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Abstract 

Surfactant flooding attracts significant interest in the hydrocarbon industry, with a definite 

promise to improve oil recovery from depleting oil reserves. In this thesis, surfactant flooding 

is the primary area of focus as it has significant potential for integration with other chemical 

enhanced oil recovery techniques, including polymer, nanofluid, alkali, and foam. This 

combined approach has the potential to reduce interfacial tension to ultralow levels, decrease 

adsorption, and offer other benefits. However, due to the various mechanism, surfactant 

flooding poses a more complex model for simulators by encountering numerical issues (e.g., 

the appearance of spurious oscillations, erratic pulses, and numerical instabilities), rendering 

the methods ineffective. To address these challenges, the analytical modelling technique of 

surfactant flooding was studied, leading to the development of a novel inversion method in the 

MATLAB programming environment.  

Numerical accuracy issues were discovered in 1D models that used typical cell sizes found in 

well-scale models, leading to pulses in the oil bank and a dip in water saturation, particularly 

for low levels of adsorption, highlighting the need for more refined models. Based on these 

findings, we examined the surfactant flooding technique in 2D models to recover viscous oil 

in short reservoir aspect ratios. Instabilities such as viscous fingering and gravity tongue were 

observed on the flood fronts, and the magnitude of the viscous fingers was influenced by 

vertical dispersion, resulting in errors in computed mobility values at the fronts. Interestingly, 

introducing heterogeneity only minimally affected the spreading of the front and did not 

significantly impact viscous fingering or numerical artifacts. To optimize the nonlinearity of 

flow behaviour and degree of mobility control at the fronts, a homogenous model was 

considered to develop the inversion method. 

In summary, the developed inversion method accurately estimated the two-phase relative 

permeability curves, which were validated using fractional flow theory. The precision of the 

inverted curves was further improved using the optimization algorithm, demonstrating the 

method's ability to predict outcomes closer to the observed values for 2D models with 

instabilities. The obtained results are of significant value for core flood analysis, interpretation, 

matching, and upscaling, providing insights into the potential of surfactant flooding for 

enhanced oil recovery. Additionally, the use of the developed MATLAB Scripts promotes open 

innovation and reproducibility, contributing to the benchmarking, analytical, and numerical 

method development exercises for tutorials aimed at improving the overall understanding of 

surfactant flooding. 
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Nomenclature 

𝐾 Absolute Permeability 

�̂�𝑖 Adsorbed Chemical on The Rock Per Unit Pore Volume 

𝑎1, 𝑎2, 𝑏 Adsorption Coefficient Input Parameters for The Simulation 

𝜇𝑤 Aqueous/Water Viscosity 

NA Aspect Ratio 

𝑘𝑥 Average Permeabilities in The Horizontal 𝓍 Direction 

𝑘𝑧 Average Permeabilities in The Vertical (𝑧) Direction  

𝑁𝑐 Capillary Number 

𝐶𝑠 Chemical Concentration in Aqueous Phase 

𝑣𝑐𝑖  Concentration Velocity 

𝑆𝑤𝑐 Connate Water Saturation 

𝑛𝑜 Corey Exponential of Oil 

𝑛𝑤 Corey Exponential of Water   

𝑆𝑤𝑐𝑟 Critical Water Saturation 

𝜌𝑤 Density Of the Chemical (Surfactant) Solution 

𝑡𝐷 Dimensionless Time 

𝑣𝐷 Dimensionless Velocity 

𝐷 Dispersion  

𝜇𝑜𝑒𝑓𝑓  Effective Oil Viscosity 

𝐶𝑠𝑒  Effective Salinity for Surfactant Concentration 

𝑀 Endpoint Mobility Ratio 

𝐾𝑟𝑜0 Endpoint Relative Permeability of Oil 

𝐾𝑟𝑤0 Endpoint Relative Permeability of Water 

𝑚 Exponent For Concentration Dependence 

𝑛 Exponent For Permeability Dependence 

A Flowing Area of The Reservoir 

𝐷𝑠 Frontal Advance Lag for The Surfactant Concentration 
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∆𝑥 Grid Block Sizes in X Direction  

∆y Grid Block Sizes in Y Direction 

∆z Grid Block Sizes in Z Direction 

𝑆𝑖𝑤 Initial Water Saturation  

𝑖𝑛𝑗 Injector  

Fkr Interpolation Parameter  

𝑣 Interstitial Velocity of Water 

𝐶𝑜 Maximum Concentration of Surfactant 

𝑆𝑤𝑢 Maximum Water Saturation 

𝑓𝑛𝑤 Normalised Water Fractional Flow  

𝑆𝑛𝑤𝑠ℎ𝑜𝑐𝑘 Normalised Water Saturation at Shock Front 

𝑆𝑛𝑜 Normalized Oil Saturation 

𝑆𝑛𝑤 Normalized Water Saturation  

𝛼𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 Numerical Dispersion 

𝑆𝑤𝑂𝐵 Oil Bank Water Saturation 

𝑆𝑂𝐵 Oil Bank Water Saturation 

𝑓𝑜 Oil Fractional Flow  

𝜆𝑜 Oil Mobility  

𝐼𝐹𝑇𝑜𝑤 Oil-Water Interfacial Tension 

µ𝑜 Oleic/Oil Viscosity  

𝑁𝑝𝑒 Peclet Number 

𝑘ℎ Permeability in the Horizontal Direction  

𝛼𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 Physical Dispersion 

∅ Porosity 

∅𝑠 Porosity Accessible to Chemical (Surfactant) 

𝑝 Pressure  

∆𝑝 Pressure Differential  

𝑝𝑟𝑜𝑑 Producer  
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𝐾𝑟𝑒𝑓 Reference Permeability 

𝑃𝑟𝑒𝑓 Reference Pressure 

L Reservoir Length 

H Reservoir Thickness 

𝑆𝑜𝑟 Residual Oil Saturation  

𝑅𝑐𝑖 Retardation Factor 

𝜌𝑠 Rock (Grain) Density 

𝐶𝑎𝑑𝑠 Rock Adsorbed Concentration 

𝐷𝑖  Surfactant Adsorption 

C Surfactant Concentration 

𝑆𝑆𝑤𝑐𝑟 Surfactant Critical Water Saturation 

𝑛𝑜𝑠 Surfactant Flooding Corey Exponential of Oil 

𝑛𝑤𝑠 Surfactant Flooding Corey Exponential of Water   

𝑀𝑠 Surfactant Flooding Endpoint Mobility Ratio 

Kro_surf Surfactant Flooding Oil Relative Permeability  

𝑓𝑤𝑠𝑠  Surfactant Flooding Water Fractional Flow  

Krw_surf Surfactant Flooding Water Relative Permeability 

𝑆𝑤𝑠𝑠 Surfactant Flooding Water Saturation  

IFTows Surfactant Influenced Oil-Water Interfacial Tension 

𝑆𝑆𝑤𝑢 Surfactant Maximum Water Saturation 

 𝑆𝑘𝑟𝑜 Surfactant Oil Relative Permeability 

𝜇𝑠 Surfactant Solution Viscosity 

𝑆𝑘𝑟𝑤 Surfactant Water Relative Permeability 

𝑡 Time 

∆𝑡 Time Step 

𝛼𝑡𝑜𝑡𝑎𝑙  Total Dispersivity 

𝜆𝑡 Total Mobility 

𝑢𝑡 Total Viscosity/ Total Volumetric Flux 
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q Volumetric Flow Rate 

𝐹𝑤 Water Fractional Flow  

𝑓𝑤𝑂𝐵 Water Fractional Flow at Shock 

𝜆𝑤 Water Mobility  

𝑆𝑤 Water Saturation  

Kro Waterflood Oil Relative Permeability  

Krw Waterflood Water Relative Permeability  
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1.1. Motivation 

As the world continues to transit and add more renewables such as biofuels, solar, wind and 

hydropower to decarbonize our energy systems, most of the world’s energy still comes from 

fossil fuels accounting for more than 80% of our energy supply. In addition, the exploration 

and availability of fossil fuel is relevant to meet the rise in energy consumption over the next 

decade.  Nevertheless, oil production has been adversely affected by the current fall in oil prices 

and challenges in recovering oil from more complicated reservoirs.  

At the same time, oil field development is approaching or has reached the late field stage for 

oil recovery. The late field stage implies that the primary and secondary recovery has been 

exhausted, and production is within a few years of the total recoverable field oil production 

before field abandonment. We are approaching a point where they are no longer economically 

viable. Therefore, companies have explored alternative methods, also referred to as tertiary 

recovery, to prevent the field from reaching abandonment. Hence, the oil recovery process will 

consider injecting substances not naturally found in the petroleum reservoir, of which chemical 

flooding is an important one. Chemical enhanced oil recovery (CEOR) methods, as shown in 

Figure 1-1, have an enormous scope to respond to the problems. Chemicals used for oil 

recovery are primarily applied to change fluid mobility and enhance the flood's efficiency. 

Also, the CEOR process has the potential to recover a third of the initial oil in place, leaving 

minimal residual or bypassed oil.   

The conventional CEOR methods include surfactant, polymer, and alkaline flooding, and each 

solvent has its limitations. For example, polymer suffers from viscosity loss in the presence of 

brine and high temperatures. At the same time, surfactant and alkali efficiency incur losses due 

to adsorption phenomena. Consequently, other chemical injection methods are developed and 

used for CEOR processes as an alternative method or to improve or complement the well-

known CEOR processes. 

The surfactant flooding technique is the primary focus of this thesis. It can be used as a 

standalone, in a series or as a mixture to encounter a wide range of applications for oil recovery. 

Furthermore, Akinyele and Stephen (2020) presented a literature review for the surfactant 

flooding and recovery mechanism, showing studies conducted over the years. The critical 

mechanism involves the absorption of the surfactant on a surface or fluid-fluid interface (oil 

and the displacing fluid) to reduce interfacial tension (IFT) and change capillary forces that 
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influence the mobility of bypassed oil in the porous media. Therefore, we can increase the 

capillary number resulting in changes to the dimensionless ratio of viscous to capillary forces 

to enhance displacement efficiency. 

One advantage of surfactant flooding is the potential to recover highly viscous oil. Such a study 

has been conducted over the past decade as an alternative technique to non-thermal injection 

fluid to reduce the interfacial tension of heavy oil. For example, Bryan and Kantzas (2009) 

used alkali-surfactant flooding to recover viscous oil of 11,500cP without adding polymer for 

mobility control. The improved sweep efficiency was evaluated in core flood experiments of 

varying permeability and injection rates to understand how alkali-surfactant flooding can 

improve oil recovery in heavy oil systems. Unfortunately, a numerical simulator for validating 

or further investigating the author’s findings for secondary and tertiary flooding techniques is 

lacking. Similar to the previous author, Cheraghian and Nezhad (2016) and Li et al. (2019) 

conducted a core flood experiment using surfactant flooding to show that the recovery of 

viscous oil can reach 10% to 52% of the original oil in place. The recovery was possible due 

to improved surfactant mechanisms, such as the ultralow adsorption phenomenon. However, 

the recovery of viscous oil can result in the appearance of viscous fingers, which is one of the 

most challenging aspects of numerical modelling of surfactant flooding systems.  

To ensure the surfactant flooding is designed to achieve optimum oil recovery, laboratory core 

experiments are conducted to determine the relative permeability data. In addition, the relative 

permeability data is used as input to reservoir simulation models to predict or match the 

reservoir production. Therefore, it is crucial to explore how changes to relative permeability 

data can influence reservoir engineering and simulation parameters for surfactant flooding. The 

advantages and drawbacks/issues associated with numerical solutions can be related to the 

assumptions inherent in analytical solutions, input relative permeability data from laboratory 

experiments, and methods used to process and refine the data before or during simulation.     
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Figure 1-1: Chemical EOR Classification 

  

 

 

 

 

 

 

Chemical EOR 

Foam 
Low Salinity Water 

Flooding 
Surfactant 

SP (Surfactant-
Polymer)

SAG (Surfactant 
alternatig gas)

Polymer Alkali

AS (Alkali-Surfactant)

AP (Alkali-Polymer)

ASP (Alkali-
Surfactant-Polymer) 

Nanofluid

Polymeric 

Surfactant Nanofluid

Nanoparticle/nanopa
rticle-surfactant foam

Smart-nano-water 
flooding 



19 

 

1.2. Reservoir Simulation 

Simulations involve the use of a model to obtain insight into the flow behavior of a physical 

process. The simulation can be used to capture the surfactant flooding mechanism to address 

numerical and physical problems in varying depths of detail. Simulation involves more than 

just the design and use of a good model to analyse a process. Therefore, it is crucial to use 

simulation to integrate several factors to resolve errors and produce information for companies 

and researchers to make intelligent decisions.  

The growth in computer capabilities to capture most of the physical phenomena by solving the 

governing mathematical model has been vital to the development of simulators. The 

mathematical models are systems of equations describing the physical behaviour of the 

surfactant flooding mechanism under investigation. In petroleum reservoir work, these 

equations are complicated partial differential equations. Because of the size and complexity of 

these mathematical models, a computer model was chosen to solve the surfactant flood system 

in a variety of dimensions. The focus today for economic justification and the need for faster 

decision-making inexorably pushes us to use a simulator modelling approach to produce an 

efficient and reasonable accurate predictive solution. Therefore, numerical behaviour should 

be evaluated cautiously.  

For reservoir performance evaluation, simulators can be used to history match laboratory core 

flood tests to calibrate flow parameters and used for upscaling, optimization, and sensitivity 

study. However, the simulation of surfactant EOR models with large numbers of fine or high-

resolution grid blocks incurs high computational expense and may result in slow computation 

and convergence issues. The alternative is to use a coarse numerical grid with a faster runtime, 

but this model is prone to numerical problems due to solution truncation error which produces 

unreal pulses that lose accuracy (Akinyele & Stephen, 2022a). With new surfactant mixture 

having improved recovery mechanisms being reported, the results obtained from such 

experimental/observed data can be informative in varying degrees and not complete. Such as 

permeability and porosity that need improvement of knowledge in the reservoir. Therefore, it 

is important to have a cost-effective alternative to full simulation to estimate appropriate 

relative permeability curves in different measurements. Moreover, analytical solutions can be 

integrated on a programming environment and using optimization algorithms to enhance both 

computational time and accuracy and applied as an inexpensive alternative for simulating core 

flood experiments.  
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1.3. Overview of the study 

The PhD thesis will focus on simulations, some of which are at the core flood and field scale. 

Furthermore, we present an approach for studying and mitigating the influence of numerical 

dispersion using a reservoir simulator for surfactant flooding enhanced oil recovery processes. 

This will consist of the investigation of numerical artefacts on the flow modelling because of 

varying grid configurations in multidimensional models. Also, the degree of the numerical 

artefacts or effects on the solution will be examined through the surfactant mechanism analysis, 

time step variation and fractional flow theory techniques. Finally, the understanding from the 

numerical simulation study will be used to determine inverted relative permeability data using 

MATLAB programming to predict and match reservoir production and resolve numerical 

artefacts. The methodology of the algorithm will be based on the Power law characterization 

technique for the relative permeability function. The tool will be made open source and an 

inexpensive alternative to full simulation, which should be scalable in other programming 

environments.  

1.4. Research Objectives  

Less obvious but also potentially of more significance for the theoretical understanding of flow 

behaviours in many surfactant flooding oil recovery techniques, we believe that research in 

core flood simulation can afford us a platform for studying many of the problems that have 

been successfully conducted in the Laboratory. 

To achieve these objectives, the following were considered:  

• Conducting literature review to gain knowledge about the existing analytical methods, 

numerical methods, inversion methods, their application, and limitations.  

• Improve understanding of the numerical behavior of the surfactant flood model 

• Conducting numerical experiments using an established reservoir simulator to better 

understand any limitations for modelling surfactant flooding enhanced oil recovery 

process.  

• Developing the proposed forward and inversion method  

• Writing MATLAB scripts to apply new techniques and calculations of the proposed 

forward and inversion method.  
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• Evaluating the proposed method to solve recognized problem of surfactant flooding and 

analyzing the results. 

• Ensure the inversion method has potential for use in analytical and numerical development 

exercises, as well as for tutorials.  

1.5. Outline of thesis 

We organized the chapters of this thesis as follows:  

Chapter 1 provides a background to the concept of chemical enhanced oil recovery, and 

description of the types of chemical enhanced oil recovery techniques to justify the research 

into surfactant flooding. The objectives and outline of the thesis are presented, including the 

development of a new inversion method to estimate relative permeability curves.  

Chapter 2 introduces the main body of the literature review in three main sections, which 

focuses on flow behavior in surfactant flooding. The three sections include the analytical 

methods, numerical methods, and inversion methods. That can be further divided into (a) 

fractional flow theory, (b) numerical simulation, (c) challenges of present simulators and 

solution techniques, (d) differences amongst simulators, (e) relative permeability estimation, 

(f) inversion methods. Further reviews are displayed in the chapters 3 and 4, which was serving 

the aim of the chapter. 

Chapter 3 introduces the study of numerical effects on the accurate simulation of surfactant 

flooding for enhanced oil recovery, which is a published article. We used a commercial black 

oil reservoir simulator to model surfactant flooding and to show how the appearance of 

numerical effects can lead to unreliable forecasts and evaluations. The simulation could provide 

approximate solutions to systems of nonlinear partial differential equations describing the 

physical behaviour of surfactant flooding, which combines multiphase flow in porous media 

with surfactant transport. However, the approximations will be discretized in time and space, 

leading to spurious pulses or deviations in the model outcome.  

Chapter 4 describes the numerical experiments conducted to understand the propagation of 

viscous fingering on short aspect ratio and proposed methods to minimize the problems that 

may affect the flow modeling of surfactant flooding. The previous chapter was conducted in 

one dimensional; therefore, this chapter aims to investigate the 2D linear displacement. It also, 

introduces the group of dimensionless numbers used to define the various parameters for the 
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analysis. Numerical simulation and instability at the flood fronts were presented, and the 

comparison between applying the uniform refined grid and local grid refinement method to 

resolve the numerical dispersion and gravity tongue at the fronts. After the evaluation of full 

simulation of surfactant flooding and various literatures. The question becomes: how can we 

develop an inversion method that effectively estimates relative permeability curves for 

surfactant flooding processes of such challenging reservoir systems. 

Chapter 5 introduces the theoretical description of the proposed methods used for the two-

phase forward and inversion method for surfactant flooding. Which includes the method and 

equations applied for the test and development of the new method. Also, we introduce the 

comparative approach for improving the optimization cost, computational time, and accuracy. 

Finally, present the algorithms as coded, implemented and executed in MATLAB 

programming environment.  

Chapter 6 describes the application of the forward method, and inversion method for stylized 

case studies. Also, it presents a comparative study of the predictability for the surfactant 

flooding in miscible and immiscible flow conditions. Furthermore, it shows the use of 

weighting to improve the performance of the inversion method and application for field 

examples, as in chapter 4. An error analysis is incorporated into the workflow process to study 

the misfit between the observed and predicted results and which different regularization term 

is used to generate cases for simulation. Then, present an upscaling of the surfactant flooding 

solution that may prevent or minimize numerical effects using the inversion method. 

Chapter 7 provides a summary and conclusions learnt from the research work.  

Appendices provide details of the MATLAB codes that was written to perform that forward 

and inverted estimation of the relative permeability curves for simulation using the proposed 

novel function-based methods with application to surfactant flooding. Also, optimisation 

options and their applications as a mathematical approach for the inversion method and 

methodology for launching the code on a computer.  
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2.1. Introduction  

This section concentrates on improving understanding of the numerical behavior of the 

surfactant flood model. It is important for research into a method for predicting conditions that 

induce numerical instabilities and ways to prevent them for a surfactant type flood. The 

theoretical understanding of surfactant flooding behaviour which may be stabilized by gravity, 

capillary and viscous forces and depends on the phases and their properties. It is imperative to 

measure various parameters as it affects the stable displacement for insights into a new pathway 

for optimizing surfactant flood and the possibility of modelling other prospective chemical 

enhanced oil recovery processes with similar recovery mechanisms. 

The stability problems may be physical, which occurs when a low-viscosity injected fluid 

displaces a more viscous fluid, causing viscous fingers to appear. Such instability can occur 

either under miscible or immiscible displacement conditions. Secondly, numerical problems 

may lead to truncation error where the solution becomes inconsistent, producing pulse-like 

behaviour in the form of oscillations or other convergence issues. Lastly, combining both the 

physical and numerical instabilities may produce a more complex problem that is challenging 

to simulate using analytical and numerical approaches. We will discuss various instability 

classifications reported in the literature for surfactant flooding. 

2.2. Analytical Methods  

Buckley and Leverett (1942) revealed the fractional-flow theory and conventional theoretical 

basis to analyse the linear displacement for two-phase flow, which has proved to be accurate 

with simplified assumptions and used to complement numerical simulation. The main 

assumptions are isothermal, isotropic, and homogenous porous media. Also, gravity, capillary 

pressure, and physical dispersion are ignored. Darcy’s law is applicable, constant composition 

with continuous injection and adsorption isotherm depends on one component having negative 

curvature. Despite the simplified assumptions, the fractional-flow theory provides valuable 

insights and a framework for improving the understanding of displacement efficiency and 

investigating precision in two-phase flows for various reservoir engineering problems. 

Analytical models can match, forecast production, and benchmark results obtained from 

numerical simulation-based workflows in reservoir systems. Also, shock fronts are assumed 

and relevant for the identification, estimation and resolution of any numerical errors that may 

affect the solution to predict reliable flow behaviour. Nevertheless, the numerical simulation is 
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built to capture complex flow properties that may not be achievable using analytical solutions, 

simulations may be used to validate results from newly developed analytical solutions as well. 

Welge improved the analytical method and used the water fractional flow curve to calculate 

the average saturation of the swept area and recovery performance for gas flooding systems 

(Welge et al., 1961). Tarek (2009) and William (2010) built on the tangent of the fractional 

flow curve and calculated the average water saturation behind the front of the swept area. The 

limitation of this method is that it is significantly time-consuming like JBN.  Liu and Liu (2015) 

and Zhou and Wang (2016) deployed improved methods for waterflooding performance 

evaluation. However, Zhang and Yang (2018) proposed an equation based on experimental 

analysis, reported to be more effective for flow modelling and estimating the average water 

saturation. The author’s method was streamlined to a linear relationship when the produced 

water saturation is higher than the front saturation during waterflooding. However, this was 

based on experimental analysis and not readily adaptable for chemical flood systems with 

miscibility.  

Fractional flow analysis is an analytical method that has been used for decades to represent the 

simplified flow behaviour for a number of different CEOR cases. It can be adapted to analyse 

chemical flooding processes and validate results from software simulation. For example, Pope 

(1980) summarises a number of papers collating various adaptations of fractional flow theory 

coupled with the Buckley Leverett method for two-phase displacement suitable for chemical 

enhanced oil recovery such as polymer flooding, carbonated water flooding, and miscible 

surfactant flooding. Nevertheless, the most basic limitation to the fractional flow theory is the 

uncertainty in the relative permeability function upon which the entire analysis is founded. 

Nevertheless, even relative permeability curves have proven helpful for flow analysis in 

reservoir simulators and evaluating the simultaneous flow of oil and water at various 

conditions. 

Challenges with using analytical methods to describe the physics of surfactant or gas flooding 

were reported by Mahmood et al., (1986). The paper presented the use of one-dimensional 

fractional flow analysis, such as solely applying the Buckley Leverett analysis or Dietz model 

for correctly modelling the flow behaviour of surfactant or gas flooding processes. The authors 

also presented a semi-analytical model based on experiments to predict a two-dimensional 

system for oil recovery and pressure history. The methodology consisted of a two-stage 

combination of modelling using Buckley Leverett analysis for foam displacement and the Dietz 
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model for surfactant displacement. This approach was observed to match the frontal 

displacement, but the pressure history was somewhat less accurate. The author's mathematical 

model was derived based on the concept of gravity tongues and changes in gas mobility. A 

numerical dispersion study is lacking, which may explain the discrepancies in the pressure 

profile.  

Similarly, Dindoruk and Dindoruk (2006) developed a non-isothermal Buckley Leverett flow 

analysis which included tracers, developed from the combined examination of two immiscible 

fluids and convective heat balance. The two-phase flow equation discretises hot and cold-water 

flooding displacement radially and linearly. Furthermore, the solution presents a benchmark 

for other simulators to interpret laboratory results. The solution performs better than standard 

isothermal black oil simulators for capturing fluid flow behaviours in thermal systems with 

mobility changes. However, discrepancies were reported in the thermal front propagation 

comparative study when using the radial and linear systems. The radial systems show to be 

more prone to numerical dispersion.  

The adapted Walsh and Lake method uses fractional flow analysis to study the reduction in 

miscibility for simultaneous water and gas injection. Moghanloo and Lake (2012) used the 

numerical simulation to validate the adapted Walsh and Lake method results. During the 

simulation, the authors considered flow-associated dispersion to reduce miscibility. The article 

demonstrates that the method was consistent in situations involving one-dimensional 

simultaneous water and gas injection with limited dispersion and no crossflow in two-

dimensional models. However, its dependability was questionable when the mixing zone 

increased linearly on certain occasions. Luo et al. (2017) used an analytical method based on 

Buckley Leverett and fractional flow analysis to describe unstable immiscible floods. First, the 

method defines the displacement process by using the combination of the viscosity ratio, flow 

velocity, interfacial tension, wettability, permeability, and rock geometry to develop pseudo 

relative permeability for two-phase flow. Next, the study uses the fractional flow method to 

capture the waterflooding recovery of viscous oil. Then the fractional flow method was adapted 

for polymer floods but limited to immiscible floods. Nevertheless, it shows that analytical 

methods can model unstable flow scenarios. 

The application of fractional flow theory to predict surfactant displacement performance is 

relevant for core flood experiments and simulation. Farajzadeh et al. (2019) conducted a 

comparative study using fractional flow analysis to design mobility control for oil recovery 
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purposes. Their approach used total fluid mobility at distinct points on the fractional flow curve 

to analyse two-dimensional flow simulations through heterogeneous permeable media, which 

is a method for designing mobility control for viscous oil using surfactant flooding in the 

laboratory. The article states that mobility control design was dependent on the accuracy of the 

relative permeability curves. The paper also presents the usefulness of reliable relative 

permeability curves and an analytical method for insight into design. However, this study 

focused more on polymer flooding with less emphasis on surfactant flooding utilisation. Also, 

this method differs from our approach to modelling surfactant flooding because we used 

forward and inverted relative permeability data to improve understanding and accuracy.  

In recent studies, MATLAB software was used as an inexpensive alternative to validate 

numerical reservoir models and present the effectiveness of surfactant flooding (Ding et al., 

2020). However, the authors did not explore MATLAB as an optimisation tool to examine a 

limited number of controlling parameters of a surfactant flood. Such optimisation of the 

production performance will be good for constructing relative permeability curves for 

upscaling and the design of injection and production plans. Furthermore, MATLAB is better 

for optimization than for validating established numerical solutions. Before using an analytical 

approach such as fractional flow theory, it is essential to consider the assumptions made.  Table 

2-1 summarises some important works of literature using an analytical approach for modelling 

surfactant flooding, surfactant mixture flooding, and miscible flooding.  
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Table 2-1: Review of some important research for CEOR modelling using fractional flow 

Researcher  Year  Subject  Dimensions Contributions 

Larson 

(Larson, 

1979) 

1979 Surfactant 

flooding 

1D An extended model that analyses phase 

behaviour in surfactant using fractional 

flow to determine the effects of 

mobility ratio.  

Todd and 

Longstaff 

(Todd & 

Longstaff, 

1972) 

1972 Miscible flood 

performance 

1D 

and 2D  

Incorporated fractional flow and 

developed a method for modifying an 

existing three-component simulator to 

predict two-component miscible flood 

performance.  

Pope (Pope, 

1980) 

1980  Miscible, and 

low-tension 

(surfactant and 

surfactant-

polymer) 

flooding 

1D and 2D  Applying fractional flow to show the 

potential of surfactant EOR for 

improved oil recovery efficiency and 

presented limitations to describe 

fingering caused by unstable 

processes.  

Helfferich 

(Helfferich, 

1981) 

1981 miscible flood 

and Surfactant 

flooding  

1D A three-component system with a two-

phase region and fractional flow curve 

is utilised to simplify models for near 

miscible and surfactant flooding.  

Fayers et al 

(Fayers, 

Jouaux, & 

Tchelepi, 

1994) 

1994  Miscible 

displacement  

2D and 3D  An improved macroscopic/empirical 

model to capture the viscous fingering 

by reproducing fractional flow and 

other parameters.  

LaForce 

and Jessen 

(LaForce & 

Jessen, 

2010) 

2010 Miscible water 

alternating gas 

(WAG) 

1D A new analytical solution builds on the 

fractional flow theory for four-

component three-phase flow to predict 

WAG displacement performance in 

1D.  

Moghanloo 

and Lake 

2012  Miscible flood  1D and 2D  Application of Fractional flow under 

loss of miscibility using the Walsh and 



29 

 

(G 

Moghanloo 

& Lake, 

2012) 

Lake (WL) method to predict the 

performance of simultaneous water 

and gas (SWAG) displacements in 1D 

and 2D with limited crossflow.   

Lake (Lake, 

2014) 

2014  Miscible, 

Micellar 

polymer, 

Surfactant and 

SP flooding 

1D and 2D  Understanding the displacement 

mechanism of two- and three-phase 

behaviour and presented calculation to 

the fractional flow of surfactant and 

surfactant mixture systems.  

Farajzadeh 

(Farajzadeh 

et al., 2019) 

2019 Surfactant, SP, 

and alkali-

surfactant-

polymer 

flooding 

1D and 2D  They compared two methods for 

surfactant and surfactant mixture using 

capillary number to scale up the 

fractional flow curves to predict oil 

recovery efficiency and discuss 

economic consequences.  

Khan and 

Mandal 

(Khan & 

Mandal, 

2021)  

2021  Miscible 

flooding  

1D and 2D  They improved the Buckley-Leverett 

(BL) equation for gas displacement 

process to predict viscous fingering 

and gravity effects for an inclined 

stratified heterogeneous reservoir. 
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2.3. Numerical Methods  

Numerical simulation of chemical enhanced oil recovery such as surfactant flood in porous 

media remains one of the difficulties in reservoir modelling because of the highly nonlinear 

partial differential equations that govern the system and the lack of reliable data for these 

problems. Therefore, researchers explore alternative forms to full simulation and seek 

specialised algorithms that match core flood data for reservoir performance evaluation. 

Historically, there are two approaches to modelling multiphase flow; one is the individual mass 

balance equations for each of the fluids, while the second involves manipulating a combination 

of these balance equations into modified forms with the introduction of fractional flow 

functions.  

Yin and Pu (2008) reported discrepancies between the predicted results of reservoir numerical 

simulation and measured data. The authors observed that the errors occurred because of the 

model's explicit calculation of saturation for surfactant flooding in three dimensional two-phase 

and three component systems, which included the variance of threshold pressure in the low 

permeable reservoir. However, Al-Sofi and Blunt (2010) reported that numerical models of 

multiphase flow suffer from excessive numerical dispersion, giving front smearing, requiring 

many thousands of grid blocks in one dimension to solve the fronts. The solution deviation was 

caused by the coupling of compositional dispersion with the fractional flow, causing the 

development of incorrect wave speeds. Such problems are prominent in polymer flooding, 

surfactant flooding, low salinity water flooding, and carbonated water flooding. The author 

suggested using a one-dimensional model for modelling the flow process assuming 

segregation-in-flow instead of the traditional instant mixing assumption. Their approach was 

called a physically based dispersion reduction scheme. The proposed scheme resolved 

saturation fronts in augmented waterfloods, applied in two and three dimensions. However, 

their approach lacks the application for miscible flood systems such as surfactant flooding and 

gas flooding EOR. 

Rossen (2013) reported that the numerical dispersion of surfactant concentration was a 

problem, attempting to minimise its effect leading to other numerical artefacts. This study 

aimed to accurately simulate foam EOR without numerical issues using local equilibrium 

models in the CMG STARS simulator. The results show unphysical behaviour in the water 

saturation solution, which was directly linked to fluctuations observed in the mobility changes 

and injectivity. The fluctuations cause underestimating of the solution, resulting in further 
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refining the grid to resolve these numerical effects. Unfortunately, the report lacked the grid 

refinement implementation strategy.  

Conventional finite difference and element methods every so often gives rise to nonphysical 

oscillations in the numerical solution. For example, Chen et al. (2016) employed a similar 

method to solve the coupled nonlinear partial differential equations of the mechanistic model 

used to predict EOR methods. Hence, to help weaken numerical dispersion, the fourth-order 

Range-Kutta method and IMPSAT method were adopted to implicitly solve the pressure and 

saturation and explicitly solve the concentration of polymer and surfactant.  

On the other hand, Tavassoli et al. (2013) reported that inaccurate predictions caused by 

instabilities were solely because of the available analytical models for the complex physics in 

multidimensions for surfactant flooding. The authors used UTCHEM with a third-order total 

variation diminishing (TVD) finite difference method for this simulation. A flux limiter was 

applied to impose constraints on the gradient of the flux functions to minimise the oscillation 

across shocks. A fine grid numerical model was used to capture small-scale fingers. 

Longitudinal dispersion increases the growth of instabilities because it extends the mixing 

zone, which reduces the effectiveness of surfactant floods. On the other hand, transverse 

dispersion dampens the instabilities and increases the effectiveness of the displacement.  

The alternative to inaccurate predictions is to build better simulators to address the limitations 

of traditional numerical simulators, but the question becomes how do we achieve it. Patacchini 

et al. (2014) developed a four-fluid-phase, fully implicit simulation for surfactant flooding. The 

authors considered numerical dispersion and nonlinear convergence to show that the time step 

length can be much higher than in IMPES/IMPEC codes without generating excessive 

dispersion. Furthermore, they ensured the four-phase equilibrium did not degrade the numerical 

performance. Pulse-like behaviour, also called oscillations, can appear on the water cut versus 

pore volume injected plots, resulting from numerical effects. The oscillation period was 

observed and reported as not dependent on the time step length. However, the oscillations were 

equal to the time necessary for the microemulsion front to cross a grid block. They reported 

that the oscillations are difficult to understand physically and suggested that they are caused by 

the relative permeability model being discontinuous at phase transitions. We wrote a similar 

finding, further evaluating the magnitude of the oscillations on the solution accuracy and 

methods to limit its impact in chapter 3 of this report.   
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Keshtkar et al. (2016) studied a surfactant compositional flood model for three components 

(water, oil and surfactant) and two-phase flow (aqueous and oleic). Like the previous author, 

the governing equations were solved by finite differences using a procedure implicit in 

pressure. However, they solved saturation in an explicit process. The one-dimensional 

numerical model was configured with 20 and 100 grid blocks to validate against CMG 

simulation and Buckley-Leverett theory. The authors did not account for the numerical 

dispersion effect when using the coarse grid model, which could have influenced the solution 

deviation at the frontal saturation of water in the horizontal core sample. However, the average 

water saturation was the same in both models and the theory. Kamyabi et al. (2015) presented 

the importance of numerical dispersion to minimise and remove solution deviations. Mesh 

quality and independency were considered when iterating the numerical simulation to prevent 

solution deviation. The methodology is not replicable in similar studies to achieve the best 

mesh size for simulation, which is essential considering an open-source finite volume method 

(FVM) software was used. Allowing other users to help improve the scripts to its code. 

Lotfollahi et al. (2015) discretise the flow equations using a block-centred finite difference 

method to improve the accuracy of the highly nonlinear chemical flooding process. The 

solution scheme uses IMPEC-analogous to IMPES (implicit pressure, explicit saturation, and 

concentration). In addition, a flux limiter that is Total Variation Diminishing (TVD) increases 

the stability of the higher-order finite difference method to develop a hybrid black-oil reservoir 

simulator for surfactant EOR. Rossen and Boeije (2014) improved sweep in miscible and 

immiscible surfactant-alternating-gas foam processes, dependent on foam behaviour at very 

low injected water fraction. They showed how to use the fractional flow plots to fit foam model 

parameters to steady-state foam core flood data. The model was used to predict SAG 

displacement using the CMG STARS local equilibrium foam model. Therefore, accurate 

measurements of water saturation in experiments help produce a reliable permeability function, 

which is a key to upscaling data. Druetta et al. (2017) developed a numerical simulator 

programmed with MathWorks in MATLAB to solve the nonlinear system of equations for 

surfactant flooding for multidimensional reservoir models for two-phase flow and three 

components. The author reported the presence of numerical instabilities in the water/oil flow 

rates and the water fractional flow. A non-iterative IMPES method was used to change 

parameters simultaneously for time and spatial steps. The courant-Friedrich-Lewy condition 

was suggested for relating time and spatial steps to obtain production values without numerical 

oscillations and for accuracy purposes. The numerical tests conducted to ascertain the influence 



33 

 

of the oscillations differs from our approach, which used the inversion method to evaluate the 

numerical effects.  

Differentiating between the physical and "numeric" instabilities for unstable flow is crucial for 

applying an appropriate flow modelling strategy to obtain accurate predictions. Sesini et al. 

(2010) examined homogeneous and radial porous media while observing complex nonlinear 

viscous fingering for both cases. The enhanced stability around the moving front was achieved 

by discretising the pressure equation by the Galerkin method and improving the numerical 

evaluation of Darcy's velocity using a post-processing scheme. This finding presented the 

possibility for numerical problems through methods for solving the complex partial differential 

equation governing the displacement process.  

These numerical problems are remarkably different between 2D grid in the XY direction and 

3D grid, primarily due to gravity computation in the spatial domain. Tchelepi and Orr (1994) 

found that the surfactant displacement process in 2D and 3D simulation recovery mechanisms 

were similar when neglecting gravity segregation. Farajzadeh et al. (2016) studied viscous 

fingering in surfactant alternating gas foam and observed instabilities at the displacement front. 

The magnitude of the instabilities decreases as grid resolution increases, conducted with an 

increase in diffusion and inclusion of capillary pressure. The authors used a coarse grid and 

concluded that based on the relationship between the formation of viscous fingers and these 

factors, viscous fingering is not a numerical concept but rather a representation of the ongoing 

physical procedures. 

On the contrary, the author also could not determine from the study to what extent the 

simulation of fingering reflects numerical artefacts at the front. The numerical artefact induced 

an abrupt dip caused by minimum mobility at the leading edge of the foam front, even though 

the author did not report this as a problem to the simulation. Conversely, Luo et al. (2017) 

reported sizes of many grid blocks are more significant than the wavelength of viscous fingers, 

and microscopic fingers are not often captured in reservoir simulation. To remedy this shortfall, 

the authors present a model to upscale and capture the effects of viscous fingering in water and 

polymer flood for heterogeneous and homogeneous systems. The model identifies three distinct 

flow regions: the two-phase flow region, oil single-phase flow and bypassed oil region giving 

the adequate flow of these regions and then the overall oil recovery as a function of these flows. 
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Although the behaviour of fingers in porous media with varying aspect ratios was either 

ignored in earlier simulation studies or suggested not to have any effect on viscous fingering. 

Moortgat (2016) combines the effect of viscous and gravitational fingering in compositional 

models in two and three dimensions to evaluate the instabilities. Then, the effect of strong 

viscous instabilities using high Peclet numbers associated with large-scale models to predict 

diffusive timescale and the contribution to the degree of fingering. In addition, mechanical 

dispersion and flow rates for high Peclet numbers were observed not to affect fingers. The 

degree of fingering was also not dependent on the domain aspect ratio before the breakthrough. 

Other conditions examined were formation heterogeneity, gravity effects and relative 

permeabilities. Therefore, fingers in the multiphase flow is profoundly different from miscible 

conditions and upscaling techniques used for the latter case were unlikely to be generalisable 

to the former. 

Hamid et al. (2018) investigated the potential sources of inadequacies and the difficulties in 

modelling and simulating early time growth of viscous fingering. The authors used truncation 

error and a numerical scheme to capture the impact of the instabilities on simulation results. 

The size of defined elements (grid size) was changed, and there was a corresponding change 

in longitudinal numerical diffusivity, which agrees with the Taylor series analysis. However, 

the apparent numerical transverse diffusivity is much lower than the numerical longitudinal 

diffusivity. This method simplifies the modelling of viscous fingering and improves precision 

for immiscible displacement. 

Hamid and Muggeridge (2018) further improved on the previous article to present the impact 

of the aspect ratio of up to 30:1 on the growth rate of viscous fingering using high-resolution 

numerical simulation. The numerical tests show that physical dispersion dominates over 

numerical diffusion. Moreover, traditional empirical models cannot correctly capture the 

average behaviour of fingering phenomena in high aspect ratio systems because they assume 

linear finger growth depending on time. It was observed that in the field-scale model, one finger 

dominated displacement and was observed to grow with the square root of time rather than 

linearly. The single dominant finger tends to split over time while the length of the solvent oil 

interface grows linearly. After which, one finger again dominates and grows with the square 

root of time. The authors showed that an altered Peclet number could be used to assess if these 

empirical models are no longer applicable.  
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The disparity in viscosity between injected surfactant and polymer in a five-spot set-up for 

water and oil-wet reservoirs was studied using a numerical method (Samala et al., 2019). 

Viscous fingering is a function of the wettability of the reservoir, microemulsion phase 

behaviour and chemical concentration. Hence, viscous fingering can be reduced by adjusting 

the injection rate to reduce the ratio of viscous to capillary forces and the concentration of the 

injected surfactant and polymer to alter mobility. Short injection duration and a reduced 

polymer concentration would reduce the viscous instabilities and increase oil recovery. These 

works were restricted to the immiscible flow system.   

Sheng (2018) used a numerical simulation approach to analyse the performance of chemical 

additives. However, the relationship between the oil recovery factor and pressure gradient from 

surfactant flooding models was inconsistent, which may be influenced by numerical errors in 

simulation. The solution's inconsistencies produced too low oil recovery factors that may 

originate from the change of wettability effect, which is known to play a crucial role in the 

modelling process. Druetta and Picchioni (2019) implemented a high-order numerical scheme 

coupled with TVD flux limiter functions and IMPEC (implicit pressure and explicit 

concentration with a second-order finite scheme) to improve the previously developed 

numerical simulator. The approach reduces the impact of numerical errors on the surfactant 

flooding solution. However, the author did not present a comparative study of how the 

numerical dispersion reduces with changes to grid configuration. Kayode et al. (2017) reported 

that the numerical problem was due to experimentally derived relative permeability data whose 

conditions of measurement in the laboratory are not consistent with the reality of fluid flow in 

porous media. The author finalised the choice of simulation grid block size as the reason for 

discrepancies similar to past reports. 

Flow instability mechanism may vary on a case-by-case basis and, in most cases, associated 

with the viscosity difference between the displacing and displaced fluid. The appearance of the 

finger effect causes early breakthrough of the displacing fluid with lower viscosity (surfactant 

solution), reducing oil recovery. Sorbie et al. (2020) explained that the appearance of viscous 

fingering has a physical origin and should not be considered in the numerical experiment as 

solely because of numerical effects. Notwithstanding, numerical dispersion can dominate and 

reduce the finger effect in the field scale model based on some instances of grid block 

configuration. When core flood scale is considered, diffusion and dispersion tend to be minor 

when a refined grid is applied for simulation. In fact, such a physical process should be 
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investigated unless the smoothened-out flow behaviour is representative. The propagation of 

viscous fingering in miscible flooding is dependent on the reservoir geometry, viscosity ratio 

and dispersion for 2D displacements (Hamid & Muggeridge, 2018). 

