1: We will prove the claim by induction on k. If k � 1, p is just

the edge e1 and the proof is trivial. Now suppose that the claim is true for k and

let us prove it for k � 1. By applying the induction hypothesis to the subpath

e1, . . . , ek, we will then have

£
1¤i¤k�1

StabXΓ
peiq � StabXΓ

p∆1q X StabXΓ
pek�1q,

where ∆1 is a simplex containing the edge ek. Let v be a vertex contained

in both ek and ek�1. By Lemma 4.2.3, this means that both StabXΓ
p∆1q and

StabXΓ
pek�1q are parabolic subgroups of StabXΓ

pvq. Also, up to conjugacy, Stabpvq
is an Artin group on n generators. Therefore, by the induction hypothesis

on n, StabXΓ
p∆1q X StabXΓ

pek�1q is a parabolic subgroup of Stabpvq contained
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in StabXΓ
pek�1q, so it is a parabolic subgroup of StabXΓ

pek�1q. Geometrically,

StabXΓ
p∆1qXStabXΓ

pek�1q is the stabiliser of some simplex containing ek�1. This

�nishes the proof of Claim 1.

Claim 2: Let ∆1 and ∆2 be two simplices of XΓ. Then there exists a simplex ∆

of XΓ containing ∆2 such that StabXΓ
p∆1q X StabXΓ

p∆2q � StabXΓ
p∆q.

Proof of Claim 2: Let ∆1 be any simplex of XΓ and let V∆1 be the set of vertices

of ∆1. As the action of AΓ onXΓ is without inversions, we have that StabXΓ
p∆1q �

XwPV∆1Stabpwq. De�ne a combinatorial path p that is the concatenation of the

three following paths: a combinatorial path p1 that travels along every vertex

in V∆1 ; a combinatorial geodesic p2 between the endpoint of p1 and V∆2 ; and

a combinatorial path that starts in the endpoint of p2 and travels along every

vertex in V∆2 . Denote the endpoint of p by v and let Ep be the set of edges of p.

Then, using Claim 1 and Lemma 4.2.5, we obtain

StabXΓ
p∆1qXStabXΓ

p∆2q �
£

wPV∆1
YV∆2

StabXΓ
pwq �

£
ePEp

StabXΓ
peq � StabXΓ

p∆q,

for some simplex ∆ containing v. Now we need to show that ∆ contains also ∆2.

Notice that StabXΓ
p∆2q contains StabXΓ

p∆q and both StabXΓ
p∆2q and StabXΓ

p∆q
are parabolic subgroups of StabXΓ

pvq. This group is, up to conjugacy, an Artin

group on n generators. So by using the induction hypothesis on n, StabXΓ
p∆q

is a parabolic subgroup of StabXΓ
p∆2q, which means that we can choose ∆ to

contain ∆2. This �nishes the proof of Claim 2.

In particular, note that Claim 2 together with Lemma 4.2.3 implies that the

parabolic subgroups of AΓ are stable under intersection, proving the �rst point

of the Theorem.

Claim 3: For every pair of simplices ∆1 and ∆2 of XΓ such that StabXΓ
p∆1q �

StabXΓ
p∆2q, there exists a simplex ∆ ofXΓ containing ∆2 such that StabXΓ

p∆1q �
StabXΓ

p∆q.

Proof of Claim 3: Just notice that StabXΓ
p∆1q � StabXΓ

p∆1q X StabXΓ
p∆2q,

so by Claim 2 there is a simplex ∆ containing ∆2 such that StabXΓ
p∆1q �

StabXΓ
p∆q. This �nishes the proof of Claim 3.
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We now explain why this claim implies that AΓ satis�es the second point of

the Theorem. Let P1 and P2 be two parabolic subgroups of AΓ such that P1 � P2.

By Lemma 4.2.3 there are simplices ∆1 and ∆2 of AΓ such that P1 � StabXΓ
p∆1q

and P2 � StabXΓ
p∆2q. By Claim 3, there exists a simplex ∆ of XΓ containing ∆2

such that StabXΓ
p∆1q � StabXΓ

p∆q. Again by Lemma 4.2.3, this means that P1

is a parabolic subgroup of P2, as we wanted to prove. l

Remark 4.2.6. Notice that the only place where the systolic geometry was

used in the previous proof is the argument coming from Lemma 4.2.5 that says

that if an element �xes two simplices, then it �xes pointwise a combinatorial

path between these simplices. Therefore, a strong enough requirement to prove

Theorem 4.2.2 for any Artin group AΓ is to have this �xing-path condition in its

Artin complex XΓ.

We can generalise some interesting results concerning parabolic subgroups

that were previously shown for spherical Artin groups ([23]):

Corollary 4.2.7. Let AΓ be an Artin group of large type. Then, an arbitrary

intersection of parabolic subgroup of AΓ is a parabolic subgroup. In particular,

(1) For a subset B � AΓ, there is a unique minimal parabolic subgroup of AΓ

(with respect to the inclusion) containing B ;

(2) The set of parabolic subgroups of AΓ is lattice with respect to the inclusion.

The strategy will be the same standard argument used in [23]. We can �nd

the generalised FC version of the �rst statement for spherical parabolic subgroups

in [73].

Proof of Corollary 4.2.7: Let P be an arbitrary set of parabolic subgroups

of AΓ and let Q :� �
PPP

P . The set Q is contained in every parabolic subgroup

in P , so by Theorem 4.2.2, we just need to prove that Q is equivalent to a

�nite intersection of parabolic subgroups. Notice that every parabolic subgroup

is expressed as the conjugate of some standard parabolic subgroup. Since AΓ is a

countable group and standard parabolic subgroups of AΓ are �nitely generated,

the set of parabolic subgroups of AΓ is countable. In particular, P is countable.

Enumerate the elements in P � tP1, P2, P3, . . . u and let

Qm �
£

1¤i¤m

Pi.
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By Theorem 4.2.2, all Qm's belong to P . As Q � XiPNQm, we need to show that

the set tQm |m P Nu is �nite.
Let XΓ be the Artin complex of AΓ. Notice that we have a descending chain

Q1 � Q2 � Q3 � . . . .

By doing an induction on the Claim 3 in the proof of Theorem 4.2.2, one can

easily see that if StabXΓ
p∆1q � StabXΓ

p∆2q � StabXΓ
p∆3q . . . , the dimension

of ∆i has to be strictly bigger than the dimension of ∆i�1. As the dimension of

XΓ is �nite, the chain cannot be in�nite. Therefore, Q is the minimal parabolic

subgroup on P .

We now prove the two statements of Corollary 4.2.7. To see the �rst statement,

just assume that P � tP |B � P u. For the second statement let P1 and P2 be

any two parabolic subgroups of AΓ. We need a maximal parabolic subgroup R1

contained in P1 and P2 and a minimal parabolic subgroup R2 containing P1 and

P2. By all the previous discussion, we can set R1 � P1XP2 and R2 is the minimal

parabolic subgroup in P when P � tP |P1 Y P2 � P u. l

4.3 Normalisers and �xed-point sets of parabolic

subgroups

The goal of this section is to prove Theorem 4.5. In all this section we consider

an Artin group AΓ of rank at least 3. For a parabolic subgroup P of AΓ, we

denote by FixpP q (or FixXΓ
pP q if we wish to highlight the ambient complex) the

�xed-point set of P in XΓ. Since AΓ acts on XΓ without inversions, FixpP q is a
subcomplex of XΓ. The connection between the normaliser NpP q of a parabolic

subgroup P and its �xed-point set FixpP q is given by the following:

Lemma 4.3.1. Let P be a parabolic subgroup of AΓ. Then the normaliser NpP q
of P satis�es

NpP q � StabpFixpP qq.

In addition, an element of AΓ belongs to NpP q if and only if it sends some

maximal simplex of FixpP q to some maximal simplex of FixpP q.
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Proof: p�q Let g P NpP q, that is, gP � Pg, and let v P FixpP q. Then

P � pg � vq � g � pP � vq � g � v.

In particular, g�v P FixpP q and thus g P StabpFixpP qq. p�q Let g P StabpFixpP qq
and let ∆ � FixpP q be a maximal simplex in the sense that Stabp∆q � P . Then

g �∆ P FixpP q, thus
P � pg �∆q � g �∆.

In particular, gPg�1 �xes ∆, hence gPg�1 � P . In other words, g P NpP q. l

The key geometric result to prove Theorem 4.5 by means of studying �xed-

point sets is the following:

Proposition 4.3.2. Let AΓ be a large-type Artin groups, and let P be a parabolic

subgroup of AΓ of type S 1.


 If |S 1| ¥ 2, then FixpP q is a single simplex.


 If |S 1| � 1, then FixpP q is a subcomplex whose dual graph is a simplicial tree

(see De�nition 4.3.8 for the terminology).

The proof of the above proposition will be split into two cases. We �rst

mention a useful observation that will allow for proofs by induction:

Lemma 4.3.3. For a simplex ∆ of FixpP q of type Γ2, the link LkFixpP qp∆q is
isomorphic to FixXΓ2

pP q.

Proof: We have LkFixpP qpσq � FixpP qXLkXΓ
pσq. Since LkXΓ

pσq is equivariantly
isomorphic to XΓ2 by Lemma 4.1.4, the previous intersection is thus isomorphic

to FixXΓ2
pP q. l

We start with the case of a parabolic subgroup P of type at least 2.

Lemma 4.3.4. Let AΓ1 be a standard parabolic subgroup of type at least 2. Then

FixpAΓ1q is a single simplex ∆ such that Stabp∆q � AΓ1.

Proof: We begin with the following claim:

Claim: If a subcomplex Y of XΓ is such that all of its links are simplices or empty,

then Y itself is a simplex.
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Proof of the Claim: If Y is not a simplex, then it contains a combinatorial

path u, v, w that forms a geodesic of XΓ. The two vertices u,w de�ne two vertices

of LkY pvq at distance at least 2 by assumption, hence LkY pvq is not a simplex,

which proves the Claim.

Recall from Lemma 4.3.3 that for a simplex ∆ of FixpP q corresponding

to a simplex of type Γ2, the link LkFixpP qp∆q is isomorphic to FixXΓ2
pP q. If

|V pΓqzV pΓ1q| � 1, then FixpP q must be a single vertex v, as if it weren't, it

would follow from the convexity of FixpP q (Lemma 4.2.5) that P �xes an edge

of XΓ, which is impossible since in that case P is a maximal proper parabolic

subgroup of AΓ. FixpAΓ1q being a single simplex now follows by induction on

|V pΓqzV pΓ1q| ¥ 1 by applying the above Claim. The dimension of FixpAΓ1q is
|V pΓqzV pΓ1q| � 1, so by maximality its stabiliser has to be AΓ1 . l

Corollary 4.3.5. If P is a parabolic subgroup of AΓ of type at least 2, then

NpP q � P .

Proof: By Lemma 4.3.1 we know that NpP q � StabpFixpP qq. Moreover, we

know from Lemma 4.3.4 that there is a simplex ∆ in XΓ such that FixpP q � ∆

and Stabp∆q � P . In particular,

NpP q � StabpFixpP qq � Stabp∆q�P.

l

We now move to the case of a parabolic subgroup of type 1. We start with

the following general observation:

Lemma 4.3.6. Let P be a parabolic subgroup of AΓ. Then FixpP q is contractible.

The proof of this lemma will rely on the following notion of convexity from [62]:

De�nition 4.3.7. A subcomplex Y of a simplicial complex X is 3-convex if

every pair of vertices of Y that are adjacent in X are adjacent in Y , and every

combinatorial geodesic of length 2 with endpoints in Y is contained in Y . It is

locally 3-convex if for every simplex σ of Y , the link LkY pσq is 3-convex in

LkXpσq.
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Proof of Lemma 4.3.6: By Lemma 4.2.5, FixpP q contains every geodesic

between two vertices of FixpP q. In particular, it is connected and 3-convex,

hence locally 3-convex by [62, Fact 3.3.1]. By [62, Lemma 7.2], FixpP q is thus
contractible. l

It turns out that such �xed-point sets have a very simple geometry. We

introduce the following:

De�nition 4.3.8. Le P be a parabolic subgroup of type 1 of AΓ. The dual

graph TP of FixpP q is de�ned as follows:


 Vertices of TP correspond to the simplices of FixpP q of type Γ1 with |V pΓ1q| � 1

(called type 1 vertices) or of type Γ1 with |V pΓ1q| � 2 (called type 2 vertices).


 We put an edge between a type 1 vertex ∆ and a type 2 vertex ∆1 whenever

∆1 � ∆.


 Finally, TP is the subgraph obtained by removing the type 2 vertices that have

valence 1.

We think of TP as a subgraph of the �rst barycentric subdivision of FixpP q.
Lemma 4.3.9. The dual graph TP is a simplicial tree.

In a nutshell, the proof of Lemma 4.3.9 goes as follows: We construct a

sequence of subcomplexes

X0 � X1 � � � � � Xk,

where X0 is the �rst barycentric subdivision of FixpP q and Xk � TP , and such

that for each 0 ¤ i ¤ k � 1, Xi�1 is a deformation retract of Xi. Since X0

is contractible by Lemma 4.3.6, it will then follow that the graph TP is also

contractible, hence is a tree.

We will need the following standard result from algebraic topology to construct

deformation retractions:

Lemma 4.3.10. Let X be a simplicial complex, and let v be a vertex of X whose

link LkXpvq is contractible. Then the subcomplex spanned by X� v is a deforma-

tion retract of X.

Proof: Since the star StXpvq is isomorphic to a cone over LkXpvq, we �rst notice
that X is obtained from X � v by coning-o� the contractible link LkXpvq. Recall

87



Chapter 4 � Parabolic subgroups

that for a simplicial complex Y and a contractible subcomplex Z, the quotient

map Y Ñ Y {Z obtained by collapsing Z to a point is a homotopy equivalence

(see [52, Proposition 0.17]). We thus have the following commutative diagram:

where both vertical arrows are homotopy equivalences since LkXpvq and its

cone StXpvq are contractible. Thus, the inclusion X � v ãÑ X is a homotopy

equivalence, and it follows from [52, Corollary 0.20] that the subcomplex spanned

by X � v is a deformation retract of X. l

Proof of Lemma 4.3.9: Consider the barycentric subdivision FixpP q1 of FixpP q.
A vertex v of FixpP q1 corresponds to a simplex of FixpP q; We will call the dimen-

sion of the corresponding simplex the height of v. For every 0 ¤ k ¤ |V pΓq| � 2,

we de�ne the subcomplex Xk of FixpP q1 spanned by the vertices of height at least

k. In particular, X0 � FixpP q1 and X|V pΓq|�2 is a subgraph of FixpP q1 containing
TP . We now show that for every 0 ¤ k ¤ |V pΓq| � 3, Xk�1 is a deformation

retract of Xk. Notice that Xk is obtained from Xk�1 by adding for every vertex v

of height k the star StXk
pvq, which is isomorphic to a simplicial cone over the

link LkXk
pvq. Let v be a vertex of height 0 ¤ k ¤ |V pΓq| � 3. This vertex corre-

sponds to a simplex ∆ of FixpP q of type Γ1 for some induced subgraph Γ1 � Γ

with |V pΓq1| ¥ 3. Note that a vertex of Xk adjacent to v must have height greater

than k by construction, hence the link LkXk
pvq is isomorphic to the �rst barycen-

tric subdivision of LkFixpP qp∆q. In particular, LkXk
pvq is isomorphic to the �rst

barycentric subdivision of FixXΓ1
pP q by Lemma 4.3.3, and hence is contractible

by Lemma 4.3.6. It thus follows from Lemma 4.3.10 that Xk�1 is a deformation

retract of Xk�1 Y StXk
pvq. Since for two distinct vertices v, v1 of height k, the

subcomplexes Xk�1 Y StXk
pvq and Xk�1 Y StXk

pv1q intersect along Xk�1, we can

glue the various deformation retractions into a deformation retraction of

Xk � Xk�1 Y
¤

heightpvq�k

StXk
pvq
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onto Xk�1. Thus, for every 0 ¤ k ¤ |V pΓq| � 3, Xk�1 is a deformation retract of

Xk. Thus, the graph X|V pΓq|�2 is a deformation retract of X0 � FixpP q1. Since

the latter complex is contractible by Lemma 4.3.6, so is the graph X|V pΓq|�2,

and it follows that X|V pΓq|�2 is a tree. Finally, TP is obtained from X|V pΓq|�2 by

removing the type 2 vertices that have valence 1. Thus, TP is a deformation

retract of X|V pΓq|�2, hence TP is a tree. l

Note that sinceNpP q � StabpFixpP qq by Lemma 4.3.1, NpP q acts on FixpP q,
hence on the dual tree TP . We will use this action to prove the following:

Lemma 4.3.11. The normaliser NpP q of P splits as a direct product P � F ,

where F is a �nitely generated free group.

Remark 4.3.12. It can be shown that the tree TP is NpP q-equivariantly isomor-

phic to the standard tree associated to P as considered in [75, De�nition 4.1].

In particular, the proof of Lemma 4.3.11 is essentially the same as the proof of

[75, Lemma 4.5]. We however include a proof formulated in our setting for the

sake of self-containment.

Since P is a normal subgroup of NpP q acting trivially on TP by construction

of FixpP q, we can look at the induced action of NpP q{P on TP . We will use this

action to completely describe the normaliser NpP q. We �rst need the following

result:

Lemma 4.3.13. For the action of NpP q{P on TP we have:


 Type 1 vertices of TP have a trivial stabiliser.


 Type 2 vertices of TP have an in�nite cyclic stabiliser.

Proof: We �rst recall that the centre of a dihedral Artin group Aab with 3 ¤
mab   8 is an in�nite cyclic subgroup, whose generator is a power of the Garside

element ∆ab, as described in De�nition 3.1.6.

A type 1 vertex v of TP corresponds to a maximal simplex of FixpP q. Such

a simplex has stabiliser P by construction, hence StabNpP q{P pvq is trivial. Let v

be a type 2 vertex of TP of type Acd. This vertex corresponds to a simplex with

associated coset gAcd for some g P AΓ. It follows from [75, Lemma 4.5] and the

structure of the centre of dihedral Artin groups that we have:
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 If mcd is even, then

StabNpP q{P pvq � gZpAcdqg�1 � xg∆cdg
�1y;


 If mcd is odd, then

StabNpP q{P pvq � gZpAcdqg�1 � xg∆2
cdg

�1y.

l

We are now ready to prove Lemma 4.3.11:

Proof of Lemma 4.3.11: Since two type 1 vertices of TP corresponding to

cosets of the same standard parabolic subgroup are in the same NpP q-orbit,
hence in the same NpP q{P orbit, it follows that the action of NpP q{P on TP is

cocompact. Thus, NpP q acts cocompactly and without inversion on a simplicial

tree. By Lemma 4.3.13 the stabilisers of type 1 vertices are trivial (hence so are

the stabilisers of edges) and the stabilisers of type 2 vertices are in�nite cyclic.

It thus follows from Bass-Serre theory that NpP q{P is a �nitely-generated free

group, and thus NpP q splits as a direct product P � F , where F is a �nitely

generated free group. l

We now move towards �nding an explicit basis of these normalisers. Finding

an explicit basis for the free subgroup appearing in Theorem 4.5 is now a standard

application of Bass-Serre theory, which was stated as a remark without further

justi�cation in [75, Remark 4.6]. We �rst start by describing a fundamental

domain for the action, as well as the quotient space TP {NpP q.

De�nition 4.3.14. Let Γ1 be the �rst barycentric subdivision of Γ. Recall that

a vertex of Γ1 corresponding to a generator a of AΓ will is denoted va and is

said to be of type 1, while a vertex of Γ1 corresponding to an edge of Γ between

generators a and b will be denoted vab and will be said to be of type 2. Let Γa,odd

denote the maximal connected subgraph of Γ that contains the vertex a and only

odd-labelled edges. Let ΓP be the graph obtained from the disjoint union of all

the edges of Γ1 that contain a vertex of Γa,odd, by the following identi�cation. If

such an edge e (e1 respectively) of Γ1 contains a vertex v (v1 respectively) such
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that v, v1 correspond to the same vertex of Γa,odd, then v and v1 are identi�ed and

de�ne the same vertex of ΓP .

Some examples of the graph ΓP are given in Figure 4.1, when the underlying

de�ning graph is a triangle.

De�nition 4.3.15. Let e be an edge of ΓP between a type 1 vertex vc and a

type 2 vertex vcd, for c, d spanning an edge of Γ. We denote by re the edge of TP
between the vertex xcy and the vertex Acd. Choose an orientation of each edge of

Γ. For each oriented loop of ΓP based at va, we denote by e1, . . . , en the oriented

sequences of edges of Γ crossed by γ, and we de�ne

gγ :� ∆�1
e1
� � �∆�1

en ,

where the sign for each Garside element ∆ei depends on whether γ follows the

orientation of ei.

We now choose a spanning tree τ of ΓP , which we think of as being based

at va. For a vertex v of ΓP , we denote γv the oriented geodesic of τ from va to

v. Let e be an edge of ΓP . If e is contained in τ , let v be the vertex of e closest

to va in τ . If e is not contained in τ , let v be the vertex of e closest to va in ΓP

(as ΓP is bipartite). We denote gv :� gγv , and we set

YP :�
¤
e�ΓP

gvre.
This de�nes a connected subtree of TP .

Lemma 4.3.16. The subtree YP is a fundamental domain for the action of NpP q
on TP , and the quotient TP {NpP q is isomorphic to ΓP .

