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ABSTRACT 

Flooding is the most common natural hazard worldwide. Severe floods can cause significant 

damage and sometimes loss of life. During a flood event, hydraulic models play an important 

role in forecasting and identifying potential inundated areas, where emergency responses 

should be deployed. Nevertheless, hydraulic models are not able to capture all of the 

processes in flood propagation because flood behaviour is highly dynamic and complex. 

Thus, there are always uncertainties associated with model simulations. As a result, near-real 

time observations are required to incorporate with hydraulic models to improve model 

forecasting skills. Crowdsourced (CS) social media data presents an opportunity for 

supporting urban flood management as it can provide insightful information collected by 

individuals in near real-time. 

 

In this thesis, approaches to maximise the impact of CS social media data (Twitter) to reduce 

uncertainty in flood inundation modelling (LISFLOOD-FP) through data assimilation were 

investigated. The developed methodologies were tested and evaluated using a real flooding 

case study of Phetchaburi city, Thailand. Firstly, two approaches (binary logistic regression 

and fuzzy logic) were developed based on Twitter metadata and spatiotemporal analysis to 

assess the quality of CS social media data. Both methods produced good results, but the 

binary logistic model was preferred as it involved less subjectivity. Next, the generalized 

likelihood uncertainty estimation methodology was applied to estimate model uncertainty 

and identify behavioural parameter ranges. Particle swarm optimisation was also carried out 

to calibrate for an optimum model parameter set. Following this, an ensemble Kalman filter 

was applied to assimilate the flood depth information extracted from the CS data into the 

LISFLOOD-FP simulations using various updating strategies. The findings show that the 

global state update suffers from inconsistency of predicted water levels due to overestimating 

the impact of the CS data, whereas a topography based local state update provides 

encouraging results as the uncertainty in model forecasts narrows, albeit for a short time 

period. To extend the improvement time span, a combination of state and boundary updating 

was further investigated to correct both water levels and model inputs, and was found to 

produce longer lasting improvements in terms of uncertainty reduction. Overall, the results 

indicate the feasibility of applying CS social media data to reduce model uncertainty in flood 

forecasting.  
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CHAPTER 1: Introduction 

1.1 Background to the study 

Floods are the most common natural hazard that occur around the world. Severe floods 

can cause significant casualties, property damages and economic losses. Approximately, 

19% of the world population (1.47 billion people) are directly exposed to substantial risks 

from 1-in-100 year flood events, and the majority of flood exposed people are located in 

South and East Asia (Rentschler & Salhab, 2020). During a flood event, flood inundation 

models play an important role in forecasting and identifying potentially inundated areas, 

where emergency response resources should be deployed. Nevertheless, most flood 

inundation models are not able to capture all of the key processes due to various factors. 

First of all, the processes of flooding are extremely complex. It involves numerous 

variables associated with physics theories and laws which attempt to explain the 

complexity of water motion in flooding characteristics, and this complexity results in 

simplifications and assumptions in hydrodynamic models (Néelz & Pender, 2009b). 

Secondly, it is impractical to account for all of the multiple parameters required to 

simulate key physical processes, particularly as some parameters may be correlated. 

Thirdly, the true stage of initial conditions of the system may either be not known or 

difficult to determine (Lahoz & Schneider, 2014). Lastly, discretisation of the space 

domain in numerical models and discretisation of the governing equations can introduce 

some errors into the calculations (Hirsch, 2007; Samuels, 1990). These numerical 

limitations and simplifying assumptions can cause large uncertainties in the estimation of 

the true state of the system over time. 

 

Apart from numerical models, measurements (observations) of key parameters can 

represent the state of the system at the observed time. Typically, in-situ measurements 

have been used to monitor flood dynamics, however the scarcity of data in the spatial 

domain is a major issue for these traditional data types (Mazzoleni, 2016). This situation 

is worsening, as the number of physical gauging stations is on a downward trajectory 

worldwide, primarily due to high maintenance costs (Hostache et al., 2018; Revilla-

Romero et al., 2016). Moreover, near real-time access to in-situ observational data may 

not be possible in many regions (Revilla-Romero et al., 2016).  
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In contrast to traditional approaches to data collection, remote sensing has been 

increasingly recognised as a potential source of data that can be exploited for flood 

monitoring and modelling (Bates, 2012), particularly in terms of increased spatial 

resolution. Nonetheless, during a flood event, only limited numbers of medium-high 

resolution (<30 metre spatial resolution) satellite images are typically available to capture 

the necessary data. In fact it is extremely difficult to accurately predict the timing and 

location of a flood event, and it is thus almost impossible to ensure adequate satellite 

coverage (Schumann & Moller, 2015). Moreover, there are uncertainties associated with 

satellite observations, such as cloud cover in optical remote sensing and speckle noise in 

radar images. As a result, remote sensing observations often lack the necessary temporal 

resolution usually required to monitor flood dynamics. 

