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Abstract

It was shown in [27] that the Euler-Maruyama (EM) method fails to converge with

equidistant timesteps in the strong sense to the solutions of stochastic differential

equations (SDEs) when either of the drift or diffusion coefficients is not globally

Lipschitz continuous. Higher-order methods or schemes that are developed based

on EM, e.g. Milstein method or EM with jumps, inherit the problem.

We introduce an explicit adaptive Milstein method for SDEs with no commuta-

tivity condition. The drift and diffusion are separately locally Lipschitz and together

satisfy a monotone condition. This method relies on a class of path-bounded time-

stepping strategies which work by reducing the stepsize as solutions approach the

boundary of a sphere, invoking a backstop method in the event that the timestep

becomes too small. We prove that such schemes are strongly L2 convergent of order

one. This order is inherited by an explicit adaptive EM scheme in the additive noise

case. Moreover, we show that the probability of using the backstop method at any

step can be made arbitrarily small. We compare our method to other fixed-step

Milstein variants on a range of test problems.

Secondly, we introduce a jump-adapted adaptive Milstein (JAAM) method for

SDEs driven by Poisson random measure. With the conditions of drift and diffusion

coefficients remaining the same as for the adaptive Milstein method, and the jump

coefficient is globally Lipschitz continuous. The corresponding time-stepping strate-

gies that we propose are hence path-bounded and also jump-adapted. We prove

the L2 strong convergence of order one for JAAM and compare its computational

efficiency with jump-adapted and fixed-step methods on test models.
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General Notation

a.s. : almost surely, or with probability 1.

A := B : A is defined by B or A is denoted by B.

; : the empty set.

1A : the indicator function of a set A, i.e. 1A(x) = 1 if x 2 A or

otherwise 0.

Id : the identity matrix with rank d.

A
T : the transpose of a vector or matrix A.

�(C) : the �-algebra generated by C.

a _ b : the maximum of a and b.

a ^ b : the minimum of a and b.

f : A ! B : the mapping f from A to B.

R+ : the set of all nonnegative real numbers, i.e. R+ = [0,1).

Rd : the d-dimensional Euclidean space.

Rd⇥m : the space of real d⇥m-matrices.

kxk : the Euclidean norm of vector x

kxkF : the Frobenius norm of matrix x.

kxkT3 : the operator norm of 3-tensor x.

kxkL2 : =
�
E[kxk2]

�1/2 for x 2 Rd.

C
m(D,Rd) : the family of continuously m-times differentiable Rd-valued func-

tions defined on D.

DV (x) : =
�
@V

@x1
, · · · , @V

@xd

�
for V 2 C

1(R,Rd). It is the Jacobian matrix if

V 2 Rd.

D2
V (x) : =

�
@
2
V

@xi@xi

�
d⇥d

for V 2 C
2(R,Rd). It is a 3-tensor if V 2 Rd.

L(X, Y ) : the set of linear operators L : X ! Y for vector spaces X and Y .

HT

2 (Rd) : the set of Rd-valued processes {X(t) : t 2 [0, T ]} where

each component belongs to the Banach space such that

E
hR

T

0 kX(s)k2ds
i1/2

< 1.

Other notations will be explained where they first appear.
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Chapter 1

Introduction

Stochastic differential equations (SDEs) are practical in modelling real-world prob-

lems that involve random behaviours in e.g. derivative pricing [51], stochastic volatil-

ity [54, 17], telomere shortening in molecular biology [18] and neural networks [58, 4]

etc. In simulating event-driven phenomenons, SDEs with jumps are beneficial in e.g.

default modelling for credit risk [60], the spread of cancer from one organ to another

in cancer metastasis [52], the natural disaster that spikes claims of property insur-

ance in the fields of catastrophe option pricing [16] and insurance aggregate loss

modelling [29] etc.

Numerical methods for approximating these models are essential, whereas some

standard methods only converge in restricted conditions. It was shown in [27] that

the Euler-Maruyama (EM) method fails to converge with equidistant timesteps in

the strong sense to the solutions of SDEs when either of the drift or diffusion coef-

ficients is not globally Lipschitz continuous. Higher-order methods or schemes that

are developed based on EM, e.g. Milstein method or EM with jumps, inherit the

problem. Milstein method or EM with jumps. For instance, by [57] that the Euler-

Maruyama and Euler-Milstein methods coincide in the additive noise case, hence the

explicit Milstein scheme over a uniform mesh cannot converge in the mean-square

sense to solutions of SDEs with superlinearly growing coefficients, i.e. the mean-

square-error between the approximations and the true solutions does not tend to 0

when the step number tends to infinity.

Studies of the variants of these methods that can converge with more relaxed

conditions are hence popular. Some focus on the method itself, e.g. by taming

[57] or truncating [41] the superlinear terms to reach convergence. Alternatively,

1



Chapter 1: Introduction

restructuring the timestep mesh without modifying the method is also a possibility.

A review of methods that adapt the timestep in order to control local error may

be found in the introduction to [30]; we cite here [6, 35, 28, 49, 14, 43] and remark

that our purpose is instead to handle the nonlinear response of the discrete system

see also [11, 12] and discussion in [30, 31]. A common feature of the adaptivity

is the use of both a minimum and maximum time step where the magnitude of

the minimum step is controlled by a free parameter which requires some a-priori

knowledge on the part of the user. The approach of [11, 12], whose adaptive steps

were designed to satisfy specific conditions without the need for a backstop method,

was recently extended to McKean-Vlasov equations in [46] and include a Milstein

approximation. In addition, we note the fully adaptive Milstein method proposed

in [26] for a scalar SDE with light constraints on the coefficients. There the authors

stated that such a method was easy to implement but hard to analyse and as a

result considered a different, but related method.

The models we approximate in this thesis are the d-dimensional SDE of Itô type

X(t) = X(0) +

Z
t

0

f(X(r))dr +
mX

i=1

Z
t

0

gi(X(r))dWi(r), (1.1)

and the d-dimensional SDE driven by Poisson random measure as

X
J(t) = X

J(0) +

Z
t

0

f
�
X

J(r)
�
dr +

mX

i=1

Z
t

0

gi

�
X

J(r)
�
dWi(r)

+

Z
t

0

Z

Z

�
�
z,X

J(r�)
�
J⌫(dz ⇥ dr). (1.2)

Both models are for t 2 [0, T ], T � 0 and i = 1, . . . ,m 2 N, where W =

[W1, · · · ,Wm]T is an m-dimensional Wiener process, the drift coefficient f : Rd ! Rd

and the diffusion coefficient g : Rd ! Rd⇥m each satisfy a local Lipschitz condition

along with a polynomial growth condition and, together, a monotone condition.

Both are twice continuously differentiable; see Assumption 3.1.1 and Assumption

3.1.2. For the jump term in (1.2), J⌫ is a Poisson random measure with finite in-

tensity measure ⌫, and the amplitude coeffient � : Rd ⇥Rd ! Rd satisfies a globally

Lipschitz condition; see Assumption 4.1.1. Throughout, we take the initial vector

X(0) = X
J(0) = X0 = X

J
0 2 Rd to be deterministic. Notice that when the jump

intensity in (1.2) is 0, the whole process is a d-dimensional SDE of the form (1.1).

2



Chapter 1: Introduction

In the construction of a strongly convergent explicit Milstein-type numerical

scheme, we investigate the use of adaptive time-stepping strategies for SDEs (1.1)

and jump-adapted adaptive time-stepping strategies for SDEs driven by Poisson ran-

dom measure (1.2), so that both can achieve strong root-mean-square convergence

of order one. The strong convergence rate is generally the lower bound of the weak

convergence rate, i.e. strong convergence implies weak convergence but not with

the optimal rate [32]. This thesis only considers mean-square strong convergence.

As an immediate consequence of this, in the case of additive noise an adaptive EM

method also has root-mean-square convergence of order one.

To prove our convergence result it is essential to introduce a new variant of the

admissible class of time-stepping strategies introduced in [31, 30], which we call

path-bounded strategies. To cope with the jumps in (1.2), motivated by [5] we

merge all the jump times to the adaptive mesh grid. Each adaptive step is set to be

constrained by their next jump time. We call such time-stepping the jump-adapted

path-bounded strategies.

Our framework for adaptivity was introduced in [30] for an explicit EM method

and has since been extended to SDE systems with monotone coefficients in [31]

and to SPDE methods in [7]. With an upper and a lower constraint to the adaptive

steps, these schemes all use a backstop method when the chosen strategy attempts to

select a stepsize below the lower bound. However, we demonstrate here that with an

appropriately small upper bound and an appropriately large ratio between the upper

and the lower bound, the probability of using the backstop can be made arbitrarily

small for a path-bounded strategy. This is consistent with the observations that we

have in Chapter 5, and with the intuitive notion that the use of the backstop should

be rare in practice (see (e) and (f) of Figure 5.1).

Several variants on the fixed-step Milstein method for approximating SDE (1.1)

have been proposed, see for example the tamed Milstein [57, 34], projected and split-

step backward Milstein [2], truncated Milstein [19], implicit Milstein methods [25,

59] and a recent Tamed Stochastic Runge-Kutta (of order one) method of [15], all

designed to converge strongly to solutions of SDEs with more general drift and

diffusions, such as in (1.1). However, with few exceptions (see [34, 2]) explicit

methods of this kind have only examined the case where the diffusion coefficient gi

satisfies a commutativity condition. We do not impose a commutativity restriction

and hence must consider the associated Lévy areas (see Lemma 2.3.1).

3



Chapter 1: Introduction

Empirical fixed-step numerical methods for simulating (1.2) are reviewed. Tamed

EM for SDE driven by Lévy noise with monotone f , gi and � in [8]. Trucated EM

with super-linearly growing coefficients in [9]. Implicit EM with globally Lipschitz

f , gi and � in [24]. Tamed Milstein with monotone f , gi and � in [33]. Compensated

projected EM with monotone f , gi and � in [37]. Two-step Mistein with globally

Lipschitz f , gi and � in [47].

The structure of the thesis is as follows. In Chapter 2, we present the mathe-

matical preliminaries that we need for the study, with one new result of the moment

bound of Lévy area in Lemma 2.3.1. In Chapter 3, we introduce the adaptive Mil-

stein method for approximating (1.1), with its corresponding path-bounded time-

stepping strategies introduced in Section 3.2, and with mean-square strong conver-

gence proof and the probability of using backstop proof in Section 3.3. In Chapter 4,

we introduce the jump-adapted adaptive Milstein method for approximating (1.2),

with its corresponding jump-adapted path-bounded time-stepping strategies intro-

duced in Section 4.2, and its L2 strong convergence proof in Section 4.3. We then

present in Chapter 5 the numerical results for both methods, with one-dimensional

and two-dimensional test systems compared to existing fixed-step Milstein methods.

Finally, we summarise and discuss the future work in Chapter 6.

The adaptive Milstein method in Chapter 3 with its numerical experiments in

Section 5.1 have been submitted for peer-reviewed publication. The jump-adapted

adaptive Milstein method in Chapter 4 and its numerical comparisons in Section 5.2

are being prepared for submission to journal.

4



Chapter 2

Mathematical preliminaries

In this chapter, we define the notations and theorems that we use in this thesis.

First of all, we denote the l
2 Euclidean norm as

kvk :=
⇣
|v1|2 + · · ·+ |vd|2

⌘1/2

for a column vector v = [v1, . . . , vd]T 2 Rd, and | · | for the absolute value. Next, we

denote the Frobenius norm as

kAkF(d1⇥d2) :=

 
d1X

i=1

d2X

j=1

|Aij|2
!1/2

given a matrix A 2 Rd1⇥d2 , where Aij denotes the element in i
th row and j

th column

of matrix A. Throughout this thesis, we write kAkF(d⇥d) as kAkF for simplicity.

For a function u : Rd ! Rm and we use the notation Dn
u(x) to denote the n

th

derivative of u with respect to x 2 Rd. With L(X, Y ) being the set of bounded

linear operators L : X ! Y for vector spaces X and Y , Dn
u(x) is a linear operator

in L(Rd ⇥ · · ·⇥ Rd
,Rm), and the notation Dn

u(x)[h1, . . . , hn] is used to denote the

action of the linear operator on [h1, . . . , hn] 2 Rd ⇥ · · ·⇥ Rd. The abbreviation [h]n

is used for [h, . . . , h] and stands for the outer product of h and itself for n times.

For example, for all x 2 Rd and for all �(x) 2 C2(Rd
,Rd), D�(x):= D1

�(x) 2

L(Rd
,Rd) is the Jacobian matrix of �(x); D2

�(x) 2 L(Rd⇥d
,Rd) is the second

derivative of �(x) with respect to a vector x, which forms a 3-tensor in Rd⇥d⇥d. We

5



Chapter 2: Mathematical preliminaries

write the operator norm of D2
�(x) as

kD2
�(x)kT3 := sup

h1,h22Rd;kh1k,kh2k1

��D2
�(x) (h1 ⌦ h2)

��,

from which we have kD2
�(x)[h]2k  kD2

�(x)kT3k khk2 (noting that k[·]2kF = k ·k2).

Further, for a, b 2 R, a _ b denotes max{a, b} and a ^ b denotes min{a, b}.

Next, we state Taylor’s theorem with the remainder term in integrated form (see for

example [38, Thm. A.1]).

Theorem 2.0.1 (Taylor). If u 2 C
n+1(Rd

,Rm), then we have

u(x+ h) = u(x) +Du(x)[h] + · · ·+ 1

n!
Dn

u(x)[h]n +Rn,

where x, h 2 Rd
and the remainder is

Rn =
1

n!

Z 1

0

(1� ✏)nDn+1
u(x+ ✏h)[h]n+1

d✏.

2.1 Stochastic calculus

In this section, we define the terms that we use from probability theory and stochas-

tic calculus for Wiener process. We refer to [40, 13, 48, 38] for the formal definitions

of this section.

For a set Y , we use B(Y ) to denote the Borel �-algebra that is the smallest

�-algebra containing all open subsets of Y . A �-algebra G is a sub �-algebra of F

if F 2 F for every F 2 G. We say that a function u : X ! Rd is F -measurable if

{x 2 X : u(x)  a} 2 F for every a 2 Rd.

We use the triplet (⌦,F ,P) to denote a probability space, where the �-algebra

F is a collection of subsets of the sample space ⌦ which contains all possible out-

comes. Probability measure P : F ! [0, 1] is a set function that assigns a probability

to each event in F , with P(⌦) = 1.

Given a set T 2 R and a probability space (⌦,F ,P), an H-valued stochastic

process is a set of H-valued random variables {X(t,!) : t 2 T ,! 2 ⌦}. We write

X(t) to denote the process for simplicity.

Additionally, a filtration {Ft}t�0 is a family of sub �-algebra of F that are

increasing along with the increased time; that is Fs is a sub �-algebra of Ft for

6



Chapter 2: Mathematical preliminaries

s  t. We call the quadruple (⌦,F , {Ft}t�0,P) a filtered probability space. A

stochastic process {X(t) : t 2 [0, T ]} is {Ft}-adapted if the random variable X(t)

is Ft-measurable for all t 2 [0, T ].

Next, we give the definition of Wiener process, or known as standard Brownian

motion. We say {W (t) : t 2 R+} is an {Ft}-Wiener process on a filtered probability

space (⌦,F , {Ft}t�0,P) if

(i) W (0) = 0 a.s.,

(ii) W (t) is {Ft}-adapted and W (t)�W (s) is independent of Fs, s < t,

(iii) W (t)�W (s) ⇠ N (0, t� s) for 0  s  t, i.e.

P[W (t)�W (s)  x] =
1p

2⇡(t� s)

Z
x

�1
e
�x

2
��

2(t�s)
�
dx,

(iv) W (t,!) is a continuous as a function of t, for almost all ! 2 ⌦.

Notice that property (iv) is a consequence of (ii) and (iii). With a square-integrable

process X(s) 2 Rd adapted to the filtration generated by a Wiener process W (s), we

call
R

t

0 X(s)dW (s) the Itô integral. There are two properties of Itô integral that

are frequently used in this thesis, first is martingale property, for 0  r  t  T ,

E
Z

t

0

X(s)dW (s)

����Fr

�
=

Z
r

0

X(s)dW (s), a.s., (2.1)

and in particular the integral has mean zero. Moreover, we have

E
Z

t2

t1

X(s)dW (s)

����Ft1

�
= 0.

Second property is the conditional Itô’s isometry (see [40, Thm. 5.9]). Condition-

ing on Ft1 we have for 0  t1  t2  T ,

E
"����
Z

t2

t1

X(s)dW (s)

����
2
�����Ft1

#
=

Z
t2

t1

E
h
kX(s)k2

���Ft1

i
ds. (2.2)

We now consider d-dimensional SDEs, which are Rd-valued continuous adapated

process u(t) = [u1(t), . . . , ud(t)]T on t � 0 of the form

u(t) = u(0) +

Z
t

0

f(u(s))ds+
mX

i=1

Z
t

0

gi(u(s))dWi(s), (2.3)

7
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where f(u) = [f1(u), . . . , fd(u)]T 2 C
2(Rd

,Rd) and g 2 C2(Rd
,Rd⇥m) with gi(u) =

[g1,i(u), . . . , gd,i(u)]T 2 C2(Rd
,Rd). Written in explicit form we have

0

BBB@

u1(t)
...

ud(t)

1

CCCA
=

0

BBB@

u1(0)
...

ud(0)

1

CCCA
+

Z
t

0

0

BBB@

f1(u(s))
...

fd(u(s))

1

CCCA
ds

+

Z
t

0

0

BBB@

g1,1(u(s)) · · · g1,m(u(s))
... . . . ...

gd,1(u(s)) · · · gd,m(u(s)

1

CCCA

0

BBB@

dW1(s)
...

dWm(s)

1

CCCA
. (2.4)

Further, (2.3) can also be written in the differential form as

du = f(u)dt+ g(u)dW (t). (2.5)

Notice that the above three forms (2.3), (2.4) and (2.5) are equivalent.

Furthermore, the multidimensional Itô formula is frequently used in this thesis, it

is applied on the multidimensional SDEs that have a unique solution on all intervals

[0, T ] for T < 1. To achieve this, the drift and diffusion of (1.1) need to satisfy

standard conditions, e.g. globally Lipschitz and linear growth condition. Superlinear

coefficients, which is studied in this thesis, is presented in Assumption 3.1.1 in

Chapter 3. The Itô formula is as follows (see [13, Thm. 5.3]).

Theorem 2.1.1 (multidimensional Itô formula). Let u(t) be a d-dimensional SDEs

on t � 0 in the form of (2.3). Let V 2 C
1,2(R+ ⇥ Rd). Then

V (t, u(t)) = V (0, u(0)) +

Z
t

0

✓
@

@t
+ L

◆
V (s, u(s))ds

+
mX

i=1

Z
t

0

L
i
V (s, u(s))dWi(s) (2.6)

where for x 2 Rd
and t > 0,

LV (t, x) := f(x)TDV (t, x) +
1

2

mX

i=1

gi(x)
TD2

V (t, x)gi(x), (2.7)

L
i
V (t, x) := DV (t, x)Tgi(x). (2.8)

Here gi denotes the i
th

column of the diffusion matrix g. DV is the Jacobian matrix

8
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and D2
V the 3-tensor of V (t, x) with respect to x.

The following example is used in our proof of Theorem 3.3.1 on the strong con-

vergence of our numerical scheme.

Example 2.1.1. Let u(t) be a d-dimensional SDE as in (2.3), and V (t, u(t)) =

ku(t)k2. Then, by the multidimensional Itô formula (2.6), we have

��u(t)
��2 =

��u(0)
��2 + 2

Z
t

0

D
f(u(s)), u(s)

E
ds+

mX

i=1

Z
t

0

��gi(u(s))
��2ds

+ 2
mX

i=1

Z
t

0

D
u(s), gi(u(s))

E
dWi(s).

Proof. We first get the essential elements in (2.7) and (2.8). With V (s, x(s)) =

ku(s)k2, we have @V (s,x(s))
@t

= 0 and

DV (s, x(s)) =
@

⇣��u(s)
��2
⌘

@u(s)
=

2

4
@

⇣P
d

i=1

�
ui

�2⌘

@u1(s)
, . . . ,

@

⇣P
d

i=1

�
ui

�2⌘

@ud(s)

3

5 = 2u(s),

(2.9)

D2
V (s, x(s)) =

@
2
⇣��u(s)

��2
⌘

@u(s)2
= 2

@u(s)

@u(s)
= 2 Id,

where Id denotes identity matrix with rank d. Therefore, for (2.7),

f(u(s))TDV (s, x(s)) =2
D
f(u(s)), u(s)

E
, (2.10)

1

2

mX

i=1

gi(u(s))
TD2

V (s, u(s))gi(u(s)) =
2

2

mX

i=1

[g1,i, . . . , gd,i] Id

2

6664

g1,i

...

gd,i

3

7775
=

mX

i=1

kgik2,

where gj,i stands for the element at i
th column and j

th row of matrix g. Following

(2.9) and (2.10), (2.8) can be derived accordingly. Substituting the corresponding

elements in (2.7) and (2.8) back to (2.6), we have the desired result.

To analyse adaptive time-stepping which are random variables, we further define

stochastic calculus and the corresponding proprieties with stopping times below. We

refer to [40, Chap.5], [42, Chap.1] and [13, Thm.4.3] for further details.

9
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Definition 2.1.1 (stopping time). A random variable µ : ⌦ ! [0,1] is called an

{Ft}-stopping time (or simply, stopping time) if {! : µ(!)  t} 2 Ft for any t � 0.

Let ⌧1 and ⌧2 be two stopping times with ⌧1  ⌧2. We define

[[µ1, µ2]] =
�
(t,!) 2 R+ ⇥ ⌦ : µ1(!)  t  µ2(!)