Many authors have treated the numerical dispersion problem due to numerical schemes used 

in reservoir simulators, proposing a new numerical approximation of the partial differential 

equations. Other authors reported a problem with mobility weighting between the upstream 

and downstream grid blocks and various weighting approaches (Al-Ibadi et al., 2021a). 

Physical appropriateness and numerical stability are factors considered in the selection of 

unknowns. Therefore, engineers must explore tools and techniques to model the physical and 

numerical phenomena and solve the resulting sharply changing fluid interfaces associated with 

surfactant and miscible flood techniques to improve the field's economic viability. 

2.4. Differences among Numerical methods  

Several authors (Pope & Nelson, 1978; Nelson & Pope, 1977; Pope, 1980; Buckley & Leverett, 

1942; Fanchi, 1983; Lake, 1989; Lantz, 1970; Al-Sofi and Blunt 2010) have conducted 

analytical and numerical studies on surfactant flooding systems, which led to the development 

of a variety of academic and commercial simulators. One of these simulators is the University 

of Texas Chemical flooding technology, also known as UTCHEM, well-known for capturing 

nearly all-important mechanisms such as convection, dispersion, diffusion, dilution, interfacial 

tension, adsorption, effective permeability, capillary force, cation exchange, viscosity, phase 

density, physical and temperature properties. However, UTCHEM is limited to small field-

scale studies due to a slow computation algorithm with possible convergence problems and a 

lack of geological feature modelling.  

The fundamental surfactant-related mechanism reduces the interfacial tension between the oil 

and water phases to recover residual oil. The Schlumberger Eclipse software models a two-

phase flow behaviour with viscosity increase and interfacial tension reduction as functions of 

surfactant concentration in the water/aqueous phase. The limitation of the Eclipse black oil 

simulator is that microemulsions are not part of the modelling process. Also, the capillary 

number that determines the recovery of residual saturation uses the capillary desaturation 

curve, which depends on the rock type and not the phase.  

The Computer Modelling Group's STARS is commercial software with capability like that of 

UTCHEM but on a larger field scale. It models the three types of microemulsions and four-
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partition potential to compute the multiphase flow process. The modelling of the surfactant 

process may require modifying flow parameters such as relative permeabilities to reduce 

residual oil saturation. Therefore, from a theoretical point of view, it is vital to formulate 

Winsor type II (-) (Oil-in-water), Type II (+) (water-in-oil), and Type III (three-phase 

microemulsion) systems in a simulator. However, the three-phase microemulsion may form at 

a low surfactant concentration and volume and can be negligible. 

Furthermore, the injected concentration in the aqueous phase is very low in the pilot and field 

application of the surfactant flooding process. Therefore, a simple two-phase approximation of 

the surfactant flood system to render the complex non-linear partial differential equations will 

be acceptable for field-scale studies. In this study, the Eclipse simulator was considered suitable 

for the two-phase approximation for field-scale models to investigate the surfactant 

displacement solution accuracy and numerical and physical stability. 

2.5. Inversion Methods  

Analytical methods and numerical simulation of surfactant flooding processes can be useful in 

interpreting core flood experiments and tuning the design parameters to evaluate the potential 

for oil recovery. Also, one-dimensional laboratory core flooding experiments can be used to 

estimate permeability-saturation dependent information used in both analytical and numerical 

methods, as reported in the previous sections. Notwithstanding, the data obtained in the flow 

modelling during the experiment may be informative to varying degrees, which cases exist 

when the relative permeability of filtering components cannot be obtained (Glushkov et al., 

2018). Hence, reliable relative permeability curves of surfactant flooding are essential for 

history matching and reservoir performance evaluation.  

Many researchers have leveraged analytical and numerical methods for calculating the relative 

permeability curves from the results of the core flooding experiment. Johnson et al. (1959) 

proposed an analytical method named the Johnson-Bossler-Naumann (JBN) for calculating the 

relative permeabilities curve. A graphical method was developed by Jones and Roszelle (1978), 

which is equivalent to the JBN method with a more accurate estimation of the relative 

permeability curves. The JBN method's drawbacks are described in the report by Lenormand 

and Lenormand (2016).  

Inversion methods for estimating relative permeability curves that surpass the one-step 

approach (value of speed or injection pressure) have been developed. Like, Sun and Mohanty 
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(2005) used the genetic algorithm to optimise the objective function to prevent the calculation 

of the Jacobian matrix and gradient in the Newton method. Using the Kalman filter (EnKF) 

method, Li et al. (2012) and Zang et al. (2016) obtained the relative permeability curves from 

matching reservoir production data. Fayazi et al. (2016) built a genetic algorithm to accurately 

determine the pseudo relative permeability curve for coarse grid models in reservoir simulation. 

In contrast, Liu et al. (2018) developed a numerical inversion method using the Levenberg-

Marquardt algorithm combined with a polymer flooding model to capture the physical 

properties of the polymer. Our approach differs from these reports.  

In recent studies, researchers have leveraged automatic history matching and inversion 

methods to determine relative permeability curves. In the literature, characterisation and curve 

fitting for the inverted relative permeability curve can be achieved with various approaches and 

are not limited to the cubic-spline model, artificial neural network, least-squares method-based 

approach, and regression-based method (Liu et al., 2018). Then the approach can be combined 

with an optimisation algorithm to conduct the automatic history matching and improve the 

accuracy and speed of the inversion process.  

We also observed that such inversion methods for miscible surfactant floods were lacking in 

the literature. As a result, the similarities and differences between the miscible and immiscible 

two-phase inversed relative permeability curves have not been reported. These are relevant for 

evaluating results obtained from experimental/observed data for new surfactant mixtures with 

improved recovery mechanisms. Our approach considers the combination of analytical and 

numerical methods embedded with optimisation algorithm properties for modelling the 

multiphase fluid flow process and the reverse problem. This method will allow us to estimate 

the inverted relative permeability in different measurements and even in cases when classical 

methods is restricted. 
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Chapter 3:  Numerical Effects on The Simulation of 

Surfactant Flooding for Enhanced Oil Recovery 
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Chapter 3 is the author’s published work (Akinyele & Stephen, 2022a).  

Chapter 3 introduces the study of numerical effects on the accurate simulation of surfactant 

flooding for enhanced oil recovery, which is a published article. We used a commercial black 

oil reservoir simulator to model surfactant flooding and to show how the appearance of 

numerical effects can lead to unreliable forecasts and evaluations. The simulation could provide 

approximate solutions to systems of nonlinear partial differential equations describing the 

physical behaviour of surfactant flooding, which combines multiphase flow in porous media 

with surfactant transport. However, the approximations will be discretized in time and space, 

leading to spurious pulses or deviations in the model outcome.  

In this article, the derivation of the analytical solution for the surfactant model was described 

for specific conditions to analyze the water fractional flow curve with changes to viscosity and 

miscibility. Before comparing the analytical and numerical solutions, we derived and presented 

the decoupled implicit scheme equation without physical dispersion. Then, the equation 

evaluates the numerical problems for the simulation study. After which, we described the 

modelling process for studying the adsorption phenomena for surfactant flooding.  

Once the description of the simulation model was complete, we investigated the flow behaviour 

for surfactant flooding in a field-scale dimension. Then, we characterized the grid models into 

four categories: coarse, base case, refined and high-resolution models for the tests. The 

characterization helps comparative study for changes to cell size and time step and the 

properties of the surfactant. Moreover, how it affects miscibility and flow modelling. However, 

the principal aim of the study was to understand pulse-like behaviour in the water bank to 

identify their cause and associated conditions.  

The results show the modelling as the fluid passes from the injector well grid cell to the near-

production well grid cell as it changes with the pore volume injected. A sharp change in relative 

permeability induces the pulses as the interfacial tension changes. Also, the frequency of the 

pulses was studied as it changes on the water bank saturation with varying time steps. 

Furthermore, pulses diminished when adsorption ranged from 0.0002kg/kg to 0.0005kg/kg and 

presented using the water fractional flow analysis. The pulses were absent for a high-resolution 

model of Peclet number equal to 2000. The growth or dampening of these pulses may vary 

from case-to-case basis but result from the combined impact of mobility, numerical dispersion, 

interfacial tension, and miscibility. Oil recovery under the numerical problems reduced the 

performance of the flood because of the substantial amounts of pulses produced. Thus, 



41 

 

improving existing models and using appropriate guidelines to stop oscillations and remove 

errors is essential. Another possible explanation for pulses and errors can be the “bugs”.  Hence, 

model validation and verification are used in the corrective process to find the errors within 

reservoir simulations. Debugging a model is considered as an afterthought. Simulation 

modelling is programming, using high level tools for a theoretical approach of the physical 

model.  Commercial reservoir simulation software as used in this article also contains several 

debugging tools but much of the actual code is hidden from the end user. Therefore, adapting 

techniques when analysing the numerical dispersion that involves debugging needs to be 

considered to improve programming steps that can minimize the possibility of “bugs” and 

locate modelling errors more efficiently.  

How can we develop a system for accurate flow modelling in a multidimensional grid model? 

How does the numerical dispersion affect the flow behaviour in 2D models? For unstable flow, 

can we accurately differentiate between numerical and physical dispersion? This analysis will 

be discussed in chapter 4. This process helps us understand the basic data structures and 

algorithms of the simulation model and build models that are easily understood by others and 

even the model developer. History matching is an aspect of reservoir simulation that reduces 

uncertainty from such models and improve production forecast. The question becomes: can we 

build an inversion method that is an inexpensive alternative to full simulation? Scalable and 

open source to help use the software and reservoir engineering community to prevent bugs and 

find modelling errors. The methodology of the inversion method will be presented in chapter 

5. After which the simulation model will be tested for styled laboratory core flood experiments 

and the results will be discussed in chapter 6 with field scale examples.  

Contribution  

The candidate developed the research idea and methodology. First, he used analytical methods 

as an alternative for evaluating the magnitude of pulses in numerical simulation. Second, he 

observed the numerical accuracy problems identified for models with a typical cell size used 

in well-scale models. Third, he examined the frequencies of the pulses for surfactant flood in 

miscible flow conditions. Lastly, He wrote up the paper, and Prof. Karl Stephen supervised all 

the work. 
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3.1. Introduction 

An oil field development may be subdivided into three stages: appraisal, mature and late field 

development for oil recovery.  Unfortunately, most of the world’s oil fields have reached, or 

are approaching, the late field development phase that is a few years of the total recoverable 

field oil production before abandonment. At this point, secondary recovery has been exhausted 

and production may be considered as being no longer economically viable. Therefore, 

companies have explored alternative methods which are also referred to as tertiary, whereby 

oil is recovered by the injection of substances not naturally found in the petroleum reservoir. 

Chemical flooding is an important example of such a method. Chemical flooding techniques 

are often applied to alter fluid mobility and enhances the efficiency of the flood. This process 

is considered because conventional or secondary flood techniques have the potential to recover 

a third of the initial oil-in-place, leaving residual or by-passed oil in the reservoir.  Therefore, 

it is crucial for companies to explore tools that are capable of modelling the physical 

phenomena as well as solving the resulting sharply changing fluid interfaces associated with 

such techniques to improve the field economic viability (Sun et al., 2014; Abhishek et al., 

2015).  

Experimental and analytical modelling approaches have been used to formulate laws and 

correlations for chemical flooding techniques, which are used to predict fluid flow and frontal 

advances through a porous medium. Numerical modelling approaches use a gridded format 

that can accommodate the reservoir description. This is integrated with nonlinear, multiphase 

partial differential flow equations which cannot be solved by an analytical approach, except in 

limiting circumstances. Numerical models have been widely used as an inexpensive alternative 

to experimental or physical modelling to assist with decision making through reservoir 

simulators. Simulations help predict and optimize recovery from petroleum reservoirs. Over 

the years, commercial simulators have utilized proven computational advancements to 

combine systems of mathematical equations to describe the process of enhanced oil recovery 

with surfactant flooding, which is the focus of this study. Numerical stability and accuracy of 

the surfactant flood model are very important to accurately compare recovery techniques for 

oil production. Today simulations are used on a daily basis, with a degree of dependability of 

the solution.  

The simulators solve systems of nonlinear partial differential equations used to define the 

physical behaviors of surfactant flooding and recovery process. The simulations approximate 
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the solutions by discretization of time and space which can lead to spurious oscillations, 

instabilities, or deviations in the model outcome (Druetta et al., 2017). The results may be used 

to predict or optimize oil production, so inaccuracies in the model could lead to false 

predictions, which can harm the economic valuation. Similar potential numerical issues may 

be encountered using the commercial simulator, which was documented in the simulator 

technical manual (Schlumberger, 2019) with local grid refinements leading to numerical 

differences between the coarse and highly refined cases. Nevertheless, modelling and 

simulations are necessary tools in evaluating the practical application of surfactant flooding 

and potential implementation along with other chemicals.  

Analytical methods have been used to compliment numerical simulation. Welge (1952) built 

on fractional-flow theory and presented an analytical method for calculating average saturation 

and oil recovery performance by gas flooding in a one-dimensional, three-component, two-

phase system. Such analytical solutions can be used to study linear displacement for accuracy 

purposes. These approaches have been extended to waterfloods as well as chemical floods 

including polymer and surfactant methods (Pope & Nelson, 1978). Moreover, stability analysis 

can be used to ascertain if the numerical simulation result is reliable or requires further study 

to identify any underlying problems. Therefore, we define a solution as being unstable in the 

usual way such that a perturbation causes errors or inaccuracies that grow in time.  

In a recent study by Paula et al., (2010), instabilities of the physical process were reported for 

miscible displacement at high mobility ratios which the effects were shown to depend on 

dispersion and viscosity. The paper focused on viscous fingering patterns in two dimensional 

flow and discretization of the pressure equation to improve numerical solution, which differs 

to our approach. However, the existence of such complicated behaviour requires that we are 

aware of potential numerical effects. Keshtkar et al., (2016) identified certain disparities 

between analytical and numerical findings regarding surfactant compositional flooding. The 

inconsistencies were attributed to alterations in the capillary number that resulted from a 

partition coefficient greater than unity in the CMG simulator. Furthermore, the authors 

emphasized the significance of validating the solution using a black oil simulator and a high-

resolution grid. It is worth noting that their study employed a maximum of 100 grid-blocks, 

which can be deemed a coarse model. Our current study aims to address this issue by further 

investigating the use of black oil simulators and high-resolution grids in the context of 

surfactant flooding for enhanced oil recovery. In particular, our study seeks to provide a more 



44 

 

comprehensive understanding of the impact of grid resolution on the accuracy of numerical 

simulations of surfactant flooding. We will explore the effectiveness of using higher resolution 

grids in comparison to the coarse grid models used in previous studies, such as the one 

conducted by Keshtkar et al., (2016). Additionally, we will investigate the use of different 

partition coefficients in Eclipse simulator to determine the impact on the accuracy of the 

simulation results. By conducting a thorough analysis of these factors, we aim to contribute to 

the development of more reliable and accurate modelling for surfactant flooding, which can 

ultimately enhance the efficiency of enhanced oil recovery processes. To control 

inconsistencies caused by numerical dispersion for miscible and near miscible flow, AlSofi and 

Blunt (2012) suggested a physical dispersion-reduction scheme based on segregation-in-flow 

within a grid block as an alternative to implementing a higher-order discretization method. 

They proposed 50 grid blocks would be a sufficient alternative to predict oil production 

accurately. On the other hand, Connolly and Johns (2016) used a high-resolution numerical 

scheme for miscible flow in 1D models to show the adverse effect of numerical dispersion, that 

caused mixing associated with permeability variation. The authors researched miscible flow 

but did not consider surfactant flood and its properties effect on the numerical scheme.  

Lotfollahi et al. (2015) formulated a black-oil model capable of modelling surfactant 

microemulsion phase behaviour in the University of Texas Chemical Flood Simulator 

(UTCHEM) to improve the numerical accuracy of non-linear chemical processes. The new 

model was validated using low-tension gas flooding with a surfactant-alternating gas process. 

This study ignored the potential for perturbations resulting in erroneous instabilities which 

should be considered for the black oil model.  

In low salinity water flooding, the change between oil-wet (high salinity) and water-wet (low 

salinity) relative permeability curves have been reported to cause inconsistencies between the 

numerical and analytical solutions which took the form of pulses (Al-Ibadi et al., 2018; 2021a; 

2021b; Adibhatla & Mohanty, 2008). These unphysical effects were observed in one-

dimensional models of homogeneous reservoirs. In this study, we extend the method of Al-

Ibadi et al. (2021b) to model a surfactant miscible flood. We also show how the magnitude of 

the pulses can be examined using the fractional-flow theory as a function of adsorption which 

was neglected in the paper.  

In this paper, we discuss physical and numerical models of the miscible surfactant flood 

enhanced oil recovery (EOR) processes. We will examine the linear stability and the varying 
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adsorption effect on the numerical scheme is also displayed. Then, we focus on the causes of 

perturbations, and report observations determined using the analytical approach. 

3.2. Surfactant mechanism 

Surfactant flooding has been studied in this paper and several mechanisms of recovery have 

been reported in the literature for over 40 years (Hirasaki et al., 2011; Pratt & West, 1972; 

Farrell et al., 1984; Reppert et al., 1990; Maerker & Gale, 1992; Green & Willhite, 1998; 

Iglauer et al., 2010; Sheng 2015).  The surfactant molecule has one end that is oleophilic and 

the other hydrophilic. The key mechanism therefore involves the fluid-fluid interface (oil and 

the displacing fluid), with the aim of reducing interfacial tension (IFT) and altering the capillary 

forces which influences the mobility of bypassed oil in the porous media. Oil and water are 

initially immiscible but the reduced IFT makes the fluids miscible. This helps displace the 

residual oil, normally trapped at the pore scale. These effects are expressed through the 

capillary number (𝑁𝑐), which is the dimensionless ratio of viscous to capillary forces to 

improve sweep and displacement efficiency. The relationship between the capillary number 

and oil-water IFT is given as follows (Green & Willhite, 1998): 

𝑁𝑐 =  𝑣𝜇𝑤 𝐼𝐹𝑇𝑜𝑤⁄           (3.1) 

 

where 𝑣 is the interstitial velocity of water, 𝜇𝑤 is the aqueous phase viscosity and 𝐼𝐹𝑇𝑜𝑤 is the 

oil-water interfacial tension also referred to as IFT.  

In water flooding, the 𝑁𝑐 is usually 10−9 to 10−7. The surfactant chemical interaction leads to 

a decrease in IFT and hence an increase in 𝑁𝑐. If 𝑁𝑐  reaches 10−3 then nearly 100% of oil 

initial in place may be recovered. This occurs when the surfactant reduces the oil-water IFT 

from typical levels of 20-50 mN/m, down to 10−2 to 10−3 mN/m.  

The decrease in IFT has been shown to alter relative permeability curves in core floods. The 

fluids are immiscible for waterflooding but at infinite capillary number, they become miscible 

and the relative permeability curves are linear. Improved oil recovery is usually observed when 

the capillary number exceeds  10−5.5 would not improve recovery (Xu et al., 2011). These 

effects have been incorporated into the simulation model to accurately capture the influence of 

IFT reduction on enhanced oil recovery processes. 
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In order to improve the accuracy of simulation models, further investigation is required to 

determine the optimal capillary number for surfactant flooding. This requires a thorough 

understanding of the relationship between capillary number, IFT, and relative permeability. 

Moreover, it is important to consider the effect of different surfactant concentrations on the 

capillary number and IFT reduction. The use of modelling techniques can aid in the 

investigation of these relationships by allowing for precise control of flow conditions and the 

monitoring of interfacial phenomena. By incorporating insights gained from such 

investigations into numerical simulation models, we can further refine and improve the 

accuracy of surfactant flooding for enhanced oil recovery. 

3.3. Modelling of surfactant flooding 

Numerical simulation is a powerful tool that can accurately model the behaviour of surfactants 

in a reservoir to reduce the interfacial tension between the oil and water phases, thereby 

increasing oil recovery, but it is dependent on the flow equations used in the simulation. These 

equations include the advection and diffusion terms, which determine the movement of fluids 

and surfactants in response to pressure and concentration gradients, respectively. Other terms 

such as dispersion and gravity can also impact the modelling of surfactant flooding, leading to 

reduced effectiveness and uneven distribution. Accurately modelling the complex relationships 

between capillary number, interfacial tension, and relative permeability is crucial for 

optimizing surfactant flooding processes, and our research has focused on developing more 

advanced simulation techniques to achieve this. This study has direct implications for the flow 

equations used in numerical simulation and provides insight into how these equations should 

be formulated to accurately capture the physics of the process. The accuracy of numerical 

simulation of surfactant flooding can be further improved by taking into account the effects of 

temperature and salinity on the behaviour of surfactants in the reservoir, but this is not 

considered in this study.  

Changes to the relative permeability curve as a function of IFT and Nc are modelled by 

interpolating from a set of input relative permeability curves for waterflooding under 

immiscible conditions to straight line curves for fully miscible flow (Schlumberger, 2019). 

Figure 3-1 illustrates the concept of miscible and immiscible flow in a reservoir. Miscible flow 

occurs when the injected fluid, which typically has a low interfacial tension between the oil 

and water phases, mixes with the oil to form a single phase. This significantly reduces the 

amount of bypassed oil in the reservoir. On the other hand, immiscible flow refers to the 
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situation where the water and oil phases cannot be mixed due to their high interfacial tension. 

The waterflood relative permeability curves are Kro (orange) for oil and Krw (blue) for water. At 

infinite Nc, the straight-line curves are used (Krw_surf, grey and Kro_surf, yellow, for water and oil 

respectively). Since the relationship between surfactant concentration and IFT calculation was 

unveiled (Healy et al., 1976; Healy & Reed, 1973), surfactant transport models have been 

widely used in both analytical and numerical models for surfactant flooding to quantitatively 

analyze the mechanisms (Pope & Nelson, 1978; Nelson & Pope, 1977).  

 

 

 

 

 

 

 

 

Figure 3-1: Characteristic set of miscible and immiscible relative permeability curves of the 

oil-water and surfactant influenced system.  

The surfactant concentration Co influences the change in oil-water IFT (Figure 3-2), which 

causes a switch in the relative permeability curves. The immiscible set of relative 

permeabilities curves, denoted by Krw, and Kro, are applied in the absence of surfactant. With 

the influence of surfactant, the miscible relative permeabilities curves, denoted by Krw_surf, and 

Kro_surf are applied. Along with the switch from immiscible to miscible relative permeability 

curves, the surfactant contributes to the combined effect of the IFT, and aqueous phase 

viscosity. Firstly, the IFT is calculated using a function equivalent to that shown in Figure 3-2. 

The IFTow is initially at 0.05 N/m when there was no surfactant concentration in the solution. 

The critical micelle concentration (CMC) is achieved at the lowest IFTows value with surfactant 

concentration of 1kg/sm³. Once the CMC is achieved, the IFT remains constant with an 
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increase in surfactant concentration. Meanwhile, the aqueous phase viscosity increases linearly 

with the surfactant concentration to the highest value of 5cP.   

The relative permeability curves reflect the miscibility as a function of capillary number 

interpolation is controlled by the parameter Fkr. This term is calculated from the logarithm 

(base 10) of the capillary number and can be used to define an instantaneous switch between 

the set of relative permeability curves. However, this instantaneous switch may lead to 

convergence problems, slowing the calculations and even produces numerical effects in form 

of oscillations and pulses in the solution. Consequently, a lower threshold of Fkr equivalent to 

zero, results in the immiscible flow while the upper threshold of Fkr, equal to one, results in 

miscible displacement. In between these limits, the curves in Figure 3-1 are interpolated using 

Fkr as a linear weighting in relation to the two limits.  

 

 

Figure 3-2: Oil-water IFT at several surfactant concentration C, showing low oil-water IFT 

achieved with a low surfactant concentration (Schlumberger, 2019).  
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It is very important for the prediction of surfactant flooding that the fronts are resolved 

accurately, which can be studied through the fractional flow theory (Pope, 1980; Buckley & 

Leverett, 1942). We illustrate the fractional flow function 𝐹𝑤(𝑆𝑤, 𝐶,  𝐹𝐾𝑟)  for certain 

combinations of surfactant concentration, C, and 𝐹𝐾𝑟  written as (also plotted in Figure 3-3): 

 

𝐹𝑤(𝑆𝑤, 𝐶, 𝐹𝐾𝑟) = {

𝐹𝑤(𝑆𝑤, 0, 0), 𝑖𝑓 𝐶 = 0  and 𝐹𝐾𝑟 =  0

𝐹𝑤(𝑆𝑤, 1, 0),   𝑖𝑓 𝐶 = 1  and  𝐹𝐾𝑟  =  0

𝐹𝑤(𝑆𝑤, 𝐶𝑜 , 1), 𝑖𝑓 𝐶 = 𝐶𝑜 and 𝐹𝐾𝑟  =  1

       (3.2) 

 

where 𝐶𝑜 is the maximum concentration of surfactant and is equivalent to that of the injected 

water. 𝐹𝑤(𝑆𝑤, 0, 0) is the fractional flow function for a normal waterflood, 𝐹𝑤(𝑆𝑤, 1, 0) is the 

fractional flow as if the surfactant concentration has reached 1kg/Sm3 without any change from 

the immiscible waterflood relative permeability behavior. Therefore, 𝐹𝑤(𝑆𝑤, 0, 0),  

𝐹𝑤(𝑆𝑤, 1, 0) and 𝐹𝑤(𝑆𝑤, 𝐶𝑜 , 1) are the fractional flow functions given by  

 

𝐹𝑤(𝑆𝑤, 0, 0) =
𝐾𝑟𝑤(𝑆𝑤)

𝐾𝑟𝑤(𝑆𝑤)+((
µ𝑤
µ𝑜

)∗𝐾𝑟𝑜(𝑆𝑤))

        (3.3) 

 

𝐹𝑤(𝑆𝑤, 1, 0) =
𝐾𝑟𝑤(𝑆𝑤)

𝐾𝑟𝑤(𝑆𝑤)+((
µ𝑤(1)

µ𝑜
)∗𝐾𝑟𝑜(𝑆𝑤))

        (3.4) 

 

𝐹𝑤(𝑆𝑤, 𝐶𝑜 , 1) =
𝐾𝑟𝑤_𝑠𝑢𝑟𝑓(𝑆𝑤)

𝐾𝑟𝑤_𝑠𝑢𝑟𝑓(𝑆𝑤) +((
µ𝑤(𝐶𝑜)

µ𝑜
)∗𝐾𝑟𝑜_𝑠𝑢𝑟𝑓(𝑆𝑤))  

       (3.5) 

 

The surfactant solution is modelled as a single solute dissolved in water and alters the viscosity, 

µ𝑤, to stabilize the flood front and improve sweep efficiency. The influence of the surfactant 

concentration may be examined via the fractional flow curves (See Figure 3-3). The value of 
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the surfactant adsorption can be observed through the constant Di, which is achieved through 

the use of the Welge tangent on the fractional flow curve as seen in Figure 3-3 (Pope & Nelson, 

1978).  

Fractional flow theory can be used to represent flow in a 1-D homogenous reservoir, neglecting 

the effects of gravity, capillary pressure, and physical dispersion (Buckley & Leverett, 1942). 

This can provide a mathematical prediction of the physical transport of fluids and concentration 

through the porous medium, including the chemical reaction on the rock surface. We 

acknowledge this analytical solution will be acceptable for coarse-scale models in which the 

pressure difference from the viscous forces is usually much larger than from capillary forces, 

owing to high flow rates.  

 

 

Figure 3-3: Fractional flow curves based on the relative permeability curves (See Fig. 2) for 

an immiscible waterflood, Fw(Sw, 0, 0) (blue line), immiscible surfactant flood with viscosity 

increase Fw(Sw, 1, 0) (purple line), miscible Fw(Sw, Co, 1) (orange line) and Welge tangent 

(−Di, 0)  applied to the surfactant fractional flow curve (red line). In the above example Di = -

0.01. 
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Researchers (Nelson & Pope, 1977; Pope, 1980; Buckley & Leverett, 1942; Fanchi, 1983; 

Lake, 1989; Al-Ibadi et al., 2019; Lantz, 1970) have examined the dispersion of the surfactant 

solute front, involving numerical and physical dispersion at the core scale. However, owing to 

the fact that physical dispersion is ever so often offset by numerical dispersion; the first is 

ignored.  We use the Peclet number to characterize dispersion.  

 

𝑁𝑝𝑒 =
𝑣𝑥

𝐷
           (3.6) 

 

The value of 𝑁𝑝𝑒 ≪ 1 indicates dispersion dominates and advection is negligible. When 𝑁𝑝𝑒 >

10 advection dominates on the other hand and spreading is almost non-existent. If 𝑁𝑝𝑒~1 then 

neither dominates over the other and no approximation to the equation can be justified.  

 D in Eq. 6 is given by: 

 

𝐷 =  𝛼𝑡𝑜𝑡𝑎𝑙 ∗ 𝑣          (3.7) 

 

We assume molecular diffusion to be insignificant in comparison with the dispersion. The total 

dispersivity  𝛼𝑡𝑜𝑡𝑎𝑙  represents a combination of physical and numerical dispersion (Al-Ibadi et 

al., 2018). 

 

𝛼𝑡𝑜𝑡𝑎𝑙 =  𝛼𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 + 𝛼𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙        (3.8) 

 

Where 𝛼𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 is derived from continuous experimentally or field test measurement and to 

be zero for this research. While 𝛼𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 can be estimated by:  

 

𝛼𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 =  (
∆𝑥

2
 ± 

𝑣∆𝑡

2∅
)         (3.9) 
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For grid block sizes ∆𝑥, time step ∆𝑡 and ∅ is porosity and the arithmetic subtraction operator 

(-) applied for Implicit Pressure-Explicit Saturation (IMPES) procedure and addition operator 

(+) for the fully implicit procedure (Fanchi, 1983). The decoupled implicit scheme was used in 

this study such that physical dispersion was neglected. Eqn. 10 can be further simplified for 

the fully implicit Peclet number to obtain (Sorbie & Mackay, 2000): 

 

𝑁𝑝𝑒 =  
𝒙

(
∆𝒙

𝟐
)+ (

𝒗∆𝒕

𝟐∅
)
          (3.10) 

 

𝑁𝑝𝑒 is used to evaluate numerical problems that may arise from the transport calculations due 

to overly large time steps and cell sizes. The numerical effects lead to smeared spatial gradients 

of saturation and concentrations as well as grid orientation effects. The problem results from 

the truncation error in calculating the movement of saturation fronts as if additional physical 

dispersion were present. We will also show that other effects include pulses in fractional flow 

and saturations. Unfortunately, in explicit schemes, instabilities are apparent when the 

combination of ∆𝑥 and ∆𝑡 violates the numerical stability criterion (Fanchi, 1983). These 

instabilities can lead to behaviour not unlike that which we will report. However, it is not our 

contention that we are observing instabilities. 

In the literature (Fanchi, 1983) for a sufficient small time step in which the level of numerical 

dispersion is due to the spatial term, the level of dispersivity inbuilt in the simulator ought to 

be about half of the grid block size. The Courant-Friedrichs-Levy found instability issues due 

to the time step effect, and to mitigate such problems, the Courant condition was derived to 

suggest a formulation for a time step size of each grid cell at a known fluid velocity and cell 

size. We would like to highlight that this condition was derived for an explicit scheme whereas 

this study used a decoupled implicit scheme that appears to have some numerical issues. To 

examine the stability of the numerical solution in the Surfactant flood model, we assume 

Equation.11 as the limit, and to ensure our model is an advection dominated system. The time 

step limit can be given as (Al-Ibadi et al., 2019):  
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∆𝑡𝑀𝑎𝑥 ≤  
∆𝑥

𝑣
            (3.11) 

 

where the  𝑣 is the advection velocity.  

As mentioned earlier, the key mechanism of the surfactant is alteration of interfacial tension, 

influenced by the level of adsorption. The adsorption level makes the process less efficient and 

also alters the Welge tangent points across the fractional flow curve, which influences change 

in the fluid flow behaviour and directly affects the velocities of surfactant induced and 

formation waterfronts. This is incorporated in the numerical modelling approach to impact the 

changes in the concentration distribution and mobilization of residual oil in the reservoir. 

Therefore, it is important to study and test the role of adsorption on the sharpening of the front 

and numerical solutions.  

Modelling the impact of adsorption on the surfactant flood is captured by using a Langmuir-

type isotherm.  Adsorption is linear for small values of surfactant concentration but approaches 

a constant at high values. The analytical adsorption function allows for dependencies of 

adsorption on the rock permeability, salinity, and surfactant concentration (Schlumberger, 

2019): 

 

𝐶𝑎𝑑𝑠 =  
𝑎 𝐶𝑚

1+𝑏𝐶
           (3.12) 

 

𝑎 = (𝑎1 + 𝑎2𝐶𝑠𝑒) (
𝐾𝑟𝑒𝑓

𝐾
)

𝑛

        (3.13) 

 

Where  𝐶𝑎𝑑𝑠  is the rock adsorbed concentration,  𝐶 is the concentration in the solution 

surrounding the rock, 𝑚 is an exponent for concentration dependence,  𝐶𝑠𝑒 is the effective 

salinity for surfactant concentration, 𝐾 is the grid block permeability, 𝐾𝑟𝑒𝑓 is the reference 

permeability, 𝑛  is an exponent for permeability dependence, while 𝑎1, 𝑎2, 𝑏 are adsorption 

coefficient input parameters for the simulation.  The surfactant model range of adsorption can 

be evaluated using the retardation equation:  
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𝑣𝑐𝑖 =
𝑣

𝑅𝑐𝑖
           (3.14) 

 

where 𝑅𝑐𝑖 is the retardation factor, v is the advection velocity of water and  𝑣𝑐𝑖 is the 

concentration velocity. Using the equations above we could evaluate a relationship between 

adsorption and numerical effects. We can use the analytical solution as a baseline to study 

adsorption effects and estimate the numerical effects on 2D and 3D models. 

An algorithm for numerical stability analysis, based on the perturbation method, was developed 

by Druetta et al. (2017) to ensure convergence in a two-phase, three-component system. The 

approach is appropriate for two-dimensional models; however, one must account for the impact 

of the surfactant mechanisms such as how adsorption may influence the precision of the 

solution.  

Using numerical analysis, Al-Ibadi et al., (2018, 2021a, 2021b) reported the propagation of 

pulses within the cells as numerical errors and highlighted the importance of precision for low 

salinity waterflooding. A similar approach is used in those models to switch relative 

permeability curves as salinity is reduced. This can induce a sharp increase of the flow of oil 

from a cell with reduction in water and creates a pulse. Simulation of surfactant flooding is 

dependent on the logarithm of the capillary number, influenced by the ratio of viscous to 

capillary forces and a sharp change to the relative permeability can also be induced.  

Nevertheless, experiments have demonstrated that the synthesis of low surfactant concentration 

with new chemicals can achieve ultra-low IFT values and acceptable adsorption levels for 

EOR.  Therefore, it is necessary to study how this type of flow might cause numerical problems 

in form of pulses that influence incorrect results. The overall goal is to present design 

consideration for surfactants aimed to attain low interfacial tension at low surfactant 

concentration, as well as low adsorption levels on the rock surface to recover bypassed oil 

saturation (Adibhatla & Mohanty, 2008; Akin & Kovscek, 2003). By incorporating the 

knowledge of the physics of surfactant flooding and the relationships between various factors 

affecting oil recovery into the flow equations used in numerical simulation, engineers and 

researchers can improve the accuracy of their models and optimize the surfactant flooding 

process for maximum efficiency. 
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3.4 Description of the simulation model  

We began with a simple homogeneous 1D model solved through the black oil commercial 

simulator (Schlumberger, 2019) to evaluate the flow behaviour of the surfactant flood. The 

dimensions of the reservoir setup are 500m long, 500m wide, and 1.89m thick. The model was 

chosen to provide the simplest possible illustration of surfactant flooding, to streamline the 

interpretation of the flow behaviour in a reservoir. One injection well was used with a 

production well at the extreme ends of the grid block in the x-axis, and both are completed 

vertically and fully perforated in all the interconnecting grid cells.  

The base case model was represented with 100 cells, each defined in the x-direction. Models 

were tested with a range of time steps to consider the influence of numerical dispersion based 

on the time step alone. We further compared the impact of grid refinement on the numerical 

solution profile against the analytical models which predict the shock front behaviour (Buckley 

& Leverett, 1942; Fanchi, 1983).  The displacing fluid consisted of an aqueous phase, a mixture 

of water and the surfactant solution, where the injected surfactant increased the viscosity of the 

displacing fluid and reduced IFT between the oil and aqueous phases. Some features of the 

reservoir characteristics for the surfactant flood model were considered constant and due to the 

large dimensions of the model. Gravity, and capillary pressure effects were considered 

negligible compared to the viscous forces. These assumptions simplified the model and 

removed their impact on the numerical dispersion. The model used isotropic permeability to 

achieve the desired pressure limit. A commercial simulator (Schlumberger, 2019) was used to 

solve the aqueous phase solutions simultaneously with surfactant solute transport and all 

related equations using the decoupled implicit finite difference scheme.  

The simulation models were studied using the rock and fluid properties along with the reservoir 

conditions as tabulated in Table 3-1.  To focus on the surfactant flood solution, the water, and 

surfactant slug was injected from the beginning as a secondary process, through the injection 

well sweeping the mobilized oil to the production well. The injection rate was constant at 400 

𝑟𝑚3/day.  Time step and grid size were our primary objective to evaluate the appearance of 

numerical effects and impact on solution accuracy.  

3.5 Simulations of surfactant flooding  

In this work, we evaluated the stability, precision, and efficiency of the numerical model and 

the components that influence the flow of surfactant flooding. The precision is termed as the 
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minimal deviation of the solution affected by the numerical problem when compared to the 

exact partial differential equation that represents flow. Meanwhile, instability occurs when 

numerical effects result in a divergence of the numerical solution as a function of small 

perturbations. The numerical effects, also known as numerical dispersion, may also result in 

pulses and convergence problems (Al-Ibadi et al., 2018; 2021a; 2021b). They may be imprecise 

but stable, nonetheless. The efficiency of the numerical model refers to the simulator’s ability 

to solve a wide range of physically distinct problems. The computational efficiency of the 

solution scheme accounts for the number of numerical values computed after the required 

“Newton iterations” per time step and the time it took to solve the linearized system on each 

iteration.  

Firstly, we evaluated the numerical solution of four models which consist of coarse (10 x 1 x 

1), base case (100 x 1 x 1), refined (1000 x 1 x 1) and high-resolution (5000 x 1 x 1) block 

setup with time step defined according to the Courant condition, and compared to the solution 

obtained by fractional flow theory for surfactant flooding. The advection velocities of the 

surfactant-induced and formation waterfronts are 1.9m/day and 2.7m/day, respectively. We 

obtained solutions for various time steps and obtained the Numerical dispersion and Peclet 

number (See Table 3-2). 

The example showed the appearance of numerical effects in the form of pulses (Figure 3-4 and 

3-5) and a shifting of the surfactant concentration (Figure 3-6) and viscosity behaviour (Figure 

3-7). The high-resolution solution (𝑁𝑝𝑒 = 2000)  tends to follow that of the fractional flow 

theory as the decrease in the cell size to 0.1 m and time step of 0.04 days produced a sharp 

front in the water cut (See Figure 3-4). The injected waterfront travelled at Sw=1 and fw=1. The 

formation waterfront moved ahead of that at lower saturation and fractional flow values given 

by the Welge tangent which passes through the blue curve in Figure 3-3 to -Di on the saturation 

axis.  

An increase of the cell size to 0.5m and time step to 0.18 days in the refined solution (𝑁𝑝𝑒 =

400), introduced numerical effects in the form of small pulses in the plateau (oil bank) with 

low amplitude reducing the precision of the result compared to the water cut solution obtained 

from fractional flow theory (Figure 3-5). The base case (𝑁𝑝𝑒 = 40) with a cell size of 5m and 

a time step of 1.82 days was observed to show higher pulse amplitude and longer wavelength, 

which caused an even greater deviation in the water cut compared to the refined and high-

resolution water cut profile. A further increment of the cell size to 50m and time step to 18.24 
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days as observed in the coarse model (𝑁𝑝𝑒 = 4) is shown in Figure 3-5. The flow behaviour 

tended to lose numerical precision due to the pulses which had significantly higher amplitude 

on the formation water plateau and failed to match the analytical solution. The coarse model 

also produced formation water breakthrough slightly earlier and the surfactant showed a more 

dispersed front due to larger cells.  

The displacement profile of the surfactant concentration (Figure 3-6) was obtained numerically 

from the cell closest to the production well, with a comparison of the corresponding effect on 

the effective aqueous phase viscosity (See Figure 3-7) and the oil-water IFT (See Figure 3-8). 

The analytical solution of the surfactant concentration was very similar to that obtained from 

refined (𝑁𝑝𝑒 = 400) and high-resolution (𝑁𝑝𝑒 = 2000) but with a slight deviation in the base 

case (𝑁𝑝𝑒 = 40). We observed that the numerical solution for the coarsest model was highly 

imprecise due to the combined effect of oil-water IFT and solution viscosity combining with 

numerical dispersion from the discretization errors. This effect may be seen through the earlier 

IFT change at 0.8 PVI for the coarse model compared to other models at approximately 1.1 

PVI (See Figure 3-8).  Increasing the cell size had a large effect on dispersion of surfactant. 

However, this mixed within the formation water in this case. While viscosity increased and the 

miscibility changed, the general speed of the injected waterfront was largely unaffected by 

comparison although the second waterfront did rise more slowly.   
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Table 3-1 Simulation Model Properties 

 

Rock and fluid properties   Oil Water 

 

Porosity  0.25 Reference Pressure - 𝑃𝑟𝑒𝑓 (bar) 200 270 

Permeability (md)-  

𝑘ℎ 

4500 Density (kg/m3) at Surface condition 850 1000 

  Viscosity (cP) at 𝑃𝑟𝑒𝑓 0.47 0.34 

𝑆𝑜𝑟 0.205 Formation volume Factor (rm3/sm3) 1.0 1.030 

 

Scaled Immiscible end-points Scaled Miscible end-points Surfactant Solution properties  

  

Critical Water 

Saturation - 𝑆𝑤𝑐𝑟 

0.225 Surfactant Critical 

Water Saturation - 

𝑆𝑆𝑤𝑐𝑟 

0.05 Injected Surfactant 

Concentration - 

𝑆𝑢𝑟𝑓𝑐𝑜𝑛𝑐  (kg/sm3) 

30 

Maximum water 

Saturation - 𝑆𝑤𝑢 

0.805 Maximum water 

Saturation - 𝑆𝑆𝑤𝑢 

0.995 Solution water viscosity 

(cP) at 𝑆𝑢𝑟𝑓𝑐𝑜𝑛𝑐 

5 

Connate Water 

Saturation - 𝑆𝑤𝑐 

0.12 Surfactant Connate 

Water Saturation - 

𝑆𝑆𝑤𝑐 

0.05 Water/oil surface tension 

(N/m) at 𝑆𝑢𝑟𝑓𝑐𝑜𝑛𝑐 = 0  

0.05 

oil relative 

permeability - 𝑘𝑟𝑜 

0.975 surfactant oil 

relative 

permeability - 𝑆𝑘𝑟𝑜 

0.9 Water/oil surface tension 

(N/m) at 𝑆𝑢𝑟𝑓𝑐𝑜𝑛𝑐 = 𝐶𝑜  

1.0E-

6 

water relative 

permeability   - 

𝑘𝑟𝑤 

0.5 surfactant water 

relative 

permeability - 

𝑆𝑘𝑟𝑤 

0.9 Surfactant adsorption 

 (kg/kg) at  𝑆𝑢𝑟𝑓𝑐𝑜𝑛𝑐 

0.000

5 
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Table 3-2 Computational times and Numerical Peclet number of the maximum time step 

(Courant condition) for the increasing amount of grid cells and case identification. 