Proof: An edge of TP corresponds to a pair consisting of a maximal simplex of

TP (of type c for some c P V pΓq) and one of its codimension 1 faces (of type cd for

some d P V pΓq adjacent to c). We thus mention the following useful fact, which

is an immediate consequence of Lemma 4.3.1:

Fact: Two edges of TP in the same AΓ-orbit are also in the same NpP q-orbit.
Let us �rst show that YP is a fundamental domain for the action of NpP q (and
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Figure 4.1: Examples of computations of normalisers of the parabolic subgroup
P � xay, for various large-type Artin groups of rank 3. Type 2 vertices of ΓP
are indicated in bold in the second column and come with their in�nite cyclic
stabilisers. The group element in blue corresponds to the element of a basis of
F coming from the fundamental group of ΓP . Note that the structure of the
normaliser for large-type Artin groups of rank 3 depends only on the parity of
the labels and not on the labels themselves, so the above cases cover all possible
cases.
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hence NpP q{P ) on TP . The fact that YP is connected, hence a subtree of TP ,

is a consequence of the construction. By construction of the various edges re, it
thus follows that the edges of YP are in di�erent AΓ-orbits, and in particular in

di�erent NpP q-orbits. Now let e be an edge of TP . Its type 1 vertex is of type

c, for some c P V pΓq such that xcy and xay are conjugated. It thus follows from

[82] that c P V pΓa,oddq, and it then follows that e is in the AΓ-orbit, hence the

NpP q-orbit, of an edge of YP . Thus, YP is a fundamental domain for the action

of NpP q (and hence NpP q{P ) on TP . We now want to study the quotient space

TP {NpP q. Let us analyse the action of NpP q{P on TP at a local level. Let v be a

vertex of TP of type c P V pΓq. By the above remark, we will assume up to to the

action of NpP q that this vertex corresponds to the codimension 1 simplex of XΓ

corresponding to gvxcy. By construction of TP , the codimension 1 faces of ∆ that

correspond to a type 2 vertex of TP adjacent to v are the simplices corresponding

to the parabolic subgroups gvAcd with d connected to c in Γ. Let v be a vertex of

TP of type Acd where c, d span an edge of Γ. Up to the action of NpP q, we will
assume that this vertex corresponds to the simplex with associated coset gvAcd.

Then it follows from Lemma 4.3.13 that we have:


 If mcd is even, then all the edges of TP containing v are in the same x∆cdy-orbit.

 If mcd is odd, then there are exactly two NpP q-orbits of edges of TP containing

v, corresponding to the x∆2
cdy-orbits of the maximal simplices of type tcu and tdu

respectively.

The description of the quotient TP {NpP q now follows from this local description.

l

As mentioned earlier, the fundamental group NpP q{P of this graph of groups

over ΓP is a free group, and by Bass-Serre theory a basis for it is obtained by

choosing a generator of each (in�nite cyclic) stabiliser of vertex of dihedral type,

as well as a family of elements corresponding to a basis of the fundamental group

of ΓP . We now explain how to construct explicitly these elements.

(1) For each vertex v of YP of type Acd, a generator of

StabNpP q{P pvq � gvZpAcdqg�1
v

93



Chapter 4 � Parabolic subgroups

is given by $&% gv �∆2
cd � g�1

v if mcd is odd,

gv �∆cd � g�1
v otherwise.

(2) A basis of π1pΓP q is in bijection with the edges of ΓP � τ . Let e be such an

edge, joining a type 1 vertex vc and a type 2 vertex vcd, and let e1 be the edge

joining vd and vcd. Then the edges gvc∆�1
cd re and gvdre1 of YP contain two type

2 vertices in the same NpP q-orbit, and the geodesic of YP between these

two vertices project to a loop of ΓP crossing e exactly once that represents

the element

gvc �∆�1
cd � g�1

vd
P NpP q.

Note that this element is of the form gγ, for some combinatorial γ containing

e. Thus, a family of elements for point (2) is given by the family of elements

gγ when γ runs over a basis of ΓP .

We �nally obtain the following:

Corollary 4.3.17. The normaliser NpP q splits as a direct product NpP q � P �
F , where F is a �nitely-generated free group with a basis given by the following

family of elements:

� for every vertex vcd of ΓP , the element$&% gv �∆2
cd � g�1

v if mcd is odd,

gv �∆cd � g�1
v otherwise.

� for each combinatorial loop γ based at va in a chosen basis of ΓP , the element

gγ.

In Figure 4.1, we give examples for various Artin groups of rank 3 of the

normalisers of standard generators.

4.4 Conjugacy stability and root stability

We are now ready to prove Theorem 4.3 and Theorem 4.4. In this section, AΓ

denotes as usual a large-type Artin group of rank at least 3. By Corollary 4.2.7,

we can de�ne the following subgroups of AΓ:
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De�nition 4.4.1. Let X � AΓ. The minimal parabolic subgroup PB contain-

ing B is called the parabolic closure of X.

As is turns out, the parabolic closure of a set B � AΓ behaves well under

conjugacy as illustrated by the following result, which generalises an analogous

statement for spherical Artin groups ([23]):

Lemma 4.4.2. Let B � AΓ and α P AΓ. Then

Pα�1Bα � α�1PBα.

In particular, if g and h are conjugate, their parabolic closures correspond to

stabilisers of simplices of XΓ with the same dimension.

Proof: It is obvious that α�1PBα contains α�1Bα. We need to prove that this

parabolic subgroup is the minimal one containing α�1Bα. Let Q be any parabolic

subgroup containing α�1Bα. As αQα�1 contains B, PB � αQα�1. Therefore,

α�1PBα � Q. l

We are �nally able to prove Theorem 4.3, that we restate below for the sake of

clarity:

Theorem 4.4.3. Let AΓ1 be a standard parabolic subgroup of a large-type Artin

group AΓ. Then AΓ1 is not conjugacy stable in AΓ if and only if there exist

vertices a and b of Γ1 that are connected by an odd-labelled path in Γ and that are

not connected by an odd-labelled path in Γ.

Proof: Let g and h be two elements of AΓ1 that are conjugated by an element

α P AΓ. As Pg, Ph � AΓ1 , by Theorem 4.2.2 there must be two induced subgraphs

Γ1,Γ2 � Γ1 and β, β1 P AΓ1 such that Pg � β�1AΓ1β and Pg � β1�1AΓ2β
1. Since Pg

and Ph are conjugate by Lemma 4.4.2, AΓ1 and AΓ2 have to be conjugate. In

Section 4.3 we have seen that if AΓ1 has type at least 2 then Γ1 � Γ2. Also, if Γ1

has type 1, then either Γ1 � Γ2, or Γ1 and Γ2 are vertices of Γ connected by an

odd-labelled path in Γ. Thus, there are two possibilities:

(1) Suppose that Pg � β�1AΓ1β and Ph � β1�1AΓ1β
1, with Γ1 � Γ1 an induced

subgraph and β, β1 P AΓ1 . Then pβαq�1AΓ1pβαq � β1�1AΓ1β
1 and βαβ1�1 nor-

malises AΓ1 . If AΓ1 has rank at least 2, then by Corollary 4.3.5, NpAΓ1q � AΓ1 �
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AΓ1 , so α P AΓ1 . If AΓ1 has rank 1 then g � β�1aβ and h � β1�1aβ1 for some

a P V pΓ1q, and they are conjugate by β�1β1 P AΓ1 . (2) Suppose that g � γ�1anγ

and h � γ1�1bnγ1, γ, γ1 P AΓ1 , where a, b P V pΓq are connected in Γ by an odd-

labelled path. Then, there is an element of AΓ conjugating a to b. If there is an

odd-labelled path in Γ1 connecting a to b, then there is an element c in AΓ1 that

conjugates a to b. Thus, γ�1cγ1 conjugates g to h . On the contrary, if there is

no such a path in Γ1, there is no element in AΓ1 conjugating a to b. Since the

parabolic closures of g and h are respectively γ�1xayγ and γ1�1xbyγ1, by Lemma

4.4.2 there is no element in AΓ1 conjugating g to h. This is then the only case in

which AΓ1 is not conjugacy stable in AΓ. l We also prove Theorem 4.4, that

states that the parabolic closure of an element g is stable when taking roots and

powers of g. This generalises to large-type Artin groups a result of [23].

Theorem 4.4.4. Let AΓ be a large-type Artin group of rank at least 2, and let

g P AΓ. Then for every n P Zzt0u we have Pg � Pgn. In particular, if gn P P
then g P P .

Before coming to the proof of this Theorem, we �rst introduce the following

lemma. Its result and its proof are analogous to [31, Theorem 7.3].

Lemma 4.4.5. Let G be a group acting by simplicial automorphisms on a systolic

complex X. Suppose that there is a vertex v P X whose orbit Gv is �nite. Then

there exists a simplex of X that is invariant under the action of G.

Proof: The statement of [31, Theorem 7.3] is given for a �nite group G. However,

their proof only uses the �niteness of G to obtain a �nite G-orbit, out of which

they construct an invariant simplex. In particular, their proof generalises without

any change to the case of an in�nite group G with a �nite G-orbit. l

Proof of Theorem 4.4.4: We show by induction on the rank |V pΓq| of AΓ

that Pg � Pgn . If |V pΓq| � 2, AΓ is a dihedral Artin group. In particular, it is

spherical, and the result follows from [23, Corollary 8.3]. Let now |V pΓq| ¥ 3,

and suppose that Pg � Pgn . Since Pgn � Pg, there is a chain of inclusions of the

form

Pgn � Pg � AΓ.
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Claim: We have Pg � AΓ.

Proof of the Claim: Since Pgn � AΓ, the set FixXΓ
pPgnq is non-empty. In

particular, gn is elliptic, and thus g has �nite orbits, as for every point v P Fixpgnq,

xgy � v � tv, gv, g2v, � � � , gn�1vu.

By Lemma 4.4.5, g must stabilise some simplex ∆ in XΓ. Because the action of

AΓ on XΓ is without inversions, g must �x ∆ pointwise. In other words, Fixpgq
is non-empty, hence Pg � AΓ. This �nishes the proof of the Claim. Now we have

Pg � hAΓ1h
�1 for some h P AΓ and an induced subgraph Γ1 � Γ. Notice that

h�1Pgnh � h�1Pgh � AΓ1 ,

and thus Ph�1gnh � Ph�1gh � AΓ1 by Lemma 4.4.2. As AΓ1 has stricly lower

rank than AΓ, we can use the induction hypothesis on XΓ1 . This yields Ph�1gh �
Ph�1gnh. In particular, one has Pg � Pgn by Lemma 4.4.2, which is a contradiction.

This proves the main point of the theorem. The last point of the theorem is

now immediate. l
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Rigidity and automorphisms

The goal of this chapter is to give a partial answer to the isomorphism problem

raised in the introduction. Let us recall that an Artin group AΓ is said to be free-

of-in�nity if mab � 8 for all a, b P V pΓq. In this chapter, we study the rigidity

of large-type Artin groups, and more speci�cally large-type Artin groups that are

also free-of-in�nity. Our main result is the following:

Theorem 5.1. The class of large-type free-of-in�nity Artin groups is rigid. In

other words, if AΓ and AΓ1 are two large-type free-of-in�nity Artin groups, then

AΓ and AΓ1 are isomorphic if and only if Γ and Γ1 are isomorphic.

Our work on isomorphisms between large-type free-of-in�nity Artin group

is closely related with the study of the automorphisms of these Artin groups.

In particular, we describe completely the automorphism group and the outer

automorphism group of every large-type free-of-in�nity Artin group:

Theorem 5.2. Let AΓ be a large-type free-of-in�nity Artin group of rank at least

3. Then AutpAΓq is generated by the conjugations, the graph-induced automor-

phisms, and the global involution. In particular, OutpAΓq is �nite.

Note that it is not possible to extend Theorem 5.1 and Theorem 5.2 to all

large-type Artin groups, as this bigger family is known to not be rigid and to

contain other types of automorphisms (see [32]). In spite of that, we are still able

to prove that all large-type Artin groups admit a weaker form of rigidity. The

next result we obtain concerns the isomorphisms of large-type Artin groups in

general.
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Theorem 5.3. Let AΓ and AΓ1 be two large-type Artin groups of rank at least

3. Then any isomorphism ϕ : AΓ Ñ AΓ1 induces a bijection between the set of

spherical parabolic subgroups of AΓ and the set of spherical parabolic subgroups of

AΓ1.

In addition to being a principal tool in the proofs of Theorem 1.12 and The-

orem 1.13, the consequences of Theorem 1.14 are various. For a start, it implies

that any isomorphism ϕ : AΓ Ñ AΓ1 between large-type Artin groups sends the

standard generators of AΓ onto conjugates of standard generators of AΓ1 . When

Γ � Γ1, this gives a form a rigidity of the automorphisms of AΓ, that is in clear

contrast with classes such as right-angled Artin groups, in which the automor-

phism group contains transvections. Another consequence of Theorem 5.3 is that

the spherical parabolic subgroups of a large Artin group can be de�ned in a

purely algebraic way, in the sense that they only depend on the abstract group

structure and not on a speci�c choice of de�ning graph for the group. When the

Artin group considered is large but also free-of-in�nity, we �nd a way to �recon-

struct� its associated Deligne complex in a purely algebraic manner. We obtain

the following result:

Theorem 5.4. Let AΓ and AΓ1 be two large-type free-of-in�nity Artin groups

of rank at least 3, with Deligne complexes DΓ and DΓ1. Then any isomorphism

ϕ : AΓ Ñ AΓ1 induces a natural simplicial isomorphism ϕ� : DΓ Ñ DΓ1 that can

be described explicitly.

We now bring light on the strategy we use to prove the aforementioned results.

The key ingredient into proving Theorem 5.1 and Theorem 5.2 is Theorem 5.4. If

we �nd a way to reconstruct the Deligne complexes of (some) Artin groups with

purely algebraic objects, then any isomorphism between these Artin groups will

preserve the structure of the algebraic objects, and hence preserve the Deligne

complexes themselves. This kind of approach was originally used by Ivanov ([60])

to study the automorphisms of mapping class groups, and has since then been

extended to other groups like Higman's group ([68]) or graph products of groups

([39]).

We now consider a large-type Artin group AΓ. A �rst step into reconstruct-

ing the associated Deligne complex DΓ is to reconstruct the type 2 vertices of
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the complex. These vertices are in one-to-one correspondence with the non-free

parabolic subgroups of type 2 of AΓ. We know that these subgroups are dihedral

Artin subgroups of AΓ. However, this is not a strong enough condition to de-

scribe them purely algebraically. As it turns out, reconstructing these parabolic

subgroups in a purely algebraic manner is made quite complicated by the exis-

tence of dihedral Artin subgroups of �exotic� type, which do not correspond to

vertices of type 2 in the original Deligne complex. A large part of our work has

for goal to �nd a way to describe these exotic dihedral Artin subgroups explicitly,

which then allows us to di�erentiate them from the dihedral Artin subgroups that

correspond to the type 2 vertices of DΓ. Doing so, we will prove the following:

Theorem 5.5. Let AΓ be a large-type Artin group of rank at least 3, and let H

be a subgroup of AΓ that is isomorphic to a dihedral Artin group. Then H is

conjugated into one of the following:

(1) xa, by, where a, b P V pΓq satisfy mab   8.

(2) xb, abcy, where a, b, c P V pΓq satisfy mab � mac � mbc � 3.

The next step into reconstructingDΓ algebraically is to characterise the type 1

vertices of the complex. Unfortunately, the correspondence between the parabolic

subgroups of type 2 of AΓ and the type 2 vertices ofDΓ established at the previous

step has no chance to work for type 1 vertices. This is because every parabolic

subgroups of type 1 of AΓ corresponds to in�nitely many type 1 vertices of DΓ, so

there is no hope into building a bijection between these subgroups and the type

1 vertices of DΓ.

When the Artin groups considered are large and free-of-in�nity, we �nd an-

other way to reconstruct the type 1 vertices of DΓ algebraically. Our strategy

involves characterising every type 1 vertex of DΓ through the (�nite) set of type

2 vertices it is connected to. This process comes in very handy, because it allows

to immediately state when a type 1 and a type 2 vertices should be connected,

which helps reconstructing part of the edges of DΓ too. At this point, we will

already have reconstructed a rather large subcomplex of DΓ. We will �nally be

able to reconstruct DΓ entirely by exploiting the geometry of this subcomplex.

The structure of this chapter is as follows. In Section 5.1 we consider large-

type Artin groups. We introduce various algebraic and geometric tools and no-
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tions about parabolic subgroups, normalisers, and dihedral Artin subgroups, that

will be used through the rest of the chapter. Section 5.2 is dedicated to an in-

depth study of the centralisers of hyperbolic elements of AΓ, and to the action of

these centralisers on the minset of the corresponding hyperbolic elements. In this

section, we will develop central tools that will be used to study the dihedral Artin

subgroups of AΓ in the next section. In Section 5.3, we describe all the dihedral

Artin subgroups of large-type Artin groups explicitly, proving Theorem 5.5. We

also �nd a way to di�erentiate the dihedral Artin subgroups that correspond to

type 2 vertices of DΓ from those that don't, which ultimately allows to recover

Theorem 5.3. In Section 5.4, we suppose that our large-type Artin groups are

also free-of-in�nity, and we reconstruct the Deligne complex in a purely algebraic

manner. Finally in Section 5.5, we use this algebraic description of the Deligne

complex to recover Theorem 5.4, Theorem 5.1 and Theorem 5.2.

5.1 Preliminaries.

This section serves as an introduction to many general notions that we will use

throughout this chapter. Section 5.1.1 is oriented around the introduction of

basic tools about the algebraic structure of the parabolic subgroups and their

connection with the geometry of the Deligne complex. In Section 5.1.2 we will

talk brie�y about dihedral Artin subgroups, introducing some of the material

that will be needed in Section 5.2. As explained at the beginning of this chapter,

studying the dihedral Artin subgroups is crucial because they appear as stabilisers

of vertices in the Deligne complex.

We want to highlight that throughout this chapter, the notation AΓ will always

be used to denote an Artin group whose rank is at least 3.

5.1.1 Parabolic closure, type and normalisers.

In this section we introduce various tools that will be useful throughout the

chapter. First of all, we want to introduce a one-dimensional subcomplex of DΓ

that will be a central tool in Sections 5.2, 5.3 and 5.4. This is the goal of the

next de�nition.

De�nition 5.1.1. The set of points in DΓ whose stabiliser is non-trivial is a
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graph that is the union of all the edges of the form g � ea,ab, where a, b P V pΓq
and g P AΓ. It is a strict subset of the 1-skeleton Dp1q

Γ of DΓ, that we will call the

essential 1-skeleton and denote by Dp1q�ess
Γ (on Figure 2.8, the edges that are

drawn are exactly those of the essential 1-skeleton Dp1q�ess
Γ ).

Remark 5.1.2. The fact that DΓ is the union of the translates g � KΓ for all

g P AΓ has two direct consequences:

(1) Since the set of points of Dp1q�ess
Γ that also belong to the fundamental domain

KΓ is the boundary Γbar of KΓ, the graph D
p1q�ess
Γ is the union of the translates

g � Γbar, for all g P AΓ.

(2) Since KΓ is the cone-o� of Γbar, the Deligne complex DΓ can be obtained from

D
p1q�ess
Γ by coning-o� the translates g � Γbar, for all g P AΓ.

We now extend the de�nition of type we introduced for parabolic subgroups

(see De�nition 2.4.7) and vertices in the Deligne complex (see De�nition 2.4.17)

to arbitrary sets in AΓ and arbitrary points in DΓ:

De�nition 5.1.3. For an arbitrary subset X � AΓ, we de�ne the type of X to

be the type of its parabolic closure PX . The type of a point p P DΓ is de�ned to

be the type of its stabiliser Gp.

Remark 5.1.4. (1) The de�nition of type introduced in De�nition 5.1.3 is an

extension of that given in De�nition 2.4.17. In other words, the vertices of type

i P t0, 1, 2u from De�nition 2.4.17 also have type i relatively to De�nition 5.1.3.

(2) The type of a point p P DΓ always belongs to t0, 1, 2u. By construction, p has

type 2 if and only if it is a type 2 vertex ; it has type 1 if and only if it belongs

to Dp1q�ess
Γ but doesn't have type 2 ; and it has type 0 otherwise.

We recall the following de�nition, that can be seen as an extension of De�ni-

tion 2.1.18:

De�nition 5.1.5. The �xed set of an element g P AΓ acting on DΓ is the set

Fixpgq :� tp P DΓ | g � p � pu.

The �xed set of a subset X � AΓ is the set

FixpXq :� tp P DΓ | @g P X, g � p � pu �
£
gPX

Fixpgq.
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The following lemma will be useful to describe the relation between the type of

an element g P AΓ and its �xed set Fixpgq.

Lemma 5.1.6. [32, Lemma 8] Let AΓ be a 2-dimensional Artin group, and let

g P AΓ. Then we can classify Fixpgq in the following way:


 If typepgq � 0, then g � 1 and Fixpgq � DΓ.


 If typepgq � 1, then g is elliptic and there are two elements a P V pΓ1q and

h P AΓ such that Pg � hxayh�1. In particular, Fixpgq is the tree hFixpaq.

 If typepgq � 2, then g is elliptic and there are three elements a, b P V pΓ1q and
h P AΓ such that Pg � hAabh

�1. In particular, Fixpgq is the vertex hvab.


 If typepgq ¥ 3, then g is hyperbolic and Fixpgq is empty.

De�nition 5.1.7. The tree hFixpaq from Lemma 5.1.6 will be called the stan-

dard tree associated with Pg � hxayh�1.

Lemma 5.1.8. Let g P AΓ. Then Fixpgq � FixpPgq.

Proof: Recall that

FixpPgq �
£
hPPg

Fixphq.