 
,

and call it a stochastic interval. If µ is a stopping time, define

Fµ := {A 2 F : A \ {! : µ(!)  t} 2 Ft, for all t � 0}, (2.11)

which is a sub-�-algebra of F .

To define the stochastic integrals with stopping time, we need to have the in-

dicator process {1[[0,µ]](t)}t�0. If µ is an {Ft}-stopping time, then it is a bounded

right continuous {Ft}-adapted process. Moreover, 1[[0,µ]](t) is predictable and Ft-

measurable (see [40, Sec. 1.3]). Next, we let HT

2 (R) be the set of R-valued processes

{X(t) : t 2 [0, T ]} such that E
hR

T

0 |X(s)|2ds
i1/2

< 1, and we define the stochastic

Itô integral with stopping time as follows.

Definition 2.1.2 (stochastic integral with stopping time). Let f 2 HT

2 (R), and let

µ be an Ft-stopping time such that 0  µ  T . Then, {1[[0,µ]](t)f(t)}0tT 2 HT

2 (R),

and we define

Z
µ

0

f(s)dW (s) =

Z
T

0

1[[0,µ]](s)f(s)dW (s).

Consequently, we have the following properties from (2.1) and (2.2) hold for

X 2 HT

2 (Rd) and stopping times 0  ⌧1  ⌧2  T with respect to Ft that

E
Z

⌧2

⌧1

X(t)dW (t)

����F⌧1

�
= 0, (2.12)

E
"����
Z

⌧2

⌧1

X(t)dW (t)

����
2
�����F⌧1

#
=

Z
⌧2

⌧1

E
h
kX(t)k2F

���F⌧1

i
dt. (2.13)

Remark 1 (Itô formula with stopping time). Notice that (2.6) shows that its

LHS and RHS are stochastically equivalent. Since they are continuous, their sample

paths coincide. Therefore, for any Ft-measurable stopping time µ 2 [0, T ], the Itô

10
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formula (2.6) applies as

V (µ, u(µ)) = V (0, u(0)) +

Z
µ

0

✓
@

@t
+ L

◆
V (s, u(s))ds

+
mX

i=1

Z
µ

0

L
i
V (s, u(s))dWi(s).

2.2 SDEs driven by Poisson random measure

In Chapter 4, we introduce the jump-adapted adaptive Milstein method for SDEs

driven by Poisson random measure, so in the section we define the settings for jump

processes, see for example [53, 45, 48].

First of all, the simplest jump process is the homogeneous Poisson point pro-

cess, or the counting process. Let (⇡i)i�1 be a sequence of independent exponential

random variables with parameter � 2 R+ and ⌧n =
P

n

i=1 ⇡i. The process (Nt)t�0

counts the number of jumps between 0 and t as defined by

N(t) := #
�
i � 1, ⌧i 2 [0, t]

 
.

With an additional finite set Z := Rd\{0} for jump sizes, we define the Poisson

random measure that we use in this thesis as J⌫ : Z ⇥ [0, T ] ! N with finite

intensity ⌫. Such a measure counts the number of jumps between 0 and T whose

jump size (⇣n)n�1 2 Z:

J⌫(Z ⇥ T ) := #
n
i � 1, (⇣i, ⌧i) 2 Z ⇥ [0, T ]

o
. (2.14)

By integrating an amplitude function � : Z⇥[0, T ] ! Rd with respect to the Poisson

random measure J⌫ we have a jump process X(t) as

X(t) =

Z
T

0

Z

Z

�
�
z, t)J⌫(dz ⇥ dt) =

X

{n, ⌧n2[0,T ]}

�(⇣n, ⌧n). (2.15)

Whenever there is a jump time t = ⌧ 2 [0, T ] and a jump size z = ⇣ 2 Z, the measure

J⌫(dz ⇥ dt) = 1 so we have the jump amplitude �(⇣, ⌧) added to the process. We

assume that the intensity measure ⌫(dz)dt = E[J⌫(dz⇥dt)] has finite total intensity

� = ⌫(Z) < 1. Since we will be working on a jump-adapted mesh which requires

analysis on the particular jump times, the following notation is useful when the

11
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jump process is at a point t:

Z

Z

�(z, t�)J⌫(dz ⇥ {t}) :=
Z

t

0

Z

Z

�(z, s)J⌫(dz ⇥ ds)

�
Z

t
�

0

Z

Z

�(z, s)J⌫(dz ⇥ ds). (2.16)

Remark 2 (Notation J(t)). By (2.14) the number of jumps between [0, t], whose

sizes are in the set Z, is denoted as J⌫(Z ⇥ t). In this thesis, we omit the Z and ⌫,

and write J(t) for simplicity.

The Poisson random measure J⌫(Z ⇥ T ) in (2.14) generates a sequence of pairs

{(⇣i, ⌧i), i 2 {1, 2, . . . , J(T )}}. In more detail, (⇣i)i�1, which can be observed at

their corresponding jump times, is a sequence of i.i.d. random variables representing

the jump sizes. (⌧i)i�1 is a sequence of increasing non-negative random variables

representing the jump times of a Poisson process with intensity �, with the waiting

time between every two jumps denoted as ⇡i ⇠ exp(1/�) for i = 1, . . . , J(T ) so that

⌧i =
P

i

j=1 ⇡i.

Adding the jump process (2.15) to an SDE (2.3) we have the d-dimensional SDE

driven by Poisson random measure as

u(t) = u(0) +

Z
t

0

f(u(r))dr +
mX

i=1

Z
t

0

gi(u(r))dWi(r)

+

Z
t

0

Z

Z

�
�
z, u(r�)

�
J⌫(dz ⇥ dr), (2.17)

where drift f(u) = [f1(u), . . . , fd(u)]T 2 C
2(Rd

,Rd) and diffusion g 2 C2(Rd
,Rd⇥m)

with gi(u) = [g1,i(u), . . . , gd,i(u)]T 2 C2(Rd
,Rd), and jump coefficient �(z, u) =

[�1(z, u), . . . , �d(z, u)]T 2 C2
�
(Rd\{0})⇥ Rd

,Rd
�
.

One example comparison of the trajectories of Poisson counting process, com-

pound Poisson process and compound Poisson process with Wiener noises is shown

in Figure 2.1. All three processes are modeled based on the same jump times, with

the counting process (a) adding value 1 on a jump time, and the other two (b)-(c)

adding a random value drew from a probability distribution e.g. N (0, 1) here. By

including Wiener noises during the waiting time of the jumps to the compound Pois-

son process, we have the plot (c) that is the SDE driven by Poisson random measure

(2.17) when drift f = 0, diffusion gi = 1 and jump amplitude function equals the

12
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noises written as � = z.
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Figure 2.1: Trajectories of counting process (a), compound Poisson process (b), and
compound Poisson with Wiener noise (c).

Finally, we state the Itô formula for SDEs with jumps (1.2), (see [53, Chap.8]).

The coefficients should be assumed to guarantee that (1.2) has a unique solution on

all intervals [0, T ] for T < 1. The conditions that we assume in this thesis are in

Assumption 3.1.1 and 4.1.1.

Theorem 2.2.1 (Itô formula for SDE driven by Poisson random measure). Let u(t)

be a d-dimensional SDE on t � 0 in the form of (2.17) . Let V 2 C
2(Rd

,R+ ⇥Rd),

we have

V (t, u(t)) = V (0, u(0)) +

Z
t

0

✓
@

@t
+ L

◆
V (s, u(s))ds+

mX

i=1

Z
t

0

L
i
V (s, u(s))dWi(s)

+

Z
t

0

Z

Z

n
V

⇣
s, u(s�) +�u(s)

⌘
� V

�
s, u(s�)

�o
J(dz ⇥ ds) (2.18)

where LV (t, x) and L
i
V (t, x) are in (2.7) and (2.8), respectively, from multidimen-

sional Itô’s formula for SDE in Theorem (2.1.1). �u(s) := u(s)� u(s�). The jump
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term in (2.18) can be written in the compound Poisson form as

J(t)X

i=1

n
V

⇣
⌧i, u(⌧�

i
) +�u(⌧i)

⌘
� V

�
⌧i, u(⌧

�
i
)
�o

.

Notice that due to Remark 1, the Itô formula for SDEs with jumps (2.18) can

also be applied with stopping times.

2.3 Numerical methods

In this section, we define some existing numerical methods that we consider in this

thesis. First of all, for n 2 N we define �tn = |tn+1 � tn|, and following [57, 2], the

stochastic integral and the iterated stochastic integral are defined as

I
tn,tn+1

i
:=

Z
tn+1

tn

dWi(s), I
tn,tn+1

j,i
:=

Z
tn+1

tn

Z
s

tn

dWj(p)dWi(s). (2.19)

Given Yn and for n 2 N, the discrete-time Euler-Maruyama (EM) method for ap-

proximating the SDE (1.1) is given as

Yn+1 = Yn + f(Yn)�tn +
mX

i=1

gi(Yn)I
tn,tn+1

i
. (2.20)

At the n
th step, substituting the given current value Yn into coefficient functions,

together with Wiener increment approximated by N (0, 1) random variable scaled

by
p
�t, we have the approximated value Yn+1. The EM method has strong conver-

gence of order 1/2. With one extra term, we have the Milstein method with strong

convergence of order 1. We define the continuous-time interpolation over one step

[tn, tn+1] of the discrete-time Milstein approximation as (see [57])

Definition 2.3.1 (Explicit Milstein method). For s 2 [tn, tn+1] and n 2 N, the

fixed-step Milstein scheme for the SDE in (1.1) is

Y (s) = Y (tn) + f
�
Y (tn)

�
|s� tn|+

mX

i=1

gi

�
Y (tn)

�
I
tn,s

i

+
mX

i,j=1

Dgi

�
Y (tn)

�
gj

�
Y (tn)

�
I
tn,s

j,i
. (2.21)

Notice that Y (tn) = Yn for n 2 N, i.e. on grid points. Expanding the last term
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in (2.21), with I
tn,s

j,i
defined in (2.19) we have

mX

i,j=1

Dgi

�
Y (tn)

�
gj

�
Y (tn)

�
I
tn,s

j,i

=
1

2

mX

i=1

Dgi

�
Y (tn)

�
gi

�
Y (tn)

� ⇣�
I
tn,s

i

�2 � |s� tn|
⌘

+
1

2

mX

i,j=1
i<j

⇣
Dgi

�
Y (tn)

�
gj

�
Y (tn)

�
+Dgj

�
Y (tn)

�
gi

�
Y (tn)

�⌘
I
tn,s

i
I
tn,s

j

+
mX

i,j=1
i<j

⇣
Dgi

�
Y (tn)

�
gj

�
Y (tn)

�
�Dgj

�
Y (tn)

�
gi

�
Y (tn)

�⌘
A

tn,s

ij
, (2.22)

where the term A
tn,s

ij
is the Lévy area (see for example [36, Eq. (1.2.2)]) defined by

A
tn,s

ij
:=

1

2

�
I
tn,s

i,j
� I

tn,s

j,i

�
, (2.23)

and we have used the relations I tn,s
i,i

= 1
2((I

tn,s

i
)2� |t�s|) and I

tn,s

i,j
+I

tn,s

j,i
= I

tn,s

i
I
tn,s

j
.

When only the first term on the RHS of (2.22) exists we say it is an SDE with

diagonal noise. If first two terms exist, it is an SDE with commutative noise. If all

three terms exist, it is the non-commutative noise. Notice that when the noise is

additive, i.e. Dgi

�
Y (tn)

�
= 0 for i = 1, ...,m, the EM method and Milstein method

coincide with convergence order 1.

Many authors assume the commutativity condition that for all i, j = 1, . . . ,m

and y 2 Rd, Dgi(y)gj(y) = Dgj(y)gi(y). When this holds, the last term in (2.22)

vanishes, avoiding the need for any analysis of Atn,s

ij
defined in (2.23). We do not

impose such a condition in this thesis, and therefore make use of the following

conditional moment bounds on the Lévy areas.

Lemma 2.3.1 (Lévy Area). For all i, j = 1, . . . ,m, 0  tn  s < T and for a pair

of Wiener process (Wi(r),Wj(r))T where r 2 [tn, s] and the Lévy area A
tn,s

ij
defined

in (2.23), there exists a finite constant CLA whose explicit form is in (2.25) such that

for k � 1

E
h��Atn,s

ij

��k
���Ftn

i
 CLA (k) |s� tn|k a.s. (2.24)

Proof. Set i2 = �1. Since the pair of Wiener processes (Wi(r),Wj(r))T , r 2 [tn, s],

are mutually independent, by [36, Eq. (1.3.5)] the characteristic function of the
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Lévy area (2.23) is given by �(�) = (cosh
�
1
2 |s� tn|�

�
)�1

. This was applied in the

context of numerical methods for SDEs in [39]. The Taylor expansion of the function

cosh
�
1
2 |s� tn|�

�
around 0 gives

�(�) =
1X

N=0

E2N

(2N)!

✓
1

2
|s� tn|

◆2N

�
2N

,

����
1

2
|s� tn|�

���� <
⇡

2
,

where E2N stands for the 2N th Euler number, which may be expressed as

E2N = i

2N+1X

b=1

bX

j=0

✓
j

b

◆
(�1)j(b� 2j)2N+1

2b ib b
, N = 0, 1, 2, 3, . . . .

All odd Euler numbers are zero. The k
th derivative of the characteristic function

with respect to � is

�(�)(k)
�

=
1X

N=d k
2 e

 
k�1Y

B=0

(2N � B)

!
E2N

(2N)!

✓
1

2
|s� tn|

◆2N

�
2N�k

.

As � ! 0, since all terms vanish unless k = 2N , we have

lim
�!0

�(�)(k)
�

=

8
>>><

>>>:

 
k�1Y

B=0

(k � B)

!
Ek

(k)!

✓
1

2
|s� tn|

◆k

, k even;

0, k odd.

In the calculation of expectations, we make use of the mutual independence, condi-

tional upon Ftn , of the pair of Wiener increments (Wi(t),Wj(t))T . Therefore, the

k
th conditional moment of Atn,s

ij
is

E
h�
A

tn,s

ij

�k���Ftn

i
= Lk |s� tn|k,

where for all a = 1, 2, 3, . . .

Lk =

 
k�1Y

B=0

(k � B)

!
Ek

(k)!

✓
�1

2
i

◆k

:=

8
>>>>><

>>>>>:

⇣Q
k�1
B=0(k � B)

⌘
Ek
(k)!

�
1
2

�k
, k = 4a = 4, 8, 12, . . .

�
⇣Q

k�1
B=0(k � B)

⌘
Ek
(k)!

�
1
2

�k
, k = 4a� 2 = 2, 6, 10 . . .

0, k = 2a� 1 = 1, 3, 5, . . .
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which is finite, as a finite product of finite factors. When k is even, we have

E
h��Atn,s

ij

��k
���Ftn

i
= E

h�
A

tn,s

ij

�k���Ftn

i
= Lk |s� tn|k, a.s.

When k is odd, i.e. k = 2c+ 1 for all c = 0, 1, 2, . . . , we have a.s.

E
h��Atn,s

ij

��k
���Ftn

i
= E

h��Atn,s

ij

��2c+1
���Ftn

i


r
E
h�
A

tn,s

ij

�4c���Ftn

i
E
h�
A

tn,s

ij

�2���Ftn

i

=

8
><

>:

p
L2 |s� tn|, c = 0;

p
L4c · L2|s� tn|2c+1

, c = 1, 2, 3, . . .

=

8
><

>:

p
L2 |s� tn|, k = 1;

p
L2k�2 · L2|s� tn|k, k = 3, 5, 7, . . . .

Therefore, in conclusion we have

E
h��Atn,s

ij

��k
���Ftn

i
 CLA (k) |s� tn|k, a.s.

where

CLA (k) =

8
>>>>><

>>>>>:

p
L2, k = 1;

p
L2k�2 · L2, k = 3, 5, 7, . . . ;

Lk, k = 2, 4, 6, . . .

(2.25)

The following discrete-time method reaches l2 strong convergence of order 1

for approximating the SDE (1.1), with the drift coefficient is one-sided Lipschitz

continuous and the diffusion coefficient is globally Lipschitz continuous (see [57]).
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Chapter 2: Mathematical preliminaries

Definition 2.3.2 (Tamed Milstein method). Given Yn and n 2 N, the fixed-step

tamed Milstein scheme for the SDE (1.1) is given as

Yn+1 = Yn +
f(Yn)

1 +�tn

��f(Yn)
���tn +

mX

i=1

gi(Yn)I
tn,tn+1

i

+
mX

i,j=1

Dgi(Yn)gj(Yn)I
tn,tn+1

j,i
. (2.26)

When dealing with the SDE with jumps as in (2.17) with globally Lipschitz

coefficients, the following Milstein method can reach strong convergence with order

1, (see [5]). Given Yn and n 2 N, the discrete-time Milstein scheme for the SDE

with jumps is given in one-step as

Yn+1 =Yn + f(Yn)�t+
mX

i=1

gi(Yn)I
tn,tn+1

i
+

Z
s

tn

Z

Z

�
�
z, Yn

�
J(dz ⇥ ds)

+
mX

i,j=1

gj(Yn))Dgi(Yn)I
tn,tn+1

j,i

+
mX

i=1

Z
s

tn

Z
r

tn

Z

Z

�gi

�
z, Yn

�
J(dz ⇥ dr)dWi(s)

+
mX

i=1

Z
s

tn

Z

Z

Z
r

tn

gi(Yn)D�
�
z, Yn

�
dWi(r)J(dz ⇥ ds)

+

Z
tn+1

tn

Z

Z

Z
r

tn

Z

Z

��
�
z, z1, Yn

�
J(dz1 ⇥ dr)J(dz ⇥ ds), (2.27)

where

�gi

�
z, Yn

�
=gi

⇣
Y

�
n

+ �
�
z, Yn

�⌘
� gi

�
Y

�
n

�

��
�
z, z1, Y (tn)

�
=�

⇣
z, Y

�
n

+ �
�
z1, Yn

�⌘
� �

�
z, Y

�
n

�
.

By including all the jumps in the mesh points, the following continuous-time inter-

polation of the discrete-time jump-adapted Milstein method can also reach strong

convergence with order 1 with globally Lipschitz coefficients, (see [5]).

Definition 2.3.3 (Jump-adapted Milstein method for SDE driven by Poisson ran-

dom measure). Given Y (tn), for s 2 [tn, tn+1] and n 2 N, the continuous form of

18



Chapter 2: Mathematical preliminaries

jump-adapted Milstein scheme for approximating (2.17) is given by Y (s) as

bY(s) = Y (tn) + f
�
Y (tn)

�
|s� tn|+

mX

i=1

gi

�
Y (tn)

�
I
tn,s

i

+
mX

i,j=1

Dgi

�
Y (tn)

�
gj

�
Y (tn)

�
I
tn,s

j,i
(2.28)

Y (s) = bY(s) +
Z

Z

�
�
z,bY(s)

�
J⌫(dz ⇥ {s}), (2.29)

where

Z

Z

�
�
z,bY(s)

�
J⌫(dz ⇥ {s}) =

8
><

>:

�
�
⇣J(s),bY(s)

�
, s = ⌧J(s),

0, s 6= ⌧J(s).

(2.30)

The notation bY(s) in (2.28) stands for the process that approximates up to the

time s without the jump if there is one at s. Further, the jump-adapted method

in (2.29) is based on a deterministic mesh that is a superposition of the jump times

{⌧i}i2[1,...,J(s)] and equidistant time steps. By Remark 2, ⌧J(s) in (2.30) shows the last

jump time in [0, s], so that (2.30) can catch every jump when s is the jump time,

with the jump size ⇣J(s). The jump term can be sampled exactly.

Comparing (2.29) with the non-jump-adapted Milstein method (2.27), we can

see that by tracking each jump on the mesh, the jump-adapted Milstein method

(2.29) becomes much simpler. The last three double integrals coupled with Wiener

process and/or Poisson random measure in (2.27) do not present in the the jump-

adapted methods. This simplifies the analysis and numerical implementation but

can be computational expensive when jump intensity is high.

Finally, the definition of L2 (root-mean-square) strong convergence is as follows.

Definition 2.3.4 (strong convergence). Let (X(t))t2[0,T ] be the solution of a stochas-

tic differential equation and let (Y (t))t2[0,T ] be an approximation method of the

stochastic differential equation. We say (Y (t))t2[0,T ] converges L2-strongly with or-

der ↵ if the following holds

sup
0tT

⇣
E
h��X(t)� Y (t)

��2
i⌘1/2

 O(�t
↵).
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In contrast, we say (Y (t))t2[0,T ] convergent weakly with order � if the following

bound holds

���E
⇥
X(t)

⇤
� E

⇥
Y (t)

⇤���  O(�t
�).

We see that strong convergence focuses on the mean of the error, whereas weak

convergence is on error of the mean. Strong convergence implies weak convergence

with a rate that is not optimal, we in this thesis investigate the strong convergence

of the proposed schemes.

2.4 Some useful results

In this section, we list some useful inequality-related results that we frequently use

in this thesis. For general references, see [40, 38].