 

Case ID. Cells  ∆𝑥 (m) ∆𝑡𝑀𝑎𝑥 (days) 𝑁𝑝𝑒 CPU Time 

(seconds) 

Coarse 10 x 1 x 1 50 18.24 4 34.9 

Base case 100 x 1 x 1 5 1.82 40 76.1 

Refined 1000 x 1 x 1 0.5 0.18 400 540.7 

High-resolution 5000 x 1 x 1 0.1 0.04 2000 1343.8 
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Figure 3-4: A comparison of the produced water cut profile from the simulation results. The 

red dashed line is the reference case in agreement with the fractional flow theory,  ∆x = 0.1m, 

∆tMax = 0.04 days and TCPU = 1343.8 s. The blue and orange dashed lines show increased 

cell sizes of ∆x = 0.5 m and ∆x = 5 m, respectively. The green line shows a deviation from the 

reference case with ∆x = 50 m, ∆tMax = 18.24 days and TCPU = 34.9 s. 

 

Figure 3-5: A magnified representation of the comparison of the appearance of numerical 

effects for the various values of Npe versus pore volume injected. 
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To show how the variation in effective surfactant concentration may lead to unfavourable flow, 

the coarse model at 1.5 PVI could be seen to reach viscosity of 5 cP with far lower 

concentration of 27𝑘𝑔/𝑠𝑚3 in comparison to the accurate input value of 30𝑘𝑔/𝑠𝑚3 as 

achieved in the base case, refined and high-resolution models. The effective surfactant 

concentration also triggered the change in miscibility, which is a function of the logarithm of 

the capillary number. Therefore, imprecise values of the effective surfactant concentration will 

lead to false values of the oil and water relative permeabilities, impacting the precision and 

stability of the model.  

The relative advance of the surfactant profile as the cells were increased in size depends on the 

balance between dispersion and adsorption. With less adsorption we anticipate that it would 

advance faster. If it moves as fast as the head of the formation waterfront then more complex 

behaviour could be seen, particularly if there is little adsorption or more dispersion. 

 

Figure 3-6: Comparison of the surfactant concentration predicted for the producer versus the 

pore volume injected as derived from the simulator output with Npe equal to 4 (green line), 40 

(orange dashed line), 400 (blue dashed line), and 2000 (red dashed line). 
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Figure 3-7: Comparison models of the effective water solution viscosity versus the pore 

volume injected as derived from the simulator output with Npe equal to 4 (green line), 40 

(orange dashed line), 400 (blue dashed line), and 2000 (red dashed line). 

 

Figure 3-8: Comparison of the oil-water IFT in produced water versus the pore volume 

injected as derived from the simulator output at the different values of Npe equal to 4 (green 

line), 40 (orange dashed line), 400 (blue dashed line), and 2000 (red dashed line). 
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Besides precision, any significant improvement in the time-step domain would require an 

adaptive step solver, which would involve a larger computational time. The precision must be 

weighed against computational efficiency.  The error in the coarsest model renders it useless 

as a tool for predicting behaviour. The origin of this numerical effect on the fluid flow 

behaviour is further evaluated through the mobility analysis in the grid cells and parameters 

influencing the numerical computation of the surfactant flood model.   

3.6 Numerical computation of the mobility and weighting function  

We examined the origin of the numerical effects from the coarse model (which consisted of 10 

cells). We evaluated the dynamic behaviour of relative permeability, saturation, log(Nc) and 

also the fractional flow (into the downstream cell) on a cell by cell basis (Figure 3-9). The 

simplified fractional flow was obtained by the ratio of water flow rate to the total flow rate with 

a value between 0 and 1. 

The relative permeability of water and oil and the fractional flow (Figure 3-9) was observed to 

have pulses which grew progressively as each cell transitioned from immiscible to miscible 

behaviour and also as the viscosity changed. Similar effects have been reported previously 

albeit for low salinity waterflooding (Al-Ibadi et al., 2018; 2021a; 2021b) where the change in 

relative permeability (wettability) as a function of salinity appeared to generate equivalent 

pulses. We adopt a similar analysis and interpretation here.  

Water saturation in the first cell (i=1) increased quite quickly reaching a maximum value at 0.2 

PVI (Figure 3-9a). The surfactant concentration also increased (Figure 3-9b) and IFT was 

reduced. There was an initial change in 𝐾𝑟𝑤 (Figure 3-9c) and 𝐾𝑟𝑜  (Figure 3-9d) at around 

0.02 PVI when we see the log(Nc) passed through the transition, switching flow from 

immiscible to miscible behaviour (Figure 3-9e). The change to fractional flow (Figure 3-9f) 

occurred slightly later as the viscosity in the cell changed.  

The rise in saturation in the second cell occurred slightly later as the front moved with finite 

speed. Formation water was mobilized ahead of the front. There is a slight “kink” in the water 

saturation at around 0.1 PVI. Numerical dispersion caused the surfactant concentration to start 

to spread out. We see that the relative permeability to water shows a slight plateau around this 

time. This was coincidental with the rise in log(Nc) as IFT dropped and flow behaviour became 

immiscible. The viscosity then rose (as it did in i=1) creating a broader plateau in the fractional 

flow.  
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This process continued as the fluid fronts moved through the reservoir. The formation 

waterfront moved faster than the later high viscosity surfactant front creating a plateau in 

saturation which spread out. Each cell saw a minor increase in log(Nc) ahead of the main 

surfactant front, which was caused by formation water before a sharp switch in as the fluids 

become miscible. The initial rise in log(Nc) was due to the mobilization of the formation water 

and a change to the interstitial velocity. The water relative permeability jumped up with the 

switch to miscibility as did oil relative permeability jumped up. Then the water phase became 

less mobile and relative permeability declined somewhat. Fractional flow was largely 

unaffected by the switch in miscibility as the increase in oil and water relative permeabilities 

seemed to cancel each other out. 

Qualitatively similar behaviour was observed in the base case (100 cell) model in cells 91 to 

99 (See Figure 3-10a and Figure 3-10c). The cells are closer together so the changes in 

behaviour occur more frequently and we magnify the PVI on the x-axis of the plots. The initial 

short rise in log(Nc) was observed in each cell followed by a sharp change as fluids became 

miscible. Then after that there was a change in relative permeabilities and fractional flow as 

viscosity changed. In this case, we see pulses in saturation and relative permeabilities as well 

as fractional flow. On top of that there seems to be a dual frequency of pulses. In cell 99, for 

example, there were some high frequency pulses just before the cell became miscible by the 

arrival of the surfactant. These high frequency pulses were also seen and correlated with 

behaviour in the preceding cells. The high frequency pulses appeared to correlate with the 

change in log(Nc) in Figure 3-10c.  

As mentioned above, Al-Ibadi et al., (2018; 2021a; 2021b)  have shown similar such pulses for 

low salinity waterflooding. In that case relative permeability is changed rapidly due to the 

reduction of salinity as injected water arrives. This process emulates a change in wettability. 

The change of relative permeability increases oil flow and reduces water flow. The resulting 

pulse in a cell can then propagate downstream and appear in saturation and fractional flow. The 

pulses were shown to grow in magnitude as the low salinity front arrived. In the numerical 

case, dispersion slowed down the increase of water saturation that is normally associated with 

a sharp low salinity water front in the analytical solution. In the latter case, saturation and 

salinity change together preventing the pulses. We hypothesis that the same process occurs 

here for surfactant flooding as oil becomes more mobile when miscibility changes. Water 

mobility was initially increased by the change of relative permeability but then decreased when 
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the viscosity was reduced with increasing surfactant concentration. We observe the effects in 

the 100 cell model and in the water cut of the 10 cell model by the presence of the double bump 

before the surfactant waterfront arrived. Al-Ibadi et al., (2018; 2021a; 2021b)  showed that the 

pulses grew in number as the formation and low salinity waterfronts separated out. We observe 

the same here in longer models. 

In earlier time, longer wavelength pulses were also observed in the fractional flow curve (but 

not in the water relative permeability curve). These appear as troughs which become deeper in 

time and have a periodicity of about 0.08 PVI (roughly the time for 10 cells to change from 

immiscible to miscible upstream. The troughs also correlate across cells. This effect was not 

reported for low salinity waterflooding. The grid refinement reduced the effect of numerical 

dispersion but there remain some numerical effects. We can conclude that the pulses were a 

result of the presence of multiple phases at a given point, where the upstream weighting of the 

relative permeability values produced unphysical pulses causing a ripple effect that was 

transmitted through the cells to the production well. Grid refinement actually introduced more 

pulses, but they were compressed and began to converge to the analytical solution.  Al-Ibadi et 

al., (2018; 2021a; 2021b)  showed that the number of ripples increased when cells were 

considered further from the injector because the formation and injected waterfronts separate 

out. Refinement also saw pulses diminish in magnitude.  
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(a) 

 

 

(b) 

  

(c) 

 

 

(d) 

 

(e) 

 

(f) 

 

Figure 3-9: Simulation output of the surfactant flood for the coarse model (10 x 1 x 1) as the 

fluid passes from the injector well (cell 1) to near the production well (cell 9) versus pore 

volume injected. For each cell we show (a) water saturation, (b) surfactant concentration (c) 

water relative permeability, (d) oil relative permeability, (e) The logarithm of the capillary 

number and for flow from cell i to i+1, (f) fractional flow. This analysis follows that presented 

in Al-Ibadi et al., (2021a;2021b) for low salinity waterflooding with a similar hypothesis. 
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(a) 

 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 3-10: Simulation output of the surfactant flood for the base case model (100 x 1 x 1) as 

the fluid passes from cell 91 to 99 indicating for each cell (a) water saturation, (b) surfactant 

concentration (c) water relative permeability, (d) oil relative permeability, (e) the logarithm of 

the capillary number and for flow from cell i to i+1, (f) fractional flow. 

 

0

0.2

0.4

0.6

0.8

1

0.5 0.7 0.9 1.1 1.3

Sw

PVI 

 cell 91  cell 92

 cell 93  cell 94

 cell 95 cell 96

 cell 97  cell 98

 cell 99

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

C
o

n
ce

n
tr

at
io

n
 

PVI

cell 91 cell 92
cell 93 cell 94
cell 95 cell 96
cell 97 cell 98
cell 99

0

0.2

0.4

0.6

0.8

1

0.5 0.7 0.9 1.1 1.3

K
rw

 

PVI

 cell 91

 cell 92

 cell 93

 cell 94

 cell 95

cell 96

 cell 97

 cell 98

 cell 99

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

K
ro

PVI

cell 91 cell 92

cell 93 cell 94

cell 95 cell 96

cell 97 cell 98

cell 99

-8

-7

-6

-5

-4

-3

-2

-1

0.5 0.7 0.9 1.1 1.3

Lo
gN

c 

PVI

cell 91 cell 92

cell 93 cell 94

cell 95 cell 96

cell 97 cell 98

cell 99

0

0.2

0.4

0.6

0.8

1

0.5 0.7 0.9 1.1 1.3

Fw

PVI

 cell 91  cell 92

 cell 93  cell 94

 cell 95 cell 96

 cell 97  cell 98

 cell 99



68 

 

3.7 Time step reduction and effect on the appearance of numerical effects 

We examined the impact of time step reduction on the surfactant flood base case model 

concerning the appearance of numerical effect and computational efficiency.  The base case 

grid block setup (100 x 1 x 1) was simulated with various time steps, corresponding Peclet 

number, and computational time (see Table 3-3).  

We show in Figure 3-11 that the time step contributes heavily to the numerical dispersion. The 

reference case (𝑁𝑝𝑒= 40) produced the noisiest, and with significant pulses spanning across the 

plateau in comparison with the other case studies.  Reducing the time step to 1 day (𝑁𝑝𝑒= 52), 

0.45 days (𝑁𝑝𝑒= 64) and 0.01 days (𝑁𝑝𝑒= 80) resulted in water cut solution profiles became 

more closely comparable to the high-resolution model (𝑁𝑝𝑒 = 2000) and analytical solution 

(See Figure 3-12). 

 

Table 3-3: Computational times and Numerical Peclet number of the base case model (∆x = 

5m) for time sensitivity. 

Case ID  ∆𝑡 (days) 𝑁𝑝𝑒 CPU Time 

(seconds) 

Base Case / TIME01 1.82 40 76.1 

TIME02 1 52 47.8 

TIME03 0.45 64 66.1 

TIME04 0.2 72 115.8 

TIME05 0.01 80 2286.5 
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The computational efficiency of the solution profiles also was considered. The reference time 

step was seen to lack computational efficiency when compared with a time step of 1 day (𝑁𝑝𝑒= 

52) and 0.45 days (𝑁𝑝𝑒= 64) (See Table 3-3). We did observe convergence issues with the base 

case. The increase of numerical dispersion seems to have exacerbated the issues, hence 

additional iterations were required as the problem became harder to solve. 

Closer inspection of Figure 3-12 reveals that the apparent long wavelength pulses were clearly 

an artifact of the dispersion as they were not present in any of the models with Npe > 40. High 

frequency pulses were observed as the injected waterfront arrived, but the plateau of the 

formation waterfront was mostly flat and equivalent to the analytical solution. An exception to 

this was the case of the time step of 0.2 days (𝑁𝑝𝑒= 72) which produced a solution profile with 

pulses but there was also a jump in water cut above the value of the analytical solution. Further 

investigation was required to underpin why the initial bump appeared in the solution profiles 

that were contrary to the analytical solution. We can conclude that to enhance the precision for 

the numerical modelling of the transport of surfactant flood weighed against the appearance of 

nonphysical solution and computational efficiency, the Courant condition considered should 

be as follows:  

 

∆𝑡𝑀𝑎𝑥 ≤  
∆𝑥

2𝑣
           (15) 
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Figure 3-11: A comparison of the water cut profile from the simulation results. The reference 

case Npe= 40 (orange line), Npe= 52 (yellow dashed line), Npe= 64 (brown dashed line),  Npe= 

72 (green dashed line) and  Npe= 80 (blue dashed line) accordingly. 

 

Figure 3-12: A zoomed-in observation of the comparison of the appearance of numerical 

effects in the various value time step compared to the high-resolution model Npe= 2000 (red 

dashed line) considered as the most accurate representation of the analytical solution.  
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3.8 The effects of adsorption: impact of zero adsorption on oil recovery  

We also examined how the variation of adsorption in the surfactant flood model affected 

recovery factor as a function of the different grid cell sizes. We ran the base case model that 

was used above with zero adsorption (Figure 3-13). The analytical result was almost perfectly 

matched by the most refined model (𝑁𝑝𝑒= 2000) and oscillations appeared as the model was 

coarsened. We observed the appearance of an obvious dip in the water cut solution profile just 

ahead of the surfactant induced waterfront for 𝑁𝑝𝑒= 40, the pulse had a different magnitude 

compared to the base case, which modelled adsorption. As described above, the dispersion of 

the surfactant initially changed the mobility of the water which changed relative permeability 

and caused the dip. Then the IFT decreased when the threshold of the capillary number was 

reached. The dip was largest for the coarsest grid which also saw a much earlier breakthrough 

of the formation waterfront while other cases correctly predicted this. Overall the main effect 

of enlarging the cell size was to change the water cut and to predict earlier breakthrough of 

surfactant. The dispersed surfactant moved faster than the formation waterfront in the absence 

of adsorption (Figure 3-13). This disturbed the formation waterfront which no longer moved at 

the same steps in saturation and fractional flow. Figure 3-14 shows that, with the exception of 

the coarsest model, the cumulative volume of oil produced matches the analytical solution very 

well. The deviations are small compared to the cumulative volumes. We conclude that in the 

absence of adsorption, a more refined model is required to obtain sufficient precision.  
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Figure 3-13a:  A comparison of the impact of zero adsorption on the water cut profile versus 

pore volume injected for Npe= 4 (green line), Npe= 40 (orange dashed line), Npe= 400 (blue 

dashed line),  Npe= 2000 (red dashed line) and analytical solution (grey dashed line).  

 

Figure 3-13b: A comparison of the dimensionless concentration profile versus pore volume 

injected for  Npe= 4 (green line), Npe= 40 (orange dashed line), Npe= 400 (blue dashed line),  

Npe= 2000 (red dashed line). 
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Figure 3-14: A comparison of the oil recovery versus pore volume injected for Npe= 4 (green 

line), Npe= 40 (orange dashed line), Npe= 400 (blue dashed line),  Npe= 2000 (red dashed line). 
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3.9 Varying adsorptions 

Lastly, we examined the role of the adsorption on the sharpening of the front and appearance 

of pulses in the numerical solutions. We used the base case model and made some 

modifications to the adsorption values for this study (See Table 3-4).  

 

Table 3-4 Adsorption Simulation Input Parameters 

Base Case  

Model 

∆𝑡𝑀𝑎𝑥  

(days) 

Case 1  

(kg/kg) 

Case 2 

(kg/kg) 

Case 3 

 (kg/kg) 

Case 4 

 (kg/kg) 

Case 5 

 (kg/kg) 

100 x 1 x 1 1 0 0.1E-3 0.3E-3 0.5E-3 0.8E-3 

 

The increase of the adsorption rates resulted in the acceleration of the formation waterfront and 

a retardation of the injected waterfront. Adsorption removed surfactant from the injected water 

so that it behaved like formation water. We can observe the impact of adsorption on the 

interpreted 𝐷𝑖 achieved through the use of the Welge tangent on the fractional flow curve (See 

Figure 3-3). We also saw a change in the numerical effects. 

It was observed in the comparison between the water cut profile with zero adsorption through 

the appearance of an obvious dip (Figure 3-15) that can be directly related to the pulse observed 

in the water relative permeability curves (Figure 3-16), which was caused by the change of 

viscosity as the surfactant concentration rose to 1kg Sm-3. The relative permeability of water 

appeared to drop as the surfactant arrived and then increased as the oil was displaced. The dip 

in water cut gradually diminished when adsorption was increased to 0.0003kg/kg; this was then 

followed by the recurrence of the pulses as the adsorption was further increased to 0.0005kg/kg. 

The interpretation of the second pulse on the solution profile may be caused by the appearance 

of the numerical effect observed during the mobilization of the formation waterfront (Figure 

3-17), which was initially less mobile. As the adsorption rate was increased further, the 

surfactant concentration decreased. The decrease in the concentration lagged in the water 
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solution displacement due to the pore volume that can be accessed by the surfactant; this caused 

the surfactant to move slowly and thus the initially immobile oil was released and recovered 

more quickly.  

We observed from the surfactant flood fractional flow curves from the simulator data which 

were computed as the producer cell first saw formation water invade then a change from the 

immiscible curves towards the surfactant induced miscible curves. The input fractional flow 

curves are shown as reference (Figure 3-18). The waterflood initially appeared to correspond 

to the predicted fractional flow theory, while there also appeared to be complexity all along the 

curve prior to the transition to the miscible surfactant flood curve. This might be the reason for 

the appearance of the dip observed in the zero adsorption and 0.0001kg/kg value; which 

showed a jump and deviation from the waterflood curve in value of saturation and fractional 

flow due to the arrival of the surfactant concentration. From the theoretical analysis, the Welge 

tangent was used to understand the water saturation shock fronts of both the water formation 

and surfactant induced fronts. The two cases (zero adsorption and 0.0001kg/kg) appeared to 

have two possible tangent points, one along the waterflood curve and the deviated point that 

corresponds to the tangent point of the adsorption value of 0.0003kg/kg with less match of the 

water saturation. The dispersion had a clear impact on changing the shape of the curves making 

them less precise.   

 

Figure 3-15: The effect of adsorption sensitivity on the water cut profile from when adsorption 

was neglected (orange line) to 0.0008kg/kg (red line).  
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Figure 3-16 The water relative permeability for the adsorption sensitivity versus pore volume 

injected.  

 

Figure 3-17: A magnified observation of the pulses across the transition between connate water 

into the interstitial water relative permeability curve.  
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Figure 3-18: The fractional flow curves obtained from simulator output of the various 

adsorption rates (solid lines) with derived analytical curves from input relative permeability 

curves (longer dashed lines). The Welge tangents for each case are shown (short dashed lines) 

for each case by drawing the tangent to the miscible fractional flow curve though the maximum 

saturation on the formation waterfront.  
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3.10 Discussion  

In this paper, we examined the numerical errors that can arise during the simulation of miscible 

surfactant flooding in coarse grid models. We used a 1D homogenous model at the inter-well 

scale and found significant deviations when compared with analytical and high-resolution 

solutions. Grid and time step refinement studies were used to access the impact of the numerical 

error on their solution which is a common method used by many researchers for model 

selection (Al-Ibadi et al., 2021a; Pope, 1986; Fanchi, 1983; Al-Ibadi et al., 2019; Sorbie & 

Mackay, 2000). On the other hand, based on the results of this study, we suggest a modified 

Courant condition for maximum timestep which is distinct from the previous reports to address 

the numerical instability. This approach for timestep constraint may be specific for the 

application of the decoupled implicit scheme that is available in the commercial reservoir 

simulator that we used. This method has been reported to give stability at the expense of 

accuracy and computational efficiency (Schlumberger, 2019), Nevertheless, we observed that 

the errors occurred in the surfactant concentration front at dispersion-dominated flow, which 

was particularly observed when the Peclet number was less than 40. Other researchers have 

shown that for low salinity water flooding, no instabilities were reported for Peclet number less 

than 100 (Al-Ibadi et al., 2018). The relationship between dispersion and propagation of the 

pulses helps distinguish and eliminate errors. Some features that contribute to the mobility and 

weighting in the simulation were likely to contribute to instability.   

Key mechanisms influencing the surfactant flood model may be used to further understand the 

origin and the spread of the pulses. The switch in relative permeability seems to have been 

important as has been reported for low salinity waterflooding by Al-Ibadi et al., (2018; 2021a; 

2021b). These effects are important to understand, particularly if experiencing instabilities such 

as those reported by Paula et al., (2010). On the other hand, Abbas et al., (2018) reported the 

importance of numerical analysis of surfactant adsorption to understand the flow behaviour 

using CMG-STARS software. The authors carried out adsorption tests to accurately develop 

new chemical flood processes with improved oil recovery. Our approach showed how the 

adsorption/retardation factor observed from the fractional-flow theory can be used to 

understand and compare the perturbation associated with the coarse model. Furthermore, our 

approach can be used as an option to examine the magnitude of the pulse for accuracy purposes. 

The numerical solution of the base case model with the modified Courant condition tested 

according to various adsorption values produced two separate types of numerical effects. The 
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first occurred when dispersion led to an earlier change of viscosity and miscibility, triggered 

by the lack of adsorption in the surfactant flood model. Whereas the second effect was formed 

by the mobilization of the formation water that predominantly caused the solution inaccuracies.  

The finding of this study would help in better understanding the numerical effects of surfactant 

miscible flood, maximizing grid and time step by selecting effective limits, inter-block 

inspection and then considering the analytical solution with adsorption tests to categorize the 

pulses. Applications of the analytical solution and varying adsorption parameters could be 

useful to modify the fractional-flow model and upscaling of surfactant flood as a function of 

the effect of dispersion, miscibility, and solute concentration. In further work, we will use the 

new analysis to address the key question of how to recognize and reduce these errors for a 

layered and heterogeneous reservoir for more accurate models. The study showed that 

particular attention is to be paid to the properties of the miscible flow and that due to the 

appearance of nonphysical numerical artifacts, the simulations are not certain to correspond to 

the physical models. Therefore, rigorous studies may be required for both the numerical and 

physical models to resolve the perturbation and accurately predict the performance of the 

surfactant flood on oil production.  
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3.11 Conclusions 

We conclude the following from this study:  

• Numerical accuracy problems were identified for models with a typical cell size as used 

in well-scale models. 

• Pulses were observed in the oil bank with multiple frequencies or duration. 

• A dip in water saturation and fractional flow was observed for low levels of adsorption 

so that more refined models were needed. 

• The Courant condition should be observed as a minimum to avoid these effects. 

Also, we suggest further work is required to examine the relevance of these findings in the 2D 

and 3D layered and heterogeneous reservoir scale representation of the surfactant flood model.  
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Chapter 4: Numerical Simulation of the Propagation of 

Viscous Fingering and Aspect Ratio on Surfactant 

Flooding 
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4.1 Background 

This chapter forms part of the author’s previous work (Akinyele & Stephen, 2021).  

In the previous chapter, the study was restricted to a one-dimensional model to describe the 

product of numerical effects on the precision of surfactant flooding processes. The surfactant 

mechanism that influences the performance of the flood was evaluated, which is applicable for 

both core flood and field-scale experiments. This section aims to find the best approach to 

resolving similar effects for direct numerical simulation of surfactant flooding in a two-

dimensional model. We study the propagation of viscous fingering on the stability of the flood 

fronts and potential numerical problems that may affect the accuracy of the solutions—also 

comparing fine and Local Grid Refinement (LGR) grid configuration and investigating the 

changes to the fingers in varying heterogeneous models. This chapter of the thesis will be 

helpful when considering the application of our forward and inversion method at various 

reservoir conditions to history match and interpret core flood experimental data.  Therefore, 

we can state that using surfactant flooding to enhance the mobility of viscous oil is a developing 

area of research.  

We acknowledge different parameters govern the problem, but for this report, we focused on 

the following group of dimensionless numbers:  

Aspect ratio:  

 𝑁𝐴 =
𝐿

𝐻
        (4.1) 

Shape factor: 

𝑅𝐼
2  =  𝑁𝐴2 (

𝑘𝑧

𝑘𝑥
)       (4.2) 

Viscosity ratio: 

 𝑀 =
𝜇𝑜

𝜇𝑠
        (4.3) 

Grid Peclect Number: 

Gpe = 
𝓍

∆𝓍

2
 + 𝑣𝑥(

∆𝑡

2∅
)
        (4.4) 
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where L is the reservoir length, H is the reservoir thickness, 𝑘𝑧 is the average permeabilities in 

the vertical (𝑧) direction, 𝑘𝑥  is the average permeabilities in the horizontal 𝓍 direction, 𝜇𝑜 is 

the oil viscosity, and 𝜇𝑠 is the displacing surfactant solution viscosity. The research question 

becomes how we can differentiate between the physical and numerical influence on flow 

instability in the 2D model. What methods can be used to investigate the flow at the flood fronts 

in a short aspect ratio? How can these numerical studies help develop an inversion method for 

surfactant flooding experiments?  

4.2 Surfactant Flood Model 

To maintain consistency throughout our study, we imported the reservoir properties from 

Eclipse as shown in Chapter 3 into the Petrel E&P software platform and converted the 1D 

model to a 2D model. We used this software platform to construct a simulation model for a 

heterogeneous reservoir and performed uncertainty and optimization sensitivity analysis, 

varying the permeability in x direction as a function of standard deviation. We obtained various 

degrees of heterogeneity in the reservoir and analyzed the porosity and permeability 

distribution. We assigned different properties to the cells in the simulation model based on the 

obtained porosity and permeability values to study the effect on unstable fluid displacement. 

Cells with higher porosity and permeability values, indicating they were more likely to contain 

oil and easier to extract. Conversely, cells with lower porosity and permeability values were 

assigned lower values, indicating they were less likely to contain oil and harder to extract. 

Apart from the porosity and permeability distribution, we also considered the rock type while 

building the simulation model. In reservoirs, different layers of sandstones and shales have 

distinct properties and behaviors. Therefore, using the facies modeling feature of the Petrel 

E&P software platform, we applied three layers to the simulation model and assigned them 

different properties. We used the sequential Gaussian simulation method for zone/facies and 

the spherical variogram type for distribution. Accurately representing the heterogeneity of the 

reservoir in the simulation model enabled us to enhance the precision of our predictions for 

surfactant flooding. 

We investigate the propagation of viscous fingering with viscosity ratio (𝜇𝑜 𝜇𝑠⁄ ) equal to 0.1, 

1 and 2 for aspect ratio of NA = 25 (x = 500m, y = 500m and z = 20m) using a commercial 

simulator (Schlumberger, 2019) for 2D reservoir model configurations as presented in Figure 

4-1(a).  
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We evaluate the effect of the derived correlation of permeability with a minimum of 100mD 

and maximum of 500mD, and facies distribution with a combination of up to 70% sand, 20% 

coarse sand and 10% shale to develop the heterogenous model that is shown in Figure 4-1(b). 

The 2D model comprises a vertical cross-section in x and z directions (homogeneous in y). The 

simulation model properties are similar to that reported in chapter 3 and found in Table 4-1 for 

the simulation. Since we are investigating field-scale reservoir dimensions for flow modelling, 

capillary pressure is assumed to be negligible compared to the viscous and gravitational forces. 

Also, we study the influence of moderate gravity cross flow on the degree of fingering at 

various times in the reservoir. The surfactant solution is injected as a secondary process through 

the injector well placed at x = 0 and recovery at the producer at x = L. Both wells are completed 

over the vertical interval. The injection and production rates are set with constant pressure 

limits to restrict and simplify the flooding process. 

The simulations explore and identify the complex aspects of miscible flooding strategies by 

varying the viscosity ratio on the short aspect ratio. The comparative study of waterflood 

simulation with the miscible flood under similar conditions is considered because of the 

literature's well-known flow behaviour of the immiscible flow. The viscosity ratio is kept the 

same with the surfactant flood for all the waterflooding simulations. The front mobility ratio at 

the saturations usually captures the local instability at the fronts better than end-point mobility. 

Thus the front mobility ratio will be a significant parameter for characterising the degree of 

stability of the two-phase displacement.  

The surfactant chemical affects the viscosity of the aqueous phase and the miscibility of relative 

permeabilities of the displacement systems. Therefore, it is crucial to study the two effects on 

the mobility of the two phases. The simulation uses different gridding configurations on a 

homogeneous spatial permeability field-scale model. All other input parameters are the same 

as in the previous chapter. In addition, we used one value for injection rates and a time step to 

simplify the grid geometry. 
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Figure 4-1(a): Perspective view of 2D (x/z) reservoir simulation grid 

 

 

Figure 4-1(b): Perspective view of 2D (x/z) heterogenous reservoir grid with 500 x 1 x 50 

grid configuration  
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Table 4-1 The parameters of the simulation  

Property  Value (units)  

Porosity  0.25 

Permeability for homogenous model    1000 mD 

Permeability for heterogeneous model    100 – 500 mD 

Oil density at surface condition   850 kg/m3 

Water density at surface condition   1000 kg/m3 

Oil bubble point pressure  200 bar  

Water viscosity  0.34 cP 

Injected surfactant viscosity  5 cP  

Oil viscosity at viscosity ratio = 0.1  0.47 cP 

Oil viscosity at viscosity ratio  = 1 5 cP 

Oil viscosity at viscosity ratio  = 2 10 cP 

Formation volume Factor for oil  1.0 Rm3/sm3 

Formation volume Factor for water  1.030 Rm3/sm3 

Rock compressibility at datum  4.6E-5 bar-1 

Datum depth  2700 m 

Initial pressure at datum  270 bar 

Initial water saturation  0.15 

Injection rate  500 Rm3/day  

Production rate 500 Rm3/day 

Reservoir length 500 m  

Reservoir width  500 m  

Reservoir height 20 m  

Water/oil surface tension (no surfactant concentration)  0.05 N/m 

Water/oil surface tension with surfactant concentration 1.0E-6 N/m 

Surfactant adsorption at 30 kg/sm3 0.0005 kg/kg 

Injected surfactant concentration 30 kg/sm3 
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4.3 Numerical Experiment  

The simulated output profiles for the waterflood and surfactant flood using the 1D and 2D grid 

configuration as shown in Table  4-2. The aim is to investigate how changes to the grid 

configuration may have a negligible effect on waterflood but different behaviour for surfactant 

flooding. We examine as the scenario that has a viscosity ratio (𝜇𝑜 𝜇𝑠⁄ ) = 2. Production data 

for the waterflood case is shown in Figure 4-2. The water cut and oil production profiles were 

comparable for the two models. However, for the surfactant model, shown in Figure 4-3, the 

water breakthrough time suggested that the 2D model's first front velocity accelerated 

compared with the 1D model. In comparison, the second front influenced the solution deviation 

in the oil recovery. 

Contrary to the report of pulse-like behaviour in chapter 3 for the 1D model, the 2D model 

shows some gravity effects to the model, significantly influencing the early breakthrough time 

and higher magnitude of the pulse. A further look into the water saturation in Figure 4-4 shows 

how pulses were generated in the 1D model. However, the assessment of the water saturation 

in Figure 4-5 shows that the bottom layer (See Figure 4-5(a)) influences the pulse generation 

in the 2D model. The magnitude of the pulses becomes erratic as we compare the water 

saturation from the top layer to the bottom layer. Also, the bottom layer has an earlier pulse 

generation. Hence, the 2D model needs further evaluation to ascertain the effect of gravity on 

flow behaviour.   

 

Table  4-2 Grid Configuration 

Models  Grid Configuration Gravity crossflow  

1D  1000 x 1 x 1  No  

2D  1000 x 1 x 10  Yes 
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Figure 4-2:  Simulation results for the analytical and 2D Model for waterflood (a) water cut 

and (b) cumulative oil production with viscosity ratio (𝜇𝑜 𝜇𝑠⁄ ) = 2 
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Figure 4-3: Simulation results for the analytical and 2D Model for Surfactant flood (a) water 

cut and (b) cumulative oil production with viscosity ratio (𝜇𝑜 𝜇𝑠⁄ ) = 2 
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Figure 4-4: Water saturation results for nine cells close to the production well in the 1D Model 

with pulse effects.   
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Figure 4-5: Water saturation results for nine cells close to the production well in the 2D Model 

with pulse generation for (a) top layer 1, (b) mid layer 5 and (c) bottom layer 10 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

W
at

er
 S

at
u

ra
ti

o
n

PVI

991_1_5 992_1_5 993_1_5 994_1_5 995_1_5

996_1_5 997_1_5 998_1_5 999_1_5

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

W
at

er
 S

at
u

ra
ti

o
n

PVI

991_1_10 992_1_10 993_1_10 994_1_10 995_1_10

996_1_10 997_1_10 998_1_10 999_1_10

(c)



92 

 

4.4 Gridding configuration and instability at the surfactant flood front 

In the previous section, minor changes to the grid configuration for surfactant flooding have 

significantly changed the solution. Therefore, in this section, we will explore gridding options 

for the 2D model to resolve or minimise the appearance of numerical effects observed in 

forming physical instabilities such as viscous fingers.  In addition, we will report any findings 

that may promote numerical artefacts in 2D models.  

We examine the effect of changing the number of layers and columns in the model to explore 

the extent of the viscous fingers and the potential to influence pulse-like behaviours. In Figure 

4-6, various gridding configurations show the viscosity ratio (0.1, 1 and 2) at 0.3 pore volumes 

injected. The gravity tongue is evident in all cases and even for a viscosity ratio less than unity. 

However, the fingers can be said to have a more significant impact on the instability of the 

second surfactant front. The mobilisation of trapped oil is indicated in red at the surfactant 

front. Also, from the uniform refined model evaluation, we inferred that the flow was due to 

gravity segregation because as we change resolution and mobility, the surfactant travels fastest 

at the bottom of the grid. The so-called “gravity tongue” can be seen in all cases to cause an 

early breakthrough, compared to the finger's propagation. The effect of the gravity tongue is 

more prominent in models with high resolution. Even though the viscous finger and gravity 

tongue may contribute to the numerical effects observed on the solution, the gravity tongue 

appeared to have a more significant impact on the stability of the front.  

We further present results to differentiate between physical and numerical effects caused by 

the gravity tongue. In Figure 4-7, we show the z-direction and the impact of the appearance of 

the gravity tongue. The tongue can cause a disparity between the various gridding 

configurations. Where the tongue speed was fastest in the Δz = 0.2m case, it produced the 

earliest breakthrough compared to the high resolution and 1D model. In combination with 

numerical dispersion, the tongue contributed to the large pulse and solution deviation observed 

in Δz = 10m, as seen through the oil production data (Figure 4-8). We show that 200 layers in 

the z-direction and 500 layers in the x-direction can resolve the “tongue” at the bottom of the 

reservoir, but this comes at a high computational expense, which may not be practicable. 
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Figure 4-6: Impact of grid configuration on oil saturation profile for varying viscosity ratio 

M = 0.1, 1 and 2 at 0.3 PVI  
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Figure 4-7: Water cut profile (viscosity ratio = 2). 

 

 

Figure 4-8: Oil production (viscosity ratio = 2)  
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4.4.1 Local Grid Refinement Method 

An alternative approach to uniformly refined modelling (See Figure 4-9a) in numerical 

simulation is the local grid refinement (LGR) method to examine a scenario that has a viscosity 

ratio of 2 . The LGR method accurately models the surfactant flooding sharp fronts and stability 

constraints. Therefore, the local grid refinement (LGR) method was applied to the bottom two 

coarse layers across the reservoir model with parent grid coordinates lower I = 1, upper I = 

500, lower K = 9, and upper K = 10. The dimensions of the refined grid within the Cartesian 

local grid refinement become X–direction = 1000, Y-direction = 1, and Z-direction = 10 and 

are used for the case with a viscosity ratio of 2 to discretize the flow modelling (See Figure 4-

9b). The LGR approach was chosen to address the lower part of the grid model in Figure 4-9a 

and remove or minimize the effect of the gravity tongue that appears in the 10 layer model. It 

also produces a different set of fingers that may influence pulse generations.   

Hence, we present the comparison between results from the LGR method and the uniform 

refined model (high-resolution model). The LGR method produces a profile with more 

oscillations on the water cut, whereas the uniform refined model has fewer pulses (Figure 4-

10a). Furthermore, the surfactant concentration using a uniformly refined model can break 

through earlier when compared with the LGR method, which results from lower oil production 

observed in Figures 4-10b and 4-10c.      

Figure 4-11 presents the local block water saturation from various viscosity ratios (0.1, 1, and 

2). The plots show that the LGR method is applicable on a case-by-case basis to alter the pulse-

like behaviour. For example, as shown in Figure 4-11b, the variation of oil viscosity produces 

a higher pulse distribution when the viscosity ratio is unity. At the same time, a dip was 

observed for the viscosity ratio of 2. Nevertheless, the LGR method can be used as an 

alternative to improve numerical effects on solution deviation but not on the pulses, which may 

be unstable in other conditions. Stability analysis can be used on such simulations to use the 

LGR method effectively.  
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Figure 4-9 (a): Cartesian grid simulation (100 x 1 x 10) illustrating surfactant tongue observed 

at the bottom of the reservoir at 0.29PVI  

 

 

Figure 4-9 (b): Cartesian Local grid refinement simulation (500 x 1 x 10) to resolve the 

influence of surfactant tongue observed at the bottom of the reservoir at (a) 0.15PVI, (b) 

0.29PVI and (c) 0.63PVI  
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Figure 4-10: The simulation output for the Local grid refinement model and high-resolution 

model (a) Water cut, (b) Surfactant production and (c) Oil production.   
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Figure 4-11: The simulation output for local block water saturation from grid point 999 x 1 x 

1 to grid point 999 x 1 x 10 with varying viscosity ratio equal to (a) 0.1, (b) 1 and (c) 2 
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4.5 Heterogeneous Model  

The aim is to investigate the viscous fingers effect as heterogeneity varies using simulation 

properties shown in Table 4-3.  We achieved this objective by altering the standard deviation 

of a stochastic permeability field, which was generated using sequential Gaussian simulation 

with a log-normal distribution. The mean permeability is 200mD, the standard deviation 

variation is shown in Table 4-4, and the degree of heterogeneity is in Figure 4-12. Case 1 is 

slightly heterogeneous with reduced permeability distribution in the x direction (See Table 4-

4), altering the gravity effect when compared with the homogenous model reported in the 

previous section.  

In Figure 4-13, case 1 shows the front is stable at early stages at 0.2PVI across the reservoir 

for the homogenous permeability field with apparent gravity tongue. In comparison, viscous 

fingers are more visible, which may be due to water velocity for cases 2 to 5. Figure 4-14 

showcase the mid-time at 0.35PVI, where the flood front for case 1 is consistent with the early 

stage. The gravity tongue is visible in case 2 but not in cases 3, 4 and 5. The late stage in Figure 

4-15 shows the gravity tongue travels faster in case 2 compared with case 1 with an early 

breakthrough, as presented in the water cut (See Figure 4-16). Due to vertical permeability, the 

gravity effect may influence the late stage of the flood for case 2 to be similar to case 1. 

However, as the degree of heterogeneity increases from case 3  to  4 and then 5, the viscous 

fingers tend to grow with no appearance of a gravity tongue. Also, the higher presence of a 

highly permeable flow path can cause fluid to flow in the path with less resistance. Such a 

permeable flow path can result in a high fluid pressure gradient and flow velocity, as observed 

in the late stages of cases 3, 4 and 5. Therefore, early breakthroughs could be due to viscous 

fingering or gravity tonguing, as it depends on heterogeneity. The degree of heterogeneity 

causes more fingers and reduces the effect of gravity on the fluid flow. Figure 4-16 shows that 

as the degree of heterogeneity increases, the magnitude of pulses on the plateau increases. This 

flow behaviour may be due to the extent of the fingers.  

 

 

 

 

 



100 

 

Table 4-3 The parameters of the simulation  

Property  Value (units)  

Porosity  0.25 

Permeability for heterogeneous model    100 – 500 mD 

Oil density at surface condition   850 kg/m3 

Water density at surface condition   1000 kg/m3 

Oil bubble point pressure  200 bar  

Water viscosity  0.34 cP 

Injected surfactant viscosity  5 cP  

Oil viscosity at viscosity ratio  10 cP 

Formation volume Factor for oil  1.0 Rm3/sm3 

Formation volume Factor for water  1.030 Rm3/sm3 

Rock compressibility at datum  4.6E-5 bar-1 

Datum depth  2700 m 

Initial pressure at datum  270 bar 

Initial water saturation  0.15 

Injection rate  500 Rm3/day  

Production rate 500 Rm3/day 

Reservoir length 500 m  

Reservoir width  500 m  

Reservoir height 20 m  

Grid cells in the X direction  500 

Grid cells in the Y direction 1 

Grid cells in the Z direction 50 

 

Table 4-4  Case study standard deviation variation 

 Standard Deviation  

Case 1   1E-05 

Case 2 25 

Case 3 50 

Case 4 100 

Case 5 200 
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Case 1  

 

Case 2  

 

Case 3 

 

Case 4 

 

Case 5 

 

Figure 4-12: Degree of Heterogeneity as the standard deviation is varied for permeability 

distribution. 
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Case 1  

 

Case 2  

 

Case 3 

 

Case 4 

 

Case 5 

 

Figure 4-13: Appearance of fingers at early time after 0.2PVI 
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Case 1  

 

Case 2  

 

Case 3 

 

Case 4 

 

Case 5 

 

Figure 4-14: Propagation of fingers at mid-time after 0.35PVI 
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Case 1  

 

Case 2  

 

Case 3 

 

Case 4 

 

Case 5 

 

Figure 4-15: Propagation of fingers at the late time after 0.6PVI 
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Figure 4-16: Field water cut  
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4.6 Summary 

This section presented the findings from the numerical tests on the potential for surfactant 

flooding to recover viscous oil in a short reservoir aspect ratio. The viscous fingering and 

gravity tongue were instabilities observed on the flood fronts. Furthermore, the vertical 

dispersion contributes to the magnitude of the viscous fingers in the surfactant displacement, 

leading to errors in the computed mobility values at the fronts. Hence, the comparative study 

between the local refined grid method and the uniformly refined grid generates valuable 

insights into the flow modelling that helps resolve any influence of numerical effect. Also, the 

approach helps determine the improvement necessary in the prediction and precision of the 

solution. Interestingly, the spreading of the front is increased a little by the heterogeneity. 