In particular the inclusion FixpPgq � Fixpgq is clear. We prove the other inclu-

sion. We know from Lemma 5.1.6 that Ph1 � Ph2 ô Fixph2q � Fixph1q. By

de�nition, every element h P Pg has a parabolic closure satisfying Ph � Pg, which

yields Fixpgq � Fixphq. It follows that

FixpPgq �
£
hPPg

Fixphq � Fixpgq.

l

Corollary 5.1.9. Let AΓ be a large-type Artin group, let g P AΓ, and let n � 0.

Then typepgq � typepgnq and Fixpgq � Fixpgnq.

Proof: The �rst statement is immediate from Theorem 4.4.4. The second state-

ment follows from Lemma 5.1.8 and Theorem 4.4.4:

Fixpgq � FixpPgq � FixpPgnq � Fixpgnq.

l
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We now introduce a geometric method that allows under mild hypotheses to

determine whether two elements of the groups are the same in a very e�cient

manner. We �rst need the following de�nition:

De�nition 5.1.10. Consider the morphism φ : FV pΓq Ñ Z sending every gener-

ator to 1. Every relation r of AΓ is in the kernel of φ, so the map descends to a

quotient map ht : AΓ Ñ Z. For any element h P AΓ, we call htphq the height of
h.

Lemma 5.1.11. Let p P DΓ be a point of type at most 1, and let h1, h2 P AΓ be

two elements with same height and satisfying h1 � p � h2 � p. Then h1 � h2.

Proof: First note that h1h
�1
2 �p � p and thus h1h

�1
2 P Gp. In particular, the result

is trivial if typeppq � 0. So we suppose that typeppq � 1, i.e. that there are two

elements s P V pΓq and g P AΓ such that Gp � gxsyg�1. Since h1h
�1
2 P Gp, then

h1h
�1
2 � gsmg�1 for some m P Z. On one hand h1 and h2 have the same height,

so h1h
�1
2 has height 0. On the other hand, the height of gsmg�1 is 1�m�1 � m.

This means m � 0 and h1h
�1
2 � 1. l

We now move towards understanding more normalisers and centralisers of ele-

ments of large-type Artin groups, in particular in relation to their type. The

following lemma is the analogue of Lemma 4.3.1 for the Deligne complex instead

of the Artin complex:

Lemma 5.1.12. Let AΓ be a 2-dimensional Artin group, let S be a subset of AΓ

with non-trivial �xed set in DΓ, and let NpSq denote the normaliser of S in AΓ.

Then

NpSq � StabpFixpSqq.

Assume additionally that Dp P FixpSq such that Gp � S. Then

NpSq � StabpFixpSqq.

Proof: p�q Let g P NpSq, that is, gS � Sg, and let p P FixpSq. Then

S � pg � pq � g � pS � pq � g � p.

In particular, g � p P FixpSq and thus g P StabpFixpSqq.
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p�q Let g P StabpFixpSqq and let p P FixpSq be such that Gp � S. Then

g � p P FixpSq, i.e.
S � pg � pq � g � p.

In particular, g�1Sg �xes p, hence g�1Sg � Gp � S. In other words, g P NpSq.
l

Lemma 5.1.13. Let AΓ be a large-type Artin group, let g P AΓ be such that

typepgq ¤ 1, and let Cpgq be the centraliser of g in AΓ. Then for any n � 0 we

have

NpPgq � Cpgq � Cpgnq � NpPgnq.

Proof: The result is trivial if typepgq � 0, so we suppose that typepgq � 1. The

following inclusions are clear:

NpPgq � Cpgq � Cpgnq � NpPgnq.

We know by Theorem 4.4.4 that NpPgq � NpPgnq, so it is enough to show that

NpPgq � Cpgq. The argument is similar to that of Lemma 5.1.11: because

Pg � xgy, any h P NpPgq satis�es hxgyh�1 � xgy, hence conjugates g to some

hgh�1 � gm with m P Z. It is then easy comparing heights to see that we must

have m � 1 and thus hg � gh. l

We �nally state the following useful result:

Proposition 5.1.14. Let AΓ be a large-type Artin group with two parabolic sub-

groups P and P 1. If P and P 1 have the same type and P � P 1, then P � P 1.

Proof: This follows directly from Theorem 4.2.2.(2), along with the fact that

the only parabolic subgroup of P 1 that has the maximal number of standard

generators is P 1 itself. l

5.1.2 Dihedral Artin subgroups.

We now come to a �rst study of the dihedral Artin subgroups of a large-type Artin

group AΓ. In this section we introduce some of the notions that will allow us to

further study these subgroups in Section 5.2 and Section 5.3. Although dihedral
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Artin subgroups have already been talked about in Chapter 3 and Chapter 4, we

decide here to recall their exact de�nition:

De�nition 5.1.15. We say that H is a dihedral Artin subgroup of AΓ if there

exists an isomorphism f from Am to H for some 3 ¤ m   8, where

Am :� xs1, t1 | s1t1s1 � � �looomooon
m terms

� t1s1t1 � � �loomoon
m terms

y.

When there is no ambiguity, we will write s :� fps1q, t :� fpt1q, so that H is

the subgroup of AΓ generated by s and t. For m1 :� lcmpm, 2q{2, the element

z1 :� ps1t1qm1
is generating the centre of Am (see De�nition 3.1.6), and thus the

element z :� fpz1q generates the centre of H.

Let now AΓ be a large-type Artin group, and let H be an arbitrary dihedral Artin

subgroup of AΓ. The two following lemmas will be useful to describe the type of

H.

Lemma 5.1.16. In H we have typepzq � typepstq ¥ 2.

Proof: Because z � pstqm1
, the equality typepzq � typepstq simply comes from

Theorem 4.4.4. Suppose now that typepzq ¤ 1. Then Cpzq � Cpstq by Lemma

5.1.13. Note that every element of H commutes with z, and thus we have s P
Cpzq � Cpstq. In particular then, s commutes with st and hence with t. The

elements s and t generate H, so H must be abelian. This is absurd. l

Lemma 5.1.17. Let g, h P AΓ be elements satisfying typepgq � 2 and typephq ¥
3. Then g and h don't commute.

Proof: If g and h commuted, then h would stabilise the �xed set of g, by Lemma

5.1.12. Because g has type 2, we know from Lemma 5.1.6 that Fixpgq is a single

vertex, that h must then �x. This contradicts Lemma 5.1.6, because h has type

at least 3. l

De�nition 5.1.18. We say that a dihedral Artin subgroup H of AΓ is classical

if typepzq � 2 and exotic if typepzq ¥ 3.

Corollary 5.1.19. A classical dihedral Artin subgroup can never contain an ex-

otic dihedral Artin subgroup, and vice-versa.

106



Chapter 5 � Rigidity and automorphisms

Proof: This is a consequence of Lemma 5.1.17. Classical dihedral Artin sub-

groups of AΓ always contain elements of type 2, but never contain elements of

type at least 3, while exotic dihedral Artin subgroup of AΓ always contain ele-

ments of type at least 3, but never contain elements of type 2. The result follows.

l

De�nition 5.1.20. We say that a dihedral Artin subgroup H of AΓ is maximal

if it is not strictly contained in another dihedral Artin subgroup of AΓ.

Remark 5.1.21. A nice consequence of Corollary 5.1.19 is that it is equivalent

to say that a dihedral Artin subgroup is maximal amongst all dihedral subgroups,

and to say that it is maximal amongst classical (or exotic) dihedral subgroups.

Our next goal is to classify explicitly all the classical maximal dihedral Artin

subgroups of AΓ (see Corollary 5.1.23). The exotic dihedral Artin subgroups will

be studied intensely throughout Section 5.2 and Section 5.3.

Lemma 5.1.22. Every classical dihedral Artin subgroup H of AΓ has type 2.

This means there are two standard generators a, b P V pΓq and an element g P AΓ

such that H � gAabg
�1.

Proof: Because typepzq � 2, Pz � gAabg
�1 for some generators a, b P V pΓq and

some element g P AΓ. This means that z acts on DΓ by �xing the vertex gvab.

Because s and z commute, we have

z � s � gvab � s � z � gvab � s � gvab.

Therefore z �xes s � gvab, so we must have s � gvab P Fixpzq. By Lemma 5.1.8

Fixpzq � FixpPzq � gvab. This means the two vertices gvab and s � gvab coin-
cide, i.e. s �xes gvab. On the other hand, we know from Corollary 5.1.9 that

Fixpzq � Fixpstq. Since z �xes the vertex gvab, then st must also �x this vertex.

Consequently, both s and st �x gvab. In particular, t � s�1pstq also �xes gvab.

Since s and t generate H, this means H �xes gvab, i.e. H � gAabg
�1. l

Corollary 5.1.23. The set of classical maximal dihedral Artin subgroups of AΓ

is precisely the set of non-free parabolic subgroups of type 2 of AΓ, i.e. the set

tgAabg�1 | a, b P V pΓq : mab   8, g P AΓu.
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Proof: p�q Consider a subgroup H :� gAabg
�1 of AΓ as described above. It is

clear that H is a dihedral Artin subgroup, because 3 ¤ mab   8 as AΓ is large.

H is also clearly classical. Let H 1 be a dihedral subgroup of AΓ that satis�es

H 1 � H. By Corollary 5.1.19 H 1 must be classical. By Lemma 5.1.22 then, H

and H 1 both have type 2. Since H 1 � H, Proposition 5.1.14 gives H 1 � H. This

proves that H is maximal.

p�q Let H be a classical maximal dihedral Artin subgroup of AΓ. We know

by Lemma 5.1.22 that there are elements a, b P V pΓq and g P AΓ such that

H � gAabg
�1. Note that gAabg�1 is maximal by the �rst point. Since H is

maximal too, we must have an equality. l

5.2 Centralisers of hyperbolic elements.

Let AΓ be a large type Artin group and letH be an exotic dihedral Artin subgroup

of AΓ. The centre of H is generated by an element z of type at least 3, i.e. a

hyperbolic element. Since H � Cpzq, it is relevant in order to understand H to

want to understand centralisers of elements like z. The goal of this section is to

do exactly that, and ultimately to prove Proposition 5.2.21, in which we describe

under mild hypotheses on z the algebraic structure of the centraliser Cpzq. These
hypotheses will always be satis�ed for hyperbolic elements that generate centres

of exotic dihedral Artin subgroups of AΓ, so our strategy will apply to these

subgroups.

We now brie�y explain how we are able to describe these centralisers. Our

approach is heavily geometric. If z generates the centre of an exotic dihedral Artin

subgroup H, then its type is at least 3. In particular, z acts on DΓ hyperbolically

and its minset Minpzq is non-trivial (see De�nition 2.1.16). As it turns out,

Minpzq is preserved under the action of Cpzq (and hence that of H). Moreover,

Minpzq decomposes as the product T �R of a tree with the real line (see Theorem

5.2.1 and Lemma 5.2.3). We will prove that the tree T has two nice geometric

features: it contains an in�nite line, and it contains a vertex of valence at least 3

(see Lemma 5.2.5).

For a start, the �rst feature forces the minset of z to contain a �at plane. Such

a situation is only possible if up to conjugation, z belongs to a Artin subgroup
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Aabc whose coe�cients are all 3. In particular then,Minpzq lies inside the Deligne
sub-complex Dabc � DΓ. The study of Minpzq will then reduce to studying a

parabolic subgroup of type 3 of AΓ (see Lemma 5.2.6). Using the second feature

will allow for a precise study of the geometry of Minpzq, from which we deduce

an explicit algebraic description of Cpzq (see Proposition 5.2.21).

5.2.1 Transverse-trees, motivations and �rst results.

Let AΓ be an Artin group of large-type, and let z P AΓ be any element acting

hyperbolically on DΓ (i.e. any element of type at least 3). The goal of this section

is to prove the aforementioned Lemma 5.2.5 and Lemma 5.2.6. A nice consequence

of these two lemmas will be that if AΓ is of large type and of hyperbolic type,

then AΓ contains no exotic dihedral Artin subgroup at all. In that case, one can

directly move to Section 5.3. However the situation is more complicated when

AΓ is of large-type but not of hyperbolic type (i.e. when Γ contains 3-cycles with

coe�cients p3, 3, 3q). This broader case will be dealt with throughout Section 5.2.

The structure of minsets in a more general setting has been studied by Bridson

and Hae�iger, so we start by recalling two very useful theorems, that we adapt

to our situation:

Theorem 5.2.1. [17, Chapter II.6] Minpzq is a closed, convex and non-empty

subspace of DΓ (in particular, it is CAT(0)). It is isometric to a direct product

T �R on which z acts trivially on the �rst component, and as a translation on

the second component. The axes of z are in bijection with the points of T , so

that every axis u of z decomposes as u � u � R, where u is a point of T . In

particular, the axes of h are parallel to each others, and their union is precisely

Minphq. Furthermore, the centraliser Cpzq leaves Minpzq invariant sending axes
to axes. It is such that the action of any element g P Cpzq on Minpzq decomposes

as an isometry pg1, g2q of T �R, where g2 is simply a translation. In particular,

Cpzq preserves T as well.

The next Theorem is known as the Flat Strip Theorem:

Theorem 5.2.2. [17, Chapter II.2] Let u and v be two parallel geodesic lines

in DΓ. Then their convex hull cpu, vq in DΓ is isometric to a �at strip r0, Ds�R,

where D is the distance between u and v.
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We will be able to show later on that under reasonable hypotheses, the set T

is a simplicial tree (see Lemma 5.2.12 and Corollary 5.2.24). For now, and with

our current hypotheses, we will only show that T is a real-tree:

Lemma 5.2.3. The space T is a real-tree, i.e. a 0-hyperbolic space.

Proof: Suppose that T is not 0-hyperbolic. Then there is a triangle T � T

that is not a tripod. Since DΓ is simply-connected and T is not a tripod, one

can �ll the interior of T with non-trivial 2-dimensional balls. In particular then,

Minpzq � T �R � DΓ must contain 3-dimensional balls. This contradicts the

fact that DΓ is 2-dimensional. l

De�nition 5.2.4. We call T the transverse-tree of z in DΓ.

As explained at the beginning of the section, if z is an element generating the

centre of an exotic dihedral Artin group H, then H � Cpzq, and Theorem 5.2.1

applies: H acts onMinpzq and on the associated transverse-tree T in a nice way.

In such a situation, T has nice properties, as made explicit in the statement of

the next lemma. Since our main reason for studying the minset of hyperbolic

elements is to understand the case of exotic dihedral Artin subgroups, we will

throughout the rest of this section assume some of the properties inherited by the

transverse-trees associated with such subgroups.

Lemma 5.2.5. Let H be an exotic dihedral Artin subgroup of AΓ, and consider

the set Minpzq associated with the central element z of H. Then the transverse-

tree T associated with z contains an in�nite line and has a vertex of valence at

least 3.

Proof: Let us denote by s and t the standard generators of H (see De�nition

5.1.15). Suppose that T does not contain an in�nite line. Then any element that

acts preserving T is elliptic (no element creates an axis in T ). Using Theorem

5.2.1, this means any element of Cpzq acts elliptically on T . In particular, the

elements st and ts act on T with non-trivial �xed sets. Suppose these �xed sets

are disjoint. A classical ping-pong argument shows that the product pstq�ptsq acts
hyperbolically on T , which contradicts the fact that every element of Cpzq acts
elliptically. This means the �xed sets of st and ts intersect non-trivially. Let u be

a vertex of T �xed by both st and ts. Then st and ts both act like translations
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when restricted to u (see Theorem 5.2.1). They have the same direction and the

same translation length, because pstqm1 � z � ptsqm1
. In particular, if x is any

point of type at most 1 in u, we have pstq � x � ptsq � x. Note that st and ts have
the same height, so we obtain st � ts by Lemma 5.1.11. This is absurd, and

hence T contains an in�nite line.

We now show that T has a vertex of valence at least 3. Suppose that it

doesn't, i.e. every vertex of T has valence at most 2. Then T is contained in

an in�nite line. But T also contains an in�nite line by the previous point, so it

must be precisely that line. This means Minpzq � T �R is a �at plane. Using

Theorem 5.2.1, we know that the elements s and t act on Minpzq � T � R

like isometries that restrict to translations on the R-component. Depending on

whether the action on the T -component is hyperbolic or elliptic (with order 2),

each of the elements s or t acts on Minpzq either as a pure translation, or as a

(possibly trivial) glide re�ection. In any case, the squares s2 and t2 act like pure

translations on Minpzq. In particular, their actions commute. Since there are

points inMinpzq with trivial stabilisers, this mean s2 and t2 commute as elements

of the group, absurd. l

We now move towards the most important result of the beginning of Section

5.2. We show that under mild hypotheses on T , that we recall are satis�ed for

exotic dihedral Artin groups by Lemma 5.2.5, the study of Minpzq reduces to

the study of an Artin subgroup Aabc � AΓ an its associated Deligne subcomplex

Dabc � DΓ.

Lemma 5.2.6. Let z P AΓ be a hyperbolic element and suppose that its transverse-

tree T contains an in�nite line. Then up to conjugation of z, there are three

generators a, b, c P V pΓq satisfying mab � mac � mbc � 3 such that z P Aabc.
Moreover, the Deligne complex Dabc associated with the Artin (sub)group Aabc is

isometrically embedded into DΓ, and contains Minpzq.

Proof: By Lemma 5.2.3 T is a real-tree, that we suppose contains an in�nite

line L. In particular, Minpzq contains the in�nite plane P :� L�R.

Claim 1: Let g � Tab be a base triangle and suppose that there is a point x in

the interior of g � Tab that is contained in P . Then g � Tab is contained in P . In

particular, P is a union of base triangles.
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Proof of Claim 1: Let y � x be a point in g �Tab, let γ be the geodesic connecting

x to y in DΓ, and let d :� dDΓ
px, yq � `pγq. Because x belongs to the interior

of g � Tab, there is an ε ¡ 0 such that the ball BDΓ
px, εq is a planar disk and is

contained inside g � Tab as well. The ball BP px, εq is also a planar disk, as P is

an in�nite plane. This means the natural inclusion BP px, εq � BDΓ
px, εq is an

equality. Let z :� γ X BP px, εq. Because P is a �at plane, there is a (unique)

geodesic γ1 of P that satis�es the following:

γ1 starts at x, passes through z, and has length d. p�q

Note that P is a convex subset ofMinpzq, which itself is convex inDΓ by Theorem

5.2.1. In particular then, γ1 is a geodesic of DΓ too. It is not hard to see that

γ is the unique there is only one geodesic in DΓ that satis�es p�q, and that this

geodesic is γ. This means γ � γ1. In particular, y P γ � γ1 � P . This proves

g � Tab � p. The fact that P is a union of base triangles follows. This �nishes the

proof of Claim 1.

Since Dp1q
Γ is not dense in DΓ, there is a point x of type 0 in P that belongs to

the interior of a base triangle of the form g �Tab, for some elements a, b P V pΓq and
g P AΓ. By Claim 1 then, P contains g � Tab. Note that Minpgzg�1q � gMinpzq,
so up to replacing z with gzg�1, we will suppose that g � 1. In particular, P

contains Tab, and vH.

Claim 2: The base triangles containing vH in P form a polygon K :� Tab Y
Tba Y Tac Y Tca Y Tbc Y Tcb that is described in Figure 5.1, for some generators

a, b, c P V pΓq satisfying mab � mac � mbc � 3.

Proof of Claim 2: P contains vH, so there is a small enough ε ¡ 0 such that the

neighbourhood BP pvH, εq is contained in the fundamental domain KΓ, hence in

an union of base triangles of the form Tst (in fact, any ε ¤ 1 works). We consider

the angles around vH in P , i.e. for each of the above triangle Tst we consider the

angle

=vHpes, estq :� π

2
� π

2 �mst

.

Because AΓ is large, every such angle is at least π
2
� π

6
� π

3
. On one hand, the

minimal length of a non-trivial cycle in the barycentricsubdivision Γbar of Γ is 6,
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and thus the link LkP pvHq contains no non-trivial cycle with strictly less than 6

edges. In particular, there must be at least 6 base triangles around vH in P . On

the other hand P is an Euclidean plane, hence the sum of all the angles around vH

in P is exactly 2π. The only possibility is that there are exactly 6 base triangles

around vH in P , and that the angles are all precisely π
3
. This means the local

groups of the type 2 vertices around vH in P are all dihedral Artin subgroups

with coe�cient 3. We obtain the situation described in Figure 5.1. This �nishes

the proof of Claim 2.

One can easily notice that the polygon K is itself a �at (equilateral) triangle.

It is the subcomplex of the fundamental domain KΓ corresponding to the sub-

graph of Γ spanned by the vertices a, b and c. The previous reasonning can be

applied around any point of P that does not belong to Dp1q
Γ . Consequently, any

such point is contained in a �at triangle K 1 :� g1 � pTstYTtsYTsrYTrsYTtrYTrtq,
where g1 P AΓ and s, t, r P V pΓq are such that mst � msr � mtr � 3. In particu-

lar, P is tiled with these �larger� equilateral triangles. We will call such polygons

principal triangles, to distinguish them from base triangles.

Claim 3: The standard generators s, t and r associated with any principal triangle

K' of P are the same standard generators a, b and c as the ones associated with

the �rst principal triangle K. In particular, every principal triangle K 1 is the

g1-translate of K, for some g1 P Aabc, and the element z belongs to Aabc.

Proof of Claim 3: Let P0 :� K, and let Pn�1 be the union of the principal triangles

of P that are either in Pn or that share an edge with a principal triangle of Pn.

Note that P � lim
nÑ8

Pn. We assign a colour to each of the three sides of K. (see

Figure 5.1). We extend this system of colour to P by giving to an edge of a

principal triangle the colour of its unique translate in K. We show by induction

on n that this is well-de�ned, i.e. that such edges always have a translate in K.