For a, b, ✏ > 0, we have the Young’s inequality as

2ab  ✏a
2 +

1

✏
b
2
. (2.31)

Next, if � : R ! R is a convex function and X is a real-valued random variable with

E[X] < 1, then we have Jensen’s inequality as

�
�
E[X]

�
 E

⇥
�(X)

⇤
. (2.32)

In particular, for p � 1,
�
E[|X|]

�p  E
⇥
|X|p

⇤
. Furthermore, the following two

consequences are also commonly used. For f 2 L
1 and p � 1,

����
Z

t

0

f(s)ds

����
p

 t
p�1

Z
t

0

|f(s)|pds, t � 0. (2.33)

For ai 2 R and p � 1,

�����

nX

i=1

ai

�����

p

 n
p�1

nX

i=1

|ai|p, n 2 N\{0}. (2.34)

Moreover, let H be a Hilbert space. Then the Cauchy-Schwarz inequality is

khu, vik  kuk kuk, 8u, v 2 H. (2.35)
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Let X and Y be random variables, we have

��E[XY ]
�� 

⇣
E
⇥
X

2
⇤⌘1/2⇣

E
⇥
Y

2
⇤⌘1/2

. (2.36)

Suppose that (Xk,Fk, µk) for k = 1, 2 are �-finite measure spaces and consider a

measurable function u : X1 ⇥X2 ! Y . If

Z

X2

✓Z

X1

��u(x1, x2)
��
Y
dµ1(x1)

◆
dµ2(x2) < 1, (2.37)

then by Fubini’s theorem u is integrable with respect to the product measure

µ1 ⇥ µ2 and

Z

X1⇥X2

u(x1, x2)d(µ1 ⇥ µ2)(x1, x2) =

Z

X2

✓Z

X1

u(x1, x2)dµ1(x1)

◆
dµ2(x2)

=

Z

X1

✓Z

X2

u(x1, x2)dµ2(x2)

◆
dµ1(x1). (2.38)

Finally, let T > 0 and c � 0, u(·) be a Borel measurable bounded nonnegative

function on [0, T ], and v(·) be a nonnegative integrable function on [0, T ]. If

u(t)  c+

Z
t

0

v(s)u(s)ds, for all 0  t  T,

then by Gronwall’s inequality

u(t)  c exp

✓Z
t

0

v(s)ds

◆
, for all 0  t  T. (2.39)
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Chapter 3

Adaptive Milstein method

In this chapter, we introduce the adaptive Mistein method for approximating (1.1)

with L2-strong convergence of order one. The assumptions of the model are stated in

Section 3.1, and the adaptive time-stepping strategies in Section 3.2. The theorems

of L2-strong convergence and the probability of using backstop method are in Section

3.3 with their proofs in Sections 3.3.3 and 3.3.4, respectively.

3.1 Assumptions

We now present our assumptions on f and gi in (1.1).

Assumption 3.1.1. Let f 2 C2(Rd
,Rd) and g 2 C2(Rd

,Rd⇥m) with gi(x) =

[g1,i(x), . . . , gd,i(x)]T 2 C2(Rd
,Rd). For each { � 1 there exist L{ > 0 such that

��f(x)� f(y)
��2 +

��g(x)� g(y)
��2
F(d⇥m)

 L{
��x� y

��2, (3.1)

for x, y 2 Rd
with kxk _ kyk  {, and there exists L � 0 such that for some ⌘ � 2

⌦
x� y, f(x)� f(y)

↵
+

⌘ � 1

2

��g(x)� g(y)
��2
F(d⇥m)

 L
��x� y

��2. (3.2)

In addition, for some constants c3,4,5,6, q1, q2 � 0; i = 1, . . . ,m, we have

��Df(x)
��
F
 c3(1 + kxkq1+1),

��Dgi(x)
��
F
 c4(1 + kxkq2+1), (3.3)

��f(x)
��  c5(1 + kxkq1+2),

��g(x)
��
F(d⇥m)

 c6(1 + kxkq2+2). (3.4)

22



Chapter 3: Adaptive Milstein method

Furthermore, for some c1,2 � 0; i = 1, . . . ,m, we have

��D2
f(x)

��
T3

 c1(1 + kxkq1),
��D2

gi(x)
��
T3

 c2(1 + kxkq2). (3.5)

Under (3.1) and (3.2), the SDE (1.1) has a unique strong solution on any interval

[0, T ], where T < 1 on the filtered probability space (⌦,F , {Ft}t�0,P), see [21], [40]

and [55].

Assumption 3.1.2. Suppose that (3.2) in Assumption 3.1.1 holds with

⌘ � 4q + 2q2 + 10,

where q := q1 _ q2, q1 and q2 are from (3.4) in Assumption 3.1.1.

We now give the following Lemma on moments of the solution.

Lemma 3.1.1. [41, Lem. 4.2] Let f and g satisfy (3.1) and (3.2), and suppose that

Assumption 3.1.2 holds. If g further satisfies (3.4), then there is a constant CX > 0

such that the solution of (1.1) satisfies

E

sup

s2[0,T ]
kX(s)k⌘�2q2�2

�
 CX. (3.6)

3.2 Adaptive time-stepping

To deal with the extra terms that arise from Milstein as in Definition 2.3.1 over

Euler-Maruyama type discretisations as in Definition 2.20, we introduce a new class

of time-stepping strategies in Definition 3.2.4.

Let {hn+1}n2N be a sequence of strictly positive random timesteps with corre-

sponding random times {tn :=
P

n

i=1 hi}n2N\{0}, where t0 = 0.

Assumption 3.2.1. For the sequence of random timesteps {hn+1}n2N, there are

constant values hmax > hmin > 0, ⇢ > 1 such that hmax = ⇢hmin, and

0 < hmin  hn+1  hmax  1. (3.7)

In addition, we assume each hn+1 is Ftn-measurable.
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Chapter 3: Adaptive Milstein method

Let {Ft} stand for the natural filtration of W , and if µ is any {Ft}-stopping time,

then Fµ is defined in (2.11) from Definition 2.1.1 (see [42, p. 14]). The following

lemma allows us to condition on Ftn at any point on the random time-set {tn}n2N.

Lemma 3.2.1. Let {hn+1}n2N satisfy Assumption 3.2.1. Each member of {tn =
P

n

i=1 hi}n2N\{0} is an {Ft}-stopping time: i.e. {tn  t} 2 Ft for all t 2 [0, T ].

Proof. We show this by induction for n 2 N.

n = 1: By Assumption 3.2.1, h1 is an Ft0-measurable random variable with

t0 = 0 , that is {h1  t} 2 F0 for all t 2 [0, T ]. Since F0 is a sub-� algebra of Ft,

we have that {h1  t} 2 Ft for all t 2 [0, T ]. So {t1  t} = {h1  t} 2 Ft, for all

t 2 [0, T ], and we conclude that t1 is an {Ft}-stopping time.

n = k: With the induction hypothesis being that tk is an {Ft}-stopping time,

that is {tk  t} 2 Ft for all t 2 [0, T ], by (2.11) in Definition 2.1.1 we define the

�-algebra at the stopping time tk as Ftk
:= {A 2 F : A \ {tk  t} 2 Ft, for all t 2

[0, T ]}. Since tn =
P

n

i=1 hi for n 2 N\{0}, we have

{tk+1  t} = {hk+1 + tk  t} =
[

r2[0,t]

⇣
{hk+1  t� r} \ {tk  r}

⌘
.

Since hk+1 is an Ftk
-measurable random variable by Assumption 3.2.1, and by setting

A = {hk+1  t � r} and by the definition of Ftn we have A \ {tk  r} 2 Fr ✓ Ft

(sub-� algebra) for all r 2 [0, T ]. Therefore, we have {tk+1  t} 2 Ft for all t 2 [0, T ]

and conclude that tk+1 is an {Ft}-stopping time. The proof is complete.

Definition 3.2.1. Let N
(t) be a random integer such that

N
(t) := max{n 2 N\{0} : tn�1 < t}, (3.8)

and let N = N
(T ) and tN = T , so that T is always the last point on the mesh. Note

that N
(t) indicates the step number such that t 2

⇥
t
N(t)�1, tN(t)

⇤
. Furthermore, by

Assumption 3.2.1, N (t) only takes values in the finite set {N (t)
min, . . . , N

(t)
max}, where

N
(t)
min := bt/hmaxc and N

(t)
max := dt/hmine.

In Assumption 3.2.1, the lower bound hmin given by (3.7) ensures that a simu-

lation over the interval [0, T ] can be completed in a finite number of time steps. In

the event that at time tn our strategy attempts to select a stepsize hn+1  hmin,
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Chapter 3: Adaptive Milstein method

we instead apply a single step of a backstop method (' in Definition 3.2.2 below),

a known method that satisfies a mean-square consistency requirement as in (3.11)

with deterministic step hn+1 = hmin (see also discussion in Remarks 3).

First we recall the Milstein method expressed as a map. Over each step [tn, tn+1]

the Milstein map ✓ : Rd ⇥ R⇥ R ! Rd is defined as for s 2 [tn, tn+1]

✓
�
x, tn, s� tn

�
:= x+ (s� tn)f(x) +

mX

i=1

gi(x)I
tn,s

i
+

mX

i,j=1

Dgi(x)gj(x)I
tn,s

j,i
. (3.9)

Following [31, Def. 9], we define an adaptive Milstein scheme combining the Milstein

method and a backstop method as follows.

Definition 3.2.2 (Adaptive Milstein Scheme). Let {hn+1}n2N satisfy Assumption

3.2.1. Using indicator functions to distinguish the backstop case when hn+1 = hmin

(and allowing for the possibility that the final step taken to terminal time T is

smaller than hmin, in which case the backstop method is also used), we define the

continuous form of an adaptive Milstein scheme associated with a particular time-

stepping strategy {hn+1}n2N

eY (s) := ✓

⇣
eY (tn), tn, s� tn

⌘
· 1{hmin<hn+1hmax}

+ '

⇣
eY (tn), tn, s� tn

⌘
· 1{hn+1hmin}, (3.10)

for s 2 [tn, tn+1], n 2 N, and where eY (0) = X(0). Thus the scheme is characterised

by the sequence of tuples,
��eY (s)

�
s2[tn,tn+1]

, hn+1

 
n2N. The backstop map ' : Rd ⇥

R⇥ R⇥ ⌦ ! Rd in (3.10) satisfies for n 2 N

E
���X(s)� '

⇣
eY (tn), tn, s� tn

⌘���
2
����Ftn

�

���X(tn)� eY (tn)

���
2

+ CB1

Z
s

tn

E
���X(r)� '

⇣
eY (tn), tn, r � tn

⌘���
2
����Ftn

�
dr + CB2h

3
min, (3.11)

a.s, for positive constants CB1 and CB2 .

Throughout the thesis it is notationally convenient to make the following defini-

tion based on (3.10).

Definition 3.2.3. Let eY be as given in Definition 3.2.2 and define for each n 2 N

Y✓(s) := ✓

⇣
eY (tn), tn, s� tn

⌘
, s 2 [tn, tn+1]. (3.12)
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Remark 3 (hmax and hmin). The upper bound hmax prevents stepsizes from becom-

ing too large and allows us to examine strong convergence of the adaptive Milstein

method (3.10) to solutions of (1.1) as hmax ! 0 (and hence as hmin ! 0). Note

that ' satisfies (3.11) if the backstop method satisfies a mean-square consistency

requirement. In practice, instead of testing (3.11), we choose a backstop method

that is strongly convergent with rate 1.

Remark 4 (Wiener increments). For all i, j = 1, 2, . . . ,m, I tn,tn+1

i
in (2.19) is a

Wiener increment taken over a random step of length hn+1 , which itself may depend

on eY (tn) and therefore is not necessarily independent and normally distributed.

However, since hn+1 is Ftn-measurable, then I
tn,tn+1

i
is Ftn-conditionally normally

distributed and by the expected stochastic integral with stopping time in (2.12) and

(2.13), together with the Optional Sampling Theorem (see for example [50]), for all

p = 0, 1, 2, . . .

E
h
I
tn,tn+1

i

���Ftn

i
= 0, a.s.; (3.13)

E
���I tn,tn+1

i

���
2
����Ftn

�
= hn+1, a.s.; (3.14)

E
⇥��I tn,s

i

��p��Ftn

⇤
= ⌥p|s� tn|

p
2 , a.s.; (3.15)

where ⌥p := 2p/2� ((p+ 1)/2) ⇡�1/2, and � is the Gamma function (see for example

[44, p.148]). In implementation, it is sufficient to replace the sequence of Wiener

increments with i.i.d. N (0, 1) random variables scaled at each step by the Ftn-

measurable random variable
p
hn+1.

We now provide a specific example of a time-stepping strategy that we use in

Section 5.1 and that satisfies the assumptions for our convergence proof in Theorem

3.3.1. Suppose that for each n = 0, . . . , N � 1 and some fixed constant  > 0, we

choose constant values hmax > hmin > 0, ⇢ > 1 such that hmax = ⇢hmin and

hn+1 = hmin _
 

hmax��eY (tn)
��1/

^ hmax

!
. (3.16)

Then (3.7) in Assumption 3.2.1 holds for (3.16). Given (3.16), when on the event

{hmin < hn+1  hmax}, two situations exist: Case 1.
⇣
hn+1 = hmax/

��eY (tn)
��1/

⌘
,
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that is

hmin <
hmax��eY (tn)

��1/
 hmax.

Since ⇢hmin = hmax we have

1 <

✓
hmax

hmax

◆


��eY (tn)

�� <

✓
hmax

hmin

◆

= ⇢

.

Case 2.
⇣
hn+1 = hmax

⌘
, we have

hmax��eY (tn)
��1/

> hmax, =)
��eY (tn)

�� <

✓
hmax

hmax

◆

= 1.

The strategy given by (3.16) is admissible in the sense given in [30, 31]. How-

ever, it also motivates the following class of time-stepping strategies to which our

convergence analysis applies.

Definition 3.2.4 (Path-bounded time-stepping strategies). Let
�eY (tn), hn+1

 
n2N

be a numerical approximation for (1.1) given by (3.10), associated with a timestep

sequence {hn+1}n2N satisfying Assumption 3.2.1. We say that {hn+1}n2N is a path-

bounded time-stepping strategy for (3.10) if there exist real non-negative constants

0  Q < R (where R is independent of N and may be infinite if Q 6= 0) such that

whenever hmin < hn+1  hmax,

Q 
��eY (tn)

�� < R, n = 0, . . . , N � 1. (3.17)

Note that throughout this paper we use a strategy where Q = 0 and R < 1.

As we will see in Section 5.1.2, a careful choice of the parameter  can be used to

minimise invocations of the backstop method when ⇢ is fixed.

3.3 Results: Theorem 3.3.1 and Theorem 3.3.2

Our first main result shows strong convergence with order 1 of solutions of (3.10) to

solutions of (1.1) when {hn+1}n2N is a path-bounded time-stepping strategy ensuring

that (3.17) holds.
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Theorem 3.3.1 (Strong Convergence). Let (X(t))t2[0,T ] be a solution of (1.1) with

initial value X(0) = X0 2 Rd
. Suppose that the conditions of Assumptions 3.1.1 and

3.1.2 hold. Let
��eY (s)

�
s2[tn,tn+1]

, hn+1

 
n2N be the adaptive Milstein scheme given in

Definition 3.2.2 with initial value for the first component eY0 = X0, and let the path-

bounded time-stepping strategy {hn+1}n2N satisfy the conditions of Definition 3.2.4

for some R < 1. Then there exists a constant C(R, ⇢, T ) > 0 independent of hmax

and with the explicit form in (3.89) such that

max
t2[0,T ]

⇣
E
h
kX(t)� eY (t)k2

i⌘1/2

 C(R, ⇢, T )hmax. (3.18)

Furthermore,

lim
⇢!1

C(R, ⇢, T ) = 1. (3.19)

Notice that (3.19) shows the necessity of the lower bound hmin bounded away

from 0. The proof of Theorem 3.3.1, which is given in Section 3.3.3, accounts for

the properties of the random sequences {tn}n2N and {hn+1}n2N and uses (3.17) to

compensate for the non-Lipschitz drift and diffusion.

Our second main result shows that for the specific strategy given by (3.16) the

probability of needing a backstop method can be made arbitrarily small by taking ⇢

sufficiently large for fixed , where ⇢ represents the distance between hmax and hmin

by Assumption 3.2.1, and  prevents the strategy from always taking hmin when

initial value is large see Section 5.1.2.

Theorem 3.3.2 (Probability of Backstop). Let all the conditions of Theorem

3.3.1 hold, and suppose that the path-bounded time-stepping strategy {hn+1}n2N also

satisfies (3.16) with � = hmax.

Let C(R, ⇢, T ) be the error constant in estimate (3.18) from the statement of

Theorem 3.3.1.

For any fixed  � 1 there exists a constant Cprob = Cprob(T,R, hmax) with its

explicit form in (3.94) such that, for hmax  1/C(R, ⇢, T ),

P [hn+1 = hmin]  Cprob ⇢
1�2

. (3.20)

Further for arbitrarily small tolerance " 2 (0, 1), there exists ⇢ > 0 such that

P [hn+1 = hmin] < ", n 2 N.
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The upper bound of hmax is a technical constraint required for the proof, see

Section 3.3.4.

3.3.1 Preliminary Lemmas

We present five lemmas necessary for the proof of Theorem 3.3.1 and Theorem 3.3.2.

Throughout this section we assume that coefficients f and g satisfy Assumptions

3.1.1 and that we are on the event {hmin < hn+1  hmax} (except for Lemma 3.3.6)

so that (3.17) holds of Definition 3.2.4. We use (3.3), (3.5) and (3.4) to define some

bounded constant coefficients depending on R < 1. The constant bounds in (3.21)

are then used in the development of the one-step error bound for the adaptive part

of the scheme.

��f
�eY (tn)

���  c5(1 +R
q1+2) =: Cf ;

��Df
�eY (tn)

���
F
 c3(1 +R

q1+1) =: CDf ;
��gi

�eY (tn)
��� 

��g
�eY (tn)

���
F(d⇥m)

 c6(1 +R
q2+2) =: Cgi ;

��Dgi

�eY (tn)
���

F
 c4(1 +R

q2+1) =: CDgi .

(3.21)

The following lemma provides a bound for the even conditional moments of the

iterated stochastic integral in (2.19).

Lemma 3.3.3 (Iterated Stochastic Integral). Let
��eY (s)

�
s2[tn,tn+1]

, hn+1

 
n2N

be the adaptive Milstein scheme given in Definitions 3.2.2 and 3.2.4. Then there

exists a constant CISI such that for k � 1, n 2 N and s 2 [tn, tn+1], on the event

{hmin < hn+1  hmax},

E
"�����

mX

i,j=1

Dgi

�eY (tn)
�
gj

�eY (tn)
�
I
tn,s

j,i

�����

2k�����Ftn

#
 CISI (k,R) |s� tn|2k, (3.22)

where

CISI (k,R) := 32km4k
C

2k
Dgi

C
2k
gi

⇣
⌥4k + 1 +⌥2

2k + CLA (2k)
⌘
. (3.23)

Here, ⌥p is from (3.15), CLA (2k) is from Lemma 2.3.1 with explicit form given in

(2.25), and the R dependence in CISI (k,R) arises from (3.21).
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Proof. First of all, for convenience we set

GISI(s) :=

�����

mX

i,j=1

Dgi

�eY (tn)
�
gj

�eY (tn)
�
I
tn,s

i,j

�����

2k

.

By (2.22) and (2.34), we have, for s 2 [tn, tn+1] and n 2 N,

GISI(s)  32k�1

 �����
1

2

mX

i=1

Dgi

�eY (tn)
�
gi

�eY (tn)
�⇣�

I
tn,s

i

�2 � |s� tn|
⌘�����

2k

+

�����
1

2

mX

i,j=1
i<j

⇣
Dgi

�eY (tn)
�
gj

�eY (tn)
�
+Dgj

�eY (tn)
�
gi

�eY (tn)
�⌘

I
tn,s

i
I
tn,s

j

�����

2k

+

�����

mX

i,j=1
i<j

⇣
Dgi

�eY (tn)
�
gj

�eY (tn)
�
�Dgj

�eY (tn)
�
gi

�eY (tn)
�⌘

A
tn,s

ij

�����

2k!
.

Applying (2.34) again and by submultiplicativity of the Euclidean norm and the

fact that the induced matrix 2-norm is bounded above by the Frobenius norm, for

s 2 [tn, tn+1] and n 2 N, we get

GISI(s)

 32k�1

 
m

2k�1

22k

mX

i=1

��Dgi

�eY (tn)
���2k

F

��gi
�eY (tn)

���2k
⇣�

I
tn,s

i

�2
+ |s� tn|

⌘2k

+

✓
m(m� 1)

2

◆2k�1 mX

i,j=1
i<j

���Dgi

�eY (tn)
�
gj

�eY (tn)
�
+Dgj

�eY (tn)
�
gi(Y (tn)

���
2k

⇥
✓

1

22k

���I tn,si
I
tn,s

j

���
2k

+
��Atn,s

ij

��2k
◆!

.

Applying conditional expectations on both sides, together with the pairwise con-

ditional independence of I
tn,s

i
and I

tn,s

j
for i 6= j, (3.3) and (3.21), we have for
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s 2 [tn, tn+1] and n 2 N

E
h
GISI(s)

���Ftn

i
 32k

 
m

2k�1
C

2k
Dgi

C
2k
gi

mX

i=1

⇣
E
h��I tn,s

i

��4k
���Ftn

i
+ |s� tn|2k

⌘

+

✓
m(m� 1)

2

◆2k�1

C
2k
Dgi

C
2k
gi

mX

i,j=1
i<j

✓
E
h��I tn,s

i

��2k
���Ftn

i
E
h��I tn,s

j

��2k
���Ftn

i

+ E
h��Atn,s

ij

��2k
���Ftn

i◆!
.

Using (3.14), (3.15) and (2.24) we have

E
h
GISI(s)

���Ftn

i
CISI (k,R) |s� tn|2k, a.s.

where CISI (k,R) is in (3.23).

The following lemma provides a bound on the conditional moments of the adap-

tive Milstein scheme in (3.10) over one step, in the case where the method applies

the map ✓.