However, it does not significantly impact viscous fingering and numerical artefacts. This 

suggested that the results are suitable for the later derivation of relative permeability curves, 

especially for upscaling. 

 

The result shows the effects of gridding compared to the physical instability for the numerical 

study of surfactant displacement across various studies. Therefore, in building our inversion 

method for 2D models, we will use a homogenous model considering the interplay between 

the numerical and physical diffusion to optimise the flow behaviour's nonlinearity and degree 

of mobility control at the fronts. 
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Chapter 5: Inversion Method and Cost Analysis 
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5.1. Introduction 

The previous chapter demonstrated that accounting for viscous fingering in the surfactant 

floods using an inter-well fine grid simulation model with a high computational expense can 

result in considerable error. However, such an inter-well numerical model can be used as an 

interpolation technique to interpret history matches and obtain relative permeability estimation 

for core flood analysis. Observed data from laboratory core flood experiments could be 

informative in varying degrees and not complete. Properties such as permeability and porosity 

are needed in studies to improve techniques for production forecasts. The knowledge of the 

parameters reduces the data misfit between simulated and observed historical data. Also, the 

reduction of uncertainty of production information can be obtained with the knowledge of 

saturation distribution. Therefore, it is necessary to develop a tool to estimate the appropriate 

inverted relative permeability curves for cases like Chapter 4. The goal is to develop an 

algorithm for finding the value of initial water saturation, Corey exponents for water and oil 

that define relative permeability data, which ultimately give predictions that satisfy laboratory 

observed total mobility, oil bank saturation, mass balance, and flow velocity.  

This chapter presents our algorithm for the inversion method that helps estimate suitable 

inverted relative permeability curves with the prospect of upscaling based on a novel type of 

programming with a user interface. We implement our approach in MATLAB, capable of 

analytical and numerical computation of the theory that explains the surfactant flow technique 

for a one-dimensional model. Moreover, MATLAB is an efficient testing platform capable of 

handling the deployment of the new inversion method of relative permeability curve estimation 

in core flood applications. MATLAB contains built-in functions for solving various 

mathematical problems, generating plots, curve fittings, optimisation applications and a 

complete set of routines for handling input parameters, post-processing and visualisation in 

multidimensions.  

We present the three algorithms and the technique for integration to make them interoperable 

for the inversion method. The first algorithm calculates a waterflood shock front and water 

saturation profile, based on fractional flow and Buckley-Leverett theory. This approach is 

augmented by using Brent's hybrid method to solve the root of the nonlinear equation, the water 

saturation intersection point between the derivative of water fractional flow and the slope of 

the tangent line to solve the Welge tangent problem. The second algorithm builds on the first 

algorithm to calculate the oil bank water saturation and water saturation profile for surfactant 
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flooding. It also accounts for the theory of root-finding computational problems for the 

intersection point between the waterflooding fractional flow curve and the Welge tangent of 

the fractional flow for surfactant flooding. The third algorithm, also called the inversion 

method, uses an optimisation approach for minimising a single objective function, which 

results from the summation of four error functions to obtain the optimal variables for the 

estimates of the inverted relative permeability curves. We present the implementation of the 

response cost function manifold in MATLAB for the visual evaluation in three dimensions of 

the objective function, which is a form of assessing the constraints for accuracy purposes.  

To increase the optimiser performance on iterating through the search domain to find the 

solution for the inversion method. Next, we introduce comparative testing, a form of testing 

for selecting an appropriate root-finding computational scheme that uses the appearance of the 

cost, rate of convergence, and the number of iterations to run to compare Brent's hybrid and 

adapted Newton-Raphson method. Finally, we present the workflow for the implementation 

and pseudo-code for Brent's hybrid and adapted Newton-Raphson method for enhancing the 

inversion method.  

The inversion method is applied to obtain relative permeability data from stylised case studies 

of surfactant core flooding experiments for interpretation, history matching, and reservoir 

performance prior to and after breakthrough so that the estimated result is appropriate. The 

pressure is also considered through Darcy's law to estimate of the total mobility of the fluids, 

ensuring the results are not only accurate but complete. This chapter aims to present the 

algorithm and workflow for the inversion method to estimate the forward and inverted relative 

permeability curves.   

5.2 Theory  

To properly estimate the inverted relative permeability curves for a given uncertainty problem 

or account for any incomplete surfactant core flood data, we employed the Corey method 

(Corey, 1954) to characterise the relative permeability curves. The Corey method, also called 

the power law, follows the exponent function to generate the two-phase relative permeability 

curves for the surfactant flooding system. In addition, the Corey method allows fewer fitting 

parameters, which minimises solution deviation for the inversion algorithm when computing 

values in the function to obtain the inverted relative permeability curves. The Corey method 

was also used due to the flexibility and simplicity of the calculation to obtain reliable 

immiscible and miscible relative permeability curves. Other methods can be used to calculate 
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relative permeability, like Chierici and the LET model (Lomeland, 2018). However, in this 

thesis, we choose the Corey model to minimise the parameter space.  

We used the normalised saturation for water and oil phases to develop the procedure to 

construct the relative permeability correlation. 

 

𝑆𝑛𝑤  =
𝑆𝑤−𝑆𝑖𝑤

1 − 𝑆𝑖𝑤− 𝑆𝑜𝑟
          (5.1) 

 

and  

 

 𝑆𝑛𝑜 =  1 −  𝑆𝑛𝑤         (5.2) 

Thus, using the Corey model for the relative permeability as a function of the normalized 

saturation as follows: 

 

𝐾𝑟𝑤  =  𝐾𝑟𝑤0 × 𝑆𝑛𝑤
𝑛𝑤          (5.3) 

 

𝐾𝑟𝑜  =  𝐾𝑟𝑜0 × 𝑆𝑛𝑜
𝑛𝑜          (5.4) 

The initial water saturation as 𝑆𝑖𝑤, residual oil saturation as  𝑆𝑜𝑟 , endpoint relative permeability 

of water as  𝐾𝑟𝑤0, endpoint relative permeability of oil as  𝐾𝑟𝑜0, Corey exponential of water  

𝑛𝑤,  Corey exponential of oil as  𝑛𝑜 , water viscosity as 𝜇𝑤, and oil viscosity as 𝜇𝑜 . 

5.2.1 Buckley Leverett equation 

The Buckley-Leverett equation (1942) uses a first-order hyperbolic partial differential equation 

to express the two-phase flow in the porous medium of a mass conservation equation. The 

assumptions made to obtain the analytical solution are as follows 

1. One dimensional isotropic and homogeneous porous media 

2. Flow direction is linear and horizontal  

3. The fluids and porous media are incompressible  
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4. Capillary pressure and gravity are negligible  

5. Dispersion is negligible  

6. Surfactant solution is injected at the inlet 𝑥 = 0  

The general mass conservation for the oleic(o) and water/aqueous phase (w) becomes subject 

to these assumptions. 

 

∅
𝜕𝑆𝑤

𝜕𝑡
+  

𝜕𝑢𝑤

𝜕𝑥
= 0          (5.4) 

 

∅
𝜕𝑆𝑜

𝜕𝑡
+  

𝜕𝑢𝑜

𝜕𝑥
= 0          (5.5)  

 

Therefore, considering that 𝑆𝑤 +  𝑆𝑜 = 1, then the summation of equation (5.4) and (5.5) 

becomes 

 

𝜕𝑢𝑡

𝜕𝑥
=  

𝜕(𝑢𝑤+ 𝑢𝑜)

𝜕𝑥
= 0            

 

𝑢𝑡 =  𝑢𝑤 +  𝑢𝑜 indicates the total volumetric flux in one dimensional core flood. The fractional 

flow theory assumes constant volumetric flowrate, resulting from incompressibility.   

 

𝜕𝑢𝑡

𝜕𝑡
= 0          (5.6) 

Therefore, assumed that the injection pressure and production pressure are constant over time 

if mobility is constant. Figure 5-1 illustrates the model, where the initial and boundary 

conditions of saturation and pressure are listed as follows.  
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For pressure:  

 

𝑝(0, 𝑡) = 𝑝𝑖𝑛𝑗  

𝑝(𝐿, 𝑡) = 𝑝𝑝𝑟𝑜𝑑        (5.7) 

𝑝(𝑥, 0) = 𝑝𝑝𝑟𝑜𝑑  

 

For saturation: 

 

𝑆𝑤(0, 𝑡) = 1 −  𝑆𝑜𝑟        (5.8) 

𝑆𝑤(𝑥, 0) =  𝑆𝑖𝑤  

 

Darcy’s law describes the oil and water phases, and the equations are separate as follows: 

𝑢𝑜 =  −
𝑘𝑘𝑟𝑜

𝜇𝑜𝑒𝑓𝑓

𝜕𝑝

𝜕𝑥
         (5.9) 

 

𝑢𝑤 =  −
𝑘𝑘𝑟𝑤

𝜇𝑤𝑒𝑓𝑓

𝜕𝑝

𝜕𝑥
         (5.10) 

 

Figure 5-1: Linear displacement in porous media 
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Adding equations (5.9) and (5.10) will result in the total volumetric flux, which can be 

expressed as follows:  

 

𝑢𝑡 =  𝑢𝑤 + 𝑢𝑜 =  −(𝜆𝑤 + 𝜆𝑜)
𝜕𝑝

𝜕𝑥
=  −𝜆𝑡

𝜕𝑝

𝜕𝑥
       (5.11) 

 

Where 𝜆𝑡(𝑆𝑤, ∆𝑝) =  −
𝑘𝑘𝑟𝑜(𝑆𝑤,∆𝑝)

𝜇𝑜𝑒𝑓𝑓(𝑆𝑤)
, representing the total mobility at a given saturation and 

pressure.  

The fractional flow term for the water phase is obtained as follows: 

 

𝑓𝑤 =  
𝑢𝑤

𝑢𝑤+𝑢𝑜
          (5.12)  

 

Substituting the Darcy’s equation into equation (5.12), we define the fractional flow function 

as a function of water saturation and pressure.  

 

 𝑓𝑤(𝑆𝑤, ∆𝑝) =  
1

1+
𝑘𝑟𝑜(𝑆𝑤,∆𝑝)

𝑘𝑟𝑤(𝑆𝑤,∆𝑝)
.
𝜇𝑤𝑒𝑓𝑓(𝑆𝑤)

𝜇𝑜𝑒𝑓𝑓(𝑆𝑤)

       (5.13)  

 

This equation could be used to determine the fractional flow function of water at any location 

of the core flood after the water saturation and pressure is given. Obtaining the analytical 

solution requires the average pressure used to define fractional flow equation displacement 

process as stated above.  

By substituting the derivative of water fractional flow function into equation (5.4) can be 

rewritten as  

 

 ∅
𝜕𝑆𝑤

𝜕𝑡
+  𝑢𝑡

𝜕𝑓𝑤

𝜕𝑥
= 0         (5.14) 
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The water saturation is a function of time and distance, in accordance with the derivative 

method for chain rule equation (5.14) could be written as:  

 

∅
𝜕𝑆𝑤

𝜕𝑡
+  𝑢𝑡

𝜕𝑓𝑤

𝜕𝑆𝑤

𝜕𝑆𝑤

𝜕𝑥
= 0        (5.15) 

 

The equation can be referred to as the Buckley-Leverett equation, which forms the model 

coupled with the pressure and saturation boundary conditions.  The method of characteristics 

is used to solve the partial differential equation (PDE) and generates curves which transform 

the PDEs into ordinary differential equations (ODEs). These are used to find the solutions of 

ODEs and, subsequently, the solutions of the PDEs. Therefore, we will represent the 

characteristics curves as water saturation profiles in the (𝑥, 𝑡) plane for the Buckley-Leverett 

equation.  

Furthermore, we use the MATLAB programming environment for computing water saturation 

values, explicitly discretizing the Buckley-Leverett equation for the surfactant flooding 

technique considering the earlier assumptions. The explicit scheme was considered due to less 

computational effort and expense than the implicit scheme for programming and modelling.  

5.2.2 Surfactant flooding  

For surfactant or surfactant-mixture flooding, primarily, two fronts will be produced. First 

shock without chemicals where denuded water saturation forms an initial water saturation, and 

second front with surfactant/surfactant mixture. Considering additional assumptions as follows 

(1) Winsor type III microemulsion phase (Sheng, 2015) is neglected to allow the description 

of two phases, (2) Partition of surfactant or surfactant-mixture into the oleic phase is neglected. 

Lastly, the high capillary number (𝑁𝑐𝑎) is considered the principal mechanism to mobilize 

residual oil saturation and assumes that saturation jumps as does the 𝑁𝑐𝑎. The increase in 

capillary number is largely a function of the decrease in oil-water IFT (𝜎𝑜𝑤), which allows a 

transition from waterflood to surfactant relative permeability curves. Therefore, the 

interpolation parameter proposed by Lui et al. (2010) is like that used in Schlumberger Eclipse 

100 simulation software (Schlumberger, 2019).  
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To reproduce the surfactant relative permeability model at varying oil-water IFT and reported 

in Farajzadeh et al. (2019).   

The two-phase model for miscible flow is complex because the capillary number is controlled 

by both the viscous and capillary forces, with viscosity being a part of the viscosity force. In 

addition, the viscosity of the solution is a function dependent on the surfactant concentration, 

which contributes to the mobility and miscibility of the two fluids.  

The surfactant transport continuity equation, under the assumption of no dispersion, is as 

follows: 

 

𝜕(∅𝑠𝑆𝑤𝐶𝑠)

𝜕𝑡
+  

𝜕

𝜕𝑡
 (( 1 −  ∅) 𝜌𝑠𝜌𝑤) +  

𝑞

𝐴

𝜕(𝐶𝑠𝑓𝑤)

𝜕𝑥
 =  0      (5.16)  

 

  

Where ∅𝑠 is porosity accessible to chemical (Surfactant), 𝐶𝑠 is the chemical concentration in 

aqueous phase, 𝜌𝑠 is the rock (grain) density, 𝜌𝑤  is the density of the chemical (Surfactant) 

solution, q is volumetric flow rate, A is flowing area of the reservoir. Therefore, the adsorbed 

chemical on the rock per unit pore volume (�̂�𝑖) gives  

 

�̂�𝑖  =  
(1 − ∅)𝜌𝑠𝜌𝑤

∅
         (5.17) 

 

Substituting equation (5.17) into (5.16), and assuming ∅𝑖  =  ∅, thus  

 

(𝑆𝑤 +  
𝑑�̂�𝑖

𝑑𝐶𝑖
) 

𝜕𝐶𝑖

𝜕𝑡
 +  

𝑞𝑓𝑤

𝐴∅

𝜕𝐶𝑖

𝜕𝑥
 =  0        (5.18) 

 

The retardation factor which causes frontal advance lag for the surfactant concentration is 

defined by 𝐷𝑠 =  𝑑�̂�𝑖 𝜕𝐶𝑖⁄ . Therefore, the resulting shock front velocity of the chemical 

(surfactant) from the fractional-flow curve is as follows: 
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(
𝑑𝑋

𝑑𝑡
)

𝑑𝐶𝑖 = 0
=  

𝑓𝑤

𝑆𝑤+ 𝐷𝑠
         (5.19)  

Where 𝐷𝑠 is the frontal advance lag for the surfactant concentration.  

 

5.2.3 Correlations between Fractional flow of water and water saturation  

Oil and water mobilities with changes in water saturation can be used to calculate the water 

fractional-flow curve. The derivative of the fractional flow curve is produced by reducing 

uncertainty with normalized Corey exponents for the mobility observable.  

Applying the normalized characterization and rewriting equation (5.13), the normalized water 

fractional flow for the waterflood is given as  

 

𝑓𝑛𝑤  =  
1

1 + 
𝐾𝑟𝑜0×𝜇𝑤 (1 − 𝑆𝑛𝑤)𝑛𝑜

𝐾𝑟𝑤0×𝜇𝑜  ( 𝑆𝑛𝑤)𝑛𝑤

  =  
1

1 + 
 (1 − 𝑆𝑛𝑤)𝑛𝑜

𝑀 ( 𝑆𝑛𝑤)𝑛𝑤

     (5.20) 

To achieve the equation to represent the fractional flow and its derivative, we substitute the 

expression from equation (5.20) by letting: 

 𝑃 =
 (1 − 𝑆𝑛𝑤)𝑛𝑜

𝑀 ( 𝑆𝑛𝑤)𝑛𝑤
         (5.21) 

 

𝑓𝑛𝑤  =  
1

1 + 𝑃
 =  (1 +  𝑃)−1        (5.22) 

Definition of square root of 𝑓𝑛𝑤 from equation (5.22) becomes  

 

𝑓𝑛𝑤
2  =  [

1

1 + 𝑃
]

2

 =
1

(1 + 𝑃)2
 =  

1

1 +𝑃2+2𝑃
          (5.23) 

 

Equating the derivative of the fractional flow curve as a function of normalized saturation as 

follows: 
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𝑓𝑛𝑤
′ =  

𝑑𝑓𝑛𝑤

𝑑𝑆𝑛𝑤
 =  

𝑑𝑓𝑛𝑤

𝑑𝑃
  x 

𝑑𝑃

𝑑𝑆𝑛𝑤
          (5.24) 

 

Therefore, solving equation (5.24) becomes  

 

𝑓𝑛𝑤
′ = − 

1

(1+𝑃)2  x 
(1−𝑆𝑛𝑤)𝑛𝑜

𝑀𝑆𝑛𝑤
𝑛𝑤

 [
−𝑛𝑜𝑆𝑛𝑤

𝑛𝑤(1−𝑆𝑛𝑤)−1

𝑆𝑛𝑤
𝑛𝑤

 −  
𝑛𝑤𝑆𝑛𝑤

𝑛𝑤−1

𝑆𝑛𝑤
𝑛𝑤

]    (5.25) 

 

𝑓𝑛𝑤
′ = − 

1

(1+𝑃)2  x 
(1−𝑆𝑛𝑤)𝑛𝑜

𝑀𝑆𝑛𝑤
𝑛𝑤

 [
−𝑛𝑜

(1−𝑆𝑛𝑤)
 −  

𝑛𝑤

𝑆𝑛𝑤
]      (5.26) 

 

Where 1 −  𝑆𝑛𝑤  =  𝑆𝑛𝑜, then equation (5.26) becomes:  

 

𝑓𝑛𝑤
′ =  𝑓𝑛𝑤

2 x  
𝑆𝑛𝑜

𝑛𝑜

𝑀𝑆𝑛𝑤
𝑛𝑤

 [
𝑛𝑜

𝑆𝑛𝑜
 +  

𝑛𝑤

𝑆𝑛𝑤
]        (5.27) 

 

5.2.4 Welge Tangent Method  

To find the Welge tangent quantitatively for waterflooding or surfactant flooding we solve the 

equation (5.28) to find values for  𝑆𝑛𝑤 and 𝑓𝑤  

𝑓𝑤
′  =

𝑓𝑤 

(𝑆𝑛𝑤)
            (5.28) 

The derivate of the water fractional flow 𝑓𝑤
′  as a function of the normalised water saturation is 

used to find the correct slope of the one tangent and intersection lines from (SWC, 0) shown in 

Figure 5-2. The water saturation for the shock front is found using root finding as shown in 

Figure 5-3. Figure 5-3 shows the graphical representation to determine shock front saturation 

using the water fractional flow plot in a solid black line and the red lines are intersection lines 

going from (𝑆𝑛𝑤= 0, 𝑓𝑤= 0) to each point on the fractional flow plot.  

The equation of the intersection line for waterflood can be represented by 𝑇𝑓 and the equation 

of the derivative of the water fractional flow curve can be represented by 𝑓𝑤
′  (equation 5-27), 

both as a functions of water saturation.  Considering that the only unknown in the equation is 
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the shock front saturation, we decided to make the equation a root-finding problem.  We define 

the function:  

𝑔(𝑆𝑛𝑤) =  𝑓𝑤
′ −  𝑇𝑓           (5.29) 

Thus, the Tangent is found by finding 𝑆𝑛𝑤 and 𝑓𝑤 so that 

𝑔(𝑆𝑛𝑤) = 𝑓𝑤
′ − 𝑇𝑓 = 0          (5.30) 

Root of the nonlinear function is used for solution. We will discuss the methods used to achieve 

this solution in later sections. 

 

 

Figure 5-2: Graphical illustration of the lines from initial condition to water saturation curve 

on the water fractional flow curve, where the blue line is the Tangent.  
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Figure 5-3: The graphical illustration for the root of the nonlinear function to determine the 

shock front saturation at the point of intersection between the derivative of the water fractional 

flow curve and the slope of the tangent line from initial condition to water saturation curve.  

 

5.2.5 Surfactant Flood Oil bank water saturation 

The result of shock front saturation obtained from the Welge tangent method in section 5.2.4 

and the water fractional flow curve can be used to determine the surfactant flood oil bank water 

saturation. This can be obtained by drawing a tangent to the surfactant fractional flow curve, 

as a function of water saturation for the injected surfactant solution from the point (𝑆𝑤, 𝑓𝑤) =

(0, 0) as shown in Figure 5-4.  

From Figure 5-4 we can represent the slope of the tangent line for surfactant flood (SF) at shock 

front as 

(
𝜕𝑓𝑤

𝜕𝑆𝑤
)

𝑆𝑤𝑠𝑠

 =
𝑓𝑤𝑠𝑠 − 0

𝑆𝑤𝑠𝑠 − 0
= 𝑇𝑓𝑠𝑠          (5.31) 

This problem is equivalent to the one described above for waterflooding. Figure 5-4 shows the 

solution for oil bank water saturation 𝑆𝑤𝑂𝐵 which is the water saturation value for when the 

equation of the tangent line SF (𝑇𝑓𝑠𝑠) is equal to the equation of the waterflood fractional flow 

curve (𝑓𝑤) at point 3 (green dot). Both equations are functions of water saturation. 

To calculate for 𝑆𝑤𝑂𝐵:  
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𝑇𝑓𝑠𝑠 x 𝑆𝑤 = 𝑓𝑤(𝑆𝑤)          (5.32) 

 

We define a new function 𝑔2(𝑆𝑤) 

 

𝑓𝑤− 𝑆𝑤𝑇𝑓𝑠𝑠   =  0         (5.33) 

 

We can use a root finding method or zero function to solve the problem.  

 

 

Figure 5-4: Graphical illustration of the construction of the tangent to find 𝑆𝑤𝑂𝐵 and the points 

considered for the water saturation profile, when 𝐷𝑠 = 0. The numbering caption are points 

used to generate the water saturation profile for the displacement process. 

 

1 

2 

3 

4 
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5.2.6 Water Saturation profile estimation 

The integration of saturation distribution over the distance from the injection to the front, 

illustrating the rate of advance to obtain the average water saturation behind the front at a fixed 

time, is shown in Figure 5-5. The value of the derivative (
𝜕𝑓𝑤

𝜕𝑆𝑤
) is obtained for any value of 

water saturation, 𝑆𝑤, by graphically taking the slopes at various values of, 𝑆𝑤 from Figure 5-

4.  Figure 5-5 shows the water saturation profile, and the derivative (
𝜕𝑓𝑤

𝜕𝑆𝑤
) plotted against 

dimensionless distance.  

In Figure 5-5, point 1 is at zero distance and obtained at the maximum saturation (𝑆𝑤 = 1 - 

𝑆𝑜𝑟) for the water fractional flow curve of the surfactant flood.  The distance (𝑥1) from point 1 

to 2 is obtained using the derivative of the fractional flow for the surfactant curve. The Buckley-

Leverett theory gives the locations of the saturations. 

𝑥 1 =  𝑡 x (
𝜕𝑓𝑤

𝜕𝑆𝑤
)

𝑆𝑤𝑠𝑠

           (5.34) 

At point 2, the surfactant concentration shock front moved a distance 𝑥 1, its dimensionless 

velocity (𝑣𝐷)∆𝑆𝑤
being proportional to the slope of the fractional flow curve corresponding to 

a saturation shock from 𝑆𝑤𝑠𝑠 to 𝑆𝑤𝑂𝐵. At the points 2 and 3, the two saturations are at the same 

distance, which is at the end of  𝑥 1.  

(𝑣𝐷)∆𝑆𝑤
 =  

𝑓𝑤𝑆𝑆 − 𝑓𝑤𝑂𝐵

𝑆𝑤𝑆𝑆 − 𝑆𝑤𝑂𝐵
       (5.35) 

Where 𝑓𝑤𝑆𝑆 𝑎𝑛𝑑  𝑓𝑤𝑂𝐵 are the water cut corresponding to 𝑆𝑤𝑆𝑆 𝑎𝑛𝑑  𝑆𝑤𝑂𝐵. The boundary 

between denuded water and the initial water moves at (𝑣𝐷)∆𝑆𝑤𝑂𝐵   

  

(𝑣𝐷)
∆𝑆𝑤𝑂𝐵 = (

𝜕𝑓𝑤
𝜕𝑆𝑤

)
𝑆𝑤𝑂𝐵

= 
𝑓𝑤𝑂𝐵
𝑆𝑤𝑂𝐵 

       (5.36) 

The front of the oil bank moves at (𝑣𝐷)∆𝑆𝑤𝑂𝐵   

 

(𝑣𝐷)
∆𝑆𝑤𝑂𝐵 = (

𝜕𝑓𝑤
𝜕𝑆𝑤

)
𝑆𝑤𝑂𝐵

= 
𝑓𝑖𝑤 − 𝑓𝑤𝑂𝐵

𝑆𝑤𝑖𝑤 − 𝑆𝑤𝑂𝐵

      (5.37) 
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The locations of the saturation are given by the Buckley-Leverett theory, where the end of  𝑥 2 

is  

 𝑥 2 = 𝑡 x (
𝜕𝑓𝑤

𝜕𝑆𝑤
)

𝑆𝑤𝐷𝑂𝐵𝑓

       (5.38) 

 

 

 

Figure 5-5: Graphical illustration of the surfactant flood derivative of the water fractional flow 

in red line superimposed on the water saturation profile as a function of distance, prior to 

breakthrough when surfactant is injected at interstitial water saturation. The numbered points 

correspond to Fig. 5-4. 
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5.2.7 Correlations between pressure and total mobility  

The fractional flow theory can be derived from the assumption of constant volumetric flux and 

constant compressibility. Therefore, as it relates to the velocity and pressure gradient, Darcy's 

law can be used to derive the total mobility of the fluids. The total mobility of the fluids at 

breakthrough for a given pressure can be expressed: 

 

𝑀 =  
𝑢𝑡

𝑘∇𝑃|𝐵𝑇
  where ∇𝑃|𝐵𝑇 =  

𝑃𝑖𝑛𝑗−𝑃𝑝𝑟𝑜𝑑

𝐿
      (5.39) 

 

𝐿 is the distance between injector and producer, 𝑃𝑖𝑛𝑗 is the pressure at the injector, 𝑃𝑃𝑟𝑜𝑑 is the 

pressure at the producer, 𝐾 is the absolute permeability and 𝑢𝑡 is the total volumetric flux. 

Total mobility enables us to work out the water mobility after the total has been derived from 

equation (5.39). While the simplification of the pressure makes the inversion method generate 

inverted pseudo relative permeability and fractional flow functions with ease.   

5.2.8 Solving the non-linear Equations Numerically 

Equations (5.30) and (5.33) have their function of one variable equal to zero, and the solution 

to the equations is a numerical value of normalized water saturation that satisfies the equation. 

Solving the equations can be called a root-finding problem (Ehiwario, 2014).  Numerical root-

finding methods are achievable and executed in a computer program or as a built-in MATLAB 

function for solving non-linear equations, including Bisection, Inverse quadratic interpolation, 

Linear Interpolation (Secant), Brent’s hybrid, and Newton Raphson methods (Brent, 2002). 

Such a program looks for a solution 𝑓(𝑥) at different values of 𝑥. The numerical search 

methods vary in convergence rate, number of iterations and numerical computation efficiency. 

First, we will present the Bisection, Inverse quadratic interpolation, and linear Interpolation 

methods for finding the root of the equations to present how they form parts of Brent’s hybrid 

method for obtaining the solution for equation (5.30). Then we describe the Newton-Raphson 

method as an alternative approach for solving equations (5.33)—the aim of comparing the two 

approaches is to enhance the rate of performance of the inversion method. 



124 

 

5.2.8.1 Bisection Method 

Given that equations (5.30) and (5.33) can be written in the form 𝑓(𝑆𝑛𝑤) = 0 for a particular 

saturation, where the closed interval is [0, 1], such that 𝑓(𝑆𝑛𝑤) is point-based and has a solution 

between 𝑆𝑛𝑤 = 0 and 𝑆𝑛𝑤 = 1, then if there is a solution between the interval then the product  

𝑓(0) 𝑓(1) < 0. The method is executed by halving of sub-intervals of [0, 1] that contains the 

true solution, and its midpoint is taken as the second estimate of the root. The algorithm for 

finding the numerical solution is illustrated in Figure 5-6.  
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Figure 5-6: Algorithm workflow illustrating Bisection method for convergence of the 

function 𝑓(𝑆𝑛𝑤) where the start point will be slightly bigger than Snw and slightly less than 1. 

 

 

 

 

Input parameters 

𝑓(𝑆𝑛𝑤) = 𝑓(𝑥) = 0, and 

 interval 0, 1 as 𝐴0, 𝐵0 

 

Calculate the next estimate 

 𝐶𝑘 =  
𝐴𝑘 + 𝐵𝑘

2
  for k = 0, 1, 2…N 

𝐶𝑘 is the 

desired root?  

Output results 

Test convergence is  

𝑓(𝐶𝑘) 𝑓(𝐴𝑘) < 0 

 

Set  

  𝐴𝑘+1 =  𝐶𝑘  

Set  

𝐵𝑘+1 =   𝐶𝑘   

Yes 

No 

Yes 

No 
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5.2.8.2 Brent’s Hybrid method  

Brent’s Hybrid method is used to find the zero functions in equations (5.30) and (5.33). Brent’s 

hybrid method is based on algorithms for minimization without derivatives and was encoded 

into a MATLAB programming command, which uses a combination of Bisection, linear 

interpolation (the Secant method), and inverse quadratic interpolation methods (Brent, 2002). 

At each step, Brent’s hybrid method chooses the Bisection algorithm as one method, and then 

the other method is obtained by the interpolation algorithm, as presented in Figure 5-7. Inverse 

quadratic interpolation is considered whenever the generated water saturations A, B, and C are 

distinct, and linear interpolation is used whenever the initial solution does not converge. The 

Bisection method is considered for the certainty and interpolation method for the speed to 

achieve a smooth function for finding the zero.  

Brent's hybrid method on polynomials of moderate degree for zero functions has been reported 

faster than the Bisection method. However, due to the algorithm's complexity, the rate of 

convergence can vary (Brent, 2002). Therefore, a good understanding of the decisions is 

needed to successfully implement Brent's hybrid method to improve our approach's overall 

performance. 

Using the Brent’s hybrid method to calculate a function of water saturation to determine 

𝑓(𝑆𝑛𝑤) = 0. The main steps of the Brent’s hybrid method can be summarized as follows (See 

Figure 5-7):  

1. Initialization of the starting point set at maximum water saturation of the water 

fractional flow curve 

2. Use technically feasible subroutine to calculate 𝑓(𝑆𝑛𝑤)  

3. For 𝑓(𝑆𝑛𝑤) let A be the maximum water saturation, B = endpoint water saturation 1 −

𝑆𝑜𝑟 and C is an estimated water saturation for each iteration, if A and B are not equal.  

4. Calculate the absolute difference between predicted water saturation values  

5. Test for convergence and produce the value of 𝑆𝑛𝑤 for which the 𝑓(𝑆𝑛𝑤) = 0 

6. Output if the step was made by Bisection, linear interpolation, or inverse quadratic 

interpolation.  

7. Output results 
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At each step or decision node, it is not permitted in MATLAB to change the set of rules for 

modification of the sequence from a workflow point of view. Furthermore, access to the source 

code is restricted so that we cannot change the workflow and the root-finding method for the 

solution. Therefore, Brent's hybrid algorithm must be tested and compared with another option 

where the decisions can easily be altered to improve performance. In the next section we 

present our proposed alternative algorithm to Brent's method. 
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Figure 5-7: Brent’s Hybrid algorithm flow chart illustrating decision set of rules in the 

MATLAB code 

Initialization  

Calculate A, B, 𝑓(𝐴), 𝑓(𝐵)  

Calculate the absolute difference 
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5.2.8.3 The Newton Raphson method 

The Newton-Raphson method is similar to Brent’s hybrid method but minimizes the root-

finding problem with derivatives and lesser complicated rules. Furthermore, we consider the 

Newton Raphson due to the speed, which is crucial when the evaluation of 𝑓(𝑥) is expensive 

in time. Therefore, we can derive the derivative of equation (5.33) and apply the Newton-

Raphson method to reduce further the number of function evaluations that may improve the 

convergence rate. Therefore equation (5.33) can be rewritten as follows: 

 

 𝑓(𝑥) =  𝑓(S𝑛𝑤) =   𝑓𝑤 − (𝑚S𝑛𝑤 + c)   =  0     (5.40) 

 

Where (mS𝑛𝑤 + c)  is the tangent straight-line equation, and the derivative can be expressed 

as:  

 

𝑓′(𝑥) =  𝑓𝑤
′ − 𝑚         (5.41) 

 

The main steps of the Newton-Raphson method can be summarised as follows (See Figure 5-

8)  

1. Calculate the function to determine SWOB, 𝑓(𝑥) =  𝑓𝑤 − 𝑇𝑓𝑠𝑠 

2. Calculate the derivative of the function, 𝑓′(𝑥) =  𝑓𝑤
′ − 𝑚; where m is the slope of the 𝑇𝑓𝑠𝑠 

3. Calculate 1 0

f( )

f ( )

x
x x

x

 
= − 

 
for i = 0, 1, 2…N do until convergence or failure.  

4. Calculate the absolute difference 1 0x x = − ,where the maximum difference is set at 10  

5. Test for convergence is f( )x   or 
1 0

0

x x

x


−
  or 1 0 10x x−   or i > N  

6. Output: approximate  𝑥 =  𝑆𝑊𝑂𝐵 

Chapter 6 will present the results of the comparative study of the modified Newton-Raphson 

method with Brent’s hybrid method to improve the number of iterations, cost, and convergence 
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speed. In addition, studying available options for our inversion method aims to assess the cost 

function as a function of discontinuities and better optimizer search domain. 

5.3 Algorithm 1 for waterflooding  

Corey's method, Buckley Leverett's theory, and fractional flow theory are suitable approaches 

to developing a so-called Algorithm 1 for waterflood due to easy implementation and 

scalability to incorporate an increasing number of parameters for determining the secondary 

surfactant flood and inversion method. Furthermore, algorithm 1 is introduced in the context 

of single flooding and developed with the flexibility for capturing the adsorption effect in a 

single chemical flooding scheme.  

The main steps of Algorithm 1 can be summarized as follows (See Figure 5-8) 

1. Input measured parameters from core flood experiments for the Corey model. 

2. Generate the two-phase relative permeability function and flow properties. 

3. Generate the water fractional flow curve, the derivative of the water fractional flow curve, 

and tangent lines. 

4. Calculate the water saturation value at the shock front by using a difference function of the 

derivative of the water fractional flow and a normal tangent function.  

5. Apply the shock front water saturation onto the water fractional flow curve and determine 

the Welge tangent line.  

6. Generate the water saturation profile at the set dimensionless time and other values as it 

relates to the Buckley Leverett and fractional flow information 
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Figure 5-8: Algorithm 1 flow chart illustrating the workflow. 

 𝑆𝑖𝑤 , 𝑆𝑜𝑟, 𝐾𝑟𝑤0, 𝐾𝑟𝑜0, 𝑛𝑤 , 𝑛𝑜, 𝜇𝑤 , 𝜇𝑜 

Calculate normalized saturation for water and 

oil phases, 𝑆𝑛𝑤  =
𝑆𝑤−𝑆𝑖𝑤

1 − 𝑆𝑖𝑤− 𝑆𝑜𝑟
 ; 𝑆𝑛𝑜 =  1 −

 𝑆𝑛𝑤 

 

Calculate endpoint mobility ratio, 𝑀 =

 
𝐾𝑟𝑤0×𝜇𝑜

𝐾𝑟𝑜0×𝜇𝑤
 

 

Calculate relative permeability for water and 

oil phases, 𝐾𝑟𝑤  =  𝐾𝑟𝑤0 × 𝑆𝑛𝑤
𝑛𝑤;  𝐾𝑟𝑜  =

 𝐾𝑟𝑜0 × 𝑆𝑛𝑜
𝑛𝑜 

 

Calculate fractional flow for water and oil 

phases, 𝑓𝑤  =
1

1 + 
𝐾𝑟𝑜×𝜇𝑤
𝐾𝑟𝑤×𝜇𝑜

 ;  𝑓𝑜  =  1 −  𝑓𝑤 

 

Calculate the derivative of water fractional 

flow for normalized water saturation,  

𝑓𝑤
′  =  𝑓𝑤

2 ×
𝑆𝑛𝑜

𝑛𝑜

𝑀 𝑆𝑛𝑤
𝑛𝑤

× (
𝑛𝑜

𝑆𝑛𝑜

+
𝑛𝑤

𝑆𝑛𝑤

)  

 

Calculate normalized tangent function, 𝑇𝑓  =
𝑓𝑤

𝑆𝑛𝑤
 , using Brent’s hybrid method to determine 

the point where 𝑇𝑓  =  𝑓𝑤
′  

 

Calculate the value of water saturation at shock 

front, 𝑆𝑤𝑠ℎ𝑜𝑐𝑘 , 𝑆𝑛𝑤𝑠ℎ𝑜𝑐𝑘 

Output: 𝑀, 𝐾𝑟𝑤 , 𝐾𝑟𝑜, 𝑓𝑤 , 𝑓𝑜, 𝑓𝑤
′ , 𝑇𝑓 , 𝑆𝑤𝑠ℎ𝑜𝑐𝑘 

 

Initialization  
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5.4 Algorithm 2 for Surfactant flooding  

Algorithm 2 is based on Algorithm 1 but with a different solution for finding the water 

saturation profile for surfactant flooding as a secondary or tertiary technique. For Algorithm 2, 

the solution considers the intersection point on the s-shaped water fractional flow for 

waterflood and the linear Welge tangent line for the surfactant flood water fractional flow 

curve. However, Equation (5.33) will be used in this algorithm which differs from the 

difference function used in Algorithm 1. The adapted Newton-Raphson method is then used to 

estimate the point of intersection to calculate the oil bank water saturation and other parameters 

necessary for the next step.  

Calculating Flow Property of Water and Surfactant Flooding 

1. Input water flooding parameters: 𝑆𝑖𝑤, 𝑆𝑜𝑟 , 𝐾𝑟𝑤0, 𝐾𝑟𝑜0, 𝑛𝑤, 𝑛𝑜 , 𝜇𝑤, 𝜇𝑜 

2. Input surfactant flooding parameters: 𝑆𝑖𝑤𝑠, 𝑆𝑜𝑟𝑠, 𝐾𝑟𝑤0𝑠, 𝐾𝑟𝑜0𝑠, 𝑛𝑤𝑠, 𝑛𝑜𝑠, 𝜇𝑤𝑠, 𝜇𝑜𝑠, 𝐷𝑖𝑠 

3. Calculate water flooding using Algorithm 1. 

4. Calculate 𝑀𝑠, 𝐾𝑟𝑤𝑠, 𝐾𝑟𝑜𝑠, 𝑓𝑤𝑠 , 𝑓𝑜𝑠, 𝑇𝑓𝑠, 𝑆𝑤𝑠ℎ𝑜𝑐𝑘𝑠for surfactant flooding using Algorithm 

1, where 𝑇𝑓𝑠  =
𝑓𝑤

𝑆𝑛𝑤+ 𝐷𝑖𝑠
 

5. Calculate water saturation at the oil bank, 𝑆𝑤𝑂𝐵. This is calculated by using the 

adapted Newton Raphson method to determine the point where 𝑓𝑤  =  𝑇𝑓𝑠  

6. Output 𝑆𝑤𝑂𝐵and saturation profile 

 

5.4.1 Implementation of Algorithm 1 and 2  

The first component of the method is to apply Algorithm 1 and 2 of the surfactant flooding. 

That requires using the MATLAB environment to implement the algorithms, obtain functions 

and use tools for initialization. We ensure the program can handle the water saturation data by 

using two functions.  One function calculates the normalized water saturation for every given 

water saturation and the second is for converting the normalized water saturation back to water 

saturation. We used the approach because Algorithms 1 and 2 are performed using the 

normalized water saturation, whereas plots and results are calculated using the water saturation. 

Then, we coded a function that calculates the flow property to obtain the total mobility, relative 

permeability, and fractional flow of a single flood analytically as a function of normalized 

water saturation. The results from the flow property use a function to calculate the vector of 

derivatives of fractional flow using another analytical approach as a function of normalized 
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water saturation. The shock front of the flood is obtained by implementing a difference function 

of the derivative of the fractional flow and a normalized tangent function, which is solved 

numerically using a MATLAB built-in function for the root of the equation. The maximum 

water saturation is obtained in agreement with the fractional flow theory. Next, we ascertain 

miscibility, a test to evaluate if the maximum tangent diverges or the tangent is constant. When 

true, the water saturation at the shock location converge on the upper limit for miscible flow. 

This condition is necessary to distinguish immiscible and miscible relative permeability curves. 

Finally, the relative permeability and fractional flow results are used to determine properties at 

the shock location and transferred for Algorithm 2.  

Then Algorithm 2 is initiated using a function that calculates the shock front saturation using a 

difference function of the fractional flow of waterflood and Welge tangent line of surfactant 

flooding.  

5.5 Algorithm 3 for Inversion  

The output information from the forward modelling algorithm is used to predict the observed 

data and as an input parameter to initialise Algorithm 3, also called the inversion method. The 

mathematical problem is to build an objective function which depends on the predefined or 

observed data.  

The objective function is the summation of the predicted terms E1, E2, and E3 and the 

regularization term E4, which measures the error of the predicted from the observed data. 

Where E1 represents the objective function to calculate the difference between the measured 

and predicted fractional flow, E2 represents the objective function to calculate the difference 

between the measured and predicted flow velocity, and E3 represents the objective function to 

calculate the difference between the measured and predicted mass balance for the inverted 

results. A regularisation term E4 is added to the objective function as the distance function 

between vectors [𝑛𝑤, 𝑛𝑜]and prior expected vector [𝑛𝑤𝑠, 𝑛𝑜𝑠]. It really tries to honour prior 

knowledge of the relative permeability curve. The predicted and regularisation terms are used 

to define the objective function needed to satisfy the measured parameters. To minimize the 

objective function, we find the vertices of the feasible region subject to restrictions on the 

values of the variables defined by a set of constraints. Minimizing the objective function 

involves using a chosen optimisation algorithm to estimate the values of 𝑆𝑖𝑤 , 𝑛𝑤 and 𝑛𝑜. The 

lower the objective function, the closer the design variables satisfy the constraints. Therefore, 
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the obtained results for 𝑆𝑖𝑤, 𝑛𝑤 and 𝑛𝑜 is used to generate the inverted relative permeability 

curves, fractional flow curves, and water saturation profile. 

The Interior-Point algorithm was used with the Hessian function to obtain a faster, more 

accurate solution to the constrained minimization problem. In addition, the Interior-Point 

method is used as the default option for the inversion method, as they exist other methods 

(Waltz et al., 2006). The optimisation processes are conducted to form the predicted and 

regularization terms as a single objective function in Algorithm 3. The chosen optimisation 

method will be used to obtain the optimal inverted relative permeability curves from several 

test evaluations. For this method, the waterflood parameter plays crucial roles in the 

optimisation process for generating the appropriate inverted relative permeability functions.  

