
ROBUST OPTIMAL CONTROL USING COMPUTATIONALLY

EFFICIENT DEEP REINFORCEMENT LEARNING

TECHNIQUES

by

Atish Dixit

Submitted for the degree of
Doctor of Philosophy

Institute of Geoenergy Engineering

School of Energy, Geoscience, Infrastructure and Society

Heriot-Watt University

January 30, 2023

The copyright in this thesis is owned by the author. Any quotation from the report or use of any

of the information contained in it must acknowledge this report as the source of the quotation or

information.

Abstract

We investigate current challenges in the application of reinforcement learning (RL) to solve
subsurface flow control problem which is the subject of intensive research in the field of reservoir
management. In typical subsurface flow control problems, the system is partially observed
because the data is often only available at well locations. Furthermore, the model parameters
are highly uncertain as a result of the sparsity of available field data. As a result, we begin
by presenting an RL framework to solve the stochastic optimal control for predefined model
uncertainty and partially observable system. The numerical results are presented using two
state-of-the-art model-free RL algorithms, proximal policy optimization (PPO) and advantage
actor-critic (A2C), on two single-phase subsurface flow test cases representing two distinct flow
scenarios. We identify that computational intractability is one of the major limitations for
the proposed RL framework. This is because the model-free RL algorithms are by definition
sample inefficient and require thousands if not millions of samples to learn optimal control
policies. For subsurface control problems, this corresponds to performing a large number of
simulations, which is computationally quite expensive. Our aim is to build a more generalized
framework that can help alleviate this problem of computational complexity for the proposed RL
framework. This is achieved by employing multiple levels of models. Here, the level refers to the
accuracy or fidelity of the discretization of the domain grid of the underlying partial differential
equations. We propose two distinct approaches that can be used in the most generalized manner.
The first approach involves a more explicit modification of the proposed RL framework. In this
approach, a multigrid framework is proposed that essentially takes advantage of the principles of
sequential transfer learning. The second approach implicitly modifies the classical reinforcement
learning framework itself to take advantage of information from lower-level models. This is
achieved by modifying the classical framework of RL algorithms so that they use an approximate
multilevel Monte Carlo estimates as opposed to Monte Carlo estimates of policy and/or value
network objective functions.

Acknowledgements

I would like to thank my professors at the Center for Modeling and Simulation: Sukratu
Barve, Mihir Arjunwadkar, Akanksha Kashikar and Valadi Jayaraman for the inspiring lectures
during my masters studies. These lectures are the building blocks for my appreciation towards
mathematics as the language of the universe.

I am deeply grateful to my supervisor Ahmed H. Elsheikh for granting me this wonderful
opportunity to come and study at Heriot-Watt University, as well as for his support throughout
this journey. I also thank my colleagues Shing Chan, Mark Ashworth and Amanzol Kubeyev
for being good friends and their guidance through the PhD.

I would also like to acknowledge the Ali Danish Scholarship and the Engineering and Physical
Sciences Research Council (EPSRC) for the financial support during my PhD work.

Last but not least, I would like to thank my friends and family for their relentless support at
all stages of my life.

i

Research Thesis Submission
Please note this form should be bound into the submitted thesis.

Name: Atish Narasinha Dixit

School: School of Energy, Geoscience, Infrastructure and Society

Version: (i.e. First,
Resubmission, Final)

Final Degree Sought: PhD

Declaration

In accordance with the appropriate regulations I hereby submit my thesis and I declare that:

1. The thesis embodies the results of my own work and has been composed by myself
2. Where appropriate, I have made acknowledgement of the work of others
3. The thesis is the correct version for submission and is the same version as any electronic versions submitted*.
4. My thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made available for

loan or photocopying and be available via the Institutional Repository, subject to such conditions as the Librarian
may require

5. I understand that as a student of the University I am required to abide by the Regulations of the University and to
conform to its discipline.

6. I confirm that the thesis has been verified against plagiarism via an approved plagiarism detection application e.g.
Turnitin.

ONLY for submissions including published works
Please note you are only required to complete the Inclusion of Published Works Form (page 2) if your thesis contains
published works)

7. Where the thesis contains published outputs under Regulation 6 (9.1.2) or Regulation 43 (9) these are accompanied
by a critical review which accurately describes my contribution to the research and, for multi-author outputs, a
signed declaration indicating the contribution of each author (complete)

8. Inclusion of published outputs under Regulation 6 (9.1.2) or Regulation 43 (9) shall not constitute plagiarism.

* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis is submitted.

Signature of
Candidate:

Date: 30/01/2023

Submission

Submitted By (name in capitals): ATISH NARASINHA DIXIT

Signature of Individual Submitting:

Date Submitted: 30/01/2023

For Completion in the Student Service Centre (SSC)

Limited Access Requested Yes No Approved Yes No

E-thesis Submitted (mandatory for final
theses)

Received in the SSC by (name in capitals): Date:

Page 1 of 2
RDC Clerk/Apr 2019

Inclusion of Published Works
Please note you are only required to complete the Inclusion of Published Works Form if your thesis contains
published works under Regulation 6 (9.1.2)

Declaration

This thesis contains one or more multi-author published works. In accordance with Regulation 6 (9.1.2) I hereby declare
that the contributions of each author to these publications is as follows:

Citation details
https://doi.org/10.1016/j.engappai.2022.105106

Author 1 Design theory and experiments for proposed framework and write the paper

Author 2 Supervision for theory and design of experiments, guidance for writing the
paper

Signature:

Date: 17/10/2022

Citation details https://link.springer.com/article/10.1007/s11004-022-10033-x

Author 1 Design theory and experiments for proposed framework and write the paper

Author 2 Supervision for theory and design of experiments, guidance for writing the
paper

Signature:

Date: 17/10/2022

Citation details https://arxiv.org/abs/2210.08400

Author 1 Design theory and experiments for proposed framework and write the paper

Author 2 Supervision for theory and design of experiments, guidance for writing the
paper

Signature:

Date: 17/10/2022

Page 2 of 2
RDC Clerk/Apr 2019

Contents

1 Introduction 1

1.1 Current approaches and their limitations . 2

1.2 Why reinforcement learning? . 3

1.3 Fundamentals of reinforcement learning . 3

1.4 RL framework for optimal well control problem 5

1.5 Limitations of proposed RL framework . 6

1.5.1 The explicit approach: adaptive multi-grid framework 7

1.5.2 The implicit approach: multi-level deep RL framework 7

1.6 Outline of the thesis . 8

1.6.1 Outline of chapter 2 . 8

1.6.2 Outline of chapter 3 . 9

1.6.3 Outline of chapter 4 . 9

2 Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforce-

ment Learning 10

2.1 Introduction . 11

2.2 Methodology . 12

2.2.1 Problem description for robust optimal well control 12

2.2.2 RL framework for robust optimal well control 13

2.2.3 RL algorithms . 17

2.2.3.1 Advantage actor-critic algorithm 17

2.2.3.2 Proximal policy optimisation algorithm 17

2.2.4 Differential evolution algorithm . 19

2.2.5 K-means clustering . 19

2.3 Numerical experiments . 20

2.3.1 model parameters . 20

2.3.2 RL problem formulation: . 22

2.4 Results and discussion . 23

2.5 Conclusions . 31

3 Robust Optimal Well Control using an Adaptive Multigrid Reinforcement

Learning Framework 33

iv

3.1 Introduction . 34

3.2 Methodology . 35

3.2.1 RL Framework . 37

3.2.2 Learning Convergence Criteria . 38

3.2.3 Adaptive Multigrid RL Framework . 40

3.3 Case Studies . 43

3.3.1 Uncertainty Distribution for Test Case 1 44

3.3.2 Uncertainty Distribution for Test Case 2 45

3.3.3 State, Action and Reward Formulation 46

3.3.4 Multigrid Framework Formulations . 47

3.4 Results . 52

3.5 Conclusion . 56

4 A Multilevel Reinforcement Learning Framework for PDE based Control 59

4.1 Introduction . 60

4.2 Background . 61

4.2.1 Approximate Multilevel Monte Carlo estimation 62

4.3 Multilevel RL framework . 63

4.3.1 Multilevel PPO algorithm . 64

4.3.2 Multilevel PPO analysis methodology . 66

4.4 Experiments . 69

4.4.1 ResSim-v1 parameters . 69

4.4.2 ResSim-v2 parameters . 70

4.4.3 Reinforcement learning task . 71

4.4.4 Multilevel framework formulation . 72

4.5 Results . 74

4.5.1 ResSim-v1 results . 75

4.5.2 ResSim-v2 results . 77

4.5.3 challenges and further research direction 79

4.6 Conclusions . 79

5 Summarized Outlook of Proposed RL Frameworks for Subsurface Flow Con-

trol 81

5.1 Introduction . 82

5.1.1 CLRM-based approach . 82

5.1.2 RL-based approach . 82

5.1.3 Advantages of RL-based approach . 83

5.2 A summarized outlook of proposed RL frameworks 84

5.3 Guidelines for application of proposed framework 86

5.4 Future scope . 88

5.5 Conclusion . 90

v

6 Conclusion and Future Work 91

6.1 Chapter 2: Stochastic optimal well control in subsurface reservoirs using rein-

forcement learning . 91

6.2 Chapter 3: Robust optimal well control using an adaptive multigrid reinforce-

ment learning framework . 92

6.3 Chapter 4: Multilevel framework for deep reinforcement learning 92

6.4 Remarks and future directions . 92

A Appendices for Chapter 2 94

A.1 Definition of value and advantage functions . 94

A.2 Permeability uncertainty distribution parameters 94

A.3 RL algorithm parameters . 95

B Appendices for Chapter 3 98

B.1 Cluster Analysis of Permeability Uncertainty Distribution 98

B.2 Definitions of Value and Advantage Function . 99

B.3 Algorithm Parameters . 100

C Appendices for Chapter 4 103

C.1 Examples of objective functions for different deep RL algorithms 103

C.2 Principle behind computational savings of MLMC estimator 104

C.3 Implementation of multilevel PPO in stable baselines 3 105

C.3.1 Classical PPO implementation in stable baselines 3 105

C.3.2 Multilevel PPO implementation in stable baselines 3 107

C.4 Cluster analysis of permeability uncertainty distribution 112

C.5 Algorithm Parameters . 113

vi

List of Tables

2.1 Reservoir model parameters . 20

2.2 number of simulation runs in each algorithm . 31

3.1 Restriction operator function for simulation parameters 40

3.2 Reservoir model parameters . 44

3.3 Grid fidelity factor and corresponding grid size 47

3.4 Multigrid framework experiments . 49

4.1 grid size on each level . 72

4.2 levels in each multilevel PPO experiment . 75

4.3 parameters of multilevel PPO experiment for ResSim-v1 77

4.4 parameters of multilevel PPO experiment for ResSim-v1 78

A.1 PPO algorithm parameters . 96

A.2 A2C algorithm parameters . 97

A.3 DE algorithm parameters . 97

B.1 PPO algorithm parameters . 100

B.2 DE algorithm parameters . 100

C.1 Objective function Es,a,r∼pθ [J(s, a, r; θ,Θ)] for different deep RL algorithms . . . 104

C.2 PPO algorithm parameters . 114

C.3 DE algorithm parameters . 114

vii

List of Figures

1.1 A broad taxonomy of RL algorithms 1 . 4

1.2 The agent–environment interaction in RL framework 6

2.1 A typical agent-environment interaction in RL algorithms. state s(x, tm), action

a(x′, tm) and reward r(tm) are denoted with shorthand notations, sm, am and

rm, respectively . 14

2.2 optimal controls for complete control trajectory which refers to an episode in

RL algorithms. state s(x, tm) and action a(x′, tm) are denoted with shorthand

notations, sm and am, respectively . 14

2.3 a wells spread choice of samples for some uncertainty distribution K (depicted

as one-dimensional for illustration purpose) to learn the robust optimal policy

π∗(a|s;k). Members of k are colored in white while the members of k′ are shown

in grey. 16

2.4 the producers and injectors are highlighted with red and blue colors, respectively.

parameters (w, l1 and l2) for test case 1 log permeability are shown in fig (a),

where high permeability channel is colored in gray. 21

2.5 clustering of log-permeability fields (unit: mD) for test cases 1 and 2 23

2.6 log-permeability plots (unit: mD) for evaluation data for test cases 1 and 2 . . . 24

2.7 RL algorithm agent-environment interaction schematics to learn robust optimal

well control policy . 24

2.8 Test case 1: monitoring plots for average training return Rπ(a|s;k⇒k) (on left)

and evaluation return Rπ(a|s;k⇒k′) (on right) for learning process in PPO, A2C

and frozen PPO. The evaluation return value is compared with the optimisation

results obtained using DE . 26

2.9 Test case 1: comparison of optimum recovery factor (in %) for each permeability

value from evaluation vector k′. Results of of PPO, A2C and DE are compares

with base control actions (all control valves equally open) results 26

2.10 Test case 1: optimal well controls for permeability values k′
3and k′

5 (illustrated

with saturation contour plots). Producer and injector flow controls are indicated

with red and blue circles, respectively. Values of flow controls are proportional

to the circle radius. 27

viii

2.11 Test case 2: monitoring plots for average training return Rπ(a|s;k⇒k) (on left) and

evaluation return Rπ(a|s;k⇒k′) (on right) for learning process in PPO and A2C.

The evaluation return value is compared with the optimisation results obtained

using DE . 29

2.12 Test case 2: comparison of optimum recovery factor (in %) for each permeability

value from evaluation vector k′. Results of of PPO, A2C and DE are compared

with base control actions (all control valves equally open) results 29

2.13 Test case 2: optimal well controls for permeability values k′
9 and k′

12 (illustrated

with saturation contour plots). Producer and injector flow controls are indicated

with red and blue circles, respectively. Values of flow controls are proportional

to the circle radius. 30

3.1 Plot of policy returns versus number of training episodes: a illustrates effect of

δ on convergence criteria and b illustrates effect of n on convergence criteria . . 39

3.2 Illustration for the restriction operator Φβ (a) and prolongation operator Φ−1
β

(b) for a parameter x . 41

3.3 A typical agent-environment interaction in the proposed multigrid RL framework 42

3.4 Schematic of the spatial domain for test case 1 (a) and 2 (b) 44

3.5 Comparison of recovery factor estimates with β = 1, β = 0.5 and β = 0.25 for

test case 1 (a) and test case 2 (b) . 48

3.6 Effect of grid fidelity factor β on the environment for test case 1: a on a sample of

log-permeability (unit: mD), b on corresponding saturation and c on simulation

run time . 50

3.7 Effect of grid fidelity factor β on the environment for test case 2: a on a sample of

log-permeability (unit: mD), b on corresponding saturation and c on simulation

run time . 51

3.8 Plots of policy return versus number of episodes for test case 1 53

3.9 Evaluation of learned policies for test case 1: a evaluation samples of log-

permeability distribution G1 shown with contour plots (unit: mD), b recovery

factor (in % format) versus evaluation sample index (from a) plot 54

3.10 Illustration of learned optimal control policies for test case 1 using saturation

contour plots . 55

3.11 Plots of policy return versus number of episodes for test case 2 55

3.12 Evaluation of learned policies for test case 2: a evaluation samples of log-

permeability distribution G2 shown with contour plots (unit: mD), b recovery

factor (in % format) versus evaluation sample index (from a) plot 57

3.13 Illustration of learned optimal control policies for test case 2 using saturation

contour plots . 58

4.1 schematics of rollouts for a policy iteration . 65

4.2 schematic of the spatial domain Ω . 70

ix

4.3 example policy visualization for ResSim-v1 . 72

4.4 example of policy visualization for ResSim-v2 73

4.5 environment levels for ResSim-v1 . 74

4.6 environment levels for ResSim-v2 . 75

4.7 comparison of Monte Carlo and multilevel Monte Carlo estimate of PPO objec-

tive function for ResSim-v1 . 75

4.8 MLMC analysis results for ResSim-v1 . 76

4.9 multilevel PPO results for ResSim-v1 . 77

4.10 comparison of Monte Carlo and multilevel Monte Carlo estimate of PPO objec-

tive function for ResSim-v2 . 78

4.11 MLMC analysis results for ResSim-v2 . 78

4.12 multilevel PPO results for ResSim-v2 . 79

5.1 Approaches to solving optimal well control problems 83

5.2 Evolution of proposed RL frameworks . 85

A.1 Value for low (-2) and high (5.5) log permeability in test case 1 was chosen from

the SPE-10 model 2 Upperness permeability distribution peaks 95

A.2 Mean of (2.4) log permeability in test case 2 was chosen from the SPE-10 model

2 Tarbert case data. Log permeability distribution chosen in test case 2 is super-

positioned with Tarbert permeability distribution (shown with thick black line)

for comparison . 96

A.3 learning plot range over three distinct seed values for test case 1 and 2 97

B.1 Log-permeability plots for training data of test case 1 and 2: a and b illustrate

clustering for G1 and G2 distribution samples . 99

B.2 Learning plots with seed 1 (a), 2 (b) and 3 (c) for test case 1 101

B.3 Learning plots with seed 1 (a), 2 (b) and 3 (c) for test case 2 102

C.1 A typical agent-environment interaction for classical framework 105

C.2 Object-oriented design for the stable baselines implementation of PPO algorithm 108

C.3 A typical agent-environment interaction for an environment on level l synchro-

nized with environment on level l − 1 . 109

C.4 RolloutBufferArray (on left) and SyncRolloutBufferArray (on right). SyncRolloutBufferl

consists of synchronized data of RolloutBufferl with level l to a level l− 1. Each

buffer with level l consists of N ×Tl rows of data in [s, a, r, d, V, Lold, R,A] format. 109

C.5 batch array which is achieved from GetBatches function. It consists of in total

NTl/Ml batches as shown with the columns of the array. Each such batch consists

of L batches from RolloutBuffers (denoted by batchl) and SyncRolloutBuffers

(denoted by syncBatchl−1). batchl and SyncBatchl−1 consists ofM l rows of data

in the format, [o, a, V, Lold, R,A]. 110

x

C.6 Object-oriented design for the stable baselines implementation of multilevel PPO

algorithm. The updated (from classical PPO implementation) definitions of

functions and classes are highlighted in red colour. 112

C.7 clustering visualization for permeability samples 113

xi

Chapter 1

Introduction

Fluid flow control in subsurface reservoirs has many engineering applications ranging from

the financial aspects of efficient hydrocarbon production to the environmental problems of

contaminated removal from polluted aquifers. Mathematically, it is formulated as an optimal

control problem that deals with finding a control for a dynamical system over a period of

time so that an objective function is optimized. For subsurface flow control problems, control

refers to the flow through injector and/or producer wells, dynamical system refers to a set of

partial differential equations (PDE) that describe the flow through the porous medium of the

reservoir, and objective function refers to the sweep efficiency of the injected fluid. For efficient

hydrocarbon production, the objective function is often extended to formulate the net present

value. In solving the above-mentioned subsurface flow control problems, reservoir engineers

often need to account for an incomplete description of subsurface properties. This leads to two

main challenges. First, the parameters of the said PDEs need to be modeled with uncertainty

to reflect this incompleteness in the available reservoir data. Furthermore, throughout the

reservoir life cycle, the data are only partially observable; often only at the well locations.

In recent years, many advances have been made by major research groups like Google Deep-

Mind and OpenAI which produced astonishing results using reinforcement learning (RL). The

successful results of RL algorithms such as AlphaZero [1] and AlphaGo [2] in strategy board

games showed that RL algorithms are the best candidates to solve problems in highly dynami-

cal systems. So far, research on the application of RL in optimal control problems is advancing

rapidly in fields such as manufacturing [3], energy [4] and fluid dynamics [5]. However, re-

search focused on developing RL strategy for large-scale simulations based on assessment of

its robustness against the uncertainties is still an open area, especially for cases where model

uncertainties has a substantial effect on the optimal control. In this thesis, we study the ap-

plication of reinforcement learning to solve subsurface flow control problems. In particular, we

begin by introducing an RL framework to solve the stochastic optimal well control problem

for partially observable simulation data (Chapter 2). We acknowledge the computational cost

used by simulation runs as the major limitation of the proposed RL algorithm. As a result,

we propose an explicit RL approach (Chapter 3) and an implicit RL approach (Chapter 4) to

1

Chapter 1: Introduction

alleviate the overall computational cost of the proposed RL framework. A final summary of

the thesis is presented in Chapter 5.

1.1 Current approaches and their limitations

In petroleum engineering, research studies for solving real-time subsurface flow control prob-

lems fall under the catagory of closed-loop reservoir management. In a nutshell, the closed-loop

reservoir management (CLRM) technique enables a dynamic and real-time optimal produc-

tion schedule under existing reservoir conditions to be achieved by adjusting the injection and

production strategies. CLRM can be further divided into two main research subcatagories:

automatic history matching and reservoir control optimization.

Automatic history matching is the sequential modeling update method in which estimates of

uncertain reservoir properties are constantly updated according to available production mea-

sures at the time. It has been studied since the 1960s [6–8], but it remains a very relevant

and challenging research topic. Existing history matching methods can be broken down into

two categories. The first category is gradient-based, including the finite-difference derivative

approximation, adjoining gradient-based methods, and gradient simulation methods. The other

category is based on gradient-free optimization, such as simultaneous perturbation stochastic

approximation, genetic algorithm, particle swarm optimization, and pattern search methods.

[9] provide a through summary on recent progress in automatic history matching.

Reservoir control optimization is a full or partial automation process that aims to optimize

operating parameters to maximize total production throughout the life cycle of a reservoir by

optimizing operating parameters. The origin of solving reservoir control problems using opti-

mization theories can be traced back to [10], where they used linear programming to maximize

the net present value of production for the homogeneous reservoir. However, most papers pub-

lished before the 1980s did not pay enough attention to optimization algorithms, and successful

applications were very rare [11–13]. With advances in optimization algorithms and computing

power, research has grown considerably since the 1980s [14–17]. Most optimization methods

solve optimal control problems by finding optimal control values using a parameter search ap-

proach, either gradient-based [18–21] or gradient-free [22, 23]. The main limitations of such

direct optimization methods is that they are inherently unsuitable for stochastic problems.

Studies conducted by [24] or [25] are examples of ad hoc modifications of these optimization

methods to account for model uncertainties. As a result, we ask whether we can employ a

research methodology that sidesteps history matching and, at the same time, provides a robust

optimal solution to subsurface flow control problems against the model uncertainties.

2

Chapter 1: Introduction

1.2 Why reinforcement learning?

Reinforcement learning provides a framework for solving optimal well control problems that

bypass the conventional two-stage approach in CLRM. Since the optimal control policy learned

to use this approach is modeled as a probability distribution, the uncertainty in the model

parameters is thoroughly considered when learning the policy. As a result, the model calibration

step is redundant in the optimization process. However, before we dive into reinforcement

learning methods for the problem at hand, let us also discuss another traditional approach

called optimal control theory.

Most optimal control theory research for solving optimal control problems involves, in prin-

ciple, finding an optimal control by deriving Pontryagin’s maximum principle or by solving

the Hamilton–Jacobi–Bellman equation. These classical strategies are offline and require com-

plete knowledge of system dynamics, which makes them unsuitable for dynamical systems with

uncertainties [26]. Recently, model predictive control (MPC), a feedback control based on

real-time optimization, has attracted increasing attention in the research of stochastic optimal

control [27–29]. Alternatively, optimal control problems can also be solved using reinforcement

learning (RL) approaches. Koryakovskiy et al. [30] provide a benchmark study for the com-

parison between model predictive control and model-free reinforcement learning approaches,

where the authors show that RL results are comparable to MPC. Furthermore, after a certain

break-even point, model-free reinforcement learning is shown to perform better than non-linear

model predictive control with an inaccurate model. Furthermore, unlike MPC, RL provides an

additional advantage of generality, since it does not require complete knowledge of the model

dynamics. So far, research on the application of RL in optimal control problems is advancing

rapidly in fields such as manufacturing [3], energy [4] and fluid dynamics [5].

1.3 Fundamentals of reinforcement learning

The main characters of RL are agents and the environment. The environment is the world

where an agent lives and interacts. At each interaction step, the agent sees (arguably partially)

an observation of the world’s state and decides what action to take. The environment changes

as the agent acts on it, but this environment can also change itself. Agents also receive reward

signals from their environment that tell them exactly how good or bad the state of the world is.

The goal of the agent is to maximize its cumulative reward, called the return. Reinforcement

learning algorithms basically describe the ways in which the agent can learn behaviors to achieve

its goal.

Reinforcement learning differs from other machine learning methods in several ways. The data

used to train the agent are collected through interactions with the environment by the agent

itself (compared to supervised learning where you have, for instance, a fixed dataset). If an

agent collects poor quality data (e.g., trajectories without rewards), then it will not improve

and will continue to accumulate bad trajectories. For this reason, among others, RL results

3

Chapter 1: Introduction

Figure 1.1: A broad taxonomy of RL algorithms 1

often vary from one run to another (i.e., when only the seed of the pseudo-random generator

changes). As a result, it is common practice to perform several runs of RL algorithms to

obtain quantitative results. Good results in RL are generally dependent on finding appropriate

hyperparameters that correspond to most stable results.

A review of various deep RL algorithms is illustrated in Figure 1.1 as a taxonomy. Depending

on whether the agent has access to (or is learning) an environment model, the algorithms are

divided into two parts: model-free and model-based algorithms. The model of the environment

refers to a function that predicts state transitions and rewards. Model-free algorithms can

be divided into two main strategies: policy optimization and Q-learning. A2C/A3C [31] and

PPO [32] are examples of such policy optimization algorithms where the policy parameters are

optimized directly or indirectly. On the other hand, Q-learning methods learn an approximator

for the action value function, for example, the DQN algorithm [33]. Alternatively, model-

based RL have access to an approximate model for the environment and that allows the agent

to plan ahead, which could be a main advantage in some cases. A particular example of

this approach is AlphaZero [1]. Model-based algorithms can be broadly classified into three

categories. First, pure planning algorithms that use techniques such as model predictive control,

e.g., [34]. AlphaZero [1] and ExIt [35] algorithms are examples of the second category, expert

iteration, where actions are sampled from its current policy. Finally, the data augmentation

method uses a model-free RL algorithm that augments real experiences with fictitious ones, for

example, world models [36].

The optimality of the model-based algorithms’ policies is highly dependent on the accuracy of

model learning process. As a result, any error in model learning is subject to a compound-

ing increase in error in the policy learning process. Lambert et al. [37] present a study that

highlights a fundamental issue of objective mismatch in model-based algorithms. In this study,

1Image source for Figure 1.1: https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

4

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Chapter 1: Introduction

the objective mismatch corresponds to the mismatch between local (i.e., one-step ahead dy-

namics) accuracy of the learned model dynamics and the overall improvement in performance

on a downstream control task. Furthermore, the model-based algorithms are computationally

more demanding, since they also involve collecting the data from environment transitions and

training a new model to learn the transition function of the environment. However, there

is a trade-off in sample efficiency once the model is learned. As a result, despite its sample

inefficient nature, most state-of-the-art results in RL applications are presented using model-

free algorithms. For these reasons, we decide to choose the model-free algorithm as a suitable

candidate to solve the subsurface flow control problem. In other words, the model dynamics

is performed directly by solving simulations of PDEs for the subsurface flow problem. While

modeling the subsurface control problems using RL algorithms, we also have to consider the

type of control variables in this problem. In these problems, the well controls should be treated

as continuous variables in order to accurately reflect the on-field reservoir scenario. For this

reason, the choice of RL algorithms must also provide provision to model the optimal policy

in terms of continuous controls. In model-free reinforcement learning algorithms, actor-critic

algorithms are best suited for such cases. As a result, we demonstrate our first RL framework

(presented in Chapter 2) using two actor-critic algorithms called as A2C and PPO. Note that

A2C and PPO algorithms come from the family of REINFORCE algorithms where PPO is the

most state-of-the-art algorithm which improves the stability of the policy learning process in

algorithms like A2C. As a result, we continue our demonstrations in Chapter 3 and 4 using

PPO algorithm.

1.4 RL framework for optimal well control problem

Reinforcement learning problems involve learning what to do, how to map situations to actions,

and maximize a numerical reward signal. Learning is achieved by using episodic simulations

of agent-environment interactions. In the context of optimal well-control problems, the agent

refers to a controller which follows and eventually learns the optimal policy (mapping from

state to action). The environment consists of model dynamics (which are modeled as reservoir

simulation) and a reward system, which computes sweep efficiency at a certain time of the

episode (a.k.a., reward). The episode refers to reservoir simulation for the whole reservoir life

cycle which is divided into a certain number of control steps. Figure 1.2 illustrates a closed-

loop schematic of the agent-environment interaction at a certain control step t. Here, state

refers to certain variables (e.g. saturation, pressure, etc.) of the model, while action refers to

flow control value at the injector and producer well location. RL algorithms often involve a

large number of such agent-environment interactions, which are eventually used to learn and

optimize the controller policy. The stochasticity of the model dynamics is represented with

the uncertainty of the model parameters. This is done by representing this parameter with

a predefined probability distribution. In practice, such a distribution can be modeled as a

posterior distribution with prior observations from on-field data. The policy is learned using

5

Chapter 1: Introduction

Figure 1.2: The agent–environment interaction in RL framework

certain distribution samples that are selected using a domain randomization technique, which

involves clustering of the distribution domains. Additionally, the robustness of the policy is

evaluated using new distribution samples that were not seen at the time of the policy learning

process. We present this framework using two state-of-the-art model-free RL algorithms called

the advantage actor-critic algorithm [38] and the proximal policy optimization algorithm [39].

1.5 Limitations of proposed RL framework

For demonstrated case studies with single-phase flow simulations, we found that it took around

60 to 200 thousand simulation runs to learn the optimal policy. This took from two to ten

hours of wall clock time to complete the reinforcement learning process using our available

computational resources (a desktop with 64 CPUs and two GPUs). Although this does not

seem extremely time-consuming, note that this time is for simplified two-dimensional cases. If

we extend these case studies to large-scale simulations (for instance, two- or three-phase flow

simulations in the 3D domain), it would be quite intractable to use the proposed RL framework.

The computational cost per se has always been a common challenge in reinforcement learning

(RL) methods. For instance, the RL-based chess engine AlphaGo Zero, by Google cost worth

$350 millions of computational resources for its training [40].

The easiest way to deal with this limitation is to create a data-based surrogate model that

mimics the physics of the underlying PDEs (as demonstrated by [41]). However, this comes with

6

Chapter 1: Introduction

an extra cost for the process of generating data and fitting a data-based model. Furthermore,

much like model-based reinforcement learning methods, the optimal learned policy is also highly

dependent on the accuracy of the learned model. Not to mention that such a method requires

building a data-based model for every new problem, making it a very ad hoc approach.

In this thesis, our aim is to build a more generalized framework that can help alleviate the

computational complexity of the proposed RL framework. Essentially, our aim is to use multiple

levels of models that describe the said PDEs. Here, the level refers to the accuracy or fidelity

of the discretization of the domain grid. We propose two such distinct approaches that can be

used in the most generalized manner. The first approach involves a more explicit modification

of the proposed RL framework. We propose a multigrid framework that takes advantage of

the principles of sequential transfer learning. The second approach implicitly modifies the

reinforcement learning framework to take advantage of the information from the lower-level

models. This is done by modifying the RL algorithms so that they use multilevel Monte Carlo

estimates as opposed to Monte Carlo estimates in their classical form. We delineate these

approaches in the following subsections.

1.5.1 The explicit approach: adaptive multi-grid framework

To address the computational complexity bottleneck of the proposed RL framework, we in-

troduce an adaptive multigrid RL framework that is inspired by the principles of multigrid

geometric methods used in iterative numerical algorithms. In this framework, RL control poli-

cies are initially learned using computationally efficient low-fidelity simulations using coarse

grid discretization of the underlying PDEs. Subsequently, the simulation fidelity is increased

in an adaptive manner towards the highest fidelity simulation that corresponds to the finest

discretization of the model domain. The proposed framework is demonstrated using a state-

of-the-art, model-free policy-based RL algorithm, namely the Proximal Policy Optimization

(PPO) algorithm.

1.5.2 The implicit approach: multi-level deep RL framework

We identify the main source of computational cost in reinforcement learning, which corresponds

to the transition function of the model dynamics. This is especially problematic where problems

such as optimal well control are represented with PDEs. This is because in such cases the

transition function often involves solving a large-scale discretization of the said PDEs. We

propose a multi-level RL framework in order to ease this cost by exploiting some sublevel

models that correspond to coarser scale discretization (i.e. multi-level models). This is done by

formulating multilevel Monte Carlo estimates (adopted from [42]) of the policy and/or value

network objective function instead of Monte Carlo estimates, as done in the classical framework.

As a demonstration of this framework, we present a multilevel version of the proximal policy

optimization (PPO) algorithm.

7

Chapter 1: Introduction

1.6 Outline of the thesis

Reinforcement learning is a promising tool to solve the problem of subsurface flow control.