Lemma 3.3.4. Consider
��eY (s)

�
s2[tn,tn+1]

, hn+1

 
n2N from Definitions 3.2.2 and

3.2.4, and let (Y✓(s))s2(tn,tn+1] be as defined in Definition (3.2.3). Then there ex-

ists a constant CY✓
> 0 such that for k � 1, n 2 N and s 2 (tn, tn+1], on the event

{hmin < hn+1  hmax},

E
h��Y✓(s)

��k
���Ftn

i
 CY✓

�
k,R

�
, (3.24)

where

CY✓

�
k,R

�
:= 4k�1

⇣
R

k + C
k

f
+m

k
C

k

gi
⌥k + CISI (2k)

1/2
⌘
, (3.25)

with the constant CISI from Lemma 3.3.3.
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Proof. By (3.12), (3.9) and (2.34), we have, for s 2 (tn, tn+1] and n 2 N,

��Y✓(s)
��k =

���✓
⇣
eY (tn), tn, s� tn, !

⌘���
k

 4k�1

 
��eY (tn)

��k +
���f
�eY (tn)

����
k

|s� tn|k +

�����

mX

i=1

gi

�eY (tn)
�
I
tn,s

i

�����

k

+

 �����

mX

i,j=1

Dgi

�eY (tn)
�
gj

�eY (tn)
�
I
tn,s

j,i

�����

2k!1/2!
.

Applying (2.34), (3.17) and (3.21) for s 2 (tn, tn+1] and n 2 N, it yields

��Y✓(s)
��k  4k�1

✓
R

k + C
k

f
|s� tn|k +m

k�1
C

k

gi

mX

i=1

��I tn,s
i

��k

+

 �����

mX

i,j=1

Dgi

�eY (tn)
�
gj

�eY (tn)
�
I
tn,s

j,i

�����

2k!1/2!
.

Taking conditional expectation on both sides, with Jensen’s inequality on the last

term we have for s 2 (tn, tn+1] and n 2 N

E
h
kY✓(s)kk

���Ftn

i
 4k�1

✓
R

k + C
k

f
|s� tn|k +m

k�1
C

k

gi

mX

i=1

E
h��I tn,s

i

��k
���Ftn

i

+

0

@E
"�����

mX

i,j=1

Dgi

�eY (tn)
�
gj

�eY (tn)
�
I
tn,s

j,i

�����

2k�����Ftn

#1

A
1/2!

.

Using (3.14), (3.22) from Lemma 3.3.3 and since |s� tn|  hmax  1 (3.7) we have

E
h
kY✓(s)kk

���Ftn

i
 CY✓

(k,R), a.s.

where CY✓
(k,R) is in (3.25).

The following lemma proves regularity in time of the adaptive Milstein scheme

in (3.10) when applying the map ✓.

Lemma 3.3.5 (Scheme Regularity). Consider
��eY (s)

�
s2[tn,tn+1]

, hn+1

 
n2N in Def-

initions 3.2.2 and 3.2.4, and let (Y✓(s))s2(tn,tn+1] be as defined in Definition (3.2.3).

Then there exists a constant CSR such that for k � 1, n 2 N and s 2 (tn, tn+1], on

the event {hmin < hn+1  hmax} ,

E
h��Y✓(s)� eY (tn)

��2k
���Ftn

i
 CSR (k,R) |s� tn|k, (3.26)
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where

CSR (k,R) := 32k�1
⇣
C

2k
f

+m
2k
C

2k
gi

⌥2k + CISI (2k)
⌘
, (3.27)

with the constant CISI from Lemma 3.3.3.

The method of proof is similar to the proof of Lemma 3.3.4.

Proof. By (3.12), (3.9) and (2.34), we have, for s 2 [tn, tn+1] and n 2 N,

��Y✓(s)� eY (tn)
��2k =

���✓
⇣
eY (tn), tn, s� tn, !

⌘
� eY (tn)

���
2k

 32k�1

 ���f
�eY (tn)

����
2k

|s� tn|2k +

�����

mX

i=1

gi

�eY (tn)
�
I
tn,s

i

�����

2k

+

�����

mX

i,j=1

Dgi

�eY (tn)
�
gj

�eY (tn)
�
I
tn,s

j,i

�����

2k!
.

Applying (2.34), (3.17) and (3.21) for s 2 [tn, tn+1] and n 2 N, it yields

��Y✓(s)� eY (tn)
��2k  32k�1

✓
C

2k
f
|s� tn|2k +m

2k�1
C

2k
gi

mX

i=1

��I tn,s
i

��2k

+

�����

mX

i,j=1

Dgi

�eY (tn)
�
gj

�eY (tn)
�
I
tn,s

j,i

�����

2k!
.

Taking conditional expectation on both sides we have

E
h��Y✓(s)� eY (tn)

��2k
���Ftn

i

 32k�1

✓
C

2k
f
|s� tn|2k +m

2k�1
C

2k
gi

mX

i=1

E
h��I tn,s

i

��2k
���Ftn

i

+ E
"�����

mX

i,j=1

Dgi

�eY (tn)
�
gj

�eY (tn)
�
I
tn,s

j,i

�����

2k�����Ftn

#!
,

for s 2 [tn, tn+1] and n 2 N. Using (3.15) and (3.22) from Lemma 3.3.3 we have

E
h��Y✓(s)� eY (tn)

��2k
���Ftn

i
 32k�1

⇣
C

2k
f
|s� tn|2k +m

2k
C

2k
gi

⌥2k|s� tn|k

+ CISI (2k) |s� tn|2k
⌘
, a.s.
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Since |s� tn|  hmax  1 (3.7), we have

E
h��Y✓(s)� eY (tn)

��2k
���Ftn

i
 CSR (k,R) |s� tn|k,

where the explicit form of CSR (k,R) is in (3.27).

Remark 5 (Superscript). Our analysis requires a certain number of finite mo-

ments for the SDE (1.1), and it is necessary to track exactly what those are in

order to see that the conditions of Assumption 3.1.2 are not violated. To this end,

we introduce a superscript notation for random variables appearing as conditional

expectations at this point. The notation should be interpreted according to the

following example: in (3.29) below the random variable C
{2k(q+2)}
PR requires 2k(q+2)

finite moments of the SDE (1.1) to have finite expectation.

The following lemma examines the regularity of solutions of the SDE (1.1).

Lemma 3.3.6 (Path Regularity). Let f , g also satisfy Assumption 3.1.2, and let

(X(s))s2[tn,tn+1] be a solution of (1.1). Then there exists an Ftn-measurable random

variable C
{2k(q+2)}
PR such that for k � 1, n 2 N and s 2 [tn, tn+1] a.s.

E
h
kX(s)�X(tn)k2k

���Ftn

i
 C

{2k(q+2)}
PR |s� tn|k, (3.28)

where q = q1 _ q2 is as defined in Assumption 3.1.2. Where a.s.

C
{2k(q+2)}
PR = 24k�2

c
2k
5

 
1 + E

"
sup

p2[tn,tn+1]
kX(p)k2k(q1+2)

�����Ftn

#!

+ 24k�2(k(2k � 1))kc2k6

 
1 + E

"
sup

p2[tn,tn+1]
kX(p)k2k(q2+2)

�����Ftn

#!
. (3.29)

where the expectation of C
{2k(q+2)}
PR is denoted CPR (k), given by

CPR (k) := E
h
C

{2k(q+2)}
PR

i
 24k�2 (1 + CX)

�
c
2k
5 + (k(2k � 1))kc2k6

�
. (3.30)

Proof. The method of proof follows that of [40, Thm. 7.1]. The bound (3.30) follows

from (3.6) and Assumption 3.1.2.

The following lemma provides a bound on the even conditional moments of the

remainder term from a Taylor’s expansion (see Definition 2.0.1) of either the drift f

or diffusion g, around eY (tn).
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Lemma 3.3.7 (Taylor Error). Consider
��eY (s)

�
s2[tn,tn+1]

, hn+1

 
n2N from

Definitions 3.2.2 and 3.2.4, and let (Y✓(s))s2(tn,tn+1] be as defined in Definition

(3.2.3). Let u 2 {f, g} and set cD2 := c1 _ c2. Then there exists a constant CTE

such that for k � 1, n 2 N and s 2 (tn, tn+1], on the event {hmin < hn+1  hmax},

E
���

Z 1

0

(1� ✏)D2
u

⇣
eY (tn)� ✏

�
Y✓(s)� eY (tn)

�⌘
d✏

���
2k

T3

����Ftn

�
 CTE

�
k,R

�
, (3.31)

where CTE (k,R) := c
2k
D2

�
1 + 32kq+1

�
R

2kq + CY✓
(k,R)

��
, where CY✓

�
k,R

�
is from

Lemma 3.3.4.

Proof. By using (2.33), (2.34), (3.5), Lemma 3.3.4, (3.17) and since cD2 = c1 _ c2,

q = q1 _ q2 we have

E
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u

⇣
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�
Y✓(s)� eY (tn)

�⌘
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���
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����Ftn
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0

(1� ✏)2k
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�
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�⌘���
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����Ftn

�

c
2k
D2E

Z 1

0

(1� ✏)2k
⇣
1 +

��eY (tn)� ✏ ·
�
Y✓(s)� eY (tn)

���2kq
⌘
d✏

����Ftn

�

c
2k
D2E

h
1 + 32kq�1

��eY (tn)
��2kq

+

Z 1

0

(1� ✏)2k✏2kq32kq
⇣
kY✓(s)k2kq +

��eY (tn)
��2kq

⌘
d✏

�����Ftn

#

c
2k
D2

⇣
1 + 32kq+1

��eY (tn)
��2kq + 32kqE

h
kY✓(s)k2kq

���Ftn

i⌘

=CTE (k,R) ,

where (1� ✏)2k ✏2kq  1 for k, q � 1 and ✏ 2 [0, 1].

To prove the strong convergence result of Theorem 3.3.1 and Theorem 3.3.2 on

the probability of using the backstop and the role of ⇢ from Assumption 3.2.1, we

first set up the error funcion.

3.3.2 Setting up the error function

Notice that eY (s), from the explicit adaptive Milstein scheme (3.10), takes either the

Milstein map ✓ in (3.9) or the backstop map ' in (3.11) depending on the value of
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hn+1. Thus, we define the error by

eE(s) := X(s)� eY (s) = E✓(s) + E'(s), (3.32)

for s 2 [tn, tn+1] and n 2 N. Here

E'(s) :=
⇣
X(s)� '

⇣
eY (tn), tn, s� tn

⌘⌘
1{hn+1hmin}, (3.33)

and Y✓(s) is as defined in Definition 3.2.3 and

E✓(s) :=
�
X(s)� Y✓(s)

�
1{hmin<hn+1hmax}

=

✓
eE(tn) +

Z
s

tn

�f
�
X(r), eY (tn)

�
dr

+
mX

i=1

Z
s

tn

�gi

�
r,X(r), eY (tn)

�
dWi(r)

!
1{hmin<hn+1hmax}, (3.34)

with

�f
�
X(r), eY (tn)

�
:= f(X(r))� f

�eY (tn)
�
; (3.35)

�gi

�
r,X(r), eY (tn)

�
:= gi(X(r))� gi

�eY (tn)
�
�

mX

j=1

Dgi

�eY (tn)
�
gj

�eY (tn)
�
I
tn,r

j
.

(3.36)

To simplify the proof of Theorem 3.3.1 and Theorem 3.3.2, we require two lemmas.

First, we find the second-moment bound of �gi in (3.36) on the event {hmin <

hn+1  hmax} (so that (3.17) holds).

Lemma 3.3.8. Let g satisfy Assumption 3.1.1 and �gi be as in (3.36). Take s 2

(tn, tn+1], let X(s) be a solution of (1.1), consider
�eY (s), hn+1

�
from Definitions

3.2.2 and 3.2.4, and let Y✓(s) be as defined in Definition (3.2.3). In this case there

exists a constant CG such that, on the event {hmin < hn+1  hmax},

E
����gi

�
s,X(s), eY (tn)

����
2
����Ftn

�

 2E
h��g(X(s))� g

�
Y✓(s)

���2
F(d⇥m)

���Ftn

i
+ CG(R)|s� tn|2, (3.37)
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where

CG(R) := 8C2
Dgi

�
C

2
f
+ CISI (1, R)

�
+ 4CTE (2, R)1/2 CSR (4, R)1/2 , (3.38)

and CISI, CTE and CSR are from Lemma 3.3.3, 3.3.7 and 3.3.5, respectively.

Proof. Substitute �gi by (3.36) in the LHS of (3.37), add and subtract gi

�
Y✓(s)

�
,

and use (2.34) to get

E
����gi
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I
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| {z }
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. (3.39)

To analyse G1, we expand gi(Y✓(s)) using Taylor’s theorem (see for example [38,

A.1]) around gi

�eY (tn)
�

to get

gi

�
Y✓(s)

�
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�eY (tn)
�
= Dgi
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��
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+

Z 1

0

(1� ✏)D2
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⇣
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�
Y✓(s)� eY (tn)

�⌘h
Y✓(s)� eY (tn)

i2
d✏, (3.40)

where we recall from Definition 2.0.1 that [·]2 represents the outer product of a

vector with itself. Substituting (3.40) into G1 in (3.39), taking out Dgi

�eY (tn)
�

as a

common factor, and applying (2.34) gives

G1  4E
"�����Dgi
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�⌘

⇥
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�����

2�����Ftn

#

=: G1.1 +G1.2. (3.41)

For G1.1 in (3.41), by submultiplicativity of the Euclidean norm and the fact that

the induced matrix 2-norm is bounded above by the Frobenius norm; by (3.12),
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(3.21) and (3.22) in the statement of Lemma 3.3.3 with k = 1, we have
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F
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Dgi

�eY (tn)
�
gj

�eY (tn)
�
I
tn,s

j,i

�����

2�����Ftn

#!

 8C2
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2
f
+ CISI (1, R)

�
|s� tn|2. (3.42)

For G1.2 in (3.41), we apply (2.33), the Cauchy-Schwarz inequality, then using (3.31)

in Lemma 3.3.7 with k = 2 and (3.26) in Lemma 3.3.5 with k = 4 we get

G1.2  4

Z 1

0

⇣
E
h���(1� ✏)D2

gi

⇣
eY (tn)� ✏

�
Y✓(s)� eY (tn)

�⌘���
4

T3

���Ftn

i⌘1/2

d✏

⇥
⇣
E
h���Y✓(s)� eY (tn)

���
8���Ftn

i⌘1/2

 4CTE (2, R)1/2 CSR (4, R)1/2 |s� tn|2. (3.43)

Substituting the bounds (3.42) and (3.43) back to (3.41) before bringing together

the terms in (3.39), we have

E
����gi

�
s,X(s), eY (tn)

����
2
����Ftn

�
 2E

h���gi(X(s))� gi

�
Y✓(s)

����
2���Ftn

i

+ CG(R)|s� tn|2,

where CG(R) is given in (3.38). By bounding kgik2 with kgk2F(d⇥m), the statement

of Lemma 3.3.8 follows.

The second lemma in the following gives the conditional second-moment bound

of E✓(s) as in (3.34), which is the first part of the one-step error in (3.32).

Lemma 3.3.9. Let f , g satisfy Assumption 3.1.1 and 3.1.2. Let X(s) be a solution

of (1.1) and eE(s) a solution of (3.32) with E✓(s) defined in (3.34), with s 2 [tn, tn+1],

n 2 N. In this case there exists a constant CE and an Ftn-measurable random

variable C
{4(q+2)}
M

such that

E
h��E✓(tn+1)

��2
���Ftn

i


�� eE(tn)
��2 + CE(R)

Z
tn+1

tn

E
h��E✓(r)

��2
���Ftn

i
dr

+ C
{4(q+2)}
M

(R)h3
n+1, a.s. (3.44)
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where

CE(R) := 2K1(R) + 2L, (3.45)

with constant K1 as defined in (3.72). The Ftn-measurable random variable C
{4(q+2)}
M

is given by

C
{4(q+2)}
M

(R) := m
4
C

2
Df

C
2
gi
+ 2K

{4(q+2)}
2 +mCG(R), (3.46)

with the Ftn-measurable random variable K
{4(q+2)}
2 defined in (3.73), constant CG

defined in Lemma 3.3.8. We denote E
h
C

{4(q+2)}
M

(R)
i
=: CM(R), the finiteness of

which is ensured in (3.76).

We recall that the superscript notation in (3.46) follows the convention intro-

duced in the statement of Lemma 3.3.6 and indicates the number of finite moments

required of the SDE solution.

Proof. Throughout the proof, we restrict attention to trajectories on the event

{hmin < hn+1  hmax}, since by (3.34), E✓(s) is only nonzero on this event, otherwise

(3.44) holds trivially. Applying the stopping time variant of Itô formula (see Mao

& Yuan [42, (1.45)] , Remark 1 and Example 2.1.1) to (3.34), we have

��E✓(tn+1)
��2 =

�� eE(tn)
��2 + 2

Z
tn+1

tn

D
E✓(r),�f

�
X(r), eY (tn)

�E

| {z }
=:Jf

dr

+
mX

i=1

Z
tn+1

tn

����gi

�
r,X(r), eY (tn)

�
| {z }

=:Jgi

���
2

dr + 2
mX

i=1

Z
tn+1

tn

⌦
E✓(r), Jgi

↵
dWi(r). (3.47)

Take expectations on both sides conditional upon Ftn , and since
R

tn+1

tn

��Jf
��dr has

finite expectation (by the boundedness of eY (tn) in (3.17) and the finiteness of ab-

solute moments of X(r) see (3.6)), using Fubini’s Theorem (see for example [10,

Proposition 12.10]) and (3.13) we have,

E
h��E✓(tn+1)

��2
���Ftn

i
=
�� eE(tn)

��2 + 2

Z
tn+1

tn

E
⇥
Jf

��Ftn

⇤
dr

+
mX

i=1

Z
tn+1

tn

E
⇥
kJgik2

��Ftn

⇤
dr, (3.48)
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By Lemma 3.3.8, we have the bound of kJgik2 in (3.48) as

E
⇥
kJgik2

��Ftn

⇤
 2E

h��g(X(r))� g(Y✓(r))
��2
F(d⇥m)

���Ftn

i

+ CG(R)|r � tn|2, a.s. (3.49)

For Jf , by substituting �f with (3.35) with adding in and subtracting out f(Y✓(r)),

we have

Jf =
D
E✓(r), f(X(r))� f(Y✓(r))

E
+
D
E✓(r), f(Y✓(r))� f

�eY (tn)
�E

| {z }
=:H

. (3.50)

Substituting (3.50) and (3.49) back into (3.48), we have

E
h��E✓(tn+1)

��2
���Ftn

i

�� eE(tn)

��2 +mCG(R)h3
n+1

+ 2

Z
tn+1

tn

E
⇥
Jf,g

��Ftn

⇤
dr + 2

Z
tn+1

tn

E
⇥
H
��Ftn

⇤
dr, (3.51)

where

Jf,g :=
D
E✓(r), f(X(r))� f(Y✓(r))

E
+
��g(X(r))� g(Y✓(r))

��2
F(d⇥m)

. (3.52)

For H in (3.50), and in a similar way to (3.40), we expand f(Y✓(r)) using Taylor’s

theorem around eY (tn) to have

f(Y✓(r))� f
�eY (tn)

�
= Df

�eY (tn)
��
Y✓(r)� eY (tn)

�

+

Z 1

0

(1� ✏)D2
f

⇣
eY (tn)� ✏ ·

�
Y✓(r)� eY (tn)

�⌘h
Y✓(r)� eY (tn)

i2
d✏. (3.53)

Then, by (3.12) we substitute Y✓(r) in the first term on the RHS of (3.53) with (3.9)

where we use its expanded form as in (2.22) for s = r. Therefore, for the last term

on the RHS of (3.51), we have

E
⇥
H
��Ftn

⇤
 H1 +H2 +H3 +H4 +H5 +H6, (3.54)
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where

H1 := E
hD

E✓(r), Df
�eY (tn)

�
|r � tn|f

�eY (tn)
�E���Ftn

i
;

H2 := E
⌧

E✓(r),
mX

i=1

Df
�eY (tn)

�
gi

�eY (tn)
�
I
tn,r

i

| {z }
=:H2R

�����Ftn

�
;

H3 := E
"*

E✓(r),
1

2

mX

i=1

Df
�eY (tn)

�
Dgi

�eY (tn)
�
gi

�eY (tn)
�

⇥
⇣�

I
tn,r

i

�2 � |r � tn|
⌘+�����Ftn

#

H4 := E
"*

E✓(r),
1

2

mX

i,j=1
i<j

Df
�eY (tn)

�⇣
Dgi

�eY (tn)
�
gj

�eY (tn)
�

+Dgj

�eY (tn)
�
gi

�eY (tn)
�⌘

I
tn,r

i
I
tn,r

j

+�����Ftn

#
;

H5 := E
"*

E✓(r),
mX

i,j=1
i<j

Df
�eY (tn)

�⇣
Dgi

�eY (tn)
�
gj

�eY (tn)
�

�Dgj

�eY (tn)
�
gi

�eY (tn)
�⌘

Aij(tn, r)

+�����Ftn

#
;

H6 :=E
⌧

E✓(r),

Z 1

0

(1� ✏)D2
f

⇣
eY (tn)� ✏ ·

�
Y✓(r)� eY (tn)

�⌘

⇥
h
Y✓(r)� eY (tn)

i2
d✏

�����Ftn

�
.