The illustration of how the inversion system works is displayed in Figure 5-9 (a). An orange 

point on the fractional flow curves shows the “measured” data point for the solution. The 

orange line indicates where the green point should be to satisfy the true parameters. Algorithm 

3 produces finds the orange spot from an initial green spot, as shown in Figure 5-9 (b). If the 

green and orange point are not equal for any reason, then we say it is not converged. For 

example, the inability to converge may be due to the solution not being inside the constrained 

values for the search region, measurement error, flow model error, and software errors during 

the optimization. The optimal solution can be based on the predicted terms that matter the most 

to the result. Once the guess has converged by the optimiser either through automation or 

manually, the system will have found the inverted relative permeability function, fractional 

flow, and water saturation. Algorithm 3 highlights the step-by-step process carried out to 

generate results for our new approach. 

For example, when a core flood experiment is conducted, the observed variables are 

documented and used for our method. Such observed or measured data include total mobility 

MO, oil bank saturation SOBO, mass balance AO, endpoint relative permeability of oil 

𝐾𝑟𝑜0, fractional flow 𝑓𝑤0 and flow velocity VOBO. The predicted data include fractional flow 𝑓𝑤, 

mass balance A, and flow velocity VOB. Therefore, Algorithm 3 will be used to find the value 

of initial water saturation SIW, Corey exponents for water nw and oil no that defines the relative 

permeability data and give predictions that satisfy measured data. We assumed unity for the 

four weighted objective functions (Weight = 1:1:1:1). In later sections, we will explore 

changing weights to improve efficiency.  
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1. Input measured parameters:  𝑀0, and 𝐾𝑟𝑜0 

2. Calculate the endpoint relative permeability of water  𝐾𝑟𝑤0 

3. Set constraint parameters: 𝑆𝑂𝐵0,  𝑉𝑂𝐵0, and 𝐴0.  

4. Calculate the fractional flow, 𝑓𝑤0 at 𝑆𝑂𝐵0 

5. Calculate 𝐸1  =  (𝑓𝑤0  −  𝑓𝑤)2  

6. Calculate 𝐸2 =  (𝑉𝑂𝐵0  −  𝑉𝑂𝐵)2  

7. Calculate  𝐸3  =  (𝐴0  −  𝐴)2  

8. Calculate ( ) ( )
2 2

4 W WS O OSE n n n n= − + −   

9. Calculate the inversion function with equal weighting of unity  𝐹(𝑆𝑖𝑤 , 𝑛𝑤 , 𝑛𝑜)  =

 𝐸1 + 𝐸2 + 𝐸3  +  𝐸4  

10. Minimize 𝐹(𝑆𝑖𝑤, 𝑛𝑤, 𝑛𝑜) subject to the constraints using Interior-Point optimization 

algorithm.  

11. Return optimized values of 𝑆𝑖𝑤, 𝑛𝑤  and 𝑛𝑜 to Algorithm 1 and 2  
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Figure 5-9: The graphical illustration of the immiscible surfactant flooding from (a) fractional-

flow curves as a first guess before optimization to the orange spot to (b) optimized fractional-

flow curve to satisfy measured parameters  

 

 

 

(a) 

(b) 
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5.5.1 Implementation of Algorithm 3  

We use functions to handle the three design parameters for the optimisation as a single variable 

𝑋 =  [𝑆𝑖𝑤,  𝑛𝑤,  𝑛𝑜], vector of water saturation ranging from 0 to 1, imported data for water 

flooding, imported data for surfactant flooding and the optimization constraints. Once the 

objective function is determined for all variables and optimisation options, the next component 

of the inversion algorithm is performed by the 3D surface plot of the search space of the 

objective function. The 3D surface plot is created as a function to read and allows input of the 

measured initial water saturation. The plot presents the objective function of test evaluations 

for Corey exponential of oil and water to form the optimisation search space. The plot presents 

Corey exponential of water and oil for the x and y-axis and the objective function value as the 

z-axis. The CPU usage is tracked in seconds, and with the potential for enhancement, a built-

in MATLAB function called “tic” is used as the timer in seconds to measure the performance 

of the optimisation process. The function displayed the elapsed time on the MATLAB 

command window.   
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5.6 Conclusion 

• Our approach's forward modelling capability solved the Welge tangent problem of 

water fractional flow and associated flow properties for waterflood and surfactant 

flooding. 

• Brent's hybrid function was an appropriate choice for the computational root-finding 

approach of the water saturation at the shock, which is when the derivative of the water 

fractional flow curve equals the tangent curve for the Waterflood system. 

• In addition to Brent's hybrid function, the adapted Newton-Raphson method was 

introduced as an alternative to ensure reliable results and potential for the algorithm of 

the inversion method to be scaled, adapted, and applied in other programming and 

numerical computing packages. 

• The forward modelling process is integrated and updated simultaneously for the 

secondary or tertiary recovery process at the given dimensional time to solve for the 

surfactant flooding in miscible or immiscible flow modelling. 

• The inversion method combines the Corey exponential for relative permeability 

characterization with optimization for modelling uncertainty to estimate the inverted 

relative permeability and water fractional flow. 

• Adjusting the weighting of the objective function can be a useful strategy for improving 

the predictability of the inversion method, particularly in cases where certain 

parameters are expected to have a larger impact on the model outputs. 

 

 

 

 

 

 

 

 

 



139 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6: Surfactant Flood Simulation 
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6.1. Introduction  

This chapter builds on the work presented in Akinyele and Stephen (2022b; 2022c).  

In the previous chapter, we have seen the description of the Algorithms, implementation 

strategy, the inversion tool and how the performance is evaluated. This chapter will use the 

developed idea for synthetic reservoir models for forward and inverse modelling. Firstly, the 

forward modelling would describe the flow behaviour, after which the corresponding novel 

approach for parameter estimation using inversion modelling would be conducted. We will 

also investigate the solution with set parameters for the tool's performance, which forms the 

comparative study between the Brent Hybrid and Newton-Raphson methods to find the root of 

the Welge tangent problem. The comparative study will consider the optimisation method to 

analyse the appearance of the objective function, number of iterations and computational time 

to ensure the tool is valid to a degree of accuracy.  

This chapter will study the aptitude of the inversion method for predicting immiscible and 

miscible flow systems. We will investigate for any modelling errors and mitigate them using 

the weighting of the objective function to ensure consistency and efficiency between the two 

flow processes. 

6.2. Problem Statement  

Reservoir simulation packages like Schlumberger Eclipse, used in chapters 3 and 4 for analysis, 

are expensive and not open-source code. Such a numerical simulator makes it challenging to 

investigate the underlying reason for the appearance of numerical effects or pulses from a code 

perspective, where bugs may have caused the solution to be unstable. We want to promote open 

innovation and reproducible study for flow modelling, upscaling, and visualization aimed at 

chemical flooding of two-phase problems in porous media processes. Open-source means 

anyone can inspect the code and evaluate its quality to encourage the delivery of better codes. 

Furthermore, the open-source approach helps bug reporting and code contribution to prevent 

unreliable solutions.  

Validation and application to derive the relative permeability curve from experimental data to 

infer a set of model parameters is known as an inversion problem. The aim is to infer 

information about the model parameters which contain some uncertainty. It is difficult to 

correctly determine the surfactant flood parameters of a reservoir model from incomplete data 

using the forward model. In most cases, we have preliminary information about the 
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representation of the reservoir model, which may include cores, logs, and seismic data. 

Therefore, such information must be interpreted, and history matched for reservoir 

performance evaluation.  

This chapter introduces and demonstrates in a systematic approach the application of the 

inversion method. The research questions are: can we improve the accuracy of the tool by using 

Newton Raphson algorithm as an advancement and alternative to using the inbuilt MATLAB 

function referred to as the Brent Hybrid algorithm? Using an improved algorithm, what is the 

performance of the objective function when modelling miscible and immiscible for a variety 

of pure cases? Also, what errors may be encountered in the solution when applied to a model-

based case.     

6.3. Waterflood  

This section will show an example of the fractional flow curve and how that is used to give a 

solution using Algorithm 1 for waterflood. The model requires the input parameters shown in 

Table 6.1 for waterflood, evaluated as a single flood assuming 1D flow and Buckley-Leverett 

assumptions hold. We chose this example because the data has been published by Ding et al. 

(2020) for waterflood and surfactant flooding experiments and for unstable flow displacement. 

As discussed in chapter 4, there is a potential for surfactant flooding for heavier oil with higher 

viscosity, although this may result in instability in the form of viscous fingering—

notwithstanding, it is crucial to test our tool capability and report any limitations. For the 1D 

displacement process illustrated in Figure 6-1, the estimated normalised water saturation at the 

shock location for the waterflood is 0.68 and the simulator calculated water saturation is 0.56.   

Table 6-1: Truth parameters for Corey model correlation to find the inverted results.  

Waterflood 

𝐾𝑟𝑤0  𝐾𝑟𝑜0 Siw Sro 𝑛w 𝑛o 𝜇𝑤 𝜇𝑜 

0.14 0.40 0.15 0.24 4 2 0.5 5 

Surfactant (immiscible) flooding  

0.4 1 0.15 0.1 4 1.5 0.5 5 

Miscible flooding 

1 1 0 0 1 1 5 5 
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Figure 6-1: Determination of the normalised water saturation at the shock front for finding 

the Welge tangent point by using the root-finding function of the point where the derivative 

of the water fractional flow curve equals the tangent curve for Waterflood (µ𝑤  =

 0.5𝑐𝑃, µ𝑜  =  5𝑐𝑃).  
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6.4. Surfactant flooding 

These fluid viscosities are the same as in the previous section for the analytical solution. The 

secondary flooding implies the surfactant flood process starts from the initial production at 𝑡 =

 0. In contrast, tertiary flooding means water was injected first to displace oil and then 

surfactant solution was injected to mobilise trapped oil.  Adsorption can be included, but it 

adds an extra unknown to the problem and will result in more measurements as an additional 

data point. 

Adsorption is neglected in the solution; the relative permeability and water fractional flow 

curves are represented for the secondary recovery technique for the surfactant flooding for 

immiscible and miscible flow in Figures 6-2 and 6-3 accordingly. The figures were determined 

using Corey model correlation and parameters as previously listed in Table 6-1. The 

construction of the saturation profile at the dimensionless time 𝑡𝐷  =  0.2 and shock front are 

shown in Figures 6-4(a) and 6-4(b), showing the simulator tool's ability to model analytically 

for both flood cases.  The tertiary surfactant flood illustrates the water fractional flow curve, 

the oil bank construction, and the saturation profile at 𝑡𝐷  =  0.2 in Figure 6-5(a) and 6-5(b) 

respectively. Figure 6-6 describes the water fractional flow of the miscible flooding scenario 

when oil viscosity is decreased to 1cP.  

 

 

Figure 6-2: Waterflood and immiscible flooding (a) Two phase relative permeability functions 

and (b) Water Fractional flow as a function of water saturation as obtained from the MATLAB 

analytical solution.  
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Figure 6-3: Waterflood and miscible flooding (µ𝑤  =  5𝑐𝑃, µ𝑜  =  5𝑐𝑃) without adsorption 

(𝐷𝑖𝑠= 0) for immiscible flow (a) Two phase relative permeability functions and (b) Water 

Fractional flow as a function of water saturation as obtained from the MATLAB analytical 

solution. 

 

 

Figure 6-4: MATLAB Surfactant flooding water saturation profile at 𝑡𝐷 =  0.20 for (a) 

immiscible flow and (b) miscible flow as obtained from the MATLAB analytical solution.  

 

(a) (b) 
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Figure 6-5: Waterflood and surfactant flooding tertiary recovery (a) Water Fractional flow as 

a function of water saturation, and (b) construction of the shock front for illustration purposes.  

 

 

Figure 6-6: Secondary recovery for waterflood and miscible flooding: oil viscosity is 

decreased to 1cP to illustrate the impact on miscible flooding water fractional flow curve. 
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6.5 Inversion Method  

The root-finding is one of the often used computational problems, whose solution when used 

with global optimization may encounter non-convergence or inferior solutions in some search 

spaces. Moreover, the appearance of inferior solutions may affect finding the global minimum 

and the overall performance of the optimisation method. Therefore, objective function should 

be accurate, the algorithm should converge quickly, with minimal iteration. The inversion 

enhancement is aimed to improve the accuracy of Newton Raphson algorithm as an 

advancement and alternative to using the in-built MATLAB function referred to as Brent 

Hybrid algorithm.  

We adopt a comparative approach, which involves analysing the performance characteristics 

of the optimisation for the inversion method in response to the options for finding the zero 

function for Algorithm 2. Figure 6-7 shows the diagram illustrating the process of the 

comparison approach used for the modified Newton-Raphson method compared to Brent's 

hybrid method in MATLAB for performance purposes. The next step involves constructing the 

multidimensional objective function. Which captures the optimiser search domain, and consists 

of various combinations of Corey exponent of oil and water, as shown in chapter 5. A visual 

check of the search domain is needed to identify discontinuities or noisy costs that may prevent 

the solution from finding the global minimum. The next step involves refining the 

multidimensional objective function by increasing the number of test evaluations to evaluate 

the rate of convergence, as reported by Akinyele and Stephen (2022c). This step shows the 

speed of computation between the two methods. The next step involves analysing the iteration 

data for the performance and comparing results to the defined objectives.  
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Figure 6-7: Workflow illustrating the comparative study 
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6.5.1 Comparison Study between Brent’s Hybrid and Newton Raphson method 

We compare the performance of using Brent’s Hybrid and adapted Newton Raphson method 

as a function for solving the root of the Welge tangent problem of the surfactant flood process, 

as demonstrated in the previous section. To ensure we select the appropriate search space and 

constrained values for the inversion process efficiency. We considered the interior-point 

optimisation method for selected search domains and test evaluations to analyse and compare 

the performance using the response manifold. The response manifold represents the objective 

function exhibited on a search domain in a number of parameters in multidimensional space 

obtained in a data-driven way, where low objective function value obtains good quality results 

and is crucial for inversion modelling. Moreover, the multidimensional space prevents the 

optimizer from being stuck in a local minimum along one of the axes. Therefore, improving 

the possibility of attaining the global minimum. 

The performance evaluation was conducted by extending the search domains for the 

combination of Corey coefficient of oil and water with a range of values constrained to different 

scenarios with a maximum of 3, 6 and 10 for illustration purposes and presented in Table 6-2. 

Then the set of Corey coefficients of oil and water is calculated on the objective function for 

the search domain with 36, 3600 and 10,000 test evaluations respectively, to study the patches 

with inferior solution (yellow section). The computational time is reported in Tables 6-2(a) for 

Brent's hybrid and Tables 6-2(b) for the Newton-Raphson method. The convergence time for 

the maximum value of [3, 3] search spaces were observed to take longer than the [6, 6] and [10, 

10] search spaces. This may result from compromise to response quality and solution outside 

the [3, 3] search space, making it challenging to find the answer and incurring additional 

convergence time. The comparison of the appearance of the objective function using the 

optimisation algorithm on the two-dimensional space is presented in Figure 6-8 for the Brent 

Hybrid and Figure 6-9 for the Newton-Raphson function. The dark blue section represents the 

solution when the objective function tends to zero and where the global minimum is located. 

In contrast, an inferior solution is in yellow as the objective function becomes greater than 2. 

The yellow region is considered inferior because the solutions are not close to the global 

minimum and may hinder the performance of the optimization problem.  

Brent's hybrid method used the interpolation method as the best approach for test problems, 

which converges with more iterations and slower execution time when compared to the adapted 

Newton-Raphson method. We acknowledge that relaxing the convergence limit may produce 
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a different result. Similarly, the Newton-Raphson method's influence on the two-dimensional 

objective function for the varying search intervals when constrained to different test 

evaluations has a better appearance to identify and converge to the global minimum. The 

appearance of the objective function may contribute to the faster convergence of the Newton-

Raphson method over Brent's hybrid method. The Newton-Raphson method generated more 

inferior solutions on the objective function but is not a concern for this application. 

 

Table 6-2a: Execution time in seconds for Interior Point optimization search in two-

dimensional cost function using Brent’s Hybrid function.  

Maximum values [ on , wn ] 
Test Evaluations 

36 (6x6) 3600 (60x60) 10000 (100x100) 

[3, 3] 0.25462 74.3709 205.4747 

[6, 6] 0.15041 40.8981 115.8479 

[10, 10] 0.14415 26.6995 78.7782 

 

Table 6-2b: Execution time in seconds for Interior Point optimization search in two-

dimensional cost function using Newton Raphson function 

Maximum values [ on , wn ] 
Test Evaluations 

36 (6x6) 3600(60x60) 10000 (100x100) 

[3, 3] 0.21985 9.0216 24.0432 

[6, 6] 0.12101 8.5032 24.8699 

[10, 10] 0.10467 8.4185 24.2486 
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Figure 6-8: Cost response manifold with the yellow section represents inferior solution and 

blue section is the region with global minimum (darkest blue spot). Using Brents Hybrid 

function and interior point method for minimization at 𝑆𝑖𝑤 = 0.15 to conduct test evaluations 

and [maximum no, maximum nw] (a) 36 and [3, 3] (b) 3600 and [3, 3] (c) 36 and [6, 6] (d) 3600 

and [6, 6] (e) 36 and [10, 10] (f) 3600 and [10, 10] 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 6-9: Cost response manifold with the yellow section represents inferior solution and 

blue section is the region with global minimum (darkest blue spot). Using Newton-Raphson 

function and interior point method for minimization at 𝑆𝑖𝑤 = 0.15 to conduct test evaluations 

and [maximum no, maximum nw] (a) 36 and [3, 3] (b) 3600 and [3, 3] (c) 36 and [6, 6] (d) 3600 

and [6, 6] (e) 36 and [10, 10] (f) 3600 and [10, 10] 

(a) (b) 

(c) (d) 

(e) (f) 
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6.6 Analysis of Objective Function  

This section presents the surfactant flooding model with predefined surfactant properties as the 

reference case. First, we build miscible and immiscible two-phase relative permeability curves 

for a one-dimensional core flood experiment. Then, we set up an analytical solution as a 

synthetic truth (reference case) using our tool for flow modelling with applicable 

measured/observed data. All the obtained parameters concerning the surfactant properties were 

assumed accurate. All the parameters except the relative permeability curve are the same for 

the reference case reported in section 6.3 (See Table 6-1). An arbitrary-shaped relative 

permeability curve was initialised for miscible and immiscible flow and set as the true relative 

permeability curve. The inversion method finds the best parameters, and the objective function 

measures the accuracy of the analytical solution for predicting the observed data. Finally, we 

modify the inversion method's predictive performance to get a converged and improved match.   

6.6.1 Case I: Immiscible Surfactant Flooding   

For any form of saturation measurement in experimental studies, it is important to mention that 

saturation values like oil bank water saturation (𝑆𝑂𝐵), initial water saturation (𝑆𝑖𝑤), etc., are a 

function of the relative permeability curves, and these relative permeability curves have a 

significant dependence on the differential pressure of the system. Also, the differential pressure 

has been observed to fluctuate at initial injection conditions and throughout the injection 

process, especially during unsteady state core flood experiments. The fluctuations may or may 

not stabilize and are crucial for calculating the relative permeability values. Therefore, we have 

one reference case and three inverted cases with varying oil bank water saturation (𝑆𝑂𝐵), as 

shown in Table 6-3, typical of those encountered in experimental or simulation studies, as 

demonstrated in Chapters 3 and 4. All properties of the surfactant flooding parameters are 

known, except waterflood initial water saturation (𝑆𝑖𝑤), Corey coefficient of water (𝑛𝑤), and 

Corey coefficient of oil (𝑛𝑜). We neglected the 𝐸2 term from the inversion function (step 9 in 

section 5.5) and considered flow velocity 𝑉𝑂𝐵 unknown in the inversion function to simplify 

our study. Also excluding 𝑉𝑂𝐵  was found to improve the response quality with reduced 

appearance of the inferior region on the search space, which may prevent the optimizer from 

reaching the local minimum (critical point).  We ensured mass conservation of the water 

saturation was maintained for all cases. Therefore, Table 6-3 shows the results for case numbers 

with varying measured 𝑆𝑂𝐵 to investigate the response of the inversion solution. Case number 

1 represents the predefined results (reference) derived from Algorithms 1 and 2 and is 
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compared to Algorithm 3 to determine the inverted cases. Figure 6-10 (a) shows case 1, which 

is the global minimum for 𝑆𝑖𝑤 = 0.15 and using the objective function within the threshold of 

0 to 0.1 as our acceptable limits for the inverted results (See Figure 6-10 (b)). This gives an 

uncertainty level so we can change 𝑆𝑂𝐵 down to 0.45 (case 2), maintain to 0.48 (case 3) or up 

to 0.50 (case 4). The acceptable threshold is applicable for changes to 𝑆𝑖𝑤 = 0.16 (See Figure 

6-10 (c)). If the objective function is greater than 0.1, it is considered an inferior or incorrect 

solution.  

The case location and data text for cases 2 to 4 are shown in Figures 6-10 (c) and 6-10 (d) to 

be within the acceptable threshold. Notwithstanding, case 4 predicted the correct  

𝑆𝑖𝑤 and 𝑉𝑂𝐵 (See Table 6-3), which is quite close to the truth case 1 on the response manifold 

shown in Figure 6-10 (d). In this situation, we can say the value of the inversion function can 

reach the critical points in the space and has proven to move the objective function toward the 

local minimum.  

 

Table 6-3: Inversion of measured parameters for immiscible flow with changes to  

𝑆𝑂𝐵 

Case Number 𝑆𝑂𝐵 𝐾𝑟𝑜0 𝐴 𝑆𝑖𝑤 𝑛𝑤 𝑛𝑜 𝑉𝑂𝐵 

1 (Reference) 0.48 0.40 0.40 0.15 4 2 1.8 

2 0.45 0.16 3.3 2.2 2.0 

3 0.48 0.16 4 2.2 1.9 

4 0.50 0.15 3.9 1.7 1.8 

 

 

 

 

 

 

.   
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Figure 6-10:  Immiscible flow response manifold with (a) global minimum for truth/reference 

case at 𝑆𝑖𝑤 = 0.15 on the data text box (b) red eclipse shape depicts objective function 

acceptable space within colour-bar threshold between 0 to 0.1 (c) location and data text box for 

case 2 and case 3 at 𝑆𝑖𝑤 = 0.16 and (d) case 4 at 𝑆𝑖𝑤 = 0.15 

 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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6.6.2 Case II: Miscible Surfactant Flooding   

The results of miscible flow produced a collection of datasets on the response manifold 

different from that of the immiscible flow, with the truth case shown in Figures 6-11(a) and 6-

11(b).  The value of no can be seen in Table 6-4 to be held at 1 for all inverted case studies 

relative to the reference case number 1, which may imply the regularisation term E4 as defined 

in the inversion function (section 5.5 in step 9), dominates the objective function. The 

sensitivity of 𝑆𝑂𝐵 is consistent with the Buckley-Leverett solution but the regularisation term 

restricts the optimiser's performance to iterate with a varying value of no. The regularization 

term can also be said to limit the value of the function from reaching the inferior points in the 

yellow-coloured space. Case 3 was the best with correctly matched  𝑆𝑖𝑤 and 𝑉𝑂𝐵 (See Table 6-

4), and close to the global minimum, as shown in Figure 6-11(c). Notwithstanding, case 2 (See 

Figure 6-11(d)) and case 4 (See Figure 6-11(e)) are considered good predictions because they 

fell within the acceptable threshold.  

We changed the weighting of the regularisation term to E4 = 0 for the miscible flow and 

presented findings in Table 6-5. To ensure the optimizer performance for the miscible flow is 

like that of immiscible flow output data. When the regularization term is weighted at 0, no value 

is not maintained at unity. Secondly, the absence of the regularization term can be said to allow 

the optimizer to achieve higher values of  𝑛𝑤, matching 𝑆𝑖𝑤 and 𝑉𝑂𝐵 for case 3, and 𝑉𝑂𝐵 for 

case 2. Nevertheless, case 3 with E4 = 0 has a lower level of precision when compared with E4 

= 1 relative to truth case number 1, as shown in Figure 6-11(f). The value of the objective 

function for case 3 with E4 = 0 was 0.10, and with E4 = 1 was 2.8E-07.  

Therefore, when appropriate weighting is applied to the function, it proves our inversion 

function allows the chance to hit the local minimum for the miscible flood. However, further 

analysis is needed for the optimisation problem to increase the quality of the response manifold 

and appropriate weight changes of the inversion function.    
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Table 6-4:  Inversion of measured parameters for miscible flow with changes to  

𝑆𝑂𝐵 

Case Number 𝑆𝑂𝐵 𝐾𝑟𝑜0 𝐴 𝑆𝑖𝑤 𝑛𝑤 𝑛𝑜 𝑉𝑂𝐵 

1 (Reference) 0.45 0.40 0.41 0.15 4 2 1.5 

2 0.40 0.16 2.3 1 1.7 

3 0.45 0.15 3.0 1 1.5 

4 0.50 0.14 3.9 1 1.4 

 

 

Table 6-5: Zero weighting function of regularisation term for miscible flow with changes to  

𝑆𝑂𝐵 

Case Number 𝑆𝑂𝐵 𝐾𝑟𝑜0 𝐴 𝑆𝑖𝑤 𝑛𝑤 𝑛𝑜 𝑉𝑂𝐵 

1 (Reference) 0.45 0.40 0.41 0.15 4 2 1.5 

2 0.40 0.16 5.2 1.8 1.5 

3 0.45 0.15 5.7 1.3 1.5 

4 0.50 0.13 3.5 3.4 1.4 
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Figure 6-11:  Miscible flow response manifold with (a) global minimum for truth/reference 

case at 𝑆𝑖𝑤 = 0.15 on the data text box (b) truth/reference case with a data text box on the two-

dimensional space and colour-bar threshold between 0 to 0.10 (c) data points and text box for 

𝑆𝑖𝑤 = 0.15 (d) 𝑆𝑖𝑤 = 0.16  (e) 𝑆𝑖𝑤 = 0.14  and (f) 𝑆𝑖𝑤 = 0.15 for case 3 comparative study.   

(a) (b) 

(c) (d) 

(e) (f) 
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6.6.3 Application for Realistic Simulation  

In this part of the study, we repeat the process where the inverted relative permeability curves 

of the realistic simulation under surfactant injection in miscible flow are derived, and the detail 

of the relative permeability curve is presented in Table 6-1. In this case, however, the 

experiments are conducted to synthesise observed data with a simulation model described in 

Table 6-6. The results are for more realistic unstable displacements in which viscous and 

gravity forces do not seem to dominate and influence the appearance of fingers, as shown in 

Figure 6-12. The viscous fingering displayed in Figure 6-12 is modelled with a short aspect 

ratio like in Chapter 4, with a high-resolution grid setup (500 x 1 x 200), which can be complex 

and problematic for parameter estimation. For example, the 2D model is shown in an 

intermediate and coarse grid setup in Figures 6-13 and 6-14, respectively. These figures 

indicate the different appearance and propagation of the fingers, affecting the mobilities 

between the injected surfactant solution and the oil in the reservoir during recovery. The fingers 

are larger when the grid setup changes from coarse to intermediate and a high-resolution model.  

We will use the intermediate model to study the accuracy of the inversion method for matching. 

The methodology is appropriate for simulation modelling because the high-resolution model 

incurs high computational expense, as shown in Figure 6-15 in the water cut profile. The erratic 

pulses may be due to the multiple fingers displayed in Figure 6-12 or convergence problems. 

We use polynomial trendlines of a degree of 6 to show the typical pattern without interference 

from the pulses for the high-resolution and intermediate models (See Figure 6-15). The 

maximum water cut difference between the typical high resolution and the intermediate model 

pattern is 0.16. Therefore, 0.16 is used to impose an acceptable upper limit to examine the 

magnitude of pulses in the inverted cases. 

Furthermore, error analysis measures the discrepancy between the intermediate (reference 

case) and high-resolution models. For example, a 38% error was calculated for the intermediate 

model error relative to the discrepancy to the high-resolution model (See Figure 6-16) for the 

field pressure profile. We will use the intermediate model solution for further studies.    
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Table 6-6: Simulation model 

Parameters  Values 

Grid length  500m  

Grid width  500m 

Grid height 20m 

Porosity  25% 

Permeability  1000mD 

Water injection rate 500 rm3/day 

Production rate  500 rm3/day 

Reference pressure 270 barsa 

Surfactant solution viscosity 5cP 

Surfactant solution density  1000 kg/m3 

Oil viscosity  5cP 

Oil density 850 kg/m3 

Coarse model  100 x 1 x 10 

Intermediate model  100 x 1 x 100 

High-resolution model 500 x 1 x 200 
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Figure 6-12: Surfactant solution injected through the injector well and flowing to the 

production well showing viscous fingering with high resolution grid model (500 x 1 x 200) 

 

 

Figure 6-13: Surfactant solution injected through the injector well and flowing to the 

production well showing viscous fingering with intermediate grid model (100 x 1 x 100) 

 

 

Figure 6-14: Surfactant solution injected through the injector well and flowing to the 

production well showing viscous fingering with coarse grid model (100 x 1 x 10) 
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Figure 6-15: Water cut profile 

 

Figure 6-16: Field pressure profile 
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6.6.4 Error Analysis  

We started with producing the true/reference case (case 1) and run the initial guess with 

different parameters to obtain acceptable objective function values as previously shown in 

section 6.6.2 and presented in Table 6-7. For example, the cases 2 to 5 are the generated four 

guesses of inverted relative permeability curves for the waterflood. After obtaining the number 

of guesses for the inversion method, a comparative study is conducted using the simulation 

results—the aim is to investigate the best match of the inverted solutions relative to the 

reference case. The parameters used for the model neglect the 1D model matching process on 

the inversion procedure, assuming the inversion method can be used directly for the 2D model.  

Figure 6-17 is the diagram of the 2D grid model completed with one injector and one producer 

well at the extreme points with the appearance of fingers at 0.3 pore volume injected for the 

true and inverted cases. The inversion method produced best fit relative permeability 

parameters with a similar physical effect on the fingers as shown in Figure 6-17 and with 

reduced numerical effects (pulses) produced as shown in Figure 6-18. For example, case 5 in 

Figure 6-17(e) produced an oil saturation profile with the smallest finger, and the fingers 

became like case 1 when we examined case 2. Nevertheless, the fingers for the inverted cases 

propagate more slowly leading to later water breakthroughs, as shown in Figure 6-18 for field 

water cut.  

The inverted cases produced a similar solution with few discrepancies relative to case 1. 

Therefore, for further examination, the pulse-like behaviour in Figure 6-18 shows that the 

inverted profile has pulses with lower magnitude and shorter wave cycles than the reference 

profile. The inverted solutions are acceptable because they are within a 35% error band of case 

1. The percentage error considers the potential for numerical effects (pulses) or physical 

dispersion that could result in the difference, as shown in the previous section. We conducted 

the error analysis with reference to case 1, as shown in Tables 6-8 and 6-9, where, on average, 

case 5 has a highly deviated solution and more spread out from reference case 1. While based 

on mean absolute percentage error, mean absolute deviation and a sum of squared errors, case 

2 best matches the inverted case. In addition, the error analysis plotted in Figure 6-19 shows 

more positive errors than negative ones because the prediction is high for 0.15 to 0.45 PVI and 

low for 0.45 to 1 PVI. Therefore, reference case 1 generates a water cut solution relatively 

smaller than the prediction of cases 2-5. Nevertheless, case 2 is the closest match to case 1.   
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A similar approach was used to assess the field pressure profile, as shown in Figures 6-20 and 

6-21. Unlike the water cut, the pressure profile has a mismatch of error percentage exceeding 

38% band of case 1 for 0 to 0.6 PVI. Using the error analysis plot in Figure 6-21, 0 to 0.8 PVI 

show predominately a negative error for all inverted cases and implies the reference case 1 is 

less than the predictions. The predictions for cases 4 and 5 are too high, while cases 2 and 3 

are the best predictions close to the observed solution.  

 

Table 6-7: Predicted from the reference case to produce other four inverted cases for 

waterflood,  

Case No. 𝑆𝑂𝐵 𝑆𝑖𝑤 𝑛𝑤 𝑛𝑜 𝑉𝑂𝐵 

1 (Reference)  0.45 

 

0.15 

 

4 2 1.5 

2 4.5 2.6 1.5 

3 4.7 2.3 1.5 

4 5.2 1.8 1.5 

5 5.7 1.3 1.5 

 

 

Table 6-8: Error Analysis for the four cases with reference to the case 1 for water cut profile  

Case No. Mean Absolute 

Deviation  

Mean Absolute 

Percentage Error  

Sum of Squared 

Errors  

2  0.06 31.91% 19.34 

3 0.07 35.01% 24.78 

4 0.08 37.23% 30.50 

5 0.14 48.86% 84.38 
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Table 6-9: Error Analysis for the four cases with reference to the case 1 for field pressure 

profile 

Case No. Mean Absolute 

Deviation  

Mean Absolute 

Percentage Error 

Sum of Squared 

Errors 

2  0.95 0.36% 2218.53 

3 1.06 0.40% 2756.67 

4 1.67 0.64% 6892.94 

5 0.81 0.69% 9040.76 
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(a) 

 

 

(b) 

 

 

(c) 

 
(d) 

 
(e) 

 

 

 

Figure 6-17: Diagram of the 2D grid model with the appearance of fingers at 0.3PVI for (a) 

case 1, (b) case 2, (c) case 3, (d) case 4, and (e) case 5 
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Figure 6-18: Field water cut profiles for Case 1, and inverted profiles (Cases 2 - 5) 

 

 

Figure 6-19: Error from inverted cases 2 – 5 with reference to case 1 for water cut profile   
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Figure 6-20: Field pressure for case 1 and inverted profiles (Cases 2 - 5) 

 

 

Figure 6-21: Error from inverted cases 2 – 5 with reference to case 1 for field pressure 
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6.7 Conclusion  

A comparison between Brent's hybrid and adapted Newton-Raphson methods demonstrated 

the following results: 

• The Brent’s hybrid method used interpolation as a technically reasonable approach for 

the test problem, converging with more iterations but slower execution time than the 

Newton-Raphson method. 

• The cost response manifold of the Brent’s hybrid method displayed a greater number 

of inferior regions, which may pose problems for the optimization algorithm when 

seeking the global minimum. 

• The adapted Newton-Raphson method is more efficient, capable of minimizing noisy 

cost functions with fewer iterations to converge and a faster execution time. 

The inversion method was tested with immiscible and miscible flow processes for surfactant 

flooding. There was a difference in performance with the miscible flow maintaining the Corey 

exponential of oil at unity for all 20 inverted relative permeability curves. Therefore, the 

objective function neglected the regularization term to prevent this limitation to miscible flow 

modelling. 

In realistic simulations, a good agreement between the measured and predicted relative 

permeability curves was observed using the developed inversion method. The difference 

between the reference case and predicted cases can be mainly attributed to physical effects. 

However, further research is needed to investigate the impact of capillary and gravity, 

especially since the inversion method was designed for a one-dimensional model. 
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Chapter 7: Summary and Conclusions 
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7.1 Upscaling and utilization of Surfactant flooding solution 

Once accurate inverted relative permeability curves are obtained for experiments, it becomes 

important to upscale that information to the rest of the reservoir using numerical simulation 

with the potential to introduce dispersion, which may impact model prediction (Al-Ibadi et al., 

2021c). Upscaling requires knowledge of the reservoir engineering problem in 1D, 2D or 3D 

grid block setup. In reservoir simulation, the highly refined grid application is usually not 

achieved because of high computational expense and memory. Therefore, the aim to use the 

tool to upscale, where coarse grid models can produce similar flow behaviour compared to fine 

grid models under similar boundary conditions. Also, the tool can be used to conduct sensitivity 

studies on a wide range of relevant design parameters on the change of relative permeability 

and its effect on the physical or chemical mechanisms involved with surfactant flooding. We 

focus on the effects of changes to water shock front saturation with some history on the shape 

of the relative permeability curves to reproduce a desired pseudo relative permeability function.  

Several methods can be applied to upscale a model by forming pseudo functions to maintain 

the fractional flow behaviour and results conducted on a fine grid simulation on a coarse grid. 

Pseudo functions can be calculated using Darcy’s law, averaging total mobility, stream tubes, 

history matching, or transmissibility weighted relative permeability (Fouda, 2016). Fayazi et 

al. (2016) built a genetic algorithm to determine the pseudo-relative permeability curve for 

water flooding in coarse grid models. In a recent study, the shape relative permeability curve 

modification was obtained using a single fractional flow curve, as shown in Figure 6-21a (black 

line), to reproduce the chemical and water shock fronts to overcome convergence issues (Al-

Ibadi et al., 2021c). The approach can upscale heterogeneity models and compensate for 

numerical dispersion in immiscible flow. However, the authors did not consider miscible flow 

behaviour due to the time cost and practicability of this approach. Therefore, we developed a 

flexible and efficient automated approach for miscible flow. Figure 7-1 is displayed to illustrate 

how our method can be applied for immiscible and miscible surfactant flood processes. We 

used the fractional flow theory, where point A was defined as (𝑆𝑤𝑂𝐵, 0) and computed as 

follows. Point A ranges from (𝑆𝑤𝑖𝑤, 0) to ( 𝑆𝑤𝑂𝐵, 0). The flexibility of point A is required for 

models affected by physical and numerical dispersion due to grid heterogeneity and/or capillary 

pressure.  We define point B as ( 𝑆𝑤𝑆𝑆, 𝑓𝑤𝑂𝐵), point C as (𝑆𝑤(𝐸𝐷), 1), where 𝑆𝑤(𝐸𝐷) is the 

recovery efficiency as a function of water saturation and point D (1, 1).  
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During the upscaling procedure, the relative permeability curves are used to characterize the 

flow behaviour of oil and water at different saturation levels in the reservoir. However, when 

the oil viscosity is significantly higher than that of the injected surfactant solution, the fractional 

flow curves and Welge tangent may not accurately reflect the actual behaviour. This is because 

a viscosity ratio greater than 1 results in a concave upward fractional flow behaviour. The 

concave upward curve does not allow a Welge tangent solution except at the initial 

saturation/starting position, which means that a high oil viscosity does not provide an inversion 

solution. Based on preliminary investigations using the current inversion method, oil 

viscosities greater than 5cp do not yield realistic solutions. A recommendation to overcome 

this limitation would be to adjust the relative permeability curves in the upscaling workflow to 

account for changes in oil viscosity, thereby incorporating the effect of higher oil viscosity. 
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Figure 7-1: The upscaling method demonstrated using pseudo curves to retain the shock front 

points with origin point at initial water saturation 𝑆𝑤𝑖𝑤 and terminates at the endpoint of 𝑓𝑤  

and 𝑆𝑤. (a) Surfactant flood – start point (b) Surfactant flood – end point (c) Miscible Surfactant 

flood – start point (d) Miscible Surfactant flood – end point 
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7.2. Summary  

The incomplete information observed in laboratory core flood experiments for relative 

permeability curves often leads to the erroneous application of assumptions in the simulation 

of surfactant flooding for oil recovery. In addition, a numerical simulation using surfactant 

flooding in the miscible flow displacement process can pose challenges in the form of pulse-

like behaviour, which may cause solution deviation, as studied in chapter 3. Combining the 

two problems can negatively influence the results during the upscaling and utilising surfactant 

and surfactant mixture flooding. However, an inexpensive alternative to full simulation open 

to software and reservoir engineers is shown to be crucial for inspecting and improving the 

code and solution aspects.  

1D-model has always been used to estimate the relative permeability curves because of minor 

changes in saturation in the other directions when considering one-dimensional core flood 

experiments. In addition, the 1-D modelling approach is applied to the inversion method to 

estimate the inverted relative permeability curves combined with an upscaling approach for 

addressing numerical artefacts that causes inaccuracy in coarse grid models compared to fine 

grid simulations. This research considered the forward and inversion modelling for several one-

dimensional core flooding experiments using Mathworks in the MATLAB programming 

environment.  

The forward modelling of our approach demonstrated its ability to solve the Welge tangent 

problem of the water fractional flow and associated flow properties for waterflood and 

surfactant flooding conducted as a single flood system. Furthermore, Brent's hybrid function 

was adequate for the computational root-finding approach of the water saturation at the shock, 

which is when the derivative of the water fractional flow curve equals the tangent curve for the 

Waterflood system. The forward modelling process is integrated and simultaneously updated 

for the secondary or tertiary recovery process at the given dimensional time to solve for the 

surfactant flooding in the miscible or immiscible flow modelling.  

After using the interior-point optimisation method and properties, a novel approach to 

improving the forward modelling for accuracy and computational time reduction was presented 

in chapter 6 for surfactant flooding. Newton-Raphson and Brent's methods were compared for 

solving the root finding problem for the Welge tangent solution of the surfactant flooding as a 

secondary or tertiary recovery process, analysed through the objective function at varying 

search intervals, and test evaluations. The adapted Newton method was advanced as an 
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alternative to Brent’s hybrid method and acceptable at the end of every simulation due to the 

absence of noisy cost functions and achievable global minimum. Results were compared and 

evaluated after data mining and predictions to obtain relative permeability curves for surfactant 

flooding. The optimisation performance proved the adapted Newton-Raphson method reduced 

computational time, produced shorter iterative steps and showed a much better appearance of 

the objective function for varying schemes conducted with different test evaluations. The 

comparative method was reported for the first time and used to improve the 1D model analysis 

for the forward method.     

The experiments conducted in chapter 6 showed a novel approach for the inversion method of 

relative permeability curves for core flood analysis, interpretation, matching, and upscaling. 

The inversion method estimates the inverted relative permeability and water fractional flow by 

combining the Corey exponential for relative permeability characterisation with optimisation 

for modelling uncertainty. The inversion method was tested with immiscible and miscible flow 

processes for surfactant flooding. There was a difference in the performance with the miscible 

flow maintaining the Corey exponential of oil at unity for all 20 inverted relative permeability 

curves. Effects of the influencing factors on the inversion method's objective function were 

analysed to evaluate the dominance of the regularisation term on the predictive model of the 

inverted relative permeability curves. Therefore, the objective function neglected the 

regularisation term to prevent this limitation to the miscible flow modelling.  

The experiments in section 7. proposed upscaling approach to address numerical effects in 

coarse grid models to match fine grid solutions. The approach required a single water fractional 

flow curve to represent the flow behaviour experienced for the solution of two fractional flow 

curves for waterflood and surfactant flooding. Similarly, this will generate the pseudo relative 

permeability curves that produce the single water fractional flow curve. We presented the 

potential for upscaling and utilisation in miscible and immiscible flow. The immiscible flow 

has been verified in the literature, but this approach has not been considered for miscible flow 

systems. We show the process for calibrating the numerical simulation of surfactant flooding 

in the reservoir workflow. The result of the work can be used for laboratory core flood 

experiments. 
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7.3 Conclusion  

The main conclusions are as follows: 

• The findings into the miscible surfactant flood in one and two-dimensional models 

help better understand the numerical and physical problems and techniques for 

selecting effective limits for more accurate solutions.   

• We suggest stability analysis is used to examine the relevance of the pulses, fingers 

and gravity tongue findings in 3D layered and heterogeneous reservoir scale 

representation of the surfactant flood model—also methods for identifying 

numerical accuracy problems in complex reservoir systems.   

• The developed inversion method could lead to a good match between the measured 

and predicted relative permeability curves from laboratory experiments. Moreover, 

when the flow velocity was neglected from the objective function, the optimization 

algorithm had an acceptable cost to improve the search domain and influence a 

better match. 