Especially because of its robustness against uncertainties and partial observability of the model,

which are common challenges in the modeling of reservoir simulations. Naturally, we began our

research by creating a robust RL framework to solve optimal well control problems. We present

this framework in the second chapter of the thesis. As is usual in many simulation-based RL

methods, we notice the overbearing problem with the computational cost of performing model

dynamics in RL process. Because of such a generality of the problem at hand, we emphasized

creating a more general framework, which not only solves the issue of optimal well control

problem but can also be applied to other simulation-based optimal control problems. In the

third chapter of the thesis, we propose a generalized adaptive transfer learning framework

to alleviate the overall computational cost of the proposed RL framework. Albeit the attempt

towards attaining the generality in this framework, we note that the framework is designed with

problem-specific hyperparameters, which are used to test the convergence criteria of transfer

learning. As we move further in our research endeavors, we investigate an even more generalized

solution in the fourth chapter. We propose a fundamental change in the way data generation

takes place in the classical RL framework. This attempt leads us to develop a novel synchronized

multilevel data generation method which is used in the policy learning process. In contrast

to the framework presented in the third chapter, no additional hyperparameters are used in

this proposed multilevel RL framework. The only change in the input parameters refers to a

multilevel representation of the parameters of the classical algorithms. In the presented case

studies, we show only a multilevel version of the PPO algorithm. However, because of the

foundational generality in this approach, one can also produce multilevel versions of other RL

algorithms, which can be effectively used in simulation-based optimal control problems. As a

result, we can observe that although we start the thesis specifically by keeping subsurface flow

control problem in mind, it eventually evolves in a more generalized approach towards tackling

the challenge of computational complexity for general simulation-based RL problems.

The following is a summary of each of the remaining chapters. Note that each chapter intends

to be self-contained, as they were initially written as separate papers.

1.6.1 Outline of chapter 2

In this chapter, we utilize a model-free RL algorithm to solve a simulation-based robust optimal

control problem where the model information is assumed to be uncertain and partially available.

We begin with the definition of the problem, where the control variables of the well are optimized

to maximize the sweep efficiency of the injection fluid throughout the reservoir life cycle. The

assumption of partially available model information is based on the fact that reservoir field

data are generally only available at well locations. We consider the reservoir permeability

field as an uncertain model parameter. We present two test cases that underscore the effect

of parameter uncertainty on optimal controls. For ease of execution and demonstration, we

8

Chapter 1: Introduction

represent the optimal well control problem with an advection equation for tracer flow through

porous media, in which an uncertain parameter, permeability, is treated as a random variable.

In the first test case, we used a permeability field distribution where the location and orientation

of a linear high-permeability channel were uncertain. The second test case uses a spatially

correlated permeability field to represent a smoother permeability field, where the logarithmic

permeability field is modeled with a conditional Gaussian distribution with an exponential

kernel. We employ proximal policy optimization (PPO) and advantage actor-critic (A2C)

algorithms to learn the optimal well control policy in order to maximize the sweep efficiency in

the domain. RL policies are learned using a selected number of realizations of the uncertainty

distribution, and its robustness is evaluated by applying the learned policy on a set of unseen

realizations during training, drawn from the same distribution.

1.6.2 Outline of chapter 3

In this chapter, we propose an adaptive multigrid framework which uses the principles of

sequential transfer learning from models with low to high-fidelity grid representations of the

environment. Knowledge transfer is done in the form of a policy for a model-free, on-policy

algorithm called proximal policy optimization (PPO). This is an extension of the RL framework

presented in Chapter 2, where we propose a framework that could significantly reduce the

overall computational cost of the reinforcement learning process. We consider the same problem

which consists of optimizing the control variables such as valve openings of wells in order

to maximize sweep efficiency of injector fluid throughout the reservoir life, and the reservoir

permeability field is parameterized with a predefined uncertainty distribution. Two test cases,

both representing distinct model parameter uncertainty and control dynamics, are used to

demonstrate the computational gains of using the proposed multigrid framework.

1.6.3 Outline of chapter 4

We use a similar set of problems and case studies as used in previous chapters to demonstrate

the results of the proposed multilevel RL framework in Chapter 4. We begin by explaining the

background and general anatomy of the classical RL framework and deep RL algorithms. In

addition, the multilevel version of this classical framework is presented along with the abstract

outline of the proposed multilevel RL algorithms. Furthermore, we present a multilevel rep-

resentation of the classical PPO algorithm. The effectiveness of multilevel PPO is presented

by comparing the computational complexity of classical and multilevel PPO algorithms. We

expand on the results of the multilevel PPO algorithm by performing a thorough analysis of

Monte Carlo and the multilevel Monte Carlo estimation process.

Finally, we provide a summarized outlook on the presented frameworks in Chapter 5 and

conclude our thesis in Chapter 6.

9

Chapter 2

Stochastic Optimal Well Control in

Subsurface Reservoirs using

Reinforcement Learning

We present a case study of model-free reinforcement learning (RL) framework to solve stochas-

tic optimal control for a predefined parameter uncertainty distribution and partially observable

system. We focus on robust optimal well control problem which is a subject of intensive re-

search activities in the field of subsurface reservoir management. For this problem, the system

is partially observed since the data is only available at well locations. Furthermore, the model

parameters are highly uncertain due to sparsity of available field data. In principle, RL algo-

rithms are capable of learning optimal action policies — a map from states to actions — to

maximize a numerical reward signal. In deep RL, this mapping from state to action is param-

eterized using a deep neural network. In the RL formulation of the robust optimal well control

problem, the states are represented by saturation and pressure values at well locations while

the actions represent the valve openings controlling the flow through wells. The numerical

reward refers to the total sweep efficiency and the uncertain model parameter is the subsurface

permeability field. The model parameter uncertainties are handled by introducing a domain

randomisation scheme that exploits cluster analysis on its uncertainty distribution. We present

numerical results using two state-of-the-art RL algorithms, proximal policy optimization (PPO)

and advantage actor-critic (A2C), on two subsurface flow test cases representing two distinct

uncertainty distributions of permeability field. The results were benchmarked against optimi-

sation results obtained using differential evolution algorithm. Furthermore, we demonstrate the

robustness of the proposed use of RL by evaluating the learned control policy on unseen sam-

ples drawn from the parameter uncertainty distribution that were not used during the training

process.

Published in Engineering Applications of Artificial Intelligence Journal: https://doi.org/10.1016/j.

engappai.2022.105106

10

https://doi.org/10.1016/j.engappai.2022.105106
https://doi.org/10.1016/j.engappai.2022.105106

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

2.1 Introduction

Optimal control problem involves finding controls for a dynamical system such that a certain

objective function is optimized. Traditionally, most research for solving the optimal control

problems for non-linear dynamical systems uses optimal control theory which, in principle,

finds optimal control by deriving Pontryagin’s maximum principle or by solving the Hamil-

ton–Jacobi–Bellman equation. These classical strategies are offline and require a complete

knowledge of system dynamics making them unsuitable for dynamical systems with uncertain-

ties [26]. Recently, model predictive control (MPC) – a feedback control based on real-time

optimisation – has attracted increasing attention in stochastic optimal control research [27–29].

Alternatively, optimal control problems could also be solved using reinforcement learning (RL)

approaches. Koryakovskiy et al. [30] provide a benchmark study for comparison between model

predictive control and model-free reinforcement learning approaches where the authors show

that RL results are comparable to MPC. Further, after a certain break-even point in model un-

certainties, model-free reinforcement learning is shown to perform better than nonlinear model

predictive control with an inaccurate model. In other words, model-free reinforcement learning

is found to be more advantageous compared to MPC when more uncertainties were introduced

in the model. Furthermore, as opposed to MPC, RL provides an extra advantage of generality

since it doesn’t need complete knowledge of model dynamics. So far, research on application

of RL in optimal control problems is advancing rapidly in fields like manufacturing [3], energy

[4] and fluid dynamics [5]. However, research focused on developing RL strategy based on

assessment of its robustness against the uncertainties is still an open area, especially for cases

where model uncertainties has a substantial effect on the optimal control.

In this study, we utilize a model-free RL algorithm to solve simulation-based robust optimal

control problem where the model information is assumed to be partially available. Robust

optimal well control in petroleum reservoir management [24, 43, 44] forms a perfect candidate

for such problem. In this problem, the reservoir well control variables are optimized in order

to maximize the sweep efficiency of injection fluid throughout the reservoir life cycle. The

assumption of partially available model information is based on the fact that the reservoir field

data is generally only available at well locations. We consider reservoir permeability field as

an uncertain model parameter. Results are demonstrated for two state of the art model-free

RL algorithms: proximal policy optimisation [39] and advantage actor-critic [38]. Although

we utilize robust well control in the current study, the presented techniques are general and is

applicable to a wide range of simulation-based nonlinear optimal control problems.

We designed two test cases that underscore effect of parameter uncertainty on optimal controls.

For ease of execution and demonstration, we represent the optimal well control problem with

an advection equation for tracer flow through porous media in which uncertain parameter,

permeability, is treated as a random variable. In the first test case, we use a permeability

field distribution where the location and orientation of a linear high permeability channel is

uncertain. The second test case uses a spatially correlated permeability field to represent

11

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

smoother permeability field where the log-permeability field is modeled with a conditional

Gaussian distribution with an exponential kernel. We employed proximal policy optimisation

(PPO) and advantage actor-critic (A2C) algorithms to learn the optimal well control policy

in order to maximize the sweep efficiency in the domain. The RL policies are learned using a

selected number of realizations of uncertainty distribution and its robustness is evaluated by

applying the learned policy on a set of unseen realizations during training, drawn from the

same distribution.

The outline of the rest of this paper is as following: Section 2.2 provides the problem description

and how RL algorithms are utilized to solve robust optimal well control. Information such as

algorithms and methodologies used in this paper are also briefed in this section. Section 2.3

details the model parameters for test cases chosen for this study. Further, the approach used

for problem formulation for RL algorithms is explained. Results for the given test cases are

presented in section 2.4. Finally, section 2.5 concludes with the research study summary and

few future research directions.

2.2 Methodology

The process of single-phase flow in porous media is of importance to a variety of engineers and

scientists who are concerned with problems ranging from the financial aspects of oil movement

in petroleum reservoirs to the social problems of groundwater flows in polluted aquifers [45]. We

demonstrate the proposed techniques in the context of subsurface flow in subsurface reservoirs

using an advection equation for tracer flow through porous media. In this dynamical system, the

tracer enters the domain and pushes the non-traced fluid out of the domain. Flow in and out of

the domain is defined as the source and sink terms in the advection equation. In the context of

oil movement problem, the tracer corresponds to water and the non-traced fluid corresponds to

oil (or hydrocarbons) in the reservoir while the source and sink locations correspond to injector

and producer wells, respectively. Bear in mind that the oil flow problem can be more correctly

modeled as a two-phase problem (water phase and oil phase). However for ease of execution

and demonstration we chose single-phase flow problems where water injection is modeled as

tracer flow that pushes the oil (non-traced fluid) in the reservoir, much like a contaminant in

a fluid. Despite this approximation, the presented methodology is general enough and can be

similarly applied to two-phase flow problems.

2.2.1 Problem description for robust optimal well control

We model the reservoir water injection process with an advection equation for tracer flow

through porous media over the temporal domain T = [t0, T] ⊂ R and spatial domain X ⊂ R2.

The tracer flow models water flooding with the fractional variable s(x, t) ∈ [0, 1], where s(x, t)

represents the fraction of water to oil at x ∈ X and t ∈ T . The well controls a(x′, t) represent

the source and sink terms in this equation, where x′ ∈ X ′ (where X ′ ⊂ X) correspond to set of

12

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

well locations. Injector and producer flow controls are represented with a+ (which constitutes of

all the source locations in the domain and formulated as max(0, a)) and a− (which constitutes

of all the sink locations in the domain and formulated as min(0, a)), respectively. The optimal

controls a∗(x′, t) are the solution of following closed-loop optimisation problem:

max
s(·),a(·)

∫ T

t0

(∑
x′

a−(x′, t)(1− s(x′, t))
)
dt, x′ ∈ X ′, t ∈ T (2.1a)

ds

dt
=

1

ϕ

(
a+ + sa− −∇ · sv

)
, x ∈ X , t ∈ T (2.1b)

s(·, 0) = s0, v · n = 0, (2.1c)∑
x′

a+(x′, t) = −
∑
x′

a−(x′, t) = c, x′ ∈ X ′, t ∈ T (2.1d)

where, the objective function defined in Eq. (2.1a) represents the total oil flow out of the

reservoir (oil production) and is maximized over the finite time interval T . The intigrand in this

function is referred as Lagrangian term in control theory and is often denoted by L(s, a). The

water flow trajectory s(x, t) is governed by an advection equation (Eq. (2.1b)) which is solved in

couple with pressure equation −∇·(k/µ)∇p = a, where p(x, t) ∈ R is pressure. Porosity ϕ(x, ·),
permeability k(x, ·) and viscosity µ(x, ·) are the model parameters. Permeability k represents

the model uncertainty and is treated as a random variable that follows a known probability

density function K with K as its domain. The initial and no flow boundary condition is defined

in Eq. (2.1c), where n denotes outward normal vector from the boundary of X . Note that,

the velocity v follows Darcy’s law: v = −(k/µ)∇p. Constraint defined in Eq. (2.1d) represents

the fluid incompressibility assumption along with the fixed total source/sink term c which

represents water injection rate in the reservoir. The controls a(x′, t) are discretized on time

interval t0 < t1 < · · · < tm < tm+1 = T .

2.2.2 RL framework for robust optimal well control

We propose to use model-free reinforcement learning algorithms to solve the optimal control

problem defined in Eq. (2.1). A common approach in RL is to model the task as a Markov

decision process. The process is defined as a quadruple ⟨S,A,P ,R⟩, where S ⊂ Rns is set of

all possible states with dimension ns, A ⊂ Rna is a set of all possible actions with dimension

na. State is represented with the tracer variable s(x, tm) and action with controls a(x′, tm) such

that it follows the constraint defined in Eq. (2.1d). P : S ×A → S is a transition function that

follows Markov property. That is, it returns s(x, tm+1) as a function of control a(x′, tm) and

state s(x, tm). Such transition function can be obtained by discretizing Eq. (2.1b) which returns

s(x, tm+1) by executing the controls a(x′, tm) when in the state s(x, tm). The reward function

R : S × A × S → R returns a real valued reward, r(tm+1) = R(s(·, tm), a(·, tm), s(·, tm+1)) for

a particular transition between the states. The reward function for the problem (Eq. (2.1)) is

13

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

obtained by discretizing the objective function (Eq. (2.1a)) into control steps such that,

r(tm+1) =

∫ tm+1

tm

L(s, a)dt. (2.2)

The control policy, π : S → A, defines an action a(x′, tm) given the current state s(x, tm) (also

written as π(a|s)).

The goal of reinforcement learning is to find an optimal policy π∗(a|s) that maximizes expected

discounted return,G =
∑M

m=1 γ
m−1r(tm), where immediate rewards r are exponentially decayed

by the discount rate γ ∈ [0, 1] and M is the final control time step. Essentially, RL algorithms

attempt to learn the optimal policy π∗(a|s) from an initial policy, π(a|s), by exploring state-

action space with what is referred to as agent-environment interactions. Figure 2.1 shows a

typical schematic of such agent-environment interaction. The term agent refers to the controller

that follows the policy π(a|s) while the environment consists of transition function, P , and
reward function, R. The optimum solution can be obtained by following the policy π∗(a|s)

π(a|s)

P(sm, am)

R(sm, am, sm+1)

am

rm+1

sm+1

rm

sm
Agent

Environment

Figure 2.1: A typical agent-environment interaction in RL algorithms. state s(x, tm), action
a(x′, tm) and reward r(tm) are denoted with shorthand notations, sm, am and rm, respectively

throughout the complete control trajectory (also referred as an episode in RL literature) as

shown in figure 2.2. Thus, optimal result (which refers to optimum oil recovery for optimal

s0 P(s0, a0) s1 P(s1, a1) sT P(sT , aT)

π∗(a|s) a0 π∗(a|s) a1 π∗(a|s) aT

Figure 2.2: optimal controls for complete control trajectory which refers to an episode in RL
algorithms. state s(x, tm) and action a(x′, tm) are denoted with shorthand notations, sm and
am, respectively

well control problem), Rπ∗(a|s), is obtained by adding the reward r(·) at each time-step of such

14

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

episode:

Rπ∗(a|s) =
M−1∑
m=0

[∫ tm+1

tm

L(s, π∗(a|s))dt
]
. (2.3)

Note that the optimal result, which is used in the rest of the paper to evaluate the policy, is

not exponentially decayed with the discount factor γ. The policy π∗(a|s) is said to be robust

if it is able to achieve optimal results for a stochastic environment controlled by the uncertain

parameter k, defining the permeability in the Darcy flow equation.

If we treat the parameter k as a deterministic fixed value, policy learning is fairly straightfor-

ward. The policy learned in such a way is termed as frozen policy (a term used by [30]). In this

study we aim to find a robust policy that accounts for the variability in k. To the best of our

knowledge, so far, such policy is learned by simply incurring samples from the distribution K, in
each episode of the learning process (also known as static domain randomisation method [46]).

Such policy can be robust enough if the samples used in the learning process cover most of its

domain K (In other words, when K is well explored). For this reason, robust optimal policy

learning naturally requires higher number of agent-environment interactions as compared to

that in learning frozen policy. This could be problematic if each agent-environment interaction

(solving the governing Equations (2.1b), for instance) is computationally intensive, which is

common in most simulation-based optimal control problems like optimal well control. Fur-

thermore, samples incurred in this learning process often tend to be from the high probability

region of the distribution domain causing the policy to be biased towards them.

robustness of frozen policy : We denote frozen policy learned by keeping the parameter k fixed

as π∗(a|s; k). Lets define a distance function D : K × K → R which returns the distance

between k and k′ as D(k, k′). Naturally, the frozen policy can be applied to the simulation (or

environment) that uses k′ as the parameter instead of k (denoted as π∗(a|s; k ⇒ k′)). Due to

continuous nature of governing Equations (2.1b), effectiveness of the policy, π∗(a|s; k ⇒ k′), is

inversely related to the distance D(k, k′). We can define an acceptable near-optimal solution

limit obtained with π∗(a|s; k ⇒ k′) when k′ is in the neighborhood (δ) of k. In other words, we

can say the policy π∗(a|s; k ⇒ k′) can be considered robust when D(k, k′) < δ.

This argument can be extended for multiple parameters: k1, k2, · · · , kl. In this case, we learn

the policy, π∗(a|s;k), by randomly choosing any one of the parameter value from the vector k =

(k1, k2, · · · , kl) at every episode in the learning process. Subsequently, the policy, π∗(a|s;k ⇒
k′), can yield a near optimal value for the vector k′ = (k′1, k

′
2, · · · , k′l), given that miniD(ki, k

′
j) <

δ, ∀j ∈ {1, 2, · · · , l}. If the vector k is chosen such that the union of neighbourhood of all its

values ki, ∀i ∈ {1, 2, · · · , l}, cover the domain K, the policy π∗(a|s;k) yields at least near

optimal solution for any sample k′ ∼ K. Figure 2.3 shows an example of such choice of k values

for the uncertainty distribution K. For such a well spread choice of k, the policy π∗(a|s;k) can
be said to be robust under the uncertainty distribution K.

Implementation: Although the above-mentioned policy π∗(a|s) provides optimal solution for

the problem defined in Equation (2.1), it is not applicable for systems with partially observable

15

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

K

()()()()()()()︸ ︷︷ ︸
δ-nhd.

k1 k2 k3 k4 · · · · · · kl

k′1 k′2 k′3 k′4 · · ·· · · k′l

Figure 2.3: a wells spread choice of samples for some uncertainty distribution K (depicted as
one-dimensional for illustration purpose) to learn the robust optimal policy π∗(a|s;k). Members
of k are colored in white while the members of k′ are shown in grey.

state space. For instance, in optimal well control problems reservoir information is generally

only available at well locations. As a result we provide the agent with the available observation

o(x′, tm) as its state. For this study, observation o(x
′, tm) is represented with a set of saturation

and pressure values at well locations x′ and time tm. Note that, with such representation of

states, we break the underlying assumption of Markov property of the transition function. Here,

we assume that transition between the observations approximately follow the Markov property.

We choose l well spread samples of uncertainty distribution to learn a robust policy. This is

achieved with a clustering analysis (using k-means clustering method) of the domain K. The

training vector k is constructed with samples of K which are located at the cluster centers. The

policy, π∗(a|s;k), is learned by randomly selecting the parameter k from the training vector

k = {k1, k2, · · · kl}. Average training return is calculated by averaging the returns of policy

π(a|s;k) on l simulations, each with a separate parameter k from k.

Rπ(a|s;k⇒k) =
1

l

l∑
i=1

[
M−1∑
m=0

(∫ tm+1

tm

L(s, π(a|s;k⇒ ki))dt

)]
(2.4)

The robustness of this policy is assessed by applying it on l simulations, each with a new

unseen sample, k′ ∼ K, as its parameter. The samples for evaluation are chosen randomly

from each cluster. The evaluation vector k′ = {k′1, k′2, · · · k′l} represents the set of such samples.

Robustness of the policy π(a|s;k) is evaluated by monitoring the average evaluation return

Rπ(a|s;k⇒k′):

Rπ(a|s;k⇒k′) =
1

l

l∑
i=1

[
M−1∑
m=0

(∫ tm+1

tm

L(s, π(a|s;k⇒ k′i))dt

)]
. (2.5)

In a nutshell, we explect to train the policy π(a|s;k) such that Rπ(a|s;k⇒k′) is maximized.

We employ PPO and A2C algorithms to solve this problem. The RL algorithm parameters are

tuned in order to maximize the average returns, Rπ(a|s;k⇒k). As the values of training vector,

k, fairly represent the variety of the domain K, we expect convergence of average evaluation

return value towards Rπ∗(a|s;k⇒k′) by the end of the learning process. The baseline optimal

results are computed using differential evolution (DE) algorithm [47]. DE algorithm is used

to solve l optimisation problems as described in Equations (2.1) each with the parameter k

16

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

replaced by a fixed value from evaluation vector k′. The reference value for Rπ∗(a|s;k⇒k′) is

taken as average of these l solved optimal objective functions. Both the RL algorithms are

tuned such that Rπ(a|s;k⇒k′) converges in the range of this reference value.

2.2.3 RL algorithms

We choose model-free RL algorithms to avoid any effect of model learning on policy learning.

Two state-of-the-art policy-based algorithms (A2C and PPO) are used to solve the optimal

control problem under consideration.

2.2.3.1 Advantage actor-critic algorithm

A2C [38] is a policy gradient algorithm that models the stochastic policy, πθ(s|a), with a neural

network. Essentially, the network parameters θ are obtained by optimizing for the objective

function,

Ja2c(θ) = Êt

[
log πθ(at|st)Ât

]
, (2.6)

where, Ât is an estimator for advantage function at timestep t and the term, Êt[· · ·], is empirical

average over finite batch of samples collected through agent-environment interactions. Gradient

estimator of policy network, ∇θJ(θ), is obtained by differentiating Eq. (2.6) which is done

with automatic differentiation algorithm. The advantage function estimator, Ât, is computed

using generalized advantage estimator [48] which is derived from the value function Vt. The

value function estimator V̂t is learned through a separate neural network termed as the critic

network. Definitions of advantage and value functions are described in A.1. Algorithm 1

illustrates a broad outline for implementation of A2C algorithm in this study. In order to

reduce computational time, the iterative data sampling for objective function is performed in

parallel on N processors followed by a synchronous gradient update. Note that in every policy

iteration in total T control steps are run where environment is reset with a new permeability

sample from the k after every terminal step of the episode.

2.2.3.2 Proximal policy optimisation algorithm

If the gradient step in A2C is too large, the policy may astray which in turn will produce bad

samples causing divergence in the solution. As a result, we have to select very small step size

which slows the learning process. Schulman et al. [39] introduced PPO algorithm that make

sure the gradient steps are small enough to make the algorithm data efficient. This is done by

formulating the network objective function in terms of a ratio of two policies (old and new)

using principle of importance sampling. Appropriate gradient steps are chosen by clipping the

ratio of old and new policy within the range [1− ϵ, 1+ ϵ], where ϵ is generally a small fractional

1In practice, a single integrated neural network is used for both, actor and critic networks. As a result,
objective function for automatic differentiation is summation of Eq. (2.6) and value loss function for critic
network. Please refer Algorithm S2 from [38] for the formulation of value loss function.

17

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

Algorithm 1 Policy Robustness Evaluation using A2C

1: Input: Number of actors N , and number of steps in each policy iteration T
2: Obtain training vector k, and evaluation vector k′ using cluster analysis of the predefined

uncertainty distribution K
3: for iteration = 1, 2, . . . do
4: for actor = 1, 2, . . . , N do
5: Run policy πθ in environment for T time steps (which corresponds to in total E

episodes where the environment permeability is set to a sample from training vector
k, at the beginning of every episode)

6: Compute value function estimates V̂1, . . . , V̂T using critic network
7: Compute advantage function estimates Â1, . . . , ÂT

8: end for
9: Optimize Ja2c(θ)

1(Eq. (2.6)), with single epoch and batch size NT
10: θold ← θ
11: compute and record training return Rπ(a|s;k⇒k), and evaluation return Rπ(a|s;k⇒k′)

12: end for

number. The modified objective function for policy network is defined as,

Jppo(θ) = Êt

[
min(rt(θ)Ât(st, at), clip(rt(θ), 1− ϵ, 1 + ϵ)Ât(st, at))

]
, (2.7)

where rt(θ) = πθ(at|st)/πθold(at|st) and πθold(at|st) is old policy. Algorithm 2 illustrates the

implementation of PPO algorithm in the presented methodology.

Algorithm 2 Policy Robustness Evaluation using PPO

1: Input: Number of actors N , number of steps in each policy iteration T , number of epochs
K and minibatch size M

2: Obtain training vector k, and evaluation vector k′ using cluster analysis of the predefined
uncertainty distribution K

3: for iteration = 1, 2, . . . do
4: for actor = 1, 2, . . . , N do
5: Run policy πθ in environment for T time steps (which corresponds to in total E

episodes where the environment permeability is set to a sample from training vector
k, at the beginning of every episode)

6: Compute value function estimates V̂1, . . . , V̂T using critic network
7: Compute advantage function estimates Â1, . . . , ÂT

8: end for
9: Optimize Jppo(θ)

2(Eq. (2.7)), with K epochs and minibatch size M ≤ NT
10: θold ← θ
11: compute and record training return Rπ(a|s;k⇒k), and evaluation return Rπ(a|s;k⇒k′)

12: end for

2The objective function for integrated actor-critic network, in the PPO implementation, is the summation of
actor loss term (Eq. (2.7)), value loss term and entropy loss term. Readers are referred to [39] for the detailed
definition of value loss term and entropy loss term.

18

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

2.2.4 Differential evolution algorithm

We employ DE algorithm [47] as a baseline for assessing the results obtained using PPO and

A2C. Essentially, DE is a population based stochastic optimisation algorithm which employs

evolutionary ideas like crossover and mutation to find optimal arguments. In order to solve the

optimisation problem (Eq. (2.1)) using DE, we represent the argument with a set of controls

a = {a(x′, t0), · · · , a(x′, T)} such that it follows the constraints defined in Eq. (2.1d). The

fitness of such argument is computed with the objective function (Eq. (2.1a)) by solving the

governing Eq. (2.1b). DE algorithm initiates its argument search with a set A of random

arguments which is referred as population (i.e. A = {a1, · · · , ap}). Using a crossover criteria,

certain arguments (say, ith argument in A: ai) are evolved as ,

a′
i = a∗ + F (ar1 + ar2),

where a′
i is updated value for ai, a

∗ is the best argument (i.e. the one corresponding to maximum

fitness) in the population so far, F ∈ [0, 2] is mutation parameter, ar1 and ar2 are randomly

selected arguments from the population. ai is replaced with a′
i if the fitness of a

′
i is higher than

that for ai. The optimum solution is obtained by repeating such evolution for a number of

iterations or until a certain convergence criteria is met.

Note that DE algorithm’s parameter search space is wider than that for RL. This is because the

optimum parameters do not have to follow a mapping π(a|s). For this reason, we expect DE

algorithm to achieve more optimal controls as compared to RL algorithms due to its potential

to achieve global optima.

2.2.5 K-means clustering

We employ connectivity distance [49] measure in order to represent the variation in dynamical

response of permeability samples. The connectivity distance matrix D ∈ RN×N for a large

number (N) of samples of K is written by,

D(ki, kj) =
∑
x′′

∫ T

t0

[s(x′′, t; ki)− s(x′′, t; kj)]2 dt, (2.8)

where, x′′ are a set of spatial locations in the domain X and s(x′′, t; ki) refers to solution of gov-

erning Eq. (2.1b) with the uncertainty parameter ki when all control wells are kept equally open.

In order to be able to visualize the connectivity dissimilarity among samples of K, we employ

multi-dimensional scaling on the distance matrix D to obtain a set of N two-dimensional coor-

dinates represented with d1, d2, · · · , dN . In other words, coordinates d1, d2, · · · , dN correspond

to samples k1, k2, · · · , kN of K such that it represents connectivity distance measure defined in

Eq. (2.8) among its values. The coordinates d1, d2, · · · , dN are divided in l sets S1, S2, · · · , Sl

19

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

obtained by solving the optimisation problem:

argmin
S

l∑
i

∑
dj∈Si

∥dj − µSi
∥ ,

where µSi
is average of all coordinates in the set Si. The training vector k is a set of l samples

of K where each of its value ki correspond to the one nearest to µSi
.

2.3 Numerical experiments

We evaluate the effectiveness of RL in solving robust optimal well control problems using two

test cases representing two distinct permeability uncertainty distributions. Numerical solutions

of the governing equations are obtained by using finite volume discretization. The pressure

equation is discretized using two point flux approximation method while the saturation equation

is discretized using implicit upwind scheme. Readers are referred to [50] for more details on

numerical methodology. For both cases, the values for model parameters emulate those in the

benchmark reservoir simulation case, SPE-10 model 2 [51].

2.3.1 model parameters

Reservoir simulation parameters for both the cases, corresponding to Eq. (2.1), are delineated in

table 2.1. The permeability k is treated as the uncertain parameter with its unit as milliDarcy.

As per the convention in geostatistics, we assume that the distribution of log (k) is known and is

denoted by G. As a result, we treat g = log(k) as a random variable in the problem description

defined in Eq. (2.1). Uncertainty distributions for test cases 1 and 2 are denoted with G1 and

G2, respectively.

Table 2.1: Reservoir model parameters
Test case 1 Test case 2 units

spatial domain X (1200×1200) (1200×1200) ft2

temporal domain T [0,125] [0,25] days
initial saturation s0 0.0 0.0 –
viscosity µ 0.3 0.3 cP
porosity ϕ 0.2 0.2 –
number of producers np 31 4 –
number of injectors ni 31 1 –
total injector flow

∑
a+ 2304 8064 ft2/day

Test case 1 (Channel like permeability distribution): Figure 2.4a shows schematic of the first

test case (inspired from the case study done by [44]). A total number of 31 injectors are placed

on the left edge of the domain while an equal number of producers are placed symmetrically

on the right side. A linear high permeability channel connects from left to right side of the

domain. The channel location is parameterized with its left and right distance (l1 and l2)

20

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

l1

w

l2

L = 1200 ft

L = 1200 ft

(a) schematics for test case 1 domain

L = 1200 ft

L = 1200 ft

(b) schematics for test case 2 domain

Figure 2.4: the producers and injectors are highlighted with red and blue colors, respectively.
parameters (w, l1 and l2) for test case 1 log permeability are shown in fig (a), where high
permeability channel is colored in gray.

from the top and channel width w. These parameters follow uniform distributions defined as,

w ∼ U(120, 360), l1 ∼ U(0, L − w) and l2 ∼ U(0, L − w), where L is domain length. log

permeability g is sampled from the uncertainty distribution G1:

g ∼ G1(w, l1, l2).

To be specific, log permeability g at a location (x, y) is formulated as:

g(x, y) =

ghigh if l2−l1

L
x+ l1 ≤ y ≤ l2−l1

L
x+ l1 + w,

glow otherwise,

where x and y are horizontal and vertical distances from the upper left corner of the domain

illustrated in figure 2.4a. The values for ghigh and glow (5.5 and -2, respectively) are inspired

from Upperness permeability distribution specified in SPE-10 model 2 case (refer to A.2 for

details). Figure 2.6a illustrate various samples drawn from the distribution G1.

Test case 2 (Spatially correlated smooth permeability distribution): We use test case 2 to repre-

sent uncertainty distribution of a smoother permeability field. Figure 2.4b illustrates reservoir

domain for this case. It comprises of four producers located at four corners of the domain and

an injector located at the center of the domain. The permeability distribution for this case is

considered as a log normal distribution which is constrained with fixed values at well locations.

As a result, log permeability g is sampled from the normal distribution G2:

g ∼ G2(µg,Σg), where, (2.9)

µg = 2.41, (2.10)

Σg = C(x, x)− C(x, x′)C(x′, x′)−1
C(x, x′), (2.11)

where, C(x, x′) is the co-variance matrix between unconstrained domain locations x and con-

21

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

strained locations x′ while µg correspond to the constrained log-permeability value at the well

locations. The co-variance matrix is calculated using an exponential kernel as:

C(a, b) = σ2 exp−∥a− b∥
l

. (2.12)

We choose correlation length l as 240 ft (20% of domain length) and the variance amplitude σ

as 2.5. The values µg, σ and l were chosen to fit permeability distribution in the same range of

that in Tarbert case specified in SPE-10 model 2 case (refer A.2). Examples of samples drawn

from the distribution G2 are shown in figure 2.6b.