The argument is elementary, and relies on completing colours in Pn�1 from the

colours in Pn (see Figure 5.1). If two edges with di�erent colours (say the ones

corresponding to distinct generators s, t P ta, b, cu) meet at a vertex, then one

can �nd the colour of the 6 edges around that vertex (they will be an alternating

sequence of the colours associated with s and t).
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Figure 5.1: On the left: The principal triangle K, which is equal to P0.
In the centre: Pn. On the right: Pn�1, with Pn highlighted in gray.

Note that if two principal triangles g1 �K and g2 �K share an edge then there is

some s P ta, b, cu and k � 0 such that g1 � sk � g2. Starting at K, this shows by

induction that any principal triangle K 1 is actually the g1-translate of K, where

g1 is a product of powers of a, b and c. In particular then, g1 P Aabc. Let us

now consider vH P P . We know that z acts trivially on T . In particular, it

acts trivially on L, hence preserves P . This means z � vH P P . By the previous

argument, we must have z P Aabc. This �nishes the proof of Claim 3.

Claim 4: Dabc is isometrically embedded into DΓ, and it contains Minpzq.

Proof of Claim 4: The �rst statement is a result of Charney ([25], Lemma 5.1), so

we only prove that Dabc contains Minpzq. The principal triangle K is precisely

the intersection KΓ XDabc, hence belongs to Dabc. Since every g1-translate of K

belongs to Dabc when g1 P Aabc, the plane P is contained inside of Dabc by Claim

3. Let now y be any point of Minpzq that is not in P . Then y projects to a

point y of T that is not in L. Because T is a real-tree, there is a unique geodesic

segment L0 that joins y and L in T . They meet at some vertex z P L that cuts L

in two pieces L1 Y L2 � L. Consider now the union L1 :� L0 Y L1, and consider

the half-plane P 1 :� L1�R. We know the colour of all the edges in P 1 that belong

to the half-plane P1 :� L1 �R � P 1 X P . A similar induction process as the one

in the proof of Claim 3 allows to extend the system of colour from P1 to P 1. In

particular, the same arguments as the ones used in the proof of Claim 3 apply.

Consequently, the whole of Minpzq is tiled with principal triangles (or part of

principal triangles) that are translates of K through elements of Aabc. It follows

that Minpzq � Dabc. This �nishes the proof of Claim 4, and of the Lemma.
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Figure 5.2: Extending the tiling of P to a tiling ofMinpzq. The left of the picture
represents what happens inMinpzq, while the right of the picture represents what
happens in T . The plane P that we already tiled is in the foreground, while the
half-plane P 1 we want to tile is highligthed in purple. l

Remark 5.2.7. Lemma 5.2.5 along with Lemma 5.2.6 already prove that large

Artin groups of hyperbolic type do not have exotic dihedral Artin subgroups.

Lemma 5.2.8. Let z be a hyperbolic element whose associated transverse-tree

contains an in�nite line. We know by Lemma 5.2.6 that up to conjugation, z P
Aabc for some appropriate standard generators a, b, c P V pΓq. Let x be any point

of Minpzq, and let g be an element of AΓ that sends x onto another point of

Minpzq. Then g P Aabc. In particular, Cpzq � Aabc.

Proof: First of all, we know by Lemma 5.2.6 that Minpzq � Dabc. Let γ be

any path in Minpzq connecting x and g � x. We use an argument similar to the

one used in the proof of Claim 3 of Lemma 5.2.6. Let x1, � � � , xn be the points

of type 1 and 2 that γ crosses, in the correct order. Then there is an element

g1 � g1 � � � gn with gi P Gxi that sends x to g � x. The local groups Gxi 's are

contained in Aabc because they are local groups of points of Dabc, so eventually

g1 P Aabc. Note that g1 and g both send x onto g � x. This means there are two

elements h1 P Gx and h2 P Gg�x such that g � h2 � g1 � h1. Because x and g � x
belong to Dabc, the local groups Gx and Gg�x are also contained in Aabc. Finally,

g is a product of three elements of Aabc, hence belongs to Aabc.

If g P Cpzq, then g preserves Minpzq by Theorem 5.2.1, and thus g P Aabc by
the previous point. This shows Cpzq � Aabc. l

115



Chapter 5 � Rigidity and automorphisms

5.2.2 The structure of Minphq and of T .

Let AΓ be an Artin group of large type, and let z P AΓ be any element acting

hyperbolically on DΓ. The goal of this section is to study the valence of vertices

in the transverse-tree T associated with z. We suppose for the whole section

that T contains an in�nite line (this will always be satis�ed when z generates the

centre of an exotic dihedral Artin subgroup of AΓ, by Lemma 5.2.5). In particular

then, Lemma 5.2.6 applies, and the situation becomes easier to understand: up to

conjugation, Minpzq � Dabc, where a, b, c P V pΓq are three generators satisfying
mab � mac � mbc � 3. As motivated by Lemma 5.2.8, we will then mostly be

looking at the action of Aabc on Dabc, forgetting about the rest of the action of

AΓ on DΓ (unless speci�ed otherwise). In light of that, the principal triangles

in Dabc are the translates of the corresponding fundamental domain K (see the

proof of Lemma 5.2.6). We will also call the sides of theses principal triangles

edges, even though they initially come from the union of two edges of the form

es,st and es,sr. Our main goal is to show the following:

Corollary 5.2.9. Let u be an axis of z. Then:

Case 1: Eg P AΓzt1u : u � Fixpgq. Then u has valence at most 2 in T .

Case 2: Dg P AΓzt1u : u � Fixpgq. Then u has in�nite valence in T .

We will prove this result by distinguishing three cases about the structure of axes

of z. The result of Corollary 5.2.9 will directly follow from Lemmas 5.2.10, 5.2.17

and 5.2.20. We begin with the following lemma:

Lemma 5.2.10. Every axis u � D
p1q�ess
abc of z corresponds to a point u whose

valence in T is at most 2.

Proof: Let us consider an axis u � D
p1q�ess
abc of z. We want to show that u has

valence at most 2 in T , i.e. that there is some ε ¡ 0 such that the ball BT pu, εq
is isometric to an interval of the real line. A direct consequence of Theorem

5.2.1 is that @ε ¡ 0, @x P u, the ball BT pu, εq is isomorphic to the quotient

BMinpzqpx, εq {� , where two points x, y P Minpzq are equivalent if and only if

they belong to a common axis. In particular, it is enough to �nd some ε ¡ 0

and x P u for which BMinpzqpx, εq is contained in a planar disk. Finally, since

BMinpzqpx, εq � BDabc
px, εq, it is enough to show that BDabc

px, εq is a planar disk.
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We divide the problem in two cases:


 Suppose �rst that u � D
p1q
abc. Then u contains a point x that belongs to the

interior of a base triangle of the form g � Tst. It is then clear that there is a small

enough ε ¡ 0 such that BDabc
px, εq is a planar disk.


 Suppose now that u � D
p1q
abc. It is not hard to see with a bit of Euclidean

geometry that up to symmetry, there are only two kinds of lines in Minpzq that
are contained inside Dp1q

abc (see Figure 5.3). Furthermore, there is only one of

these two kinds that does not belong to Dp1q�ess
abc (the blue line on Figure 5.3). In

particular, we directly see that u contains an edge of the form g � est connecting a

vertex of type 0 to a vertex of type 2. Let now x P u be any point in the interior

of this edge. Then there is a small enough ε ¡ 0 such that BDabc
px, εq is a planar

disk, because g � est is by construction contained in exactly two base triangles:

g � Tst and g � Tts.

Figure 5.3: The two di�erent types of line that are contained into Dp1q
abc. The red

line belongs to Dp1q�ess
abc , while the blue line doesn't. l

One would probably like at this point to be able to see T as a simplicial tree

and not just as a real-tree. While it is indeed true that T carries a somewhat

natural structure of simplicial tree (assuming additional hypotheses on T ), it is

not that easy to prove. In particular, we don't know at this point whether T has

leaves. As it turns out, we will be able to prove later on that T does not have

any leaf (assuming the same additionnal hypotheses on T ). For now, we focus on
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proving that T has a �simplicial-like� structure, as described by Lemma 5.2.12.

We start by de�ning the vertices of T :

De�nition 5.2.11. We de�ne the set of vertices of T to be the (possibly empty)

set of points u whose corresponding axis u is contained inside Dp1q�ess
abc .

Lemma 5.2.12. If u is a vertex of T , the set of vertices of T is exactly the set

of points of T whose distance to u is in 3 �Z. In particular, vertices are isolated,

and every point of T of valence at least 3 is a vertex.

Proof: Let u be a vertex of T , and let v be any point of T distinct from u. Up to

using an inductive argument, it is enough to show that if U is the 3-neighbourhood

of u in T , then the vertices of U that are not u are precisely the points of U that

are at distance 3 from u.

By hypothesis u is a vertex of T , which means that u � D
p1q�ess
abc . As stated

in the proof of Lemma 5.2.10, this is only possible if u has the form described

by the red line in Figure 5.3. Let now v P U be a point distinct from u. By

Theorem 5.2.1, u and v are parallel, so v can be seen as a line in Figure 5.3 that

is parallel to u. It is not hard to see that the closest line to u that is parallel to u

and belongs to Dp1q�ess
abc is the vertical black line in the centre of Figure 5.3. With

a bit of Euclidean geometry, one can determine that its distance to u is 3. In

particular, v is a vertex of U distinct from u if and only if it is at distance exactly

3 from u. This shows the desired property, and shows as well that vertices of T

are isolated.

Let now u be a point of valence at least 3 in T . By Lemma 5.2.10, the

corresponding axis u belongs to Dp1q�ess
abc , which essentially means u is a vertex.

l

Remark 5.2.13. We say two vertices of T are adjacent if there is no other

vertices between them, i.e. if they lie at distance 3 from each others.

De�nition 5.2.14. Let g � K and h � K be two principal triangles of Dabc that

share an edge. Then g�1h � sk for some standard generator s P ta, b, cu and

k � 0. This de�nes a system of arrows on the principal triangles of Dabc in the

following way:

(1) Put a single arrow from g �K to h �K whenever g�1h � s;
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(2) Put a double arrow between g �∆ and h �∆ whenever g�1h � sk with |k| ¥ 2.

Finally, we say a subset of Dabc is a principal hexagon if it is the union of 6

principal triangles tgi �KuiPt1,��� ,6u around a common type 2 vertex v of Dabc such

that gi �K shares an edge with gi�1 �K rmod 6s.

Lemma 5.2.15. The system of arrows on a principal hexagon necessarily has

one of the two forms described in Figure 5.4:

Figure 5.4: The two possible systems of arrows on a principal hexagon, up to
symmetries or rotations of the hexagon.

Proof: Consider a principal hexagon obtained as the union of 6 principal triangles

gi � K, with i P t1, � � � , 6u. Two adjacent principal triangles gi � K and gi�1 �
K rmod 6s share an edge, so g�1

i gi�1 � skii for some standard generator si P V pΓq.
In particular, we have

sk1
1 s

k2
2 s

k3
3 s

k4
4 s

k5
5 s

k6
6 � pg�1

1 g2qpg�1
2 g3qpg�1

3 g4qpg�1
4 g5qpg�1

5 g6qpg�1
6 g1q � 1, p�q

where all the ki are non-zero. Note that the edges between the various principal

triangles all meet at a common type 2 vertex of Dabc, whose local group is a

conjugate of Atr for two standard generators t and r in ta, b, cu. This means the

si's are not just any standard generators: they are an alternating sequence of t

and r. In particular, p�q becomes

tk1rk2tk3rk4tk5rk6 � 1.

As it turns out, there are very few options on the powers ki's for such an equality

to be possible. These have been classi�ed in [76, Lemma 3.1], and any choice of

possible ki's give rise to one of the two systems of arrows described in Figure 5.4.

l
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Remark 5.2.16. One may be able to use Lemma 5.2.15 even if the subset we

look at is only part of a principal hexagon. This happens for instance as soon as

the centre of the hexagon belongs to the interior of the given subset.

Lemma 5.2.17. Let u be an axis of z for which we suppose that u � D
p1q�ess
abc

but there is no element g P Aabczt1u such that u � Fixpgq. Then u has valence

at most 2 in T .

Proof: Suppose that u P T has valence at least 3. We will �nd a contradiction.

Because there is no g P AΓzt1u such that u � Fixpgq, there exist two consecutive
edges e and e1 in u that don't have the same stabilisers, i.e. Ge � Ge1 . The

intersection v :� e X e1 is a vertex of the form v � h � vst for some s, t P ta, b, cu
and h P AΓ. By hypothesis, any neighbourhood of u in T contains at least

3 distinct segment meeting at u. These segments lift to in�nite strips in the

productMinpzq � T �R, and the union of any two of these three strips contains

a big enough part of an hexagon of simplices in order to apply Lemma 5.2.15 (see

Remark 5.2.16).

We consider (part of) the neighbourhood of v, as described in Figure 5.5. We

claim that the only double arrows can appear in this neighbourhood is on edges

of u. Indeed, if say the blue half-hexagon had a double arrow between its two

upper triangles, then the red and green half-hexagons would have double arrows

between their two lower triangles, by Lemma 5.2.15. We then have a contradiction

to Lemma 5.2.15 by looking at the hexagon obtained from gluing the red and the

green half-hexagons together. From Lemma 5.2.15 again, the two single arrows

in the blue half-polygon points towards the same direction. This means that up

to replacing s and t by their inverses, we are in the following situation:
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Figure 5.5: On the left: The three half-hexagons around u. In the middle: The
only possible system of arrows on the half-hexagons, up to horizontal symmetry.
On the right: Some of the simplices around u. The stabilisers of the edges of
these simplices can directly be determined from the simplices they belong to.

It is not hard to see that this yields a contradiction, because

Ge1 � phstq � xsy � phstq�1 � h � xty � h�1 � Ge.

l

Lemma 5.2.18. Let z P AΓ be any hyperbolic element, let u be an axis of z, and

let Stabpuq be the set of elements of AΓ that stabilises u. Then:

If Eg P AΓzt1u : u � Fixpgq, then

Stabpuq � xz0y � Z,

where z0 acts on u like a non-trivial translation with minimal translation length.

If Dg P AΓzt1u : u � Fixpgq, then without loss of generality g is the conjugate of

a generator, and

Stabpuq � xgy � xz0y � Z2,

where z0 acts on u like a non-trivial translation with minimal translation length.

Proof: Let Fixpuq be the normal subgroup of Stabpuq consisting of elements of

AΓ that �x u pointwise, and let Stabpuq :� Stabpuq
M
Fixpuq . It is not hard to

see that Fixpuq belongs to the centre of Stabpuq. So by construction, Stabpuq
can be obtained as a central extension of the following short exact sequence

t1u Ñ Fixpuq Ñ Stabpuq Ñ Stabpuq Ñ t1u. p�q
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Claim: Stabpuq is a discrete subgroup of the group Isompuq of isometries of u,

that consists only of translations.

Proof of the Claim: It is easy to check that Stabpuq acts faithfully on u hence is

isomorphic to a subgroup of Isompuq. Let z0Fixpuq P Stabpuq. Then z0Fixpuq
acts like a simplicial isometry of the axis u. This already shows Stabpuq is a

discrete group. To prove that it consists only of translations, we must show that

z0Fixpuq, and thus z0, does not act as a re�ection on u. Suppose that z0 does

act like a symmetry on u. Then z2
0 acts trivially on u. Let x P u be any point

but the central point of the symmetry. Then we have z2
0 P Gx but z0 R Gx. This

contradicts Theorem 4.4.4, and �nishes the proof of the Claim.

As a discrete group of translations of the real line, the quotient group Stabpuq
is isomorphic to Z. It is generated by a shortest possible translation along u,

that takes the form z0Fixpuq for some z0 P Stabpuq. Let us now come back to

the study of Fixpuq:
Case 1: Eg P AΓzt1u : u � Fixpgq. We either have u � D

p1q�ess
Γ or u � D

p1q�ess
Γ .

In the �rst case, there is an x P u with trivial local group, and thus Fixpuq �
Fixpxq � t1u. In the second case, there must be two consecutive edges e1, e2 � u

with distinct cyclic local groups. By Theorem 4.1, the intersection of these two

local groups is a parabolic subgroup. It is strictly contained inside any of the

two cyclic local groups, hence is trivial. Since Fixpuq �xes both edges, it must

be trivial too. In both of the cases we obtain Stabpuq � Stabpuq � xz0y.
Case 2: Dg P AΓzt1u : u � Fixpgq. First note by Lemma 5.1.6 that g has to satisfy

typepgq � 1. By Corollary 5.1.9, we may as well suppose that g is just a conjugate

of a generator. Then Fixpuq has to be cyclic, otherwise we would have edges in u

with non-cyclic local group. This means the inclusion xgy � Fixpuq is an equality.

Plugging Fixpuq � xgy and Stabpuq � Z in p�q gives the short exact sequence

0 Ñ Z Ñ Stabpuq Ñ Z Ñ 0. p��q

By [54, Theorem 3.16], the equivalence classes of possible central extensions for

p��q are in one-to-one correspondence with the elements of the cohomology group

H2pZ; Zq � t1u. This means there is only one such extension, and it is the abelian

group Z2. We obtain Stabpuq � xgy � xz0y � Z2. l
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Remark 5.2.19. (1) If the transverse-tree associated with z contains an in�nite

line, then one can apply Lemma 5.2.8 to any element g P Stabpuq and any point

x P u, and obtain that g P Aabc. This shows Stabpuq � Aabc.

(2) The choice of z0 in the above proof is made up to multiplication with an

element of Fixpuq, i.e. with a power of g.

Lemma 5.2.20. Let u be an axis of z and suppose that there exists an element g P
AΓzt1u such that u � Fixpgq. Then u has in�nite valence in T . More precisely,

and in the light of Lemma 5.2.18, there is an appropriate choice of z0 P AΓ such

that we have Stabpuq � xgy�xz0y � Aabc (for appropriate a, b, c P V pΓq) and such

that xgy acts transitively on the set of edges around u and z0 acts trivially on the

set of edges around u.

Proof: We �rst recall that z is supposed to be such that T contains an in�nite

line. We are under the hypotheses of Lemma 5.2.6, and there are three standard

generators a, b, c P V pΓq satisfying mab � mac � mbc � 3 such that z P Aabc and
Minpzq � Dabc. In particular, Dabc is tiled by principal triangles.

Our �rst goal is to describe BT pu, εq. Most ideas are similar to the arguments

used in the proof of Lemma 5.2.10. However, we will here use slightly more

speci�c tools, as de�ned thereafter. For any x P Dabc, any subset Y � Dabc and

any ε ¡ 0, we de�ne the principal ball Bpr
Y px, εq to be the intersection between

the ball BY px, εq and the set of all principal triangles of Dabc that contain x.

For any given x P u, there is always a small enough ε such that the two balls

agree. Recall that any principal triangle ofMinpzq projects to a segment of length

exactly 3 in T . Following the arguments used in the proof of Lemma 5.2.10, for

any point x P u and any ε ¤ 3, we have

BT pu, εq � Bpr
Minpzqpx, εq {� . p�q

Because u � Fixpgq, we know from Lemma 5.2.18 that we can assume without

loss of generality that g is the conjugate of a generator and that Fixpuq � xgy � Z.

Consider a type 1 point x in u, whose local group Gx is precisely xgy. In Dabc,

the action of the stabiliser of an edge on the set of principal triangles containing

that edge is transitive on the set of principal triangles containing that edge. This

means the principal ball Bpr
Dabc

px, 3q is the union of principal triangles tDiuiPZ,
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around u, for which we have g �Di � Di�1 (see Figure 5.6).

Claim: Bpr
Minpzqpx, 3q � Bpr

Dabc
px, 3q.

Proof of the Claim: The inclusion "�" is trivial, so we show the other inclusion.

To do so, consider the 3-neighbourhood of u in T . Since T connected with in�nite

diameter, the neighbourhood Bpr
T pu, 3q contains at least one segment of length 3,

that lifts to a strip of width 3 around u. Therefore we can assume that D0 is

contained in BMinpzqpx, 3q. Let now v be any axis of z going through D0 but

distinct from u (see Figure 5.6). On one hand, the line gi � v is an axis of gizg�i.

On the other hand, the elements g and z commute by Lemma 5.2.18, and thus

gizg�i � z. This means gi � v is just another axis of z, hence belongs to Minpzq.
Because v intersects D0, the axis gi � v intersects Di. Since this argument works

for any axis v of h going through D0, the conjugation by gi send the union of

such axes to another union of axes of h. The �rst union contains D0, while the

second contains Di. This proves we have Di � Minpzq. The argument works

for any i P Z, so the principal triangles tDiuiPZ all belong to Minpzq, and thus

Bpr
Dabc

px, 3q � Bpr
Minpzqpx, 3q. This �nishes the proof of the Claim.

Using p�q, the above Claim, and the description of Bpr
Dabc

px, 3q, we see that

BT pu, 3q is a tree whose segments incoming from u form a set of edges teiuiPZ
that satis�es g � ei � ei�1. It only remains to show that z0 can be chosen such

that it �xes ei pointwise, for all i P Z. Let Bi be the strip corresponding to the

lift ei � R of the edge ei to Minpzq (see Figure 5.6), and let e be the common

edge of the principal triangle Di. As z0 stabilises u, the edge z0 � e also belongs to
u. In particular, z0 �D0 intersects u along that edge, which means z0 �D0 belongs

to one of the strips, say Bk. Up to replacing z0 by z0 � g�k in the light of Remark

5.2.19.(2), we can assume that k � 0. This means that z0 �D0 � B0. Taking the

quotient yields z0 � e0 � e0, and lifting again gives z0 �B0 � B0. This also implies

z0 �Bi � z0 � pgi �B0q � gi � pz0 �B0q � gi �B0 � Bi.