• The physical effect can be said to contribute the most to the difference between the 

reference case and predicted cases. Further investigation is required on the impact 

of capillary and gravity, considering the inversion method was designed for one-

dimensional model.  

• The regularization term in the objective function greatly affected the miscible flow, 

which has been seen to maintain the value of unity for all cases. However, the 

inverted relative permeability curve can be made comparable with the immiscible 

flow prediction when the regularization term for the miscible cases is set to zero. 

After that, the miscible flow tests generated cases of lower 𝑉𝑂𝐵 and 𝑆𝑖𝑤 with higher 

no in comparison with the immiscible cases.  

• The inversion approach can be combined with the numerical simulation model to 

construct and interpret miscible relative permeability curves in multidimensional 

models and field-scale applications, which considers the influence of surfactant 

viscosity, interfacial tension, and adsorption of the surfactant. The study of this 

method for miscible surfactant flooding has not been well-proved.  
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7.4 Further Work  

Below are the limitations of the inversion method with recommended actions: 

1. To obtain an acceptable and better match, the algorithm needs further improvement 

to overcome the limitation of the inversion method, which fails to produce a good 

match between measured and predicted relative permeability curves from 

laboratory experiments when flow velocity is incorporated in the objective function. 

2. The inversion method needs to be extended by using nonparametric models and a 

machine learning algorithm to optimize the relative permeability curve and 

capillary pressure, increase the number of fitting parameters, and improve the 

flexibility of the function for greater accuracy. This is necessary because realistic 

relative permeability curves are not always compatible with Corey's model. 

3. While the inversion approach can be used in combination with a numerical 

simulation model to construct and interpret miscible relative permeability curves in 

multidimensional models and field-scale applications, taking into account the 

effects of surfactant viscosity, interfacial tension, and surfactant adsorption, its 

effectiveness in studying miscible surfactant flooding has not been thoroughly 

established, which presents a limitation of this study. 

4. The inversion method may not be suitable for reservoir models that involve 

capillary pressure, gravity-dominated conditions, or high levels of heterogeneity. 

As such, there is a need to enhance the method's upscaling capability for physical 

dispersion and to account for viscosity ratios exceeding 1 for miscible flow, as 

outlined in Section 7.1. 

5. To enhance benchmarking and robustness, the application of the inversion method 

requires improvement to facilitate the study of physical parameters of surfactant 

flooding, particularly through experimental tests.  As a potential future direction, 

the inversion method can be improved to incorporate the effects of temperature and 

salinity on surfactant flooding. It is important to consider these factors as they can 

impact the interfacial tension and adsorption behaviour, which can affect the 

accuracy of the model. Additionally, there may be other factors that need to be 

considered to further refine the model and ensure more reliable predictions of 

surfactant flooding. 

6. One limitation of the inversion method is its potential lack of accuracy and 

robustness in studying the physical parameters of surfactant flooding. To overcome 
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this limitation and ensure reliable benchmarking, there is a need to improve the 

application of the inversion method. One approach is to conduct experimental tests 

that help to identify and quantify the physical parameters of surfactant flooding.  

By incorporating such physical parameters in the inversion method, it can be made 

more accurate and effective in predicting the behaviour of surfactant flooding in 

reservoir systems. Moreover, these parameters can be used to refine the numerical 

models used in conjunction with the inversion method, making them more robust 

and realistic in their predictions. 

7. The MATLAB programming workflow requires additional functionality to support 

the input of full simulation data from commercial software like ECLIPSE format. 

This includes input reading and conversion to ensure compatibility with the 

MATLAB workflow. Additionally, an exportable format for ECLIPSE is needed to 

facilitate the upscaling of relative permeability curves. 

8. An area that requires further investigation is the impact of capillary and gravity in 

the inversion method, particularly as it was originally designed for one-dimensional 

models. These physical phenomena can have a significant influence on fluid flow 

behaviour in porous media, and their effects may not be accurately captured by the 

current version of the inversion method.  

Moreover, the extension of the inversion method for multidimensional models is an 

important area of development that should be pursued. Multidimensional reservoir 

models are increasingly used in industry and academia to better represent complex 

geological structures and fluid flow behaviour. Therefore, an extension of the 

inversion method to these models could have significant implications for reservoir 

engineering and hydrocarbon recovery. 

To address these issues, research efforts should focus on improving the inversion 

method to accurately account for capillary and gravity effects, as well as developing 

an extension of the method for multidimensional models. Such efforts could help to 

unlock the full potential of the inversion method for a wide range of applications in 

reservoir engineering and hydrocarbon recovery. 

Therefore, further research and development efforts are required to improve the application of 

the inversion method for surfactant flooding studies, which can help to unlock the full potential 

of this method for reservoir engineering applications. 
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Appendix  

A.1 Optimization 

Optimisation options and their applications as a mathematical approach for the surfactant flood 

inversion context, three constrained optimisation algorithms were considered for our 

methodology to find a set of design parameters 𝑥 = [𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛], that can be evaluated, 

and the optimal solution determined. The optimisation algorithms consist of Active Set 

Algorithm, Sequential Quadratic Programming (SQP), and Interior-Point Algorithm to 

minimise the system characteristic obtained dependent on  𝑥. The objective function 𝑓(𝑥) to 

be minimised is subject to constraints in the form of equality constraints 𝐺𝑖(𝑥) = 0 (𝑖 =

1, 2, 3 … . 𝑚𝑒) 

min
𝑥

𝑓(𝑥)         (A1.1) 

The optimization methods are based on an efficient and accurate solution to the problem, 

coupled with a programming technique that allows for selecting and evaluating the option using 

MATLAB GUI Toolbox. Furthermore, the selection is considered for comparison and better 

insight into the problem to implement the inversion method successfully. 

A.1.1 Active Set Algorithm 

Active Set is used as an iterative process to transform the constraint problem into an easier 

subproblem by using a penalty function for constraints near or beyond the constraint boundary. 

It uses parametrized unconstrained optimizations to converge and solve the constrained 

problem. The Karush-Kuhu-Tucker (KKT) equations are used as conditions to enhance the 

method for optimality for the constrained optimization problem. If the equation (A1.2) are 

convex functions, then the KKT can be sufficient for a global solution point and can be stated 

as:  

∇𝑓(𝑥∗) +  ∑ 𝜆𝑖. ∇𝐺𝑖(𝑥∗) = 0𝑚
𝑖=1        (A1.2) 

𝜆𝑖. 𝐺𝑖(𝑥∗) = 0, 𝑖 = 1 … 𝑚𝑒  

The solution of the KKT equations uses Lagrange multipliers (𝜆𝑖 , 𝑖 = 1 … 𝑚) directly to 

balance the derivations in the magnitude of the objective function and constraint gradients. 

Furthermore, the second order of KKT equations can be used to guarantee super linear 

convergence using constraint quasi-Newton methods, commonly called Sequential Quadratic 

Programming (SQP) method (Powell, 1978).  
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A.1.2 SQP Algorithm  

An approximation of the Hessian of the Lagrangian function for each major iteration uses a 

quasi-Newton approach. They are used to generate a QP subproblem whose solution is used to 

form a search direction (Nocedal, 2006). The formulation of a QP subproblem based on a 

quadratic approximation of the Lagrangian function is defined as 

 

𝐿(𝑥, 𝜆) = 𝑓(𝑥) + ∑ 𝜆𝑖. 𝑔𝑖(𝑥).𝑚
𝑖=1        (A1.3) 

 

A.1.3 Interior-Point Algorithm  

The section presents the interior-Point approach to minimising the constraint to solve the 

sequence of approximate minimisation problems as formulated from equation (5.60) as 

follows. 

min
𝑥

𝑓(𝑥) , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ℎ(𝑥) = 0        (A1.4) 

Therefore, solving the problem in equation (A1.4), the algorithm uses one or two main types 

of steps at each iteration: 

1. A direct step in (𝑥, 𝑠), which attempts to solve the KKT equation (A1.4) for the 

approximate problem with linear approximation  

2. A conjugate gradient step using a trust-region approach.  

The Interior-Point algorithm was used with the Hessian function to obtain a faster, more 

accurate solution to the constraint minimization problem. In addition, the Interior-Point method 

is used as the default option when launching the inversion method to optimize the objective 

function (Waltz et al., 2006). 

 

A.2 Application of UI to solve surfactant flood  

Various tools support UI to provide diagrammatic modelling representation for data, flow-

control, process, objects, and structure. MATLAB GUIDE GUI modelling tool was used to 

develop the UI for this thesis. As described in previous sections 5.4.1 and 5.6.1, the UI has 

functionalities for modelling, consistency checkers, and a documentation generator. The UI for 
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Algorithms 1 and 2 is used to store, simulate, and structure data for export in Microsoft Excel 

(.xlsx) format. It also supports a graphical representation of the output information. 

Similarly, the UI for Algorithm 3 retrieves, stores, simulates and structures data for graphical 

representation. This section will discuss this UI and its functionalities for the user. As part of 

the methodology, we illustrate the user workflow for applying the code in Figure A2-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2-1: Workflow diagram illustrating the user scenario for the MATLAB code 

application  

File content accessible for MATLAB  

Launch MATLAB Software  

Locate FractionFlowCEOR.m and run 

to deploy fractional flow CEOR UI  

Execute the forward calculations of 

the fractional flow 

Launch the optimization 

environment to deploy Optimization 

UI 

Launch the objective function for 

the optimal solution 

Manually adjust solution to ensure 

convergence  

Check if MATLAB Version supports 

UI applications and Optimization 

App for curve firring   
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A.3 Methods to apply Fractional Flow CEOR UI 

The primary function of the fractional flow CEOR UI will make it easy to input data for the 

waterflood, surfactant flood, and dimensionless time using options for secondary and tertiary 

techniques. Figure A3-1 shows the “Water Data” used for the waterflood observed information 

and “Surfactant Data” used for the Surfactant flood observed information. These are the two 

main components used to retrieve information for Algorithms 1 and 2 initializations. To change 

the number of points and generate linearly spaced values to the vector of water saturation 

ranging from 0 to 1 for control and modelling requires the use of “Sw Length”. The value for 

“Sw Length” refines or coarse the data series for calculation and plots.  

Upscaling method can improve the accuracy of surfactant flood processes, which can involve 

modifying wettability and interfacial tension to change fluid mobility. Akinyele and Stephen 

(2020) reported numerical artefacts in the form of pulses related to the discretization of these 

processes. While Al-Ibadi et al. (2021c) proposed a novel derived upscaling method that uses 

a single set of pseudo relative permeability curves for coarse models to capture the flow 

behaviours in a fine-scale model accurately. Hence, to achieve this approach, the fractional 

flow theory must be honoured to represent the correct velocity of the waterfronts with reliable 

oil bank water saturation. We introduced the “Slantiness” value to represent the single set of 

the fractional flow that can prevent numerically based pulses in surfactant flood simulation. 

The Slantiness value uses zero as the starting reference value for the initial water saturation 

and unity for starting point at oil bank water saturation to construct the single fractional flow 

curve. Graphical representation of the function will be presented in chapter 6 as an approach 

to upscale models.  

The “Compute” button is for initialization, and the “Optimize” button initializes the inversion 

UI components. The “view tab” is used to display the plot representing the results from 

Algorithm 1 for the waterflood and Surfactant flood as a primary flooding technique. Once the 

“Compute” is performed, the tabular results from the algorithms are displayed for waterflood 

in “Water Result”, Surfactant flood in “Surfactant Result”, water saturation profile as a function 

of dimensionless distance in “Profile Result”, and other related results in “Miscellaneous 

Result”.    
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Figure A3-1: UI display of the components for Algorithm 1 and 2 initializations 
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A.4 Methods to apply Optimization UI 

The Optimization UI for the surfactant flood inversion method was used as an input, 

modification, sensitivity, and plot display tool, as shown in Figure A4-1. The optimization UI 

retrieves the output information from fractional flow CEOR UI. The "Optimization Method" 

tab chooses between the Interior-point, SQP and Active-set optimization algorithms to solve 

the Algorithm 3 objective function. If none of the tabs is selected, interior-point will be used 

as the default for the problem set-up. The "Optimization Options" tab is used to apply stopping 

criteria for the selected optimization method, consisting of maximum iterations, constraint 

tolerance and function tolerance. Once the optimization method and options for finding the 

objective function's minimum are set, at least one constraint is required to run the solver. The 

"Constraints" tab restricts the inversion method through selection from waterflood flow 

velocity, and dimensionless distance travelled, mass balance and oil bank water saturation. 

Then a value for endpoint mobility ratio and endpoint relative permeability for oil can be 

entered from the "Mobility" tab to further constraint the solution.  

Once the problem set-up is completed, a point is displayed on the plots on the UI representation 

of the fractional flow curve to show the minimum point required to satisfy the solution. In 

addition, three slide bars which alter the initial water saturation, Corey exponent of oil and 

water, are provided for the user to attempt to satisfy the objective without initiating the 

optimization method. Because of the modifications, the inverted curves will be immediately 

displayed on the plots on the UI. Alternatively, the three slide bars can be used to respond to 

the inverted curves obtained from initiating the optimization method if the solution did not 

meet the minimal required criteria as displayed on the plot. 

Two input components are presented on the UI to change the oil bank water saturation and 

waterflood flow velocity to meet the desired objective. The " Optimize " button initiates 

Algorithm 3 with the set optimization method, options, and constraints. While the "Search 

Space" button is used for initializing the cost response manifold for the optimization method, 

which displays a 3-D search domain at a fixed initial water saturation.  

In the next chapter, we perform two case studies to represent the miscible and immiscible 

relative permeability curves for the inversion method—also present limitations to the inversion 

algorithm for uncertainty modelling.  
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Figure A4-1: UI display of the components for Algorithm 3 initialization 
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A.5 Function-Based Representation of Coding Style 

The design of the code is a function-based program. We had three primary functions, while the 

others were helper functions. The first main function is named “ComputeAllProperty”, which 

calculates all the flow properties associated with a single flood but does not generate plots. The 

structure data type in MATLAB was used to structure the vector of water saturation that ranges 

from 0 to 1. The data is segmented according to a specified equal data point for the calculation. 

Apart from the water saturation, structured data type was used for all the chemical flooding 

fields as follows: connate water, residual oil saturation, the end-point relative permeability of 

water phase, the end-point relative permeability of oil phase, Corey coefficient of water, Corey 

coefficient of oil, and negative of the retardation term. Once this function is initialised, the 

results is a structured data type that contains all the variables in earlier data  and in addition to 

the following fields mobility ratio, normalised water saturation, normalised oil saturation, 

relative permeability of water phase, relative permeability of oil phase, water fractional flow, 

oil fractional flow, derivative of water fractional flow as a function of normalised water 

saturation, normalised water saturation at the location of shock, water saturation at the location 

of shock, fractional flow at the location of shock, derivative of water fractional flow at location 

of shock, recovery efficiency as a function of normalised water saturation, slope of Welge 

tangent line from initial condition to water saturation, slope of Welge tangent line from initial 

condition to normalised water saturation, value of normalised tangent at the shock location, 

and tangent function used to calculate the value of water fractional flow for any water saturation 

on the Welge tangent line.  

The second main function is the “SimulateFlow” used to simulate the flow of the waterflood 

and chemical flood either as a secondary or tertiary flood technique. The function required the 

structure data type from MATLAB for water saturation, water flood, and surfactant flood. Data 

acquired from the ComputeAllProperty function and dimensionless time are used to find oil 

bank water saturation. The results from the SimulateFlow function are used to produce the plots 

for relative permeability curves, water fractional flow and water saturation profile as a function 

of dimensionless time.     

The last main function is the “OptimizeFlow” to determine the value of 𝑆𝑖𝑤,  𝑛𝑤, 𝑎𝑛𝑑  𝑛𝑜 that 

yields the measured 𝑆𝑤𝑂𝐵 and flow velocity. It also satisfies the constraint that the resulting 

[ 𝑛𝑤 ,  𝑛𝑜 ]  from the waterflood is closest to [ 𝑛𝑤,  𝑛𝑜 ]  from surfactant flooding. The function 

requires the structured data type that stores the optimization constraints, option settings for the 
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optimization algorithm, input parameter for waterflood and surfactant flood. The results from 

the OptimizeFlow function produce a copy of the waterflood data updated with the optimum 

𝑆𝑖𝑤,  𝑛𝑤 , 𝑎𝑛𝑑  𝑛𝑜, the optimum design variables, the value of the objective function at the 

optimum design variable and results from the SimulateFlow function at the optimum design 

variable.   

  

A.6 Computer Specification 

The computer specification used for coding the tool and conducting the surfactant flood 

experiments is shown in Table A6-1.  

Table A6-1: shows the computer specification needed to run the experiments in the thesis.  

Device Specification  

Type  Desktop Computer  

Model  Hp Z4 790  

Processor Intel(R) Core (TM) i7-7820X CPU @ 

3.60GHz   3.60 GHz 

RAM 32.0 GB 

System type 64-bit operating system, x64-based 

processor 

Windows Specification   

Edition  Windows 10 Enterprise 

Version 20H2 

OS build  19042.1586 

Experience Windows Feature Experience Pack 

120.2212.4170.0 
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A.7 MATLAB Codes  

Codes for fractional flow CEOR Experiment – Algorithms 1 and 2 integrated with User 

Interface method  

The code below presents the application of Algorithms 1 and 2 for the fractional flow analysis 

to surfactant flooding techniques laboratory core flood experiments. The function-based 

program has been done in the 3rd year of research.  

The code couples several function-based methods that conduct the secondary and tertiary 

recovery technique for waterflood and surfactant flooding with MATLAB scripts. The code is 

easy to implement and requires the MATLAB R2018b license enabled with user interface and 

optimization Apps.  The code starts with the initialization of the user interface and defining the 

input parameters for characterizing the relative permeability to solve the forward problem.   The 

forward problem is conducted and use as defining and initialing the user interface for the 

inversion modelling. The inverted relative permeability, fractional flow, cost function and 

optimization are generated automatically after the end of the simulation.  

 

A7.1 Fractional flow CEOR  

function varargout = FractionFlowCEOR(varargin) 

% FRACTIONFLOWCEOR MATLAB code for FractionFlowCEOR.fig 

%      FRACTIONFLOWCEOR, by itself, creates a new 

FRACTIONFLOWCEOR 

%      FRACTIONFLOWCEOR ('CALLBACK',hObject, eventData, 

handles,...) calls the local function named CALLBACK in 

FRACTIONFLOWCEOR.M with the given input arguments. 

%      FRACTIONFLOWCEOR('Property','Value',...) creates a new 

FRACTIONFLOWCEOR  

%      Applied to the GUI before FractionFlowCEOR_OpeningFcn 

gets called.   

% Start of initialization code 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 
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                   'gui_OpeningFcn', 

@FractionFlowCEOR_OpeningFcn, ... 

                   'gui_OutputFcn',  

@FractionFlowCEOR_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, 

varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before FractionFlowCEOR is made visible. 

function FractionFlowCEOR_OpeningFcn(hObject, eventdata, 

handles, varargin) 

% This function has no output arguments. 

% hObject is the handle to figure 

% eventdata is reserved and to be defined in a future version 

of MATLAB 

% handles is a structure with handles and input data 

(retrieved from GUIDATA) 

% varargin command lines are arguments to FractionFlowCEOR 

(retrieved from VARARGIN) 

% Select default command line output for FractionFlowCEOR 

handles.output = hObject; 

handles.swLength = 2000; 

handles.t = 0.2; 
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waterData = 

struct('Siw',0.15,'Sor',0.24,'Krw0',0.14,'Kro0',0.4,'nw',4,'no

',2,'uw',0.5,'uo',5,'Di',0.15); 

surfData = 

struct('Siw',0.15,'Sor',0.10,'Krw0',0.4,'Kro0',1,'nw',4,'no',1

.5,'uw',0.5,'uo',5,'Di',0); 

handles.waterData = waterData; 

handles.surfData = surfData; 

handles.secondary = true; 

handles.tilt = 1; 

SetDataTable(handles); 

handles.simResult = []; 

  

% Updates structure 

guidata(hObject, handles); 

  

% UIWAIT is used to ensure FractionFlowCEOR waits for user 

response (retrieved from UIRESUME) 

% uiwait(handles.figure1); 

  

  

% --- Outputs from this function are returned to the command 

line. 

function varargout = FractionFlowCEOR_OutputFcn(hObject, 

eventdata, handles)  

 

% Retrieve default command line output from the handles 

structure 

varargout{1} = handles.output; 

  

function SetDataTable(handles) 

set(handles.waterDataTable,'data',StructToCell(handles.waterDa

ta)); 
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set(handles.surfDataTable,'data',StructToCell(handles.surfData

)); 

  

  

function ndata = StructToCell(data) 

fnames = fieldnames(data); 

sz = length(fnames); 

ndata{sz,2} = []; 

for i = 1:sz; 

    fn = fnames{i}; 

    ndata{i,1} = fn; 

    ndata{i,2} = data.(fn); 

end 

  

function ndata = CellToStruct(data) 

sz = size(data, 1); 

ndata = struct(); 

for i = 1:sz; 

    fn = data{i,1}; 

    ndata.(fn) = data{i,2}; 

end 

  

%  Executes on button press in generateBtn. 

% hObject    handle to generateBtn (retrieved from GCBO) 

 

function generateBtn_Callback(hObject, eventdata, handles) 

 

  

function swEdit_Callback(hObject, eventdata, handles) 

% Hints: get(hObject,'String') returns values of swEdit as 

text 

%        str2double(get(hObject,'String')) returns values of 

swEdit as a double 
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% Executes in creating the object, after you have set up all 

properties. 

function swEdit_CreateFcn(hObject, eventdata, handles) 

 

% Using the instructions in ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function handles = SetInputData(handles) 

handles.waterData = 

CellToStruct(get(handles.waterDataTable,'data')); 

handles.surfData = 

CellToStruct(get(handles.surfDataTable,'data')); 

handles.swLength = str2double(get(handles.swEdit,'string')); 

handles.Sw = linspace(0,1, handles.swLength); 

handles.t = str2double(get(handles.tEdit,'string')); 

handles.tilt = str2double(get(handles.tiltEdit,'string')); 

  

function ret = MakeResultData(data, simResult) 

header = {'Sw','Snw','Krw','Kro','fw','fo','dfds','Miscible 

Merged 1','Miscible Merged 2'}; 

sz = length(header); 

ret = zeros(length(data.Snw),sz); 

for i = 1:sz-2; 

    fn = header{i}; 

    ret(:,i) = data.(fn)'; 

end 

ret(:,end-1) = simResult.miscibleFun1(data.Sw); 

ret(:,end) = simResult.miscibleFun2(data.Sw); 

ret = [header; num2cell(ret)]; 

  

function SetResultData(simData, tabH, simResult) 
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data = MakeResultData(simData, simResult); 

set(tabH, 'data', data(2:end,:),'columnname',data(1,:)); 

  

function ret = MakeMiscellData(simResult) 

ret = {'Sw_shock',simResult.water.Sw_shock; 

    'fw_shock',simResult.water.fw_shock; 

    'Sw_s_shock',simResult.surfactant.Sw_shock; 

    'fw_s_shock',simResult.surfactant.fw_shock; 

    'Sw_OB',simResult.Sw_OB; 

    'fw_OB',simResult.fw_OB; 

    'M_water', simResult.water.M; 

    'M_surf', simResult.surfactant.M; 

    'Secondary Vob',simResult.secVob; 

    'Tertiary Vob',simResult.terVob; 

    'ER_BT_Sw_water', simResult.water.ER_BT_Sw; 

    'ER_BT_Sw_surf', simResult.surfactant.ER_BT_Sw; 

    'maxTangent_water',simResult.water.maxTangent; 

    'maxTangent_surf',simResult.surfactant.maxTangent; 

    'Area Secondary Profile',simResult.secArea; 

    'Area Tertiary profile',simResult.terArea; 

    }; 

  

% --- Runs on the button press in computeBtn. 

function computeBtn_Callback(hObject, eventdata, handles) 

handles = SetInputData(handles); 

waterData = handles.waterData; 

surfData = handles.surfData; 

swLength = handles.swLength; 

Sw = handles.Sw; 

t = handles.t; 

result = SimulateFlow(Sw,waterData, surfData, t, 

handles.tilt); 

handles.simResult = result; 

PlotFlow(result, struct('secondary', handles.secondary)); 
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SetResultData(result.water, handles.waterResultTable, result) 

SetResultData(result.surfactant, handles.surfResultTable, 

result); 

set(handles.misResultTable, 'data', MakeMiscellData(result)) 

set(handles.profileResultTable, 

'data',[result.secDistance',result.secSaturation']) 

  

  

guidata(hObject,handles) 

  

% --- Runs on the button press in optimizeBtn. 

function optimizeBtn_Callback(hObject, eventdata, handles) 

OptimizationGUI(handles); 

  

  

function tEdit_Callback(hObject, eventdata, handles) 

 

  

% Performs during object creation, after setting all 

properties. 

function tEdit_CreateFcn(hObject, eventdata, handles) 

 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

  

% Runs on the button press in exportResultBtn. 

function exportResultBtn_Callback(hObject, eventdata, handles) 

simResult = handles.simResult; 

if isempty(simResult) 

    return 

end 
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filename = inputdlg({'File name'},'Export File Name', [1 50], 

{'results'}); 

if isempty(filename) 

    return 

end 

filename = [filename{1},'.xlsx']; 

waterResult = MakeResultData(simResult.water, simResult); 

surfResult = MakeResultData(simResult.surfactant, simResult); 

xlswrite(filename, waterResult,'water_result'); 

xlswrite(filename, surfResult,'surf_result'); 

profileResult = [{'Distance','Water 

Saturation'};num2cell([simResult.secDistance',simResult.secSat

uration'])]; 

xlswrite(filename, profileResult,'profile_result'); 

xlswrite(filename, MakeMiscellData(simResult),'misc_result'); 

  

msgbox('Export Successful', 'Export','modal'); 

  

  

% Runs on the selection change in secPopupmenu. 

function secPopupmenu_Callback(hObject, eventdata, handles) 

handles.secondary = get(hObject, 'value') == 1; 

guidata(hObject, handles) 

 

function secPopupmenu_CreateFcn(hObject, eventdata, handles) 

 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

  

function tiltEdit_Callback(hObject, eventdata, handles) 
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function tiltEdit_CreateFcn(hObject, eventdata, handles) 

 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

  

% ------------------------------------------------------------

-------- 

function Untitled_1_Callback(hObject, eventdata, handles) 

 

% ------------------------------------------------------------

-------- 

function shockFrontMenu_Callback(hObject, eventdata, handles) 

  

simResult = handles.simResult; 

waterResult = simResult.water; 

plotFront(waterResult); 

  

function plotFront(result) 

fw = result.fw; 

dfds = result.dfds; 

Sw = result.Snw; 

tangent = result.norm_tangent; 

figure; 

ax = gca(); 

plot(ax, Sw,dfds, '-r','linewidth',2); 

hold on 

plot(ax, Sw, tangent, '-b', 'linewidth', 2); 

plot(ax, Sw, fw, '-k', 'linewidth', 2); 

mx = max(tangent); 

Ss = result.Snw_shock; 
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plot(ax,[Ss,Ss],[0,mx],'--m','linewidth',2); 

xlabel('S_{nw}') 

legend({'Derivative of f_{w}', 'Tangent','f_{w}'}) 

hold off 

  

% ------------------------------------------------------------

-------- 

function Untitled_3_Callback(hObject, eventdata, handles) 

surfResult = handles.simResult.surfactant; 

plotFront(surfResult); 

  

A7.2 Optimization GUI 

  

function varargout = OptimizationGUI(varargin) 

% OPTIMIZATIONGUI MATLAB code for OptimizationGUI.fig 

% Last Modified by GUIDE v2.5 11-Oct-2021 22:49:27 

% Begins initialization code 

 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', 

@OptimizationGUI_OpeningFcn, ... 

                   'gui_OutputFcn',  

@OptimizationGUI_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if nargout 
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    [varargout{1:nargout}] = gui_mainfcn(gui_State, 

varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code 

  

  

% Executes just before OptimizationGUI becomes visible. 

function OptimizationGUI_OpeningFcn(hObject, eventdata, 

handles, varargin) 

 

% Choose default command line output for OptimizationGUI 

if nargin == 4 

    prevH = varargin{1}; 

    handles.waterData = prevH.waterData; 

    handles.surfData = prevH.surfData; 

    handles.secArea = prevH.simResult.secArea; 

    handles.t = prevH.t; 

    handles.Sw = linspace(0,1,1000); 

    handles.optimData = 

struct('Sw',0.4,'nw',[1,6],'no',[1,6],'Siw',[0.1,0.5],'Vob',2.

4,'secArea',handles.secArea,'includeVelocity',1,'includeArea',

1,'includeDistance',1,'t',handles.t, 'includeSwob', 1); 

    handles.simResult = 

SimulateFlow(handles.Sw,handles.waterData,handles.surfData, 

handles.t);  

    SetResultOnView(handles); 

end 

handles.optimOptions = struct('Algorithm','interior-

point','ConstraintTolerance',1e-

6,'Display','iter','FunctionTolerance',1e-

6,'MaxFunctionEvaluations',3000,'MaxIterations',400); 

handles.output = hObject; 
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% Update handles structure 

guidata(hObject, handles); 

  

function varargout = OptimizationGUI_OutputFcn(hObject, 

eventdata, handles)  

 

varargout{1} = handles.output; 

  

  

% Runs on the slider movement. 

function siwSlider_Callback(hObject, eventdata, handles) 

handles.waterData.Siw = get(hObject,'value'); 

handles.simResult = 

SimulateFlow(handles.Sw,handles.waterData,handles.surfData, 

handles.t); 

SetResultOnView(handles) 

guidata(hObject, handles) 

  

  

% Executes during object creation, after setting all 

properties. 

function siwSlider_CreateFcn(hObject, eventdata, handles) 

 

% Hint: slider controls usually have a light gray background. 

if isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor',[.9 .9 .9]); 

end 

  

  

% Runs on the slider movement. 

function nwSlider_Callback(hObject, eventdata, handles) 

handles.waterData.nw = get(hObject,'value'); 
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handles.simResult = 

SimulateFlow(handles.Sw,handles.waterData,handles.surfData, 

handles.t);  

SetResultOnView(handles) 

guidata(hObject, handles) 

  

function nwSlider_CreateFcn(hObject, eventdata, handles) 

 

if isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor',[.9 .9 .9]); 

end 

  

  

% Runs on the slider movement. 

function noSlider_Callback(hObject, eventdata, handles) 

handles.waterData.no = get(hObject,'value'); 

handles.simResult = 

SimulateFlow(handles.Sw,handles.waterData,handles.surfData, 

handles.t);  

SetResultOnView(handles) 

guidata(hObject, handles) 

  

% Performs during object creation, after you set all 

properties. 

function noSlider_CreateFcn(hObject, eventdata, handles) 

 

if isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor',[.9 .9 .9]); 

end 

  

function swobEdit_Callback(hObject, eventdata, handles) 

if isempty(get(hObject,'string')) 
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   return 

else 

    handles.optimData.Sw = str2num(get(hObject,'string')); 

end 

  

SetResultOnView(handles) 

guidata(hObject, handles) 

  

function swobEdit_CreateFcn(hObject, eventdata, handles) 

 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

function velocityEdit_Callback(hObject, eventdata, handles) 

if isempty(get(hObject,'string')) 

   return 

else 

    handles.optimData.Vob = str2num(get(hObject,'string')); 

end 

  

SetResultOnView(handles) 

guidata(hObject, handles) 

  

function velocityEdit_CreateFcn(hObject, eventdata, handles) 

 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

  

%  Runs on the button press in optimizeBtn. 
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function optimizeBtn_Callback(hObject, eventdata, handles) 

waterData = handles.waterData; 

surfData = handles.surfData; 

optimData = handles.optimData; 

  

[optimWaterData, optimVar, obf, simResult] = 

OptimizeFlow(waterData, surfData, optimData, 

handles.optimOptions); 

handles.optimVar = optimVar; 

handles.obf = obf; 

handles.waterData = optimWaterData; 

handles.simResult = simResult; 

SetResultOnView(handles) 

guidata(hObject, handles); 

  

function SetResultOnView(handles, varargin) 

set(handles.siwText,'string', ['Siw = 

',num2str(handles.waterData.Siw)]) 

  

set(handles.nwText,'string', ['nw = 

',num2str(handles.waterData.nw)]) 

set(handles.noText,'string', ['no = 

',num2str(handles.waterData.no)]) 

set(handles.swobEdit,'string', num2str(handles.optimData.Sw)) 

set(handles.velocityEdit,'string', 

num2str(handles.optimData.Vob)) 

set(handles.desiredAreaText,'string', ['Desired Area: ', 

num2str(handles.secArea)]) 

  

if isfield(handles, 'simResult') 

    set(handles.resswobText, 'string', ['Resulting Sw_OB: 

',num2str(handles.simResult.Sw_OB)]) 

    set(handles.resVelText, 'string', ['Resulting Velocity: 

',num2str(handles.simResult.secVob)]) 
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    set(handles.resultingAreaText,'string', ['Resulting Area: 

', num2str(handles.simResult.secArea)]) 

end 

cla(handles.axes1) 

cla(handles.axes2) 

  

options = struct('axes1', handles.axes1, 

'axes2',handles.axes2,'axes3',0,'font_size',8); 

axes(handles.axes2); 

sw = handles.optimData.Sw; 

fw = handles.simResult.surfactant.tangentFun(sw); 

plot(sw,fw,'ro','markersize',8,'markerfacecolor',[255, 165, 

0]/255) 

PlotFlow(handles.simResult, options) 

set(handles.axes1, 'xcolor','w', 'ycolor','w') 

set(handles.axes2, 'xcolor','w', 'ycolor','w') 

  

  

% Runs on the key press with the focus on swobEdit and none of 

its controls. 

function swobEdit_KeyPressFcn(hObject, eventdata, handles) 

  

% ------------------------------------------------------------

-------- 

function Untitled_1_Callback(hObject, eventdata, handles) 

% ------------------------------------------------------------

-------- 

function Untitled_6_Callback(hObject, eventdata, handles) 

options = handles.optimOptions; 

defVals = {num2str(options.MaxIterations), 

num2str(options.ConstraintTolerance), 

num2str(options.FunctionTolerance)}; 
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ret = inputdlg({'Max Iterations','Constraint Tolerance', 

'Function Tolerance'}, 'Optimization Options', 

[1,50;1,50;1,50],defVals); 

if isempty(ret)  

   return 

end 

options.MaxIterations = str2num(ret{1}); 

options.ConstraintTolerance = str2num(ret{2}); 

options.FunctionTolerance = str2num(ret{3}); 

handles.optimOptions = options; 

  

guidata(hObject, handles) 

% ------------------------------------------------------------

-------- 

function Untitled_2_Callback(hObject, eventdata, handles) 

handles = setOptimizationMethod(hObject, handles); 

guidata(hObject, handles); 

  

% ------------------------------------------------------------

-------- 

function Untitled_4_Callback(hObject, eventdata, handles) 

handles = setOptimizationMethod(hObject, handles); 

guidata(hObject, handles); 

  

% ------------------------------------------------------------

-------- 

function Untitled_5_Callback(hObject, eventdata, handles) 

handles = setOptimizationMethod(hObject, handles); 

guidata(hObject, handles); 

  

  

function handles = setOptimizationMethod(hObject, handles) 

pmenu = get(hObject,'parent'); 

children = get(pmenu, 'children'); 
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for c = children; 

    set(c, 'checked','off') 

end 

set(hObject, 'checked','on') 

handles.optimOptions.Algorithm = get(hObject,'label'); 

  

  

function searchSpaceBtn_Callback(hObject, eventdata, handles) 

ret = inputdlg({'Enter Siw'}, 'Provide Siw',[1,40]); 

if isempty(ret) 

   return  

end 

Siw = str2double(ret{1}); 

plotObjectiveFcn(Siw, handles.Sw, handles.waterData, 

handles.optimData, handles.surfData); 

  

  

% ------------------------------------------------------------

-------- 

function Untitled_7_Callback(hObject, eventdata, handles) 

  

% ------------------------------------------------------------

-------- 

function Untitled_8_Callback(hObject, eventdata, handles) 

setConstrainOption(hObject, handles, 'includeVelocity') 

  

% ------------------------------------------------------------

-------- 

function Untitled_9_Callback(hObject, eventdata, handles) 

 

setConstrainOption(hObject, handles, 'includeArea') 
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% ------------------------------------------------------------

-------- 

function Untitled_10_Callback(hObject, eventdata, handles) 

 

setConstrainOption(hObject, handles, 'includeDistance') 

  

function setConstrainOption(hObject, handles, fname) 

if strcmpi(get(hObject,'checked'), 'on') 

   set(hObject,'checked','off') 

else 

    set(hObject,'checked','on') 

end 

handles.optimData.(fname) = strcmpi(get(hObject,'checked'), 

'on'); 

guidata(hObject,handles) 

  

  

% ------------------------------------------------------------

-------- 

function Untitled_11_Callback(hObject, eventdata, handles) 

setConstrainOption(hObject, handles, 'includeSwob') 

  

  

% ------------------------------------------------------------

-------- 

function mobilityMenu_Callback(hObject, eventdata, handles) 

ret = inputdlg({'Enter Mobility Ratio','Enter Ko0'}, 'Provide 

Mobility 

Ratio',[1,40;1,40],{num2str(handles.simResult.water.M),num2str

(handles.simResult.water.Kro0)}); 

if isempty(ret) 

   return  

end 

M = str2double(ret{1}); 
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Kro0 = str2double(ret{2}); 

handles.waterData.Kro0 = Kro0; 

uo = handles.waterData.uo; 

uw = handles.waterData.uw; 

Krw0 = M*Kro0*uw/uo; 

handles.waterData.Krw0 = Krw0; 

handles.simResult = 

SimulateFlow(handles.Sw,handles.waterData,handles.surfData, 

handles.t);  

SetResultOnView(handles) 

guidata(hObject, handles) 

 

A7.3 Normalized water saturation 

function ret = NormWaterSaturation(Sw, data) 

% This function computes normalized water saturation given 

water saturation 

  

Siw = data.Siw; 

Sor = data.Sor; 

ret = (Sw - Siw)./(1 - Sor - Siw); 

ret(ret<=0) = eps; 

ret(ret>=1) = 1 - eps; 

 

A7.4 Water saturation 

function ret = WaterSaturation(Snw, data) 

% This function computes water saturation given normalized 

water saturation 

  

Siw = data.Siw; 

Sor = data.Sor; 

ret = Siw + Snw.*(1 - Sor - Siw); 
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A7.5 Newton Raphson Function  

function Sw_OB = NewtonRaphOilBank(initS,waterResult, 

surfResult) 

maxIter = 100; 

tangent = surfResult.maxTangent; 

  

tolerance = 0.00000000001; 

diff = 10; 

iter = 1; 

Sw = initS; 

dispResult = []; 

dsnw = 1./max([eps,(1 - waterResult.Sor - waterResult.Siw)]); 

Swbest = Sw; 

initSw = Sw; 

bestFx = 0; 

while (diff > tolerance && iter < maxIter ) || iter <= 5 

    Snw = NormWaterSaturation(Sw, waterResult); 

    fw =1./(1+((1-

Snw).^waterResult.no./(Snw.^waterResult.nw))/waterResult.M); 

     

    dfds = ComputeDFDS(Snw, waterResult)*dsnw; 

    tangentLine = Sw.*tangent - tangent*surfResult.Di; 

    fx = fw - tangentLine; 

    dfx = dfds - tangent; 

    Sw1 = Sw - fx./dfx; 

    diff = abs(Sw1 - Sw); 

    Sw = Sw1; 

    iter = iter + 1; 

    dispResult = [dispResult;[Sw, diff, (fw - tangentLine)]]; 

    if Sw <= 1 && Sw >= 0 && Sw <= surfResult.Sw_shock 

        Swbest = Sw; 

        bestFx = fx; 
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    end 

end 

if Swbest ~= Sw 

   Swbest = initSw;  

end 

Sw = Swbest; 

Sw = min([1-eps, Sw]); 

Sw = max([eps, Sw]); 

Snw = NormWaterSaturation(Sw, waterResult); 

disp(['Number of Iteration: ', num2str(iter)]) 

disp([{'Sw','Sw change', 'Cost 

Fucntion'};num2cell(dispResult)]) 

  

Sw_OB = WaterSaturation(Snw, waterResult); 

 

 

A7.6 Simulate Flow Newton Raphson Method 

function result = SimulateFlow(Sw,waterData, surfactantData, 

t, tilt) 

% SimulateFlow  Computes properties of water and surfactant 

flooding. 