2.3.2 RL problem formulation:

Both, PPO and A2C, algorithms attempt to learn neural network parameters θ to learn the

policy πθ(a|s). We choose five step episode which is obtained by dividing the temporal domain T
into five control steps. The optimisation potential of the problem can be improved if we choose

a higher than 5 control steps. However, we choose 5 control steps for the ease of execution

and demonstration. The episode steps are denoted with tm where m ∈ {1, 2, · · · , 5}. State is

represented by observation o(x′, tm) which is a vector of saturation and pressure values at all

well locations. However, since the saturation at injectors is always constant (one), we don’t

include it in the observation. As a result, the observation vector is of the size 2np + ni (i.e.

93 for test case 1 and 9 for test case 2) which forms the input of the policy network πθ(a|s).
Action a(x′, tm) is represented with a vector the size of number of control wells np + ni (i.e.

62 for test case 1 and 5 for test case 2). In order to maintain constraint defined in Eq. (2.1d),

we represent the action vector with weights, wis, such that 0.001 ≤ wi ≤ 1 (i.e. action vector

is written as, a(x′, tm) = (w1, · · · , wnp , wnp+1, · · · , wnp+ni
)). Using these weights, flow through

ith producer, a−(x′i, ·), is computed as,

a−(x′i, ·) = −
wi∑np

i=1wi

c.

Similarly, flow through ith injector, a+(x′i, ·), is written as,

a+(x′i, ·) =
wi+np∑ni

i=1wi+np

c.

The reward function defined in Eq. (2.2) is normalized by dividing it with total pore volume

(ϕ× lx× ly) in order to obtain the reward in the range [0,1]. The normalized reward represents

recovery factor or sweep efficiency for oil movement problem in petroleum reservoir.

We use clustering strategy explained in section 2.2.5 where we choose total number of samples,

N , and clusters, l, to be 1000 and 16 for both uncertainty distributions, G1 and G2. Training

vector k is obtained with samples k1, · · · , k16 each corresponding to a cluster center. Figure

2.5a and 2.5b show cluster plots for samples drawn from G1 and G2 permeability distributions,

respectively. Permeability samples for test case 1 are distributed in the shape of an acute angle

22

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

15 10 5 0 5 10
MDS coordinate 1

10

5

0

5

10

M
DS

 c
oo

rd
in

at
e

2

0

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

2

1

0

1

2

3

4

5

(a) samples drawn from the G1 distribution

20 15 10 5 0 5 10 15 20
MDS coordinate 1

15

10

5

0

5

10

15

20

M
DS

 c
oo

rd
in

at
e

2

0

1

2

3

4
5

6

78

9

1011

12

13

14
15

4

2

0

2

4

(b) samples drawn from the G2 distribution

Figure 2.5: clustering of log-permeability fields (unit: mD) for test cases 1 and 2

where samples in the vertex region correspond to high permeability channel at the central

region, samples on the left arm correspond to high permeability channel in the upper region

while samples in the right arm correspond to high permeability channel in the lower region of

the domain. For test case 2, samples with more or less axisymmetric high permeability region

are located in the central area in figure 2.5b (e.g., cluster 1). The samples corresponding to

eccentric high permeability regions are located outside as shown with examples k13 (lower left

region), k3 (upper left region), k15 (upper right region) and k0 (lower right region) in figure

2.5b. In order to represent well spread domain of G1 and G2 distributions, the 16 samples, each

randomly chosen from a cluster, forms the evaluation vector k′. These evaluation samples are

shown in figure 2.6a and 2.6b for test cases 1 and 2, respectively.

Figure 2.7 outlines the general schematics for agent-environment interactions in PPO and A2C

algorithms for robust optimal control problem. Since these algorithms are stochastic in nature,

we provide training and evaluation returns as a mean corresponding to three distinct seed

values. These results are benchmarked against DE algorithm optimisation results. Parameters

used for all algorithms along with the confidence range of learning plots are presented in A.3.

2.4 Results and discussion

We refer to the control policy in which all wells are equally open as the base policy. When the

first test case is operated with base policy, most of the water flooding take place in the high

permeability channel causing poor sweep efficiency in the low permeability region. Naturally,

the optimal policy is to restrict the flow through wells which are in the region nearby high

permeability channel. Using DE algorithm, we obtain 16 optimized solutions for optimal control

problem defined in Equations (2.1) where each value in evaluation vector k′ is treated as fixed

permeability k. These results act as a reference to optimal solutions obtained using PPO

23

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

index: 0 index: 1 index: 2 index: 3

index: 4 index: 5 index: 6 index: 7

index: 8 index: 9 index: 10 index: 11

index: 12 index: 13 index: 14 index: 15

−2

−1

0

1

2

3

4

5

(a) samples of G1 in evaluation vector k′

index: 0 index: 1 index: 2 index: 3

index: 4 index: 5 index: 6 index: 7

index: 8 index: 9 index: 10 index: 11

index: 12 index: 13 index: 14 index: 15

−4

−2

0

2

4

6

8

10

12

(b) samples of G2 in evaluation vector k′

Figure 2.6: log-permeability plots (unit: mD) for evaluation data for test cases 1 and 2

reservoir
simulation step

policy network

environment

actiont

(well controls)

rewardt+1

statet+1

if t is terminal,
choose a random
permeability from k

rewardt

(recovery factor)

statet
(well saturation and

pressure values)

Figure 2.7: RL algorithm agent-environment interaction schematics to learn robust optimal
well control policy

24

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

and A2C algorithms. Reference value for mean evaluation return Rπ∗(a|s;k⇒k′) is obtained by

averaging DE results of these 16 problems. Note that DE algorithm is not a suitable method

to solve the robust optimal control problem since it can provide optimal controls only for

certain permeability samples as opposed to PPO or A2C algorithms where we try to learn

the policy that is applicable to all samples of permeability distribution. However, DE results

are used as the reference since they provide the upper bounds achieved by direct optimization

on sample by sample basis. Figure 2.8 shows plots for training (Rπ(a|s;k⇒k)) and evaluation

(Rπ(a|s;k⇒k′)) returns versus total number of episodes for PPO and A2C learning process. As

can be seen, PPO and A2C algorithms successfully learned the robust optimal policy and their

average evaluation returns Rπ∗(a|s;k⇒k′) are within the range of DE results. We also present

results for a frozen PPO policy trained using a fixed permeability located at index 1 in the

training vector k (indicated with dotted green line in figure 2.8). We note that the training

vector k for frozen PPO case only comprises of a single permeability realization. This frozen

policy is not robust as it performs poorly on unseen permeabilities as demonstrated when we

plot Rπ(a|s;k⇒k′) value in its learning process. Furthermore, learning plot for PPO algorithm

with full state representation is illustrated with red dotted line. In this case, we provide the

agent with saturation values at each grid point in the domain (i.e. with a vector of length

61× 61 = 3721). Policy learning with full state information are in the same range of that with

only well observation state representation. In other words, information of well observations is

enough to form optimal policy for this case.

Figure 2.9 plots optimum recovery factors (in %) corresponding to each evaluation permeability

in the vector k′. Results of PPO and A2C policy are comparable to the DE results which

are independently optimized for each permeability field. Figure 2.10 illustrates the optimum

controls corresponding to evaluation permeability at third and fifth indices of k′. The controls

for injectors and producers are shown in blue and red colored circles, respectively. Note that

the radius of the circle at certain well location is proportional to flow through that well. That

is, the radius of the circle at certain well location is proportional to the flow control opening

of the corresponding well. As can be seen in figure 2.10, the optimal control policy to restrict

flow controls in the high permeability region is successfully learned using PPO and A2C.

In the second test case, all reservoir parameters and well locations are axisymmetric except

the permeability field. As a result, there is an imbalance in the flow direction from the central

injector. The optimal flow control policy is to govern the well controls so that balanced amount

of sweeping can be maintained in all four quadrants of the reservoir. For instance, if water

sweeps uniformly in all quadrants of reservoir except the upper left, the optimal policy should

increase the flow through upper left producer while restricting the flow through rest of the

producers (i.e. govern the controls to cope with the imbalance in the upper left quadrant). For

the five-spot case under consideration, the optimal policy has in total 10 modes: four due to

imbalance in single quadrant and six due to imbalance in a pair of quadrants.

Note that these 10 modes represent the full extent of uncertainty in the optimal policy for the

25

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

0 10000 20000 30000 40000 50000 60000

number of episodes

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

tr
an

in
g

re
tu

rn
,

R
π

(a
|s

;k
⇒

k
)

PPO

A2C

PPO (frozen)

PPO (full state)

0 10000 20000 30000 40000 50000 60000

number of episodes

ev
al

u
at

io
n

re
tu

rn
,

R
π

(a
|s

;k
⇒

k
′)

PPO

A2C

PPO (frozen)

PPO (full state)

DE

Figure 2.8: Test case 1: monitoring plots for average training return Rπ(a|s;k⇒k) (on left) and
evaluation return Rπ(a|s;k⇒k′) (on right) for learning process in PPO, A2C and frozen PPO.
The evaluation return value is compared with the optimisation results obtained using DE

1 4 2 14 7 9 0 6 11 5 10 15 12 13 8 3

evaluation sample index

58

60

62

64

66

68

70

72

re
co

ve
ry

fa
ct

or
%

Optimisation Results for Evaluation Permeabilities

PPO

A2C

DE

Base

Figure 2.9: Test case 1: comparison of optimum recovery factor (in %) for each permeability
value from evaluation vector k′. Results of of PPO, A2C and DE are compares with base
control actions (all control valves equally open) results

26

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

Base 3

day 25: 14 % RF day 50: 29 % RF day 75: 43 % RF day 100: 56 % RF day 125: 66 % RF

DE 3

day 25: 14 % RF day 50: 29 % RF day 75: 43 % RF day 100: 58 % RF day 125: 72 % RF

PPO 3

day 25: 14 % RF day 50: 29 % RF day 75: 43 % RF day 100: 58 % RF day 125: 71 % RF

A2C 3

day 25: 14 % RF day 50: 29 % RF day 75: 43 % RF day 100: 58 % RF day 125: 71 % RF

0.0 0.2 0.4 0.6 0.8 1.0

(a) Evaluation permeability index 3

Base 5

day 25: 14 % RF day 50: 29 % RF day 75: 42 % RF day 100: 52 % RF day 125: 60 % RF

DE 5

day 25: 14 % RF day 50: 29 % RF day 75: 43 % RF day 100: 58 % RF day 125: 71 % RF

PPO 5

day 25: 14 % RF day 50: 29 % RF day 75: 43 % RF day 100: 58 % RF day 125: 70 % RF

A2C 5

day 25: 14 % RF day 50: 29 % RF day 75: 43 % RF day 100: 57 % RF day 125: 70 % RF

0.0 0.2 0.4 0.6 0.8 1.0

(b) Evaluation permeability index 5

Figure 2.10: Test case 1: optimal well controls for permeability values k′
3and k′

5 (illustrated
with saturation contour plots). Producer and injector flow controls are indicated with red and
blue circles, respectively. Values of flow controls are proportional to the circle radius.

27

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

second test case. For the first test case, the uncertainty in the optimal policy is subject to the

location of the high permeability channel in the domain. This can be divided in 9 major groups

depending on the location of the channel. For instance, we can assume the channel to start and

end at either the upper, lower, or middle part of the domain (i.e. 3×3 = 9 combinations). As a

result, we wanted to choose the number of clusters in the permeability uncertainty distribution

to be more than 9 for test case 1 and 10 for test case 2. In order to maintain the uniformity

presented case studies we demonstrate the cluster-based domain randomization methodology

in total 16 numbers of clusters.

confusion in RL policy learning : Policy πθ(a|s) is learned through numerous agent-environment

interactions experienced with 16 permeability field instances in training vector k. By definition,

the optimal policy returns the action a that corresponds to maximum return episode from

current state s. Since the first state s0 is same for all permeability fields (according to initial

condition defined in Eq. (2.1c)), the first action πθ(a0|s0) is always the one that correspond to

a certain permeability field in training vector k which produces maximum total return. So if

we imagine k5 to be such a permeability which happens to follow one of the ten optimal policy

modes (say mode 7). The first action a1 will always be the one that correspond to mode 7

policy. This is obviously undesirable when we apply this policy on permeability fields which

correspond to another mode of optimal policy. In order to avoid this confusion in policy learning,

we train RL policies from second step onward. Since the second step of the episode is different

for different permeability fields, RL policy learning doesn’t face this confusion anymore. By

default we treat the first action to follow base policy (i.e. all wells open equally). Note that

the first action for test case 1 RL optimal policies is also identical for all cases (refer to figure

2.10). However, since the optimal policy’s nature is not modal, the resulting sub-optimality is

not as much prominent for this case.

Figure 2.11 shows learning plots for training and evaluation returns for PPO, A2C and DE

algorithms. Similar to test case 1 results, PPO and A2C algorithms successfully learn robust

optimal policy. RL policies learned with well observations show results in the same range with

the PPO policy with full state representation. As expected, the frozen policy’s lack of robust-

ness can be seen in evaluation return learning plot. PPO, A2C and DE optimisation results

for evaluation permeability fields in k′ are compared individually in figure 2.12. RL policies

successfully capture the optimal policy behaviour as experienced with DE results. Figure 2.13

illustrate control policies for evaluation permeability fields at ninth and twelfth indices of k′.

For instance, optimal policy for k′
9 which refers to increasing flow through producers in the

lower region of the domain is clearly observed in its RL policies.

Computational complexity is the major limitation of using RL in simulation based control

problem. For all three optimisation methods (PPO, A2C and DE), we employ multiprocessing

to reduce total computational time. RL algorithms use multiple CPUs to run episodes in

parallel while GPUs are used for neural network back propagation computations. Depending

on resource availability and parameter tuning, different number of CPUs and GPUs are used on

28

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

0 10000 20000 30000 40000 50000 60000

number of episodes

0.56

0.57

0.58

0.59

0.60

0.61

0.62

tr
ai

n
in

g
re

tu
rn

,
R
π

(a
|s

;k
⇒

k
)

PPO

A2C

PPO (frozen)

PPO (full state)

0 10000 20000 30000 40000 50000 60000

number of episodes

ev
al

at
io

n
re

tu
rn

,
R
π

(a
|s

;k
⇒

k
′)

PPO

A2C

PPO (frozen)

PPO (full state)

DE

Figure 2.11: Test case 2: monitoring plots for average training return Rπ(a|s;k⇒k) (on left) and
evaluation return Rπ(a|s;k⇒k′) (on right) for learning process in PPO and A2C. The evaluation
return value is compared with the optimisation results obtained using DE

10 9 15 7 14 3 8 12 4 0 11 6 13 1 2 5

evaluation sample index

54

56

58

60

62

64

re
co

ve
ry

fa
ct

or
%

Optimisation Results for Evaluation Permeabilities

PPO

A2C

DE

Base

Figure 2.12: Test case 2: comparison of optimum recovery factor (in %) for each permeability
value from evaluation vector k′. Results of of PPO, A2C and DE are compared with base
control actions (all control valves equally open) results

29

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

Base 9

day 5: 14 % RF day 10: 27 % RF day 15: 37 % RF day 20: 46 % RF day 25: 54 % RF

DE 9

day 5: 14 % RF day 10: 28 % RF day 15: 41 % RF day 20: 53 % RF day 25: 63 % RF

PPO 9

day 5: 14 % RF day 10: 27 % RF day 15: 41 % RF day 20: 53 % RF day 25: 63 % RF

A2C 9

day 5: 14 % RF day 10: 27 % RF day 15: 40 % RF day 20: 53 % RF day 25: 63 % RF

0.0 0.2 0.4 0.6 0.8 1.0

(a) Evaluation permeability index 9

Base 12

day 5: 14 % RF day 10: 27 % RF day 15: 39 % RF day 20: 49 % RF day 25: 58 % RF

DE 12

day 5: 14 % RF day 10: 28 % RF day 15: 41 % RF day 20: 53 % RF day 25: 64 % RF

PPO 12

day 5: 14 % RF day 10: 28 % RF day 15: 41 % RF day 20: 53 % RF day 25: 63 % RF

A2C 12

day 5: 14 % RF day 10: 28 % RF day 15: 41 % RF day 20: 53 % RF day 25: 63 % RF

0.0 0.2 0.4 0.6 0.8 1.0

(b) Evaluation permeability index 12

Figure 2.13: Test case 2: optimal well controls for permeability values k′
9 and k′

12 (illustrated
with saturation contour plots). Producer and injector flow controls are indicated with red and
blue circles, respectively. Values of flow controls are proportional to the circle radius.

30

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

Table 2.2: number of simulation runs in each algorithm
Test case 1 Test case 2

PPO 180000 180000
A2C 180000 180000
DE 2058750 135000

case basis (refer A.3 for number of CPU used in each case). Furthermore, parallelism behaviour

is also varied between RL and DE algorithms. In RL algorithms, simulations are run in parallel

just as in the case of DE. However, in RL algorithms, neural networks are backpropagated

synchronously at the end of each iteration which causes extra computational time in waiting

and data distribution. In order to compare computational efforts irrespective of computational

resources and parallelism behaviours, it is therefore, fair to compare number of simulation runs

which is a major source of computational cost. For both cases, RL algorithms were let run

for 60000 episodes which correspond to 60000 simulation runs and each such algorithm was

run for three seed values (In total 3 × 60000 = 180000 simulation runs). For the first test

case, DE algorithms consisted of 750 generations each comprising 305 population size and since

DE algorithm was used for all 9 samples in k′, the total number of simulation runs is 2058750

(750×305×9). Similarly, for the second test case, DE comprised of total 135000 simulation runs

(750 generations × 20 population size × 9 samples). Parameters and computational resources

used for all algorithms are delineated in A.3.

2.5 Conclusions

We present a case study for using model-free RL algorithms to obtain robust optimal control

policy for optimal well control problems. This policy is learned under the assumption that the

system is partially observable and is governed by a system of nonlinear partial differential equa-

tions. The robustness of these policies were obtained using a domain randomisation scheme

that uses only few samples from a predefined uncertainty distribution by utilizing cluster anal-

ysis. Further, the optimality of these policies were successfully benchmarked against reference

solutions obtained by direct optimisation using DE algorithm. We consider the current frame-

work as a first attempt towards application of narrow AI to the field of subsurface flow control

where data is only available at the well locations.

In the current study we made the following key assumptions:

• the optimal control problem is formulated in the form of Eq. (2.1) which comprises of

an objective function (Eq. (2.1a)), a governing equation (Eq. (2.1b)), initial/boundary

conditions (Eq. (2.1c)) and constraints (Eq. (2.1d)),

• parameter uncertainty distribution is predefined,

• transition between the partial observations of the system approximately follows the Markov

property,

31

Chapter 2: Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning

• effectiveness of the optimal policy π∗(a|s; k ⇒ k′), is inversely related to the distance

D(k, k′).

As a result similar techniques to those presented here could be applied to other simulation-based

applications as long as these assumptions are met.

In the current study, we train RL policies with a large number of simulation runs. This can be

computationally intractable for large scale models with long simulations run times. In future

studies, we aim to address this issue by utilizing fast surrogate modeling techniques to accelerate

the reinforcement learning process.

32

Chapter 3

Robust Optimal Well Control using an

Adaptive Multigrid Reinforcement

Learning Framework

Reinforcement learning (RL) is a promising tool for solving robust optimal well control prob-

lems where the model parameters are highly uncertain and the system is partially observable

in practice. However, the RL of robust control policies often relies on performing a large

number of simulations. This could easily become computationally intractable for cases with

computationally intensive simulations. To address this bottleneck, an adaptive multigrid RL

framework is introduced which is inspired by principles of geometric multigrid methods used

in iterative numerical algorithms. RL control policies are initially learned using computation-

ally efficient low-fidelity simulations with coarse grid discretization of the underlying partial

differential equations (PDEs). Subsequently, the simulation fidelity is increased in an adaptive

manner towards the highest fidelity simulation that corresponds to the finest discretization of

the model domain. The proposed framework is demonstrated using a state-of-the-art, model-

free policy-based RL algorithm, namely the proximal policy optimization algorithm. Results

are shown for two case studies of robust optimal well control problems, which are inspired

from SPE-10 model 2 benchmark case studies. Prominent gains in computational efficiency are

observed using the proposed framework, saving around 60-70% of the computational cost of its

single fine-grid counterpart.

Published in Mathematical Geosciences Journal : https://link.springer.com/article/10.1007/

s11004-022-10033-x

33

https://link.springer.com/article/10.1007/s11004-022-10033-x
https://link.springer.com/article/10.1007/s11004-022-10033-x

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

3.1 Introduction

Optimal control problem involves finding controls for a dynamical system such that a certain

objective function is optimized over a predefined simulation time. Recently, reinforcement

learning (RL) has been demonstrated as an effective method to solve stochastic optimal control

problems in fields like manufacturing [3], energy [4] and fluid dynamics [5]. RL, being virtually

a stochastic optimization method, involves a large number of exploration and exploitation

attempts to learn the optimal control policy. As a result, the learning process for the optimal

policy comprises a large number of simulations of the controlled dynamical system, which is

often computationally expensive.

Various research studies have shown the effectiveness of using multigrid methods to improve the

convergence rate of reinforcement learning. [52] extend Q-Learning by casting it as a multigrid

method and has shown a reduction in the number of updates required to reach a given error level

in the Q-function. [53] and [54] formulate the value function learning process with a Hamilton-

Jacobi-Bellman equation (HJB), which is solved using algebraic multigrid methods. However,

despite the effectiveness of this strategy, the HJB formulation is only feasible when the model

dynamics is well defined. As a result, these methods cannot be applied to problems where the

model dynamics is an approximate representation of reality. [55] used multigrid approach to

compute tabular Q values for energy conservation and comfort of HVAC in buildings, which is

applicable to certain simple RL problems with finite and discrete state-action space. In this

paper, the aim is to present a generalized multigrid RL approach that can be applied to both

discrete and continuous state and action space where HJB formulation may not be possible.

For instance, when the transition in model dynamics is not necessarily differentiable and/or

when the model is stochastic.

In the context of the reinforcement learning literature, the proposed multigrid learning process

can be categorized as a framework for transfer learning. In transfer learning, the agent is first

trained on one or more source task(s), and the acquired knowledge is then transferred to aid

in solving the desired target task [56]. In the presented study, the highest fidelity simulation

corresponds to the target task, which is assumed to have the fine-grid discretization. The fine-

grid discretization is presumed to guarantee a good approximation of the output quantities of

interest with the accuracy required by the problem at hand. On the other hand, low-grid-fidelity

simulations that compromise the accuracy of these quantities correspond to source tasks. These

low-grid-fidelity simulations are generated using a degree-of-freedom parameter called the grid

fidelity factor (much like the study by [57]). Transfer learning is a much broader subdomain of

RL that covers knowledge transfer in the form of data samples [58], policies [59], models [60],

or value functions [61]. In this study, knowledge transfer is done in the form of a policy for a

model-free, on-policy algorithm called proximal policy optimization (PPO). Since the policy is

designed for the state and actions corresponding to the highest-fidelity simulation, a predefined

mapping function is used, which maps states and actions from low-fidelity simulations to high-

fidelity simulations, and vice versa. This is done by defining restriction (mapping from high-

34

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

to low-fidelity simulation) and prolongation (mapping from low- to high-fidelity simulation)

operators, which are normally found in classical geometric multigrid methods.

The effectiveness of this multigrid RL framework is demonstrated for the robust optimal well

control problem, which is a subject of intensive research activities in subsurface reservoir man-

agement [24, 43, 44]. Recently, several researchers have proposed the use of reinforcement

learning to solve the optimal well control problem [62–64]. For this study, the dynamical sys-

tem under consideration is non-linear and, in practice, is partially observable since the data is

only available at a sparse set of points (i.e., well locations). Furthermore, the subsurface model

parameters are highly uncertain due to the sparsity of available field data. Optimal well control

problem consists of optimizing the control variables like valve openings of wells in order to max-

imize sweep efficiency of injector fluid throughout the reservoir life. The reservoir permeability

field is considered as an uncertain model parameter for which the uncertainty distribution is

known. Two test cases – both representing a distinct model parameter uncertainty and control

dynamics – are used to demonstrate the computational gains of using the multigrid idea.

In summary, a multigrid reinforcement learning framework is proposed to solve the optimal well

control problem for subsurface flow with uncertain parameters. This framework is essentially

inspired by the principles of geometric multigrid methods used in iterative numerical algorithms.

The optimal policy learning process is initiated using a low-fidelity simulation that corresponds

to a coarse grid discretization of the underlying partial differential equations (PDEs). This

learned policy is then reused to initialize training against a high-fidelity simulation environment

in an adaptive and incremental manner. That is, the shifting from a low fidelity to higher fidelity

environments is done adaptively after the convergence of the learned policy with the low fidelity

environment. Due to this adaptive learning strategy, most of the initial policy learning takes

place against lower-fidelity environments, yielding a minimal computational cost in the initial

stages (significant part) of the reinforcement learning process. Robustness of the policy learned

using this framework is finally evaluated against uncertainties in the model dynamics.

The outline of the remainder of this paper is as follows. Section 3.2 provides the description

of the problem and the proposed framework to solve the robust optimal well control problem.

Section 3.3 details the model parameters for the two case studies designed for demonstration.

Results of the proposed framework on these two case studies are demonstrated in Sect. 3.4.

Finally, Section 3.5 concludes with a summary of the research study and an outlook on future

research directions.

3.2 Methodology

Fluid flow control in subsurface reservoirs has many engineering applications, ranging from the

financial aspects of efficient hydrocarbon production to the environmental problems of contami-

nant removal from polluted aquifers [45]. In this paper, a canonical single-phase subsurface flow

control problem (also referred to as robust optimal well control problem) is studied where water

35

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

is injected in porous media to displace a contaminant. This process is commonly modeled using

an advection equation for tracer flow through porous media (also called Darcy flow through

porous media) over the temporal domain T = [t0, tM] ⊂ R and spatial domain X ⊂ R2. In

the context of fluid displacement (e.g., groundwater decontamination), the tracer corresponds

to clean water injected in the reservoir from the injector wells and the non-traced fluid corre-

sponds to the displaced contaminated water from the reservoir through producer wells. The

source and sink locations within the model domain correspond to the injector and producer

wells, respectively. Tracer flow models water flooding with the fractional variable s(x, t) ∈ [0, 1]

(also known as saturation). Saturation s(x, t), represents the fraction which is calculated as the

ratio of injected clean water mass to the displaced contaminated water mass at location x ∈ X
and time t ∈ T . The flow of fluid in and out of the domain is represented by a(x, t), which is

treated as the source / sink terms of the governing equation. The set of well locations is de-

noted as x′ ∈ X ′ (where X ′ ⊂ X). In other words, a(x, t) is assigned to zero everywhere in the

domain X except the set of locations x′. The controls a+(x, t) (formulated as max(0, a(x, t)))

and a−(x, t) (formulated as min(0, a(x, t))) represent the injector and producer flow controls,

respectively (note that a = a+ + a−). The task of the problem under consideration is to find

optimal controls a∗(x′, t), which is the solution of the closed-loop optimization problem defined

as

max
s(·),a(·)

∫ tM

t0

(∑
x′

a−(x′, t)(1− s(x′, t))
)
dt, x′ ∈ X ′, t ∈ T (3.1a)

ds

dt
=

1

ϕ

(
a+ + sa− −∇ · sv

)
, x ∈ X , t ∈ T (3.1b)

s(·, t0) = s0, v · n = 0, (3.1c)∑
x′

a+(x′, t) = −
∑
x′

a−(x′, t) = c. x′ ∈ X ′, t ∈ T (3.1d)

The objective function defined in Eq. 3.1a represents the total flow of fluid displaced from

the reservoir (for example, contaminated water production) and is maximized over a finite

time interval T . The integrand in this function is referred to as Lagrangian term in control

theory and is often denoted by L(s, a). The water flow trajectory s(x, t), is governed by

advection Eq. 3.1b which is solved given the velocity field v, which is obtained from the

Darcy law: v = −(k/µ)∇p. The pressure p(x, t) ∈ R, is obtained from the pressure equation

−∇ · (k/µ)∇p = a. Porosity ϕ(x, ·), permeability k(x, ·), and viscosity µ(x, ·) are the model

parameters. Permeability k, represents the model uncertainty and is treated as a random

variable that follows a known probability density function K with K as its domain. The

initial and no-flow boundary conditions are defined in Eq. 3.1c, where n denotes outward

normal vector from the boundary of X . The constraint defined in Eq. 3.1d represent the fluid

incompressibility assumption along with the fixed total source/sink term c, which represents

total water injection rate in the reservoir. In a nutshell, the optimization problem provided in

36

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

Eqs. 3.1 is solved to find the optimal controls a∗(x′, t) such that they are robustly optimal over

the entire uncertainty domain of permeability, K.

3.2.1 RL Framework

According to RL convention, the optimal control problem defined in Eq. 3.1 is modelled as a

Markov decision process, which is formulated as a quadruple ⟨S,A,P ,R⟩. Here, S ⊂ Rns is a

set of all possible states with the dimension ns, A ⊂ Rna is a set of all possible actions with

the dimension na. The state S, is represented with the saturation s(x, ·) and pressure p(x, ·)
values over the entire domain X . The action A, is represented by an array of well control values

a(x′, ·). More details of this array, like the representation of action, are presented in Sect. 3.3.3.

The optimal control problem defined in Eq. 3.1 is discretized into M control steps and as a

result, its solution is a set of optimal control values a∗(x′, t1), a
∗(x′, t2), . . . , a

∗(x′, tM) where

t0 < t1 < t2 < · · · < tM . The transition function P : S × A → S, is assumed to follow the

Markov property. That is, transition to the state S(tm+1) is obtained by executing the actions

A(tm) when in the state S(tm). Such transition function is obtained by discretizing Eq. 3.1b.

For a transition from state S(tm) to state S(tm+1), the real value reward R(tm+1) is calculated

as R(tm+1) = R(S(tm), A(tm), S(tm+1)), where R : S ×A×S → R is the reward function. The

reward function is obtained by discretizing the objective function (Eq. 3.1a) into control steps

such that

R(tm+1) =

∫ tm+1

tm

L(s, a)dt. (3.2)

Optimal controls are obtained by learning a control policy function, which is defined as π :

S → A. This function is denoted as π(A|S) and is generally represented by a neural network.

Essentially, the control policy π(A|S), maps a given state S(tm), to an action A(tm). For an

optimal control problem, with M control steps, the goal of reinforcement learning is to find an

optimal policy π∗(A|S) such that the expected reward G =
∑M

m=1 γ
m−1R(tm), is maximized.

Note that immediate rewards R, are exponentially decayed by the discount rate γ ∈ [0, 1].

The discount rate represents how myopic the learned policy is; for example, a learned policy

is considered completely myopic when γ = 0. The controller, which is also referred to as

an agent, follows the policy and explores various control trajectories by interacting with the

environment, which consists of a transition function P and a reward function R. The data

gathered by these control trajectories are used to update the policy towards optimality. Each

such update of the policy is called a policy iteration. In RL literature, a single complete control

trajectory is referred to as an episode. Essentially, RL algorithms attempt to learn the optimal

policy π∗(A|S) from a randomly initialized policy π(A|S), by exploring the state-action space

by executing a high number of episodes.

In order to represent the variability in permeability, a finite number of well spread samples is

chosen from the predefined uncertainty distribution. This is achieved with a cluster analysis

(see Appendix B.1 for the formulation of cluster analysis) of the distribution domain K. The

sample vector k = {k1, k2, · · · kl}, is constructed with samples of the distribution K, which are

37

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

located nearest to the cluster centres. The policy π∗(A|S), is learned by randomly selecting

the parameter k from the training vector k at the beginning of each episode. The policy

return Rπ(A|S), is computed by averaging the returns of policy π(A|S; ki) (policy applied to the

simulation where the permeability is set to ki) in l simulations, which is formulated as

Rπ(A|S) =
1

l

l∑
i=1

M−1∑
m=0

∫ tm+1

tm

L(s, π(A|S; ki))dt. (3.3)

In optimal well control problems, the system is partially observable; that is, reservoir infor-

mation is only available at well locations throughout the reservoir life cycle. To accommodate

this fact, the agent is provided with the available observation as its state. For this study,

observation is represented with a set of saturation and pressure values at the well locations

x′. This is also apparent in the definition of Lagrangian term L(s, a), where values s and a

are taken at well locations x′, as defined in Eq. 3.1a. Note that with such a representation of

states, the underlying assumption of the Markov property of the transition function is approx-

imated. Such system is referred to as partially observable Markov decision process (POMDP).

By the definition of POMDP, the policy requires the observations and actions of all previous

control steps to return the action for a certain control step. However, for the presented case

studies, observation from only the previous control step is observed to be sufficient for policy

representation.