In particular, z0 � ei � ei. Since z0 preserves each ei and �xes u, it must �x each

ei pointwise. l
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Figure 5.6: The geometric representation of the arguments used in the proof of
Lemma 5.2.20. The left of the picture represents what happens in Minpzq, while
the right of the picture represents what happens in T .

5.2.3 Algebraic description of centralisers.

Let AΓ be an Artin group of large type, and let z P AΓ be any hyperbolic element.

We suppose as in the previous section that the transverse-tree T associated with

z contains an in�nite line, but we now also suppose that it contains a vertex

with valence at least 3 (note that it must then have in�nite valence, by Corollary

5.2.9). The goal of this section is to use that second hypothesis for an even more

precise study. As it turns out, the structure of z, Cpzq and T under these two

hypotheses is very rigid. Our goal is to prove the following:

Proposition 5.2.21. Suppose that T contains an in�nite line and has a vertex

of valence at least 3. Then up to conjugation, z :� pabcabcqn for some n � 0.

Moreover, if we set z0 :� abcabc, then there is a short exact sequence of the form

t1u Ñ xz0y Ñ Cpzq Ñ Cpzq Ñ t1u, p�q

where

Cpzq :� CpzqMxz0y � xby �
�xabcyMxz0y

	
� Z � �Z {2Z

�
.
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In particular, Cpzq is a central extension de�ned by p�q. Moreover, T is isometric

to the Bass-Serre tree above the natural segment of groups described by the free

product Z � �Z {2Z
�
.

We recall that T is supposed throughout this section to contain an in�nite line

and a vertex of in�nite valence. We begin with the following Lemma:

Lemma 5.2.22. Up to permutation of the elements of the set ta, b, cu, and up

to conjugation by an element of Aabc, the element z is given by z � pabcabcqn for

some n P Zzt0u. Moreover if u is any vertex of T with in�nite valence, then the

corresponding element z0 P Stabpuq from Lemma 5.2.20 is z0 :� abcabc.

Proof: Because T contains a vertex of in�nite valence, there must be an axis u

of z such that u � Fixpgq for some element g P AΓzt1u, by Corollary 5.2.9. The

element g has type 1, and belongs to Aabc by Remark 5.2.19.(1). In particular,

up to conjugation by an element of Aabc, we can assume that g is a standard

generator of Aabc, say b for instance. This means u � Fixpbq.
Recall by Lemma 5.2.20 that u has in�nitely many adjacent vertices in T , so

we let u1 and u2 be two distinct such vertices (see Figure 5.7). Since T contains

an in�nite line, one of these two vertices admits at least one other neighbouring

vertex, that we call u3 (see Figure 5.7). By Lemma 5.2.20, the elements of AΓ

that �x u pointwise form a subgroup Fixpuq � xby that acts transitively on the

set of edges around u. In particular, the convex hull cpu1, uq is the image of the

convex hull cpu, u2q under an element bk, with k � 0. Since u has in�nite valence,

we can assume without loss of generality that u1 has been chosen so that |k| ¥ 2.

In particular, there are double arrows along u, as described in Figure 5.7.

Note that any principal hexagon that splits in two half-hexagons around u

carries a system of arrows whose single arrows all point towards the same direction

(see Figure 5.7). This is due to Lemma 5.2.15.
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Figure 5.7: The axes u1, u, u2 and u3 of z, along with a partial system of arrows
around u.

Claim: The arrows between the principal triangles of the convex hull cpu, u2q are
single arrows and they all point towards the same direction.

Proof of Claim: Suppose that we have in cpu, u2q arrows that don't point to-
wards the same direction. We will show in the following steps that this yields a

contradiction. The di�erent steps refer to Figure 5.8.

Step 1: In order to respect the assumption and the previous statement, there must

be two consecutive hexagons around u whose single arrows don't point towards

the same direction. So without loss of generality, there are two single arrows

pointing towards each others (the blue arrows), say into a principal triangle h �K.

Step 2: Use Lemma 5.2.15 to complete the hexagon as drawn (red arrows). Note

that the horizontal arrows could be double arrows (in which case every horizon-

tal arrow crossing u2 must be a doulbe arrow as well), but this doesn't change

anything on the rest of the argument.

Step 3: Use Lemma 5.2.15 again to complete the hexagons as drawn (orange ar-

rows).

Step 4: Proceed by induction repeating Step 2 and Step 3 to complete every other

hexagon and determine every arrow in the interior of cpu1, u3q.
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Figure 5.8: The proof of the Claim. The principal triangle h �K is highlighted in
grey.
On the left: Step 1 (blue arrows), Step 2 (red arrows) and Step 3 (orange arrows).
On the right: The �rst iteration of Step 4 (green arrows and then purple arrows).
We can apply Step 4 in�nitely many time and determine all the arrows in the
interior of cpu1, u3q.

The system of arrows in cpu2, uq then takes the following form: every arrow above

h�K points downwards, and every arrow below h�K points upwards. In particular

then, the simplex h �K is the only simplex of cpu, u2q that has two arrows pointing
inside. However, such a property should be inherited by z � ph � Kq too, which
contradicts uniqueness. This yields a contradiction to the assumption made at

the beginning of the proof of the Claim, which eventually proves the Claim.

Let now e0 be the edge that corresponds to the intersection of K with u. Note

that e0 � Fixpbq, so there is a br-translate of K that is contained in cpu, u2q, for
some r P Z. By a similar argument as the one of the claim in the proof of Lemma

5.2.20 we know that the translate b�r � cpu, u2q is contained in Minpzq as well.
So up to applying b�r, we can suppose that K itself is contained in cpu, u2q. By
the above Claim, all the arrows in cpu, u2q are single arrows pointing towards the

same direction. We colour every edge of cpu, u2q so that two edges share the same

colour if and only if they are in the same orbit. It is then easy to see from Figure
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5.9 that the other edges tekukPZ of u that are in the orbit of e0 take the form

pabcabcqk � e0:

Figure 5.9: The edges of u in the orbit of e0 can be obtained from e0 by applying
a power of pabcabcq. In particular, the elements pabcabcq�1 send an edge of u of
a given colour to the closest edges in u with the same colour.

The element abcabc acts on u as a translation of minimal length, and hence we

can set z0 :� abcabc, in the light of Lemma 5.2.18. It remains to show that z0

acts trivially on the set of edges around u in T . This follows from the fact that

it preserves the strip described in Figure 5.9 and preserves u. It must then �x

one of the edges around u in T , and thus all edges around u, by Lemma 5.2.20.

Finally, z � bm � pabcabcqn for some m,n P Z with n � 0 , by Lemma 5.2.18. Note

that z acts trivially on the set of edges around u, but any bm � pabcabcqn with

non-trivial m doesn't. This forces m � 0, and thus z � pabcabcqn. l

Corollary 5.2.23. The orbit of any vertex u of in�nite valence under the action

of Cpzq is precisely the set of vertices of T . In particular, every vertex of T has

in�nite valence.

Proof: Let u be an axis of z and let g P Cpzq. First of all, if u � D
p1q�ess
abc then

g � u � D
p1q�ess
abc , because the action is simplicial. In the quotient space T , this

means g sends vertices of T to other vertices of T . It is not hard to see from

Figure 5.9 that the element abc sends the axis u onto one of its neighbours vi (it

acts as a vertical symmetry of the strip described in Figure 5.9). Moreover, we
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know by Lemma 5.2.20 that vi is in the orbit of all the other neighbours vj of u,

for j P Z. This proves that every vertex that is adjacent to u is in the orbit of

u. In particular, these vertices have in�nite valences, so we can repeat the above

process inductively. This yields the desired result. l

Corollary 5.2.24. T has no leaf, hence is a simplicial tree (with edge length 3)

on which Cpzq acts simplicially.

Proof: Suppose that u is a leaf of T . It is easy to see using Lemma 5.2.12 that

there is a unique vertex v P T that is the closest to u, and that the distance

between the two points is bounded by 3. Note that v has in�nite valence by

Corollary 5.2.23. If the distance between u and v was strictly less than 3, we would

obtain a contradiction with Lemma 5.2.20, so this distance must be precisely

3. By Lemma 5.2.12 then, u must also be a vertex. It has in�nite valence by

Corollary 5.2.23, hence cannot be a leaf, by Lemma 5.2.20. Cpzq acts simplicially

on T because it preserves its set of vertices, by Corollary 5.2.23.

We now have everything we need in order to prove Proposition 5.2.21, which we

do now.

Proof of Proposition 5.2.21: The �rst statement comes from Lemma 5.2.22,

to which we refer for the following arguments. Let u be the axis of h that is

contained in Fixpbq, let w :� abc � u and let v the axis of z that is equidistant

from u and w:

Figure 5.10: The convex hull cpu,wq, with the principal triangle K � KΓ.
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We say that a segment of T is a half-edge if its length is half that of an edge of

T and if one of its endpoints is a vertex of T . Let now γ � T be the half-edge

ru, vs. We �rst prove the following:

Claim: (1) All the half-edges of T are in the same Cpzq-orbit.
(2) The element bxz0y P Cpzq acts on T with �xed point u. Moreover, u has

in�nite valence and xbyxz0y acts transitively on the set of edges around u.

(3) The element abcxz0y P Cphq acts on T with �xed point v. Moreover, v has

valence 2 and xabcyxz0y acts transitively on the set of edges around v.

(4) Any element of Cpzq that �xes γ belongs to xz0y.

Proof of the Claim: (1) Consider two half-edges γ1 and γ2. We know from

Corollary 5.2.23 that the vertices of T are all in the same Cpzq-orbit. So up to

action of Cpzq we can assume that γ1 and γ2 both contain the vertex u. Now the

action of xby � Cpzq is transitive on the half-edges around u (see Lemma 5.2.20),

so γ1 and γ2 are in the same orbit.

(2) We know that u has in�nite valence, by Corollary 5.2.9. The element bxz0y
preserves u and �xes u, because u � Fixpbq and z0 P Stabpuq. The subgroup

xbyxz0y acts transitively on the set of vertices around u, by Lemma 5.2.20.

(3) We know that v has valence at most 2, by Corollary 5.2.9. This valence must

actually be exactly 2, because T contains the segment ru,ws around v. On one

hand, xz0y acts trivially on the set of edges around u, by Lemma 5.2.20. On the

other hand, it is easy to see that the element abc sends u onto w, and reciprocally.

In particular, abc preserves v and �xes v. Together, this means xabcyxz0y �xes v
and acts transitively on the two edges around v.

(4) Let g P Cpzq and suppose that g �xes γ pointwise. Then g preserves u. Using

Lemma 5.2.20 and the fact that g acts trivially on a non-trivial part of an edge

around u, the only possibility is that g is a power of z0.

We come back to proving the main statement. The half-edge γ is a strict fun-

damental domain of the action of Cpzq on T , by (1). Moreover, the various

stabilisers under the action of Cpzq are xbyxz0y for the vertex u, xabcyxz0y for the
vertex v, and xz0y for the half-edge γ, by (2), (3) and (4). Note that in Cpzq,
these stabilisers are isomorphic to Z for u,

�
Z {2Z

�
for v and t1u for γ. The result

follows using classical Bass-Serre theory. l
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Remark 5.2.25. One can directly see from Proposition 5.2.21 that Cpzq does
not depend on the value of n. In particular, Cppabcabcqnq � Cpabcabcq.

5.3 Classifying the dihedral Artin subgroups.

The goal of the present section is to prove Theorem 5.3, which we will do after

having proved Theorem 5.5. Besides being interesting on its own, Theorem 5.3

has important consequences, as will be seen in Section 5.4 and Section 5.5.

The strategy in order to prove Theorem 5.3 is to describe the spherical

parabolic subgroups of any large-type Artin group AΓ in a �purely algebraic�

manner, i.e. in a way that is preserved under isomorphisms. Large-type Artin

groups are 2-dimensional, so their spherical parabolic subgroups are either di-

hedral Artin subgroups, or in�nite cyclic subgroups. Clearly all in�nite cyclic

subgroups are not parabolic. Pheraps more surprisingly, AΓ also contains di-

hedral Artin subgroups that are not parabolic subgroups, in general. In other

words, some exotic dihedral Artin subgroups described in De�nition 5.1.18 do

exist, as soon as AΓ is not of hyperbolic type. What we would like to do is to

be able to di�erentiate the classical dihedral Artin subgroups from these exotic

dihedral Artin subgroups by a criterion that is purely algebraic.

Note that the classical dihedral Artin subgroups that we are interested into are

always maximal, as ensured by Corollary 5.1.23. So we will only care to di�eren-

tiate between classical and exotic dihedral Artin subgroups of AΓ amongst those

that are maximal. Any exotic dihedral Artin subgroup H of AΓ is contained in

the centraliser of a hyperbolic element z generating its centre. These centralisers

have being intensely studied throughout Section 5.2. In particular, we were able

to give exact presentations of such centralisers (see Proposition 5.2.21). Showing

that these centralisers are themselves exotic maximal dihedral Artin subgroups

will directly imply that no other exotic maximal dihedral Artin subgroup exists,

giving a precise classi�cation of all exotic maximal dihedral Artin subgroups (see

Theorem 5.5). This is the goal of Section 5.3.1.

The goal of Section 5.3.2 is to describe an algebraic property that is always

satis�ed for exotic maximal dihedral Artin subgroups but is never satis�ed for

classical maximal dihedral Artin subgroups, allowing us to di�erientiate the two
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kind of maximal dihedral Artin subgroups purely algebraically (see Corollary

5.3.12). We will then prove Theorem 5.3.

5.3.1 Maximality and presentation.

Let AΓ be an Artin group of large-type. The centre of any exotic dihedral Artin

subgroupH of AΓ is generated by an element z P AΓ for whichH � Cpzq. We saw

in Section 5.2 that in this situation the element z takes the form z � pabcabcqn
where a, b, c P V pΓq satisfy mab � mac � mbc � 3 and n � 0. We also describe in

Proposition 5.2.21 the way Cpzq can be obtained as a central extension.

Let us now come back to a more general case, and consider three standard

generators V pΓq satisfying mac � mac � mbc � 3. We start with the following

lemma:

Lemma 5.3.1. Cpabcabcq � xb, abcy.

Proof: It is not hard to check that xb, abcy � Cpabcabcq, so we prove the other

inclusion. Let g P Cpabcabcq, and let u be the axis of abcabc that belongs to Fixpbq
(see Section 5.2.3). By Theorem 5.2.1 the line g �u is also an axis of abcabc (which

corresponds to a vertex in the associated transverse-tree). By Proposition 5.2.21

then, there is an element w P xb, abcy such that w �u � g �u. It follows that w and

g must agree, up to an element h P Stabpuq. By Lemma 5.2.18 and Section 5.2.3,

Stabpuq decomposes as a product Stabpuq � xby � xabcabcy � xb, abcy. Finally, g
is a product of two elements of xb, abcy, hence belongs to xb, abcy as well. l

Remark 5.3.2. Let H :� xs, ty be the subgroup of AΓ generated by

s :� b�1 and t :� b � abc.

If we let z :� abcabc, then we have z � stst � tsts. Moreover, we know from

Lemma 5.3.1 that

H � xb, abcy � Cpabcabcq � Cpzq.

We want to show two things:

(1) H really de�nes a dihedral Artin subgroup of AΓ. This is the goal of Lemma

5.3.3.

(2) H is maximal. This will be done in Lemma 5.3.4.
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Lemma 5.3.3. H is a dihedral Artin subgroup of AΓ.

Proof: Recall that H � Cpzq, and consider the short exact sequence

t1u Ñ Z Ñ Cpzq Ñ Z � �Z {2Z
�Ñ t1u, p�q

coming from Proposition 5.2.21 and de�ning the central extension Cpzq. By

[54, Theorem 3.16], the equivalence classes of central extensions of the form p�q
are in one-to-one correspondence with elements of the cohomology group

H2pZ � �Z {2Z
�

; Zq � H2pZ; Zq `H2p�Z {2Z
�

; Zq � �
Z {2Z

�
.

It follows there are, up to isomorphism, exactly two distinct central extensions

satisfying p�q, one of which is Cpzq. These two groups are the following:

�
Z � �Z {2Z

��� Z and A4,

where A4 is the dihedral Artin group with coe�cient 4. Indeed, the direct product

is cleary a �tting central extension, while A4 is a �tting extension by [14, Lemma

1]. The �rst group has torsion while the second doesn't. In particular then Cpzq
must be isomorphic to the second group, i.e. A4. l

Lemma 5.3.4. H is maximal amongst the dihedral Artin subgroups of AΓ.

Proof: We know from Lemma 5.3.3 that H is an exotic dihedral Artin subgroup

of AΓ. Let H 1 be a dihedral Artin subgroup of AΓ satisfying H 1 � H. Our goal

is to show that H 1 � H. We know by Corollary 5.1.19 that H 1 must also be an

exotic subgroup with centre generated by an element z1. We have the following:

abc P Cpzq � H � H 1 � Cpz1q. p�q

In particular, the element abc commutes with z1, which means z1 preservesMinpabcq
by Theorem 5.2.1.

Claim: Minpabcq is a single axis, described by the line v in Figure 5.10.

Proof of the Claim: We already know from the proof of Proposition 5.2.21

that the line v of Figure 5.10 is an axis of abc. If v1 is another axis of abc, then
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v and v1 are parallel, and the convex hull cpv, v1q is a union of axes of abc (see

Theorem 5.2.1). In particular then, there is an axis v2 distinct from v that is

arbitrary close to v, say at distance ε ¤ 1. This axis must belongs to the convex

hull cpu,wq described in Figure 5.10. However the element abc acts on this convex

hull as a glide re�ection around v, whose minset must then only be the central

line v. This gives a contradiction, which �nishes the proof of the Claim.

Recall that z1 preserves Minpabcq � u. In particular then, Lemma 5.2.18

applies: z1 P Stabpuq � xz0y, where z0 is a shortest translation preserving v.

It is not hard to notice that abc is such a shortest translation, i.e. that z1 is

actually a power of abc. Now the element z1 described by Lemma 5.2.22 has

height 6n for some n P Zzt0u. Comparing with the heights of powers of abc, this

means we must have z1 � pabcq2n � pabcabcqn. Finally, using Remark 5.2.25 we

obtain Cpz1q � Cppabcabcqnq � Cpabcabcq � Cpzq. Together with p�q, this shows
H � H 1, as wanted. l

Corollary 5.3.5. The exotic maximal dihedral subgroups of AΓ are exactly the

subgroups that are conjugated to centralisers of the form

Cpzq � xb, abcy,

where z � abcabc for some generators a, b, c P V pΓq satisfying mab � mac �
mbc � 3.

Proof: That such a centraliser Cpzq is dihedral and maximal follows from Lemma

5.3.3 and Lemma 5.3.4. For the converse, Lemma 5.2.5 along with Lemma 5.2.22

show that the centre of any exotic dihedral subgroup H of AΓ is generated by

an element of the form z � pabcabcqn for some n � 0 and some a, b, c P V pΓq
satisfying mab � mac � mbc � 3. In particular then, H � Cpzq � Cpabcabcq by
Remark 5.2.25. The centraliser Cpabcabcq is dihedral and maximal by Lemma

5.3.3 and Lemma 5.3.4, and thus maximality of H shows that H � Cpabcabcq. l

We can now put together the various results we proved to recover Theorem

4.5:
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Theorem 5.3.6. Let AΓ be a large-type Artin group of rank at least 3, and let

H be a dihedral Artin subgroup of AΓ. Then H is conjugated into one of the

following:

(1) xa, by, where a, b P V pΓq satisfy mab   8.

(2) xb, abcy, where a, b, c P V pΓq satisfy mab � mac � mbc � 3.

Proof: Let H be a dihedral Artin subgroup of AΓ. We only need to look at what

happens when H is maximal. Now H is either classical or exotic, and a direct

use of Lemma 5.1.22 and Corollary 5.3.5 �nishes the proof of the theorem. l

5.3.2 Algebraic di�erentiation of dihedral Artin subgroups.

In Section 5.3.1 we have been able to describe precisely all the maximal exotic

dihedral Artin subgroups of AΓ. By Corollary 5.3.5, they are the centralisers of

the form Cpzq � xb, abcy for appropriate generators. We would like to be able

to di�erentiate these subgroups from the classical maximal dihedral Artin sub-

groups with a purely algebraic condition, i.e. a condition that is preserved under

isomorphisms. The goal of this section is to do precisely that. The next de�nition

introduces the algebraic notion that will allow us to make such a di�erentiation.

As a consequence, we will be able to prove that spherical parabolic subgroups of

a large-type Artin group can be de�ned purely algebraically and are preserved

under isomorphisms to other large-type Artin groups (see Theorem 5.3.13).

De�nition 5.3.7. A maximal dihedral Artin subgroup H1 of AΓ has isolated

intersections if there exists a maximal dihedral Artin subgroupH2 ¤ AΓ distinct

from H1 such that there is no other maximal dihedral Artin subgroup H3 ¤ AΓ

distinct from H1 and H2 for which

H1 XH2 � H3.

Remark 5.3.8. The notion of being a dihedral Artin subgroup, the notions of

intersection or inclusion, and the notion of maximality are all preserved under

isomorphisms. In particular, being a maximal dihedral Artin subgroup with no

isolated intersections is preserved through isomorphisms as well.

Our goal is to show that the maximal dihedral Artin subgroups of AΓ with
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isolated intersection are exactly those that are exotic.

Lemma 5.3.9. Let H1 be an exotic maximal Artin subgroup of AΓ. Then H1 has

isolated intersections.

We begin by proving the following lemma:

Lemma 5.3.10. Let h P AΓ be a hyperbolic element and suppose that no axis of

h is contained in D
p1q�ess
Γ , and that the transverse-tree T of h contains an in�nite

line. Then Minphq is a plane that consists of all the lines of DΓ parallel to u. In

particular, this applies to the element h :� babc.