% Determines the water saturation at the shock location and 

also at the oil 

% bank. 

if nargin == 4 

    tilt = 1; 

end 

waterResult = ComputeAllProperty(Sw, waterData);      % 

Computes water flooding property 

surfResult = ComputeAllProperty(Sw, surfactantData);   % 

Computes surfactant flooding property 

result.water = waterResult; 

result.surfactant = surfResult; 
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tm = tic; 

Sw_OB = NewtonRaphOilBank(waterResult.Sw_maxdfds, waterResult, 

surfResult);%fzero(@(x)ComputeOilBank(x,waterResult, 

surfResult), 0.6);   % Determines the water saturation at the 

oil bank 

elasped = toc(tm); 

disp(['Newton-Raphson Compute Time: ', num2str(elasped),' 

sec']) 

result.Sw_OB = Sw_OB; 

disp(Sw_OB) 

result.Snw_OB = NormWaterSaturation(Sw_OB,waterData);        % 

Determines the normalized water saturation at oil bank 

tempP = ComputeFlowProperty(Sw_OB, waterData); 

result.fw_OB = tempP.fw;          % Get the water fractional 

flow at the oil bank 

  

%% Determining the saturation profile 

Sw_spots = [surfResult.Sw_shock, result.Sw_OB, waterResult.Di, 

waterResult.Sw_shock]; 

Snw_spots = NormWaterSaturation(Sw_spots, surfResult); 

dfds_spots = ComputeDFDS(Snw_spots, surfResult); 

dfds_spots(2) = result.fw_OB/(result.Sw_OB - waterData.Siw); 

dfds_spots(4) = (waterResult.fw_shock-

result.fw_OB)/(waterResult.Sw_shock - result.Sw_OB); 

dfds_spots(isnan(dfds_spots)) = 0; 

  

result.Sw_spots = Sw_spots; 

result.Snw_spots = Snw_spots; 

result.dfds_spots = dfds_spots; 

  

Sw1 = fliplr(Sw(Sw>= Sw_spots(1))); 

Sw1 = [Sw1,Sw_spots(1)]; 

distance1 = t*ComputeDFDS(NormWaterSaturation(Sw1, 

surfResult), surfResult); 
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distance2 = t * dfds_spots; 

  

secDistance = [0, distance1, 

distance1(end),distance2(2)+distance1(end),distance2(2)+distan

ce1(end),1]; 

secSaturation = [1, Sw1, Sw_spots(2), Sw_spots(2), 

Sw_spots(3), Sw_spots(3)]; 

secArea = 0; 

for i = 2:length(secDistance); 

    secArea = secArea + (secSaturation(i) + secSaturation(i-

1))*0.5*(secDistance(i) - secDistance(i-1)); 

end 

if isnan(secArea) 

    secArea = 0; 

end 

  

result.secDistance = secDistance; 

result.secSaturation = secSaturation; 

result.secArea = secArea; 

result.secVob = dfds_spots(2);  % Velocity of secondary flow 

result.terVob = dfds_spots(4);  % Velocity of tertiary flow 

  

terDistance = [0, distance1, 

distance1(end),distance2(4)+distance1(end),distance2(4)+distan

ce1(end),1]; 

terSaturation = [1, Sw1, Sw_spots(2), Sw_spots(2), 

Sw_spots(4), Sw_spots(4)]; 

  

terArea = 0; 

for i = 2:length(terDistance); 

    terArea = terArea + (terSaturation(i) + terSaturation(i-

1))*0.5*(terDistance(i) - terDistance(i-1)); 

end 
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result.terDistance = terDistance; 

result.terSaturation = terSaturation; 

result.terArea = terArea; 

  

aboveOB = Sw>Sw_OB; 

t_OBb1 = 1./result.surfactant.dfds(aboveOB); 

t_OBf = 

[0,1/result.secVob,1/result.surfactant.dfds_shock,t_OBb1]; 

ER_SF1 = Sw(aboveOB) - result.surfactant.Siw - 

(result.surfactant.fw(aboveOB)-

1)./result.surfactant.dfds(aboveOB); 

ER_SF = [0, 0, (result.fw_OB)*(t_OBf(3)-t_OBf(2)), ER_SF1]; 

  

result.t_OBf = t_OBf; 

result.ER_SF = ER_SF; 

  

result.merge = struct(); 

A = [result.Sw_OB*tilt + waterData.Siw*(1-tilt), 0]; 

B = [surfResult.Sw_shock, result.fw_OB]; 

C = [surfResult.ER_BT_Sw, 1]; 

result.merge.A = A; 

result.merge.B = B; 

result.merge.C = C; 

mergeX = [0, A(1),result.Sw_OB, B(1), B(1), C(1)]; 

mergeY = [0, A(2), result.fw_OB, B(2), surfResult.fw_shock, 

C(2)]; 

result.merge.X = mergeX; 

result.merge.Y = mergeY; 

result.miscibleFun1 = @(x)miscibleMerge1(x, mergeX, mergeY); 

result.miscibleFun2 = @(x)miscibleMerge2(x, mergeX, mergeY); 

  

function ret = miscibleMerge1(Sw, mergeX, mergeY) 

ret = zeros(size(Sw)); 

sz = length(Sw); 
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for i=1:sz; 

    x = Sw(i); 

    if x < mergeX(2) 

        ret(i) = 0; 

    elseif x < mergeX(3) 

        ret(i) = valueAt(mergeX(2), mergeY(2), mergeX(3), 

mergeY(3),x); 

    elseif x < mergeX(4) 

        ret(i) = mergeY(3); 

    elseif x == mergeX(4) 

        ret(i) = mergeY(5); 

    else 

        m = (mergeY(end)-mergeY(end-1))/(mergeX(end)-

mergeX(end-1)); 

        ret(i) = min([1, m*(x-mergeX(end-1)) + mergeY(end-

1)]); 

    end 

end 

  

function ret = miscibleMerge2(Sw, mergeX, mergeY) 

ret = zeros(size(Sw)); 

sz = length(Sw); 

  

for i=1:sz; 

    x = Sw(i); 

    if x <= mergeX(2) 

        ret(i) = 0; 

    elseif x < mergeX(3) 

        ret(i) = valueAt(mergeX(2), mergeY(2), mergeX(3), 

mergeY(3),x); 

    else 

        m = (mergeY(end-1)-mergeY(3))/(mergeX(end-1)-

mergeX(3)); 
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        ret(i) = min([1, m*(x-mergeX(3)) + mergeY(3)]); 

    end 

end 

  

  

function y = valueAt(x1, y1, x2, y2, x) 

if x1 == x2 

    y = y2; 

    return 

end 

m = (y2-y1)/(x2-x1); 

y = min([1, m*(x-x1) + y1]); 

 

A7.7 Simulate Flow Brent Hybrid Method 

function result = SimulateFlow(Sw,waterData, surfactantData, 

t, tilt) 

% SimulateFlow  Computes properties of water and surfactant 

flooding. 

% Determines the water saturation at the shock location and 

also at the oil 

% bank. 

if nargin == 4 

    tilt = 1; 

end 

waterResult = ComputeAllProperty(Sw, waterData);      % 

Computes water flooding property 

surfResult = ComputeAllProperty(Sw, surfactantData);   % 

Computes surfactant flooding property 

result.water = waterResult; 

result.surfactant = surfResult; 

tm = tic; 
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Sw_OB = fzero(@(x)ComputeOilBank(x,waterResult, surfResult), 

waterResult.Sw_maxdfds, struct('Display','iter'));   % 

Determines the water saturation at the oil bank 

elasped = toc(tm); 

disp(elasped) 

result.Sw_OB = Sw_OB; 

result.Snw_OB = NormWaterSaturation(Sw_OB,waterData);        % 

Determines the normalized water saturation at oil bank 

tempP = ComputeFlowProperty(Sw_OB, waterData); 

result.fw_OB = tempP.fw;          % Get the water fractional 

flow at the oil bank 

  

%% Determining the saturation profile 

Sw_spots = [surfResult.Sw_shock, result.Sw_OB, waterResult.Di, 

waterResult.Sw_shock]; 

Snw_spots = NormWaterSaturation(Sw_spots, surfResult); 

dfds_spots = ComputeDFDS(Snw_spots, surfResult); 

dfds_spots(2) = result.fw_OB/(result.Sw_OB - waterData.Siw); 

dfds_spots(4) = (waterResult.fw_shock-

result.fw_OB)/(waterResult.Sw_shock - result.Sw_OB); 

dfds_spots(isnan(dfds_spots)) = 0; 

  

result.Sw_spots = Sw_spots; 

result.Snw_spots = Snw_spots; 

result.dfds_spots = dfds_spots; 

  

Sw1 = fliplr(Sw(Sw>= Sw_spots(1))); 

Sw1 = [Sw1,Sw_spots(1)]; 

distance1 = t*ComputeDFDS(NormWaterSaturation(Sw1, 

surfResult), surfResult); 

distance2 = t * dfds_spots; 
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secDistance = [0, distance1, 

distance1(end),distance2(2)+distance1(end),distance2(2)+distan

ce1(end),1]; 

secSaturation = [1, Sw1, Sw_spots(2), Sw_spots(2), 

Sw_spots(3), Sw_spots(3)]; 

secArea = 0; 

for i = 2:length(secDistance); 

    secArea = secArea + (secSaturation(i) + secSaturation(i-

1))*0.5*(secDistance(i) - secDistance(i-1)); 

end 

if isnan(secArea) 

    secArea = 0; 

end 

  

result.secDistance = secDistance; 

result.secSaturation = secSaturation; 

result.secArea = secArea; 

result.secVob = dfds_spots(2);  % Velocity of secondary flow 

result.terVob = dfds_spots(4);  % Velocity of tertiary flow 

  

terDistance = [0, distance1, 

distance1(end),distance2(4)+distance1(end),distance2(4)+distan

ce1(end),1]; 

terSaturation = [1, Sw1, Sw_spots(2), Sw_spots(2), 

Sw_spots(4), Sw_spots(4)]; 

  

terArea = 0; 

for i = 2:length(terDistance); 

    terArea = terArea + (terSaturation(i) + terSaturation(i-

1))*0.5*(terDistance(i) - terDistance(i-1)); 

end 

  

result.terDistance = terDistance; 

result.terSaturation = terSaturation; 
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result.terArea = terArea; 

  

aboveOB = Sw>Sw_OB; 

t_OBb1 = 1./result.surfactant.dfds(aboveOB); 

t_OBf = 

[0,1/result.secVob,1/result.surfactant.dfds_shock,t_OBb1]; 

ER_SF1 = Sw(aboveOB) - result.surfactant.Siw - 

(result.surfactant.fw(aboveOB)-

1)./result.surfactant.dfds(aboveOB); 

ER_SF = [0, 0, (result.fw_OB)*(t_OBf(3)-t_OBf(2)), ER_SF1]; 

  

result.t_OBf = t_OBf; 

result.ER_SF = ER_SF; 

  

result.merge = struct(); 

A = [result.Sw_OB*tilt + waterData.Siw*(1-tilt), 0]; 

B = [surfResult.Sw_shock, result.fw_OB]; 

C = [surfResult.ER_BT_Sw, 1]; 

result.merge.A = A; 

result.merge.B = B; 

result.merge.C = C; 

mergeX = [0, A(1),result.Sw_OB, B(1), B(1), C(1)]; 

mergeY = [0, A(2), result.fw_OB, B(2), surfResult.fw_shock, 

C(2)]; 

result.merge.X = mergeX; 

result.merge.Y = mergeY; 

result.miscibleFun1 = @(x)miscibleMerge1(x, mergeX, mergeY); 

result.miscibleFun2 = @(x)miscibleMerge2(x, mergeX, mergeY); 

  

function ret = miscibleMerge1(Sw, mergeX, mergeY) 

ret = zeros(size(Sw)); 

sz = length(Sw); 

  

for i=1:sz; 
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    x = Sw(i); 

    if x < mergeX(2) 

        ret(i) = 0; 

    elseif x < mergeX(3) 

        ret(i) = valueAt(mergeX(2), mergeY(2), mergeX(3), 

mergeY(3),x); 

    elseif x < mergeX(4) 

        ret(i) = mergeY(3); 

    elseif x == mergeX(4) 

        ret(i) = mergeY(5); 

    else 

        m = (mergeY(end)-mergeY(end-1))/(mergeX(end)-

mergeX(end-1)); 

        ret(i) = min([1, m*(x-mergeX(end-1)) + mergeY(end-

1)]); 

    end 

end 

  

function ret = miscibleMerge2(Sw, mergeX, mergeY) 

ret = zeros(size(Sw)); 

sz = length(Sw); 

  

for i=1:sz; 

    x = Sw(i); 

    if x <= mergeX(2) 

        ret(i) = 0; 

    elseif x < mergeX(3) 

        ret(i) = valueAt(mergeX(2), mergeY(2), mergeX(3), 

mergeY(3),x); 

    else 

        m = (mergeY(end-1)-mergeY(3))/(mergeX(end-1)-

mergeX(3)); 

        ret(i) = min([1, m*(x-mergeX(3)) + mergeY(3)]); 

    end 
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end 

  

  

function y = valueAt(x1, y1, x2, y2, x) 

if x1 == x2 

    y = y2; 

    return 

end 

m = (y2-y1)/(x2-x1); 

y = min([1, m*(x-x1) + y1]); 

 

A7.8 Plot Objective Function 

 

function plotObjectiveFcn(Siw, Sw, waterData, optimData, 

surfactantData) 

% plotObjectiveFcn  Creates a 3D surface plot of the search 

space of the 

% objective function. 

%   plotObjectiveFcn(Siw, Sw, waterData, optimData, 

surfactantData) 

%   Siw - desired connate water saturation 

%   Sw - vector of water saturation ranging from 0 to 1 

%   waterData - a structure data type that represents input 

paratemer for water flooding 

%   optimData - a structure data type that stores the 

optimization constraints. 

%   surfactantData - a structure data type that represents 

input paratemer for surfactant flooding 

% 

tm = tic; 

  

nw = linspace(0.1,6,60); 

no = linspace(0.1,6,60); 
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[rangeNw,rangeNo] = meshgrid(nw,no); 

rangeFw = zeros(size(rangeNw)); 

row = size(rangeNw,1); 

col = size(rangeNw,2); 

for i = 1:row; 

    for j = 1:col; 

        rangeFw(i,j) = 

objectiveFcn2([Siw,rangeNw(i,j),rangeNo(i,j)], Sw, waterData, 

optimData, surfactantData); 

    end 

end 

elasped = toc(tm); 

disp(['Search Elasped Time: ', num2str(elasped)]) 

  

figure; 

surf(rangeNw,rangeNo,rangeFw); 

hold on 

surf(rangeNw,rangeNo, zeros(size(rangeNw))) 

  

xlabel('nw') 

ylabel('no') 

zlabel('obj fun') 

title(['Siw = ',num2str(Siw)]) 

  

hold off 

 

A7.9 Plot Flow  

 

function PlotFlow(simResult, options) 

% PlotFlow  Plots the relative permeability curve, water 

fractional flow 

% curve and saturation profile curve 

%   PlotFlow(simResult, options) 
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%   simResult - result from SimulateFlow. 

%   options - optional settings for deciding the color, line 

width, etc. 

  

defOptions = struct('color_w','b', 

'color_s','r','color_c','k','color_o','r','color_ws','m','colo

r_ss','m','color_ob',[56, 142, 

60]/255,'secondary',true,'width',2,'font_size',11,... 

    'axes1',[],'axes2',[],'axes3',[]); 

if nargin == 1 

   options = defOptions; 

else 

    fds = fieldnames(defOptions); 

    sz = length(fds); 

    for i=1:sz; 

        fn = fds{i}; 

        if ~isfield(options, fn) 

            options.(fn) = defOptions.(fn); 

        end 

    end 

end 

  

waterResult = simResult.water; 

surfResult = simResult.surfactant; 

if isempty(options.axes1) || options.axes1 ~= 0 

    permeabilityCurves(waterResult, surfResult, options); 

end 

if isempty(options.axes2) || options.axes2 ~= 0 

    fractionalFlowCurves(simResult, options); 

    if isempty(options.axes2)  

        fractionalFlowCurves2(simResult, options, 

simResult.miscibleFun1); 

        fractionalFlowCurves2(simResult, options, 

simResult.miscibleFun2); 
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    end 

end 

if isempty(options.axes3) || options.axes3 ~= 0 

    profileCurves(simResult, options); 

end 

%recoveryCurve(simResult, options); 

  

function permeabilityCurves(waterResult, surfResult, options) 

colW = options.color_w; 

colS = options.color_s; 

colO = options.color_o; 

colC = options.color_c; 

isSec = options.secondary; 

lineW = options.width; 

fontSz = options.font_size; 

if isempty(options.axes1) 

    figure(); 

else 

    axes(options.axes1) 

end 

Sw = waterResult.Sw; 

hold on 

plt_ww = performPlot(Sw,waterResult.Krw,'-',lineW,colW); 

plt_wo = performPlot(Sw,waterResult.Kro,'-',lineW,colO); 

plt_sw = performPlot(Sw,surfResult.Krw,'--',lineW,colW); 

plt_so = performPlot(Sw,surfResult.Kro,'--',lineW,colO); 

xlabel('Sw, Water Saturation') 

ylabel('Relative Permeability') 

legend({'Krw','Kro','Krw SF','Kro SF'}) 

set(gca(),'xlim',[0,1],'ylim',[0,1]) 

hold off 

  

function fractionalFlowCurves(simResult, options) 

colW = options.color_w; 
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colS = options.color_s; 

colO = options.color_o; 

colC = options.color_c; 

colOB = options.color_ob; 

colSS = options.color_ss; 

  

isSec = options.secondary; 

lineW = options.width; 

fontSz = options.font_size; 

waterResult = simResult.water; 

surfResult = simResult.surfactant; 

if isempty(options.axes2) 

    figure(); 

else 

    axes(options.axes2) 

end 

Sw = waterResult.Sw; 

pd = 0.01; 

hold on 

plt_w = performPlot(Sw,waterResult.fw,'-',lineW,colW); 

plt_s = performPlot(Sw,surfResult.fw,'-',lineW,colS); 

fc = 1.1; 

plt_stan = 

performPlot([surfResult.Di,surfResult.ER_BT_Sw],[0,surfResult.

tangentFun(surfResult.ER_BT_Sw)],'--',1,colS); 

if isSec 

    plt_BFtan = 

performPlot([waterResult.Di,simResult.Sw_OB],[0,simResult.fw_O

B],'--',1,colW); 

    plot(waterResult.Di, 

0,'ro','color',colC,'markerfacecolor',colC) 

    text(waterResult.Di-pd, 

0,'Sw_{iw}','color',colC,'verticalalignment','bottom','horizon

talalignment','right','fontsize',fontSz) 
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else 

    plt_BFtan = 

performPlot([waterResult.Sw_shock,simResult.Sw_OB],[waterResul

t.fw_shock,simResult.fw_OB],'--',1,colW); 

    plot(waterResult.Sw_shock, 

waterResult.fw_shock,'ro','color',colC,'markerfacecolor',colC) 

    text(waterResult.Sw_shock-pd, 

waterResult.fw_shock,'Sw_{iw}, 

fw_{iw}','color',colC,'verticalalignment','bottom','horizontal

alignment','right','fontsize',fontSz) 

end 

plot(surfResult.Sw_shock, 

surfResult.fw_shock,'ro','color',colSS,'markerfacecolor',colSS

) 

plot(simResult.Sw_OB, 

simResult.fw_OB,'ro','color',colOB,'markerfacecolor',colOB) 

  

text(surfResult.Sw_shock+pd, surfResult.fw_shock,'Sw_{SS}, 

fw_{SS}','color',colSS,'verticalalignment','top','fontsize',fo

ntSz) 

text(simResult.Sw_OB-pd, simResult.fw_OB,'Sw_{OB}, 

fw_{OB}','color',colOB,'verticalalignment','bottom','horizonta

lalignment','right','fontsize',fontSz) 

  

xlabel('Sw, Water Saturation') 

ylabel('Water Fractional Flow') 

legend([plt_w,plt_s,plt_stan,plt_BFtan],{'Water 

Flooding','Surfactant Flooding','Tangent Line SF','Shock Water 

Front'},'location','northwest') 

set(gca(),'xlim',[min([0,min(Sw),waterResult.Di,surfResult.Di]

),1],'ylim',[0,1]) 

  

hold off 
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function profileCurves(simResult, options) 

colW = options.color_w; 

colS = options.color_s; 

colO = options.color_o; 

colC = options.color_c; 

colOB = options.color_ob; 

colSS = options.color_ss; 

  

isSec = options.secondary; 

lineW = options.width; 

fontSz = options.font_size; 

waterResult = simResult.water; 

surfResult = simResult.surfactant; 

if isempty(options.axes3) 

    figure(); 

else 

    axes(options.axes3) 

end 

Sw = waterResult.Sw; 

pd = 0.01; 

hold on 

if isSec 

    X = simResult.secDistance; 

    Y = simResult.secSaturation; 

    text(mean(X(end-1:end)), mean(Y(end-1:end))+pd*2, 'Oil 

Bank','color',colW, 

'verticalalignment','bottom','horizontalalignment','center','f

ontsize',fontSz) 

else 

    X = simResult.terDistance; 

    Y = simResult.terSaturation; 

    text(mean(X(end-3:end-2)), mean(Y(end-3:end-2))+pd*2, 'Oil 

Bank','color',colW, 
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'verticalalignment','bottom','horizontalalignment','center','f

ontsize',fontSz) 

end 

plt_w = performPlot(X,Y,'-',lineW,colW); 

plot(X(end-4),Y(end-

4),'ro','color',colSS,'markerfacecolor',colSS) 

plot(X(end-3),Y(end-

3),'ro','color',colOB,'markerfacecolor',colOB) 

plot(X(end-2),Y(end-

2),'ro','color',colOB,'markerfacecolor',colOB) 

plot(X(end-1),Y(end-

1),'ro','color',colC,'markerfacecolor',colC) 

  

text(X(end-4)+pd,Y(end-4),'Sw_{DOBb}, 

Sw_{SS}','color',colSS,'verticalalignment','bottom','fontsize'

,fontSz) 

text(X(end-3)-pd,Y(end-3),'Sw_{DOBb}, 

Sw_{OB}','color',colOB,'verticalalignment','middle','horizonta

lalignment','right','fontsize',fontSz) 

text(X(end-2)+pd,Y(end-2),'Sw_{DOBf}, 

Sw_{OB}','color',colOB,'verticalalignment','middle','fontsize'

,fontSz) 

text(X(end-1)-pd,Y(end-1),'Sw_{DOBf}, 

Sw_{iw}','color',colC,'verticalalignment','middle','horizontal

alignment','right','fontsize',fontSz) 

  

ylabel('Sw, Water Saturation') 

xlabel('Dimensionless Distance') 

set(gca(),'xlim',[0,1],'ylim',[0,1]) 

hold off 

  

function fractionalFlowCurves2(simResult, options, 

miscibleFun) 

colW = options.color_w; 
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colS = options.color_s; 

colO = options.color_o; 

colC = options.color_c; 

colOB = options.color_ob; 

colSS = options.color_ss; 

  

isSec = options.secondary; 

lineW = options.width; 

fontSz = options.font_size; 

waterResult = simResult.water; 

surfResult = simResult.surfactant; 

if isempty(options.axes2) 

    figure(); 

else 

    axes(options.axes2) 

end 

Sw = waterResult.Sw; 

pd = 0.01; 

hold on 

plt_w = performPlot(Sw,waterResult.fw,'-',lineW,colW); 

plt_s = performPlot(Sw,surfResult.fw,'-',lineW,colS); 

fc = 1.1; 

plt_stan = 

performPlot([surfResult.Di,surfResult.ER_BT_Sw],[0,surfResult.

tangentFun(surfResult.ER_BT_Sw)],'--',1,colS); 

if isSec 

    plt_BFtan = 

performPlot([waterResult.Di,simResult.Sw_OB],[0,simResult.fw_O

B],'--',1,colW); 

    plot(waterResult.Di, 

0,'ro','color',colC,'markerfacecolor',colC) 

    text(waterResult.Di-pd, 

0,'Sw_{iw}','color',colC,'verticalalignment','bottom','horizon

talalignment','right','fontsize',fontSz) 
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else 

    plt_BFtan = 

performPlot([waterResult.Sw_shock,simResult.Sw_OB],[waterResul

t.fw_shock,simResult.fw_OB],'--',1,colW); 

    plot(waterResult.Sw_shock, 

waterResult.fw_shock,'ro','color',colC,'markerfacecolor',colC) 

    text(waterResult.Sw_shock-pd, 

waterResult.fw_shock,'Sw_{iw}, 

fw_{iw}','color',colC,'verticalalignment','bottom','horizontal

alignment','right','fontsize',fontSz) 

end 

plot(surfResult.Sw_shock, 

surfResult.fw_shock,'ro','color',colSS,'markerfacecolor',colSS

) 

plot(simResult.Sw_OB, 

simResult.fw_OB,'ro','color',colOB,'markerfacecolor',colOB) 

  

mergedY = miscibleFun(Sw); 

  

mplt = plot(Sw, mergedY, 'k-', 'linewidth', 2); 

  

text(surfResult.Sw_shock+pd, surfResult.fw_shock,'Sw_{SS}, 

fw_{SS}','color',colSS,'verticalalignment','top','fontsize',fo

ntSz) 

text(simResult.Sw_OB-pd, simResult.fw_OB,'Sw_{OB}, 

fw_{OB}','color',colOB,'verticalalignment','bottom','horizonta

lalignment','right','fontsize',fontSz) 

  

A = simResult.merge.A; 

B = simResult.merge.B; 

C = simResult.merge.C; 

text(A(1), A(2),' A 

','color','k','verticalalignment','bottom','horizontalalignmen

t','left','fontsize',fontSz) 
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mergedTitle = 'Modified'; 

if any(B(2) == mergedY) 

    text(B(1), B(2),' B 

','color','k','verticalalignment','top','horizontalalignment',

'center','fontsize',fontSz) 

    text(C(1), C(2),' C 

','color','k','verticalalignment','bottom','horizontalalignmen

t','center','fontsize',fontSz) 

else 

    mergedTitle = 'Modified'; 

    text(C(1), C(2),' B 

','color','k','verticalalignment','bottom','horizontalalignmen

t','center','fontsize',fontSz) 

end 

  

xlabel('Sw, Water Saturation') 

ylabel('Water Fractional Flow') 

legend([plt_w,plt_s,mplt,plt_stan,plt_BFtan],{'Water 

Flooding','Surfactant Flooding', mergedTitle,'Tangent Line 

SF','Shock Water Front'},'location','northwest') 

set(gca(),'xlim',[min([0,min(Sw),waterResult.Di,surfResult.Di]

),1],'ylim',[0,1]) 

  

hold off 

  

function recoveryCurve(simResult, options) 

colW = options.color_w; 

colS = options.color_s; 

colO = options.color_o; 

colC = options.color_c; 

colOB = options.color_ob; 

colSS = options.color_ss; 

  

isSec = options.secondary; 



229 

 

lineW = options.width; 

fontSz = options.font_size; 

waterResult = simResult.water; 

surfResult = simResult.surfactant; 

figure(); 

Sw = waterResult.Sw; 

pd = 0.01; 

hold on 

X = simResult.t_OBf; 

Y = simResult.ER_SF; 

plt_w = performPlot(X,Y,'-',lineW,colW); 

  

ylabel('Recovery Factor') 

xlabel('Dimensionless Time') 

%set(gca(),'xlim',[0,1],'ylim',[0,1]) 

hold off 

  

function ret = performPlot(X,Y,lstyle,wd,col) 

ret = plot(X,Y,['r',lstyle], 'linewidth', wd, 'color',col); 

  

  

A.7.10 Optimize Flow 

 

function [optimWaterData, optimVar, obf, simResult] = 

OptimizeFlow(waterData, surfactantData, optimData, options) 

% OptimizeFlow  Determines the value of Siw, nw and no that 

yields the 

% desired Sw_OB and secondary velocity. It also satisfies the 

constraint that the resulting 

% [nw, no] from the water flooding is closest to [nw, no] from 

surfactant flooding.  

% 

%   [optimWaterData, optimVar, obf, simResult] = 

OptimizeFlow(waterData, surfactantData, optimData, options) 
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%   waterData - a structure data type that represents input 

paratemer for water flooding 

%   optimData - a structure data type that stores the 

optimization constraints. 

%   surfactantData - a structure data type that represents 

input paratemer for surfactant flooding 

%   options - optional settings for the optimization algorithm 

% 

%   OptimizeFlow returns 4 outputs: 

%   optimWaterData - is a copy of water data updated with the 

optimum Siw, 

%   nw and no 

%   optimVar - is the optimum design variables - Siw, nw and 

no 

%   obf - is the value of the objective function at the 

optimum design 

%   variable 

%   simResult - is the result of SimulateFlow at the optimum 

design 

%   variable 

  

  

if nargin < 4 

   options = struct('Display','iter');  

end 

Sw = linspace(0,1,4000); 

  

surfResult = ComputeAllProperty(Sw,surfactantData);  % Compute 

the flow property of surfactant flooding 

optimSw = optimData.Sw;    % Desired Sw_OB 

optimNw = optimData.nw;    % nw constraint 

optimNo = optimData.no;    % no constraint 

optimSiw = optimData.Siw;  % Siw constraint 
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optimFw = surfResult.maxTangent*optimSw - 

surfResult.maxTangent*surfResult.Di;   % fw at the desired 

Sw_OB 

optimVar0 = randomStartPoint(optimData, 1);       % Initialize 

the design variable to be optimized 

fun = @(X)objectiveFcn(X, Sw, waterData, optimData, 

surfactantData);   % define an anonymous function for use by 

the optimization algorithm 

bounds = [optimSiw;optimNw;optimNo];       % set the 

boundaries of the design variables 

lb = bounds(:,1); 

ub = bounds(:,2); 

nonlcon = @(X)constraintFcn(X, Sw, waterData, optimData, 

surfactantData);   % define the constraint function 

  

[optimVar,obf] = 

fmincon(fun,optimVar0,[],[],[],[],lb,ub,nonlcon, options);   % 

optimize the design variables 

%[optimVar,obf] = ga(fun,3,[],[],[],[],lb,ub,nonlcon); 

optimWaterData = waterData; 

optimWaterData.Siw = optimVar(1); 

optimWaterData.nw = optimVar(2); 

optimWaterData.no = optimVar(3); 

optimWaterData.Di = optimVar(1); 

  

simResult =  SimulateFlow(Sw, optimWaterData, surfactantData, 

0.2); 

  

PlotFlow(simResult) 

disp(['Optimum Siw: ',num2str(optimVar(1))]) 

disp(['Optimum nw: ',num2str(optimVar(2))]) 

disp(['Optimum no: ',num2str(optimVar(3))]) 

disp(['Min Point: ', num2str(obf)]) 
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function X = randomStartPoint(optimData, ct) 

optimNw = optimData.nw; 

optimNo = optimData.no; 

optimSiw = optimData.Siw; 

X = zeros(3,1); 

X(1,:) = 0.2; 

X(2,:) = 0.1*(optimNw(2)-optimNw(1))*rand(1,ct) + optimNw(1); 

X(3,:) = 0.1*(optimNo(2)-optimNo(1))*rand(1,ct) + optimNo(1); 

  

  

function [c, ceq] = constraintFcn(X, Sw, waterData, optimData, 

surfactantData) 

Siw = X(1); 

nw = X(2); 

no = X(3); 

optimSw = optimData.Sw; 

data = waterData; 

data.Siw = Siw; 

data.nw = nw; 

data.no = no; 

data.Di = Siw; 

%surfactantData.Siw = Siw; 

allResult = SimulateFlow(Sw, data, surfactantData, 0.2); 

surfResult = allResult.surfactant; 

optimFw = surfResult.tangentFun(optimSw); 

tempP = ComputeFlowProperty(optimSw, data); 

fw = tempP.fw; 

c = []; 

ceq = []; 

if optimData.includeSwob 

    ceq = [ceq; fw-optimFw]; 

end 

if optimData.includeArea 

    ceq = [ceq;allResult.secArea - optimData.secArea]; 
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end 

if optimData.includeVelocity 

    ceq = [ceq; allResult.secVob - optimData.Vob]; 

end 

  

A7.11 Objective Function 

 

function ret = objectiveFcn(X, Sw, waterData, optimData, 

surfactantData) 

% objectiveFcn  The evaluation or cost function to be 

minimized by an 

% optimization 

%   ret = objectiveFcn(X, Sw, waterData, optimData, 

surfactantData) 

%   X - a vection of 3 numbers to be optimized. X = [Siw, nw, 

no]. It is 

%   the design variable. 

%   Sw - vector of water saturation ranging from 0 to 1 

%   waterData - a structure data type that represents input 

paratemer for water flooding 

%   optimData - a structure data type that stores the 

optimization constraints. The important field in optimData 

used here is Sw which is the desired water saturation at the 

oil bank. 

%   surfactantData - a structure data type that represents 

input paratemer for surfactant flooding 

% 

%   objectiveFcn returns ret. ret is a scaler value that 

represents the 

%   cost at the given design variable. 

  

Siw = X(1); 

nw = X(2); 
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no = X(3); 

optimSw = optimData.Sw;  % Water saturation at the desired oil 

bank 

data = waterData; 

data.Siw = Siw; 

data.nw = nw; 

data.no = no; 

data.Di = Siw; 

  

allResult = SimulateFlow(Sw, data, surfactantData, 

optimData.t); 

surfResult = allResult.surfactant; 

optimFw = surfResult.tangentFun(optimSw);    % Get fw at the 

oil bank 

tempP = ComputeFlowProperty(optimSw, data); 

fw = tempP.fw; 

ret = 0; 

if optimData.includeSwob 

    ret = (fw-optimFw).^2;   % compute the squared difference 

between resulting fw and desired fw  

end 

if optimData.includeVelocity 

    ret = ret + (optimData.Vob - allResult.secVob).^2;   % Add 

the squared difference between resulting secondary velocity 

and desired velocity 

end 

if optimData.includeArea 

    ret = ret + (allResult.secArea - optimData.secArea).^2; 

end 

if optimData.includeDistance 

    ret = ret + sqrt((nw-surfactantData.nw).^2 + (no-

surfactantData.no).^2);   % Add the euclidean distance between 

the [nw, no] of water flooding and [nw, no] of surfactant 

end 
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A.7.12 Objective Function 2 

 

function ret = objectiveFcn2(X, Sw, waterData, optimData, 

surfactantData) 

% This is similar to objectiveFcn. It deters in two aspects - 

the euclidean 

% distance is not add and the value from the velocity term is 

clipped to 

% not exceed 3. 

% This function is designed for exploring the search space of 

the objective 

% function. 

  

Siw = X(1); 

nw = X(2); 

no = X(3); 

optimSw = optimData.Sw; 

data = waterData; 

data.Siw = Siw; 

data.nw = nw; 

data.no = no; 

data.Di = Siw; 

  

allResult = SimulateFlow(Sw, data, surfactantData, 

optimData.t); 

surfResult = allResult.surfactant; 

optimFw = surfResult.tangentFun(optimSw); 

tempP = ComputeFlowProperty(optimSw, data); 

fw = tempP.fw; 

ret = (fw-optimFw).^2; 

  

if optimData.includeVelocity 
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    ret = ret + min([2, (optimData.Vob - 

allResult.secVob).^2]);   % Add the squared difference between 

resulting secondary velocity and desired velocity 

end 

if optimData.includeArea 

    ret = ret + (allResult.secArea - optimData.secArea).^2 

end 

 

A7.13 Compute Shock 

 

function z = ComputeShock(Snw, data) 

% ComputeShock  computes the difference between dfds and 

norm_tangent.  

%   z = ComputeShock(Snw, data) 

%   Snw - normalized water saturation. It could be a scaler or 

vector. 

%   data is a structure data type with the following fields: 

%   M - mobility ratio 

%   nw - corey coefficient for chemical 

%   no - corey coefficient for oil 

%   Di - negative of the retardation term 

%   Dni - normalized Di 

%    

%   ComputeShock returns z. z is the difference between the 

derivative of 

%   fractional flow and the normalized tangent function. 

% 

%   NOTE: The purpose of this function is to determine the 

value of Snw where 

% ComputeShock is equal to 0. This function will be fed to 

fzero to 

% determine Snw where z is 0. 
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Sw = WaterSaturation(Snw,data); 

M = data.M; 

nw = data.nw; 

no = data.no; 

Di = data.Di; 

Dni = data.Dni; 

fw=1./(1+((1-Snw).^no./(Snw.^nw))/M);  % Fractional flow 

dfds1= ComputeDFDS(Snw, data);         % Derivative of 

fractional flow 

norm_tangent = fw./(Snw-Dni);          % Normalized tangent 

function 

z=dfds1-norm_tangent; 

 

A7.14 Compute Oil Bank 

 

function result = ComputeOilBank(Sw,waterResult, surfResult) 

% ComputeOilBank    Computes the difference between the 

fractional flow of 

% water flooding and the tangent line of surfactant flooding. 

%   result = ComputeOilBank(Sw,waterResult, surfResult) 

%   Sw - scaler or vector water saturation 

%   waterResult - the output of ComputeAllProperty for water 

flooding 

%   surfResult - the output of ComputeAllProperty for 

surfactant flooding 

% 

%   ComputeOilBank returns result. result is the difference 

between fw and 

%   tangentLine. fw is the fractional flow from water flooding 

while 

%   tangentLine is the straight line that runs through the 

initial 

%   condition and shock location of surfactant flooding. 
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% 

%   NOTE: The purpose of this function is to determine the 

value of Sw 

%   where the tangent line of the surfactant flooding 

intersect the 

%   fractional flow of water flooding. This function is passed 

as input to 

%   fzero to determine the water saturation at oil bank. 

  

Snw = NormWaterSaturation(Sw, waterResult); 

fw=1./(1+((1-

Snw).^waterResult.no./(Snw.^waterResult.nw))/waterResult.M); 

tangent = surfResult.maxTangent; 

tangentLine = Sw.*tangent - tangent*surfResult.Di; 

if false %fw < 0.1 || fw >= 0.8 

    result = 1; 

else 

    result = fw - tangentLine; 

end 

disp(result) 

  

 

A7.15 Compute Flow Property 

 

function ret = ComputeFlowProperty(Sw, data) 

% ComputeFlowProperty    Computes Mobility, normalized water 

saturation, 

%   relative permeability and fractional flow of a given 

chemical flooding 

%   ret = ComputeFlowProperty(Sw, data) 

%   Sw is a vector of water saturation ranging from 0 to 1 

%   data is a structure data type that contains all the fixed 

parameters of 
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%   the chemical flooding. data must contain the following 

fields:  

%   Siw - connate water 

%   Sor - residual oil saturation 

%   Krw0 - end-point relative permeability of chemical 

%   Kro0 - end-point relative permeability of oil 

%   nw - corey coefficient of chemical 

%   no - corey coefficient of oil 

%   uw - viscosity of chemical 

%   uo - viscosity of oil 

% 

%   ComputeFlowProperty returns ret. ret is a structure data 

type that 

%   contains all the input parameter as well as the following 

fields: 

%   M - mobility ratio 

%   Snw - normalized water saturation 

%   Sno - normalized oil saturation 

%   Krw - relative permeability of chemical 

%   Kro - relative permeability of oil 

%   fw - fractional flow of chemical phase 

%   fo - fractional flow of oil phase 

  

Siw = data.Siw; 

Sor = data.Sor; 

Krw0 = data.Krw0; 

Kro0 = data.Kro0; 

nw = data.nw; 

no = data.no; 

uw = data.uw; 

uo = data.uo; 

  

M = Krw0 * uo/(Kro0*uw); 

Snw = (Sw-Siw)/(1 - Siw - Sor); 
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Snw(Snw<=0) = eps; 

Snw(Snw>=1) = 1 - eps; 

Sno = 1 - Snw; 

Krw = Krw0*Snw.^nw; 

Kro = Kro0*Sno.^no; 

fw = 1./(1 + Kro*uw./(Krw*uo)); 

fo = 1 - fw; 

  

ret = data; 

ret.M = M; 

ret.Snw = Snw; 

ret.Sno = Sno; 

ret.Krw = Krw; 

ret.Kro = Kro; 

ret.fw = fw; 

ret.fo = fo; 

  

A7.16 Compute DFDS 

function dfds = ComputeDFDS(Snw, data) 

% ComputeDFDS    Computes the derivative of fractional flow of 

chemical 

% phase with respect to normalized water saturation. 

%   dfds = ComputeDFDS(Snw, data) 

%   Snw is a vector of normalized water saturation 

%   data is a structure data type that contains all the fixed 

parameter of 

%   the chemical flooding. data must contain the following 

fields:  

%   M - mobility ratio 

%   nw - corey coefficient of chemical 

%   no - corey coefficient of oil 

% 
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%   ComputeFlowProperty returns dfds. dfds is a vector of 

derivatives of fw 

%   with respect to Snw 

  

M = data.M; 

nw = data.nw; 

no = data.no; 

fw=1./(1+((1-Snw).^no./(Snw.^nw))/M); 

dfds=((fw.^2)/M).*(((1-Snw).^no)./(Snw).^nw).*(no./(1-

Snw)+nw./(Snw)); 

  

  

A7.17 Compute All Property  

 

function flowP = ComputeAllProperty(Sw, data) 

% ComputeAllProperty    Computes all the properties associated 

with a single flooding 

%   flowP = ComputeAllProperty(Sw, data) 

%   Sw is a vector of water saturation ranging from 0 to 1 

%   data is a structure data type that contains all the fixed 

property of 

%   the chemical flooding. data must contain the following 

fields:  

%   Siw - connate water 

%   Sor - residual oil saturation 

%   Krw0 - end-point relative permeability of chemical 

%   Kro0 - end-point relative permeability of oil 

%   nw - corey coefficient of chemical 

%   no - corey coefficient of oil 

%   uw - viscosity of chemical 

%   uo - viscosity of oil 

%   Di - negative of the retardation term 

%    
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%   ComputeAllProperty returns flowP. flowP is a structure 

data type that 

%   contains all the variables in data in addition to the 

following fields: 

%   M - mobility ratio 

%   Snw - normalized water saturation 

%   Sno - normalized oil saturation 

%   Krw - relative permeability of chemical 

%   Kro - relative permeability of oil 

%   fw - fractional flow of chemical phase 

%   fo - fractional flow of oil phase 

%   dfds - derivative of fw with respect to Snw 

%   Snw_shock - normalized water saturation at the location of 

shock 

%   Sw_shock - water saturation at the location of shock 

%   fw_shock - fractional flow at the location of shock 

%   dfds_shock - derivative of fw at the location of shock 

%   ER_BT_Snw - Recovery efficiency as a function of Snw 

%   ER_BT_Sw - Recovery efficiency as a function of Sw 

%   tangent - slope of tangent line from initial condition to 

Sw. 