3.2.2 Learning Convergence Criteria

The optimal policy convergence is detected by monitoring the policy return Rπ(A|S), after every

policy iteration. Conventionally, when this value converges to a maximum value, the optimal

policy is assumed to be learned. The convergence criteria for ith policy iteration is defined as

δi =

∣∣∣∣∣R
π(A|S)
i −Rπ(A|S)

i−1

max(R
π(A|S)
i−1 , ϵ)

∣∣∣∣∣ < δ, (3.4)

where δi is the return tolerance at ith policy iteration, δ is the stopping tolerance and ϵ is

a small non-zero number used to avoid division by zero. The convergence of policy learning

process is often flat near the optimal result. For this reason, the convergence criteria defined in

Eq. 3.4 is checked for the last n consecutive policy iterations. For example, if r is the array of

monitored values of Rπ(A|S) at all policy iterations, the policy π(A|S) is considered converged

when the convergence criteria are met (Eq. 3.4) for last n policy iterations is met. Algorithm

3 delineates the pseudocode for this convergence criteria. Figure 3.1 illustrates the effect of

n and δ on the convergence criteria for an example of a reinforcement learning process. The

policy return plot is shown in blue, where each value at the policy iteration is shown with

a dot. The corresponding return tolerance is plotted in gray color, which is represented in

percentage format (δi × 100, where δi is calculated from Eq. 3.4). It can be seen that the

convergence criteria (denoted with markers on these plots) takes longer to satisfy when the

38

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

0 20000 40000 60000 80000 100000 120000

number of episodes

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

p
ol

ic
y

re
tu

rn
,
R
π

(A
|S

)

convergence criteria (n=5)

0.0

0.3

1.0

2.0

3.0

4.0

re
tu

rn
to

le
ra

n
ce

(%
)

δ = 0.1

δ = 0.3

δ = 1.0

(a)

0 20000 40000 60000 80000 100000 120000

number of episodes

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

p
ol

ic
y

re
tu

rn
,
R
π

(A
|S

)

convergence criteria (δ=0.3)

0.0

0.3

1.0

2.0

3.0

4.0

re
tu

rn
to

le
ra

n
ce

(%
)

n = 5

n = 10

n = 20

(b)

Figure 3.1: Plot of policy returns versus number of training episodes: a illustrates effect of δ
on convergence criteria and b illustrates effect of n on convergence criteria

39

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

Algorithm 3 Learning convergence criteria

1: procedure IsConverged(r, n, δ)
2: if length(r) < n then return False
3: end if
4: compute δi (Eq. 3.4) for last n values of r and get its maximum δmax

5: if δmax < δ then
6: return True
7: else
8: return False
9: end if
10: end procedure

Table 3.1: Restriction operator function for simulation parameters
simulation parameter function, f
saturation, s mean
porosity, ϕ mean
pressure, p mean
permeability, k harmonic mean
flow control, a sum

stopping tolerance δ, is smaller and consecutive policy iteration steps n, are higher.

3.2.3 Adaptive Multigrid RL Framework

An adaptive multigrid RL framework is proposed where, essentially, the policies learned using

lower grid fidelity environments are transferred and trained with higher-fidelity environments.

The fidelity of the grid for an environment is described by the factor β ∈ (0, 1]. The environment

with β = 1 is assumed to have the fine-grid discretization, which guarantees good approximation

of fluid flow production out of the domain as defined in Eq. 3.1a. For any environment where

β < 1, the size of the environment grid is coarsened by the factor of β. For example, if a

high-fidelity environment where β = 1 corresponds to the simulation with grid size 64 × 64,

the simulation grid size is reduced to 32× 32 when β is set to 0.5. Restriction operator Φβ(),

is used to coarsen the high fidelity simulation parameters with the factor of β. This is done

by partitioning a finer grid of size m × n (corresponding to β = 1) into coarser dimensions

⌊βm⌋ × ⌊βn⌋ (corresponding to β < 1 where ⌊·⌋ is the floor operator) and computing these

values of the coarse grid cell as a function f, of the values in the corresponding partition.

Figure 3.2(a) illustrate this restriction operator for a variable x ∈ Rn×m. The function f, for

different parameters of the reservoir simulation, are listed in table 3.1. On the other hand, the

prolongation operator Φ−1
β (), maps the coarse grid environment parameters to the fine grid as

shown in Fig. 3.2(b).

A typical agent-environment interaction using this framework is illustrated in Fig. 3.3. Note

that the transition function P and the reward function R are subscripted with β to indicate the

grid fidelity of the environment. State S(tm), action A(tm) and reward R(tm) are denoted with

40

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

x11 x12 x1m

x21 x22 x2m

xn1 xn2 xnm

n×m

f([x11, x12,

x21, x22])

f([x1n,

x2n])

f([xn1, xn2]) f(xnm)

n′ ×m′

Φβ

m′ = ⌊βm⌋
n′ = ⌊βn⌋

(a)

x11 x1m′

xn′1 xn′m′

n′ ×m′

x11 x11 x1m′

x11 x11 x1m′

xn′1 xn′1 xn′m′

n×m

Φ−1
β

(b)

Figure 3.2: Illustration for the restriction operator Φβ (a) and prolongation operator Φ−1
β (b)

for a parameter x

41

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

shorthand notations, Sm, Am and Rm, respectively. Throughout the learning process, the policy

is represented with states and actions corresponding to the high-fidelity grid environment. As

a result, actions, and states to and from the environment, undergo the restriction Φβ and

prolongation Φ−1
β operations at each time-step as shown in the environment box in the Fig.

3.3.

Φ−1
β

Φβ

π(A|S)

Pβ(Sm, Am)

Rβ(Sm, Am, Sm+1)

Am

Rm+1

Sm+1

Rm

Sm
Agent

Environment, Eβ

Figure 3.3: A typical agent-environment interaction in the proposed multigrid RL framework

The proposed framework is demonstrated for PPO algorithm. PPO [39] is a policy gradient

algorithm that models stochastic policy πθ(A|S), with a neural network (also known as the

actor network). Essentially, the network parameters θ, are obtained by optimizing the objective

function defined as

Jppo(θ) =Êt

[
min

(
rt(θ) ˆAdv(St, At),

clip(rt(θ), 1− ϵ, 1 + ϵ) ˆAdv(St, At)
)]
,

(3.5)

where rt(θ) = πθ(At|St)/πθold(At|St) and θold correspond to the policy parameters before the

policy update. The advantage function estimator ˆAdv, is calculated using the generalized ad-

vantage estimator [48] derived from the value function Vt. The value function estimator V̂t

is learned through a separate neural network, termed as the critic network. The definitions

of advantage and value functions are provided in Appendix B.2. In practice, a single neural

network is used to represent both the actor and critic networks. The objective function for

this integrated actor-critic network is the sum of the actor loss term (Eq. 3.5), value loss term

and entropy loss term. For the purpose of maintaining brevity in our description, these latter

loss terms are omitted and the policy network’s objective function is treated as Jppo(θ) in fur-

ther discussion. However, please note that they are considered while executing the framework.

42

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

The readers are referred to [39] for a detailed definition of the policy network loss term. The

algorithm 4 presents the pseudocode for the proposed multigrid RL framework. The frame-

Algorithm 4 PPO with adaptive multigrid framework

1: Define δ, n and an empty array r for convergence criteria
2: Define a grid fidelity factor array β = [β1, β2, . . . , βm], where βm = 1 and β1 < β2 < . . . <
βm.

3: Define an episode limit array E = [E1, E2, . . . , Em], where E1 < E2 < . . . < Em.
4: Define total episode count, e = 0
5: for i = 1, 2, . . . ,m do
6: Generate the environment Eβi

, with the grid fidelity factor βi
7: for iteration = 1, 2, . . . do
8: for actor = 1, 2, . . . , N do
9: Run policy πθold in environment Eβi

, for T time steps (in total, E episodes)

10: Compute value function estimates V̂1, . . . , V̂T using critic network
11: Compute advantage function estimates Â1, . . . , ÂT

12: end for
13: Optimize Jppo(θ) with K epochs and minibatch size M ≤ NT
14: θold ← θ
15: Compute the policy return Rπθ(A|S) and append it in r
16: e := e+ E
17: if IsConverged(r, n, δ) or e ≥ Ei then
18: break
19: end if
20: end for
21: end for

work consists of, in total, m values of grid fidelity factor which are represented with an array

β = [β1, β2, . . . , βm], where βm = 1 and β1 < β2 < . . . < βm. The environment is denoted

as Eβi
, which represents the environment with the grid fidelity factor βi. Policy πθ(A|S) is

initially learned with the environment Eβ1 , until the convergence criteria are met. The conver-

gence criteria are checked using the algorithm 3 with predefined parameters δ and n. Upon

convergence, further policy iterations are learned using the environment Eβ2 , and so on until

the convergence criteria are met for the highest grid fidelity environment Eβm . A limit for

the number of episodes to be executed at each grid level is also set. This is done by defining

an episode limit array E = [E1, E2, . . . , Em], where Em is the total number of episodes to be

executed and E1 < E2 < . . . < Em. That is, for every environment with grid fidelity factor, βj

the maximum number of episodes to be trained is limited to Ej.

3.3 Case Studies

Two test cases are designed, representing two distinct uncertainty distributions of permeability

and control dynamics. For both cases, the values for model parameters emulate those in the

benchmark reservoir simulation cases, SPE-10 model 2 [51]. Table 3.2 delineates these values

for test cases 1 and 2. As per the convention in geostatistics, the distribution of log (k) is

43

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

Table 3.2: Reservoir model parameters
case 1 case 2 units

spatial domain X (1200×1200) (620×1820) ft2

temporal domain T [0,125] [0,25] days
initial saturation s0 0.0 0.0 –
viscosity µ 0.3 0.3 cP
porosity ϕ 0.2 0.2 –
number of producers np 31 14 –
number of injectors ni 31 7 –
total injector flow

∑
a+ 2304 9072 ft2/day

l1

w

l2

1200 ft

1200 ft

(a)

620 ft

1820 ft

(b)

Figure 3.4: Schematic of the spatial domain for test case 1 (a) and 2 (b)

assumed to be known and is denoted by G. As a result, g = log(k) is treated as a random

variable in the problem description defined in Eq. 3.1. The uncertainty distributions for test

cases 1 and 2 are indicated with G1 and G2, respectively.

3.3.1 Uncertainty Distribution for Test Case 1

The log-permeability uncertainty distribution for test case 1 is inspired by the case study of

[44]. Figure 3.4(a) shows schematics of the spatial domain for this case. In total, 31 injector

wells (illustrated with blue circles) and 31 producer wells (illustrated with red circles) are placed

on the left and right edges of the domain, respectively. As illustrated in Fig. 3.4(a), a linear

high-permeability channel (shown in gray) passes from the left to right side of the domain. l1

and l2 represent the distance from the upper edge of the domain on the left and right sides,

while the width of the channel is indicated by w. These parameters follow uniform distributions

defined as w ∼ U(120, 360), l1 ∼ U(0, L − w) and l2 ∼ U(0, L − w), where L is the domain

44

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

length. In other words, the random variable g follows the probability distribution G1 that is

parameterized with w, l1 and l2 which is described as

g ∼ G1(w, l1, l2).

To be specific, the log-permeability g at a location (x, y) is formulated as

g(x, y) =

log (245) if l2−l1

L
x+ l1 ≤ y ≤ l2−l1

L
x+ l1 + w,

log (0.14) otherwise,

where x and y are horizontal and vertical distances from the upper left corner of the domain

illustrated in Fig. 3.4(a). The values for permeability at the channel (245 mD) and the rest of

the domain (0.14 mD) are inspired from Upperness log-permeability distribution peak values

specified in SPE-10 model 2 case.

3.3.2 Uncertainty Distribution for Test Case 2

Test case 2 represents the uncertainty distribution of a smoother permeability field. Figure

3.4(b) illustrates reservoir domain for this case. It comprises 14 producers (illustrated with red

circles) located symmetrically on the left and right edges (7 on each edge) of the domain and

7 injectors (illustrated with blue circles) located at the central vertical axis of the domain. A

prior distribution F is assumed on all locations x ∈ X as

F (x) = µ+ Z(x),where, (3.6)

E(Z(x)) = 0,

Cov(Z(x), Z(x̃)) = σ2k(x, x̃),

where the process variance, σ, is assigned as 5 and the exponential covariance function (kernel),

k(x, x̃), is defined as

k(x, x̃) = exp

[
−
(
(x1 − x̃1)2

l21
+

(x2 − x̃2)2
l22

)1/2
]
,

where the parameters l1 and l2 are assigned to be 620ft (width of the domain) and 62ft (10% of

domain width), respectively. The posterior distribution given the observed log-permeability vec-

tor, g(x′) = [g(x′1), g(x
′
2), · · · , g(x′n)], where each observation corresponds to a log-permeability

value of 2.41 at a well location (that is, n = 21 since there are, in total, 21 wells in this case).

From the principle of ordinary kriging, the posterior distribution, G2, for log-permeability at a

45

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

location x ∈ X is a normal distribution which is defined as

g(x) ∼ G2(ĝ(x), ŝ2(x)), where,
ĝ(x) = µ̂+ k(x′, x)⊺k(x′, x′)−1(g(x′)− 1µ̂),

ŝ2(x) = σ2

[
1− k(x′, x)⊺k(x′, x′)−1k(x′, x)

+
(1− 1⊺k(x′, x′)−1k(x′, x))2

1⊺k(x′, x′)−11

]
,

where k(x′, x) is the n dimensional vector whose ith value is k(x′i, x), k(x
′, x′) is the n × n

dimensional matrix whose value at (i, j) is k(x′i, x
′
j), 1 is a n dimensional vector with all elements

of one (1 = [1, 1, · · · , 1]⊺) and µ̂ is an estimate of the global mean µ, which is obtained from

the kriging model based on the maximum likelihood estimate of the distribution F (x) (from

Eq. 3.6) for the observations g(x′), and is formulated as

µ̂ =
1⊺k(x′, x′)−1g(x′)

1⊺k(x′, x′)−11
.

The log-permeability distribution G2, is created with an ordinary kriging model using the geo-

statistics library gstools [65]. In the simulation, samples of the permeability fields are obtained

with a clockwise rotation angle of π/8.

3.3.3 State, Action and Reward Formulation

PPO algorithm attempts to learn the parameters θ of the policy neural network πθ(A|S). The
episodes (i.e., the entire simulation in the temporal domain T) are divided into five control

steps. Each episode timestep corresponding to a control step is denoted with tm, where m ∈
{1, 2, · · · , 5}. The state S, is represented by an observation vector that consists of saturation

and pressure values at well locations x′. Since the saturation values in the injector wells are

always one, regardless of time tm, they are omitted from the observation vector. Consequently,

the observation vector is of the size 2np + ni (i.e., ns = 93 for test case 1 and ns = 35 for test

case 2). Note that this observation vector forms the input to the policy network πθ(A|S). A

vector of flow control values of all the injector and producer wells, denoted by A, is represented

as the action. The action vector A consists of in total np + ni values (that is, na = 62 for test

case 1 and na = 21 for test case 2). To maintain constraints defined in Eq. 3.1d, the action

vector is represented by a weight vector w ∈ Rna , such that 0.001 ≤ wj ≤ 1. Each weight value

wj, corresponds to the proportion of flow through the jth well. As a result, the values in the

action vector are written as (w1, · · · , wni
, wni+1, · · · , wni+np). Flow through jth injector Aj, is

computed such that the constraint defined in Eq. 3.1d is satisfied

Aj = −
wj∑ni

i=j wj

c.

46

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

Table 3.3: Grid fidelity factor and corresponding grid size
test case 1 test case 2

β = 1 61× 61 31× 91
β = 0.5 30× 30 15× 45
β = 0.25 15× 15 7× 22

Similarly, the flow through the jth producer, Aj+ni
, is calculated as

Aj+ni
=

wj+ni∑np

j=1wj+ni

c.

The reward function, as defined in Eq. 3.2, is divided by total pore volume (ϕ× lx× ly) as a
form of normalization to obtain a reward function in the range [0,1]. The normalized reward

represents the recovery factor or the sweep efficiency of the contaminated fluid. Recovery

factor represents the total amount of contaminants swept out of the domain. For example,

the recovery factor of 0.65 means that 65% of contaminants are swept out of the domain using

water flooding. To put it in the context of a groundwater decontamination problem, the optimal

controls correspond to the well controls that maximize the percentage of contaminants swept

out of the reservoir.

3.3.4 Multigrid Framework Formulations

The proposed framework is demonstrated using three levels of simulation grid fidelity. Note that

β = 1 case corresponds to the finest level of simulation, which provides an accurate estimate

of recovery factor. In this study, the aim is to exploit the simulations with β < 1, which

correspond to computationally cheaper simulation run times by definition. Furthermore, β < 1

simulations are deliberately chosen such that they correspond to a recovery factor estimate

that deviates from accurate β = 1 simulation estimates. Table 3.3 lists the discretization

grid size corresponding to these grid fidelity factors for both test cases. Figures 3.5 (a) and

3.5 (b) plot the recovery factor estimates (with all wells open equally) for these grid fidelity

factors for each permeability sample ki, in test cases 1 and 2, respectively. The deviation

from the accurate recovery factor (that is, for β = 1) for β = 0.5 and β = 0.25 can be

seen for both cases. As expected, the recovery factor estimates with β = 0.25 show a higher

deviation from the estimates of β = 1 compared to those of β = 0.5. To show the effectiveness

of the proposed framework, the obtained results are compared with single-grid and multigrid

frameworks. The results for a single-grid framework are the same as if they were obtained using

the classical PPO algorithm, where the environment has a fixed fidelity factor throughout the

policy-learning process. This is done by setting the grid fidelity factor array β, and episode

limit array E, with a single value in algorithm 4. The factor n in convergence criteria procedure

(delineated in algorithm 3) is set to infinity. In other words, convergence criteria is unchecked

and the policy learning takes place for a predefined number of episodes. In total, three such

single-grid experiments are performed corresponding to β = 0.25, β = 0.5, and β = 1.0.

47

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

9 2 4 8 5 15 11 7 12 0 13 14 6 3 10 1
training permeability sample index i for ki

0.58

0.60

0.62

0.64

0.66

0.68

re
co

ve
ry

fa
ct

or

β = 0.25

β = 0.5

β = 1.0

(a)

8 12 10 15 9 2 3 0 7 1 13 4 6 14 11 5
training permeability sample index i for ki

0.64

0.66

0.68

0.70

0.72

re
co

ve
ry

fa
ct

or

β = 0.25

β = 0.5

β = 1.0

(b)

Figure 3.5: Comparison of recovery factor estimates with β = 1, β = 0.5 and β = 0.25 for test
case 1 (a) and test case 2 (b)

48

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

Table 3.4: Multigrid framework experiments
test case 1 test case 2
β = [0.25] β = [0.25]

single grid (β = 0.25) E = [75000] E = [150000]
n =∞; δ = 0 n =∞; δ = 0
β = [0.5] β = [0.5]

single grid (β = 0.5) E = [75000] E = [150000]
n =∞; δ = 0 n =∞; δ = 0
β = [1.0] β = [1.0]

single grid (β = 1.0) E = [75000] E = [150000]
n =∞; δ = 0 n =∞; δ = 0
β = [0.25, 0.5, 1.0] β = [0.25, 0.5, 1.0]

fixed multigrid E = [25000, 50000, 75000] E = [50000, 100000, 150000]
n =∞; δ = 0 n =∞; δ = 0
β = [0.25, 0.5, 1.0] β = [0.25, 0.5, 1.0]

adaptive multigrid E = [25000, 50000, 75000] E = [50000, 100000, 150000]
n = 25; δ = 0.2 n = 25; δ = 0.2

In addition, two multigrid experiments are performed to demonstrate the effectiveness of the

proposed framework. The first multigrid experiment is referred to as fixed, where convergence

criteria are kept unchecked just like single-grid frameworks. Multiple levels of grids are defined

by setting the grid fidelity factor array β, and episode limit array E, as an array of multiple

values corresponding to each fidelity factor value and its corresponding episode count. In the

fixed multigrid framework, policy learning takes place by updating the fidelity factor of the

environment according to β without checking the convergence criteria (i.e., by setting n =∞).

Second, the parameters of the adaptive multigrid framework are set similarly to those used in

the fixed multigrid framework, except for the convergence criteria parameters n and δ. Table

3.4 delineates the number of experiments and their corresponding parameters for test cases 1

and 2. Figure 3.6 provides visualization for the effect of fidelity factor β, on the simulation in

test case 1. Figure 3.6(a) and 3.6(b) show log-permeability and saturation plots corresponding

to β = 0.25, β = 0.5 and β = 1.0. Furthermore, Fig. 3.6(c) illustrates the effect of grid fidelity

on simulation run time for a single episode (shown on left with a box plot of 100 simulations)

and the equivalent β = 1 simulation run time for each grid fidelity factor (shown on right).

Equivalent β = 1 simulation run time is defined as the ratio of average simulation run time for

a grid fidelity factor β, to that corresponding to β = 1. This quantity is used as a scaling factor

to convert the number of simulations for any value of β to its equivalent number of simulations

as if they were performed with β = 1. Similar plots for test case 2 are shown in Fig. 3.7.

The results obtained using the proposed framework are evaluated against the benchmark opti-

mization results. These benchmark optimal results are obtained using the differential evolution

(DE) algorithm [47]. For both optimization methods (PPO and DE), multi-processing is used

to reduce total computational time. However, the parallelism behavior is quite varied between

the PPO and DE algorithms. For instance, neural networks are back propagated synchronously

at the end of each policy iteration of PPO, which causes extra computational time in waiting

49

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

β = 0.25 β = 0.5 β = 1.0

−2

0

2

4

(a)

β = 0.25 β = 0.5 β = 1.0

0.00

0.25

0.50

0.75

1.00

(b)

β = 0.25 β = 0.5 β = 1.0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ti
m

e
(s

ec
on

d
s)

simulation run time (100 trials)

β = 0.25 β = 0.5 β = 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.34

0.46

equivalent β = 1 simulation run time

(c)

Figure 3.6: Effect of grid fidelity factor β on the environment for test case 1: a on a sample of
log-permeability (unit: mD), b on corresponding saturation and c on simulation run time

50

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

β = 0.25 β = 0.5 β = 1.0

−2

0

2

4

6

8

(a)

β = 0.25 β = 0.5 β = 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b)

β = 0.25 β = 0.5 β = 1.0

0.10

0.15

0.20

0.25

0.30

0.35

ti
m

e
(s

ec
on

d
s)

simulation run time (100 trials)

β = 0.25 β = 0.5 β = 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.39

0.48

equivalent β = 1 simulation run time

(c)

Figure 3.7: Effect of grid fidelity factor β on the environment for test case 2: a on a sample of
log-permeability (unit: mD), b on corresponding saturation and c on simulation run time

51

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

and data distribution. For this reason, a computational cost comparison among various experi-

ments is performed by comparing the number of simulation runs in each experiment. The PPO

algorithm for the proposed framework is executed using the stable baselines library [66], while

python’s SciPy [67] library is used to execute DE algorithm. Appendix B.3 delineates all the

algorithm parameters used in this study.

3.4 Results

The control policy in which the injector and producer wells are equally open throughout the

entire episode is called the base policy. Under such policy, the water flooding prominently takes

place in the high permeability region, leaving the low permeability region swept inefficiently.

The optimal policy for these test cases would be to control the producer and injector flow

to mitigate this imbalance in water flooding. The optimal policy, learned using reinforcement

learning for test case 1, shows on average around 12% improvement with respect to the recovery

factor achieved using the base policy. While for test case 2, the average improvement is in the

order of 25%.

Figure 3.8 illustrates the plots for the policy return Rπ(A|S), corresponding to all the frameworks

listed in table 3.4 for test case 1. At the beginning of the learning process, the policy return

values for single-grid framework keeps improving and eventually converge to a maximum value

when the policy converges to an optimal policy. Note that for lower value of grid fidelity

factor β, the optimal policy return is also low. In other words, the coarsening of simulation

grid discretization also reflects in overall reduction in recovery factor. This is due to the low

accuracy of the state and action representation for environments with β < 1. However, the

overall computational gain is observed as a result of coarser grid sizes. The simulation run time

corresponding to β = 0.25 and β = 0.5 shows a reduction of around 66% and 54% compared

to β = 1. The results of multigrid frameworks are compared with the single grid framework

corresponding to β = 1 which refers to the classical PPO algorithm that uses the environment

with a fixed high-fidelity grid factor. As shown in the plots at the center and right of Fig. 3.8,

both multigrid frameworks show convergence to the optimal policy, which is achieved using

the high-fidelity single-grid framework. In the fixed multigrid framework, the fidelity factor is

incremented at a fixed interval of 25,000 number of episodes. The adaptive framework is also

provided with the same interval but with additional convergence check within each interval.

For multigrid learning plots shown in Fig. 3.8 (center and right plots), the equivalent number of

episodes corresponding to the environment with β = 1 is illustrated as a secondary horizontal

axis. In this way, the computational effect of multigrid frameworks is directly compared to a

single-grid framework (with β = 1). The equivalent number of β = 1 episodes corresponding

to episodes with a certain value β is computed by multiplying it with the equivalent β = 1

simulation run time. For example, the number of episodes with β = 0.25 is multiplied by

0.37. For a fixed multigrid framework, it takes 45,496 equivalent β = 1 episodes to achieve

an equally optimal policy that is obtained with a 75,000 number of episodes using single grid

52

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

0 25000 50000 75000

number of episodes

0.60

0.62

0.64

0.66

0.68

0.70

p
ol

ic
y

re
tu

rn
,
R
π

(A
|S

)

single-grid framework

β = 0.25

β = 0.5

β = 1.0

0 25088 50176 75264

number of episodes

p
ol

ic
y

re
tu

rn
,
R
π

(A
|S

)

fixed multi-grid framework

β = 0.25

β = 0.5

β = 1.0

0 25088 38400 51712

number of episodes

p
ol

ic
y

re
tu

rn
,
R
π

(A
|S

)

adaptive multi-grid framework

β = 0.25

β = 0.5

β = 1.0

0 8591 20408 45496

number of equivalent β = 1 episodes

0 8591 14991 28303

number of equivalent β = 1 episodes

Figure 3.8: Plots of policy return versus number of episodes for test case 1

(β = 1) framework. Similarly, the same is achieved with just 28,303 equivalent β = 1 episodes

using the adaptive multigrid framework. In other words, around 38% and 61% reductions are

observed in the simulation run time using fixed and adaptive multigrid frameworks, respectively.

Further, the robustness of the policy learned using these frameworks is compared by applying it

on the highest fidelity environment with random permeability samples from the distribution G1,
which were never seen during the policy learning process. Figure 3.9(a) shows the plots of these

unseen permeability fields, while the corresponding results obtained using these frameworks are

plotted in Fig. 3.9(b). Optimal results obtained using differential evolutionary (DE) algorithms

are provided as benchmark (marked as DE in Fig. 3.9(b)). Note that DE algorithm is not

a suitable method to solve the robust optimal control problem since it can provide optimal

controls only for certain permeability samples as opposed to PPO algorithm where the learned

policy is applicable to all samples of permeability distribution. However, DE results are used as

the reference optimal results, which are achieved by direct optimization on sample-by-sample

basis. Equivalence in the optimality of learned policies obtained using these three experiments

can be observed from the closeness in their corresponding optimal recovery factors. Figure 3.10

demonstrates the visualization of the policy for an example of the permeability sample in case

1. In this figure, the results are shown for permeability sample index 4 from the Fig. 3.9(a)

where a high permeability channel passes through the lower region of the domain. The optimal

policy in this case would be to restrict flow through the injector and producer wells that are

in the vicinity of the channel. The superpositioned comparison of optimal results for base

case, differential evolution, single-grid framework (where β = 1), fixed multigrid framework

and adaptive multigrid framework shows that the optimal policy is learned successfully using

the proposed framework.

For test case 2, similar results are observed as shown in Fig. 3.11. The single-grid algorithms

converge to an optimal policy in total 150,000 number of episodes. The fixed multigrid algorithm

is trained with 50,000 episode interval for each grid fidelity factor as shown in the central plot in

Fig. 3.11. The optimal policy is learned in 94,141 equivalent β = 1 episodes thus saving around

38% of simulation run time. The adaptive multigrid framework further reduces computational

cost by achieving the optimal policy in 39,582 equivalent β = 1 episodes (simulation time

53

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

index: 0 index: 1 index: 2 index: 3

index: 4 index: 5 index: 6 index: 7

index: 8 index: 9 index: 10 index: 11

index: 12 index: 13 index: 14 index: 15

−2

−1

0

1

2

3

4

5

(a)

2 14 10 9 6 4 12 15 0 8 5 13 7 3 11 1

evaluation sample index

56

58

60

62

64

66

68

70

72

re
co

ve
ry

fa
ct

or
%

Optimisation Results for Evaluation Permeabilities

single-grid (β = 1)

fixed multi-grid

adaptive multi-grid

DE

Base

(b)

Figure 3.9: Evaluation of learned policies for test case 1: a evaluation samples of log-
permeability distribution G1 shown with contour plots (unit: mD), b recovery factor (in %
format) versus evaluation sample index (from a) plot

54

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

Base 4

day 25: 14 % RF day 50: 29 % RF day 75: 43 % RF day 100: 52 % RF day 125: 59 % RF

DE 4

day 25: 14 % RF day 50: 29 % RF day 75: 43 % RF day 100: 58 % RF day 125: 70 % RF

single
grid 4

day 25: 14 % RF day 50: 29 % RF day 75: 43 % RF day 100: 57 % RF day 125: 71 % RF

fixed
multi
grid 4

day 25: 14 % RF day 50: 29 % RF day 75: 43 % RF day 100: 58 % RF day 125: 71 % RF

adaptive
multi
grid 4

day 25: 14 % RF day 50: 29 % RF day 75: 43 % RF day 100: 58 % RF day 125: 71 % RF

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.10: Illustration of learned optimal control policies for test case 1 using saturation
contour plots

0 50000 100000 150000

number of episodes

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

p
ol

ic
y

re
tu

rn
,
R
π

(a
|s

)

single-grid framework

β = 0.25

β = 0.5

β = 1.0

0 50176 100352 150528

number of episodes

p
ol

ic
y

re
tu

rn
,
R
π

(a
|s

)

fixed multi-grid framework

β = 0.25

β = 0.5

β = 1.0

0 50176 63488 76800

number of episodes

p
ol

ic
y

re
tu

rn
,
R
π

(a
|s

)

adaptive multi-grid framework

β = 0.25

β = 0.5

β = 1.0

0 19614 43965 94141

number of equivalent β = 1 episodes

0 19614 26270 39582

number of equivalent β = 1 episodes

Figure 3.11: Plots of policy return versus number of episodes for test case 2

55

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

reduction of about 76% with respect to the β = 1 single-grid framework). Figure 3.12 illustrates

the results of policy evaluation on unseen permeability samples from the distribution G2. The
permeability samples are shown in Fig. 3.12(a) and the optimal recovery factor corresponding

to the learned policies is plotted in Fig. 3.12(b). Figure 3.13 shows the optimal controls

for an example of the permeability sample index 5 from Fig. 3.12(a). The optimal policy

learned using differential evolution algorithm refers to increasing the flow through injector

wells which are in the low permeability region while restricting the flow through producer wells

for which the water cut-off is reached. Policies learned using the RL framework take advantage

of the default location and orientation of high-permeability regions. In this case, the optimal

policy is achieved by controlling the well flow control such that the flow traverses through

the permeability channels (that is, the flow is more or less perpendicular to the permeability

orientation).

3.5 Conclusion

An adaptive multigrid RL framework is introduced to solve a robust optimal well control

problem. The proposed framework is designed to be general enough to be applicable to similar

optimal control problems governed by a set of time dependant nonlinear PDEs. Numerically,

a significant reduction in the computational costs of policy learning is observed compared to

the results of the classical PPO algorithm. In the presented case studies, 61% computational

savings in simulation runtime for test case 1 and 76% for test case 2 is observed. However, note

that these results are highly dependent on the right choice of the algorithm hyperparameters

(e.g., δ, n, β and E) which were tuned heuristically. As a future direction for this research

study, the aim is to find the optimal values for β that maximize the overall computational

savings. Furthermore, the policy transfer was performed sequentially in the current framework,

which seemed to have worked optimally. However, to improve the generality of the proposed

framework, it would be important to study the effect of the sequence of policy transfers on

overall performance.

56

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

index: 0 index: 1 index: 2 index: 3 index: 4 index: 5 index: 6 index: 7

index: 8 index: 9 index: 10 index: 11 index: 12 index: 13 index: 14 index: 15

−6

−4

−2

0

2

4

6

8

(a)

8 0 7 1 15 10 11 2 6 5 9 4 14 3 13 12

evaluation sample index

65

70

75

80

85

re
co

ve
ry

fa
ct

or
%

Optimisation Results for Evaluation Permeabilities

single-grid (β = 1)

fixed multi-grid

adaptive multi-grid

DE

Base

(b)

Figure 3.12: Evaluation of learned policies for test case 2: a evaluation samples of log-
permeability distribution G2 shown with contour plots (unit: mD), b recovery factor (in %
format) versus evaluation sample index (from a) plot

57

Chapter 3: Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework

Base 5

day 25: 20 % RF day 50: 37 % RF day 75: 51 % RF day 100: 62 % RF day 125: 70 % RF

DE 5

day 25: 20 % RF day 50: 39 % RF day 75: 57 % RF day 100: 73 % RF day 125: 84 % RF

single
grid 5

day 25: 20 % RF day 50: 39 % RF day 75: 57 % RF day 100: 72 % RF day 125: 82 % RF

fixed
multi
grid 5

day 25: 20 % RF day 50: 39 % RF day 75: 57 % RF day 100: 72 % RF day 125: 84 % RF

adaptive
multi
grid 5

day 25: 20 % RF day 50: 39 % RF day 75: 58 % RF day 100: 74 % RF day 125: 86 % RF

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.13: Illustration of learned optimal control policies for test case 2 using saturation
contour plots

58

Chapter 4

A Multilevel Reinforcement Learning

Framework for PDE based Control

Reinforcement learning (RL) is a promising method to solve control problems [68]. However,

model-free RL algorithms are sample inefficient and require thousands if not millions of samples

to learn optimal control policies. A major source of computational cost in RL corresponds to

the transition function, which is dictated by the model dynamics. This is especially problematic

when model dynamics is represented with coupled PDEs. In such cases, the transition function

often involves solving a large-scale discretization of the said PDEs. We propose a multilevel RL

framework in order to ease this cost by exploiting sublevel models that correspond to coarser

scale discretization (i.e. multilevel models). This is done by formulating an approximate multi-

level Monte Carlo estimate (inspired by [42]) of the objective function of the policy and/or value

network instead of Monte Carlo estimates, as done in the classical framework. As a demon-

stration of this framework, we present a multilevel version of the proximal policy optimization

(PPO) algorithm. Here, the level refers to the grid fidelity of the chosen simulation-based

environment. We provide two examples of simulation-based environments that employ stochas-

tic PDEs that are solved using finite-volume discretization. For the case studies presented,

we observed substantial computational savings using multilevel PPO compared to its classical

counterpart.