We will now determine suitable upper bounds for each of H1, H2, H3, H4, H5, and

H6 in turn. For H1 in (3.54), by the Cauchy-Schwarz inequality, (2.31), and (3.21),

we have

H1  E
h
kE✓(r)k

��Df
�eY (tn)

���
F

��f
�eY (tn)

��� |r � tn|
���Ftn

i

 E

1

2

��Df
�eY (tn)

���2
F

��f
�eY (tn)

���2kE✓(r)k2 +
1

2
|r � tn|2

����Ftn

�

 1

2
C

2
Df

C
2
f
E
h
kE✓(r)k2

���Ftn

i
+

1

2
|r � tn|2. (3.55)

Next, for the analysis of H2 in (3.54), by (3.13), we firstly have

E
⇥
H2R

��Ftn

⇤
=

mX

i=1

Df
�eY (tn)

�
gi

�eY (tn)
�
E
h
I
tn,r

i

���Ftn

i
= 0. (3.56)
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By (2.34), the Cauchy-Schwarz inequality, (3.21) and (3.14) we also have

E
h��H2R

��2
���Ftn

i
 m

mX

i=1

��Df
�eY (tn)

���2
F

��gi
�eY (tn)

���2E
h��I tn,r

i

��2
���Ftn

i

 m
2
C

2
Df

C
2
gi
|r � tn|. (3.57)

Then, for H2 in (3.54) we firstly expand E✓(r) using (3.34) to have

H2 =E
hD

eE(tn), H2R

E���Ftn

i
+ E

⌧Z
r

tn

�f(X(p), Y (tn))dp, H2R

�����Ftn

�

+ E
"*

mX

i=1

Z
r

tn

�gi

�
p,X(p), eY (tn)

�
dWi(p), H2R

+�����Ftn

#

=: H2.1 +H2.2 +H2.3. (3.58)

For H2.1 in (3.58), by (3.56) we have

H2.1 =
D
eE(tn), E

⇥
H2R

��Ftn

⇤E
= 0. (3.59)

For H2.2 in (3.58), by adding in and subtracting out f(X(tn)) in �f in (3.35):

H2.2 = E
"DZ r

tn

f(X(r))� f(X(tn))dp, H2R

E�����Ftn

#

+ E
"DZ r

tn

f(X(tn))� f
�eY (tn)

�
dp, H2R

E�����Ftn

#

=: H2.21 +H2.22. (3.60)

Similar to H2.1 in (3.59), we have H2.22 = 0. For H2.21 in (3.60), using the Cauchy-

Schwarz inequality and (3.57) we have

H2.21  E
����
Z

r

tn

f(X(p))� f(X(tn))dp

����
��H2R

��
����Ftn

�


 
|r � tn|

Z
r

tn

E
⇥
kf(X(p))� f(X(tn))k2

��Ftn

⇤
dp E

h��H2R

��2
���Ftn

i!1/2

 mCDfCgi |r � tn|
✓Z

r

tn

E
⇥
kf(X(p))� f(X(tn))k2

��Ftn

⇤
dp

◆1/2

. (3.61)

By Taylor’s theorem, we expand f(X(p)) around f(X(tn)) to the first order, and
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using (3.3), the Cauchy-Schwarz inequality, Lemma 3.3.6 with k = 2 and (2.34):

E
h��f(X(p))� f(X(tn))

��2
���Ftn

i

= E
"����
Z 1

0

Df(X(tn)� ✏ · (X(p)�X(tn))(X(p)�X(tn))d✏

����
2
�����Ftn

#


⇣
E
⇥
kX(p)�X(tn)k4

��Ftn

⇤ ⌘1/2

⇥
 
E
"����
Z 1

0

Df
�
X(tn)� ✏ · (X(p)�X(tn)

�
d✏

����
4

F

�����Ftn

#!1/2

 C
{4(q+2)}
H2.21 |p� tn|, (3.62)

where

C
{4(q+2)}
H2.21 :=

⇣
C

{4(q+2)}
PR

⌘1/2

⇥ c
2
3

⇣
1 + 34q1+4E

h
sup

p2[tn,tn+1]
kX(p)k4q1+4

���Ftn

i⌘1/2

. (3.63)

Substituting (3.62) back to (3.61) and using that H2.22 = 0, we have

H2.2  mCDfCgi

⇣
C

{4(q+2)}
H2.21

⌘1/2

|r � tn|2. (3.64)

For H2.3 as in (3.58), using the Cauchy-Schwarz inequality, (2.34), (3.21), (3.14) and

Itô’s isometry in (2.13) we have

H2.3 

0

@E

2

4
�����

mX

i=1

Z
r

tn

�gi

�
p,X(p), eY (tn)

�
dWi(p)

�����

2
������
Ftn

3

5

1

A
1/2

⇥

0

@E

2

4
�����

mX

i=1

Df
�eY (tn)

�
gi

�eY (tn)
�
I
tn,r

i

�����

2
������
Ftn

3

5

1

A
1/2


 
m

mX

i=1

Z
r

tn

E
����gi

�
p,X(p), eY (tn)

����
2
����Ftn

�
dp

!1/2

⇥mCDfCgi |r � tn|1/2.
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Then, by Lemma 3.3.8 we have

H2.3 
✓
2m2

Z
r

tn

E
h��g(X(p))� g(Y✓(p))

��2
F(d⇥m)

���Ftn

i
dp

+ CG(R)|r � tn|3
◆1/2

mCDfCgi |r � tn|1/2.

Since the integrand E
h��g(X(p)) � g(Y✓(p))

��2
F(d⇥m)

���Ftn

i
is non-negative for all p 2

[tn, tn+1], we can replace the upper limit of integration with tn+1. With
p
a+ b 

p
a+

p
b, we have

H2.3 
p
2m2

CDfCgi |r � tn|1/2

⇥
✓Z

tn+1

tn

E
h��g(X(r))� g(Y✓(r))

��2
F(d⇥m)

���Ftn

i
dr

◆1/2

+mCDfCgiCG(R)1/2|r � tn|2. (3.65)

Notice that we changed the variable of integration from p back to r for consistency.

Substituting (3.59), (3.64) and (3.65) back into (3.58), we have

H2  mCDfCgi

 ⇣
C

{4(q+2)}
H2.21

⌘1/2

+ CG(R)1/2
!
|r � tn|2

+
p
2m2

CDfCgi |r � tn|1/2

⇥
✓Z

tn+1

tn

E
h��g(X(r))� g(Y✓(r))

��2
F(d⇥m)

���Ftn

i
dr

◆1/2

. (3.66)

For H3 in (3.54), by the Cauchy-Schwarz inequality, triangle inequality, (2.34),

(2.31), (3.15), (3.3) and (3.21) we have

H3  E
"
1

4

mX

i=1

 
��Df

�eY (tn)
���2

F

��Dgi

�eY (tn)
���2

F

��gi
�eY (tn)

���2kE✓(r)k2

+ 2
��I tn,r

i

��4 + 2|r � tn|2
!�����Ftn

#

 m

4
C

2
Df

C
2
Dgi

C
2
gi
E
h
kE✓(r)k2

���Ftn

i
+

(⌥4 + 1)m

2
|r � tn|2. (3.67)

For H4 in (3.54), by the Cauchy-Schwarz inequality, conditional independence of the

Itô integrals, (3.14), triangle inequality, (2.31), Itô’s isometry in (2.13), (3.3), and
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(3.21), we have

H4  E
"
1

2

mX

i,j=1
i<j

kE✓(r)k
��Df

�eY (tn)
���

F

⇣��Dgi

�eY (tn)
���

F

��gj
�eY (tn)

���

+
��Dgj

�eY (tn)
���

F

��gi
�eY (tn)

���
⌘ ��I tn,r

i

�� ��I tn,r
j

��
�����Ftn

#

 1

4
m(m� 1)C2

Df
C

2
Dgi

C
2
gi
E
h
kE✓(r)k2

���Ftn

i
+

1

8
m(m� 1)|r � tn|2. (3.68)

For H5 in (3.54), by the Cauchy-Schwarz inequality, triangle inequality, (2.31),

(3.21), (3.3), and Lemma 2.3.1 with b = 2, we have

H5  E
"
1

2

mX

i,j=1
i<j

 
��Df

�eY (tn)
�
k2FkE✓(r)k2

⇣��Dgi

�eY (tn)
���2

F

��gj
�eY (tn)

���2

+
��Dgi

�eY (tn)
���2

F

��gj
�eY (tn)

���2
⌘
+
��Aij(tn, r)

��2
!�����Ftn

#

 1

2
m(m� 1)C2

Df
C

2
Dgi

C
2
gi
E
h
kE✓(r)k2

���Ftn

i

+
1

4
m(m� 1)(CLA (2))

2|r � tn|2. (3.69)

For H6 in (3.54), by the Cauchy-Schwarz inequality, triangle inequality, and (2.31)

we have (noting that k[·]2kF = k · k2)

H6 E

kE✓(r)k

��Y✓(r)� eY (tn)
��2

⇥
����
Z 1

0

(1� ✏)D2
f

⇣
eY (tn)� ✏ ·

�
Y✓(r)� eY (tn)

�⌘
d✏

����
T3

����Ftn

�

 1

2
E
h
kE✓(r)k2

���Ftn

i
+

1

2

r
E
h��Y✓(r)� eY (tn)

��8
���Ftn

i

| {z }
H6.1

⇥

vuutE
"����
Z 1

0

(1� ✏)D2f

⇣
eY (tn)� ✏ ·

�
Y✓(r)� eY (tn)

�⌘
d✏

����
4

T3

�����Ftn

#

| {z }
H6.2

.

From (3.26) in Lemma 3.3.5 with k = 4, we have H6.1  CSR (4, R)1/2 |r� tn|2. From

(3.31) in Lemma 3.3.7 with k = 2, we have H6.2  CTE (2, R)1/2. Therefore, H6 in
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(3.54) becomes

H6 
1

2
E
h
kE✓(r)k2

���Ftn

i
+

1

2
CSR (4, R)1/2 CTE (2, R)1/2 |r � tn|2, (3.70)

Substituting (3.55), (3.66), (3.67), (3.68), (3.69) and (3.70) back into (3.54) for H,

we have

E[H|Ftn ]  K1(R)E
h
kE✓(r)k2

���Ftn

i
+K

{4(q+2)}
2 (R)|r � tn|2

+
p
2m2

CDfCgi |r � tn|1/2

⇥
✓Z

tn+1

tn

E
h��g(X(r))� g(Y✓(r))

��2
F(d⇥m)

���Ftn

i
dr

◆1/2

, (3.71)

where

K1(R) :=
1

2
+

1

2
C

2
Df

C
2
f
+m(m� 1)C2

Df
C

2
Dgi

C
2
gi
, (3.72)

and with C
{4(q+2)}
H2.21 from (3.63)

K
{4(q+2)}
2 (R) :=

1

2
+mCDfCgi

✓⇣
C

{4(q+2)}
H2.21

⌘1/2

+
1

2
(⌥4 + 1)m

+
1

4
m(m� 1)

�
1 + (CLA (2))

2 �+ 1

2
CSR (4, R)1/2 CTE (2, R)1/2 . (3.73)

Substituting E[H|Ftn ] from (3.71) back into (3.51), we have

E
h��E✓(tn+1)

��2
���Ftn

i

�� eE(tn)

��2 + 2K1(R)

Z
tn+1

tn

E
h
kE✓(r)k2

���Ftn

i
dr

+mCG(R)h3
n+1 +K

{4(q+2)}
2 (R)h3

n+1

+ 2

Z
tn+1

tn

E
⇥
Jf,g

��Ftn

⇤
dr +

p
2m2

CDfCgih
3/2
n+1

⇥
✓Z

tn+1

tn

E
h��g(X(r))� g(Y✓(r))

��2
F(d⇥m)

���Ftn

i
dr

◆1/2

. (3.74)
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Using (2.31) on the last term on the RHS of (3.74), we have

E
h��E✓(tn+1)

��2
���Ftn

i


�� eE(tn)
��2 + 2K1(R)

Z
tn+1

tn

E
h
kE✓(r)k2

���Ftn

i
dr

+ C
{4(q+2)}
M

(R)h3
n+1

+ 2

Z
tn+1

tn

E

Jf,g +

1

2

��g(X(r))� g(Y✓(r))
��2
F(d⇥m)

����Ftn

�
dr, (3.75)

where C
{4(q+2)}
M

is as defined in (3.46). Recall Jf,g is given in (3.52) so that

Jf,g +
1

2

���g(X(r))� g(Y✓(r))
��2
F(d⇥m)

=
D
E✓(r), f(X(r))� f(Y✓(r))

E
+

3

2

��g(X(r))� g(Y✓(r))
��2
F(d⇥m)

.

By Assumption 3.1.2 we can apply the monotone condition (3.2):

E
h��E✓(tn+1)

��2
���Ftn

i


�� eE(tn)
��2 + CE(R)

Z
tn+1

tn

E
h
kE✓(r)k2

���Ftn

i
dr

+ C
{4(q+2)}
M

(R)h3
n+1,

where CE(R) is in (3.45).

To obtain the the final estimate on CM(R) in the Lemma we use the explicit form

of C
{4(q+2)}
M

, K
{4(q+2)}
2 , C

{4(q+2)}
H2.21 , given by (3.46), (3.73), and (3.63) respectively,

(3.30) in the statement of Lemma 3.3.7, (3.6), and Assumption 3.1.2 we bound the

expectation of C{4(q+2)}
M

in (3.46) as follows,

CM(R) := E
"
C

{4(q+2)}
M

(R)

#

m
4
C

2
Df

C
2
gi
+ 2mCDfCgi

⇣
c3CPR (2)

1/4 �1 + 3q1+1
CX
�
+ CG(R)1/2

⌘

+
1

2
(⌥4 + 1)m+

1

2
m(m� 1)

�
1 + (CLA (2))

2
�

+ CSR (4, R)1/2 CTE (2, R)1/2 +mCG(R) + 1. (3.76)
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3.3.3 Proof of Theorem 3.3.1 on strong convergence.

Proof. Firstly, by (3.32) we have the conditional second-moment bound of the one-

step error as

E
h�� eE(tn+1)

��2
���Ftn

i
= E

h��E✓(tn+1)
��2
���Ftn

i
+ E

h��E'(tn+1)
��2
���Ftn

i
, (3.77)

where by (3.11) and (3.33), the one-step error bound of the backstop map yields

E
h��E'(tn+1)

��2
���Ftn

i


�� eE(tn)
��2 + CB1

Z
tn+1

tn

E
h
kE'(r)k2

���Ftn

i
dr

+ CB2 h
3
n+1, a.s. (3.78)

Therefore, by substituting (3.44) and (3.78) into (3.77), and recalling (3.32) we have

for any hn+1 that satisfies Assumption 3.2.1,

E
h�� eE(tn+1)

��2
���Ftn

i


�� eE(tn)
��2 + �1(R)

Z
tn+1

tn

E
h�� eE(r)

��2
���Ftn

i
dr

+ �
{4(q+2)}
2

�
R
�
h
3
n+1, a.s. (3.79)

where with CE(R) in (3.45) and CM(R) in (3.76) we define �1, �2 as

�1(R) :=CE(R) + CB1 ; (3.80)

�
{4(q+2)}
2

�
R
�
:=C

{4(q+2)}
M

(R) + CB2 ;

�2(R) :=E

�
{4(q+2)}
2

�
R
��

 CM(R) + CB2 . (3.81)

For a fixed t > 0, let N (t) be as in Definition 3.2.1, we multiply both sides of (3.79)

with the indicator function 1{N(t)>n+1} and sum up the steps excluding the last step

N
(t) to have

N
(t)�2X

n=0

E
h�� eE(tn+1)

��2
���Ftn

i
1{N(t)>n+1} 

N
(t)�2X

n=0

�� eE(tn)
��21{N(t)>n+1}

+ �1(R)
N

(t)�2X

n=0

Z
tn+1

tn

E
h�� eE(r)

��2
���Ftn

i
1{N(t)>n+1}dr

+ �
{4(q+2)}
2 (R)

N
(t)�2X

n=0

h
3
n+11{N(t)>n+1}. (3.82)
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Since t 2
⇥
t
N(t)�1, tN(t)

⇤
, we use (3.79) to express the last step, noting that it holds

when tn, tn+1 are replaced by t
N(t)�1 and t respectively:

E
h�� eE(t)

��2
���Ft

N(t)�1

i

�� eE(tN(t)�1)

��2 + �1(R)

Z
t

t
N(t)�1

E
h�� eE(r)

��2
���Ft

N(t)�1

i
dr

+ �
{4(q+2)}
2 (R)

��t� tN(t)�1

��3. (3.83)

By adding the both sides of (3.82) and (3.83), and taking an expectation:

E
"

N
(t)�2X

n=0

⇣
E
h�� eE(tn+1)

��2
���Ftn

i
�
�� eE(tn)

��2
⌘
1{N(t)>n+1}

+E
h�� eE(t)

��2
���Ft

N(t)�1

i
�
�� eE(tN(t)�1)

��2
#

9
>>>>=

>>>>;

=: LHS

 �1(R)E
"

N
(t)�2X

n=0

Z
tn+1

tn

E
h�� eE(r)

��2
���Ftn

i
1{N(t)>n+1}dr

+

Z
t

t
N(t)�1

E
h�� eE(r)

��2
���Ft

N(t)�1

i
dr

#

9
>>>>=

>>>>;

=: R1

+E
"
�
{4(q+2)}
2 (R)

 
N

(t)�2X

n=0

h
3
n+11{N(t)>n+1} +

��t� tN(t)�1

��3
!# )

=: R2 (3.84)

where we analyse (3.84) (LHS  R1+R2) below. For the LHS in (7.51), N (t) is a ran-

dom number taking value from N
(t)
min to N

(t)
max, and 1{N(t)>n+1} is an Ftn-measurable

random variable. Therefore it is useful decompose the range of n into three parts on

each trajectory. First, when n < N
(t) � 1, then 1{N(t)>n+1} = 1{N(t)>n} = 1. Second,

when n = N
(t) � 1, then 1{N(t)>n+1} = 0 and 1{N(t)>n} = 1. Finally, when n >

N
(t) � 1, then 1{N(t)>n+1} = 1{N(t)>n} = 0. Hence we obtain a telescoping sum with

the appropriate cancellation that terminates at E
⇥
k eE(t

N(t)�1)k2 1{N(t)>N(t)�1}
⇤
=

E
⇥
k eE(t

N(t)�1)k2
⇤
. Applying this with the tower property for conditional expecta-

tions, and using the fact that k eE(t0)k2 = 0, we have

LHS =
N

(t)
max�2X

n=0

E
h�� eE(tn+1)

��21{N(t)>n+1} �
�� eE(tn)

��21{N(t)>n+1}

i

+ E
h
E
h�� eE(t)

��2
���Ft

N(t)�1

i
�
�� eE(t

N(t)�1)
��2
i

= E
h�� eE(t

N(t)�1)
��2
i
� E

h�� eE(t0)
��2
i
+ E

⇥�� eE(t)
��2⇤� E

h�� eE(t
N(t)�1)

��2
i

= E
h�� eE(t)

��2
i
. (3.85)
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For R1 in (3.84), since by Definition 3.2.1 n = N
(r) � 1, we first write the condition

Ftn as Ft
N(r)�1

, then the indicator function as 1{N(t)>N(r)}. By summing up all the

steps, we have an integration from 0 to tN(t)�1 that

R1 = �1(R)E
"Z

t
N(t)�1

0

E
h�� eE(r)

��21{N(t)>N(r)}

���Ft
N(r)�1

i
dr

+

Z
t

t
N(t)�1

E
h�� eE(r)

��2
���Ft

N(t)�1

i
dr

#

 �1(R)

Z
t

0

E
h�� eE(r)

��2
i
dr. (3.86)

For R2 in (3.84), by (3.81), Definition 3.2.1 and ⇢hmin = hmax we have

R2  �2(R)N (t)
maxh

3
max  �2(R) (⇢t+ 1)h2

max. (3.87)

We see that 4(q + 2) is the minimum number of finite SDE moments required for

a finite R2, and this is guaranteed by Assumption 3.1.2. Combining (3.85), (3.86)

and (3.87) back into (3.84), for all t 2 [0, T ] we have

E
h�� eE(t)

��2
i

 �1(R)

Z
t

0

E
h�� eE(r)

��2
i
dr + �2(R) (⇢t+ 1)h2

max.

By Gronwall’s inequality (see [40, Thm. 8.1]), we have for all t 2 [0, T ]

⇣
E
h�� eE(t)

��2
i⌘ 1

2  C(R, ⇢, t)hmax. (3.88)

Taking the maximum over t on the both sides, with �1(R) and �2(R) as defined in

(3.80) and (3.81) respectively, the proof follows with

C(R, ⇢, T ) :=
q

�2(R) (⇢T + 1) exp
�
T�1(R)

�
. (3.89)
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3.3.4 Proof of Theorem 3.3.2 on the probability of using the

backstop.