Proof: We �rst prove the general statement. By Lemma 5.2.10, every point

of T has valence 2. It follows that T is an in�nite line, and that Minphq is a
�at plane. Suppose that there is a line w in DΓ that is parallel to an axis u of

h, yet doesn't belong to Minphq. By Theorem 5.2.2, there is a �at strip that

connects u to w. Let now v be the line in this strip that cuts the strip into two

thinner strips: the strip cpu, vq that belongs to Minphq and the strip cpv, wq that
intersects Minphq only along v. Since Minphq is a plane, there must then be at

least 3 distinct non-overlapping �at strips meeting at v: one one each side of v

in Minphq, and the strip cpv, wq. In particular then, for any ε ¡ 0 and any point

x P v, the neighbourhood BDΓ
px, εq is never just a �at disk. Because v � D

p1q�ess
Γ ,

this contradicts the arguments given in the proof of Lemma 5.2.10. This means

no such line w exists, i.e. all lines parallel to u are in Minphq.
To check that this applies to the element h :� babc is rather elementary. To

picture the situation, an axis of h is described by the blue line in Figure 5.3, call

this axis u. The element z :� abcabc commutes with h by Lemma 5.3.1, hence

acts on Minphq and on the transverse-tree T associated with h. It is not hard to

check that the action of abcabc on T is hyperbolic, proving that T contains an

in�nite line. In particular, Minphq is a �at plane. Any other axis of h is parallel

to u, and it is not hard using Theorem 5.2.2 the tiling of Minphq that such a line

can never belong to Dp1q�ess
Γ (see Figure 5.3). l

Proof of Lemma 5.3.9: By Corollary 5.3.5, we can suppose up to conjugation

that H1 � xb, abcy, where a, b, c P V pΓq satisfy mab � mac � mbc � 3. Let

us now de�ne another exotic maximal dihedral Artin subgroup H2 of AΓ by
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H2 :� xa, bacy, and note that H2 is distinct from H1. It is enough to prove that if

H3 is a exotic maximal dihedral Artin subgroup of AΓ such that H1 XH2 � H3,

then H3 � H1 or H3 � H2.

Let h :� babc � abac, and note that h P H1 X H2 � H3. We know by

Lemma 5.3.10 that P :�Minphq is a plane. Note that the exact structure of this
plane is not hard to determine, and is described in Figure 5.11. We �rst want to

show that if z3 is an element generating the centre of H3, then P is contained in

Minpz3q. To do so, note that h P H3 � Cpz3q, by Corollary 5.3.5. In particular,

h acts on the transverse-tree T3 of z3, by Theorem 5.2.1. It is clear that the

direction of h and that of z3 are not the same, simply because the axes of z3 are

parallel to lines in Dp1q�ess
Γ when the axes of h aren't. In particular then, h must

act on T3 hyperbolically, with an axis that we call γ3. Consider now the plane

P 1 :� γ3 � R � Minpz3q. To prove that P is contained in Minpz3q is then a

consequence of the following:

Claim: P � P 1.

Proof of the Claim: We �rst show that h preserves both P and P 1. On one

hand, h preserves P �Minphq by de�nition. On the other hand, Theorem 5.2.1

tells us that the action by isometry of h on T3�R decomposes as a couple ph1, h2q
where h1 corresponds to the action by isometry of h on T3, and h2 corresponds

to a translation of the R component. The action of h1 restricts to an action on

γ3, and thus the action of h restricts to an action on γ3 �R � P 1.

We now prove that P and P 1 intersect. Suppose that P and P 1 are disjoint,

and let M �M 1 be the subset of P � P 1 of couple of points px, yq minimising

the distance between P and P 1. Let now px, yq P M �M 1. Since P and P 1 are

preserved by the action of h, the couple ph � x, h � yq belongs to P � P 1. Because

the action is via isometries, distance between h � x and h � y is the same as that

between x and y. In particular, it is minimising as well, and ph �x, h �yq PM�M 1.

Repeating this process shows that M and M 1 respectively contain the lines ` and

`1 respectively de�ned by the orbits of x and y under xhy. Note that because they
respectively belong to M and M 1, the lines ` and `1 are at constant distance from

each others, i.e. they are parallel. Now ` is an axis of h, and `1 is a line that

is parallel to `. By Corollary 5.3.10 then, `1 must be an axis of h as well. This
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means `1 � P , absurd. So P and P 1 must intersect.

Consider now a point x P P X P 1. Because h preserves both P and P 1, the

element h � x belongs to P X P 1 too. In particular, the line ` de�ned by the orbit

of x under xhy belongs to both P and P 1. Now P 1 can be covered by lines that are

all parallel to `. In particular, any such line must belong to P , by Lemma 5.3.10.

This shows P 1 � P . Since the two sets are in�nite planes, we obtain P � P 1,

which �nishes the proof of the Claim.

We just proved that the plane P described in Figure 5.11 is included inside of

Minpz3q. We want to determine the possible values of z3, by looking at its action

on this plane. We have at least two useful pieces of information:

(a) The element z3 acts trivially on T3, hence preserves the strips inMinpz3q that
follow the direction of z3. We know from Section 5.2.3 that these strips live along

in�nite lines of Dp1q�ess
Γ . So the principal triangle K (labelled by �1� on Figure

5.11) must be sent by z3 to another principal triangle z3 � K that also belongs

to that strip, i.e. that can be obtained from K by following a line of Dp1q�ess
Γ .

Looking at Figure 5.11, there are only 6 possible strips along which z3 can move

K, i.e. 6 possible directions for the action of z3 on P . They are highlighted in

blue in Figure 5.11.

(b) By Corollary 5.3.5, the element generating the centre of H3 takes the form

g �strstr�g�1 for some element g P AΓ and some generators s, t, r P V pΓq satisfying
mst � msr � mtr � 3. This means z3 is either this element, or its inverse. In

particular, the height of z3 is htpz3q � �6. The principal triangles h �K for which

htphq � �6 are highlighted in green in Figure 5.11.

The previous observation implies that the only possibilities for z3 are:

z3 � pabcabcq�1 � pz1q�1 or z3 � pbacbacq�1 � pz2q�1.

We obtain

H3 � Cpz3q � Cpz1q � H1 or H3 � Cpz3q � Cpz2q � H2.
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Figure 5.11: A precise description of (some of) the principal triangles of P . For
drawing purposes, we only wrote �g� when talking about a principal triangle of
the form g � K. In blue are highlighted the principal triangles of P that satisfy
the condition (a). In green are highlighted the principal triangles g �K of P that
satisfy condition (b), i.e. for which htpgq � �6. The axis of babc is highlighted
in red. l

Lemma 5.3.11. Let H1 be a classical maximal dihedral Artin subgroup of AΓ.

Then H1 does not have isolated intersections.

Proof: We know by Lemma 5.1.22 that there are standard generators a, b P V pΓq
such that up to conjugation, H1 � Aab. Let now H2 be any maximal dihedral

Artin subgroup of AΓ distinct from H1 but intersecting H1 non-trivially. We need

to show that there is a maximal dihedral Artin subgroup H3 of AΓ distinct from

H1 and H2, for which H1 XH2 � H3.

Claim 1: Any non-trivial element in H1 XH2 has type 1.

Proof of Claim 1: Let h P H1 X H2 be a non-trivial element. Every element

of H1 has type at most 2 because H1 is classical, so we only have to show that

typephq � 2. Suppose the opposite, i.e. that typephq � 2. Then H2 must

be classical, by Corollary 5.1.19. The parabolic closure Ph has type 2 and is

contained inside both H1 and H2. Since H1 and H2 also have type 2, we can use

Proposition 5.1.14 to obtain H1 � Ph � H2, a contradiction. This �nishes the

proof of Claim 1.
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Claim 2: H1 XH2 is cyclic.

Proof of Claim 2: If H2 is classical, then any element g P H1 X H2 �xes the

�xed sets of H1 and of H2. These �xed sets are type 2 vertices, by Lemma 5.1.6,

and they are distinct because H1 and H2 are distinct. Because the action is by

isometries, the element g must also �x (pointwise) the geodesic between these

two vertices. Such a geodesic contains a point p of type at most 1, and this point

is �xed by any g P H1 XH2. In particular, H1 XH2 is contained in the stabiliser

of p. This stabiliser is cyclic, so we get the desired result.

Let nowH2 be exotic, and suppose thatH1XH2 is not cyclic. Let z2 be an element

generating the centre of H2, and let g, g1 P H1 XH2. The elements g and g1 have

type 1 by Claim 1. In particular, they both act elliptically on the transverse-tree

T2 associated with z2. If the �xed sets of g and g1 on T2 are disjoints, a classical

ping-pong argument shows that the product gg1 acts hyperbolically on T2, hence

must have type 3. Since gg1 P H1 XH2, we get a contradiction to Claim 1. This

means g and g1 �x a common point u of T2. In particular, g and g1 both belong

to the subgroup Stabpuq described in Lemma 5.2.18. They are of type 1, so they

must both be powers of the element generating Fixpuq. In particular, g and g1

belong to a common cyclic group. This �nishes the proof of Claim 2.

Look now at the intersection H1 X H2, and let g be an element generating

this intersection. Because typepgq � 1, we know that Fixpgq is a standard tree

in DΓ, by Lemma 5.1.6. There are in�nitely many type 2 vertices on Fixpgq.
Their associated local groups are maximal dihedral Artin subgroups of AΓ by

Corollary 5.1.23. They are all distinct yet contain xgy. It follows there is a

maximal dihedral Artin subgroup H3 of AΓ distinct from both H1 and H2 such

that xgy � H1 XH2 � H3. l

Corollary 5.3.12. Let H be a maximal dihedral Artin subgroup of AΓ. Then

H is classicalðñ H does not have isolated intersection .

Proof: This directly follows from Lemma 5.3.9 and Lemma 5.3.11. l

We would like to note the important consequences of Corollary 5.3.12. While

being a classical maximal dihedral Artin subgroup of AΓ depends on the type of
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the elements in the subgroup and thus on the presentation of the group itself, not

having isolated intersections is de�ned purely algebraically and hence preserved

by isomorphisms, as emphasised in Remark 5.3.8. These two properties however

agree, by Corollary 5.3.12. By Corollary 5.1.23, this means the set of non-free

parabolic subgroups of type 2 of AΓ can be described purely algebraically, and

is preserved under isomorphisms. We are now able to prove the main result of

Section 5.3, that is, Theorem 5.3

Theorem 5.3.13. Let AΓ and AΓ1 be two large-type Artin groups of rank at least

3. Then any isomorphism ϕ : AΓ Ñ AΓ1 induces a bijection between the set of

spherical parabolic subgroups of AΓ and the set of spherical parabolic subgroups of

AΓ1.

Proof: A direct consequence of the discussion preceding Theorem 5.3.13 is that

ϕ induces a bijection between the set of non-free parabolic subgroups of type 2

of AΓ and that of AΓ1 . We want to prove that this also holds for the parabolic

subgroups of type 1. To do so, we �rst prove the following.

Claim: The set of parabolic subgroups of type 1 of AΓ (resp. of AΓ1) coincides

with the set of proper non-trivial intersections of non-free parabolic subgroups of

type 2 of AΓ (resp. of AΓ1).

Proof of Claim: p�q By Theorem 4.1, the intersection of non-free parabolic

subgroups of type 2 of AΓ is always a parabolic subgroup. If such an intersection

is proper and non-trivial, the resulting parabolic subgroup is always of type 1

(use Proposition 5.1.14).

p�q Consider a parabolic subgroup H of type 1 of AΓ. Then H � hxayh�1 for

some a P V pΓq and some h P AΓ. By Lemma 5.1.6, FixpHq is the standard

tree hFixpaq. Let v and v1 be two distinct type 2 vertices of hFixpaq. The local
groups Gv and Gv1 are parabolic subgroups of type 2 of AΓ. They are not free

and they are distinct, because their �xed sets are non-empty and disjoint (see

Lemma 5.1.6). By Theorem 4.1, their intersection Gv X Gv1 is also a parabolic

subgroup of AΓ. It is strictly contained into Gv and Gv1 but it is not trivial,

so it is a parabolic subgroup of type 1 (use Proposition 5.1.14). The inclusion

H � Gv XGv1 along with by Proposition 5.1.14 �nally gives H � Gv XGv1 . This

�nishes the proof of the Claim.
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The fact that ϕ induces a bijection between the set of parabolic subgroups of type

1 of AΓ and that of AΓ1 is now a direct consequence from the fact that it induces

a bijection between the non-free parabolic subgroups of type 2, from the above

Claim, and from the fact that being a proper non-trivial intersection is preserved

under isomorphisms. Finally, every spherical parabolic subgroup of AΓ (resp. of

AΓ1) is either a non-free parabolic subgroup of type 2 or a parabolic subgroup

of type 1, because AΓ (resp. AΓ1) is large hence 2-dimensional. This proves the

main statement of the Theorem. l

Corollary 5.3.14. Let AΓ and AΓ1 be two large-type Artin groups of rank at

least 3, and suppose that there is an isomorphism ϕ : AΓ Ñ AΓ1. Then for every

generator s P V pΓq there exists a generator t P V pΓ1q and an element g P AΓ1

such that ϕpsq � gt�1g�1.

Proof: We know by Theorem 5.3.13 that ϕ sends the parabolic subgroups of type

1 of AΓ onto parabolic subgroups of type 1 of AΓ1 . This means ϕpxsyq � gxtyg�1

for an appropriate t P V pΓ1q and g P AΓ1 . In particular, ϕ sends any generator of

xsy to a generator of gxtyg�1. The result follows. l

Remark 5.3.15. A direct consequence of Corollary 5.3.14 when AΓ � AΓ1 is that

the automorphism group AutpAΓq does not contain any transvection.

5.4 Reconstructing the Deligne complex algebraically.

The parabolic subgroups of an Artin group AΓ do not purely depend on the

group itself, but heavily depend on the prescribed set of standard generators of

the group. In particular, the Deligne complex DΓ associated with AΓ also heavily

depends on this set of standard generators. In Section 5.3, we saw that the set of

non-free parabolic subgroups of type 2 of AΓ can be de�ned with a purely algebraic

condition, that does not depend on this set of standard generators (see Theorem

5.3.13). Geometrically, this means one can de�ne the type 2 vertices of DΓ purely

algebraically. The goal of the present section is to extend this construction to the

whole complex DΓ, reconstructing the other vertices, the edges and the simplices

of the complex in a purely algebraic way.

Even for the seemingly simplest objects, like the type 1 vertices of DΓ, the

above problem remains complicated. For instance, the correspondence that exists
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between the type 2 vertices of DΓ and the non-free parabolic subgroups of type 2

of AΓ has no analogue for type 1 vertices. Indeed, a parabolic subgroup of type

1 of AΓ corresponds to a standard tree in DΓ. This tree contains in�nitely many

edges, and there is no obvious way to di�erentiate algebraically two type 1 edges

of this tree, because they have the same stabiliser.

In this section, we will require not only that AΓ is of large-type, but also

that its de�ning graph is complete. In other words, we require that every pair

of distinct standard generators a, b P V pΓq has a coe�cient 3 ¤ mab   8. Such

large-type Artin groups are said to also be free-of-in�nity. We start by explaining

the notations that we will use throughout the section:

Strategy and notation: As previously mentioned, the strategy of this section

is to reconstruct the di�erent vertices, edges and simplices of DΓ in a purely alge-

braic way. Our strategy can be divided in four steps. At each step, the goal will

be to introduce a set of algebraic objects that �corresponds� to a set of geometric

objects of DΓ. These various correspondences will be made explicit through maps

that will be bijections, graph isomorphisms or simplicial isomorphisms, depend-

ing on the context. We sum up the various notations that will be used in the

following table:

Figure 5.12: Notations used to describe the various geometric and algebraic ob-
jects that will be used in Section 5.4.
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5.4.1 Reconstructing D
p1q�ess
Γ .

This �rst section covers the �rst three steps of the algebraic reconstruction of

DΓ. The �rst step will be to build an algebraic equivalent of the set V2 of type

2 vertices of DΓ. This is a direct consequence of the results obtained at the end

of Section 5.3. The second step will be to build an algebraic equivalent of the set

V1 of type 1 of DΓ. Finally, the third step will be to describe when the algebraic

objects corresponding to the type 2 vertices should be �adjacent� to the algebraic

objects corresponding to the type 1 vertices. This will allow us to reconstruct

D
p1q�ess
Γ algebraically.

We let in this section AΓ be any large-type free-of-in�nity Artin group. We

start with the following de�nition:

De�nition 5.4.1. We de�ne DV2 to be the set of classical maximal dihedral Artin

subgroups of AΓ.

Note that DV2 can equivalently be de�ned as the set of non-free parabolic sub-

groups of type 2 of AΓ, by Corollary 5.1.23. Following the work done in Section

5.3, we know that the elements of DV2 are precisely the maximal dihedral Artin

subgroups of AΓ that have no isolated intersection (see De�nition 5.3.7 and Corol-

lary 5.3.12). In particular, DV2 can be de�ned purely algebraically from AΓ (see

Remark 5.3.8).

Lemma 5.4.2. The map fV2 : DV2 Ñ V2 de�ned as follows is a bijection:

(1) For every subgroup H P DV2, fV2pHq is the �xed set FixpHq;
(2) For every vertex v P V2, f

�1
V2
pvq is the local group Gv.

Proof: This directly follows from Lemma 5.1.6. l

We now come to the harder part of Section 5.4.1: reconstructing the type 1

vertices of DΓ algebraically. We start with the following de�nition:

De�nition 5.4.3. A couple of subgroups pH1, H2q P DV2 � DV2 is said to have

the adjacency property if there exists a subgroup H3 P DV2 such that we have

pA1q Hi XHj � t1u, @i, j P t1, 2, 3u;

pA2q
3£
i�1

Hi � t1u.
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De�nition 5.4.3 really is geometric in essence, and the goal of the next lemma is

to highlight that.

Lemma 5.4.4. A couple pH1, H2q has the adjacency property relatively to a third

subgroup H3 if and only if the following hold:

(1) The three Hi's are distinct subgroups.

(2) The three intersections pHiXHjq's are parabolic subgroups of type 1, and are

distinct. Equivalently, the sets FixpHi XHjq are distinct standard trees.

(3) The standard trees FixpHiXHjq's intersect each others 2-by-2, but the triple-

intersection is trivial.

Proof: pñq Suppose that pH1, H2q has the adjacency property relatively to a

third subgroup H3. Let i, j, k P t1, 2, 3u be distinct, and suppose that Hi � Hj.

Then

t1u pA2q� Hi XHj XHk � Hi XHk

pA1q� t1u,

a contradiction. This proves p1q.
In particular, any intersection Hi XHj is a proper non-trivial intersection of

parabolic subgroups of type 2 of AΓ, hence is a parabolic subgroup of type 1

of AΓ (we use the Claim in the proof of Theorem 5.3.13). It follows that each

FixpHi XHjq is a standard tree. This proves p2q.
Finally, on one hand the three standard trees intersect each others 2-by-2,

as for instance the intersection of FixpHi XHjq and FixpHi XHkq is the vertex
FixpHiq. On the other hand, the intersection of the three standard trees is the

intersection of all the 2-by-2 intersections. It is trivial because the three vertices

FixpHiq, FixpHjq and FixpHkq are distinct, as their corresponding subgroups

are. This proves p3q.
pðq Suppose that the three subgroups H1, H2, H3 P DV2 satisfy the properties

p1q, p2q and p3q of the lemma. The fact that all the intersections pHi XHjq's are
parabolic subgroups of type 1 directly implies pA1q.

The subgroups HiXHj and HiXHk are parabolic subgroups of type 1 of AΓ,

so there intersection is a parabolic subgroup of AΓ as well, by Theorem 4.1. By

Proposition 5.1.14, this intersection cannot be a parabolic subgroup of type 1 of

AΓ, because HiXHj and HiXHk are distinct. So it must be trivial. This imples

pA2q. l
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Proposition 5.4.5. Consider two subgroups H1, H2 P DV2. Then the following

are equivalent:

(1) The two type 2 vertices v1, v2 of DΓ de�ned by vi :� fV2pHiq are at combina-

torial distance 2 in D
p1q�ess
Γ .

(2) The couple pH1, H2q satis�es the adjacency property.

Note that the minimal combinatorial distance one can have between two type 2

vertices of Dp1q�ess
Γ is 2, so the previous proposition gives an algebraic description

of when two type 2 vertices of DΓ are �as close as possible�. In order to prove

the proposition, we will need the following theorem, which is also known as the

combinatorial Gauss-Bonnet formula:

Theorem 5.4.6. [70, Theorem 4.6] Let M be a 2-dimensional subcomplex of

DΓ obtained as the union of �nitely many polygons. Let M0 denote the set of

type 2 vertices that belong to M , and let M2 denote the set of polygons whose

union is exactly M . A corner of a vertex v PM0 is a polygon of M in which v is

contained, and a corner of a polygon f is a vertex at which two edges of f meet.

Let us also de�ne

@v P intpM0q, curvpvq :� 2π �
�� ¸
cPCornerspvq

=vpcq
�
,

@v P BM0, curvpvq :� π �
�� ¸
cPCornerspvq

=vpcq
�
,

@f PM2, curvpfq :� 2π �
�� ¸
cPCornerspfq

pπ �=cpfqq
�
.

Then we have ¸
fPM2

curvpfq �
¸
vPM0

curvpvq � 2π.

Lemma 5.4.7. Let x be a vertex of type 1 in DΓ, i.e. x � g � va for some g P AΓ

and a P V pΓq. We recall that Γbar can be seen as the boundary of the fundamental

domain KΓ of the action of AΓ on DΓ, as explained in Remark 2.4.19.