Submitted for publication (preprint: https://arxiv.org/abs/2210.08400)

59

https://arxiv.org/abs/2210.08400

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

4.1 Introduction

Optimal control problem involves finding controls for a dynamical system (often represented

by a set of partial differential equations (PDEs)) such that a certain objective function is op-

timized over a predefined simulation time. In recent years, we have seen a surge in research

activities where reinforcement learning (RL) has been demonstrated as an effective method to

solve optimal control problems in fields such as energy [4], fluid dynamics [5], and subsurface

flow control [68]. The reinforcement learning process for optimal control policy often involves

a large number of exploration and exploitation attempts of control trajectories. In the con-

text of PDE-based control problems, this corresponds to a large number of simulations of the

underlying model dynamics. For large-scale PDE-based problems (i.e., with high-fidelity PDE

discretization), this makes RL a computationally expensive process.

Since the introduction of the multilevel Monte Carlo (MLMC) estimate as a computationally

cheaper counterpart to classical Monte Carlo estimates, numerous research studies have been

conducted in the application of MLMC estimates in uncertainty quantification for stochastic

PDEs [69–71]. Furthermore, we also see a rise of MLMC estimate applications in certain deep

learning research studies. For example, Shi and Cornish [72] present a framework for MLMC-

based unbiased gradient estimation in deep latent variable models. Chada et al. [73] illustrate

how the MLMC method could be applied to Bayesian inference using deep neural networks to

compute expectations associated with the posterior distribution where the level corresponds

to the sets of neural network parameters under consideration. In this paper, we introduce a

novel multilevel framework for reinforcement learning where the learned agent interacts with

environments corresponding to simulations of PDEs and the level corresponds to the grid fidelity

of the PDE discretization.

We start by presenting the anatomy for classical RL algorithms, which involves estimating the

Monte Carlo estimate of the objective function for policy and/or value network. Furthermore,

we formulate the approximate MLMC estimation methodology used in the proposed multilevel

framework. We then briefly present the mathematical framework that enables synchronized

rollouts of task trajectories at different levels of the environment. The data generated through

these synchronized rollouts are used to compute the approximate MLMC estimate of the ob-

jective function. Using the proposed multilevel framework, we formulate a multilevel variant

of the state-of-the-art algorithm titled proximal policy optimization (PPO).

In the experiments presented, we compare the reinforcement learning process for classical and

proposed multilevel PPO algorithms. The results are demonstrated for two environments for

which the model dynamics is represented by stochastic partial differential equations. Further-

more, we also demonstrate the results of standard MLMC analysis to compare the MLMC and

MC estimates for the PPO objective function. These environments were inspired by our re-

search work in Dixit and ElSheikh [68]. In this study, the levels of the environment correspond

to the discretization fidelity of the grid of the underlying PDEs.

60

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

The following is the outline for the rest of the paper: Section 4.2 provides the anatomy of

the classical RL framework and formally defines the approximate MLMC estimation method.

Section 4.3 introduces the multilevel framework for RL algorithms and further presents the

multilevel PPO algorithm along with its analysis methodology. Numerical experiments to

demonstrate the proposed multilevel PPO algorithm are detailed in Section 4.4, and the re-

sults of these experiments are delineated in Section 4.5. Finally, Section 4.6 concludes with a

summary of the research study and an outlook on future research directions.

4.2 Background

Conventionally, the RL framework consists of the environment E , which is governed by a Markov

decision process described by the tuple ⟨S,A,P ,R, µ⟩. Here, S ⊂ Rns is the state-space,

A ⊂ Rna is the action-space, P(s′|s, a) is a Markov transition probability function between the

current state s and the next state s′ under action a and R(s, a, s′) is the reward function. The

function µ(s) returns a state from the initial state distribution if s is the terminal state of the

episode (e.g., simulation terminal time); otherwise, it returns the same state s. The goal of

reinforcement learning is to find the policy π(a|s) to take an optimal action a when the state s

is observed. In deep reinforcement learning, the policy is denoted πθ(a|s) and is represented by

a neural network with parameters θ either directly (for policy-based algorithms) or indirectly

(for value-based algorithms). Learning is initiated with a random policy and then updated

by exploring state-action spaces and exploiting the observed rewards in subsequent sampling

steps. Each such update is referred to as a policy iteration.

Algorithm 5 Anatomy of deep reinforcement learning algorithms

1: for policy iteration = 1, 2, . . . do
2: step 1: Generate sequences {st, at, rt}t=T

t=1 using current policy πθ(a|s)
3: for t = 1, 2, . . . , T do
4: generate samples st, at and rt, where s, a, r ∼ pθ
5: compute Θt

6: end for
7: step 2: Compute Monte Carlo estimate of objective function Es,a,r∼pθ [J(s, a, r; θ,Θ)]:

8: ÊT
s,a,r∼pθ

[J(s, a, r; θ,Θ)]

9: step 3: Update θ using the gradient of the estimated objective function
10: end for

The algorithm 5 outlines a general anatomy of deep reinforcement learning algorithms. Each

policy iteration consists of three steps. First, the sequence {(s1, a1, r1), . . . , (sT , aT , rT)} is

generated by rolling out the current policy πθ(a|s). In this stage, the RL algorithm utilizes the

current policy to interact with the simulated environment by providing actions (aka. controls)

and recording the observed rewards. A shorthand notation s, a, r ∼ pθ, is used for the definition

of random variables s, a and r. Equation 4.1 provides a detailed expansion of this shorthand

61

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

notation.

s, a, r ∼ pθ

s ∼ µ(s)

a ∼ πθ(a|s)
s′ ∼ P(s, a)
r = R(s, a, s′)

(4.1)

The objective function used to calculate the gradient of the network parameters θ, is of the

form Es,a,r∼pθ [J(s, a, r; θ,Θ)], where Θ is a set of other parameters that can vary from one

algorithm to another. Appendix C.1 delineates this objective function for various algorithms.

The second step consists of computing a Monte Carlo estimate of Es,a,r∼pθ [J(s, a, r; θ,Θ)] which

is calculated using the samples generated in the first step. The notation ÊT
x∼X [f(x)] in algorithm

5 corresponds to the Monte Carlo estimate of Ex∼X [f(x)] which is calculated as T−1
∑T

t=0 f(xt),

where x1, . . . , xT are random samples of the random variable x ∼ X . To maintain brevity in

the description of Monte Carlo estimate, we use the same notation in the rest of the paper.

Finally, in the third step, the policy is updated by updating the network parameters θ using

the gradient of the estimated objective function.

4.2.1 Approximate Multilevel Monte Carlo estimation

Monte Carlo estimate of E[f(xL)] for the random variable xL ∼ X L is defined as

ExL∼XL [f(xL)] ≈ ÊT
xL∼XL [f(x

L)],

where T denotes the number of samples used in the estimation. Suppose that we have functions

φl
L that approximate the random variable xL from level L to l, ∀l ∈ {1, 2, . . . , L} (note that

φL
L is simply an identity function). Functions φl

L are defined so that each decrease in level

l corresponds to a proportional decrease in the accuracy and cost of computing the function

f(φl
L(x

L)). In PDE-based uncertainty quantification problems, the function f represents the

quantity of interest, which implicitly contains the solution for the said PDE. The level refers to

the grid discretization used during the PDE solving; that is, the grid discretization goes from

coarsest to finest from level 1 to L. For such a multilevel representation of functions, MLMC

estimate of E[f(xL)] is defined as

ExL∼XL [f(xL)] ≈
L∑
l=1

ÊT l

xL∼XL [f(φ
l
L(x

L))− f(φl−1
L (xL))], (4.2)

where T l represents the number of samples at each level l, and the value of the function at the

zeroth level is predefined at zero (that is, f(φ0
L())

.
= 0). The MLMC estimate is introduced by

[42] as a computationally cheaper alternative to the classical Monte Carlo estimate. Readers are

referred to the Appendix C.2 where we briefly explain the principle behind the computational

savings in the MLMC estimation.

As described in Equation 4.2, the MLMC estimate is the telescopic sum of Monte Carlo esti-

62

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

mates of the difference term f(φl
L(x

L))−f(φl−1
L (xL)) ∀l ∈ {1, 2, . . . , L}, for the random variable

xL ∼ X L. We reformulate this MLMC estimate so that we can use approximate samples at

each level instead of samples from the finest level L. This is done with the following two ap-

proximations: First, we treat φl
L(x

L) as a random variable xl ∼ X l, ∀l ∈ {1, 2, . . . , L}. Second,
we replace the second difference term from φl−1

L (xL) to φl−1
l (xl). In other words, the differ-

ence term can now be computed using an approximate random variable xl as opposed to the

random variable on the finest level xL. Furthermore, this term φl−1
l (xl), is denoted with x̃l−1,

which represents the synchronized value of xl at the level l−1. We denote this synchronization

process by the shorthand notation x̃l−1 = X l⇒l−1 as a subscript. Taking these approximations

into account, we formulate the approximate MLMC estimate as follows.

L∑
l=1

ÊT l

xl∼X l

x̃l−1=X l⇒l−1

[f(xl)− f(x̃l−1)]. (4.3)

Note that with this formulation we can employ the random variable xl at each level l. This

idea of using approximate samples at each level is at the heart of the proposed multilevel

RL framework. In the rest of the paper, we use the Equation 4.3 notation to formulate the

approximate estimate of MLMC.

4.3 Multilevel RL framework

We introduce a multilevel RL framework formulated as a tuple,
〈
E , ψl′

l , ϕ
l′

l

〉
where E represents

a set of multiple environments {E1, E2, . . . , EL}. An environment EL corresponds to the target

task described by the tuple
〈
SL,AL,PL,RL, µL

〉
. Its corresponding sublevel tasks are repre-

sented as environments E1, E2, . . . , EL such that the computational cost of P l and the accuracy

of Rl is lower than P l+1 and Rl+1 for all values of l ∈ {1, . . . , L − 1}. Furthermore, ψl′

l (s
l) is

a mapping function from state on level l (denoted as sl) to state on level l′ (denoted as sl
′
)

and similarly ϕl′

l (a
l) is a mapping function from action al to al

′
. The algorithm 6 outlines the

anatomy of deep reinforcement learning algorithms with the proposed multilevel framework.

The first step consists of generating the sequence {(sl1, al1, rl1), . . . , (slTl
, alTl

, rlTl
)} on level l and its

corresponding synchronized sequence {(s̃l−1
1 , ãl−1

1 , r̃l−1
1), . . . , (s̃l−1

Tl
, ãl−1

Tl
, r̃l−1

Tl
)} on level l−1. The

shorthand notation sl, al, rl ∼ plθ, for generating rollouts at level l and s̃l−1, ãl−1, r̃l−1 = pl⇒l−1
θ

for generating its synchronized rollouts at level l − 1 are expanded in equation 4.4.

sl, al, rl ∼ plθ

sl ∼ µ(sl)

sL = ψL
l (s

l)

aL ∼ πθ(a
L|sL)

al = ϕl
L(a

L)

s′l ∼ P l(sl, al)

rl = Rl(sl, al, s′l)

s̃l−1, ãl−1, r̃l−1 = pl⇒l−1
θ

s̃l−1 = ψl−1
l (sl)

s̃L = ψL
l−1(s̃

l−1)

ãL ∼ πθ(ã
L|s̃L)

ãl−1 = ϕl−1
L (ãL)

s̃′l−1 ∼ P l−1(s̃l−1, ãl−1)

r̃l−1 = Rl−1(s̃l−1, ãl−1, s̃′l−1)

(4.4)

63

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

Algorithm 6 Anatomy for multilevel deep reinforcement learning algorithms

1: for policy iteration = 1, 2, . . . do
2: step 1: Generate sequences {{(slt, alt, rlt), (s̃l−1

t , ãl−1
t , r̃l−1

t)}t=T
t=1 }l=L

l=1 with policy πθ(a
L|sL)

3: for level l = 1, 2, . . . , L do
4: slt = ψl

l−1(s̃
l−1
Tl−1

) ▷ if l > 1
5: for t = 1, 2, . . . , Tl do
6: generate samples slt, a

l
t, r

l
t where s

l, al, rl ∼ plθ
7: compute Θl

t

8: generate synchronised samples s̃l−1
t , ãl−1

t , r̃l−1
t ▷ if l > 1

9: where s̃l−1, ãl−1, r̃l−1 = pl⇒l−1
θ

10: compute Θ̃l−1
t ▷ if l > 1

11: end for
12: end for
13: step 2: Compute approximate multilevel Monte Carlo estimate of objective

Es,a,r∼pθ [J(s, a, r; θ,Θ)]:

14:
∑l=L

l=1 Ê
Tl

sl,al,rl∼plθ
s̃l−1,ãl−1,r̃l−1=pl⇒l−1

θ

[
J(sl, al, rl; θ,Θl)− J(s̃l−1, ãl−1, r̃l−1; θ, Θ̃l−1)

]
,

15: where J(s̃0, ã0, r̃0; θ, Θ̃0
t)

.
= 0.

16: step 3: Update θ using the gradient of estimated objective function
17: end for

Note that since the target task corresponds to the level L, the policy is now represented as

πθ(a
L|sL). Consequently, during policy rollouts on a certain level l, the state sl passes through

the mapping ψL
l and the action obtained aL passes through the mapping ϕl

L. Synchronization

from level l to l − 1 is obtained by mapping the states: s̃l−1 = ψl−1
l (sl). Figure 4.1 illustrates

the implementations of a policy iteration in the classical and multilevel frameworks. Note that

the level l−1 changes to l at the end of steps Tl−1 (for l = 2, . . . , L) and to continue the rollouts

at the level l, the state is mapped as ψl
l−1(s̃

l−1
Tl−1

). The generated samples are further used to

compute the approximate multilevel Monte Carlo estimate of Es,a,r∼pθ [J(s, a, r; θ,Θ)] which is

described as

l=L∑
l=1

ÊTl

sl,al,rl∼plθ
s̃l−1,ãl−1,r̃l−1=pl⇒l−1

θ

[
J(sl, al, rl; θ,Θl)− J(s̃l−1, ãl−1, r̃l−1; θ, Θ̃l−1)

]
,

where J(s̃0, ã0, r̃0; θ, Θ̃0)
.
= 0. Since T1 > T2 > . . . > TL, most of the computational costs of

the rollouts lean toward sub-level environments. As a result, the approximate multilevel Monte

Carlo estimate requires an overall lower computational cost than the Monte Carlo estimate in

the classical framework. Finally, the network parameters θ are updated using the gradient of

the estimated objective function at the end of the policy iteration.

4.3.1 Multilevel PPO algorithm

We present the proposed multilevel framework for the state-of-the-art model-free algorithm,

proximal policy optimization (PPO) [39]. In the context of the multilevel framework, the

64

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

state, s
action, a
reward, r
policy rollout, πθ(a|s)
transition function, P(s′|s, a)
reward function, R(s, a, s′)
policy rollout πθ(a

L|sL), with
s and a mappings: ψL

l , ϕ
l
L

(a) symbol representation

step 1 step 2

· · ·

step 3 . . . step T − 2 step T − 1 step T

(b) rollouts in classical framework

level 1 · · · · · ·

T1 stepslevel 2 · · · · · ·

T2 steps,
with s̃1 = ψ1

2(s
2)

synchronisation

level 3 · · ·

T3 steps,
with s̃2 = ψ2

3(s
3)

synchronisation
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

level L− 1 · · · · · ·

level L · · · · · ·

TL steps,
with s̃L−1 = ψL−1L (sL)

synchronisation

(c) multilevel synchronised rollouts in proposed framework

Figure 4.1: schematics of rollouts for a policy iteration

objective function is defined as

J(s, a, r; θ,Θppo) =min (p(θ)A(s, a), clip(r(θ), 1− ϵ, 1 + ϵ)A(s, a))

− cv
(
r + γmax

s′
Vθ(s

′)− Vθ(s)
)2

+ ceS[πθ](s).

(4.5)

The first term of this objective function is called the surrogate policy term, where p(θ) =

πθ(a|s)/πθold(a|s) and θold are network parameters at the beginning of the policy iteration,

A(s, a) is the advantage function, which is estimated using the generalized advantage estimator

[48]. The second term is referred to as value function error term which correspond to learning

value function Vθ(s), where γ is the discount factor. Finally, the last term S[πθ], corresponds to

the entropy of the learned policy, which is added to ensure sufficient exploration. Parameters

Θppo refer to the set of the following parameters: θold, A(s, a), ϵ, cv, γ, Vθ, s
′, ce and S[πθ](s).

65

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

Readers are referred to the Appendix C.1 for a detailed definition of these parameters. The

approximate multilevel Monte Carlo estimate of Es,a,r∼pθ [J(s, a, r; θ,Θ
ppo)] is defined as

l=L∑
l=1

ÊMl

sl,al,rl∼plθ
s̃l−1,ãl−1,r̃l−1=pl⇒l−1

θ

[
J(sl, al, rl; θ,Θppol)− J(s̃l−1, ãl−1, r̃l−1; θ, Θ̃ppol−1

)
]
, (4.6)

where J(s̃0, ã0, r̃0; θ, Θ̃ppo0)
.
= 0 and Ml is the mini-batch size at level l. The algorithm 7

provides an outline for the multilevel PPO algorithm. The inputs are the same as those of

Algorithm 7 Multilevel Proximal Policy Optimization algorithm

1: Input: E = {E1, . . . , EL}, N,T = {T1, . . . , TL},M = {M1, . . . ,ML}, K
2: for iteration = 1, 2, . . . do
3: for actor = 1, 2, . . . , N do
4: for level l = 1, 2, . . . , L do
5: sl = ψl

l−1(s̃
l−1
Tl−1

) ▷ if l > 1
6: for t = 1, 2, . . . , Tl do
7: sl, al, rl ∼ plθ
8: compute Θppol

9: s̃l−1, ãl−1, r̃l−1 = pl⇒l−1
θ ▷ if l > 1

10: compute Θ̃ppol−1
▷ if l > 1

11: end for
12: end for
13: end for
14: gather data {{(sl, al, rl), (s̃l−1, ãl−1, r̃l−1)}t=NTl

t=1 }l=L
l=1 , from all actors

15: optimize equation 4.6, with K epochs and minibatch size Ml ≤ NTl
16: update policy network parameters θ
17: end for

the classical PPO algorithm, except that multilevel variables are provided as a set of length L:

environments at each level E = {E1, . . . , EL}, number of actors N , number of steps at each level

T = {T 1, . . . , TL}, number of batches at each level M = {M1, . . . ,ML} (such that NT l ≤M l

and T 1/M1 = · · · = TL/ML) and number of epochs K. Note that if the sets E , T and M

consist of a single value, this algorithm is the same as the classical PPO algorithm where the

objective function is estimated using the Monte Carlo method. We implement this algorithm

using a standard RL library, stable baselines 3 [66]. The implementation details are delineated

in Appendix 9.

4.3.2 Multilevel PPO analysis methodology

We present an analysis methodology to compare the Monte Carlo estimate and the standard

multilevel Monte Carlo estimate of the PPO objective function. The analysis methodology is

adopted from [42], where the strong and weak convergences of the estimates are checked for

predefined mean squared error values. For convenience of demonstration, let us consider the

66

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

following shorthand notation.

ÊN [Yl]
.
=ÊN

sl,al,rl∼plθ
s̃l−1,ãl−1,r̃l−1=pl⇒l−1

θ

[
J(sl, al, rl; θ,Θppol)− J(s̃l−1, ãl−1, r̃l−1; θ, Θ̃ppol−1

)
]
,

ÊN [Jl]
.
=ÊN

sl,al,rl∼plθ

[
J(sl, al, rl; θ,Θppol)

]
.

As a result, the multilevel Monte Carlo estimate of E[JL] is described as

Y =
L∑
l=1

ÊMl [Yl] . (4.7)

The mean squared error (MSE) for this estimator is defined as

MSE = E[(Y − E[JL])2]

= V[Y] + (E[Y]− E[JL])2,

where V[Y] is the variance of the estimator and (E[Y]− E[JL])2 corresponds to the bias of the

estimator. A sufficient condition onMSE ≤ ε2, expands to V[Y] = ε2/2 and (E[Y]−E[JL])2 ≤
ε2/2. Under assumption V[Y] = ε2/2, the optimal number of samples at each level Ml and the

corresponding total cost of the estimator CMLMC are calculated as

Ml = 2ε−2

(
L∑
l=1

VlCl

)√
Vl
Cl

, (4.8)

CMLMC = 2ε−2

(
L∑
l=1

VlCl

)√
VlCl, (4.9)

where Vl corresponds to the variance estimate V̂N∞ [Yl] (defined as ÊN∞ [Y 2
l] − ÊN∞ [Yl]

2) for a

large number N∞, of samples and Cl is the computational cost of each sample of Yl. The weak

convergence test (E[Y]− E[JL])2 ≤ ε2/2, is ensured by the following inequality:

maxl∈{L−2,L−1,L} ÊN∞ [Yl]

(2α − 1)
≤ ε√

2
, (4.10)

where α is assumed to be a positive coefficient that explains the decay in the values of ÊN∞ [Yl]

for the chosen levels in the form ÊN∞ [Yl] = c12
−αl. It is estimated using linear regression on

ÊN∞ [Yl] values. Furthermore, the multilevel estimator Y is compared with the Monte Carlo

estimate corresponding to the highest level environment EL which is computed as

YMC = ÊM [JL] . (4.11)

67

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

The number of samples M and the total cost CMC of the Monte Carlo estimate corresponding

to the variance of the estimate ε2/2 are calculated as

M = 2ε−2V

C
, (4.12)

CMC = 2ε−2V (4.13)

where V is the variance estimate V̂N∞ [JL] and C is the computational cost of each sample of

JL.

The multilevel PPO analysis is performed in parallel with learning at certain predefined intervals

of policy iterations. An outline of the analysis is presented in algorithm 8. To obtain accurate

Algorithm 8 Analysis of multilevel Proximal Policy Optimization algorithm

1: Input: E = {E1, . . . , EL}, ε = {ε1, . . . , εn}, {C1, . . . , CL}, N∞
2: generate samples {sL, aL, rL}t=N∞

t=1 using the environment EL (i.e. sL, aL, rL ∼ pLθ)
3: generate synchronized samples {{s̃l, ãl, r̃l}t=N∞

t=1 }l=L−1
l=1 on sublevels (where s̃l, ãl, r̃l = pL⇒l

θ)

4: compute ÊN∞ [Yl], ÊN∞ [Jl], V̂N∞ [Yl] and V̂N∞ [Jl] using generated data
5: for ε in ε do
6: compute Ml (equation 4.8)
7: estimate multilevel Monte Carlo estimate Y (equation 4.7)
8: compute total cost CMLMC (equation 4.9)
9: compute M (equation 4.12)
10: estimate Monte Carlo estimate YMC (equation 4.11)
11: compute total cost CMC (equation 4.13)
12: check weak convergence (equation 4.10)
13: end for

estimates of ÊN∞ [Yl], ÊN∞ [Jl], V̂N∞ [Yl] and V̂N∞ [Jl] a high number of samples N∞, is chosen.

The samples of sequences are rolled out on the finest level L (corresponding to random variable

sL, aL, rL ∼ pLθ) and its synchronized samples are created in parallel on sublevels l ∈ {1, . . . , L−
1} (corresponding to random variables s̃l, ãl, r̃l = pL⇒l

θ). The notations sL, aL, rL ∼ pLθ and

s̃l, ãl, r̃l = pL⇒l
θ are delineated in equation 4.14 as

sL, aL, rL ∼ pLθ

sL ∼ µ(sL)

aL ∼ πθ(a
L|sL)

s′L ∼ PL(sL, aL)

rL = Rl(sL, aL, s′L),

s̃l, ãl, r̃l = pL⇒l
θ

s̃l = ψl
L(s

L)

ãL ∼ πθ(a
L|sL)

ãl = ϕl
L(ã

L)

s̃′l ∼ P l(s̃l, ãl)

r̃l = Rl(s̃l, ãl, s̃′l).

(4.14)

The Monte Carlo and multilevel Monte Carlo estimates of the objective function of PPO are

computed and compared for a set ε = {ε1, . . . , εn}, of MSE accuracy values. The computational

effectiveness of the multilevel estimator is demonstrated by comparing its total cost CMLMC with

the corresponding total cost for the Monte Carlo estimate CMC for each accuracy value.

68

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

4.4 Experiments

We present two case studies of simulation environments in which the transition between states

is governed by the solution of two partial differential equations that describe the incompress-

ible flow of a single phase through porous medium. The stochasticity of the environments is

attributed to an uncertain field of permeability. The governing equations for a single phase flow

c of clean water, through a porous medium with porosity η, consist of the continuity equation

coupled with the incompressibility condition that are defined as

η dc
dt

= cq −∇ · cv; ∇ · v = q in Ω ⊂ R2. (4.15)

Flow velocity v and pressure p are related by Darcy’s law: v = −k/µ∇p, where k is permeability

and µ is viscosity. Permeability is treated as a stochastic parameter, and its uncertainty is

modeled with a predefined probability distribution. The source and sink are denoted by q,

where the source corresponds to the injection rate of uncontaminated fluid (clean water) in the

domain Ω, and the sink corresponds to the flow rate of the contaminated fluid at the outlet.

Two environments with distinct parameters and flow scenarios are designed for demonstration

of the proposed multilevel PPO algorithm. For both cases, the parameter values emulate those

of the benchmark reservoir simulations presented in SPE-10 model 2 [51]. Environments are

denoted ResSim-v1 and ResSim-v2 in the rest of the paper (ResSim is a shorthand term for

reservoir simulation).

4.4.1 ResSim-v1 parameters

Schematics of the domain Ω in ResSim-v1 are illustrated in Figure 4.2a. Viscosity µ is set

to 0.3 cP, while porosity η is set to a constant value of 0.2. According to the convention in

geostatistics, the distribution of logarithmic permeability g = log (k) is assumed to be known.

This logarithmic permeability distribution for test case 1 is inspired by the case study conducted

by Brouwer et al. [44]. In total, 32 injection locations (illustrated with blue circles) and 32 outlet

locations (illustrated with red circles) are placed on the left and right edges of the domain,

respectively. The total injection rate is set to a constant value of 2304 ft2/day. As illustrated

in Figure 4.2a, a linear high-permeability channel (shown in gray) passes from the left to the

right side of the domain. l1 and l2 represent the distance from the top edge of the domain on

the left and right sides, while the width of the channel is indicated by w. These parameters

follow uniform distributions defined as w ∼ U(120, 360), l1 ∼ U(0, L−w) and l2 ∼ U(0, L−w),
where L is the domain length. To be specific, the logarithmic permeability g at a location (x, y)

is formulated as follows:

g(x, y) =

log (245) if l2−l1

L
x+ l1 ≤ y ≤ l2−l1

L
x+ l1 + w,

log (0.14) otherwise,

69

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

l1

w

l2

1200 ft

1200 ft

(a) ResSim-v1

620 ft

1820 ft

(b) ResSim-v2

Figure 4.2: schematic of the spatial domain Ω

where x and y are horizontal and vertical distances from the upper left corner of the domain,

as illustrated in Figure 4.2a. The values for permeability in the channel (245 mD) and the rest

of the domain (0.14 mD) are inspired from Upperness log-permeability distribution peak values

specified in SPE-10 model 2 case.

4.4.2 ResSim-v2 parameters

Figure 4.2b shows the reservoir domain for ResSim-v2. It consists of 14 outlets (illustrated with

red circles) located symmetrically on the left and right edges (7 on each edge) of the domain

and 7 injections (illustrated with blue circles) located at the central vertical axis of the domain.

The total injection rate is set at a constant value of 9072 ft2/day while viscosity and porosity

are set to the same values as in ResSim-v1. The uncertainty distribution of the permeability

field is considered to be smoother and spatially correlated, and is modeled as a constrained

log-normal distribution. Logarithmic permeability samples are created using ordinary kriging

methodology, which are constrained with a constant value of 2.41 logarithmic permeability at

injection and outlet locations. The exponential variogram model used for the kriging is defined

as

γ(r) = σ2

1− exp

−
√(

rx
lx

)2

+

(
ry
ly

)2

where rx and ry are x and y projections of the distance r. The variance of the process σ is set

to 5, while the length scales lx and ly are set to 620 ft (width of the domain) and 62 ft (10% of

domain width), respectively. The samples of permeability fields are further rotated clockwise

with the angle π/8. In this study, the above-mentioned kriging process is performed using the

geostatistics library gstools [65].

70

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

4.4.3 Reinforcement learning task

In the context of reinforcement learning, the state s is represented by a set of variables

{c, k, η, µ}, while the action a is represented by the source/sink term q at each control step. We

employ finite-volume discretization of governing equations 4.15 as detailed in Aarnes, Gimse,

and Lie [50] which is treated as a transition function P between states at time tm and tm+1.

The total time of the simulation is divided into five control steps, which form an episode with

finite horizon. As a result, the task is to learn a policy πθ(a|s) that selects the optimal values

of q that maximize the cumulative reward defined as

5∑
m=1

1

ϕ|Ω|

∫ tm−1

tm

(∫
Ω

min(q, 0)(1− c)dΩ
)
dt, (4.16)

where |Ω| refers to the area of the domain. This cumulative reward refers to the sweep efficiency

of the injected clean water, which ranges from 0 to 1. Furthermore, in the context of temporal

difference learning, the reward at time tm is formulated as the term inside the summation opera-

tor of equation 4.16. To represent the stochasticity of the task, a random sample of permeability

is chosen from a finite set of permeabilities for each episode in the learning process. This finite

set of permeability samples is achieved with a cluster analysis (please refer to Appendix C.4

for the cluster analysis formulation used in this paper). In order to demonstrate application

for a partially observable system, the policy network input is replaced with an observation

vector instead of the above-defined state. Here, the observation vector corresponds to values

of concentration and fluid pressure at injection and outlet locations. Subsequently, the output

of the policy network corresponds to the control vector, which consists of weights (with values

ranging between 0.001 to 1) representing flow rates at injection and outlet locations. Note

that with such representation of states, the underlying assumption of the Markov property of

the transition function is approximated. Such a system is referred to as a partially observable

Markov decision process (POMDP). By the definition of POMDP [74], the policy requires ob-

servations and actions from some sort of history or memory of previous control steps to return

the action for a certain control step. However, for the case studies presented, observation from

only the previous control step is sufficient for policy representation.

Figure 4.3 illustrates visualization of flow through the domain in ResSim-v1. The injection

and outlet locations are indicated with circles in blue and red, respectively, and their radius is

proportional to the flow rate. When ResSim-v1 is operated without a policy (that is, constant

injection/outlet rate in all locations), most of the concentration flow takes place in the high-

permeability channel, causing poor sweep efficiency in the low-permeability region. Figure 4.3a

illustrates the flow scenario without a policy for a sample of permeability. The concentration

flow is highlighted with blue in the domain. Consequently, the reward which refers to the

sweep efficiency corresponds to the ratio of domain area highlighted in blue color to the total

domain area. In other words, optimal policy refers to the choice of actions that increase the

domain area in blue (i.e., swept area of the contaminate where the concentration of the clean

71

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

r1 = 0.14 r2 = 0.28 r3 = 0.4 r4 = 0.5 r5 = 0.57

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

(a) no policy

r1 = 0.14 r2 = 0.28 r3 = 0.4 r4 = 0.5 r5 = 0.59

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

(b) optimal policy

Figure 4.3: example policy visualization for ResSim-v1

water is high). Figure 4.3b illustrates the optimal policy in which the flow through injection

/ outlet locations near the high permeability area near the channel is restricted. As indicated

by cumulative rewards at each time, we observe an improvement in total reward at the end of

the episode (from 0.57 in no policy to 0.68 with optimal policy). Similarly, Figure 4.4 provides

a visualization for the ResSim-v2 environment. The optimal policy in this case is to improve

the flow rate at locations near the low-permeability locations while restricting the flow rate in

locations near the high-permeability region.