%   norm_tangent - slope of tangent line from initial 

condition to Snw 

%   maxNormTangent - value of norm_tangent at the shock 

location 

%   tangentFun - an anonymous function that computes the value 

of fw for 

%   any Sw on the tangent line that runs through shock 

location from 

%   initial condition 

% 

% NOTE: The shock location is the value of Sw where dfds is 

equal to 

% norm_tangent. 
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%% Extracting fixed parameter from data 

Siw = data.Siw; 

Sor = data.Sor; 

Krw0 = data.Krw0; 

Kro0 = data.Kro0; 

nw = data.nw; 

no = data.no; 

uw = data.uw; 

uo = data.uo; 

Di = data.Di; 

Dni = (Di - Siw)/(1 - Sor - Siw); % Normalizing Di 

data.Dni = Dni; 

  

%% Compute relative permeability and fractional flow 

flowP = ComputeFlowProperty(Sw, data); 

flowP.Sw = Sw; 

  

M = flowP.M; 

Snw = flowP.Snw; 

Sno = flowP.Sno; 

Krw = flowP.Krw; 

Kro = flowP.Kro; 

fw = flowP.fw; 

fo = flowP.fo; 

  

dfds = ComputeDFDS(Snw, flowP); % Compute the derivative of fw 

with respect to Snw 

norm_tangent = fw./(Snw-Dni); 

tangent = fw./(Sw-Di); 

  

[~,mxp] = max(dfds(fw <= 0.9)); 

flowP.dfds = dfds; 
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flowp.Snw_maxdfds = Snw(mxp); 

flowP.Sw_maxdfds = WaterSaturation(flowp.Snw_maxdfds, data); 

% Check if the tangent diverges or if the tangent is constant 

if any(max(dfds) == dfds(end-2:end)) || (max(dfds) - 

min(dfds)) < 0.001 

    Snw_shock = NormWaterSaturation(1,flowP); % If any of the 

above conditions hold, make the shock location to be Sw = 1 

else 

    Snw_shock=fzero(@(x)ComputeShock(x, flowP),0.5); % Solve 

for Snw_shock where the difference between dfds and 

norm_tangent is 0 

end 

Snw_shock = min([1-eps, Snw_shock]); 

Snw_shock = max([eps, Snw_shock]); 

if Snw_shock < 0 || Snw_shock > 1 

    disp(Snw_shock); 

    pause 

end 

%% Determine properties at shock location 

Sw_shock= WaterSaturation(Snw_shock,flowP); 

tempFP = ComputeFlowProperty(Sw_shock, flowP); 

fw_shock = tempFP.fw; 

dfds_shock= ComputeDFDS(Snw_shock, flowP); 

  

ER_BT_Snw=Snw_shock-(fw_shock-1)/dfds_shock; 

ER_BT_Sw= Sw_shock-(fw_shock-1)/dfds_shock; 

maxTangent = fw_shock/(Sw_shock - Di); 

maxNormTangent = fw_shock/(Snw_shock - Dni); 

  

%% Add computed properties to result to be returned 

flowP.Snw_shock = Snw_shock; 

flowP.Sw_shock = Sw_shock; 

flowP.fw_shock = fw_shock; 

flowP.dfds_shock = dfds_shock; 



245 

 

flowP.ER_BT_Snw = ER_BT_Snw; 

flowP.ER_BT_Sw = ER_BT_Sw; 

flowP.tangent = tangent; 

flowP.norm_tangent = norm_tangent; 

flowP.maxTangent = maxTangent; 

flowP.maxNormTangent = maxNormTangent; 

flowP.tangentFun = @(sw)maxTangent*sw - maxTangent*Di; 
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A8 Eclipse Data File  

RUNSPEC 

TITLE 

 Surfactant Secondary flood  

 

DIMENS 

   1000   1    10  / 

 

OIL 

 

WATER 

 

SURFACT 

 

METRIC 

 

TABDIMS 

    2    1   100   20    1   20 / 

 

WELLDIMS 

    2    1000    1    2 / 

 

START 

   1 'MAY' 1990  / 

 

NSTACK 

    8 / 

  

UNIFOUT 

 

GRID      

============================================================== 

DXV 

  1000*0.5  / 

DYV 

  1*500  / 

DZ 

1000*2 1000*2 1000*2 1000*2 1000*2 1000*2 1000*2 1000*2 1000*2 

1000*2 

/ 

PERMX 

  10000*1000/ 

 

COPY 

 'PERMX' 'PERMY' 1 1000   1 1  1 10 / 

/ 

 

 

PERMZ 
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1000*100 1000*100 1000*100  1000*100   1000*100  1000*100 

1000*100 1000*100  1000*100   1000*100   

 / 

 

PORO 

10000*0.25 / 

 

TOPS 

1000*2600 / 

 

INIT 

RPTGRID 

 / 

 

 

EDIT 

 

PROPS     

============================================================== 

 

SWFN 

0.145 0 0.75 

0.22 0.0001 0.05 

0.27 0.0004 1* 

0.32 0.009  1* 

0.365 0.018  1* 

0.438 0.043  1* 

0.51 0.082  1* 

0.558 0.118  1* 

0.631 0.187  -0.05 

0.703 0.27  -0.25 

0.752 0.31  -0.5 

0.795 0.37  -1.5 

/ 

 0.0    0.0   0.0 

1.0    1.0   0.0 

/ 

 

SOF2       1 TABLES   20 NODES IN EACH           FIELD   13:34  

5 MAY 85 

    .205 .000 

    .250 .00006 

    .300 .0009 

    .370 .008 

    .440 .027 

    .490 .052 

    .560 .120 

    .635 .228 

    .683 .334 

    .730 .470 

    .780 .644 
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    .855 1.00 

/ 

 0.0    0.0 

 1.0    1.0 

/ 

PVTW 

  270 1.030 4.6E-5 0.34 0.0  / 

 

--PVDO 

--  200    1.0     0.47 

--  280    0.999   0.47 

--  300    0.998   0.47 

--/ 

PVDO 

  200    1.0     10 

  280    0.999   10 

  300    0.998   10 

/ 

ROCK 

 270 .3E-5 / 

 

DENSITY 

 850. 1000. 10. / 

 

SURFVISC 

 0.0    0.34 

30.     5.0  / 

 

SURFADS 

 0.0     0.0000 

 1.0     0.0005 

30.0     0.0005  / 

 

 0.0     0.0000 

 1.0     0.0005 

30.0     0.0005  / 

 

SURFST 

00 0.05 

0.1 0.016945851 

0.2 0.005743237 

0.4 0.000659695 

0.6 7.57757E-05 

0.8 8.70396E-06 

1 1.00E-06 

30 1.00E-06/ 

 

SURFCAPD 

  -9    0.0 

  -4.5  0.0 

  -2    1.0 
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  10    1.0 / 

 

  -9    0.0 

  -4.5  0.0 

  -2    1.0 

  10    1.0 / 

 

 

SURFROCK 

 1  2650 / 

 2  2650 / 

 

RPTPROPS 

    -- PROPS Reporting Options 

--  

'SURFVISC'  

 / 

 

REGIONS    

============================================================= 

SATNUM 

10000*1 / 

 

SURFNUM 

10000*2 / 

 

RPTREGS 

  / 

 

SOLUTION   

============================================================= 

 

EQUIL 

2600 270 2700 / 

 

RPTSOL 

--  

-- Initialisation Print Output 

--  

'PRES' 'SOIL' 'SWAT' 'RESTART=1' 'OILAPI' 'FIPTR=2' 'TBLK' 

'FIPPLY=2' 'SURFBLK'  

'FIPSURF=2' / 

 

RPTRST 

 'BASIC=2' / 

 

SUMMARY    

=========================================================== 

WBHP 

/ 

FWIR 
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FWIT 

FWCT 

FOPR 

FOPT 

FRPV 

FWPR 

FWPT 

FOE 

FTPRSUR 

FTPTSUR 

FTIRSUR 

FTITSUR 

BTCNFSUR 

 1 1 1 / 

 2 1 1 / 

 3 1 1 / 

 4 1 1 / 

 5 1 1 / 

 5 1 1 / 

 5 1 1 / 

 6 1 1 / 

 7 1 1 / 

 8 1 1 / 

 9 1 1 / 

991 1 1 / 

992 1 1 / 

993 1 1 /  

994 1 1 /  

995 1 1 /  

996 1 1 / 

997 1 1 / 

998 1 1 / 

999 1 1 / 

991 1 5 / 

992 1 5 / 

993 1 5 /  

994 1 5 /  

995 1 5 /  

996 1 5 / 

997 1 5 / 

998 1 5 / 

999 1 5 / 

991 1 10/ 

992 1 10 / 

993 1 10/  

994 1 10 /  

995 1 10 /  

996 1 10 / 

997 1 10 / 

998 1 10 / 

999 1 10 / 
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/ 

BOSAT 

 1 1 1 / 

 2 1 1 / 

 3 1 1 / 

 4 1 1 / 

 5 1 1 / 

 5 1 1 / 

 5 1 1 / 

 6 1 1 / 

 7 1 1 / 

 8 1 1 / 

 9 1 1 / 

91 1 1 / 

92 1 1 / 

93 1 1 /  

94 1 1 /  

95 1 1 /  

96 1 1 / 

97 1 1 / 

98 1 1 / 

99 1 1 / 

/ 

WTPRSUR 

'OP' / 

 

BTADSUR 

 1 1 1 / 

 2 1 1 / 

 3 1 1 / 

 4 1 1 / 

 5 1 1 / 

 5 1 1 / 

 5 1 1 / 

 6 1 1 / 

 7 1 1 / 

 8 1 1 / 

 9 1 1 / 

91 1 1 / 

92 1 1 / 

93 1 1 /  

94 1 1 /  

95 1 1 /  

96 1 1 / 

97 1 1 / 

98 1 1 / 

99 1 1 / 

/ 

BTSTSUR 

 1 1 1 / 

 2 1 1 / 
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 3 1 1 / 

 4 1 1 / 

 5 1 1 / 

 5 1 1 / 

 5 1 1 / 

 6 1 1 / 

 7 1 1 / 

 8 1 1 / 

 9 1 1 / 

91 1 1 / 

92 1 1 / 

93 1 1 /  

94 1 1 /  

95 1 1 /  

96 1 1 / 

97 1 1 / 

98 1 1 / 

99 1 1 / 

/ 

BTCASUR 

 1 1 1 / 

 2 1 1 / 

 3 1 1 / 

 4 1 1 / 

 5 1 1 / 

 5 1 1 / 

 5 1 1 / 

 6 1 1 / 

 7 1 1 / 

 8 1 1 / 

 9 1 1 / 

91 1 1 / 

92 1 1 / 

93 1 1 /  

94 1 1 /  

95 1 1 /  

96 1 1 / 

97 1 1 / 

98 1 1 / 

99 1 1 / 

/ 

BEWV_SUR 

 1 1 1 / 

 2 1 1 / 

 3 1 1 / 

 4 1 1 / 

 5 1 1 / 

 5 1 1 / 

 5 1 1 / 

 6 1 1 / 

 7 1 1 / 
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 8 1 1 / 

 9 1 1 / 

91 1 1 / 

92 1 1 / 

93 1 1 /  

94 1 1 /  

95 1 1 /  

96 1 1 / 

97 1 1 / 

98 1 1 / 

99 1 1 / 

/ 

BESVIS 

 1 1 1 / 

 2 1 1 / 

 3 1 1 / 

 4 1 1 / 

 5 1 1 / 

 5 1 1 / 

 5 1 1 / 

 6 1 1 / 

 7 1 1 / 

 8 1 1 / 

 9 1 1 / 

91 1 1 / 

92 1 1 / 

93 1 1 /  

94 1 1 /  

95 1 1 /  

96 1 1 / 

97 1 1 / 

98 1 1 / 

99 1 1 / 

/ 

--Water relative in certain block  

BKRW 

 1 1 1 / 

 2 1 1 / 

 3 1 1 / 

 4 1 1 / 

 5 1 1 / 

 5 1 1 / 

 5 1 1 / 

 6 1 1 / 

 7 1 1 / 

 8 1 1 / 

 9 1 1 / 

91 1 1 / 

92 1 1 / 

93 1 1 /  

94 1 1 /  
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95 1 1 /  

96 1 1 / 

97 1 1 / 

98 1 1 / 

99 1 1 / 

/ 

--Oil relative in certain block  

BKRO 

 1 1 1 / 

 2 1 1 / 

 3 1 1 / 

 4 1 1 / 

 5 1 1 / 

 5 1 1 / 

 5 1 1 / 

 6 1 1 / 

 7 1 1 / 

 8 1 1 / 

 9 1 1 / 

91 1 1 / 

92 1 1 / 

93 1 1 /  

94 1 1 /  

95 1 1 /  

96 1 1 / 

97 1 1 / 

98 1 1 / 

99 1 1 / 

/ 

--Grid water-oil capillary pressure  

BWPC 

 1 1 1 / 

 2 1 1 / 

 3 1 1 / 

 4 1 1 / 

 5 1 1 / 

 5 1 1 / 

 5 1 1 / 

 6 1 1 / 

 7 1 1 / 

 8 1 1 / 

 9 1 1 / 

91 1 1 / 

92 1 1 / 

93 1 1 /  

94 1 1 /  

95 1 1 /  

96 1 1 / 

97 1 1 / 

98 1 1 / 

99 1 1 / 
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/ 

--Water saturation in a certain block  

BSWAT 

 1 1 1 / 

 2 1 1 / 

 3 1 1 / 

 4 1 1 / 

 5 1 1 / 

 5 1 1 / 

 5 1 1 / 

 6 1 1 / 

 7 1 1 / 

 8 1 1 / 

 9 1 1 / 

91 1 1 / 

92 1 1 / 

93 1 1 /  

94 1 1 /  

95 1 1 /  

96 1 1 / 

97 1 1 / 

98 1 1 / 

99 1 1 / 

991 1 1 / 

992 1 1 / 

993 1 1 /  

994 1 1 /  

995 1 1 /  

996 1 1 / 

997 1 1 / 

998 1 1 / 

999 1 1 / 

991 1 5 / 

992 1 5 / 

993 1 5 /  

994 1 5 /  

995 1 5 /  

996 1 5 / 

997 1 5 / 

998 1 5 / 

999 1 5 / 

991 1 10/ 

992 1 10 / 

993 1 10/  

994 1 10 /  

995 1 10 /  

996 1 10 / 

997 1 10 / 

998 1 10 / 

999 1 10 / 

/ 
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--fRACTIONBAL fLOW cAL  

BOSAT 

 1 1 1 / 

 2 1 1 / 

 3 1 1 / 

 4 1 1 / 

 5 1 1 / 

 5 1 1 / 

 5 1 1 / 

 6 1 1 / 

 7 1 1 / 

 8 1 1 / 

 9 1 1 / 

91 1 1 / 

92 1 1 / 

93 1 1 /  

94 1 1 /  

95 1 1 /  

96 1 1 / 

97 1 1 / 

98 1 1 / 

99 1 1 / 

/ 

BWSAT 

 1 1 1 / 

 2 1 1 / 

 3 1 1 / 

 4 1 1 / 

 5 1 1 / 

 5 1 1 / 

 5 1 1 / 

 6 1 1 / 

 7 1 1 / 

 8 1 1 / 

 9 1 1 / 

91 1 1 / 

92 1 1 / 

93 1 1 /  

94 1 1 /  

95 1 1 /  

96 1 1 / 

97 1 1 / 

98 1 1 / 

99 1 1 / 

991 1 1 / 

992 1 1 / 

993 1 1 /  

994 1 1 /  

995 1 1 /  

996 1 1 / 

997 1 1 / 
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998 1 1 / 

999 1 1 / 

991 1 5 / 

992 1 5 / 

993 1 5 /  

994 1 5 /  

995 1 5 /  

996 1 5 / 

997 1 5 / 

998 1 5 / 

999 1 5 / 

991 1 10/ 

992 1 10 / 

993 1 10/  

994 1 10 /  

995 1 10 /  

996 1 10 / 

997 1 10 / 

998 1 10 / 

999 1 10 / 

/ 

BVELOI 

 1 1 1 / 

 2 1 1 / 

 3 1 1 / 

 4 1 1 / 

 5 1 1 / 

 5 1 1 / 

 5 1 1 / 

 6 1 1 / 

 7 1 1 / 

 8 1 1 / 

 9 1 1 / 

91 1 1 / 

92 1 1 / 

93 1 1 /  

94 1 1 /  

95 1 1 /  

96 1 1 / 

97 1 1 / 

98 1 1 / 

99 1 1 / 

/ 

BVELWI 

 1 1 1 / 

 2 1 1 / 

 3 1 1 / 

 4 1 1 / 

 5 1 1 / 

 5 1 1 / 

 5 1 1 / 
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 6 1 1 / 

 7 1 1 / 

 8 1 1 / 

 9 1 1 / 

91 1 1 / 

92 1 1 / 

93 1 1 /  

94 1 1 /  

95 1 1 /  

96 1 1 / 

97 1 1 / 

98 1 1 / 

99 1 1 / 

/ 

BFLOOI 

 1 1 1 / 

 2 1 1 / 

 3 1 1 / 

 4 1 1 / 

 5 1 1 / 

 5 1 1 / 

 5 1 1 / 

 6 1 1 / 

 7 1 1 / 

 8 1 1 / 

 9 1 1 / 

91 1 1 / 

92 1 1 / 

93 1 1 /  

94 1 1 /  

95 1 1 /  

96 1 1 / 

97 1 1 / 

98 1 1 / 

99 1 1 / 

/ 

BFLOWI 

 1 1 1 / 

 2 1 1 / 

 3 1 1 / 

 4 1 1 / 

 5 1 1 / 

 5 1 1 / 

 5 1 1 / 

 6 1 1 / 

 7 1 1 / 

 8 1 1 / 

 9 1 1 / 

91 1 1 / 

92 1 1 / 

93 1 1 /  
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94 1 1 /  

95 1 1 /  

96 1 1 / 

97 1 1 / 

98 1 1 / 

99 1 1 / 

/ 

BFLOWK 

1 1 5 / 

 2 1 5 / 

 3 1 5 / 

 4 1 5 / 

 5 1 5 / 

 5 1 5 / 

 5 1 5 / 

 6 1 5 / 

 7 1 5 / 

 8 1 5 / 

 9 1 5 / 

91 1 5 / 

92 1 5 / 

93 1 5 /  

94 1 5 /  

95 1 5 /  

96 1 5 / 

97 1 5 / 

98 1 5 / 

99 1 5 / 

/ 

TCPU 

EXCEL 

RUNSUM 

SEPARATE 

 

SCHEDULE   

=========================================================== 

 

RPTSCHED                                         FIELD   16:55 

18 APR 86 

'PRES' 'SOIL' 'SWAT' 'RESTART=2' 'FIP=2' 'WELLS=2' 'SUMMARY=2' 

'CPU=2'  

'NEWTON=2' 'OILAPI' 'FIPTR=2' 'TBLK' 'FIPSALT=2' 'TUNING' 

'SURFBLK' 'SURFADS'  

'FIPSURF=2' / 

 

RPTRST 

'SURFBLK' 'FLORES''FLOWS''PRESSURE''VISC'/ 

 

WELSPECS 

'OP'  'G'   1000 1  2600  'OIL'  / 

'INJ' 'G'   1  1   2600  'WAT'  / 
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/ 

COMPDAT 

'OP      '   1000  1  1   10 'OPEN'   0  .0   157E-3 / 

'INJ     '   1   1   1   10 'OPEN'   0  .0   157E-3 / 

/ 

 

WCONPROD 

'OP' 'OPEN' 'RESV' 4* 500 0.0 4* / 

/ 

 

WCONINJE 

'INJ' 'WAT' 'OPEN' 'RESV' 1* 500  / 

/ 

 

--TSTEP 

-- 3*50 / 

 

WSURFACT 

'INJ'  30.0 / 

/ 

 

--TSTEP 

-- 50 / 

 

--WSURFACT 

-- 'INJ'  30.0 / 

-- / 

--Timestep reduced due to error in the inital refined time run 

TSTEP 

  500*10 

/ 

 

END 
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A9 Copyright Clearance  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



262 

 

References  

Abbas, A. H., Sulaiman, W. R. W., Jaafar, M. Z., Gbadamosi, A. O., Ebrahimi, S. S., & Elrufai, 

A. (2018). Numerical study for continuous surfactant flooding considering adsorption 

in heterogeneous reservoir. Journal of King Saud University - Engineering Sciences. 

doi:https://doi.org/10.1016/j.jksues.2018.06.001 

Abhishek, R., Kumar, G. S., & Sapru, R. K. (2015). Wettability Alteration in Carbonate 

Reservoirs Using Nanofluids. Petroleum Science and Technology, 33(7), 794-801. 

doi:10.1080/10916466.2015.1014967 

Adibhatla, B., & Mohanty, K. K. J. (2008). Parametric analysis of surfactant-aided imbibition 

in fractured carbonates. Journal of Colloid and Interface Science, 317, 513-522. 

doi:10.1016/j.jcis.2007.09.088 

Akin, S., & Kovscek, A. (2003). Computed tomography in petroleum engineering research. 

Geological Society, London, Special Publications, 215, 23-38. 

doi:10.1144/GSL.SP.2003.215.01.03 

Akinyele, O., & Stephen, K. D. (2020). Numerical Effects of Fluid Flow Modelling in 

Surfactant Chemical Flooding. Conference Proceedings, ECMOR XVII, Sep 2020, 

Volume 2020(1), 1-21. doi:https://doi.org/10.3997/2214-4609.202035135 

Akinyele, O., & Stephen, K. D. (2021). Numerical Simulation of the Propagation of Viscous 

Fingering and Aspect Ratio on Surfactant Flooding. Conference Proceedings, 82nd 

EAGE Annual Conference & Exhibition, Oct 2021, Volume 2021(1), 1-5. 

doi:https://doi.org/10.3997/2214-4609.202112958 

Akinyele, O., & Stephen, K. D. (2022). Numerical effects on the simulation of surfactant 

flooding for enhanced oil recovery. Computational Geosciences. doi:10.1007/s10596-

022-10156-4 

Akinyele, O., & Stephen, K. D. (2022). Optimization Algorithm for Surfactant Flooding: 

Comparative Study of Brent’s Hybrid and Adapted Newton-Raphson Method. 

Conference Proceedings, Second EAGE Digitalization Conference and Exhibition, Mar 

2022, Volume 2022(1), 1-5. doi:https://doi.org/10.3997/2214-4609.202239078 



263 

 

Akinyele, O., & Stephen, K. D. (2022). Uncertainty in Chemical Flooding: A new data 

optimization algorithm for modelling of surfactant flood. Conference Proceedings, 

Second EAGE Digitalization Conference and Exhibition, Mar 2022, Volume 2022(1), 

1-5. doi:https://doi.org/10.3997/2214-4609.202239067 

Al-Ibadi, H., Stephen, K., & Mackay, E. (2018). Improved Numerical Stability and Upscaling 

of Low Salinity Water Flooding. Paper presented at the SPE Asia Pacific Oil and Gas 

Conference and Exhibition. 

Al-Ibadi, H., Stephen, K. D., & Mackay, E. (2019). Insights into the fractional flow of low 

salinity water flooding in the light of solute dispersion and effective salinity 

interactions. Journal of Petroleum Science and Engineering, 174, 1236-1248. 

doi:10.1016/j.petrol.2018.12.001 

Al-Ibadi, H., Stephen, K. D., & Mackay, E. (2021). An Analysis of Numerically Induced Pulses 

in Simulations of Low-Salinity Waterflooding and Their Reduction by Flow Upscaling. 

SPE Journal, 26(02), 897-917. doi:10.2118/192074-pa 

Al-Ibadi, H., Stephen, K. D., & Mackay, E. (2021). Pulse generation and propagation in the 

numerical solution of low salinity water flooding. Journal of Petroleum Science and 

Engineering, 198, 108151. doi:https://doi.org/10.1016/j.petrol.2020.108151 

Al-Ibadi, H., Stephen, K., & Mackay, E. (2021). Upscaling Simulations of 3D Displacement 

Processes that Include Change of Wettability using Analytically Derived Relative 

Permeability. 

Al-Sofi, A. M., Liu, J. S., & Han, M. (2012). Numerical Simulation of Surfactant-Polymer 

Coreflooding Experiments for Carbonates. Paper presented at the SPE EOR Conference 

at Oil and Gas West Asia, Muscat, Oman. https://doi.org/10.2118/154659-MS 

Al-Sofi, A. M., & Blunt, M. J. (2010). Control of Numerical Dispersion in Simulations of 

Augmented Waterflooding. Paper presented at the SPE Improved Oil Recovery 

Symposium. 

AlSofi, A. M., & Blunt, M. J. (2012). A segregated flow scheme to control numerical dispersion 

for multi-component flow simulations. Computational Geosciences, 16(2), 335-350. 

doi:10.1007/s10596-012-9278-2 



264 

 

Azizul, Hasan. (2016). Numerical Study of Some Iterative Methods for Solving Nonlinear 

Equations, Vol. 5(2) pp1-10. 

Brent, Richard. (2002). Algorithms For Minimization Without Derivatives. Englewood Cliffs, 

Prentice Hall. 19. 10.2307/2005713. 

Bryan, J., & Kantzas, A. (2009). Potential for Alkali-Surfactant Flooding in Heavy Oil 

Reservoirs Through Oil-in-Water Emulsification. Journal of Canadian Petroleum 

Technology, 48(02), 37-46. doi:10.2118/09-02-37 

Buckley, S. E., & Leverett, M. C. (1942). Mechanism of Fluid Displacement in Sands. 

Transactions of the AIME, 146(01), 107-116. doi:10.2118/942107-G 

Chen, S., Li, H., Yang, D., & Tontiwachwuthikul, P. (2010). Optimal Parametric Design for 

Water-Alternating-Gas (WAG) Process in a CO2-Miscible Flooding Reservoir. Journal 

of Canadian Petroleum Technology, 49(10), 75-82. doi:10.2118/141650-pa 

Chen, X., Feng, Q., Liu, W., & Sepehrnoori, K. (2017). Modeling preformed particle gel 

surfactant combined flooding for enhanced oil recovery after polymer flooding. Fuel, 

194, 42-49. doi:https://doi.org/10.1016/j.fuel.2016.12.075 

Cheraghian, G., & Nezhad, S. S. K. (2016). Improvement of heavy oil recovery and role of 

nanoparticles of clay in the surfactant flooding process. Petroleum Science and 

Technology, 34(15), 1397-1405. doi:10.1080/10916466.2016.1198805 

Connolly, M., & Johns, R. T. (2016). Scale-Dependent Mixing for Adverse Mobility Ratio 

Flows in Heterogeneous Porous Media. Transport in Porous Media, 113(1), 29-50. 

doi:10.1007/s11242-016-0678-y 

Corey, A. T. (1954). The interrelation between gas and oil relative permeabilities. Producers 

Monthly, 38-41.  

Dake, L. P. (2001). The Practice of Reservoir Engineering (Revised Edition): Elsevier Science. 

Dindoruk, B., & Dindoruk, D. M. (2006). Analytical and Numerical Solution of Nonisothermal 

Buckley-Leverett Flow Including Tracers. Paper presented at the SPE Annual 

Technical Conference and Exhibition. 



265 

 

Ding, L., Wu, Q., Zhang, L., & Guérillot, D. (2020). Application of Fractional Flow Theory 

for Analytical Modeling of Surfactant Flooding, Polymer Flooding, and 

Surfactant/Polymer Flooding for Chemical Enhanced Oil Recovery. Water, 12(8), 

2195.  

Druetta, P., & Picchioni, F. (2019). Simulation of Surfactant Oil Recovery Processes and the 

Role of Phase Behaviour Parameters. Energies, 12, 983. doi:10.3390/en12060983 

Druetta, P., Yue, J., Tesi, P., De Persis, C., & Picchioni, F. (2017). Numerical modeling of a 

compositional flow for chemical EOR and its stability analysis. Applied Mathematical 

Modelling, 47, 141-159. doi:10.1016/j.apm.2017.03.017 

Ehiwario, J. C. (2014). Comparative Study of Bisection, Newton-Raphson and Secant Methods 

of Root- Finding Problems. IOSR Journal of Engineering, 4, 01-07. doi:10.9790/3021-

04410107 

Fanchi, J. R. (1983). Multidimensional Numerical Dispersion. Society of Petroleum Engineers 

Journal, 23(01), 143-151. doi:10.2118/9018-PA 

Farajzadeh, R., Eftekhari, A. A., Hajibeygi, H., Kahrobaei, S., van der Meer, J. M., Vincent-

Bonnieu, S., & Rossen, W. R. (2016). Simulation of instabilities and fingering in 

surfactant alternating gas (SAG) foam enhanced oil recovery. Journal of Natural Gas 

Science and Engineering, 34, 1191-1204. doi:10.1016/j.jngse.2016.08.008 

Farajzadeh, R., Wassing, B. L., & Lake, L. W. (2019). Insights into design of mobility control 

for chemical enhanced oil recovery. Energy Reports, 5, 570-578. 

doi:https://doi.org/10.1016/j.egyr.2019.05.001 

Farrell, H. H., Gregory, M. D., & Borah, M. T. (1984). Progress Report: Big Muddy Field Low-

Tension Flood Demonstration Project With Emphasis on Injectivity and Mobility. 

Paper presented at the SPE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma. 

https://doi.org/10.2118/12682-MS 

Fayazi, A., Bagherzadeh, H., & Shahrabadi, A. (2016). Estimation of Pseudo Relative 

Permeability Curves for a Heterogeneous Reservoir With a New Automatic History 

Matching Algorithm. J. Pet. Sci. Eng. 140 (April): 154–163. 

https://doi.org/10.1016/j.petrol.2016.01.013. 



266 

 

Fayers, F. J., Jouaux, F., & Tchelepi, H. A. (1994). Improved macroscopic model for viscous 

fingering and its validation for 2D and 3D flows. I. Non-gravity flows. In Situ, 18(1), 

43-78.  

G Moghanloo, R., & Lake, L. (2012). Applying Fractional-Flow Theory Under the Loss of 

Miscibility. SPE Journal - SPE J, 17, 661-670. doi:10.2118/129966-PA 

Gbadamosi, A. O., Junin, R., Manan, M. A., Agi, A., & Yusuff, A. S. (2019). An overview of 

chemical enhanced oil recovery: recent advances and prospects. International Nano 

Letters, 9(3), 171-202. doi:10.1007/s40089-019-0272-8 

Glushkov, S. A., Persova, M. G., Soloveichik, Y. G., & Patrushev, I. I. (2018, 2-6 Oct. 2018). 

Relative Permeability Curves Determination Using Numerical Inversion. Paper 

presented at the 2018 XIV International Scientific-Technical Conference on Actual 

Problems of Electronics Instrument Engineering (APEIE). 

Green, D. W., & Willhite, G. P. (1998). Enhanced oil recovery. Richardson, TX: Henry L. 

Doherty Memorial Fund of AIME, Society of Petroleum Engineers. 

Hamid, A., Adam, A., Jackson, M., & Muggeridge, A. (2018). Impact of Truncation Error and 

Numerical Scheme on the Simulation of the Early Time Growth of Viscous Fingering: 

Truncation Error and Numerical Scheme in Viscous Fingering Simulation. 

International Journal for Numerical Methods in Fluids, 89. doi:10.1002/fld.4680 

Hamid, S. A., & Muggeridge, A. (2018). Viscous Fingering in Reservoirs With Long Aspect 

Ratios. Paper presented at the SPE Improved Oil Recovery Conference. 

Healy, R. N., & Reed, R. L. (1973). Physicochemical Aspects of Microemulsion Flooding. 

Paper presented at the Fall Meeting of the Society of Petroleum Engineers of AIME, 

Las Vegas, Nevada. https://doi.org/10.2118/4583-MS 

Healy, R. N., Reed, R. L., & Stenmark, D. G. (1976). Multiphase Microemulsion Systems. 

Society of Petroleum Engineers Journal, 16(03), 147-160. doi:10.2118/5565-PA 

Helfferich, F. G. (1981). Theory Of Multicomponent, Multiphase Displacement in Porous 

Media. Society of Petroleum Engineers Journal, 21(1), 51-62. doi:10.2118/8372-PA 



267 

 

Hirasaki, G., Miller, C. A., & Puerto, M. (2011). Recent Advances in Surfactant EOR. SPE 

Journal, 16(04), 889-907. doi:10.2118/115386-PA 

Iglauer, S., Wu, Y., Shuler, P., Tang, Y., & Goddard, W. A. (2010). New surfactant classes for 

enhanced oil recovery and their tertiary oil recovery potential. Journal of Petroleum 

Science and Engineering, 71(1), 23-29. 

doi:https://doi.org/10.1016/j.petrol.2009.12.009 

Johnson, E. F., Bossler, D. P., & Bossler, V. O. N. (1959). Calculation of Relative Permeability 

from Displacement Experiments. Transactions of the AIME, 216(01), 370-372. 

doi:10.2118/1023-g 

Jones, S. C., & Roszelle, W. O. (1978). Graphical Techniques for Determining Relative 

Permeability From Displacement Experiments. Journal of Petroleum Technology, 

30(05), 807-817. doi:10.2118/6045-pa 

Jørgensen, K. (2013). Implementation of a Surfactant Model in MRST With Basis in 

Schlumberger's Eclipse. (Master). Norwegian University of Science and Technology 

Retrieved from http://hdl.handle.net/11250/240038  

Kamyabi, A., Ramazani S.A, A., & Kamyabi, M. (2015). Surfactant effects on the efficiency 

of oil sweeping from the dead ends: Numerical simulation and experimental 

investigation. Chemical Engineering Research and Design, 94, 173-181. 

doi:https://doi.org/10.1016/j.cherd.2014.07.027 

Kayode, B., Surdiman, S., Ghareeb, Z., & Salem, H. (2017). A New Approach for Reducing 

Numerical Dispersion in Reservoir Simulation. Paper presented at the SPE Kingdom 

of Saudi Arabia Annual Technical Symposium and Exhibition. 

Keshtkar, S., Sabeti, M., & Mohammadi, A. H. (2016). Numerical approach for enhanced oil 

recovery with surfactant flooding. Petroleum, 2(1), 98-107. 

doi:https://doi.org/10.1016/j.petlm.2015.11.002 

Khan, M. Y., & Mandal, A. (2021). Improvement of Buckley-Leverett equation and its solution 

for gas displacement with viscous fingering and gravity effects at constant pressure for 

inclined stratified heterogeneous reservoir. Fuel, 285, 119172. 

doi:https://doi.org/10.1016/j.fuel.2020.119172 



268 

 

LaForce, T., & Jessen, K. (2010). Analytical and Numerical Investigation of Multicomponent 

Multiphase WAG Displacements. Computational Geosciences, 14, 745-754. 

doi:10.1007/s10596-010-9185-3 

Lake, L. W. (1989). Enhanced oil recovery: Old Tappan, NJ; Prentice Hall Inc. 

Lantz, R. B. (1970). Rigorous Calculation of Miscible Displacement Using Immiscible 

Reservoir Simulators. Society of Petroleum Engineers Journal, 10(02), 192-202. 

doi:10.2118/2594-PA 

Lake, L. W. J., R.; Rossen,W.R.; Pope, G.A. (2014). Fundamentals of Enhanced Oil Recovery. 

Richardson: Society of Petroleum Engineers. 

Larson, R. G. (1979). Influence Of Phase Behavior on Surfactant Flooding. Society of 

Petroleum Engineers of AIME Journal, 19(6), 411-422.  

Lenormand, R., & Lenormand, G. (2016). Recommended Procedure for Determination of 

Relative Permeabilities. This paper was prepared for presentation at the International 

Symposium of the Society of Core Analysts held in Snowmass, Colorado, USA, 21-26 

August 2016.  

Levitt, D., & Pope, G. A. (2008). Selection and Screening of Polymers for Enhanced-Oil 

Recovery. Paper presented at the SPE Symposium on Improved Oil Recovery. 

Li, G., Chen, L., Ruan, Y., Guo, Q., Liao, X., & Zhang, B. (2019). Alkyl polyglycoside: a green 

and efficient surfactant for enhancing heavy oil recovery at high-temperature and high-

salinity condition. Journal of Petroleum Exploration and Production Technology, 9(4), 

2671-2680. doi:10.1007/s13202-019-0658-1 

Li, H., Chen, S., Yang, D. et al. 2012. Estimation of Relative Permeability by Assisted History 

Matching Using the Ensemble Kalman Filter Method. J Can Pet Technol 51 (3): 205–

213. SPE-156027-PA. https://doi.org/10.2118/156027-PA. 

Liu, S., Li, R. F., Miller, C. A., & Hirasaki, G. J. (2010). Alkaline/Surfactant/Polymer 

Processes: Wide Range of Conditions for Good Recovery. SPE Journal, 15(02), 282-

293. doi:10.2118/113936-pa 



269 

 

Liu, Y., Hou, J., Liu, L., Zhou, K., Zhang, Y., Dai, T., and Cao, W. (2018). An Inversion 

Method of Relative Permeability Curves in Polymer Flooding Considering Physical 

Properties of Polymer. SPE Journal, 23(05), 1929-1943. doi:10.2118/189980-pa 

Liu, Z.-b., & Liu, H.-h. (2015). An effective method to predict oil recovery in high water cut 

stage. Journal of Hydrodynamics, Ser. B, 27(6), 988-995. 

doi:https://doi.org/10.1016/S1001-6058(15)60561-3 

Lomeland, F. (2018). Overview of the LET Family of Versatile Correlations for Flow  

Functions. Proceedings of the 2018 International Symposium of the SCA, Trondheim, 

Norway, 27 - 30 August, 2018. 

Lotfollahi, M., Varavei, A., Delshad, M., Farajzadeh, R., & Pope, G. A. (2015). Development 

of a hybrid black-oil/surfactant enhanced oil recovery reservoir simulator. Journal of 

Petroleum Science and Engineering, 133, 130-146. 

doi:https://doi.org/10.1016/j.petrol.2015.05.008 

Luo, H., Delshad, M., Pope, G. A., & Mohanty, K. K. (2017). Interactions Between Viscous 

Fingering and Channeling for Unstable Water/Polymer Floods in Heavy Oil Reservoirs. 

Paper presented at the SPE Reservoir Simulation Conference. 

Maerker, J. M., & Gale, W. W. (1992). Surfactant flood process design for Loudon. SPE 

(Society of Petroleum Engineers) Reservoir Engineering; (United States), Medium: X; 

Size: Pages: 36-44. 

Mahmood, S. M., Tariq, S. M., & Brigham, W. E. (1986). A Model for Prediction of Recovery 

and Pressure History for 2-D Displacement of Oil Through Porous Media by 

Gas/Surfactant. Paper presented at the SPE California Regional Meeting. 

Massarweh, O., & Abushaikha, A. S. (2020). The use of surfactants in enhanced oil recovery: 

A review of recent advances. Energy Reports, 6, 3150-3178. 

doi:https://doi.org/10.1016/j.egyr.2020.11.009 

Moortgat, J. (2016). Viscous and gravitational fingering in multiphase compositional and 

compressible flow. Advances in Water Resources, 89, 53-66. 

doi:https://doi.org/10.1016/j.advwatres.2016.01.002 



270 

 

Mu, L., Liao, X., Chen, Z., Zou, J., Chu, H., & Li, R. (2019). Analytical solution of Buckley-

Leverett equation for gas flooding including the effect of miscibility with constant-

pressure boundary. Energy Exploration & Exploitation, 37(3), 960-991. 

doi:10.1177/0144598719842335 

Nelson, R. C., & Pope, G. A. (1977). Phase relationships in chemical flooding: ; Shell 

Development Co. 

Nocedal, J. & Wright S. J. (2006). Numerical Optimization, Second Edition. Springer Series 

in Operations Research, Springer Verlag, 2006. 

Patacchini, L., de Loubens, R., Moncorgé, A., & Trouillaud, A. (2014). Four-Fluid-Phase, 

Fully Implicit Simulation of Surfactant Flooding. SPE Reservoir Evaluation & 

Engineering, 17(02), 271-285. doi:10.2118/161630-pa 

Paula A. Sesini, D. A. F. d. S., Alvaro L. G. A. Coutinho. (2010). Finite Element Simulation 

of Viscous Fingering in Miscible Displacements at High Mobility-Ratios.  

Pope, G. A., & Nelson, R. C. (1978). A Chemical Flooding Compositional Simulator. Society 

of Petroleum Engineers Journal, 18(05), 339-354. doi:10.2118/6725-PA 

Pope, G. A. (1980). The Application of Fractional Flow Theory to Enhanced Oil Recovery. 

Society of Petroleum Engineers Journal, 20(03), 191-205. doi:10.2118/7660-PA 

Powell, M. J. D. (1978). The Convergence of Variable Metric Methods for Nonlinearly 

Constrained Optimization Calculations (Vol. 3). 

Pratt, J. D., & West, T. F. (1972). Editors' Preface. In H. E. Garrett (Ed.), Surface Active 

Chemicals (pp. ix-x): Pergamon. 

Reppert, T. R., Bragg, J. R., Wilkinson, J. R., Snow, T. M., Maer, N. K., Jr., & Gale, W. W. 

(1990). Second Ripley Surfactant Flood Pilot Test. Paper presented at the SPE/DOE 

Enhanced Oil Recovery Symposium, Tulsa, Oklahoma. https://doi.org/10.2118/20219-

MS 

Rossen, W. R. (2013). Numerical Challenges in Foam Simulation: A Review. Paper presented 

at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 

USA. https://doi.org/10.2118/166232-MS 



271 

 

Rossen, W. R., & Boeije, C. S. (2014). Fitting Foam-Simulation-Model Parameters to Data: II. 

Surfactant-Alternating-Gas Foam Applications. SPE Reservoir Evaluation & 

Engineering, 18(02), 273-283. doi:10.2118/165282-pa 

Samala, R., Chaudhuri, A., Vishnudas, R., Yeswanth, J., & Selvam, V. (2019). Numerical 

analysis of viscous fingering and oil recovery by surfactant and polymer flooding in 

five-spot setup for water and oil-wet reservoirs. Geomechanics and Geophysics for 

Geo-Energy and Geo-Resources, 6(1), 3. doi:10.1007/s40948-019-00124-1 

Schlumberger. (2019). ECLIPSE 100. Technical Description, R. Manual, Editor. Schlumberger 

Reservoir Technologies.  

Sesini, P., Souza, D., & Coutinho, A. (2010). Finite Element Simulation of Viscous Fingering 

in Miscible Displacements at High Mobility-Ratios. Journal of the Brazilian Society of 

Mechanical Sciences and Engineering, 32, 292-299. doi:10.1590/S1678-

58782010000300013 

Sheng, J. J. (2015). Status of surfactant EOR technology. Petroleum, 1(2), 97-105. 

doi:https://doi.org/10.1016/j.petlm.2015.07.003 

Sheng, J. J. (2018). Performance analysis of chemical flooding in fractured shale and tight 

reservoirs. Asia-Pacific Journal of Chemical Engineering, 13(1), e2147. 

doi:https://doi.org/10.1002/apj.2147 

Sorbie, K., & Mackay, E. (2000). Mixing of injected, connate and aquifer brines in 

waterflooding and its relevance to oilfield scaling. Journal of Petroleum Science and 

Engineering, 27, 85-106. doi:10.1016/S0920-4105(00)00050-4 

Sorbie, K., Ghafri, A. Y., Skauge, A., & Mackay, E. (2020). On the Modelling of Immiscible 

Viscous fingering in Two-Phase Flow in Porous Media. Transp Porous Med 135, 331–

359 (2020). https://doi.org/10.1007/s11242-020-01479-w 

Sun, Q., Li, Z., Li, S., Jiang, L., Wang, J., & Wang, P. (2014). Utilization of Surfactant-

Stabilized Foam for Enhanced Oil Recovery by Adding Nanoparticles. Energy & Fuels, 

28(4), 2384-2394. doi:10.1021/ef402453b 



272 

 

Sun, X. & Mohanty, K. K. (2005). Estimation of Flow Functions During Drainage Using 

Genetic Algorithm. SPE J. 10 (4): 449–457. SPE-84548-PA. 

https://doi.org/10.2118/84548-PA. 

Tarek A. (2009) Reservoir Engineering Handbook. 3rd ed. Kidlington: Elsevier Inc, pp.909–

1095. 

Tavassoli, S., Lu, J., Pope, G. A., & Sepehmoori, K. (2013). Investigation of the critical 

velocity required for a gravity stable surfactant flood. Paper presented at the Society of 

Petroleum Engineers - SPE Reservoir Simulation Symposium 2013. 

Tchelepi, H. A., & Orr, F. M., Jr. (1994). Interaction of Viscous Fingering, Permeability 

Heterogeneity, and Gravity Segregation in Three Dimensions. SPE Reservoir 

Engineering, 9(04), 266-271. doi:10.2118/25235-pa 

Todd, M. R., & Longstaff, W. J. (1972). The Development, Testing, and Application Of a 

Numerical Simulator for Predicting Miscible Flood Performance. Journal of Petroleum 

Technology, 24(07), 874-882. doi:10.2118/3484-pa 

Waltz, R. A., Morales, J. L., Nocedal, J., & Orban, D. (2006). An interior algorithm for 

nonlinear optimization that combines line search and trust region steps. Mathematical 

Programming, 107(3), 391-408. doi:10.1007/s10107-004-0560-5 

Wang, L., Zhang, G., Ge, J.-j., Li, G., Zhang, J., & Ding, B. (2010). Preparation of Microgel 

Nanospheres and Their Application in EOR. Paper presented at the International Oil 

and Gas Conference and Exhibition in China, Beijing, China. 

https://doi.org/10.2118/130357-MS 

Welge H. J. (1952) A simplified method for computing oil recovery by gas or water drive. 

Journal 

Welge, H. J., Johnson, E. F., Ewing, S. P., Jr., & Brinkman, F. H. (1961). The linear 

displacement of oil from porous media by enriched gas. Journal of Petroleum 

Technology, 13(8), 787-796.  

William L. (2010) Working Guide to Reservoir Engineering. Singapore: Elsevier (Singapore) 

Pte Ltd, pp.173–197. 



273 

 

Xu, F., Guo, X., Wang, W., Zhang, N., Jia, S., & Wang, X. (2011). Case Study: Numerical 

Simulation Of Surfactant Flooding In Low Permeability Oil Filed. Paper presented at 

the SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia. 

https://doi.org/10.2118/145036-MS 

Yin, D.-y., & Pu, H. (2008). Numerical simulation study on surfactant flooding for low 

permeability oilfield in the condition of threshold pressure. Journal of Hydrodynamics, 

Ser. B, 20(4), 492-498. doi:https://doi.org/10.1016/S1001-6058(08)60085-2 

Zhang, J., & Yang, R. (2018). A further study on Welge equation. Energy Exploration & 

Exploitation, 36(5), 1103–1113. https://doi.org/10.1177/0144598717751926 

Zhang, Y., Song, C., & Yang, D. (2016). A Damped Iterative EnKF Method to Estimate 

Relative Permeability and Capillary Pressure for Tight Formations From Displacement 

Experiments. Fuel 167 (1 March): 306–315. https://doi.org/10.1016/j.fuel.2015.11.040. 

Zhou, Z., & Wang, J. (2016). Research and Application of a New Type of Water Flooding 

Characteristic Curve in Oilfield Development. Advances in Petroleum Exploration and 

Development, 11, 1-5. 

 