Then the star St
D
p1q�ess
Γ

pxq of x in D
p1q�ess
Γ is the g-translate of the star

StΓbar
pxq of x in Γbar, and takes the form of a n-pod for some n ¥ 1. It is

contained in the standard tree FixpGxq, and in any translate of the fundamental

domain that contains x.
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Proof: First notice that St
D
p1q�ess
Γ

pxq � StDΓ
pxqXDp1q�ess

Γ . By [17, Construction

II.12.24], the structure of StDΓ
pxq can be described as the development of a sub-

complex of groups that only depends on the local groups around x. Intersecting

with Dp1q�ess
Γ means further restricting to the local groups around x that contain

Gx. These local groups are the g-conjugates of the local groups around va, so

St
D
p1q�ess
Γ

pxq is the g-translate of StΓbar
pvaq, which is easily seen to be a n-pod,

where n is the number of edges attached to va in Γbar (equivalently, in Γ).

The inclusion St
D
p1q�ess
Γ

pxq � FixpGxq comes from the fact that every lo-

cal group in the star contains Gx. Moreover, St
D
p1q�ess
Γ

pvaq � KΓ and thus

St
D
p1q�ess
Γ

pxq � h �KΓ for every h P AΓ for which x P h �KΓ. l

Proof of Proposition 5.4.5: [(1) ñ (2)]: The vertices v1 and v2 are at com-

binatorial distance 2 from each others, so there is a type 1 vertex x12 that is

adjacent to both v1 and v2. Let us �rst suppose that x12 belongs to KΓ. By

Lemma 5.4.7, KΓ contains the star St
D
p1q�ess
Γ

px12q, and this star is the simplicial

neighbourhood of x12 in Γbar. In particular then, v1 and v2 are distinct vertices

of Γbar that are adjacent to x12. Because Γ is complete, the path joining v1, x

and v2 can be completed into a cycle γ :� pv1, x12, v2, x23, v3, x31q of length 6 in

Γbar, where the vi's are type 2 vertices and the xij's are type 1 vertices. Let now

H3 :� f�1
V2
pv3q. All that's left to do is to check that the couple pH1, H2q satis�es

the adjacency property, with respect to the third group H3. This directly follow

from Lemma 5.4.4: the Hi's are distinct subgroups, the sets FixpHi XHjq's are
distinct standard trees as they contain the type 1 vertex xij and no other type 1

vertex of γ, and the trees FixpHi XHjq's intersects 2-by-2 along distinct type 2

vertices, hence the triple intersection is trivial.

If x12 does not belong to KΓ, then x12 � g � x12, where x12 is a type 1 vertex

of KΓ. Proceeding as before on x12 yields groups Hi for i P t1, 2, 3u. Then one

can recover an analogous reasoning for x12, using the groups gHig
�1 instead, for

i P t1, 2, 3u.

[(2) ñ (1)]: Let pH1, H2q have the adjacency property relatively to a third sub-

group H3, and let vi :� fV2pHiq for i P t1, 2, 3u. We suppose that the following

Claim holds:

148



Chapter 5 � Rigidity and automorphisms

Claim: Let v1, v2 and v3 be three distinct type 2 vertices of DΓ, and suppose that

the three geodesics connecting the vertices are contained in distinct standard trees

that intersect 2-by-2 but whose triple intersection is empty. Then the triangle

formed by these three geodesics is contained in a single fundamental domain g�KΓ.

In particular, the vertices are at combinatorial distance 2 from each others.

The Claim clearly gives us the desired result, but we still need to show that

the hypotheses of the Claim are satis�ed. This is a direct consequence of Lemma

5.4.4: the three vi's are distinct, and the three geodesics of the form γij connecting

vi and vj are contained into the standard trees FixpHi X Hjq. The three γij's

intersect 2-by-2, but the triple intersection is empty, by Lemma 5.4.4 again. We

now check that the Claim holds:

Proof of the Claim: Let T be the geodesic triangle connecting v1, v2 and v3

and let M :� T Y intpT q. We want to prove that M is contained into a single

fundamental domain g �KΓ. To do so we suppose that it is not the case, and we

will exhibit a contraction. We want to apply the Gauss-Bonnet formula on M .

By construction,M is a combinatorial subcomplex ofDΓ whose simplices are base

triangles of the form g �Tst. To make the use of the Gauss-Bonnet formula easier,

we decide to see M with a coarser combinatorial structure: the one obtained by

removing every edge of type 0 and every vertex of type 0 in M . Note that the

boundary of M is a union of edges of type 1 of DΓ, so M is still a subcomplex of

DΓ with this new combinatorial structure. It is a union of polygons of DΓ whose

boundaries are contained in Dp1q�ess
Γ . By Theorem 5.4.6, we have

¸
faces f in M

curvpfq �
¸

type 2 vertices in M

curvpvq � 2π. p�q

We rewrite this is a manner that is easier to deal with. Let M i
2 be the set of

polygons in M that don't contain any element of tv1, v2, v3u, M c
2 be the set of

polygons in M that contain at least one of v1, v2 or v3, M i
0 be the set of type 2

vertices in intpMq, M b
0 be the set of type 2 vertices of BMztv1, v2, v3u, and M c

0

be the set tv1, v2, v3u of corners of M . Then:


 Let Ci
2 :� °

fPM i
2

curvpfq. Consider a polygon f PM2, and letmc be the coe�cient
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of the local group of a corner c of f . Then

curvpfq � 2π �
�� ¸
cPCornerspfq

pπ � π

mc

q
�
.

Note thatmc ¥ 3 for all c P Cornerspfq, so eventually π� π
mc

¥ 2π
3
. In particular,

f has at least 3 corners, so we obtain

curvpfq ¤ 2π � 3 � p2π
3
q � 0.

It follows that Ci
2 ¤ 0 as well. Note that as soon as one polygon has at least 4

edges, or as soon as the coe�cient of one of the local groups is at least 4, we have

curvpfq   0 and thus Ci
2   0.


 Let Ci
0 :� °

vPM i
0

curvpvq. Because DΓ is CAT(0), the systole of the link of any

vertex v in DΓ is at least 2π. In particular, if v P M i
0, the systole of the link of

v in M is at least 2π. It follows that the sum of the angles around v in M is at

least 2π. In particular, curvpvq ¤ 0 and thus Ci
0 ¤ 0.


 Let Cb
0 :� °

vPMb
0

curvpvq. Any v PM b
0 belongs to a side of T that is a geodesic, so

its angle with M must satisfy =vM ¥ π. It follows that curvpvq � π�=vM ¤ 0,

and thus Cb
0 ¤ 0 as well.


 Let Cc
0 :� °

viPMc
0

curvpviq and let Cc
2 �

°
fPMc

2

curvpfq. Any corner vi of T � BM
belongs to λi ¥ 1 polygons of M . By construction of the Deligne complex, the

angle =viM is precisely λi � π
mi
, where mi ¥ 3 is the coe�cient of Hi. Each of the

λi polygons f of M containing vi is such that

curvpfq � 2π � pπ �=vipfqq �
�� ¸
cPCornerspfqztviu

pπ � π

mc

q
�


p��q¤ 2π � pπ � π

mi

q � 2 � pπ � π

3
q

¤ π

mi

� π

3
.

The inequality p��q comes from the fact that f has at least 2 other corners than

vi, and that the angle at any corner of f is at most π{3, because every local group
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has coe�cient at least 3. Note that if f has at least 4 edges then we obtain a

strict inequality curvpfq   π
mi
� π

3
. Summing everything, we obtain

Cc
0 � Cc

2 �
¸

viPMc
0

curvpviq �
¸
fPMc

2

curvpfq

p���q¤
¸

iPt1,2,3u

pπ � λi � π
mi

q �
¸

iPt1,2,3u

λi � p π
mi

� π

3
q

� 3π �
¸

iPt1,2,3u

λi � π
3
¤ 2π.

Note that it is easy to check that the inequality p� � �q holds no matter if the

polygons containing the vi's are distinct or if there are polygons ofM that contain

several of the vi's. We now notice two things. The �rst is that as soon as one of the

vi's is contained inside two distinct polygons ofM , then λi ¥ 2 and Cc
0�Cc

2   2π.

The second is that if a polygon containing one of the vi's has at least 4 edges,

then curvpfq   π{mi � π{3 and thus Cc
0 � Cc

2   2π as well.

With this setting, the equation p�q becomes:

Ci
2 � Ci

0 � Cb
0 � pCc

0 � Cc
2q � 2π.

Note that this equation can hold only if the four terms on the left-hand side are

maximal, i.e.:


 Ci
2 � 0. In particular, every polygon in M i

2 is a triangle, whose corners have

local groups with coe�cient exactly 3.


 Ci
0 � 0. In particular, the sum of the angles around any vertex of M i

0 is exactly

2π.


 Cb
0 � 0, i.e. the angles along the sides of T are exactly π.


 Cc
0 �Cc

2 � 2π. In particular, each of the vi's is contained in a single polygon of

M , which is always a triangle.

By hypothesis M does not contain a single polygon, and it is not hard to see

that in that case there must be polygons in M that do not contain any of the

vi's (in other words, M i
2 is non-trivial). The �rst of the above four points implies

that every polygon in M i
2 is a �at equilateral triangle. Since the angles along the

sides of T are exactly π and since the sum of the angles around any vertex of M i
0
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is 2π, the whole subcomplex M i
2 is actually �at. Let us now consider a triangle

f P M c
2 , and let f 1 be the (unique) polygon in M i

2 that is adjacent to f in the

sense that f and f 1 share an edge (see Figure 5.13). Note that f 1 is a �at triangle,

whose corners have local groups with coe�cient 3. We can now use an argument

similar to the one used in the proof of Claim 3 of Lemma 5.2.6 to determine the

coe�cients of the local groups of the corners of f (this is done by propagating a

system of colours from f 1 to f - see Figure 5.13). In particular, the coe�cients

of the local groups around f must also be 3, which forces f to be an equilateral

triangle as well. By applying the same argument to the other polygons of M c
2 ,

this shows that the whole of M is actually �at, i.e. isometrically embedded into

a �at plane.

Figure 5.13: Showing that triangles ofM c
2 are also equilateral and Euclidean. The

simplices that belong toM i
2 are highlighted in grey. They are already known to be

equilateral and Euclidean. The edges of f 1 are drawn with colours corresponding
to the edges in KΓ they are translates of. These colours extend to f , and we can
recover the coe�cient of the vertex groups of f .

We now put a system of arrows on M (see De�nition 5.2.14). Consider a

side γ of M . By hypothesis, γ belongs a standard tree Fixpgxsyg�1q for some

s P V pΓq and some g P AΓ, and gxsyg�1 acts transitively on the set of strips

around γ. Thus we can assume that we have double arrows on γ, as drawn on

Figure 5.14. In particular then, all the arrows along γ must be simple arrows, by

Lemma 5.2.15. We now proceed to determine all the arrows in M :

Step 1: Put double arrows on the sides of M .

Step 2: The arrow between the two topmost triangles of M must be simple by

Lemma 5.2.15. We suppose without loss of generality that it is pointing down.

Step 3: Use Lemma 5.2.15 to complete the hexagons around this �rst arrow. We

obtain two new arrows in M .
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Step 4: Use Lemma 5.2.15 on these two arrows and complete an hexagon of M .

Step 5: Proceed by induction using 5.2.15 to determine every arrow in M .

Figure 5.14: Putting a system of arrows on M . On the left: Step 1 (black ar-
rows), Step 2 (blue arrow), Step 3 (green arrows) and Step 4 (orange arrows).
On the right: Step 5 (the induction process, red arrows). The purple hexagon
gives a contradiction to M being more than one triangle. The simplices and ar-
rows not contained in M are drawn with ligther colours.

Finally, we can see that the system of arrows of any of the hexagons along the

bottommost side ofM contains two simple arrows pointing away from each other

and pointing towards double arrows (see Figure 5.14). This gives a contradiction

to Lemma 5.2.15. It follows that M contains a single triangle. In particular, the

vertices v1, v2 and v3 are at combinatorial distance 2 from each other. l

We are now able to de�ne explicitely the algebraic analogue of the type 1 vertices

of DΓ:

De�nition 5.4.8. Let us consider the poset Pf pDV2q of �nite sets of distinct

elements of DV2 , ordered by the inclusion. We now de�ne DV1 to be the subset of

Pf pDV2q of sets tH1, � � � , Hku satisfying the following:

(P1) Any subset tHi, Hju � tH1, � � � , Hku is such that pHi, Hjq satis�es the ad-

jacency property;

(P2)
k�
i�1

Hi � t1u;
(P3) tH1, � � � , Hku is maximal in Pf pDV2q with these properties.

As is was the case for the adjacency property, there is also a geometric meaning

behind De�nition 5.4.8. While we managed to reconstruct the type 2 vertices

of DΓ directly from the classical maximal dihedral Artin subgroups of AΓ, we
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reconstruct a type 1 vertex x of DΓ from the sets of type 2 vertices of DΓ that

are adjacent to x. This is made more precise thereafter:

Proposition 5.4.9. The map fV1 : DV1 Ñ V1 de�ned by the following is well-

de�ned and is a bijection:

(1) For every element tH1, � � � , Hku P DV1, fV1ptH1, � � � , Hkuq is the unique vertex
x P V1 that is adjacent to vi :� fV2pHiq for every Hi P tH1, � � � , Hku.
(2) For every vertex x P V1, f

�1
V1
pxq is the set tH1, � � � , Hku P DV1 of all the

subgroups for which vi :� fV2pHiq is adjacent to x.

Proof: We �rst show that the two maps are well-de�ned. Then, checking that

the composition of the two maps gives the identity is straightforward.

fV1 is well-de�ned: Let tH1, � � � , Hku P DV1 . The intersection H1 X � � � X Hk is

an intersection of parabolic subgroups of type 2 of AΓ, hence is also a parabolic

subgroup, by Theorem 4.1. It is proper in any Hi and non-trivial by de�nition,

so it is a parabolic subgroup of type 1 of AΓ. The corresponding �xed set T :�
FixpH1 X � � � XHkq is a standard tree on which all the vertices vi :� fV2pHiq lie.
The convex hull C of all the vi's in T is a subtree of T . By hypothesis, any couple

pHi, Hjq satis�es the adjacency property. Using Proposition 5.4.5, this means the

combinatorial distance between any two of the vertices de�ning the boundary of

C is 2, so C has combinatorial diameter 2. As a tree with diameter 2, C contains

exactly one vertex that is not a leaf of C, and this vertex must have type 1.

f�1
V1

is well-de�ned: Let now x P V1, let tv1, � � � , vku be the set of all the type 2

vertices that are adjacent to x, and set Hi :� f�1
V2
pviq. We want to check that

tH1, � � � , Hku P DV1 , i.e. that the properties (P1), (P2) and (P3) of De�nition

5.4.8 are satis�ed. First of all, we know that the combinatorial neighbourhood

of x is an n-pod that belongs to FixpGxq, by Lemma 5.4.7. In particular, all the

vi's lie on the standard tree FixpGxq, which means that Gx is contained in every

Hi. This proves (P2).

Proving (P1) is straightforward if we use Proposition 5.4.5: the vi's are distinct

but they are all connected to a common vertex x, so the combinatorial distance

between two distinct vi's is exactly 2.

At last, if tH1, � � � , Hku was not maximal, there would be some Hk�1 such that

tH1, � � � , Hk�1u satis�es (P1) and (P2) of De�nition 5.4.8. The vertex vk�1 :�
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fV2pHk�1q lies on FixpGxq (use (P2)) and is at distance 2 from all the other vi's

(use (P1)), but is not adjacent to x by hypothesis. This means one can connect v1

and v2 through FixpGxq but without going through the star of x in FixpGxq. This
contradicts FixpGxq being a tree. Therefore tH1, � � � , Hku is maximal, proving

(P3). l

Remark 5.4.10. Let H P DV2 , tH1, � � � , Hku P DV1 , and let v :� fV2pHq, x :�
fV1ptH1, � � � , Hkuq. Then one can easily deduce from the proof of Proposition

5.4.9 that v and x are adjacent if and only if H P tH1, � � � , Hku.

We have now reconstructed the algebraic analogue of the type 2 vertices and the

type 1 vertices of DΓ (see Lemma 5.4.2 and Proposition 5.4.9). To reconstruct

the whole of Dp1q�ess
Γ , we only have left to describe when an element of DV2 and

an element of DV1 should be adjacent. Our method directly follows from Remark

5.4.10:

De�nition 5.4.11. We de�ne a graph D1 by the following:

(1) The vertex set of D1 is the set DV2 \DV1 ;

(2) We draw an edge between H P DV2 and tH1, � � � , Hku P DV1 if and only if

H P tH1, � � � , Hku.

Proposition 5.4.12. The bijections fV2 and fV1 can be extended into a graph

isomorphism F1 : D1 Ñ D
p1q�ess
Γ .

Proof: Let fV2 \ fV1 : DV2 \ DV1 Ñ V2 \ V1. Then fV2 \ fV1 is a bijection by

Lemma 5.4.2 and Proposition 5.4.9. We only need to show that two elements of

DV2 \DV1 are adjacent if and only if their images through fV2 \ fV1 are adjacent.

Notice that

H P DV2 and tH1, � � � , Hku P DV1 are adjacent in D1

p5.4.11qðñ H P tH1, � � � , Hku
p5.4.10qðñ fV2pHq and fV1ptH1, � � � , Hkuq are adjacent in Dp1q�ess

Γ .

5.4.2 Reconstructing DΓ.

We saw in the previous section how to reconstruct the graph Dp1q�ess
Γ in a purely

algebraic way. In the current section we will reconstruct the whole of DΓ alge-
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braically. We suppose throughout this section that AΓ is a large-type free-of-

in�nity Artin group.

De�nition 5.4.13. A subgraph G of D1 or of Dp1q�ess
Γ is called characteristic

if it is isomorphic to Γbar, as non-labelled graphs. Then we let CS be the set of

characteristic subgraphs of D1.

Lemma 5.4.14. The set of characteristic subgraphs of DΓ is precisely the set

tg � Γbar | g P AΓu. In particular, CS � tF�1
1 pg � Γbarq | g P AΓu.

Proof: We focus on proving the �rst statement, as the second statement directly

follows from the �rst one and the use of Proposition 5.4.12. It is clear that every

translate g � Γbar is a characteristic graph, so we only have to show the converse.

We �rst claim the following:

Claim: Any cycle γ � D
p1q�ess
Γ of length 6 is contained in a single g-translate of

the fundamental domain KΓ.

Proof of the Claim: Recall that Dp1q�ess
Γ is a bipartite graph with partition sets

V2 and V1. Consequently γ � px1, v12, x2, v23, x3, v31q, where the xi's are type 1

vertices and the vij's are type 2 vertices of DΓ. Consider now the three sub-

geodesics c1 :� pv31, x1, v12q, c2 :� pv12, x2, v23q and c3 :� pv23, x3, v31q, whose
union is γ. Each geodesic ci is contained in the star St

D
p1q�ess
Γ

pxiq, which we

know by Lemma 5.4.7 is itself included in the standard tree FixpGxq. Also note

that the three corresponding standard trees are distinct, or the fact that γ is a

cycle of length 6 would contradict either the convexity of the standard trees, or

the fact that they are uniquely geodesic. The three geodesics intersect 2-by-2,

but their triple intersection is empty. We can now use the Claim in the proof

of Proposition 5.4.5, and recover that γ must be contained in a single translate

g �KΓ. This �nishes the proof of the Claim.

We now come back to our main problem. Let G be a characteristic subgraph.

We want to show that G is contained in a single translate g �Γbar for some g P AΓ.

First note that because G is isomorphic to Γbar, the 6-cycles in G correspond to

the barycentric subdivisions of the 3-cycles in Γ. In particular, if γ0 is any 6-

cycle in G and e is any edge in G, there exists a �nite string of 6-cycles γ0, � � � γn
such that e belongs to γn and such that γi, γi�1 share exactly two edges (whose
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union corresponds to a single edge of Γ). We know by the Claim that each γi is

contained in a single translate gi �KΓ. We want to show that all the gi's are the

same element. To do so, we show that for every 0 ¤ i   n we have gi � gi�1.

Let Mi :� γi Y intpγiq. We know by the Claim that Mi � gi � KΓ for some

gi P AΓ. The two cycles γ0 and γ1 share two edges, whose union corresponds to a

single edge of Γ. This meansMi andMi�1 share two edges of D
p1q�ess
Γ (see Figure

5.15). The convex hull of these two edges belongs to a single translate g � KΓ,

yet belongs to both gi � KΓ and gi�1 � KΓ. This proves gi � gi�1. In particular,

the edge e belongs to g � KΓ. As this works for every edge e of G, we obtain

G � g �KΓ.

Figure 5.15: The combinatorial subcomplexes Mi (on the left) and Mi�1 (on the
right). Note that Mi and Mi�1 share three vertices: xj, vjk and xk. In particular,
they share the convex hull of these vertices, that is highlighted in light red.

Finally, G is contained in the intersection D
p1q�ess
Γ X g � KΓ � g � Γbar. But

G is isomorphic to Γbar, so the previous inclusion is actually an equality, i.e.

G � g � Γbar. l

De�nition 5.4.15. Let DΓ be the 2-dimensional combinatorial complex de�ned

by starting with D1, and then coning-o� every characteristic graph of D1. The

complex DΓ is called the algebraic Deligne complex associated with AΓ.

Proposition 5.4.16. The graph isomorphism F1 from Proposition 5.4.12 can be

extended to a simplicial isomorphism F : DΓ Ñ DΓ.