4.4.4 Multilevel framework formulation

For multilevel formulation, we consider three levels of environment for the ResSim-v1 envi-

ronment, where the target task is described by the environment on level 3. For ResSim-v2

environment, we consider two levels, where the target task is predefined to be at level 2. The

levels for these environments correspond to the grid fidelity of the discretization scheme used to

solve the governing equations. Table 4.1 delineates the grid sizes corresponding to each level in

the ResSim-v1 and ResSim-v2 environments. The choice of grid fidelity corresponds to the fact

Table 4.1: grid size on each level
ResSim-v1 ResSim-v2

level 1 32× 32 31× 111
level 2 64× 64 73× 219
level 3 128× 128 –

that computational cost and accuracy of model dynamics are proportional to the level. This

is due to the fact that the computational cost and accuracy of a PDE are often proportional

to the size of the grid. These levels of environment are chosen heuristically for demonstra-

tion purpose of the multilevel PPO algorithm. Although there could be a more systematic

72

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

r1 = 0.2 r2 = 0.37 r3 = 0.51 r4 = 0.62 r5 = 0.7

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) no policy

r1 = 0.2 r2 = 0.39 r3 = 0.57 r4 = 0.73 r5 = 0.84

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) optimal policy

Figure 4.4: example of policy visualization for ResSim-v2

73

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

level 1
32x32

level 2
64x64

level 3
128x128

0.0

0.2

0.4

0.6

0.8

1.0

(a) comparison of flow visualization

level 1
32x32

level 2
64x64

level 3
128x128

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ise

d
co

st

0.05
0.13

(b) computational cost

Figure 4.5: environment levels for ResSim-v1

approach to choosing these levels, we consider this to be outside the scope of this study. The

state mapping function ψl′

l maps the state {cl, kl, ηl, µl} for the environment on level l to the

state {cl′ , kl′ , ηl′ , µl′} for the environment on level l′. Since porosity η and viscosity µ are set

to a constant throughout the domain, we do not need to map them in the function ψl′

l . As

a result, ψl′

l only maps the concentration c and the permeability k between the level l and l′.

When l is larger than l′, the mapping occurs from a fine grid to a coarser grid. This is done

by super-positioning a fine grid on a coarse grid and creating coarse partitions on the fine grid.

The resulting values in each partition are passed through the mean function for concentration

values and the harmonic mean for permeability values. On the contrary, when l′ is larger than l,

the mapping occurs from coarse grid to fine grid. In this case, the coarse value in each partition

is simply assigned to fine grid cells in the corresponding partition. When it comes to the action

mapping function ϕl′

l , note that l
′ is always larger than l for the proposed multilevel framework.

As a result, the action q is always mapped from a coarse grid to a finer one. The coarse to fine

mapping is done with the same methodology as ψl′

l , except for the choice of mapping function,

which is the sum of the action q. Finally, when l is the same as l′, the mapping functions ψl′

l

and ϕl′

l act as an identity function.

Figure 4.5a illustrates the comparison between flow through the domain at various levels. Com-

parison of the computational cost of the transition function for different levels is illustrated with

a bar plot in Figure 4.5b. This computational cost is taken as an average value of 100 simulation

trials to account for variability. The computational cost at each level is normalized by dividing

it by that corresponding to the target task. Similar plots for the visualization of two levels of

ResSim-v2 are shown in Figure 4.6.

4.5 Results

We demonstrate the effectiveness of the multilevel PPO algorithm by comparing its results with

the results of the classical single-level PPO algorithm for the target task. Table 4.2 delineates

the levels of environments considered in the one-level, two-level, and three-level PPO algorithm

(denoted as PPO-1L, PPO-2L, and PPO-3L, respectively). Note that PPO-1L refers to the

74

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

level 1
37x111

level 2
73x219

0.0

0.2

0.4

0.6

0.8

1.0

(a) comparison of flow visualization

level 1
37x111

level 2
73x219

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ise

d
co

st

0.24

(b) computational cost

Figure 4.6: environment levels for ResSim-v2

Table 4.2: levels in each multilevel PPO experiment
ResSim-v1 ResSim-v2

PPO-1L {3} {2}
PPO-2L {2, 3} {1, 2}
PPO-3L {1, 2, 3} –

results of the classical single-level PPO algorithm for the target task.

4.5.1 ResSim-v1 results

First, we present the results for multilevel PPO analysis with PPO-1L, which consists of a total

of 300 policy iterations. The analysis is performed every 30 iterations. Figure 4.7 illustrates

the comparison of Monte Carlo and the three-level Monte Carlo estimate of the objective

function with a true value that is estimated using 105 samples (that is, N∞ is set to 105).

The analysis is performed for three values of RMS accuracy: 10−2, 10−3, 10−4. This is done

by setting ε = {
√
10−2,

√
10−3,

√
10−4} in the analysis. The cost terms {C1, C2, C3}, which

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
MC estimates (YMC)

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

M
LM

C
es

tim
at

es
 (Y

)

2 = 10 2

2 = 10 3

2 = 10 4

50 100 150 200 250 300
policy iterations

PP
O

ob
je

ct
iv

e
fu

nc
tio

n

2 = 10 2

True value (105 samples)
MC estimates (YMC)
MLMC estimates (Y)

50 100 150 200 250 300
policy iterations

PP
O

ob
je

ct
iv

e
fu

nc
tio

n

2 = 10 3

True value (105 samples)
MC estimates (YMC)
MLMC estimates (Y)

50 100 150 200 250 300
policy iterations

PP
O

ob
je

ct
iv

e
fu

nc
tio

n

2 = 10 4

True value (105 samples)
MC estimates (YMC)
MLMC estimates (Y)

Figure 4.7: comparison of Monte Carlo and multilevel Monte Carlo estimate of PPO objective
function for ResSim-v1

75

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

30 60 90 120 150 180 210 240 270 300
0.0

0.2

0.4

0.6

0.8

1.0
M

l/M
3

level, l = 1
level, l = 2
level, l = 3

(a) proportions of samples on each level

30 60 90 120 150 180 210 240 270 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
st

 /
2

2

MLMC estimator cost (CMLMC)
MC estimator cost (CMC)

(b) comparison of computational cost

Figure 4.8: MLMC analysis results for ResSim-v1

correspond to the computational cost of each term in the multilevel Monte Carlo estimate, are

set to {0.1, 0.33, 1.23}. These values are chosen from the computational cost on each level,

which are illustrated in Figure 4.5b. To be specific, C1 refers to the computational cost on

level 1 (that is, 0.1). The term C2 refers to the computational cost of the difference between

synchronized samples at levels 1 and 2, as a result C2 is set as the sum of the computational

cost at levels 1 and 2 (i.e., 0.1+0.23). Similarly, C3 is set as the sum of the computational cost

at levels 2 and 3 (that is, 0.23 + 1.0). As can be seen in figure 4.7, we see a fairly accurate

comparison between Monte Carlo and multilevel Monte Carlo estimates. Furthermore, these

estimates yield more accurate values as we move towards lower values of ε2. This is because

the number of samples is inversely related to ε2 (as stated in equations 4.8 and 4.12). As a

result, the number of samples is basically scaled up as we reduce the values of ε2. Figure 4.8a

illustrates the number of optimal samples at each level of the multilevel estimator. The numbers

of samples are normalized to show the proportions of the samples at each level. This is done by

dividing Ml (from Equation 4.8) by M3 for all l ∈ {1, 2, 3}. We see that M2 is approximately

1/10th of M1 and M3 is observed to be about half of M2 throughout the learning process. The

comparison between the computational cost of Monte Carlo and the multilevel Monte Carlo

estimate is plotted in Figure 4.8 b. Here, the computational cost terms CMC and CMLMC are

divided by 2ε−2 to obtain the constant cost terms irrespective of RMS accuracy. We observe

that the computational cost of the multilevel estimate takes only about 20 to 30% of the Monte

Carlo estimate from the analysis.

Figure 4.9 a shows the superposition learning processes for PPO-1L, PPO-2L, and PPO-3L.

The parameters used for the experiments PPO-1L, PPO-2L, and PPO-3L are delineated in the

table 4.3. The learning plots are drawn as the average along with the range of values for three

distinct seed values. The parameter M , for PPO-1L, PPO-2L, and PPO-3L, is calculated from

equation 4.8 for the RMS value ϵ2 = 7.8×10−3 where the values of Vl and Cl are taken from the

analysis mentioned above. In other words, we compare the results among PPO-1L, PPO-2L,

and PPO-3L for a constant RMS accuracy. Note that these choices of values are done only in

76

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

0 50 100 150 200 250 300
policy iterations

0.58

0.60

0.62

0.64

0.66

0.68

re
wa

rd
s

PPO-1L (18hrs 48min)
PPO-2L (03hrs 36min)
PPO-3L (03hrs 24min)

(a) learning plot

3 6 5 0 13 9 1 15 7 10 2 4 11 12 8 14
permeability sample index

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

sw
ee

p
ef

fic
ie

nc
y

PPO-1L
PPO-2L
PPO-3L
DE
No policy

(b) policy robustness

Figure 4.9: multilevel PPO results for ResSim-v1

Table 4.3: parameters of multilevel PPO experiment for ResSim-v1
T M N K

PPO-1L {50} {250} 50 20
PPO-2L {70, 5} {350, 25} 50 20
PPO-3L {80, 10, 5} {400, 50, 25} 50 20

order to demonstrate a fair comparison among PPO-1L, PPO-2L, and PPO-3L. In practice, it is

not required to perform the analysis in order to choose M . Other parameters of the algorithm

are tuned to find the convergence for the PPO-3L case first, and these same parameters were

used in the PPO-2L and PPO-1L cases. Figure 4.9 a shows the evaluation of the environment

policy corresponding to the target task. This policy evaluation is represented with the average

reward corresponding to all the permeability samples used in the learning process. PPO-1L

refers to the classical PPO algorithm, which takes around 19 wall clock hours, while PPO-2L

and PPO-3L which correspond to the proposed multilevel PPO algorithm achieve the same

learning in about three and half hours. In other words, we save around 82% computational

costs with the proposed algorithm compared to its classical counterpart. Figure 4.9b shows the

robustness of the learned policies against uncertainty in permeability. This is done by plotting

rewards for 16 random permeability samples of the uncertainty distribution that were unseen

during the learning process. These results were compared with the optimal solutions obtained

using the differential evolution algorithm (implemented using the SciPy library, [67]), which

are denoted DE in Figure 4.9 b. The algorithm parameters for the PPO and DE algorithms,

in this study, are delineated in the Appendix C.5.

4.5.2 ResSim-v2 results

Similarly to ResSim-v1, we perform multilevel PPO analysis with PPO-1L, which consists of

a total of 1200 policy iterations and is performed every 120 iterations. Figure 4.10 illustrates

the correlation between Monte Carlo and the multilevel Monte Carlo estimate of the objective

function. The RMS values in ε are set to {
√
10−2,

√
10−3,

√
10−4} in the analysis. The cost

77

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
MC estimates (YMC)

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

M
LM

C
es

tim
at

es
 (Y

)

2 = 10 2

2 = 10 3

2 = 10 4

200 400 600 800 1000 1200
policy iterations

PP
O

ob
je

ct
iv

e
fu

nc
tio

n

2 = 10 2

True value (105 samples)
MC estimates (YMC)
MLMC estimates (Y)

200 400 600 800 1000 1200
policy iterations

PP
O

ob
je

ct
iv

e
fu

nc
tio

n

2 = 10 3

True value (105 samples)
MC estimates (YMC)
MLMC estimates (Y)

200 400 600 800 1000 1200
policy iterations

PP
O

ob
je

ct
iv

e
fu

nc
tio

n

2 = 10 4

True value (105 samples)
MC estimates (YMC)
MLMC estimates (Y)

Figure 4.10: comparison of Monte Carlo and multilevel Monte Carlo estimate of PPO objective
function for ResSim-v2

120 240 360 480 600 720 840 960 10801200
0.0

0.2

0.4

0.6

0.8

1.0

M
l/M

2

level, l = 1
level, l = 2

(a) proportions of samples on each level

120 240 360 480 600 720 840 960 1080 1200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
st

 /
2

2

MLMC estimator cost (CMLMC)
MC estimator cost (CMC)

(b) comparison of computational cost

Figure 4.11: MLMC analysis results for ResSim-v2

terms {C1, C2}, which correspond to the computational cost of each term in the multilevel

Monte Carlo estimate, are set to {0.24, 1.24}. As illustrated in Figure 4.10, we observe a

higher correlation between Monte Carlo and multilevel Monte Carlo estimates for higher RMS

accuracy values. Figure 4.11 a illustrates the proportions of the optimal number of samples

at both levels of the multilevel estimator. The comparison between the computational cost of

Monte Carlo and the multilevel Monte Carlo estimate is plotted in figure 4.11b. We observe

that the computational cost of the multilevel estimate takes only around 25 to 35% of the

Monte Carlo estimate from the analysis.

Figure 4.12 a shows the comparison between the learning processes for PPO-1L and PPO-2L.

The parameters used for the PPO-1L and PPO-2L experiments are delineated in the table 4.4.

In this case, the comparison between PPO-1L and PPO-2L is made for the RMS accuracy

Table 4.4: parameters of multilevel PPO experiment for ResSim-v1
T M N K

PPO-1L {100} {500} 50 20
PPO-2L {140, 15} {700, 75} 50 20

value ϵ2 = 3.9× 10−3. Similarly to the ResSim-v1 case, the hyperparameters of the algorithm

78

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

0 200 400 600 800 1000 1200
policy iterations

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

re
wa

rd
s

PPO-1L (24hrs 38min)
PPO-2L (16hrs 05min)

(a) learning plot

13 9 12 7 0 6 14 1 2 8 3 5 4 15 11 10
permeability sample index

0.65

0.70

0.75

0.80

0.85

0.90

sw
ee

p
ef

fic
ie

nc
y

PPO-1L
PPO-2L
DE
No policy

(b) policy robustness

Figure 4.12: multilevel PPO results for ResSim-v2

are tuned to find convergence for the PPO-2L case, and the same parameters were used in the

PPO-1L case. Figure 4.9 a shows the average evaluation of the environment policy correspond-

ing to the target task (level 2). PPO-1L refers to the classical PPO algorithm which takes

around 24 wall clock hours, while PPO-2L, which corresponds to the proposed multilevel PPO

algorithm, achieves the same learning in about 16 hours. In other words, we save around 35%

computational costs with the proposed algorithm compared to its classical counterpart. Figure

4.12b shows the robustness of the learned policies against uncertainty in permeability.

4.5.3 challenges and further research direction

Albeit successful results in learning and analysis of the proposed framework, we believe that

this study deserves deeper mathematical investigation and analysis. In particular, we would

like to study and analyze the effect of the approximation introduced in the MLMC estimation.

As an introduction to the proposed framework, the experiments presented for multilevel PPO

were performed for a specific PDE-based control problem for flow through porous media. Sub-

sequently, we would like to provide a thorough study with a variety of experiments with the

proposed multilevel PPO algorithm. This study would be mainly aimed at general benchmark

problems in which RL is utilized to achieve superhuman controls, but with excessive compu-

tational costs. Furthermore, while tuning the algorithm parameters for the multilevel PPO

algorithm, we observed that increasing the number of levels, the learning rate, and the clip

range had an adverse effect on the learning convergence.

4.6 Conclusions

A multilevel framework for deep reinforcement learning is introduced in which the learned

agent interacts with multiple levels of PDE-based environments where the level corresponds

to the grid fidelity of PDE discretization. We present a mathematical framework that allows

the synchronized implementation of task trajectories at multiple environmental levels. The

79

Chapter 4: A Multilevel Reinforcement Learning Framework for PDE based Control

presented approximate MLMC estimate is at the heart of the proposed multilevel framework.

We also present a novel multilevel variant of the classical PPO algorithm based on the proposed

multilevel framework. The computational efficiency of this multilevel PPO algorithm is illus-

trated for two environments for which model dynamics is represented with PDEs describing

an incompressible single-phase fluid flow through a porous medium. We observe substantial

computational savings in the case studies presented (approximately 82% and 35%, respectively).

As a future scope of this study, we aim to analyze the effect of the presented approximation to

standard MLMC estimation. For the multilevel PPO algorithm, this can be done by extending

the analysis methodology (presented in Section 4.3.2) for the approximate MLMC estimate.

We also aim to provide a future study to benchmark multilevel PPO algorithm performance

on a variety of environments.

80

Chapter 5

Summarized Outlook of Proposed RL

Frameworks for Subsurface Flow

Control

The contribution of the presented research work can be summarized as a proposal of mathemat-

ical frameworks that can be used as stencils for the application of reinforcement learning (RL)

in subsurface control. We begin in Chapter 2, by introducing an RL framework to solve the

stochastic optimal well control problem for partially observable simulation data. Furthermore,

after acknowledging the computational intractability of this framework, we propose an explicit

(Chapter 3) and an implicit (Chapter 4) RL framework to alleviate the overall computational

cost in the learning process. In this chapter, we summarize the proposed frameworks in order to

give an outlook in the context of RL application in reservoir management. We start by compar-

ing the RL-based approach with the conventional closed-loop reservoir management (CLRM)

approach, where we highlight the advantages and disadvantages of both approaches. In addi-

tion, we provide a brief summary of the proposed frameworks and their methodical connection

to each other. We provide a chronological story of these frameworks in relation to each other.

This illustrates the general evolution of the RL frameworks presented. Finally, we provide a

general set of guidelines in terms of concerns regarding the application of these frameworks

to full-field models. We present current state-of-the-art research in RL-based subsurface flow

control to give a perspective on the future of RL in reservoir management. Finally, we briefly

discuss the application of the proposed frameworks in future research on reservoir management

research.

81

Chapter 5: Summarized Outlook of Proposed RL Frameworks for Subsurface Flow Control

5.1 Introduction

Conventionally, most state-of-the-art research methods for solving optimal well-control prob-

lems make use of classical optimization algorithms. This research methodology is classified as

closed-loop reservoir management (CLRM) in the field of petroleum engineering. The research

work presented in this thesis proposes a paradigm shift in solving the optimal well control prob-

lem. Reinforcement learning research, being in its infant form, has yet to see more improvement

in its modeling and application to real-world control problems. Naturally, we anticipate that

more and more research in RL-based optimal well control will be conducted in the coming

years. Let us begin by understanding the fundamental differences between CLRM-based and

RL-based approaches to solving optimal well control problems.

5.1.1 CLRM-based approach

Subsurface flow control problem in reservoir management often consists of two main challenges.

First, reservoir simulations are modeled with parameters that are often unknown due to the

sparsity of available field data. As a result, these model parameters are often treated as un-

certain. This uncertainty can be described using a posterior probability distribution based on

prior information in available field data. Second, throughout the reservoir lifecycle, data are

only available at certain locations (e.g., well locations). CLRM-based approach to solving the

subsurface flow control problem is outlined in Figure 5.1a. In this approach, an initial reservoir

model is developed using the initial assumptions in the model parameters. At every control

step throughout the reservoir lifecycle, new production data is recovered. This data is used as

a prior in history matching algorithms to modify the posterior distribution of uncertain model

parameters. The updated reservoir model with these calibrated model parameters is further

used in an optimization algorithm. The optimal controls, thus obtained, are then used for the

corresponding control step. In order to handle the uncertainty in the model parameters, com-

mon practice involves forming an average of objective functions corresponding to certain model

realizations. In a nutshell, the CLRM-based approach consists of two fundamental steps at

every control step in the reservoir lifecycle: History matching and optimization. Both history

matching and control optimizations are mathematically formulated as optimization problems.

Numerous research studies are conducted to propose various optimization algorithms for these

two steps.

5.1.2 RL-based approach

The approach presented in this thesis offers a paradigm shift from the conventional CLRM-

based approach. The aim is to build a policy that can map real-time production data to

optimal well controls. With such a policy, we avoid the two steps of history matching and

optimization. We propose using reinforcement learning methods to learn this policy using a

pre-defined reservoir model. The uncertainty in the reservoir model parameters is considered

using a cluster-based domain randomization technique while training the policy. The learned

82

Chapter 5: Summarized Outlook of Proposed RL Frameworks for Subsurface Flow Control

(a) Conventional CLRM-based approach

(b) Proposed RL-based approach

Figure 5.1: Approaches to solving optimal well control problems

policies can be represented with a deep neural network. As a result, we can employ various

deep reinforcement learning algorithms that can be suitable for continuous control variables.

5.1.3 Advantages of RL-based approach

Model uncertainty is one of the most pressing issues in optimal well control problems. We

only have access to some sort of uncertainty distribution of the model parameters rather than

the true values. As a result, we should find the optimal controls that are conditioned on the

uncertainty of the model parameter. For this reason, it makes sense that our solution to optimal

well control problems should also form some sort of conditional formulation. Since the RL-based

approach offers a conditional policy (where controls are conditioned on the production data),

it is in principle an apt method to solve the robust optimal well control problem. This is in

contrast to the optimization approach, where the solution corresponds to deterministic values of

the optimal controls rather than a conditional form. This is because conventional optimization

algorithms typically do not contain a mechanism to handle the uncertainty in the objective

function. Some researchers deal with this by treating the objective function as an expectation

of a number of model realizations. The optimal controls thus obtained are found by giving equal

importance to all the model realizations under consideration rather than being conditioned on

the model uncertainty. Note that our aim is to find controls that can be optimal for any of

the model realizations. In the above-mentioned approach, we instead find the optimal controls

that are applicable to an average of model realizations. Furthermore, history matching is also

a complicated and computationally intensive step in the CLRM-based approach. With the

RL-based approach, this step can be omitted by implementing robust domain randomization

83

Chapter 5: Summarized Outlook of Proposed RL Frameworks for Subsurface Flow Control

methods while learning the optimal policy.

5.2 A summarized outlook of proposed RL frameworks

The advantages of the RL-based approach over the CLRM-based approach make RL a lucrative

technique to solve optimal well control problems for reservoir management. Since the research

study provided in the second chapter, there have been several research studies that implemented

subsurface flow control problems using reinforcement learning [62, 63, 75–80]. For the RL-based

approach to replace conventional CLRM-based approaches, it must address two key issues in

subsurface flow control problems. First, the optimal policy should be able to respond to the

partially available reservoir data. Second, the policy should address the uncertainty in the

parameters of the reservoir model. Miftakhov, Al-Qasim, and Efremov [62], He et al. [78], and

Zhang et al. [79] present useful research studies; however, the policy representation is for the

full reservoir data rather than its partial representation. Furthermore, [62, 75, 76] are some

examples of research studies in which the RL-based approach is presented for fixed reservoir

models (that is, without considering uncertain model parameters). The research studies done

in [63, 64, 80] provide great examples of RL-based approaches which take into account both

of these issues. As RL-based approaches are being explored in reservoir management research

studies, we must also address one of its main bottlenecks. Since the RL-based approach requires

a high number of reservoir simulation runs, it is computationally demanding. So far, we have

not seen much state-of-the-art research that has been done to specifically address this issue in

reservoir management research studies. At the end of the research study in Chapter 2, we found

ourselves at a crossroads either to further our studies by applying the proposed RL framework

on real-life reservoir management problems or to improve the proposed RL framework itself to

make it more computationally efficient. We chose to further our research in the latter direction,

since the computational cost is the most pressing issue for simulation-based RL problems. As

a result, with the computationally efficient solution provided in this research, we not only help

improve RL-based approaches in reservoir management but can also address this issue for other

simulation-based problems. We present two distinct approaches to improve the computational

efficiency of RL-based approaches. The first approach makes use of transfer learning techniques

by using multiple grids for simulation. Next, we propose a more generalized reinforcement

learning framework that employs the multilevel Monte Carlo estimation method.

As we look back at the structure of the proposed RL frameworks in this thesis, we cannot

help but observe a thematic progression in the frameworks presented. Figure 5.2 illustrates

the evolution in the presented frameworks in terms of the outline of the agent-environment

interaction. The RL framework presented in Chapter 2 simply follows the classical agent-

environment (illustrated in figure 5.2a). In this case, the environment is designed by instilling

cluster-based domain randomization to account for uncertainty in the environment. In the third

chapter, we present a multigrid framework that employs a transfer learning technique. In this

framework, the policy is designed for the high-dimensional state and action space (corresponding

84

Chapter 5: Summarized Outlook of Proposed RL Frameworks for Subsurface Flow Control

πθ(a|s)
am

rm+1

sm+1

rm

sm
Agent

Environment, E

P(sm, am)

R(sm, am, sm+1)

sm+1

(a) Classical framework

πθ(a|s)
am

rm+1

sm+1

rm

sm
Agent

Environment, Eβ

Pβ(sm, am)

Rβ(sm, am, sm+1)

sm+1 ϕψ

(b) Multigrid framework

Agent

πθ(a
L|sL)

rlm, r̃
l−1
m

sLm aLm

Environment, El

P l(slm, a
l
m)

Rl(slm, a
l
m, s

l
m+1)

slm+1 ϕψ

rlm+1

sLm+1

Synchronised Environment, El−1.map from(El)

P l(s̃l−1m , ãl−1m)

Rl(s̃l−1m , ãl−1m , s̃l−1m+1)

s̃l−1m+1 ϕ

r̃l−1m+1

(c) Multilevel framework

Figure 5.2: Evolution of proposed RL frameworks

to the finest grid). The environment is parameterized by the grid fidelity factor β that is changed

progressively through the policy learning process. As a result, we introduce the mappings ψ

and ϕ that map the state and actions from the dimensions of the environment’s state and action

space to a high-dimensional state and action space corresponding to the policy network. Figure

5.2b illustrates the multigrid agent-environment where the environment is indicated by Eβ and

the mapping functions to and from the environment are denoted by ψ and ϕ.

The multilevel framework presented in Chapter 4 can be viewed as a progression to the multigrid

framework presented in Chapter 3. Like the multigrid framework, the policy network in a

multilevel framework is also designed for high-fidelity state-action space. As a result, similar

mapping functions like ψ and ϕ are used in the multilevel framework. Furthermore, multiple

levels of the environment in the presented studies are represented by the coarseness of the grid

and are indicated with a superscript with its level number l. The key idea in the multilevel

framework is to use multilevel Monte Carlo (MLMC) estimates of the objective function in

RL algorithms. To formulate the MLMC estimate of the objective function, we propose a

synchronized implementation framework in which each environment on level l is synchronized

with the environment on level l− 1. Figure 5.2c outlines the agent-environment interaction for

the proposed multilevel framework.

The multilevel and multigrid frameworks can be seen as independent approaches to improve the

computational efficiency of the RL framework presented in Chapter 2. Although these frame-

works are distinct in their approach, it begs the obvious thought to compare these frameworks

in relation to each other. The multigrid framework is conceptually based on the principles of

transfer learning. On the other hand, the multilevel framework is based on a novel paradigm

in reinforcement learning, which is introduced in this thesis. Despite the successful results

presented in Chapter 4, we should note that this research is in its infancy stage and deserves

85

Chapter 5: Summarized Outlook of Proposed RL Frameworks for Subsurface Flow Control

more refinement in related future research work. One way to compare these frameworks would

be to study the hyperparameters introduced in the algorithms presented. The multigrid PPO

algorithm must be tuned with parameters such as δ, n, β and E (refer algorithm 4 for details).

Furthermore, the environment in these algorithms must be provided with mapping functions

(similar to ϕ and ψ in figure 5.2b). On the other hand, the multilevel PPO algorithm (refer

to algorithm 7) can be viewed as simply the vectorization of the classical PPO algorithm. In

other words, we do not have to consider any extra hyperparameters like in the multigrid PPO

algorithm. For the multilevel PPO algorithm, we instead provide vectorized inputs (e.g. T , M

and E from algorithm 7) corresponding to the levels of the environment under consideration.

In addition to the mapping functions provided in the multigrid framework, environments in

multilevel frameworks are also needed to provide the mapping capability to implement syn-

chronization of multiple levels.

It will also be important to compare the multigrid and multilevel frameworks for their com-

putational efficiency. This can be done by comparing the computational savings from these

frameworks using a benchmark problem. In this thesis, we presented both frameworks as inde-

pendent research studies. As a result, the case studies chosen in these research studies (albeit

similar) are not identical. For instance, the grid fidelity factors in the multigrid framework and

multiple levels in the multilevel framework are different from each other. For this reason, it

would not be fair to compare the computational effectiveness of these frameworks with the case

studies presented. As a future research direction, it would be interesting to design benchmark

case studies to compare the multigrid and multilevel frameworks.

5.3 Guidelines for application of proposed framework

The main contribution of this thesis is in terms of mathematical frameworks that can be

used to solve optimal well control problems in reservoir management. The effectiveness of

these frameworks is demonstrated by applying them on prototypes of some reservoir simulation

problems that represent key features in a typical reservoir simulation. A natural progression of

these research studies is to apply these mathematical frameworks in real-life reservoir simulation

problems. The research studies presented in [62–64, 75, 76, 79–82] form an initial building block

for implementing RL-based approaches in optimal well control problems. The general guidelines

for reservoir engineers to use the RL-based approach in optimal well control problems can be

delineated as given below.

Policy network: The policy in optimal well control problems maps a certain state of

reservoir simulation to the optimal controls. This policy can only be applicable in real-

time applications if the state is represented in the form of on-field production data (e.g.,

data at well location). Some research studies (e.g., [76, 83]) formulated the policy in

terms of a tabular Q-value by assuming discrete state-action space. However, in reality

the real-time field data is often of the continuous type. To accommodate this, research

studies like [79] approximated Q-value function as an artificial neural network (ANN).

86

Chapter 5: Summarized Outlook of Proposed RL Frameworks for Subsurface Flow Control

However, in this study the action is presented in a discrete format, where the controls

refer to a delta increment or decrement. For an accurate representation of the control of

the field wells, we recommend a continuous representation in Chapter 2, where the policy

network is represented as an ANN. For the simplified prototype presented in this study

we found that ANN representation for the policy is sufficient. However, research studies

presented in [63, 80] recommend a recurrent neural network called transformer. Taking

into account the POMDP (partially observable Markov decision process) nature of the

otimal well control problem, the recurrent neural network makes a suitable candidate for

the policy network in the RL-based approach.

Action representation: Research studies on RL-based optimal well control problems

can be divided into two categories as far as the representation of actions (well controls).

Research studies [62, 76] represent the injection/production rate of the well in a discrete

format. Injection / production rates are controlled as delta increment, decrement, or

no change. However, this does not necessarily reflect the reality of on-field wells, which

are controlled through the specification of bottom-hole pressures (BHPs). On the other

hand, studies like [79, 80, 83] represent well controls more accurately in a continuous form.

The action representation in this case is a vector representing the flow controls at each

wells. In order to use the RL framework from Chapter 2 in real-life reservoir problems,

we recommend representing the well controls in terms of BHPs at production wells and

injection flow rates at injection wells.

State representation: Almost all research studies identify saturation and pressure val-

ues as the representation of the state in RL-based approaches. Studies like [41, 62] are an

important contribution to RL-based approaches to optimal well control where states are

represented from all locations on the grid. However, they cannot be applied in real-time

reservoirs where the state can only be observed at certain well locations. Hourfar et al.

[75], Zhang et al. [79], and Nasir and Durlofsky [80] represent the state only at observed

well locations. It is important to consider the POMDP nature of the optimal well control

problem. As a result, the state is supposed to be represented with an array of observations

for a buffer of observations in certain past control steps.

Reward formulation: To facilitate implementation and representation, we chose sweep

efficiency as a reward for RL-based approaches in the studies presented in this thesis. For

real-life applications on subsurface flow control problems, reservoir engineers may want to

choose the cumulative net present value (NPV) as the reward. The reward is calculated

for every control step in the policy learning process.

Domain randomization: Very few RL-based research studies consider domain ran-

domization while learning the optimal policy. To address the uncertainty of the model

in reservoir simulations, domain randomization plays an important role. In Chapter 2,

we describe a cluster-based analysis methodology to explain the domain randomization

step in RL-based approaches. With such an approach, reservoir engineers can assess the

87

Chapter 5: Summarized Outlook of Proposed RL Frameworks for Subsurface Flow Control

robustness of the learned policy in real time. In fact, we recommend training the opti-

mal control policy based on the robustness in such evaluation. In order to consider the

dynamic differences between various model realizations, we advise reservoir engineers to

use the connectivity distance metric [84].

Multigrid framework: Since the research in RL-based approaches in optimal well con-

trol is still in its infant stage, we have not seen many research studies focusing on im-

proving the computational efficiency of RL frameworks. As a result, the research study

presented in Chapter 3 marks the first step toward implementing a computationally ef-

ficient RL framework for optimal well control problems. In order to accommodate the

transfer learning between multiple grids of the environment, we recommend using map-

ping functions similar to the ones explained in Chapter 3 (please refer to section 3.2).

Note that these mapping functions will be computed for every agent-environment inter-

action (i.e. each control step). As a result, reservoir engineers need to ensure that these

operations are computationally optimized to avoid overhead computational costs. In our

research study, we programmed the mapping functions with careful computational op-

timization. In addition, we used a Python library called NUMBA [85] to convert our

functions into fast machine codes. The selection of grid fidelity factors β is delineated in

section 3.3. Additionally, hyperparameters such as δ and n can be tuned on a case-by-case

basis. However, from a practitioner’s perspective, we advise using the δ value in the range

0.1-0.7 of and n from the range 5-15.

Multilevel framework: In an attempt to provide a generalized reinforcement learn-

ing framework that can alliviate the computational cost in RL-based approaches for

simulation-based control problems, we present the multilevel framework in Chapter 4.

Despite the success in the numerical experiment presented, we acknowledge that this

framework still needs more in-depth mathematical investigation. One of the major lim-

itations that we observed in this framework was about the stability of the proposed

multilevel PPO algorithm when we increased the number of levels of environments. We

recommend that reservoir engineers employ at most three levels of environments in this

framework. As a rule of thumb, we recommend using a very high number of time steps at

the coarsest level (first level) of the environment. For the rest of the levels, the number

of timesteps is chosen in a decrementing order. These parameters can be tuned on a

case-by-case basis.