Proof. By (3.16) and by the Markov inequality we have

P
⇥
hn+1 = hmin

⇤
= P

"
hmax��eY (tn)

��1/
 hmin

#


E
h��eY (tn)

��2
i

⇢2
. (3.90)

By adding in and subtracting out X(tn) together with the tower property of condi-

tional expectation, (2.34), (3.32) and (3.6) we have

E
h��eY (tn)

��2
i
 2E

h��X(tn)� eY (tn)
��2
i
+ 2E

⇥
kX(tn)k2

⇤

 2E
h
E
h��X(tn)� eY (tn)

��2
���Ftn�1

ii
+ 2E


sup

tn2[0,T ]
kX(tn)k2

�

 2E
h
E
h�� eE(tn)

��2
���Ftn�1

ii
+ 2CX. (3.91)

Next, we repeatedly substitute (3.79) into the RHS of (3.91) for decreasing values

of n until n = 0. Then by Definition 3.2.1, (3.16) and (3.81) we have

E
h��eY (tn)

��2
i
 2E

h�� eE(tn�1)
��2
i
+ 2�1(R)E

"Z
tn

tn�1

E
h�� eE(r)

��2
���Ftn�1

i
dr

#

+ 2E
"
�
{4(q+2)}
2 (R)h3

n

#
+ 2CX

 2E
h�� eE(t0)

��2
i
+ 2�1(R)E

"
nX

j=1

Z
tj

tj�1

E
h�� eE(r)

��2
���Ftj�1

i
dr

#

+ 2N (T )
max�2(R)h3

max + 2CX

 2�1(R)E
"Z

tn

0

E
h�� eE(r)

��2
���Ft

N(r)�1

i
dr

#

+ 2 (⇢T + 1)�2(R)h3
max + 2CX. (3.92)

Since the integrand E
h�� eE(r)

��2
���Ft

N(r)�1

i
in the second term on the RHS of (3.92)

is almost surely non-negative for all r 2 [0, T ], we can replace the upper limit of

integration with T . Using eE(t0) = 0, (3.16), the tower property of conditional
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expectation, and (3.88) from Theorem 3.3.1, we have

E
"Z

tn

0

E
h�� eE(r)

��2
���Ft

N(r)�1

i
dr

#


Z

T

0

E
h�� eE(r)

��2
i
dr  T max

r2[0,T ]
E
h�� eE(r)

��2
i
 T C

2(R, ⇢, T )h2
max. (3.93)

By choosing hmax  1/C(R, ⇢, T ), we substitute (3.93) into (3.92) and then (3.90)

to get the desired result in (3.20) with

Cprob := 2
⇣
�1(R)T + (T + 1)�2(R)h3

max + CX

⌘
, (3.94)

where �1(R) , �2(R) and CX as defined in (3.80), (3.81) and (3.6) respectively.
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Chapter 4

Jump-adapted adaptive Milstein

method (JAAM)

In this chapter, we introduce JAAM for approximating SDEs driven by Poisson

random measure (1.2) and prove its L2 strong convergence of order one. We first

state the assumptions in Section 3.1, then the jump-adapted adaptive time-stepping

strategies in Section 4.2. Finally, the L2 strong convergence and its proof are in

Section 4.3.

4.1 Assumptions

We now present our assumptions on f , gi and �. Since the jump-adapted adap-

tive Milstein method is based on the adaptive Milstein method in Chapter 3, so

Assumptions 3.1.1 and 3.1.2 hold through out this chapter. Detailed discussion on

Assumption 3.1.2 can be found in Remark 6. In addition, we assume for jump

coefficient � that

Assumption 4.1.1. Let f 2 C2(Rd
,Rd) and g 2 C2(Rd

,Rd⇥m) with each gi(x) =

[g1,i(x), . . . , gd,i(x)]T 2 C2(Rd
,Rd) for i = 1, . . . , d. Let � 2 C2

�
(Rd\{0})⇥ Rd

,Rd
�
.

Let x, y 2 Rd
with kxk _ kyk  { and for { > 1, there exists a constant L({)<1

such that

2
⌦
x� y, f(x)� f(y)

↵
+
��g(x)� g(y)

��2
F(d⇥m)

+

Z

Z

���(z, x)� �(z, y)
��2⌫(dz)  L({)

��x� y
��2. (4.1)
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Furthermore, there exist a constant L(1) such that

Z

Z

���(z, x)� �(z, y)
��2⌫(dz)  L(1)

��x� y
��2. (4.2)

Under Assumption 4.1.1 and (3.2) from Assumption 3.1.1, the SDE driven by

Poisson random measure (1.2) has a unique strong solution on any interval [0, T ],

where T < 1, see [20, Thm. 2].

Furthermore, by (3.2) and (4.2) we have the following corollary, which is useful

for the lemma later.

Corollary 4.1.0.1. For x 2 Rd

⌦
x, f(x)

↵
+

⌘ � 3

2

��g(x)
��2
F(d⇥m)

 L0 + L1

��x
��2 (4.3)

Z

Z

���(z, x)
��2⌫(dz)  L2 + 2L(1)

��x
��2, (4.4)

where L0 := kf(0)k2/2 + (⌘ � 1)(⌘ � 5)
P

m

i=1 kgi(0)k2F(d⇥m)/8, L1 := L + 1/2 and

L2 :=
R
Z
k�(z, 0)k2⌫(dz), with ⌘ and L from (3.2).

Proof. For (4.3), by (3.2) with y = 0 we have

⌦
x, f(x)� f(0)

↵
+

⌘ � 1

2

��g(x)� g(0)
��2
F(d⇥m)

 L
��x
��2

⌦
x, f(x)

↵
+

⌘ � 1

2

��g(x)� g(0)
��2
F(d⇥m)

 L
��x
��2 +

⌦
x, f(0)

↵
.

Expanding the g part on the LHS, we have

⌦
x, f(x)

↵
+

⌘ � 1

2

⇣��g(x)
��2
F(d⇥m)

� 2
⌦
g(x), g(0)

↵
+
��g(0)

��2
F(d⇥m)

⌘

 L
��x
��2 +

⌦
x, f(0)

↵
.

By rearranging both sides we have

⌦
x, f(x)

↵
+

⌘ � 1

2

��g(x)
��2
F(d⇥m)

 L
��x
��2 +

⌦
x, f(0)

↵
+ (⌘ � 1)

⌦
g(x), g(0)

↵

� ⌘ � 1

2

��g(0)
��2
F(d⇥m)

.
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For the 3rd term on the RHS, by Cauchy–Schwarz inequality (2.31) we have

(⌘ � 1)
⌦
g(x), g(0)

↵
 2kg(x)kF(d⇥m)

⌘ � 1

2
kg(0)kF(d⇥m)

 kg(x)k2F(d⇥m) +
(⌘ � 1)2

8
kg(0)k2F(d⇥m).

Substituting back we have

⌦
x, f(x)

↵
+

⌘ � 3

2

��g(x)
��2
F(d⇥m)


✓
L+

1

2

◆��x
��2 + 1

2
kf(0)k2

+
(⌘ � 1)(⌘ � 5)

8
kg(0)k2F(d⇥m),

so that the form follows in (4.3). For (4.4), by (4.2) with y = 0 we have

Z

Z

���(z, x)� �(z, 0)
��2⌫(dz)  L(1)kxk2.

Expanding the LHS, we have

Z

Z

���(z, x)
��2⌫(dz)� 2

Z

Z

⌦
�(z, x), �(z, 0)

↵
⌫(dz) +

Z

Z

���(z, 0)
��2⌫(dz)  L(1)kxk2.

By rearranging both sides with (2.31) we have

Z

Z

���(z, x)
��2⌫(dz)  L(1)kxk2 + 2

Z

Z

⌦
�(z, x), �(z, 0)

↵
⌫(dz) +

Z

Z

���(z, 0)
��2⌫(dz)

 L(1)kxk2 + 1

2

Z

Z

���(z, x)
��2⌫(dz)

+
3

2

Z

Z

���(z, 0)
��2⌫(dz)�

Z

Z

���(z, 0)
��2⌫(dz).

Rearranging both sides we have

Z

Z

���(z, x)
��2⌫(dz)  2L(1)kxk2 +

Z

Z

���(z, 0)
��2⌫(dz),

so the form follows in (4.4).

Moreover the following moment bounds apply over any finite interval [0, T ]:

Lemma 4.1.1. [9, Lem. 3.5] Let (3.1),(3.2), (4.1) and (4.2) hold. Then the SDE

driven by Poisson random measure (1.2) has a unique global solution X
J(t) such
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that for any p 2 (2, ⌘),

sup
0tT

E
⇥��XJ(t)

��p⇤ < 1, 8T < 1.

Similar to Lemma 3.1.1, we require a stronger bound on the moments with the

extra condition (4.2) for our convergence proof. The number of moments we get are

restricted by the set of parameters, so we keep track of this through the constant

C
J
X . It is inspired by [41, Lem. 4.2] and [8, Lem. 2.2].

Lemma 4.1.2. Let f , g and � satisfy (3.1),(3.2), (4.1), (4.2) and (3.4). Then the

SDE driven by Poisson random measure (1.2) has a unique global solution such that

there exists a constant

E

sup

s2[0,T ]

��XJ(s)
��⌘�2q2�2

�
 C

J
X , (4.5)

with C
J
X := C

J
X(s,X0, L0, L1, L2, L(1), ⌘, q2,�).

Remark 6 (Moment bound). The moment in (4.5) only depends on ⌘ and q2

because the diffusion coefficient g in (1.2) (due to (1.1)) is superlinearly bounded

whereas the the jump coefficient � in (4.2) is not, see Assumption 3.1.1 and 4.1.1.

Furthermore, since the moment in (4.5) is the same as the one in (3.6), Assumption

3.1.2 in Chapter 3 can be and is assumed directly in this chapter.

Now we show the proof of Lemma (4.1.2).

Proof. Let us first define the stopping time ⇡R := inf{t � 0 : kXJ(t)k > R} ^ T ,

and notice that kXJ(t�)k  R for 0  t  ⇡R. By Itô’s formula in (2.18), we have

almost surely for any t 2 [0, t̄ ], p̄ = p� 2q2 � 2 and p 2 (2, ⌘) that

kXJ(t)kp̄ =kXJ
0kp̄ + p̄

Z
t

0

kXJ(s)kp̄�2
⌦
X

J(s), f(XJ(s))
↵
ds

+ p̄

mX

i=1

Z
t

0

kXJ(s)kp̄�2
⌦
X

J(s), gi(X
J(s))

↵
dWi(s)

+
p̄(p̄� 2)

2

mX

i=1

Z
t

0

kXJ(s)kp̄�4
��gi(XJ(s))TXJ(s)

��2ds

+

Z
t

0

Z

Z

n��XJ(s�) + �(z,XJ(s�))
��p̄ � kXJ(s�)kp̄

o
J⌫(dz ⇥ ds). (4.6)
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By Taylor’s theorem we expand
��XJ(s�) + �(z,XJ(s�))

��p̄ around kXJ(s�)kp̄, and

by (2.34) and Young’s inequality, we have

��XJ(s�) + �(z,XJ(s�))
��p̄ � kXJ(s�)kp̄

= p̄

Z 1

0

��XJ(s�) + ✏�(z,XJ(s�))
��p̄�1

�(z,XJ(s�))d✏

 2p̄�2
p̄

⇣��XJ(s�)
��p̄�1���(z,XJ(s�))

��+
���(z,XJ(s�))

��p̄
⌘

 2p̄�2
p̄

⇣
p̄� 1

p̄

��XJ(s�)
��p̄ + 1

p̄

���(z,XJ(s�))
��p̄ +

���(z,XJ(s�))
��p̄
⌘

 2p̄�2(p̄+ 1)
⇣��XJ(s�)

��p̄ +
���(z,XJ(s�))

��p̄
⌘
. (4.7)

Substituting (4.7) back into (4.6), we have

kXJ(t)kp̄  kXJ
0kp̄ + p̄

Z
t

0

kXJ(s)kp̄�2
n⌦

X
J(s), f(XJ(s))

↵
+

p̄� 2

2

��g(XJ(s))
��2
F

o
ds

+ p̄

mX

i=1

Z
t

0

kXJ(s)kp̄�2
⌦
X

J(s), gi(X
J(s))

↵
dWi(s)

+ 2p̄�2(p̄+ 1)

Z
t

0

Z

Z

⇣��XJ(s�)
��p̄ +

���(z,XJ(s�))
��p̄
⌘
J⌫(dz ⇥ ds).

(4.8)

For the second term on the RHS, since ⌘ � p̄ + 1 by (4.3) and Young’s inequality

we have

p̄

Z
t

0

kXJ(s)kp̄�2
n⌦

X
J(s), f(XJ(s))

↵
+

p̄� 2

2

��g(XJ(s))
��2
F

o
ds

 p̄

Z
t

0

kXJ(s)kp̄�2
n
L0 + L1kXJ(s)k2

o
ds

 2

p̄
L
p̄/2
0 + p̄

✓
p̄� 2

p̄
+ L1

◆Z
t

0

kXJ(s)kp̄ds. (4.9)

Substituting (4.9) back into (4.8) we have

kXJ(t)kp̄ kXJ
0kp̄ +

2

p̄
L
p̄/2
0 + p̄

✓
p̄� 2

p̄
+ L1

◆Z
t

0

kXJ(s)kp̄ds

+ p̄

mX

i=1

Z
t

0

kXJ(s)kp̄�2
⌦
X

J(s), gi(X
J(s))

↵
dWi(s)

+ 2p̄�2(p̄+ 1)

Z
t

0

Z

Z

⇣��XJ(s�)
��p̄ +

���(z,XJ(s�))
��p̄
⌘
J⌫(dz ⇥ ds).

Taking the supremum over [0, t̄ ^ ⇡R] for t̄ 2 [0, T ] and expectations on the both
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sides we have

E


sup
0tt̄^⇡R

kXJ(t)kp̄
�

kXJ
0kp̄ +

2

p̄
L
p̄/2
0 + p̄

✓
p̄� 2

p̄
+ L1

◆
E
"Z

t̄^⇡R

0

kXJ(s)kp̄ds
#

+ p̄

mX

i=1

E


sup
0tt̄^⇡R

����
Z

t

0

kXJ(s)kp̄�2
⌦
X

J(s), gi(X
J(s))

↵
dWi(s)

����

�

+ 2p̄�2(p̄+ 1)E
"Z

t̄^⇡R

0

Z

Z

⇣��XJ(s�)
��p̄ +

���(z,XJ(s�))
��p̄
⌘
J⌫(dz ⇥ ds)

#
.

(4.10)

For the fourth term on the RHS, we use the Burkholder-Davis-Gundy inequality

(see [40, Thm. 7.3]) and (2.31) to have

p̄

mX

i=1

E


sup
0tt̄^⇡R

����
Z

t

0

kXJ(s)kp̄�2
⌦
X

J(s), gi(X
J(s))

↵
dWi(s)

����

�

 p̄

mX

i=1

E

2

4
 Z

t̄^⇡R

0

kXJ(s)k2(p̄�1)kgi(XJ(s))k2ds
!1/2

3

5

 p̄

mX

i=1

E

2

4
 

sup
0tt̄^⇡R

kXJ(t)kp̄
Z

t̄^⇡R

0

kXJ(s)kp̄�2kgi(XJ(s))k2ds
!1/2

3

5

 1

2
E


sup
0tt̄^⇡R

kXJ(t)kp̄
�
+

p̄
2

2

mX

i=1

E
"Z

t̄^⇡R

0

kXJ(s)kp̄�2kgi(XJ(s))k2ds
#
. (4.11)

Then with the setting that p̄ = p + 2q2 � 2, and by (3.4), Young’s inequality and

Lemma 4.1.1 we have the second term in (4.11) as

p̄
2

2

mX

i=1

E
"Z

t̄^⇡R

0

kXJ(s)kp̄�2kgi(XJ(s))k2ds
#

 p̄
2
c
2
m

2
E
"Z

t̄^⇡R

0

kXJ(s)kp�2(q2+2)
�
1 + kXJ(s)kq2+2

�2
ds

#

 p̄
2
c
2
mE

"Z
t̄^⇡R

0

⇣
p� 2(q2 + 2)

p
kXJ(s)kp + 2(q2 + 2)

p
1p/2(q2+2) + kXJ(s)kp

⌘
ds

#

 p̄
2
c
2
m

✓
2(q2 + 2)

p
+

2p� 2(q2 + 2)

p
sup

0sT

E
⇥
kXJ(s)kp

⇤◆
|T ^ ⇡R � 0|

=: C1. (4.12)
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Substituting (4.12) back into (4.11) and returning to (4.10) we have

E


sup
0tt̄^⇡R

kXJ(t)kp̄
�

kXJ
0kp̄ +

2

p̄
L
p̄/2
0 + p̄

✓
p̄� 2

p̄
+ L1

◆Z
t̄^⇡R

0

E
⇥
kXJ(s)kp̄

⇤
ds

+ 2p̄�2(p̄+ 1)E
"Z

t̄^⇡R

0

Z

Z

⇣��XJ(s)
��p̄ +

���(z,XJ(s))
��p̄
⌘
⌫(dz)ds

#

+
1

2
E


sup
0tt̄^⇡R

kXJ(t)kp̄
�
+ C1. (4.13)

Note for 3rd term on the RHS of (4.13), by (4.4) we have

E
"Z

t̄^⇡R

0

Z

Z

⇣��XJ(s�)
��p̄ +

���(z,XJ(s�))
��p̄
⌘
J⌫(dz ⇥ ds)

#

= E
"Z

t̄^⇡R

0

Z

Z

⇣��XJ(s�)
��p̄ +

���(z,XJ(s�))
��p̄
⌘
⌫(dz)ds

#

 E
"Z

t̄^⇡R

0

⇣
�
��XJ(s�)

��p̄ + 2p̄/2�1
L
p̄/2
2 + 2p̄/2L(1)p̄/2kXJ(s�)kp̄

⌘
ds

#


⇣
�+ 2p̄/2L(1)p̄/2

⌘Z t̄^⇡R

0

E
h��XJ(s�)

��p̄
i
ds+ C2, (4.14)

where C2 = 2p̄/2�1
L
p̄/2
2 |t̄ ^ ⇡R � 0|. Since it holds that

E


sup
0ts^⇡R

��XJ(s�)
��p̄
�
 E


sup

0ts^⇡R

��XJ(s))
��p̄
�
,

substituting (4.14) back into (4.13) we have

E


sup
0tt̄^⇡R

kXJ(t)kp̄
�
 1

2
E


sup
0tt̄^⇡R

kXJ(t)kp̄
�

+ C4E
"Z

t̄

0

sup
0ts^⇡R

��XJ(s)
��p̄ds

#
+ C3, (4.15)

where

C3 = kX0kp̄ +
2

p̄
L
p̄/2
0 + C1 + 2p̄�1(p̄+ 1)C2,

C4 = p̄

✓
p̄� 2

p̄
+ L1

◆
+ 2p̄�1(p̄+ 1)

⇣
�+ 2p̄/2L(1)p̄/2

⌘
.
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Rearranging (4.15) and for all t̄ 2 [0, T ] using Gronwall’s inequality we have

E


sup
0t t̄^⇡R

kXJ(t)kp̄
�
 2C4E

"Z
t̄

0

sup
0ts^⇡R

��XJ(s)
��p̄ds

#
+ 2C3  C

J
X < 1,

where C
J
X := 2C3 exp

�
2sC4

�
. We have (3.6) holds and the proof is complete.

4.2 Jump-adapted adaptive time-stepping

Consider a d-dimensional SDE driven by Poisson random measure in (1.2) or (2.17).

Let solutions be defined on a filtered probability space (⌦,F , {Ft}t�0,P). Let {Gt}t�0

be the natural filtration of W , {Ht}t�0 be the natural filtration of J , and Ft =

�
�
Gt [HT

�
, for all t � 0.

We build JAAM based on the jump-adapted Milstein method as defined in Defi-

nition 2.3.3 and the adaptive Milstein method as defined in Definition 3.2.2. There-

fore, the settings of JAAM in this chapter are similar to the ones for adaptive

time-stepping strategies for SDEs with no jumps in Chapter 3. The corresponding

class of jump-adapted time-stepping strategies is defined in Definition 4.2.2. Here

we refer to Section 3.2 for detailed definitions and assumptions, with the updates

made for jumps specified below.

Let {hJ
n+1}n2N satisfy Assumption 3.2.1 and be a sequence of strictly positive

random timesteps with corresponding random times {tn :=
P

n

i=1 h
J
i
}n2N\{0}, where

t0 = 0. Lemma 3.2.1 stands consequently i.e. the mesh points {tn}n2N for jump-

adapted Milstein method in this chapter are also {Ft}-stopping times, except that

the filtration {Ft}t�0 now contains information from both W and J . Notice that

for n 2 N, each jump time ⌧n+1 (defined in Section 2.2) is HT -measurable so that

F⌧n-measurable. In practice, all jump times and sizes can be precomputed.

Let Definition 3.2.1 be satisfied with N
(t)
min := bt/hmaxc and N

(t)
max := dt/hmin +

J(t)e where J(t) is the number of jumps on [0, t] that we assume to be a finite

random variable, (see Remark 2). Notice that N
(t)
max is HT -measurable so that a

(Ft)t�0-measurable random variable.

Next, we introduce the JAAM scheme. Similar to Definition 3.2.2, it is char-

acterised by the sequence of tuples
��eY J(s)

�
s2[tn,tn+1]

, h
J
n+1

 
n2N. With an indicator

function separating the event {hJ
n+1  hmin}, we use map ' for the backstop case,

and map ✓ for the other (explicit Milstein).
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Definition 4.2.1 (JAAM Scheme). Let {hJ
n+1}n2N satisfy Assumption 3.2.1. Fol-

lowing the structures of the jump-adapted Milstein scheme in Definitions 2.3.3 and

the adaptive Milstein scheme in Definition 3.2.2, we define eY J(s) as the continuous

form of a JAAM scheme associated with {hJ
n+1}n2N that

bYJ(s) := ✓

⇣
eY J(tn), tn, s� tn

⌘
· 1{hmin<h

J
n+1hmax}

+ '

⇣
eY J(tn), tn, s� tn

⌘
· 1{hJn+1hmin}, (4.16)

eY J(s) := bYJ(s) +
Z

Z

�
�
z,bYJ(s)

�
J⌫(dz ⇥ {s}) (4.17)

for s 2 [tn, tn+1], n 2 N, where eY J(0) = X(0) and the measure J⌫(dz ⇥ {s}) is

defined in (2.16). The process bYJ(s) in (4.16) stands for the approximation until the

left-hand-limit of tn+1, it follows the same structure of (3.10) but with eY J(tn) as the

input value and h
J
n+1 as the timestep. Over each step, the map ✓ : Rd⇥R⇥R ! Rd

in (4.17) follows the explicit Milstein method as defined in (3.9), and the backstop

map ' : Rd ⇥ R ⇥ R ! Rd satisfies a mean-square consistency requirement with

deterministic step h
J
n+1  hmin with the form of (3.11) for n 2 N.