Proof: We already know that the map F1 of Proposition 5.4.12 gives a graph

isomorphism between D1 and D
p1q�ess
Γ . The result now follows from the fact that

DΓ and DΓ can respectively be obtained from D1 and D
p1q�ess
Γ by coning-o� their

characteristic subgraphs:


 For DΓ, this is simply the de�nition of the complex;


 For DΓ, this follows from Lemma 5.4.14 and Remark 5.1.2. l
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5.5 Rigidity and Automorphism groups.

Consider a large-type free-of-in�nity Artin group AΓ. In Section 5.4 we introduced

various algebraic objects and proved that the Deligne complex DΓ associated with

AΓ can be reconstructed in a purely algebraic way. This has many consequences

for the group. First, it means that large-type free-of-in�nity Artin groups that

are isomorphic to AΓ have essentially the same Deligne complexes (Theorem 3.4).

We will use this to recover Theorem 5.1. Then, it means the automorphism group

AutpAΓq acts on DΓ. In particular, we will see that this action can be used to

describe AutpAΓq explicitly, which will give Theorem 5.2.

Notation: We know that the Deligne complex DΓ and the algebraic Deligne

complex DΓ associated with AΓ are combinatorially isomorphic, by Proposition

5.4.16. To make the notation lighter, we will throughout this section slightly

abuse the notation and identify DΓ with DΓ, without caring about the simplicial

isomorphism F .

5.5.1 Rigidity and action of AutpAΓq on the Deligne com-

plex.

The main consequence of Section 5.4, and more speci�cally of Proposition 5.4.16,

is Theorem 5.4:

Theorem 5.5.1. Let AΓ and AΓ1 be two large-type free-of-in�nity Artin groups

of rank at least 3, with respective algebraic Deligne complexes DΓ and DΓ1 (see

De�nition 5.4.15). Then any isomorphism ϕ : AΓ Ñ AΓ1 induces a natural

simplicial isomorphism ϕ� : DΓ Ñ DΓ1, that can be described explicitely as follows:


 For an element H P DΓ
V2
, ϕ�pHq is simply the subgroup ϕpHq.


 For a set tH1, � � � , Hku P DΓ
V1
, ϕ�ptH1, � � � , Hkuq is the set tϕpH1q, � � � , ϕpHkqu;


 For an edge e of DΓ
1 connecting H to tH1, � � � , Hku, ϕ�peq is the edge of DΓ1

1

connecting ϕ�pHq to ϕ�ptH1, � � � , Hkuq.

 For a simplex f of DΓ

1 connecting H, tH1, � � � , Hku and a vertex of type 0

corresponding to the apex of a cone over a characteristic graph G, ϕ�pfq is the

simplex of DΓ1

1 connecting ϕ�pHq, ϕ�ptH1, � � � , Hkuq, and the vertex of type 0

corresponding to the apex of the cone over the characteristic graph ϕ�pGq.
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Proof: The result directly follows from the de�nition of DΓ, that was constructed

using algebraic tools that are all preserved under isomorphisms. For the sake of

clarity, we give a more detailed proof thereafter. We do that step by step, referring

the reader to the di�erent notions introduced in the making of DΓ:

(1) The type 2 vertices (see De�nition 5.4.1):DΓ
V2
is the set of non-spherical parabolic

subgroups of type 2 of AΓ. We already know from Theorem 5.3.13 that ϕ�pDΓ
V2
q �

DΓ1

V2
.

(2) The type 1 vertices (see De�nition 5.4.8): DΓ
V1

is the set of �nite subsets of

DΓ
V2

that satisfy the three conditions (P1), (P2) and (P3). The �rst condition

(P1) is phrased in terms of the adjacency property (see De�nition 5.4.3), which is

de�ned in terms of the existence of a subgroup that satisfy two properties (A1) and

(A2). These properties are expressed in terms of intersections of the subgroups

involved. In particular, one can easily check that the adjacency property for a

couple pH1, H2q P DΓ
V2
� DΓ

V2
is satis�ed if and only if the adjacency property

for pϕpH1q, ϕpH2qq is satis�ed in DΓ1

V2
� DΓ1

V2
. The property (P2) is de�ned in

terms of a condition of an intersection of subgroups, which is preserved under

isomorphisms. The property (P3) is a property of maximality, which is also

preserved under isomorphisms. Altogether, we obtain ϕ�pDΓ
V1
q � DΓ1

V1
.

(3) The essential 1-skeleton (see De�nition 5.4.11): The vertices of DΓ
1 are the

type 2 and type 1 vertices previously described. The edges of DΓ
1 are de�ned

as pairs pH, tH1, � � � , Hkuq P DΓ
V2
�DΓ

V1
satisfying H P tH1, � � � , Hku. This prop-

erty of inclusion is obviously preserved under isomorphisms, and thus we have

ϕ�pDΓ
1 q � DΓ1

1 .

(4) The Deligne complex (see De�nition 5.4.15): The simplices of DΓ can be seen

as triplets pH, tH1, � � � , Hku, Gq P DΓ
V2
�DΓ

V1
� CSΓ satisfying H P tH1, � � � , Hku

and H, tH1, � � � , Hku P G. We know by point (3) that ϕ�pDΓ
1 q � DΓ1

1 . We �rst

check that for any characteristic graph G of DΓ
1 , the graph ϕ�pGq is also a char-

acteristic graph of DΓ1

1 . To do so, note that G is by de�nition the barycentric

subdivision of a complete graph on n vertices, where n is the rank of AΓ. Since ϕ�

induces an isomorphism of DΓ
1 onto DΓ1

1 , the graph ϕ�pGq is also the barycentric

subdivision of a complete graph on n vertices. Note that AΓ1 and AΓ are isomor-
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phic, so AΓ1 must have rank n as well. It follows that ϕ�pGq is a characteristic

graph of DΓ1

1 . Note that the fact that H, tH1, � � � , Hku P G along with the pre-

vious isomorphism immediately implies that ϕ�pHq, ϕ�ptH1, � � � , Hkuq P ϕ�pGq,
and thus ϕ� also sends the set of simplices of DΓ onto the set of simplices of DΓ1 .

Two adjacent simplices in DΓ share two vertices, and it is not hard to check that

ϕ� sends these vertices onto adjacent vertices of DΓ1 , and thus sends the simplices

onto adjacent simplices. It follows that ϕ�pDΓq � DΓ1 . l

Remark 5.5.2. A direct consequence of Theorem 5.5.1 and Proposition 5.4.16

is that every isomorphism ϕ : AΓ Ñ AΓ1 between large-type free-of-in�nity Artin

groups yields an isomorphism between the Deligne complexes DΓ and DΓ1 .

Corollary 5.5.3. The automorphism group AutpAΓq acts naturally and combi-

natorially on DΓ and thus on DΓ.

Proof: This is a direct consequence of Theorem 5.5.1: any automorphism ϕ P
AutpAΓq induces a natural combinatorial automorphism of DΓ, and thus of DΓ.

l

Remark 5.5.4. The action of an automorphism ϕ P AutpAΓq on DΓ is entirely

determined by its action on the set of type 2 vertices of the complex. This is

because every simplex of DΓ, whether it is a type 1 vertex, an edge, or a 2-

dimensional simplex, is de�ned algebraically from the set of type 2 vertices of the

complex.

A strong consequence of Theorem 5.5.1 is that we can solve the isomorphism

problem for large-type free-of-in�nity Artin groups (this is Theorem 5.1).

Theorem 5.5.5. Let AΓ and AΓ1 be two large-type free-of-in�nity Artin groups.

Then AΓ and AΓ1 are isomorphic as groups if and only if Γ and Γ1 are isomorphic

as labelled graphs.

Proof: First note that if AΓ has rank 2, then it has a non-trivial centre (see

De�nition 3.1.6). In particular, AΓ1 must also have non-trivial centre, which

means it also has rank 2 (use Corollary 3.3). It follows that AΓ and AΓ1 are both

dihedral Artin groups. Because isomorphic dihedral Artin groups always have the

same coe�cients (see [83, Theorem 1.1]), the graphs Γ and Γ1 must be isomorphic

as labelled graphs.
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Consider an isomorphism ϕ : AΓ Ñ AΓ1 . By Theorem 5.5.1, ϕ induces a

simplicial isomorphism ϕ� : DΓ Ñ DΓ1 that sends the characteristic subgraphs of

DΓ
1 onto the characteristic subgraphs of DΓ1

1 . In particular then, any characteristic

subgraph G of DΓ
1 is sent to a characteristic subgraph ϕ�pGq of DΓ1

1 . We state

that the isomorphism ϕ� : G Ñ ϕ�pGq is label-preserving. Indeed, every type 2

vertex in G corresponds to a classical maximal dihedral Artin subgroup H of AΓ

with coe�cient say m, and the corresponding type 2 vertex in G1 corresponds to

the dihedral subgroup ϕpHq that also has coe�cient m (once again, isomorphic

dihedral Artin groups always have the same coe�cients).

By Lemma 5.4.14, there are two elements g1 P AΓ and g2 P AΓ1 such that

G � g � Γbar and ϕ�pGq � g1 � Γ1
bar. Let ψ1 : Γbar Ñ G and ψ2 : Γ1

bar Ñ ϕ�pGq be
the isomorphism de�ned by the action of g and g1 respectively. It is clear that ψ

and ψ1 are label-preserving. We obtain a string of label-preserving isomorphisms

Γbar
ψ1� G

ϕ�� ϕ�pGq
ψ�1

2� Γ1
bar,

which �nishes the proof of the Theorem. l

5.5.2 Computing the automorphism groups.

Let AΓ be any large-type free-of-in�nity Artin group. This section is dedicated

to computing explicitly the automorphism group and the outer automorphism

group of AΓ.

Lemma 5.5.6. The group InnpAΓq of inner automorphisms of AΓ acts on DΓ

in a natural way: every inner automorphism ϕg : h ÞÑ ghg�1 acts on DΓ like the

element g. Moreover InnpAΓq � AΓ.

Proof: We begin by proving the �rst statement. By Remark 5.5.4, it is enough

to check that this holds when we restrict the action to type 2 vertices of DΓ. Let

g P AΓ, and let v P V2 be a type 2 vertex of DΓ. Then

ϕg � v :� pF � ϕg � F�1qpvq � F pϕgpGvqq � F pgGvg
�1q � F pGg�vq � g � v.

The fact that InnpAΓq � AΓ is a consequence of AΓ having trivial centre (see

Corollary 3.3). l
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Lemma 5.5.7. Let ι be the automorphism of AΓ de�ned by ιpsq :� s�1 for every

generator s P V pΓq, and let ϕ P AutpAΓq be any automorphism. Then one of ϕ

or ϕ � ι is height-preserving.

Proof: By Corollary 5.5.3 the automorphism ϕ acts combinatorially on DΓ. In

particular, it sends the vertex vH onto the vertex g � vH for some element g P AΓ.

Using Lemma 5.5.6, the automorphism ϕg�1 � ϕ �xes vH. Since inner automor-

phisms preserve height, we can suppose up to post-composing by ϕg�1 that ϕ

�xes vH. In particular, ϕ preserves Γbar and thus sends the set of type 1 vertices

of KΓ onto itself. Looking at the action of ϕ on DΓ, this means ϕ sends any stan-

dard parabolic subgroup of type 1 of AΓ onto a similar subgroup. Consequently,

every standard generator must be sent by ϕ onto an element that generates such

a subgroup, i.e. that has height 1 or �1. There are three possibilities:

(1) htpϕpsqq � 1, @s P V pΓq: Then ϕ is heigh-preserving.

(2) htpϕpsqq � �1, @s P V pΓq: Then ϕ � ι is height-preserving.
(3) Ds, t P V pΓq : htpϕpsqq � 1 and htpϕptqq � �1: This means there are genera-

tors a, b P V pΓq such that ϕpsq � a and ϕptq � b�1. Because AΓ is free-of-in�nity,

the generators s and t, as well as the generators a and b, generate dihedral Artin

subgroups of AΓ. Note that ϕpAstq � xϕpsq, ϕptqy � xa, b�1y � Aab. Because ϕ

is an isomorphism we must have mst � mab (use [83, Theorem 1.1]). Applying ϕ

on both sides of the relation sts � � � � tst � � � yields

ab�1a � � � � b�1ab�1 � � � .

Note that if we put everything on the same side, we obtain a word with 2mst �
2mab syllables, that is trivial in Aab. The words of length 2mab that are trivial in

Aab have been classi�ed in [76, Lemma 3.1], and the word we obtained does not

�t this classi�cation, which yields a contradiction. l

De�nition 5.5.8. Let AutpΓq be the group of label-preserving graph automor-

phism of Γ. We say that an isomorphism ϕ P AutpAΓq is graph-induced if

there exists a graph automorphism φ P AutpΓq such that ϕ�pΓbarq � φpΓbarq. We

denote by AutGIpAΓq the subgroup of AutpAΓq consisting of the graph-induced

automorphisms.
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Remark 5.5.9. Notice that with this de�nition of graph-induced, the graph-

induced automorphisms capture the automorphisms of the group coming from

the graph automorphisms, but also the automorphisms coming from the global

involution ι.

Lemma 5.5.10. The map F : AutGIpAΓq Ñ AutpΓq � tid, ιu de�ned by the fol-

lowing is a group isomorphism:

Any ϕ P AutGIpAΓq induces an automorphism of Γbar and thus of Γ. This iso-

morphism de�nes the �rst component of Fpϕq. The second component of Fpϕq
is id if ϕ is height-preserving, and ι otherwise.

Proof: It is easy to check that F de�nes a morphism, so we show that it de-

�nes a bijection by describing its inverse map. Let φ P AutpΓq � tid, ιu. Then

for any standard generator s P V pΓq, the automorphism φ sends the vertex vs

corresponding to s onto the vertex φpvsq corresponding to a standard generator

that we note sφ. De�ne ϕφ as the (unique) automorphism of AΓ that sends every

standard generator s onto the standard generator sφ. Note that when acting on

DΓ, ϕφ restricts to an automorphism of Γbar that corresponds to the automor-

phism ϕ of Γ. For ε P t0, 1u we let F�1ppφ, ιεqq :� ϕφ � ιε. It is clear that ϕφ � ιε
is graph-induced, and it is easy to check that composing F�1 with F on either

side yields the identity. l

We are also able to recover a full description of the automorphism group of

large-type free-of-in�nity Artin groups, i.e. Theorem 5.2.

Theorem 5.5.11. Let AΓ be a large-type free-of-in�nity Artin group of rank at

least 3. Then we have AutpAΓq � AΓ � pAutpΓq � pZ {2Zqq and OutpAΓq �
AutpΓq � pZ {2Zq.
Proof: Let ϕ P AutpAΓq. The same argument as the one in the proof of Lemma

5.5.7 shows that up to post-composing with an inner automorphism, we may as

well assume that ϕ preserves Γbar, i.e. that ϕ is graph-induced. This means

AutpAΓq � InnpAΓq � AutGIpAΓq,

Using Lemma 5.5.6 and Lemma 5.5.10, we obtain

AutpAΓq � AΓ � pAutpΓq � tid, ιuq � AΓ � pAutpΓq � pZ {2Zqq.
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In particular, we have

OutpAΓq � AutpΓq � pZ {2Zq.

l
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Chapter 6

Futures prospects

In this chapter we address several of the questions and problems raised by this

thesis, along with potential strategies of resolution.

Problem 6.1. Solve the problem of acylindrical hyperbolicity for other types of

Artin groups.

Our solution to Problem 6.1 for 2-dimensional Artin groups (see Theorem 3.1)

uses a criterion from [67] (see Theorem 3.4) that relies on the CAT(0)-ness of the

space, as well as the local �link condition�, and a more global condition of weak

malnormality. In [27] Charney and Davis proved that the Deligne complexes

associated with Artin groups of type FC are CAT(0). It is thus natural to ask

whether this criterion could be used for Artin groups of type FC. The arguments

I used in Chapter 3 to prove that the link condition holds are not speci�c to

dimension 2 and it is likely that this condition to also satis�ed for Artin groups

of type FC. Then it would only remain to show the existence of appropriate

weakly malnormal subgroups to prove acylindrical hyperbolicity.

Another possible line of enquiry into acylindrical hyperbolicity is to study

the action of Artin groups on suitable CAT(0) cube-complexes. This strategy

was used in [28], where the authors looked at actions of Artin groups on what

they called the �clique-cube complex�. This allowed them to prove acylindrical

hyperbolicity for a lot of Artin groups.

Problem 6.2. Solve the problem of rigidity and describe AutpAΓq and OutpAΓq
for all large-type Artin groups or all 2-dimensional Artin groups.
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Solving these two problems is quite ambitious, but we �rmly believe that

progress towards solving them can be made. Our solution of Problem 6.2 for large-

type free-of-in�nity Artin groups relied on reconstructing the Deligne complex in

a purely algebraic way, which allowed to build a good action of AutpAΓq on the

complex (see Corollary 5.5.3). We believe that the results obtained in Theorem

5.1 and Theorem 5.2 can be extended to all large-type Artin groups whose de�ning

graphs have no separating edges or vertices. If this holds true, it would provide

an optimal statement of rigidity amongst large-type Artin groups, as the presence

of separating edges and vertices allows for diagram twists which give rise to non-

isomorphic graphs de�ning isomorphic Artin groups. It would also provide a

maximal subclass of large-type Artin groups whose automorphism groups do not

contain �edge twist� isomorphisms (see [32]).

Another approach to study Problem 6.2 lies in our weaker result of rigidity

that applies to all large-type Artin groups. Indeed, Theorem 5.3 implies that

the �most complicated� vertices of the Deligne complex (i.e. those of type 2) can

be reconstructed purely algebraically. It also implies that automorphisms of the

group send standard trees onto each others. This allows to reconstruct a large

portion of what is known as the coned-o� Deligne complex, an extension of the

Deligne complex obtained by coning-o� these standard trees. This complex has

already been studied by various authors in the literature ([53], [75]).

In addition to the previous lines of enquiries, we believe that a large portion of

the ideas used in Section 5.2 and Section 5.3 are applicable to 2-dimensional Artin

groups. To be more speci�c, proving Theorem 5.3 involved a profound study of

the dihedral Artin subgroups, in which we had to deal with ��ats� in the Deligne

complex. The �ats in the case of dimension 2 are classi�ed (they correspond to

the possible triangular tiling of the Euclidean plane), and we already know that

most of the arguments we used in Section 5.2 and Section 5.3 will generalise to

dimension 2. Hence there is hope to generalise Theorem 5.3 to 2-dimensional

Artin groups.

Problem 6.3. Classify (some) Artin groups up to quasi-isometries.

This problem is a natural extension the work we did in Chapter 5. In light

of that, a �rst goal could be to solve Problem 6.3 for large-type free-of-in�nity
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Artin groups. A successful approach to study this problem of quasi-isometric

rigidity is to study the �ats and the quasi-�ats associated with the group actions.

This strategy was notably used to study right-angled Artin groups and some

2-dimensional Artin groups ([66], [55], [56]).

Another perhaps less direct line of investigation for studying quasi-isometries

between Artin groups is to prove that they are hierarchically hyperbolic. This

notion was introduced a few years ago by Behrstock, Hagen and Sisto in [2]. The

idea is to describe the coarse geometry of a group or a space through a �coordinate

system� that projects onto various hyperbolic spaces. Hierarchical hyperbolicity

gives a strong geometric control over the space, and implies many results that

are not true for weaker forms of non-positive curvature. As it turns out, if one

knows a group is hierarchically hyperbolic, there is a speci�c strategy that can

be used to study the quasi-isometric rigidity of the given group (see [4], where it

was used for mapping class groups). So far, hierarchical hyperbolicity has been

proved for braid groups, right-angled Artin groups and extra-large Artin groups

([2], [3], [53]).

Question 6.4. Does the Artin complex carry non-positive curvature properties

for classes of Artin groups other than large-type?

Our study of the Artin complex in Chapter 4 raises many questions. For in-

stance, one might wonder whether the Artin complex can be used to study the

parabolic subgroups of other classes of Artin groups. Our main tool in studying

this complex is the fact that it is systolic (Theorem 5.2), which only happens

when the Artin group is large. For most of our results however, we don't need

systolicity itself, but rather geometric properties that are consequences of sys-

tolicity, such as combinatorial paths being �xed (see Lemma 4.2.5) or simplices

being preserved (see Lemma 4.4.5). These properties or similar properties are

known to be consequences of other non-positively curved properties.

A partial answer to Question 6.4 has been given by [11], who recently extended

part of our results to some Artin groups of dimension 2 by giving the Artin

complex a structure of systolic-by-function complex. A possible line of enquiry

to extend this result further would be to study metric systolicity, a re�nement of

the notion of systolicity that would give a more precise study of the complex.
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Question 6.5. Can we describe the automorphisms of (classes of) Coxeter groups

following the study of the automorphisms of large-type Artin groups?

Most of the tools we use in Chapter 5 are geometric, and rely on a precise study

of the Deligne complex. Coxeter groups have a natural analogue to the Deligne

complex, called the Davis complex. This complex shares a lot of similarities

with the Deligne complex, although it is usually easier to study, as it is locally

�nite. The strategy of studying the rigidity of Artin and Coxeter groups (almost)

simultaneously was used successfully in [32], hence we believe there is hope to

apply at least part of our arguments to study Coxeter groups.

Question 6.6. Are large-type Artin groups Hop�an? Are they co-Hop�an?

Recall that a group is said to be Hop�an (resp. co-Hop�an) if every epimor-

phism (resp. monomorphism) of the group is always an automorphism. The two

properties, although being interesting on their own, are consequences of residual

�niteness. Residual �niteness is not known for Artin groups in general, but the

question has brought interest in the past few years. It is natural after having

classi�ed the automorphisms of large-type free-of-in�nity Artin groups (see The-

orem 5.2) to ask whether our ideas can also be used to study epimorphisms and

monomorphisms, hence potentially answering Question 6.6 for (some) large-type

Artin groups.
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