5.4 Future scope

We present numerical experiments using single-phase models for the proposed frameworks. We

discuss the choice of single-phase models over two-phase models for the ease of execution and

demonstration in section 2.2. Having said that, we carefully designed these case studies to

represent subsurface control problems with real full-field models. We assume the uncertainty

of the model by treating the permeability as the uncertain model parameter. In real full-field

88

Chapter 5: Summarized Outlook of Proposed RL Frameworks for Subsurface Flow Control

models, other model parameters might as well be subject to uncertainty. However, we chose a

single parameter (i.e. permeability) for simplicity in representation. Note that the methodology

presented in these frameworks would nonetheless be similar for more than one uncertain model

parameter. Furthermore, it is also important to select the uncertainty distribution with careful

consideration for it to be significant in subsurface flow control problems. Sometimes, uncer-

tainties in the model parameter might not reflect direct uncertainty in the optimal controls. As

a result, we chose the uncertainty distribution such that its uncertainty is directly reflected in

the optimal policies. For instance, the change in the position of the high-permeability channel

in the presented case study (case 1 in Chapters 2 to 4) directly reflects the change in the opti-

mal policy of restricting the flow through wells near the channel. Furthermore, we present the

values of the model parameters in a range similar to that presented in the standard SPE-10

model 2 [51] (detailed in 2.3).

A natural extension to the work presented would be to apply the presented RL frameworks in

full-field reservoir models. In this section, we discuss some key concepts that should be consid-

ered when applying this work to such problems. For ease of implementation, we represent the

uncertainty of the model parameter only in terms of permeability. However, in reality, we might

have other model parameters (e.g. porosity, irreducible saturation values, etc.) which might

also attribute some uncertainty. In the framework presented, the uncertainty in the subsurface

controls was dealt with using a cluster-based analysis. The same cluster-based methodology

can also be extended to cases where more than one parameter is uncertain given the predefined

uncertainty distribution of these parameters. This is possible because we are using the connec-

tivity distance metric while clustering, which measures the distance between dynamic outputs

of the model realizations rather than the distance between model parameters themselves. Fur-

thermore, we assume that the flow is incompressible in the case studies presented. To consider

compressible flow in the full-field models, we need to rethink the representation of action in the

proposed RL models. In the proposed methodology, we present an action representation using

a weight vector that represents the flow proportion through each production well (detailed in

Section 2.2). For the compressible flow scenario, it would be more accurate to represent the

actions in terms of BHPs at production well locations (similar to that in the research study

[80]).

Computational cost is the main concern in the use of RL-based approaches in subsurface con-

trols. Let us consider the timescale for application of the proposed framework in full-field

reservoir benchmark models such as PUNQ-S3. The average simulation time for this problem

is around 10 minutes. As observed in Chapter 3, we assume the policy learning process to

require around 60000 simulation runs using 64 CPUs. For the PUNQ-S3 case, this would mean

that it would take around six and a half days to finish the learning process. Note that in

the presented studies, we are using a desktop with 64 CPUs (Intel Xeon CPU E5-2699 v3 @

2.30GHz) and a GPU (NVIDIA, GeForce RTX 2080 Ti) to implement this experimentation.

So far, for instance, if we instead use 256 CPUs, this time can be reduced to just one and a half

days. Furthermore, to demonstrate the complete learning process, we illustrated the learning

89

Chapter 5: Summarized Outlook of Proposed RL Frameworks for Subsurface Flow Control

process for 60000 simulation runs. However, as we can see, we reach an optimal policy just be-

fore 40000 simulation runs, which would correspond to four days for the PUNQ-S3 case. Having

said that, let us consider the scenarios presented in Chapter 2 just as they are for the rest of

the discussion. Further, we observe around 60-70% computational savings with the multigrid

framework presented in Chapter 3. That is, we would expect to reduce the policy learning time

from 6.5 to around 2 days when using the multigrid framework with the same computational

resources. In addition, we also anticipate observing similar computational savings using the

multilevel PPO algorithm.

5.5 Conclusion

This chapter provides a summary of the proposed RL-based optimal control research along

with its future scope. We distinguish RL-based approaches from the conventional CLRM-

based approach and discuss its advantages. In addition, we provide all the RL frameworks

proposed in this thesis and how they are related to each other. We supplement this summary

with state-of-the-art research in RL-based research applications in reservoir management. On

the basis of the proposed RL frameworks and state-of-the-art research, we delineate guidelines

for reservoir engineers regarding RL-based approaches in subsurface control problems. Finally,

we share our perspective on the future scope of applications of proposed RL frameworks in

full-field reservoir models.

90

Chapter 6

Conclusion and Future Work

In this thesis, we study the application of reinforcement learning to solve subsurface flow con-

trol problems. We introduced an RL framework to solve the stochastic optimal well control

problem for partially observable simulation data (Chapter 2). After acknowledging the com-

putational cost used by simulation runs as the major limitation of the proposed RL algorithm,

we propose an explicit (Chapter 3) and an implicit (Chapter 4) RL approach to alleviate the

overall computational cost of the proposed RL framework. In the following, we recapitulate

the main findings of our study along with possible extensions.

6.1 Chapter 2: Stochastic optimal well control in sub-

surface reservoirs using reinforcement learning

The framework is presented to use model-free RL algorithms to obtain a robust optimal control

strategy for optimal well control problems using the Model-Free RL algorithm. This policy is

learned assuming that the system is partially observable and governed by a nonlinear partial

differential equation system. The robustness of these policies was achieved using a domain

randomization scheme that uses only a few samples from a predefined uncertainty distribution

using cluster analysis. Furthermore, the optimality of these policies has been successfully

compared to reference solutions obtained by directly optimizing using the differential evolution

algorithm. We see the current framework as a first attempt to apply narrow AI to the subsurface

flow control field, in which data are only available at well locations. In the current study, we

trained RL policies with a large number of simulation runs. This is computationally expensive

in large-scale models with large simulation run-times. Finally, we discuss a possible resolution

of this issue by considering fast surrogate modeling techniques to accelerate the reinforcement

learning process.

91

Chapter 6: Conclusion and Future Work

6.2 Chapter 3: Robust optimal well control using an

adaptive multigrid reinforcement learning framework

We have introduced an adaptive multigrid multigrid RL framework to solve a robust well control

optimal problem. The proposed framework is designed to be general enough to be applicable to

similar optimal control problems governed by a set of time-dependent nonlinear PDEs. Numer-

ically, we observed a significant reduction in policy learning computational costs compared to

the results of the classical PPO algorithm. In the presented case study, computational savings

of 61 % in simulation run time were observed in test case 1 and 76 % in test case 2. However,

we noted that these results are highly dependent on the right choice of the algorithm hyper-

parameters (denoted with δ, n, β and E in the chapter) which were tuned heuristically. As

a future direction for this research study, we pointed to a future direction in the analysis of

optimal values for β that maximizes overall computational savings. Additionally, policy trans-

fer was performed sequentially in the proposed framework, which appeared to work optimally.

However, it is important to examine the impact of the sequence of policy transfer on overall

performance to improve the generality of the proposed framework.

6.3 Chapter 4: Multilevel framework for deep reinforce-

ment learning

We present a multilevel framework for deep reinforcement learning algorithms by introducing

synchronized rollouts at multiple levels of predefined environments. We present this framework

by introducing the multilevel variant of the PPO algorithm. The computational efficiency of the

multilevel variant of PPO is illustrated for two experiments by comparison with the results of

the classical PPO algorithm. We observe substantial computational savings in the case studies

presented (approximately 82% and 35%, respectively). Next, our goal is to provide further

convergence and stability analysis for the proposed multilevel PPO algorithm.

6.4 Remarks and future directions

In our study, the emphasis was on introducing a general framework for the use of RL in

optimal well control problems. The study of the adaptive multigrid framework warrants future

investigation of the selection and order of the grid fidelity factor values. In transfer learning

research, this is called curriculum learning. We foresee that curriculum learning for the proposed

adaptive multigrid framework is a natural next step forward. The introduction of a multilevel

framework for reinforcement learning opens the door to many future directions. In the presented

study, we demonstrate the multilevel framework using a multilevel variant of the classical PPO

algorithm. Similarly, one can create multilevel versions of other state-of-the-art RL algorithms

like DQN, A2C, SAC, etc. Research in the direction of selection of levels of environment can also

be a valuable addition to the presented multilevel PPO algorithm. This will most likely include

92

Chapter 6: Conclusion and Future Work

conditions and/or algorithms to choose levels for the environment. More importantly, we would

like to further investigate the multilevel PPO algorithm using a diverse set of environments

along with a deeper analysis and ablation study. Due to the problem at hand, we presented our

results only for PDE-based environments. However, taking the generality of MLMC theory into

consideration, we also foresee the application of multilevel PPO in other environments which

are not necessarily PDE-based.

The studies provided in this thesis formulate the first step towards the application of narrow

AI in reservoir management. The natural next step is to apply the frameworks provided in

this thesis to real reservoir case studies. These case studies can highlight the effectiveness of

RL control policies compared to current closed-loop reservoir management techniques. The

ultimate vision of the proposed research studies is to be able to build a technology to achieve

real-time and dynamic optimal schedule for injector/producer wells throughout the reservoir

lifecycle. We forsee to achieve this by essentially learning the simulation-based policies, which

can be further updated in real time using offline reinforcement learning methods.

93

Appendix A

Appendices for Chapter 2

A.1 Definition of value and advantage functions

In RL, the policy π(a|s) is said to be optimal if it maps the state st with an action at that

correspond to maximum expected return value. These return values are learned through the

data obtained in agent-environment interactions. Following are some definition of return values

typically used in RL:

Value function is the expected future return for a particular state st and is defined as,

V (s) = Eπ

[∑
m

γmrm+t+1|st = s

]
,

where Eπ[· · ·] denotes expected value given that the agent follows the policy π. As short hand,

we denote V (s) at state st as Vt.

Q function is similar to value function except that it represent the expected return when the

agent takes action at in the state st. It is defined as,

Q(s, a) = Eπ

[∑
m

γmrm+t+1|st = s, at = a

]
.

Advantage function is defined as the difference between Q function and value function and is

denoted by At at state st and action at.

A.2 Permeability uncertainty distribution parameters

Model parameters of case studies chosen for this paper were inspired from the SPE 10 model 2

parameters. First test case represents channel like permeability distribution which consists of a

linear high permeability channel passing through a low permeability domain. The values of high

and low permeabilities in this distribution were selected in reference to the Upperness formation

94

Appendix A. Appendices for Chapter 2

in SPE10 model 2. Figure A.1 shows the plot of Upperness log permeability distribution and

an example of log permeability field in test case 1. As can be seen, the high and low log

permeability values in test case 1 are chosen from the peaks of Upperness log permeability

distribution.

2

1

0

1

2

3

4

5

(a) log permeability contour plot (unit: mD) for
test case 1

5 0 5 10
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

low log K (-2)
high log K (5.5)
SPE10 Upper Ness

(b) log permeability density distribution for SPE-
10 model 2 upperness case

Figure A.1: Value for low (-2) and high (5.5) log permeability in test case 1 was chosen from
the SPE-10 model 2 Upperness permeability distribution peaks

Second test case represents a smoother, spatially correlated permeability distribution often

found in geoscience literature. The log permeability distribution is formulated with Equations

(2.9), (2.10), (2.11) and (2.12). The correlation length l was selected to be 240 ft in order to

consider 20% of the domain height. The idea is to choose a correlation length that is smaller

than the quadrants of a domain. The distribution amplitude σ and µg is chosen as 2.5 and 2.4,

respectively. These values were chosen in order to match the log permeability distribution of

test case 2 to match with Tarbert formation from SPE10 model 2. Figure A.2 shows comparison

of a test case 2 log permeability field realization along with the superpositioning of test case 2

and Tarbert case permeability distribution.

A.3 RL algorithm parameters

We use stable-baselines 3 library [66] for PPO and A2C algorithms. Parameters used for PPO

and A2C are tabulated in table A.1 and A.2, respectively, which were tuned using trial and

error. The parameters used to obtain the frozen policy using PPO algorithms are same as those

used in PPO parameters presented in these table. The DE algorithm is executed using python’s

SciPy library [67]. Its parameters are delineated in table A.3. The DE algorithm parameters

were tuned by making sure to achieve convergence in optimal results for first four realizations.

The same parameters were used for the rest of the 12 realizations. For this reason, we are likely

95

Appendix A. Appendices for Chapter 2

6

4

2

0

2

4

6

8

(a) log permeability contour plot (unit: mD) for
test case 2

5 0 5 10
0.00

0.05

0.10

0.15

0.20

SPE10 tarbert log K
log K distribution
reference mean=2.4

(b) log permeability density distribution for SPE-
10 model 2 tarbert case

Figure A.2: Mean of (2.4) log permeability in test case 2 was chosen from the SPE-10 model 2
Tarbert case data. Log permeability distribution chosen in test case 2 is super-positioned with
Tarbert permeability distribution (shown with thick black line) for comparison

to observe some cases where DE algorithms might provide slightly lower optimality as compared

to learned optimal policies. For PPO algorithms with full state representation, same parameters

(from table A.1) were used except the network MLP layers and learning rates: layers [3721,

4000, 2000, 800, 300, 61] and learning rate 1e-5 for test case 1 and layers [3721, 4000, 2000, 800,

300, 4] and learning rate 5e-6 for test case 2. These parameters are tuned in order to obtain the

minimum variance in the learning plots. Figure A.3 demonstrate the spread of the learning plot

for PPO and A2C for the text case 1 and 2. The code repository for both the test cases presented

in this paper can be found on the link: https://github.com/atishdixit16/rl_robust_owc.

Table A.1: PPO algorithm parameters
Test case 1 Test case 2

number of episodes 60000 60000
number of CPUs, N 64 64
number of steps, T 50 50
mini-batch size, M 16 16
epochs, K 20 20
discount rate, γ 0.99 0.99
clip range, ϵ 0.1 0.1
policy network MLP layers [93,150,100,80,62] [9,20,20,4]
policy network activation functions tanh tanh
policy network optimizers Adam Adam
learning rate 1e-6 5e-4

96

https://github.com/atishdixit16/rl_robust_owc

Appendix A. Appendices for Chapter 2

0 10000 20000 30000 40000 50000 60000

number of episodes

0.60

0.62

0.64

0.66

0.68

R
π

(a
|s

;k
⇒

k)

Test case 1

PPO

A2C

0 10000 20000 30000 40000 50000 60000

number of episodes

0.57

0.58

0.59

0.60

0.61

0.62

R
π

(a
|s

;k
⇒

k)

Test case 2

PPO

A2C

Figure A.3: learning plot range over three distinct seed values for test case 1 and 2

Table A.2: A2C algorithm parameters
Test case 1 Test case 2

number of episodes 60000 60000
number of CPUs, N 64 32
number of steps, T 50 20
discount rate, γ 0.99 0.99
policy network MLP layers [93,150,100,80,62] [9,20,20,4]
policy network activation functions tanh tanh
policy network optimizers Adam Adam
learning rate 2e-4 1e-4

Table A.3: DE algorithm parameters
Test case 1 Test case 2

number of CPUs 64 64
number of iterations 750 750
population size 310 20
recombination factor 0.9 0.9
mutation factor U(0.5,1) U(0.5,1)

97

Appendix B

Appendices for Chapter 3

B.1 Cluster Analysis of Permeability Uncertainty Dis-

tribution

training vector k is chosen to represent the variability in the permeability distribution K. For
the optimal control problem, our main interest is in the uncertainty in the dynamical response

of permeability rather than the uncertainty in permeability itself. As a result, the connectivity

distance [84] is used as a measure of the distance between the permeability field samples. The

connectivity distance matrix D ∈ RN×N among the N samples of K is formulated as

D(ki, kj) =
∑
x′′

∫ T

t0

[s(x′′, t; ki)− s(x′′, t; kj)]2 dt,

whereN corresponds to a large number of samples of uncertainty distribution, s(x′′, t; ki) is satu-

ration at location x′′, and time t, when the permeability is set to ki and all wells are open equally.

Multidimensional scaling of the distance matrix D is used to produce N two-dimensional coor-

dinates d1, d2, · · · , dN , each representing a permeability sample. The coordinates d1, d2, · · · , dN
are obtained such that the distance between di and dj is equivalent to D(ki, kj). In the k-means

clustering process, these coordinates are divided into l sets S1, S2, · · · , Sl, obtained by solving

the optimization problem, defined as

argmin
S

l∑
i

∑
dj∈Si

∥dj − µSi
∥ ,

where µSi
is average of all coordinates in the set Si. The training vector k is a set of l samples of

K where each of its value ki correspond to the one nearest to µSi
. The total number of samples

N and clusters l are chosen to be 1000 and 16 for both uncertainty distributions, G1 and G2. A
training vector k is obtained with samples k1, · · · , k16 each corresponding to a cluster center.

Figures B.1(a) and B.1(b) show cluster plots for samples of permeability distribution G1 and

98

Appendix B. Appendices for Chapter 3

(a) (b)

Figure B.1: Log-permeability plots for training data of test case 1 and 2: a and b illustrate
clustering for G1 and G2 distribution samples

G2, respectively. Furthermore, 16 permeability samples, each randomly chosen from a cluster,

are chosen to evaluate the learned policies. Figures 3.9(a) and 3.12(a) illustrate these samples

for test case 1 and 2, respectively.

B.2 Definitions of Value and Advantage Function

In RL, the policy π(A|S) is said to be optimal if it maps the state St with an action At that

correspond to maximum expected return value. These return values are learned through the

data obtained from agent-environment interactions. The following are some definitions of return

values typically used in RL:

The value function is the expected future return for a particular state St and is defined as

V (S) = Eπ

[∑
m

γmRm+t+1|St = S

]
,

where Eπ[· · ·] denotes the expected value given that the agent follows the policy π. As a

shorthand notation, V (S) in the state St is denoted as Vt.

Q function is similar to value function except that it represents the expected return when the

agent takes action at in the state St. It is defined as

Q(S,A) = Eπ

[∑
m

γmRm+t+1|St = S,At = A

]
.

Advantage function is defined as the difference between Q function and value function and is

denoted by Adv(S,A) at state S and action A.

99

Appendix B. Appendices for Chapter 3

B.3 Algorithm Parameters

Parameters used for PPO are tabulated in table B.1 which were tuned using trial and error.

For the PPO algorithm, the parameters were tuned to find the least variability in the learning

plots. Figures B.2 and B.3 show learning plots corresponding to three different seeds to show

the stochasticity of the obtained results. The parameters of the DE algorithm are delineated

in table B.2. The code repository for both the test cases presented in this paper can be found

on the link: https://github.com/atishdixit16/ada_multigrid_ppo.

Table B.1: PPO algorithm parameters
case 1 case 2

number of CPUs, N 64 64
number of steps, T 40 40
mini-batch size, M 16 16
epochs, K 20 20
discount rate, γ 0.99 0.99
clip range, ϵ 0.1 0.15
policy network MLP layers [93,150,100,80,62] [35,70,70,50,21]
policy network activation functions tanh tanh
policy network optimizers Adam Adam
learning rate 3e-6 1e-4

Table B.2: DE algorithm parameters
case 1 case 2

number of CPUs 64 64
number of iterations 1024 1024
population size 310 105
recombination factor 0.9 0.9
mutation factor (0.5,1) (0.5,1)

100

https://github.com/atishdixit16/ada_multigrid_ppo

Appendix B. Appendices for Chapter 3

0 25000 50000 75000

number of episodes

0.60

0.62

0.64

0.66

0.68

0.70

R
π

(A
|S

)

single-grid framework

β = 0.25

β = 0.5

β = 1.0

0 25088 50176 75264

number of episodes

R
π

(A
|S

)

fixed multi-grid framework

β = 0.25

β = 0.5

β = 1.0

0 25088 38400 51712

number of episodes

R
π

(A
|S

)

adaptive multi-grid framework

β = 0.25

β = 0.5

β = 1.0

0 8591 20408 45496

number of equivalent β = 1 episodes

0 8591 14991 28303

number of equivalent β = 1 episodes

(a)

0 25000 50000 75000

number of episodes

0.60

0.62

0.64

0.66

0.68

0.70

R
π

(A
|S

)

single-grid framework

β = 0.25

β = 0.5

β = 1.0

0 25088 50176 75264

number of episodes

R
π

(A
|S

)

fixed multi-grid framework

β = 0.25

β = 0.5

β = 1.0

0 25088 38400 51712

number of episodes

R
π

(A
|S

)

adaptive multi-grid framework

β = 0.25

β = 0.5

β = 1.0

0 8591 20408 45496

number of equivalent β = 1 episodes

0 8591 14991 28303

number of equivalent β = 1 episodes

(b)

0 25000 50000 75000

number of episodes

0.60

0.62

0.64

0.66

0.68

0.70

p
ol

ic
y

re
tu

rn
,
R
π

(A
|S

)

single-grid framework

β = 0.25

β = 0.5

β = 1.0

0 25088 50176 75264

number of episodes

p
ol

ic
y

re
tu

rn
,
R
π

(A
|S

)

fixed multi-grid framework

β = 0.25

β = 0.5

β = 1.0

0 25088 38400 51712

number of episodes

p
ol

ic
y

re
tu

rn
,
R
π

(A
|S

)

adaptive multi-grid framework

β = 0.25

β = 0.5

β = 1.0

0 8591 20408 45496

number of equivalent β = 1 episodes

0 8591 14991 28303

number of equivalent β = 1 episodes

(c)

Figure B.2: Learning plots with seed 1 (a), 2 (b) and 3 (c) for test case 1

101

Appendix B. Appendices for Chapter 3

0 50000 100000 150000

number of episodes

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

R
π

(a
|s

)

single-grid framework

β = 0.25

β = 0.5

β = 1.0

0 50176 100352 150528

number of episodes

R
π

(a
|s

)

fixed multi-grid framework

β = 0.25

β = 0.5

β = 1.0

0 43008 56320 69632

number of episodes

R
π

(a
|s

)

adaptive multi-grid framework

β = 0.25

β = 0.5

β = 1.0

0 19614 43965 94141

number of equivalent β = 1 episodes

0 16819 23475 36787

number of equivalent β = 1 episodes

(a)

0 50000 100000 150000

number of episodes

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

p
ol

ic
y

re
tu

rn
,
R
π

(a
|s

)

single-grid framework

β = 0.25

β = 0.5

β = 1.0

0 50176 100352 150528

number of episodes

p
ol

ic
y

re
tu

rn
,
R
π

(a
|s

)

fixed multi-grid framework

β = 0.25

β = 0.5

β = 1.0

0 50176 63488 76800

number of episodes

p
ol

ic
y

re
tu

rn
,
R
π

(a
|s

)

adaptive multi-grid framework

β = 0.25

β = 0.5

β = 1.0

0 19614 43965 94141

number of equivalent β = 1 episodes

0 19614 26270 39582

number of equivalent β = 1 episodes

(b)

0 50000 100000 150000

number of episodes

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

R
π

(a
|s

)

single-grid framework

β = 0.25

β = 0.5

β = 1.0

0 50176 100352 150528

number of episodes

R
π

(a
|s

)

fixed multi-grid framework

β = 0.25

β = 0.5

β = 1.0

0 43008 56320 69632

number of episodes

R
π

(a
|s

)

adaptive multi-grid framework

β = 0.25

β = 0.5

β = 1.0

0 19614 43965 94141

number of equivalent β = 1 episodes

0 16819 23475 36787

number of equivalent β = 1 episodes

(c)

Figure B.3: Learning plots with seed 1 (a), 2 (b) and 3 (c) for test case 2

102

Appendix C

Appendices for Chapter 4

C.1 Examples of objective functions for different deep

RL algorithms

Examples of the objective function Es,a,r∼pθ [J(s, a, r; θ,Θ)] for various deep reinforcement learn-

ing algorithms are delineated in table C.1. In a value-based algorithm, such as the deep Q

network (DQN), the neural network represents a function approximator for the Q function.

Q function represents the expected return when the agent takes action at in state st and is

defined as Q(s, a) = Eπ [
∑

m γ
mrm+t+1|st = s, at = a] where γ ∈ [0, 1] is the discount factor and

Eπ[· · ·] denotes the expected value given that the agent follows the policy π. The policy refers

to taking the action corresponding to the highest Q value. In policy based algorithms like

advantage actor-critic (A2C), trust region policy optimization (TRPO) and proximal policy

optimization (PPO). The policy is directly modeled as a neural network that maps the state s

to the corresponding optimal action a. This network is often integrated with a value network,

which maps the state s to its corresponding value V (s). The value function is the expected

future return for a particular state st and is defined as V (s) = Eπ [
∑

m γ
mrm+t+1|st = s]. The

policy network objective function corresponds to advantage weighted log-likelihood of chosen

actions, where advantage function is defined as the difference between Q-function and value

function. Algorithms such as TRPO and PPO employ importance sampling to correct for the

estimation of the advantage function according to the old policy πθold (that is, the policy before

it is updated in a given policy iteration). As a result, the policy objective function contains

the ratio term r(θ) = πθ(a|s)/πθold(a|s). Subsequently, the objective function for the integrated

network is the sum of policy objective function added and value loss term multiplied by value

coefficient cv. In the TRPO algorithm, the destructive steps of large gradients often encoun-

tered in policy gradient algorithms such as A2C are avoided by penalizing the KL-divergence

between old and new policies with the factor β. In the PPO algorithm, this is achieved by

clipping the ratio r(θ) between 1 − ϵ and 1 + ϵ for a small value of ϵ ∈ [0, 1]. Furthermore,

the exploration in policy search is maximized by maximizing the entropy of the learned policy

103

Appendix C. Appendices for Chapter 4

S[πθ](s) and is added in the objective function with the entropy coefficient ce.

Table C.1: Objective function Es,a,r∼pθ [J(s, a, r; θ,Θ)] for different deep RL algorithms

Algorithm Objective function,
Es,a,r∼pθ [J(s, a, r; θ,Θ)]

DQN Es,a,r∼pθ

[
(r + γmaxa′ Qθold(s

′, a′)−Qθ(s, a))
2]

(value network)

A2C Es,a,r∼pθ

[
log πθ(a|s)A(s, a)− cv (r + γmaxs′ Vθold(s

′)− Vθ(s))2
]

(policy + value network)

TRPO Es,a,r∼pθ [r(θ)A(s, a)− βKL[πθold(·|a), πθ(·|a)]
(policy + value network) −cv (r + γmaxs′ Vθold(s

′)− Vθ(s))2]

PPO Es,a,r∼pθ [min (r(θ)A(s, a), clip(r(θ), 1− ϵ, 1 + ϵ)A(s, a))

(policy + value network) −cv (r + γmaxs′ Vθold(s
′)− Vθ(s))2 + ceS[πθ](s)]

C.2 Principle behind computational savings of MLMC

estimator

Suppose that we estimate the expectation of the quantity PL(ω) where ω is a random variable

that follows the probability distribution Ω (that is, ω ∼ Ω). The Monte Carlo estimate of this

quantity is given by ÊMC
Ω (PL(ω)) = N−1

∑N
i=1 P

L(ωi). If C and V , respectively, correspond to

the computational cost and variance of the term PL(ωi), the cost of the estimator ÊMC
Ω (PL(ω))

is CN while its overall variance is V N−1. That is, to achieve an overall variance of ϵ2, we need

to choose N = ϵ−2V (that is, N ∝ V). Now, if we suppose that we have an approximation of

PL(ω) defined as P l(ω) such that VΩ[P
l(ω)] >>> VΩ[P

L(ω)−P l(ω)], the two-level Monte Carlo

estimator can be written as Ê2LMC
Ω (PL(ω)) = N−1

l

∑Nl

i=1 P
l(ωi)+N−1

L

∑NL

i=1 P
L(ωi)−P l(ωi). If

CL and VL are the computational cost and variance of the term PL(ωi)− P l(ωi) while Cl and

Vl are the computational cost and variance of the term P l(ωi). The total cost of this two-level

Monte Carlo estimator can be computed as NlCl+NLCL where Nl ∝ Vl and NL ∝ VL. Since, by

definition, Vl >>> VL, we can also conclude that Nl >>> NL. In other words, if Cl <<< CL,

computational cost of two-level Monte Carlo estimate Ê2LMC
Ω (PL(ω)) is much smaller than the

Monte Carlo estimate ÊMC
Ω (PL(ω)). The same concept can be extended to multilevel Monte

Carlo instead of two-level Monte Carlo estimate.

104

Appendix C. Appendices for Chapter 4

C.3 Implementation of multilevel PPO in stable base-

lines 3

The multilevel PPO algorithm is implemented using the Stable Baselines3 (SB3) [66] library,

which is a set of reliable implementations of reinforcement learning algorithms in PyTorch.

The codes for the multilevel implementation can be found in the fork: https://github.com/

atishdixit16/stable-baselines3. In the following text, the implementation of the clas-

sical PPO in SB3 is explained in detail. Then it is followed by additional implementations

corresponding to the multilevel PPO algorithm.

C.3.1 Classical PPO implementation in stable baselines 3

RL framework consists of the environment E which is governed by a Markov decision process

described by the tuple ⟨S,A,P ,R, µ⟩. Here, S ⊂ Rns is the state-space, A ⊂ Rna is the

action-space, P(s′|s, a) is a Markov transition probability function between the current state

s and the next state s′ under action a and R(s, a, s′) is the reward function. The function

µ(s) returns a state from the initial state distribution if s is the terminal state of the episode;

otherwise, it returns the same state s. The goal of reinforcement learning is to find the policy

πθ(a|s) to take an optimal action a when in the state s, by exploring the state-action space with

what are called agent-environment interactions. Figure C.1 shows a typical schematic of such

agent-environment interaction. The term agent refers to the controller that follows the policy

πθ(a|s) while the environment consists of the transition function, P , and the reward function,

R.

πθ(a|s)
am

rm+1

sm+1

rm

sm
Agent

Environment, E

P(sm, am)

R(sm, am, sm+1)

sm+1

Figure C.1: A typical agent-environment interaction for classical framework

The algorithm 9 delimits the simplified implementation of the PPO algorithm in SB3. The

algorithm’s inputs are: environment E, number of actors N , number of steps in each policy

iteration T , batch size M (≤ NT) and number of epochs K. The data obtained through

the rollouts of agent-environment interactions is stored in a buffer named RolloutBuffer in the

format [s, a, r, d, V, Lold, R,A], where the notation is

105

https://github.com/atishdixit16/stable-baselines3
https://github.com/atishdixit16/stable-baselines3

Appendix C. Appendices for Chapter 4

• s: state,

• a: action,

• r: reward,

• d: episode terminal boolean (done),

• V : Value function (obtained from policy network rollout),

• Lold: log probability value, log(πθold(a|s))

• R: Return value (obtained using generalized advantage estimation),

• A: Advantage function (obtained using generalized advantage estimation).

RolloutBuffer accumulates in total N×T rows of the above data in each iteration. At the begin-

ning of each iteration, the function CollectRollouts is used to fill in the data in RolloutBuffer.

The total of N × T data rows is divided into batches of size M , each using the function Get-

Batches. The actor loss term La, the value loss term Lv and the entropy loss term Le (defined

in equation 4.5) are calculated for each such batch using the function ComputeBatchLosses.

Finally, a Monte Carlo estimate for the loss term is computed as follows.

lossMC = mean[La + Lv + Le],

which is used to update the policy parameters using automatic differentiation. This is done

using the function UpdatePolicy and is performed K times for every batch.

Algorithm 9 PPO implementation in stable baselines
1: Input: E,N, T,M,K
2: E.reset()
3: Generate empty RolloutBuffer
4: for iteration, i = 1, 2, . . . do
5: CollectRollouts(E, N , T , RolloutBuffer)
6: for epoch = 1, 2, . . . , K do
7: for batch in GetBatches(RolloutBufferArray, M): do
8: La, Lv, Le = ComputeBatchLosses(batch)
9: lossMC = mean [La + Lv + Le]
10: UpdatePolicy(lossMC)
11: end for
12: end for
13: end for

The algorithm 10 delineates the steps of the function CollectRollouts. For every timestep, the

data is obtained using policy rollout, environment transition (using step function) and general-

ized advantage estimation (GAE) computation on all N actors and stored in the RolloutBuffer.

Finally, ComputeBatchLosses function is illustrated in the algorithm 11. The algorithm lists

steps to compute actor loss term La, value loss term Lv and entropy loss term Le for the given

batch. Note that the loss terms are the vectors of dimension M , which are added later, and its

106

Appendix C. Appendices for Chapter 4

Algorithm 10 CollectRollouts(E,N, T , RolloutBuffer)

1: Information: a RolloutBuffer consists of following data: [s, a, r, d, V, Lold, R,A]
2: reset RolloutBuffer (i.e. empty the buffer)
3: for t in range(T): do
4: rollout current state s, through policy network to obtain a, V , Lold(a) on N actors
5: if s is terminal, s = E.reset()
6: s′, r, d, · = E.step(a) on N actors
7: compute R and A using GAE
8: add [s, a, r, d, V, Lold, R,A] in the RolloutBuffer
9: end for

mean is treated as the final loss term. The mean function in this process indicates the Monte

Carlo estimator of the PPO loss term.