We inherit the notation in Definition 3.2.3 as Y
J
✓
(s) to denote bYJ(s) in (4.16)

when event {hmin < h
J
n+1  hmax} occurs so that bYJ(s) takes map ✓, for s 2 [tn, tn+1]

and n 2 N. Next, we define the jump-adapted version of Definition 3.2.4.

Definition 4.2.2 (Jump-adapted path-bounded time-stepping strategies). Let the

tuple
�eY J(tn), hJn+1

 
n2N given by (4.17) be a numerical approximation for (1.2),

associated with a timestep sequence {hJ
n+1}n2N satisfying Assumption 3.2.1. We say

that {hJ
n+1}n2N is a jump-adapted path-bounded time-stepping strategy for JAAM

in (4.16)-(4.17) if there exists a real non-negative constant R > 0 such that whenever

hmin < h
J
n+1  hmax,

��eY J(tn)
�� < R, n = 0, . . . , N � 1. (4.18)

We now provide a specific example of such a strategy in (4.19). It is similar

to the path-bounded strategy for adaptive Milstein method in (3.16), but with the

extra constraint that is the distance to the next jump, so that the path-bounded

strategy is also jump-adapted.
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Lemma 4.2.1. Let
��eY J(s)

�
s2[tn,tn+1]

, h
J
n+1

 
n2N be JAAM scheme given in Defini-

tion 4.2.1. Then {hJ
n+1}n2N is jump-adapted path-bounded time-stepping strategy (as

in Definition 4.2.2) if for each n = 0, . . . , N � 1 and  > 0,

h
J
n+1 =

 
hmin _

 
hmax��eY J(tn)

��1/
^ hmax

!!

| {z }
adaptive hn+1

^
⇣
⌧J(tn)+1 � tn

⌘

| {z }
time to the
next jump

. (4.19)

Proof. By Definition 4.2.2, if (4.18) is satisfied when hmin < h
J
n+1  hmax, we call the

sequence {hJ
n+1}n2N a jump-adapted path-bounded time-stepping strategy. When

h
J
n+1  hmin we instead switch to the backstop method with (3.11) holds. Here, we

denote the core function of the strategy in (4.19) by F := hmax/
��eY J(tn)

��1/, and the

distance to next jump time by D := ⌧J(tn)+1 � tn. Therefore, here we only focus on

the event {hmin < h
J
n+1  hmax}, which has 3 outcomes on h

J
n+1: case 1

⇣
h
J
n+1 = F

⌘
,

case 2
⇣
h
J
n+1 = D

⌘
, and case 3

⇣
h
J
n+1 = hmax

⌘
.

hmin

F

hmax

D
Case 1

hmin

D F

hmax

F
Case 2

hmin hmax

D F D F
Case 3

Figure 4.1: Possibilities of the position of the elements in the jump-adapted path-
bounded time-stepping strategy

In Figure 4.1, we display all the possibilities of the position of the elements in

the jump-adapted path-bounded time-stepping strategy in (4.19), by the 3 cases. To

make the event {hmin < h
J
n+1  hmax} hold, case 1 takes value F (in box) between

hmin and hmax, and all together smaller than D, as shown in the first line of Figure

4.1. Similarly, in case 2, D is taken and F can be either smaller or greater than hmax.

Lastly, in case 3 hmax is taken, so D and F can have any order when both greater
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than hmax. For all possibilities shown, the following holds

D =
hmax��eY J(tn)

��1/
> hmin. (4.20)

By rearranging (4.20) and with ⇢hmin = hmax we have

��eY J(tn)
�� <

✓
hmax

hmin

◆

<

✓
hmax

hmin

◆

= ⇢

,

so (4.18) is satisfied with R = ⇢
 and {hJ

n+1}n2N is a jump-adapted path-bounded

time-stepping strategy for (4.17).

Following Lemma 4.2.1, we see in Figure 4.2 the comparison of a non-jump-

adapted mesh and a jump-adapted mesh. Assuming that a jump occurs at ⌧i after

tn, non-jump-adapted mesh steps it over and lands at tn+1, with the input value of

this step taking at tn (emphasised in box). On the other hand, the jump-adapted

mesh stops at the jump time ⌧i first and then goes to the next stop, with the

approximation at ⌧i valued from ⌧
�
i

. Non-jump-adapted mesh might proceed faster

as it does not have to track jumps, but small time steps are necessary to prevent

from missing too many jumps, and so the accuracy can be ensured. Jump-adapted

mesh could achieve better accuracy as every jump is tracked and approximated right

before the jump time, but at the cost of more computational time.

tn�1 tn
⌧i tn+1

non-j-adapted

tn�1 tn tn+1 = ⌧i tn+2

jump-adapted

Figure 4.2: Comparison of non-jump-adapted and jump-adapted mesh

Next, we discuss how we update the jump-adapted mesh so that we preserve its

advantage i.e. accuracy, and optimize its disadvantage i.e. efficiency. One way is

to have adaptive steps rather than fixed steps between the jumps, so that the extra

computational time consumed by tracking down each jump can be compensated.
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Remark 7 (Jump-adapted fixed vs Jump-adapted adaptive). The jump-

adapted method introduced in [5] is applied over a mesh that is a superposition of

jump times and equidistant time steps. However for JAAM at each step, either the

next adaptive landing point or the next jump time is taken, whichever is sooner.

Whenever there is a jump, the coefficient � takes the left-hand limit of jump point as

the input value. Additionally, [5] was restricted by the globally Lipschitz conditions

on f and gi but obtained strong convergence results for numerical methods of any

order, whereas JAAM requires a monotone condition on f and gi but only achieved

strong convergence of order one for Milstein method.

To explain (4.19) and Remark 7 better, we first show in Figure 4.3 an example

of the jump-adapted fixed-step mesh, which is a superposition of the jump times

and the equidistant time steps.

t0 t1 t2 t3 t4 T (t5)
fixed

⌧1 ⌧2

jump times

t0 t1 t2 t3 t4 t5 t6 T (t7)

jump-adapted
fixed

Figure 4.3: Illustration of jump-adapted fixed-step mesh (superposition)

Further, we illustrate the jump-adapted adaptive mesh in Figure 4.4. We can see

that the jump times, which are precomputable, are on the first line. Waiting times

⇡i and jump sizes ⇣i for i = 1, . . . , J(T ) are defined in Section 2.2. In the second

line, we see that t1 and t2 are adaptive steps without being restricted by jump times,

but obviously t2 is stepping over the first time time ⌧1, so we bring back t2 to the

position of ⌧2, as shown in the third line. Notice that t3 is newly calculated based on

the value on t2 (or ⌧1) unlike the “t3” in Figure 4.3, this is one difference compared

to the superposition. Similarly, adaptive time t4 in third time is crossing over the

second jump time ⌧2, so we bring it back to the jump time, as shown in the fourth

line. Again, t5 is newly calculated based on the approximation value at t4 unlike

the “t6” in Figure 4.3. This process continues until it passes the last jump time and

reaches the terminal time T .
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t0 t1 t2 T (t3)
adaptive

t0 ⌧1 ⌧2

jump times

t0 t1 t2 t3 t4

jump-adapted
adaptive

t0 t1 t2 = ⌧1 t3 t4 = ⌧2 t5 T (t6)

jump-adapted
adaptive (final)

new

new

⇡1 ⇡2

jump
size ⇣1

jump
size ⇣2

Figure 4.4: Illustration of jump-adapted adaptive mesh

4.3 Result: Theorem 4.3.1

The main result which is the strong convergence of order one is shown in Theorem

4.3.1 below, following by its proof in subsection 4.3.1.

Theorem 4.3.1 (Strong Convergence). Let (XJ(t))t2[0,T ] be a solution of (1.2) with

initial value X
J(0) = X

J
0 2 Rd

. Suppose that the conditions of Assumptions 3.1.1,

3.1.2 and 4.1.1 hold. Let
��eY J(s)

�
s2[tn,tn+1]

, h
J
n+1

 
n2N be the jump-adapted adap-

tive Milstein scheme given in Definition 4.2.1 with eY J
0 = X

J
0 and h

J
1 the second

item in the jump-adapted path-bounded time-stepping strategy {hJ
n+1}n2N satisfying

the conditions of Definition 4.2.2 for some R < 1. Then there exists a constant

C
J(R, ⇢, T ) > 0 with its explicit form in (4.46) such that

max
t2[0,T ]

⇣
E
h
kXJ(t)� eY J(t)k2

i⌘1/2

 C
J(R, ⇢, T )hmax.

The proof of Theorem 4.3.1 is based on the jump-adapted mesh, so for conve-

nience we rewrite (1.2) as for s 2 [tn, tn+1], n 2 N

bXJ(s) :=X
J(tn) +

Z
s

tn

f(XJ(r))dr +
mX

i=1

Z
s

tn

gi(X
J(r))dWi(r) (4.21)

X
J(s) =bXJ(s) +

Z

Z

�
�
z,bXJ(s)

�
J⌫(dz ⇥ {s}). (4.22)
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Next, we define the one-step error function first. Notice that eY J(s), defined in

JAAM method (4.17), takes either the Milstein map ✓ structured in (3.9) or the

backstop map ' structured in (3.11), depending on the value of hJ
n+1. Thus, bXJ(s)

and X
J(s) defined in (4.21) and (4.22), similar to the error function for adaptive

Milstein as in (3.34) we define the error function for JAAM by

bEJ(s) :=bXJ(s)� bYJ(s) = E
J
✓
(s) + E

J
'
(s), (4.23)

eEJ(s) :=X
J(s)� eY J(s)

=bEJ(s) +
Z

Z

��

⇣
z,bXJ(s),bYJ(s)

⌘
J⌫(dz ⇥ {s}) (4.24)

for s 2 [tn, tn+1], n 2 N and the jump coefficient difference defined as

��

⇣
z,bXJ(s),bYJ(s)

⌘
:= �

⇣
z,bXJ(s)

⌘
� �

⇣
z,bYJ(s)

⌘
. (4.25)

Here E
J
'
(s) in (4.24) is the error by taking the backstop map, i.e.

E
J
'
(s) :=

⇣
bXJ(s)� '

⇣
eY J(tn), tn, s� tn

⌘⌘
1{hJn+1hmin}. (4.26)

By having Y
J
✓
(s) following the form in (3.12) but with eY J(tn) as the input, the error

taking the explicit Milstein method is given by

E
J
✓
(s) :=

⇣
bXJ(s)� Y

J
✓
(s)

⌘
1{hJn+1hmin}

=

✓
eEJ(tn) +

Z
s

tn

�f

⇣
X

J(r), eY J(tn)
⌘
dr

+
mX

i=1

Z
s

tn

�gi

⇣
r,X

J(r), eY J(tn)
⌘
dWi(r)

◆
1{hJn+1hmin}, (4.27)

with the differences from drift and diffusion coefficients: �f

⇣
X

J(r), eY J(tn)
⌘

and

�gi

⇣
r,X

J(r), eY J(tn)
⌘

follow the same structure of definitions in (3.35) and (3.36),

respectively.

Since the first step of the jump-adaptive method is to approximate (1.2) when

� = 0, we restate the result of one-step error bound from Lemma 3.3.9 below.

Lemma 4.3.2. Let f , g satisfy Assumption 3.1.1 and 3.1.2. Let X
J(s) be a solution

of (1.2) with � = 0. Suppose eEJ(s) is a solution of (4.23) with E
J
✓
(s) defined in

(4.27) for s 2 [tn, tn+1], n 2 N. There exists a constant CE defined in (3.45) and an
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Ftn-measurable random variable C
J
M
(R,X

J) such that

E
h���EJ

✓
(tn+1))

���
2���Ftn

i


�� eEJ(tn+1)
��2 + CE(R)

Z
tn+1

tn

E
h��EJ

✓
(r)

��2
���Ftn

i
dr

+ C
J
M
(R,X

J) (hJ
n+1)

3
, a.s. (4.28)

For proof see Section 3.3.3. The X dependence in C
J
M
(R,X

J) means that it re-

quires certain finite moments of the SDE (1.2) when � = 0 to have finite expectation

(see Remark 5), which is ensured by Assumption 3.1.2. In this chapter, we denote

E [C J
M
(R,X

J)] by C
J
M
(R) which has the form of (3.76) in Chapter 3 with CX being

replaced by C
J
X from Lemma 4.1.2.

4.3.1 Proof of Theorem 4.3.1 on strong convergence.

The mesh of JAAM is a combination of jump times and adaptive steps. The jump

amplitude function � takes path values at the left-hand limit of each jump point.

Therefore, between each jump, the time-steps are adaptive for the approximation of

(1.2) when � = 0. By the jump-adapted adaptive time-stepping strategy in (3.16),

each step is bounded by their distance to the next jump time so that the mesh is

guaranteed to have the jump times included.

t0 ⌧k tn tn+1 ⌧k+1 ⌧J(T ) T

1

2

3

4

5

Figure 4.5: Steps of proof for Theorem 4.3.1

The proof is divided into five parts visualised in Figure 4.5: Step 1: the one-step

error bound combined with backstop method for adaptive steps, that is (1.2) when

� = 0; Step 2: the error bound from k
th jump to (k + 1)th jump for k 2 [0, J(t)�1],

by adding up all the adaptive steps in-between from Step 1, that is from time ⌧k to

time ⌧k+1; Step 3: the error bound from the beginning to the last jump by adding

up all the jumps in-between from Step 2, that is from time t0 = 0 to ⌧J(T ); Step 4:
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the error bound from the last jump ⌧J(T ) to the terminal time T , which consists of

all adaptive steps; Step 5: the error bound from t0 to T by adding up Steps 3 and

4.

Proof. Step 1 – One-step error bound. By Lemma 4.3.2, we have the one-step

error bound for approximating (1.2) when � = 0. By combining the backstop map

' as in (4.26) and (3.11), for n 2 [N (⌧k), N
(⌧k+1) � 1] from Definition 3.2.1 we have

the combined one-step error bound as

E
h�� eEJ(tn+1)

��2
���Ftn

i

�� eEJ(tn)

��2 + �1(R)

Z
tn+1

tn

E
h�� eEJ(r)

��2
���Ftn

i
dr

+ �J
2(R,X

J)h3
max, (4.29)

where �1(R) := CE(R) + CB1 and �J
2(R,X

J) := C
J
M
(R,X

J) + CB2 . By Lemma

4.3.2, we can also define �J
2(R) := E

⇥
�J
2(R,X

J)
⇤
= C

J
M
(R) + CB2 .

Step 2 – Jump-to-jump error bound. In this step, we calculate the error

bound from k
th jump to (k + 1)th jump, that is from time ⌧k to ⌧k+1, for k 2 [0, J(t)].

Firstly, by (4.23) and (4.24) we have the error bound of the last step approaching

⌧k+1 as

eEJ(⌧k+1) = bEJ(⌧k+1) +

Z

Z

��

⇣
z,bXJ(⌧k+1),bY

J
(⌧k+1)

⌘
J⌫(dz ⇥ {⌧k+1}). (4.30)

Since ⌧k+1 is a jump time, by (2.30) we have

Z

Z

��

⇣
z,bXJ(⌧k+1),bY

J
(⌧k+1)

⌘
J⌫(dz ⇥ {⌧k+1}) = ��

⇣
⇣k+1,bX

J
(⌧k+1),bY

J
(⌧k+1)

⌘
.

Taking norm squared on the both sides of (4.30) and by (2.34) we have

��� eEJ(⌧k+1)
���
2

 2
���bE

J
(⌧k+1)

���
2

+ 2
�����

⇣
⇣k+1,bX

J
(⌧k+1),bY

J
(⌧k+1)

⌘���
2

. (4.31)

Taking expectation on the both sides of (4.31) conditioned on Ft
N

(⌧k+1)�1
, and by

(4.2) we have

E
��� eEJ(⌧k+1)

���
2
����Ft

N
(⌧k+1)�1

�
 2E

���bE
J
(⌧k+1)

���
2
����Ft

N
(⌧k+1)�1

�

+ 2E
�����

⇣
⇣k+1,bX

J
(⌧k+1),bY

J
(⌧k+1)

⌘���
2
����Ft

N
(⌧k+1)�1

�
. (4.32)
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For the 2nd term on the RHS, by (4.2) we have

E
��� eEJ(⌧k+1)

���
2
����Ft

N
(⌧k+1)�1

�
 E

���bE
J
(⌧k+1)

���
2
����Ft

N
(⌧k+1)�1

�

+ (1 + 2L(1))E
���bE

J
(⌧k+1)

���
2
����Ft

N
(⌧k+1)�1

�
. (4.33)

By setting tn = t
N

(⌧k+1)�1 and tn+1 = ⌧k+1 in (4.29) we have last step error bound

reaching ⌧k+1, that is E
h��bEJ(⌧k+1)

��2
���Ft

N
(⌧k+1)�1

i
. Substituting it back into (4.33) to

replace the 1st term on the RHS, we have

E
h�� eEJ(⌧k+1)

��2
���Ft

N
(⌧k+1)�1

i

�� eEJ(t

N
(⌧k+1)�1)

��2

+ �1(R)

Z
⌧k+1

t
N

(⌧k+1)�1

E
h�� eEJ(r)

��2
���Ft

N
(⌧k+1)�1

i
dr

+ �J
2(R,X

J)h3
max + (1 + 2L(1))E

���bE
J
(⌧k+1)

���
2 ���Ft

N
(⌧k+1)�1

�
. (4.34)

Multiplying by the indicator function on the both sides of (4.29) and (4.34), and

since bEJ(tn+1) = eEJ(tn+1) for n 2 [N (⌧k), N
(⌧k+1) � 2], we sum up all the steps from

⌧k to ⌧k+1 to have

N
(⌧k+1)�1X

n=N
(⌧k)

✓
E
h�� eEJ(tn+1)

��2
���Ftn

i
�
�� eEJ(tn)

��2
◆
I
N

(⌧k+1)>n

9
=

; =: LHS (4.35)

 �1(R)
N

(⌧k+1)�1X

n=N
(⌧k)

Z
tn+1

tn

E
h�� eEJ(r)

��2
���Ftn

i
drI

N
(⌧k+1)>n

+ �J
2(R,X

J)
N

(⌧k+1)�1X

n=N
(⌧k)

h
3
maxIN

(⌧k+1)>n

+ (1 + 2L(1))E
h��bEJ(⌧k+1)

��2
���Ft

N
(⌧k+1)�1

i
.

For the RHS, by Definition 3.2.1 we have n = N
(r)�1, so the filtration Ftn could be

written as Ft
N(r)�1

. By bounding the number of steps between the k
th and (k + 1)th

steps by ⇡k+1/hmin + 1, and all the indicator functions by 1 we have

LHS  �1(R)

Z
⌧k+1

⌧k

E
�� eEJ(r)

��2
����Ft

N(r)�1

�
dr + �J

2(R,X
J) (⇢⇡k+1 + 1)h2

max

+ (1 + 2L(1))E
h��bEJ(⌧k+1)

��2
���Ft

N
(⌧k+1)�1

i
, (4.36)
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which is the error bound between the k
th and the (k + 1)th jump, with LHS defined

in (4.35).

Step 3 – t0 to last jump error bound. Summing up (4.36) over k for all

jumps, we have

J(t)�1X

k=0

LHS  �1(R)
J(t)�1X

k=0

Z
⌧k+1

⌧k

E
�� eEJ(r)

��2
����Ft

N(r)�1

�
dr

+ �J
2(R,X

J)
J(t)�1X

k=0

(⇢⇡k+1 + 1)h2
max

+ (1 + 2L(1))
J(t)�1X

k=0

E
h��bEJ(⌧k+1)

��2
���Ft

N
(⌧k+1)�1

i
. (4.37)

Notice that we set ⌧0 = t0 so that (4.37) includes the time from t0 to the first jump

⌧1. Taking expectation on the both sides of (4.37), conditioned on HT (see Section

4.2) that only contains the information of all jump times and jump sizes known by

time T , we have

E

2

4
J(t)�1X

k=0

LHS

������
HT

3

5  �1(R)E

2

4
J(t)�1X

k=0

Z
⌧k+1

⌧k

E
�� eEJ(r)

��2
����Ft

N(r)�1

�
dr

������
HT

3

5

+ E

2

4�J
2(R,X

J)
J(t)�1X

k=0

(⇢⇡k+1 + 1)

������
HT

3

5h
2
max

+ (1 + 2L(1))E

2

4
J(t)�1X

k=0

E
h��bEJ(⌧k+1)

��2
���Ft

N
(⌧k+1)�1

i
������
HT

3

5 .

Since J(t) is HT -measurable, we can take out the summation on the RHS out of the

conditional expectation. By HT ✓ Ft
N(r)�1

for r 2 [0, T ], with tower property and

⌧J(t) =
P

J(t)
i=1 ⇡i we have

E

2

4
J(t)�1X

k=0

LHS

������
HT

3

5  �1(R)

Z
⌧J(t)

0

E
�� eEJ(r)

��2
����HT

�
dr + �J

2 (R)
�
⇢⌧J(t) + 1

�
h
2
max

+ (1 + 2L(1))
J(t)�1X

k=0

E
h��bEJ(⌧k+1)

��2
���HT

i
, (4.38)

where �J

2 (R) is defined in the statement following (4.28).