Algorithm 11 ComputeBatchLosses(batch)

1: Information: a batch consists of M rows following data: [s, a, V, Lold, R,A]
2: compute Vnow and Lnow(a) by rolling out s through policy network
3: compute ratio, rt = exp (Lnow − Lold)
4: compute L1 = Art and L2 = A[clip(rt, 1− ϵ, 1 + ϵ)]
5: La = min (L1, L2)
6: Lv = Cv|Vnow −R|2 (Cv is value loss term coefficient)
7: Le = −CeLnow (Ce is entropy loss term coefficient)
8: return La, Lv, Le

The class inheritance schema used in this implementation is shown in Figure C.2. The stable

baselines use some more classes like Policy, Callbacks etc. but we present only the ones rele-

vant to this discussion. CollectRollouts function belongs to OnPolicyAlgorithm which is the

child of the BaseAlgorithm class and the parent of the PPO class. The functions Compute-

BatchLosses and UpdatePolicy belong to the PPO class. BaseBuffer is the parent class for

the RolloutBuffer class that contains the function GetBatches. The Environment class (which

is a child of the gym.Env class) contains functions such as step and reset corresponding to the

transition function P and the initial state function µ, respectively.

C.3.2 Multilevel PPO implementation in stable baselines 3

Figure C.3 illustrates a typical agent-environment interaction in multilevel PPO implementa-

tion. Multiple levels of environment are represented with E1, E2, . . . , EL−1 so that the com-

putational cost of P l and the accuracy of Rl are lower than P l+1 and Rl+1, respectively. The

environment corresponding to the grid fidelity factor l consists of a transition function Pl, which

is achieved by discretizing the dynamical system, and a reward functionRl. The policy network

is designed with states sL and controls aL, corresponding to the environment EL. As a result,

state slm+1, in the environment, El passes through the mapping ψL
l which maps the state from

level l to level L. Similarly, the action obtained from the policy network is passed through a

mapping operator ϕl
L, which maps the action from the level L to the level l.

107

Appendix C. Appendices for Chapter 4

PPO:
ComputeBatchLosses
UpdatePolicy

OnPolicyAlgorithm:

CollectRollouts

BaseAlgorithm

(a) algorithm class architecture

RolloutBuffer:
GetBatches

BaseBuffer

(b) buffer class architecture

Environment:
step, reset

gym.Env

(c) environment class architec-
ture

Figure C.2: Object-oriented design for the stable baselines implementation of PPO algorithm

Algorithm 12 illustrates the pseudocode for multilevel implementation of the PPO algorithm

in the stable baselines library. The inputs are the same as in classical PPO implementation

except multilevel variables are provided as an array of length L: environments at each level

E = [E1, E2. . . . EL], number of actors N , number of steps in each level T = [T 1, T 2, . . . , TL],

number of batches in each level M = [M1,M2, . . . ,ML] (such that NT l ≤ M l and T 1/M1 =

· · · = TL/ML) and number of epochs K. In multilevel implementation, we formulate the loss

term’s estimate using multilevel Monte Carlo which is given as

lossMLMC =
L∑
l=1

mean
[
(Ll

a − L̃l−1
a) + (Ll

v − L̃l−1
v) + (Ll

e − L̃l−1
e)
]
,

where L̃0
a, L̃

0
v and L̃0

e are set to zero. The outline of a typical agent-environment interaction to

obtain synchronized samples of levels l and l − 1 is illustrated in Figure C.3. We use arrays of

RolloutBuffers for each level, and each RolloutBufferl that collects rollouts at level l has a syn-

chronized buffer SyncRolloutBufferl that collects corresponding synchronized data at level l−1.
This is achieved using the function CollectRollouts. Figure C.4 illustrates the RolloutBuffer-

Array and SyncRolloutBufferArray used in this algorithm. Furthermore, the GetBatches

function is used to generate an array of batches, which is used to compute the multilevel Monte

Carlo estimate of the loss term. The batch array consists of in total NTL/ML batches, where

each batch consists of L batches from RolloutBuffers and L batches from SyncRolloutBuffers.

Figure C.5 illustrates the batch array used in the algorithm. The batchl, syncBatchl−1 from

RolloutBufferl, SyncRolloutBufferl are used to compute the lossMLMC terms on the level l. In

every batch, these terms are computed at each level and added to obtain lossMLMC, which is

used to update the policy network parameters using the function UpdatePolicy.

The algorithm 13 delimits the function CollectRollouts used in multilevel implementation.

At each level l the RolloutBufferl is filled with the data, and the corresponding synchronized

data at the level l − 1 is filled in the SyncRolloutBufferl. Since L0
a, L

0
v and L0

e are set to

108

Appendix C. Appendices for Chapter 4

Agent

πθ(a
L|sL)

rlm, r̃
l−1
m

sLm aLm

Environment, El

P l(slm, a
l
m)

Rl(slm, a
l
m, s

l
m+1)

slm+1 ϕψ

rlm+1

sLm+1

Synchronised Environment, El−1.map from(El)

P l(s̃l−1m , ãl−1m)

Rl(s̃l−1m , ãl−1m , s̃l−1m+1)

s̃l−1m+1 ϕ

r̃l−1m+1

Figure C.3: A typical agent-environment interaction for an environment on level l synchronized
with environment on level l − 1

RolloutBuffer1

RolloutBuffer2

·
·

RolloutBufferL

SyncRolloutBuffer1

SyncRolloutBuffer2

·
·

SyncRolloutBufferL

Figure C.4: RolloutBufferArray (on left) and SyncRolloutBufferArray (on right).
SyncRolloutBufferl consists of synchronized data of RolloutBufferl with level l to a level l − 1.
Each buffer with level l consists of N × Tl rows of data in [s, a, r, d, V, Lold, R,A] format.

zero, the data in SyncRolloutBuffer1 are filled with None values. The mapping functions ψl′

l

and ϕl′

l are implemented as a set of functions in the definition of the environment El. As a

result, the mapping of state (ψL
l from Equation 4.4) and action (ϕl

L from equation 4.4) to and

from the policy + value network is denoted with shorthand notation ψ and ϕ, respectively.

Synchronization of state from level l to l′ is indicated by map from function that maps an

environment El to another environment at level l′, denoted as El′ . Algorithm 14 illustrates the

pseudocode for the GetBatches function, which creates mini-batches (as illustrated in Figure

C.5) from collected data in RolloutBufferArray and SyncRolloutBufferArray.

The class inheritance schema used in the multilevel implementation is shown in figure C.6. Col-

lectRollouts function belongs to OnPolicyAlgorithmMultilevel which is the child of BaseAl-

gorithm class and the parent of the PPO ML class. The functions ComputeBatchLosses

and UpdatePolicy belong to the class PPO ML. BaseBuffer is the parent class for the Roll-

109

Appendix C. Appendices for Chapter 4

batch1, syncBatch0

batch2, syncBatch1

·
·

batchL, syncBatchL−1

batch1, syncBatch0

batch2, syncBatch1

·
·

batchL, syncBatchL−1

· · ·
· · ·
· · ·
· · ·
· · ·

batch1, syncBatch0

batch2, syncBatch1

·
·

batchL, syncBatchL−1

Figure C.5: batch array which is achieved from GetBatches function. It consists of in total
NTl/Ml batches as shown with the columns of the array. Each such batch consists of L batches
from RolloutBuffers (denoted by batchl) and SyncRolloutBuffers (denoted by syncBatchl−1).
batchl and SyncBatchl−1 consists of M l rows of data in the format, [o, a, V, Lold, R,A].

Algorithm 12 Multilevel proximal policy optimization pseudocode
1: Input: E, N,T ,M , K
2: E1.reset()
3: Generate empty RolloutBufferArray, SyncRolloutBufferArray
4: for iteration, i = 1, 2, . . . do
5: CollectRollouts(E, N,T , RolloutBufferArray, SyncRolloutBufferArray)
6: for epoch = 1, 2, . . . , K do
7: for batch array in GetBatches(RolloutBufferArray, SyncRolloutBufferArray, M):

do
8: lossMLMC = 0
9: for batchl, syncBatchl−1 in batch array do
10: Ll

a, L
l
v, L

l
e = ComputeBatchLosses(batchl)

11: if l > 1 then
12: L̃l−1

a , L̃l−1
v , L̃l−1

e = ComputeBatchLosses(syncBatchl−1)
13: else
14: L̃l−1

a , L̃l−1
v , L̃l−1

e = 0
15: end if
16: Ll = mean

[
(Ll

a − L̃l−1
a) + (Ll

v − L̃l−1
v) + (Ll

e − L̃l−1
e)
]

17: lossMLMC = lossMLMC + Ll

18: end for
19: UpdatePolicy(lossMLMC)
20: end for
21: end for
22: end for

110

Appendix C. Appendices for Chapter 4

Algorithm 13 CollectRollouts(E, N,T , RolloutBufferArray, SyncRolloutBufferArray)

1: Information: a RolloutBuffer consists of following data: [s, a, r, d, V, Lold, R,A]
2: reset RolloutBufferArray, SyncRolloutBufferArray (i.e. empty the buffers)
3: for T l, El,RolloutBufferl, SyncRolloutBufferl in E,T , RolloutBufferArray, SyncRollout-

BufferArray do
4: if l > 1 then
5: El.map from(El−1)
6: end if
7: for t in range(T l): do
8: sl = El.reset() if sl is terminal
9: sL = El.ψ(sl)
10: aL = πθ(a

L|sL)
11: al = ϕ(aL)
12: compute V l and Lold(a

L)
13: ·, rl, dl, · = El.step(al) on N actors
14: compute Rl and Al using GAE
15: add [sl, al, rl, dl, V l, Ll

old, R
l, Al] in the RolloutBufferl

16:

17: if l > 1 then
18: El−1.map from(El)
19: s̃L = El−1.ψ(s̃l−1)
20: ãl−1 = al

21: ãL = πθ(ã
L|s̃L)

22: ãl−1 = El−1.ϕ(ãL)
23: compute Ṽ l−1 and L̃old(a

L)
24: ·, r̃l−1, ·, · = El−1.step(ãl−1) on N actors
25: compute R̃l−1 and Ãl−1 using GAE
26: add [s̃l−1, ãl−1, r̃l−1, d̃l, Ṽ l−1, L̃l−1

old , R̃
l−1, Ãl−1] in the SyncRolloutBufferl

27: else
28: add [None, . . ., None] in the SyncRolloutBufferl

29: end if
30: end for
31: end for

Algorithm 14 GetBatches(RolloutBufferArray, SyncRolloutBufferArray, M)

1: set batch array to an empty array
2: for RolloutBufferl, SyncRolloutBufferl,M l in RolloutBufferArray, SyncRolloutBufferArray,

M do
3: set batches to an empty array
4: for batchl, batchl−1 in GetSyncBatches(RolloutBufferl, SyncRolloutBufferl, M l) do
5: batches.append([batchl, batchl−1])
6: end for
7: batch array.append(batches)
8: end for
9: return batch array

111

Appendix C. Appendices for Chapter 4

PPO ML:
ComputeBatchLosses
UpdatePolicy

OnPolicyAlgorithmMultilevel:

CollectRollouts
GetBatches

BaseAlgorithm

(a) algorithm class architecture

RolloutBuffer:
GetSyncBatches

BaseBuffer

(b) buffer class architecture

EnvironmentMultilevel :
step, reset
ψ, ϕ,map from

gym.Env

(c) environment class architec-
ture

Figure C.6: Object-oriented design for the stable baselines implementation of multilevel PPO
algorithm. The updated (from classical PPO implementation) definitions of functions and
classes are highlighted in red colour.

outBuffer class that contains the function GetBatches. The environment class architecture

for multilevel framework is similar to that for classical framework except for the additional

mapping functions ψ, ϕ and map from. The updated definitions of the classes and functions

are highlighted in red in figure C.6.

C.4 Cluster analysis of permeability uncertainty distri-

bution

A set of permeability samples k = {k1, . . . , kl}, is chosen to represent the variability in the per-

meability distribution K. For the optimal control problem, our main interest is the uncertainty

in the dynamical response of permeability, rather than the uncertainty in permeability itself.

As a result, the connectivity distance [84] is used as a measure of the distance between the

permeability field samples. The connectivity distance matrix D ∈ RN×N among the N samples

of K is formulated as

D(ki, kj) =
∑
x′′

∫ T

t0

[c(x′′, t; ki)− c(x′′, t; kj)]2 dt,

where N corresponds to a large number of samples of uncertainty distribution, c(x′′, t; ki) is

the concentration at the location x′′ and at time t, when the permeability is set to ki and

all wells are open equally. The multidimensional scaling of the distance matrix D is used

to produce N two-dimensional coordinates d1, d2, · · · , dN , each representing a permeability

sample. The coordinates d1, d2, · · · , dN are obtained such that the distance between di and dj

is equivalent to D(ki, kj). In the k-means clustering process, these coordinates are divided into

112

Appendix C. Appendices for Chapter 4

(a) ResSim-v1 (b) ResSim-v2

Figure C.7: clustering visualization for permeability samples

l sets S1, S2, · · · , Sl, obtained by solving the optimization problem:

argmin
S

l∑
i

∑
dj∈Si

∥dj − µSi
∥ ,

where µSi
is the average of all coordinates in the set Si. The training vector k is a set of l

samples of K where each of its values ki corresponds to the closest one to µSi
. The total number

of samples N and clusters l is chosen to be 1000 and 16 for both uncertainty distributions, G1
and G2. A training vector k is obtained with samples k1, · · · , k16 each corresponding to a cluster

center. Figures C.7a and C.7b show cluster plots of permeability samples for ResSim-v1 and

ResSim-v2.

C.5 Algorithm Parameters

Parameters used for PPO are tabulated in Table C.2 which were tuned using trial and error.

For PPO algorithms, the parameters were essentially tuned to find the least variability in

the learning plots. The parameters of the DE algorithm are delineated in Table C.3. The

code repository for both test cases presented in this article can be found at the link: https:

//github.com/atishdixit16/multilevel_ppo.

113

https://github.com/atishdixit16/multilevel_ppo
https://github.com/atishdixit16/multilevel_ppo

Appendix C. Appendices for Chapter 4

Table C.2: PPO algorithm parameters
ResSim-v1 ResSim-v2

discount rate, γ 0.99 0.99
clip range, ϵ 0.1 0.15
policy network MLP layers [93,150,100,80,62] [35,70,70,50,21]
policy network activation functions tanh tanh
policy network optimizers Adam Adam
learning rate 3e-6 1e-5

Table C.3: DE algorithm parameters
ResSim-v1 ResSim-v2

number of CPUs 64 64
number of iterations 1024 1024
population size 310 105
recombination factor 0.9 0.9
mutation factor (0.5,1) (0.5,1)

114

Bibliography

[1] David Silver et al. “Mastering chess and shogi by self-play with a general reinforcement

learning algorithm”. In: arXiv preprint arXiv:1712.01815 (2017).

[2] Hyeong Soo Chang et al. “Google Deep Mind’s AlphaGo”. In: OR/MS Today 43.5 (2016),

pp. 24–29.

[3] Johannes Dornheim, Norbert Link, and Peter Gumbsch. “Model-free adaptive optimal

control of episodic fixed-horizon manufacturing processes using reinforcement learning”.

In: International Journal of Control, Automation and Systems 18.6 (2020), pp. 1593–

1604.

[4] Enrico Anderlini et al. “Control of a point absorber using reinforcement learning”. In:

IEEE Transactions on Sustainable Energy 7.4 (2016), pp. 1681–1690.

[5] Jean Rabault et al. “Artificial neural networks trained through deep reinforcement learn-

ing discover control strategies for active flow control”. In: Journal of fluid mechanics 865

(2019), pp. 281–302.

[6] Hans O Jahns. “A rapid method for obtaining a two-dimensional reservoir description

from well pressure response data”. In: Society of Petroleum Engineers Journal 6.04 (1966),

pp. 315–327.

[7] ML Wasserman and AS Emanuel. “History matching three-dimensional models using

optical control theory”. In: Journal of Canadian Petroleum Technology 15.04 (1976).

[8] ROBERT J Watson et al. “Rhizobium meliloti genes required for C4-dicarboxylate trans-

port and symbiotic nitrogen fixation are located on a megaplasmid”. In: Journal of Bac-

teriology 170.2 (1988), pp. 927–934.

[9] Dean S Oliver and Yan Chen. “Recent progress on reservoir history matching: a review”.

In: Computational Geosciences 15.1 (2011), pp. 185–221.

[10] AS Lee and JS Aronofsky. “A linear programming model for scheduling crude oil produc-

tion”. In: Journal of Petroleum Technology 10.07 (1958), pp. 51–54.

[11] JS Aronofsky and AC Williams. “The use of linear programming and mathematical mod-

els in under-ground oil production”. In: Management Science 8.4 (1962), pp. 394–407.

[12] Robert A Wattenbarger and HJ Ramey. “An investigation of wellbore storage and skin

effect in unsteady liquid flow: II. Finite difference treatment”. In: Society of Petroleum

Engineers Journal 10.03 (1970), pp. 291–297.

115

BIBLIOGRAPHY

[13] Zohreh Fathi and W Fred Ramirez. “Optimal injection policies for enhanced oil recovery:

Part 2—surfactant flooding”. In: Society of Petroleum Engineers Journal 24.03 (1984),

pp. 333–341.

[14] Sebastián Eloy Sequeira, Moisès Graells, and Luis Puigjaner. “Real-time evolution for on-

line optimization of continuous processes”. In: Industrial & engineering chemistry research

41.7 (2002), pp. 1815–1825.

[15] Edgar Chacón, Isabel Besembel, and Jean Claude Hennet. “Coordination and optimiza-

tion in oil and gas production complexes”. In: Computers in Industry 53.1 (2004), pp. 17–

37.

[16] Vidar Gunnerud and Bjarne Foss. “Oil production optimization—A piecewise linear

model, solved with two decomposition strategies”. In: Computers & Chemical Engineering

34.11 (2010), pp. 1803–1812.

[17] Mohammad Sadegh Tavallali et al. “Optimal producer well placement and production

planning in an oil reservoir”. In: Computers & chemical engineering 55 (2013), pp. 109–

125.

[18] DR Brouwer et al. “Improved reservoir management through optimal control and con-

tinuous model updating”. In: SPE annual technical conference and exhibition. OnePetro.

2004.

[19] Louis J Durlofsky and Khalid Aziz. “Optimization of smart well control”. In: SPE inter-

national thermal operations and heavy oil symposium and international horizontal well

technology conference. OnePetro. 2002.

[20] JFBM Kraaijevanger et al. “Optimal waterflood design using the adjoint method”. In:

SPE Reservoir Simulation Symposium. OnePetro. 2007.

[21] Diego F Oliveira and Albert Reynolds. “An adaptive hierarchical multiscale algorithm

for estimation of optimal well controls”. In: SPE Journal 19.05 (2014), pp. 909–930.

[22] YX Wang et al. “Optimization in oilfield water injection system based on algorithm of

ant colony-particle swarm method”. In: J. Daqing Pet. Inst 2 (2010), p. 014.

[23] Daoyong Yang, Qi Zhang, and Yongan Gu. “Integrated optimization and control of

the production-injection operation systems for hydrocarbon reservoirs”. In: Journal of

petroleum science and Engineering 37.1-2 (2003), pp. 69–81.

[24] GM Van Essen et al. “Robust waterflooding optimization of multiple geological scenarios”.

In: Spe Journal 14.01 (2009), pp. 202–210.

[25] Morteza Haghighat Sefat et al. “Reservoir uncertainty tolerant, proactive control of in-

telligent wells”. In: Computational Geosciences 20.3 (2016), pp. 655–676.

[26] Bahare Kiumarsi et al. “Optimal and autonomous control using reinforcement learning:

A survey”. In: IEEE transactions on neural networks and learning systems 29.6 (2017),

pp. 2042–2062.

[27] Moritz Diehl, Hans Georg Bock, and Johannes P Schlöder. “A real-time iteration scheme

for nonlinear optimization in optimal feedback control”. In: SIAM Journal on control and

optimization 43.5 (2005), pp. 1714–1736.

116

BIBLIOGRAPHY

[28] Lorenz T Biegler and James Blake Rawlings. Optimization approaches to nonlinear model

predictive control. Tech. rep. Argonne National Lab., IL (USA), 1991.

[29] Basil Kouvaritakis and Mark Cannon. Non-linear Predictive Control: theory and practice.

61. Iet, 2001.

[30] Ivan Koryakovskiy et al. “Benchmarking model-free and model-based optimal control”.

In: Robotics and Autonomous Systems 92 (2017), pp. 81–90.

[31] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learning”. In:

International conference on machine learning. 2016, pp. 1928–1937.

[32] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint

arXiv:1707.06347 (2017).

[33] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv preprint

arXiv:1312.5602 (2013).

[34] Anusha Nagabandi et al. “Neural network dynamics for model-based deep reinforce-

ment learning with model-free fine-tuning”. In: 2018 IEEE International Conference on

Robotics and Automation (ICRA). IEEE. 2018, pp. 7559–7566.

[35] Thomas Anthony, Zheng Tian, and David Barber. “Thinking fast and slow with deep

learning and tree search”. In: Advances in Neural Information Processing Systems. 2017,

pp. 5360–5370.

[36] David Ha and Jürgen Schmidhuber. “World models”. In: arXiv preprint arXiv:1803.10122

(2018).

[37] Nathan Lambert et al. “Objective mismatch in model-based reinforcement learning”. In:

arXiv preprint arXiv:2002.04523 (2020).

[38] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learning”. In:

International conference on machine learning. PMLR. 2016, pp. 1928–1937.

[39] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint

arXiv:1707.06347 (2017).

[40] Dan Huang. How much did AlphaGo-Zero cost? 2018.

[41] Alexander Y Sun. “Optimal carbon storage reservoir management through deep rein-

forcement learning”. In: Applied Energy 278 (2020), p. 115660.

[42] Michael B Giles. “Multilevel monte carlo methods”. In: Acta numerica 24 (2015), pp. 259–

328.

[43] Catarina Roseta-Palma and Anastasios Xepapadeas. “Robust control in water manage-

ment”. In: Journal of Risk and Uncertainty 29.1 (2004), pp. 21–34.

[44] DR Brouwer et al. “Recovery increase through water flooding with smart well technology”.

In: SPE European Formation Damage Conference. Society of Petroleum Engineers. 2001.

[45] Stephen Whitaker. “Single-phase flow in homogeneous porous media: Darcy’s Law”. In:

The method of volume averaging. Springer, 1999, pp. 161–180.

[46] Fabio Muratore et al. “Robot learning from randomized simulations: A review”. In: arXiv

preprint arXiv:2111.00956 (2021).

117

BIBLIOGRAPHY

[47] Rainer Storn and Kenneth Price. “Differential evolution–a simple and efficient heuristic

for global optimization over continuous spaces”. In: Journal of global optimization 11.4

(1997), pp. 341–359.

[48] John Schulman et al. “High-dimensional continuous control using generalized advantage

estimation”. In: arXiv preprint arXiv:1506.02438 (2015).

[49] Jef Caers, Kwangwon Park, and Céline Scheidt. “Modeling uncertainty in metric space”.

In: International association of mathematical geology meeting, Stanford University. 2009.

[50] Jørg E Aarnes, Tore Gimse, and Knut-Andreas Lie. “An introduction to the numerics of

flow in porous media using Matlab”. In: Geometric modelling, numerical simulation, and

optimization. Springer, 2007, pp. 265–306.

[51] Michael Andrew Christie, MJ Blunt, et al. “Tenth SPE comparative solution project: A

comparison of upscaling techniques”. In: SPE reservoir simulation symposium. Society of

Petroleum Engineers. 2001.

[52] C Anderson and S Crawford-Hines. “Multigrid Q-learning”. In: Technical Report CS-94-

121. Citeseer, 1994.

[53] Omer Ziv and Nahum Shimkin. “Multigrid methods for policy evaluation and rein-

forcement learning”. In: Proceedings of the 2005 IEEE International Symposium on,

Mediterrean Conference on Control and Automation Intelligent Control, 2005. IEEE.

2005, pp. 1391–1396.

[54] Stephan Pareigis. “Multi-grid methods for reinforcement learning in controlled diffusion

processes”. In: NIPS. Citeseer. 1996, pp. 1033–1039.

[55] Bocheng Li and Li Xia. “A multi-grid reinforcement learning method for energy conser-

vation and comfort of HVAC in buildings”. In: 2015 IEEE International Conference on

Automation Science and Engineering (CASE). IEEE. 2015, pp. 444–449.

[56] Matthew E Taylor and Peter Stone. “Transfer learning for reinforcement learning do-

mains: A survey.” In: Journal of Machine Learning Research 10.7 (2009).

[57] Sanmit Narvekar et al. “Source task creation for curriculum learning”. In: Proceedings

of the 2016 international conference on autonomous agents & multiagent systems. 2016,

pp. 566–574.

[58] Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. “Transfer of samples in batch

reinforcement learning”. In: Proceedings of the 25th international conference on Machine

learning. 2008, pp. 544–551.

[59] Fernando Fernández, Javier Garcıéa, and Manuela Veloso. “Probabilistic policy reuse for

inter-task transfer learning”. In: Robotics and Autonomous Systems 58.7 (2010), pp. 866–

871.

[60] Anestis Fachantidis et al. “Transferring task models in reinforcement learning agents”.

In: Neurocomputing 107 (2013), pp. 23–32.

[61] Matthew E Taylor and Peter Stone. “Behavior transfer for value-function-based rein-

forcement learning”. In: Proceedings of the fourth international joint conference on Au-

tonomous agents and multiagent systems. 2005, pp. 53–59.

118

BIBLIOGRAPHY

[62] Ruslan Miftakhov, Abdulaziz Al-Qasim, and Igor Efremov. “Deep reinforcement learning:

reservoir optimization from pixels”. In: International Petroleum Technology Conference.

OnePetro. 2020.

[63] Yusuf Nasir et al. “Deep reinforcement learning for constrained field development opti-

mization in subsurface two-phase flow”. In: arXiv preprint arXiv:2104.00527 (2021).

[64] Atish Dixit and Ahmed H ElSheikh. “Stochastic optimal well control in subsurface reser-

voirs using reinforcement learning”. In: Engineering Applications of Artificial Intelligence

114 (2022), p. 105106.

[65] Sebastian Müller and Lennart Schüler. GeoStat-Framework/GSTools: Bouncy Blue. Ver-

sion v1.0.0. Jan. 2019. doi: 10.5281/zenodo.2541735. url: https://doi.org/10.

5281/zenodo.2541735.

[66] Antonin Raffin et al. Stable Baselines3. https : / / github . com / DLR - RM / stable -

baselines3. 2019.

[67] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in

Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-0686-

2.

[68] Atish Dixit and Ahmed H. ElSheikh. “Stochastic optimal well control in subsurface

reservoirs using reinforcement learning”. In: Engineering Applications of Artificial In-

telligence 114 (2022), p. 105106. issn: 0952-1976. doi: https://doi.org/10.1016/j.

engappai.2022.105106. url: https://www.sciencedirect.com/science/article/

pii/S0952197622002469.

[69] K Andrew Cliffe et al. “Multilevel Monte Carlo methods and applications to elliptic PDEs

with random coefficients”. In: Computing and Visualization in Science 14.1 (2011), pp. 3–

15.

[70] David F Anderson and Desmond J Higham. “Multilevel Monte Carlo for continuous time

Markov chains, with applications in biochemical kinetics”. In: Multiscale Modeling and

Simulation 10.1 (2012), pp. 146–179.

[71] Michael B Giles and Lukasz Szpruch. “Multilevel Monte Carlo methods for applications

in finance”. In: High-Performance Computing in Finance (2018), pp. 197–247.

[72] Yuyang Shi and Rob Cornish. “On multilevel Monte Carlo unbiased gradient estimation

for deep latent variable models”. In: International Conference on Artificial Intelligence

and Statistics. PMLR. 2021, pp. 3925–3933.

[73] Neil K Chada et al. “Multilevel Bayesin Deep Neural Networks”. In: arXiv preprint

arXiv:2203.12961 (2022).

[74] Matthijs TJ Spaan. “Partially observable Markov decision processes”. In: Reinforcement

Learning. Springer, 2012, pp. 387–414.

[75] Farzad Hourfar et al. “A reinforcement learning approach for waterflooding optimization

in petroleum reservoirs”. In: Engineering Applications of Artificial Intelligence 77 (2019),

pp. 98–116.

119

https://doi.org/10.5281/zenodo.2541735
https://doi.org/10.5281/zenodo.2541735
https://doi.org/10.5281/zenodo.2541735
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/https://doi.org/10.1016/j.engappai.2022.105106
https://doi.org/https://doi.org/10.1016/j.engappai.2022.105106
https://www.sciencedirect.com/science/article/pii/S0952197622002469
https://www.sciencedirect.com/science/article/pii/S0952197622002469

BIBLIOGRAPHY

[76] JL Guevara, Rajan G Patel, and Japan J Trivedi. “Optimization of steam injection for

heavy oil reservoirs using reinforcement learning”. In: SPE International Heavy Oil Con-

ference and Exhibition. OnePetro. 2018.

[77] Jin-Hee Lee and John W Labadie. “Stochastic optimization of multireservoir systems via

reinforcement learning”. In: Water resources research 43.11 (2007).

[78] Jincong He et al. “Deep reinforcement learning for generalizable field development opti-

mization”. In: SPE Journal 27.01 (2022), pp. 226–245.

[79] Kai Zhang et al. “Training effective deep reinforcement learning agents for real-time life-

cycle production optimization”. In: Journal of Petroleum Science and Engineering 208

(2022), p. 109766.

[80] Yusuf Nasir and Louis J Durlofsky. “Deep reinforcement learning for optimal well con-

trol in subsurface systems with uncertain geology”. In: arXiv preprint arXiv:2203.13375

(2022).

[81] Atish Dixit and Ahmed H Elsheikh. “Robust Optimal Well Control using an Adaptive

Multigrid Reinforcement Learning Framework”. In: Mathematical Geosciences (2022),

pp. 1–31.

[82] Atish Dixit and Ahmed Elsheikh. “A multilevel reinforcement learning framework for

PDE based control”. In: arXiv preprint arXiv:2210.08400 (2022).

[83] Jian Hou et al. “A review of closed-loop reservoir management”. In: Petroleum Science

12.1 (2015), pp. 114–128.

[84] Kwangwon Park. Modeling uncertainty in metric space. Stanford University, 2011.

[85] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: A llvm-based python jit

compiler”. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure

in HPC. 2015, pp. 1–6.

120

	Introduction
	Current approaches and their limitations
	Why reinforcement learning?
	Fundamentals of reinforcement learning
	RL framework for optimal well control problem
	Limitations of proposed RL framework
	The explicit approach: adaptive multi-grid framework
	The implicit approach: multi-level deep RL framework

	Outline of the thesis
	Outline of chapter 2
	Outline of chapter 3
	Outline of chapter 4

	Stochastic Optimal Well Control in Subsurface Reservoirs using Reinforcement Learning
	Introduction
	Methodology
	Problem description for robust optimal well control
	RL framework for robust optimal well control
	RL algorithms
	Advantage actor-critic algorithm
	Proximal policy optimisation algorithm

	Differential evolution algorithm
	K-means clustering

	Numerical experiments
	model parameters
	RL problem formulation:

	Results and discussion
	Conclusions

	Robust Optimal Well Control using an Adaptive Multigrid Reinforcement Learning Framework
	Introduction
	Methodology
	RL Framework
	Learning Convergence Criteria
	Adaptive Multigrid RL Framework

	Case Studies
	Uncertainty Distribution for Test Case 1
	Uncertainty Distribution for Test Case 2
	State, Action and Reward Formulation
	Multigrid Framework Formulations

	Results
	Conclusion

	A Multilevel Reinforcement Learning Framework for PDE based Control
	Introduction
	Background
	Approximate Multilevel Monte Carlo estimation

	Multilevel RL framework
	Multilevel PPO algorithm
	Multilevel PPO analysis methodology

	Experiments
	ResSim-v1 parameters
	ResSim-v2 parameters
	Reinforcement learning task
	Multilevel framework formulation

	Results
	ResSim-v1 results
	ResSim-v2 results
	challenges and further research direction

	Conclusions

	Summarized Outlook of Proposed RL Frameworks for Subsurface Flow Control
	Introduction
	CLRM-based approach
	RL-based approach
	Advantages of RL-based approach

	A summarized outlook of proposed RL frameworks
	Guidelines for application of proposed framework
	Future scope
	Conclusion

	Conclusion and Future Work
	Chapter 2: Stochastic optimal well control in subsurface reservoirs using reinforcement learning
	Chapter 3: Robust optimal well control using an adaptive multigrid reinforcement learning framework
	Chapter 4: Multilevel framework for deep reinforcement learning
	Remarks and future directions

	Appendices for Chapter 2
	Definition of value and advantage functions
	Permeability uncertainty distribution parameters
	RL algorithm parameters

	Appendices for Chapter 3
	Cluster Analysis of Permeability Uncertainty Distribution
	Definitions of Value and Advantage Function
	Algorithm Parameters

	Appendices for Chapter 4
	Examples of objective functions for different deep RL algorithms
	Principle behind computational savings of MLMC estimator
	Implementation of multilevel PPO in stable baselines 3
	Classical PPO implementation in stable baselines 3
	Multilevel PPO implementation in stable baselines 3

	Cluster analysis of permeability uncertainty distribution
	Algorithm Parameters