Step 4 – ⌧J(t) to t error bound. The period reaching t after the last jump
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at ⌧j(t) consist of errors only for diffusion process, so that bEJ(tn+1) = eEJ(tn+1) for

n 2 [N (⌧J(t)), tN(t)�1]. Notice that in the case that the last jump lands at the target

time, i.e. ⌧J(t) = t, the whole Step 4 is not needed. Since t 2
⇥
t
N(t)�1, tN(t)

⇤
, by

replacing tn, tn+1 with t
N(t)�1 and t respectively in (4.29), we have the last step

reaching t as

E
h�� eEJ(t)

��2
���Ft

N(t)�1

i

�� eEJ(t

N(t)�1)
��2 + �1(R)

Z
t

t
N(t)�1

E
h�� eEJ(r)

��2
���Ft

N(t)�1

i
dr

+ �J
2(R,X

J)
��t� t

N(t)�1

��3. (4.39)

Multiplying the indicator function on the both sides of (4.29), summing up to t with

the last step (4.39) and taking the expectation conditioned on HT we have

E
"

N
(t)�2X

n=N
(⌧J(t))

⇣
E
h�� eEJ(tn+1)

��2
���Ftn

i
�
�� eEJ(tn)

��2
⌘
1{N(t)>n+1}

+E
h�� eEJ(t)

��2
���Ft

N(t)�1

i
�
�� eEJ(t

N(t)�1)
��2
�����HT

#

9
>>>>>=

>>>>>;

=: LHSlast

(4.40)

 �1(R)E
"

N
(t)�2X

n=N
(⌧J(t))

Z
tn+1

tn

E
h�� eEJ(r)

��2
���Ftn

i
1{N(t)>n+1}dr

+

Z
t

t
N(t)�1

E
h�� eEJ(r)

��2
���Ft

N(t)�1

i
dr

�����HT

#

+E
"
�J
2(R,X

J)

 
N

(t)�2X

n=N
(⌧J(t))

(hJ
n+1)

31{N(t)>n+1} +
��t� t

N(t)�1

��3
!�����HT

#

For the RHS, by changing the notation in the filtration and bounding indicator

functions by 1 we have

LHSlast  �1(R)

Z
t

⌧J(t)

E
h�� eEJ(r)

��2
���HT

i
dr + �J

2 (R)
�
⇢(t� ⌧J(t)) + 1

�
h
2
max. (4.41)

Step 5 – t0 to t error bound. Adding the error bound after the last jump
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(4.41) to the error bound at the last jump (4.38) we have

E

2

4
J(t)�1X

k=0

LHS

������
HT

3

5+ LHSlast  �1(R)

Z
t

0

E
�� eEJ(r)

��2
����HT

�
dr

+ �J

2 (R) (⇢t+ 1)h2
max + (1 + 2L(1))

J(t)�1X

k=0

E
h��bEJ(⌧k+1)

��2
���HT

i
, (4.42)

where LHS and LHSlast are defined in (4.35) and (4.40), respectively. Then for the

left hand side of (4.42), we first combine the two sums on k and n to one sum on n.

E

2

4
J(t)�1X

k=0

LHS

������
HT

3

5+ LHSlast

= E
"

J(t)�1X
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���Ftn
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E
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��2
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�
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��2
⌘
1{N(t)>n+1}

+ E
h�� eEJ(t)
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���Ft
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N(t)�1)
��2
�����HT

#

= E
"

N
(t)�2X

n=0

✓
E
h�� eEJ(tn+1))

��2
���Ftn

i
�
�� eEJ(tn)

��2
◆
IN(t)>n+1

+ E
h�� eEJ(t)

��2
���Ft

N(t)�1

i
�
�� eEJ(tN(t)�1)

��2
�����HT

#
.

Since N
(t)
max is HT -measurable, we bound N

(t) by N
(t)
max and move the sum out of the

conditional expectation. Then, by Section 4.2 that HT is a sub-�-algebra of Ftn for

n 2
⇥
0, N (t)

max � 1
⇤
, we apply tower property. Finally, from the telescoping sum with
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eEJ
0 = 0 we have

E
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4
J(t)�1X

k=0

LHS

������
HT

3

5+ LHSlast
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#
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��2
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i
� E
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��2
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i

+ E
h�� eEJ(t)

��2
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i
� E

h�� eEJ(t
N(t)�1)
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���HT

i

= E
h�� eEJ(t)

��2
���HT

i
. (4.43)

where N
(t)
max := dt/hmin + J(t)e. Substituting (4.43) back to (4.42), we have

E
h�� eEJ(t)

��2
���HT

i
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Z
t
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E
�� eEJ(r)

��2
����HT

�
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2 (R) (⇢t+ 1)h2
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+(1 + 2L(1))
J(t)�1X
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E
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��2
���HT

i
. (4.44)

By (2.15), we write the last jump term in the integral form and taking the final

expectation to have

E
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E
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��2
���HT

i
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5 = E
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Z
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E
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��2
i
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Substituting (4.45) back into (4.44) and take a final expectation on the both sides

we have

E

E
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Simplifying with tower property we have

E
h�� eEJ(t)

��2
i

⇣
�1(R) + �(1 + 2L(1))

⌘Z t

0

E
h�� eEJ(r)

��2
i
dr + �J

2 (R) (⇢t+ 1)h2
max.

For all t 2 [0, T ], by Gronwall’s inequality we have

⇣
E
h�� eEJ(t)

��2
i⌘1/2

 C
J(R, ⇢, t)hmax.

Taking the maximum over t on the both sides, the proof follows with

C
J(R, ⇢, T ) :=

r
�J

2 (R) (⇢T + 1) exp
⇣
T
�
�1(R) + �(1 + 2L(1))

�⌘
, (4.46)

where �1(R) and �J

2 (R) are defined in (4.29).
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Chapter 5

Numerical experiments

In this chapter, we illustrate the strong convergence result and computational effi-

ciency of adaptive Milstein and JAAM in sections 5.1 and 5.2, respectively. Both 1D

and 2D test models are implemented with one existing telomere SDE model applied

with adaptive Misltein method in Section 5.1.2.

Without the explicit forms of the solutions to the test models that we implement

in this chapter, a reference solution is taken to play the role of the true solution. We

choose one existing fixed-step method that was developed based on Assumptions

3.1.1 and 4.1.1, then approximate the target model with timesteps that are small

enough. Wiener increments generated by the reference solution are stored so that

the different methods can be compared based on the same set of noises, with W (t) ⇡

Z
p
t for Z ⇠ N (0, 1). The L2 strong convergence e.g. in (3.88) is the root-mean-

square error, we use the sample mean of the Monte Carlo (MC) realisations to

approximate the expectation at the terminal time T . Explicitly, for a d-dimensional

system with M number of MC realisations and X being the true solution we have

⇣
E
h��X(T )� Y (T )

��2
i⌘1/2

⇡
✓

1

M

MX

m=1

dX

i=1

⇣
Y

ref
i

(T )� Yi(T )
⌘2
◆1/2

,

where Y
ref
i

(T ) stands for the i
th element in the reference solution Y

ref 2 Rd at

terminal time T , and Y 2 Rd stands for any numerical method that is tested.

Next, we run the adaptive method through the MC realisations and store all the

adaptive steps on each path of each realisation, then take the average which gives

hmean :=
1

M

MX

m=1

T

Nm

,
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with Nm denoting the number of adaptive steps taken on the m
th sample path to

reach T . hmean is used as the fixed stepsize for all other fixed-step methods that we

want to compare.

For efficiency comparison, we re-run the adaptive method with other fixed-step

methods separately, with independent Wiener increments and without a reference

solution. The CPU time consumed for each method on each MC realisation is

recorded as the measurement of the computational time they require. Finally, we

take the sample mean of all the CPU times to approximate the expected efficiency.

Remark 8 (hn+1 < hmin). We ensure that we reach the final time by taking hN =

T � tN�1 as our final step, and use the backstop method if hN < hmin. For adaptive

Milstein method in Chapter 3, the last step is the only occasion of the backstop

method taking on a step that might be smaller than hmin. However, for JAAM in

Chapter 4 this can occur at any step during the process, because according to the

jump-adapted adaptive time-stepping strategy in (4.19) the lower bound of each step

is the distance to the next jump time rather than the hmin that we choose, which

might be smaller than hmin.

Remark 9 (Codes). All core MATLAB codes for generating the results in this

chapter are in: https://github.com/Gabriel-Lord/Fandi-Sun-Thesis.git

5.1 Adaptive Milstein

In the numerical experiments below, we set the adaptive Milstein scheme (AMil) as

in (3.10) with (3.16) as the choice of hn+1. Projected Milstein (PMil) in [2, Eq. (24)]

is set to be the backstop method of AMil and the reference method of all models.

Then we compare the strong convergence looking at the root-mean-square (RMS)

error, and efficiency by comparing the CPU time, of AMil and PMil, Split-Step

Backward Milstein method (SSBM) [2, Eq. (25)], the new variant of Milstein (TMil)

in [34], and the Tamed Stochastic Runge-Kutta of order 1.0 (TSRK1) method [15, Eq.

(3.8) (3.9)].

In more detail, we write out explicitly the schemes that we use in this section.

With a middle step in function l, the PMil method with parameter ↵ = 0.25 has the
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form of the following

l
�
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n

�
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1 ^ 1
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(5.2)

The proposed method AMil at tn+1 with PMil being the backstop takes in the ap-

proximation value at tn and uses explicit Milstein (EMil) if hmin < hn+1  hmax and

PMil otherwise. It has the form of

Y
AMil
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EMil
n+1

�
Y
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n

�
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n+1

�
Y

AMil
n

�
1{hn+1hmin}, (5.3)
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are defined in (5.1)-(5.2), and Y
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Similar to PMil, SSBM also has a middle step but here we do not write it as a function

of the previous approximation. It yields as
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TMil with 2⇢✓ = 4 has the form of
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Lastly, TSRK1 yields as
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5.1.1 One-dimensional test systems

In order to demonstrate strong convergence of order one for a scalar test equation

with non-globally Lipschitz drift, consider

dX(t) = (X(t)� 3X(t)3)dt+G(X(t))dW (t), t 2 [0, 1]. (5.4)

For illustrating both the multiplicative and additive noise cases, we estimate the

RMS error by a Monte Carlo method using M = 1000 trajectories for hmax =

[2�14
, 2�12

, 2�10
, 2�8

, 2�6], ⇢ = 22,  = 1, and use as a reference solution PMil over a

mesh with uniform stepsizes href = 2�18.

For model with additive noise we set G(x) = � in (5.4), and for model with

multiplicative noise we set G(x) = �(1 � x
2) with � = 0.2 and X(0) = 11 in both

cases. Strong convergence of order one is displayed by all methods in Figure 5.1 part

(a) and (c) for the additive and multiplicative cases respectively, with the efficiency

displayed in parts (b) and (d).

Finally, consider Theorem 3.3.2. We illustrate that the probability of our time-

stepping strategy selecting hmin, and therefore triggering an application of the back-

stop method, can be made arbitrarily small at every step by an appropriate choice

of ⇢ (with fixed  = 1). Consider (5.4) again with G(x) = �(1 � x
2), this time

with X(0) = 100, , T = 1, hmax = 2�20 and ⇢ = [2, 4, . . . , 16]. In Figure 5.2 (e),

we plot two paths of h when ⇢ = 2, 6. Observe that when ⇢ = 2 the backstop is

triggered only for the first 105 steps approximately, whereas once ⇢ is increase to 6
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Figure 5.1: Strong convergence and efficiency of adaptive Milstein for approximating
(5.4) with (a) and (b) for additive noise; (c) and (d) for multiplicative noise.

this is reduced to the first 2 ⇥ 104 steps approximately. Estimated probabilities of

using hmin are plotted on a log-log scale as a function of ⇢ in Figure 5.2 (f) (with

M = 100 realizations). The estimated probability of using hmin declines to zero as

⇢ increases. We observe a rate close to �1, matching that in (3.20) with  = 1.

5.1.2 One-dimensional model of telomere shortening

In molecular biology, the telomere is a short region of highly repeated nucleotide

sequence that caps the ends of eukaryotic chromosomes. They protect chromosomes

from losing core DNA fragments due to the end-replication problem [3]. When

the division number of a normal human cell reaches the Hayflick limit, or when

the telomere is shortened to a certain critical level, the cell ceases to divide and

enters the senescence phase [22]. In addition to the end-replication problem, factors

such as oxidative stress also contribute to telomere loss [56] and significantly to cell

senescence [1]. However, the enzyme telomerase, which appears in germ cells, some

stem cells, and most cancer cells, extends telomere by transcribing it reversely [3].

One stochastic model was built in [18] for telomere length dynamics, where the

79



Chapter 5: Numerical experiments

0 2 4 6 8 10 12 14

steps 105

1

2

3

4

5

6

7

8

9

10

 h

10-7  (e)

  hmax

hmin when  = 2

hmin when  = 6

path of h when  =2

path of h when =6

2 4 6 8 10 12 14 16
0.008
0.010
0.011
0.014

0.017

0.024

0.037

0.08

 (f)

 Probability of

 using hmin

 ref. slope -1

Figure 5.2: Two paths of timestep h for ⇢ = 2, 6 in (e) and the estimated probability
of using hmin for the multiplicative noise model with M = 100 realizations in (f).

loss from replication was assumed to be a constant decrease with rate c and the

impact of oxidative stress assumed to be random breaks that uniformly strike at the

telomere. The activity of telomerase was ignored. With L(t) denoting for the length

of telomere at time t, the number of the breaks striking within a given time interval

was modelled to follow a Poisson distribution with parameter aL(t). Therefore, the

following one-dimensional SDE model was given in [18, Eq. (A6)] for modelling the

shortening over time of telomere length L in DNA replication

dL(t) = �
�
c+ aL(t)2

�
dt+

r
1

3
aL(t)3dW (t). (5.5)

The parameter c determines the underlying decay rate of the length and a controls

the intensity at which random breaks occur in the telomere; we take (a, c) = (0.41⇥

10�6
, 7.5) as in [18]. In this example we fix ⇢ = 4, instead adjusting the parameter
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 in (3.16) to control use of the backstop method. Individual paths are shown in

Figure 5.3 where we take hmax = 2�18, and h = 2�20 for the fixed-step methods.
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Figure 5.3: Single paths of the Telomere length SDE (5.5) solved over 25 days. (b)
shows a detailed plot from (a).

We set L(0) = 1000, noting from [18] that initial values could be as high as

(say) L(0) = 6000 and remain physically realistic. The end of the interval of valid

simulation is determined by the first time at which trajectories reach zero, and is

therefore random. However this is not observed to occur in the timescale (25 days)

we consider here.

By design PMil projects the data onto a ball of radius determined in part by

the growth of the drift term. We see in Figure 5.3 (a) that (PMil) immediately is

reduced to approximately 200.

Contrarily, the design of TMil scales both drift and diffusion terms by 1/(1 +

h|L|2) for this model. When h|L|2 is large this scaling can damp out changes from

step to step, and in Figure 5.3 (a) we see that TMil shows as (spuriously) almost
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constant. The paths of the other methods, AMil, SSBM and TSRK1 are close together

as shown in Figure 5.3 (a) and in high detail in (b).

Notice that we used  = 8 in (3.16) for AMil method to reduce the chance of

requiring the backstop method PMil while keeping ⇢ = 4. We avoid setting  = 1 in

this case because L(0) = 1000 and so the adaptive step hn+1 would too frequently

require the backstop method.

5.1.3 Two-dimensional test systems

We now consider three (i = 1, 2, 3) different SDEs:

dX(t) = F (X(t))dt+Gi(X(t))dW (t), t 2 [0, 1], X(0) = [7, 9]T , (5.6)

with W (t) = [W1(t),W2(t)]T , where W1 and W2 are independent scalar Wiener

processes, X(t) = [X1(t), X2(t)]T , F (x) = [x2 � 3x3
1, x1 � 3x3

2]
T , and

G1(x) = �

0

@x
2
1 0

0 x
2
2

1

A , G2(x) = �

0

@x
2
2 x

2
2

x
2
1 x

2
1

1

A , G3(x) = �

0

@1.5x2
1 x2

x
2
2 1.5x1

1

A . (5.7)

G1 is an example of diagonal noise, G2 commutative noise, and G3 non-commutative

noise.

For G1 and G2 we use hmax = [2�14
, 2�12

, 2�10
, 2�8

, 2�6], href = 2�18, ⇢ = 4 and

 = 1. In Figure 5.4 (a) and (c), we see order one strong convergence for all methods.

Parts (b) and (d) show the efficiency of the adaptive method.

For the non-commutative noise case take hmax = [2�8
, 2�7

, 2�6
, 2�5

, 2�4], href =

2�11, ⇢ = 22 and X(0) = [3, 4]T . To simulate the Lévy areas we follow the method

in [23, Sec. 4.3], which is based on the Euler approximation of a system of SDEs.

Again, we observe order one convergence for all methods in Figure 5.4 (e) and that

AMil is the most efficient in (f). Note that as TSRK1 is only supported theoretically

for commutative noise we do not consider it here.

5.2 Jump-adapted adaptive Milstein (JAAM)

In this section, we demonstrate JAAM by approximating (1.2) in both 1D and 2D

with f(x) = x� 3x3 and �(z, x) = z x. Based on Definition 4.2.1 and (5.3), JAAM
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Figure 5.4: Adaptive Milstein method for approximating the two-dimensional system
(5.6). (a) and (b) show the strong convergence and efficiency for diagonal noise, (c)
and (d) with commutative and (e) and (f) for non-commutative noise. We choose
a = 3, � = 0.2 and b = 1.5.
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with PMil being the backstop method has the form of
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where hn+1 is chosen by the strategy (4.19). The indicator function and the jump

size ⇣ are both 0 when tn+1 is not a jump time.

5.2.1 One-dimensional test systems

We have the diffusion coefficients g the same as the ones in Section 5.1.1 for both ad-

ditive and multiplicative noises. For the reference line and the comparison method,

we use PMil with jumps on a deterministic mesh that is a superposition of the

equidistant steps and jump times. In case of an approximation step landing be-

tween two reference steps, we use Brownian Bridge to split the Wiener increment.

Together with SSBM TMil and TSRK1, all four comparison methods are updated to

jumps based on their structure in Section 5.1. One example is jump-adapted pro-

jected Milstein (JA-PMil) with the form
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For both additive (Figure 5.5 (a)-(b)) and multiplicative (Figure 5.5 (c)-(d)) noises,

we have initial value 5, terminal time T = 1, reference stepsize 2�18, list of hmax =

[2�14
, 2�13

, 2�12
, 2�11

, 2�10], ⇢ = 22, jump intensity � = 2, jump sizes follow the

standard normal distribution N (0, 1), 1000 Monte Carlo simulation. We can see in

Figure 5.5 that in both cases, JAAM shows advantages in error and CPU time.

Further, we demonstrate the performance of JAAM when the jump intensity
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Figure 5.5: Strong convergence and efficiency of JAAM for approximating the one-
dimensional system with (a) and (b) for additive noise; (c) and (d) for multiplicative
noise.

increases in Figure 5.6. With the same settings for 1D multiplicative model, we see

that JAAM outperforms when the jump intensity increases from 4 to 20.

5.2.2 Two-dimensional test systems

For 2D models, with the same structure of drift and jump coefficients as in (5.7),

we have the same diagonal noise (G1(x)), commutative noise (G2(x)) and non-

commutative noise, G3(x). The jump coefficient is � = z x with z ⇠ N (0, 1).

For diagonal (Figure 5.7 (a)-(b)) and commutative (Figure 5.5 (c)-(d)) noises, we

have initial value [5, 7]T , terminal time T = 1, reference stepsize 2�18, list of hmax =

[2�9
, 2�8

, 2�7
, 2�6

, 2�5], ⇢ = 22, jump intensity � = 4, jump sizes follow N (0, 1) , 1000

Monte Carlo simulation. For non-commutative noise (Figure 5.7 (e)-(f)), we have

initial value [15, 17]T , reference stepsize 2�9, list of hmax = [2�7
, 2�6.5

, 2�6
, 2�5.5

, 2�5],

100 Monte Carlo simulation, and with rest settings the same. We can see in Figure

5.7 that in all 3 cases, JAAM shows advantages in error and CPU time.
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Figure 5.6: Strong convergence and efficiency of JAAM for approximating the one-
dimensional system with multiplicative noise, when jump intensity increases. (a)
and (b) with jump intensity 4; (a) and (b) with jump intensity 10; (a) and (b) with
jump intensity 20.
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Figure 5.7: Strong convergence and efficiency of JAAM for approximating the two-
dimensional system with (a) and (b) for diagonal noise; (c) and (d) for commutative
noise; (e) and (f) for non-commutative noise.
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Chapter 6

Summary

We proposed the adaptive time-stepping strategies of the explicit Milstein method

in Chapter 3 for approximating the SDEs with non-globally Lipschitz coefficients,

see Assumptions 3.1.1 and 3.1.2. With a suitable backstop method it reaches strong

L2 convergences of order one with proof in Section 3.3.3. The probability of using

a backstop method can be made arbitrarily small with proof in Section 3.3.4. We

then extended the time-stepping strategies to be jump-adapted for approximating

SDEs driven by Poisson random measure in Chapter 4 with globally Lipschitz jump

coefficient in Assumption 4.1.1. We showed that the jump-adapted adaptive Milstein

method achieves strong L2 convergences of order one in Section 4.3.1. Finally,

we compared both variants of strategies with fixed-step methods in computer and

showed their convergence and efficiency in Chapter 5.

For future work, the removal of the use of the backstop method in both the

adaptive Milstein method and the JAAM could be one direction. Then, based on

[5], the jump-adapted adaptive time-stepping introduced for the Milstein method

in Chapter 4 could be extended to numerical schemes with convergence order ↵ 2

{0.5, 1, 1.5, 2, . . . }. Finally, the Poisson random measure in (1.2) could be extended

to be the Lévy measure, that is to include the infinite activity of jumps.
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