 

Although observations can accurately represent the true state of the system, they are only 

available at a discrete point in time. In contrast, numerical models can provide prediction 

of the true state of the system over time. However, they are often associated with high 

uncertainty as errors are also accumulated over time. To fill the gaps of high uncertainty 

associated with numerical models and discrete information in observations, model 

forecasts and observed data can be efficiently integrated through Data Assimilation (DA) 

approaches. DA is a powerful method, which has been widely applied to correct model 

forecasts using observations. DA techniques allow the optimal estimates of the systems 

of interest to be determined by integrating both data from models and observations. Each 

of which is associated with different spatiotemporal characteristics and uncertainties 

(Lahoz & Schneider, 2014). In this way, DA adds value to the model by constraining it 

with observations, while it also adds value to the observations by filling in the observation 

gaps (e.g. lack of spatial resolution for in-situ observations and lack of temporal resolution 

in remote sensing observations) (Cooper, 2018, 2019; Lahoz et al., 2010). 

 

Regarding flood monitoring and forecasting, typical observation methods that have been 

employed to update flood forecasting models are in-situ and remote sensing observations. 

However, the aforementioned issues (the lack of spatial and temporal resolutions in the 

in-situ and remote sensing observations, respectively) hamper the full potential of DA 

approach to improve real-time flood forecasting skills. In-situ river level measurements 

are not able to provide information from floodplain areas, hence poor spatial resolution. 

Remote sensing observations, on the other hand, can provide high spatial resolution that 
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covers the entire floodplain area, but they often lack the temporal resolution typically 

required in DA process to consistently update the observed information into flood models. 

A number of studies (e.g. Matgen et al. (2010); Andreadis and Schumann (2014); García-

Pintado et al. (2013)) have demonstrated that consistently assimilating observations into 

a flood forecast system is important in keeping the forecast on track. 

  

Recent rapid technological improvements mean that smartphones with embedded low-

cost sensor and Assisted Global Positioning System (A-GPS) are affordable in most parts 

of the world (WMO, 2017). Together with social media platforms, information is 

seamlessly spread online in near real time. These improvements offer a new approach to 

data collection, commonly referred to as crowdsourcing (Zheng et al., 2018). Combining 

crowdsourcing with social media platforms, high spatial and temporal resolution can be 

achieved through individual contributions, which offer insight information not currently 

available from the traditional observation methods.  

 

To this end, crowdsourced (CS) social media data presents a great potential for bridging 

the gap of low spatial and temporal resolutions presented in the traditional observations. 

For urban flood management, social media platforms can provide discrete information, 

especially in the floodplain area, which could be employed as supplemental information 

in updating flood inundation models through DA approaches. However, the openness 

participatory in the crowdsourcing approach also leads to data quality issues (Goodchild 

& Li, 2012), which can greatly hinder the use of CS social media data in many 

applications. Therefore, there is a need to investigate the potential of applying CS social 

media data to improve real-time flood forecasting through DA approaches. 

 

1.2 Research problem and study rationale 

The need for this study emerged through the existing gaps in the literature as well as a 

lack of empirical research on the use of actual CS social media data. Firstly, although the 

number of social media users has remarkably increased in the last decade, the rate of 

acceptability in adopting CS social media data among environmental research 

communities is low (Zheng et al., 2018). This is due to the fact that there is no “in-built” 

quality assurance for CS social media data (Goodchild & Li, 2012), which leads to quality 

issues in the data itself, such as high errors and lack of completeness. Hence, there is a 
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need for robust quality assessment methods, which can effectively screen out poor-quality 

CS social media data.  

 

Secondly, there is a need for an appropriate methodology to deal with the unique 

characteristics of CS social media data with regard to how this type of information can 

effectively correct the current (background) state of flood inundation models in DA 

approaches. Although techniques regarding how observations can be applied to update 

the background state of the system have been proposed, they are mostly developed and 

tested against in-situ or remote sensing observations. Therefore, further investigations of 

how CS social media data can be effectively assimilated into flood inundation models are 

needed, given a significant difference of spatial scales in CS social media data (local 

scale) compared to those (catchment and reginal scale) at which DA is traditionally 

performed (Lahoz & Schneider, 2014). 

 

Thirdly, although to date a number of literatures have demonstrated that DA approaches 

can improve flood forecasting skills by assimilating a series of satellite images, a 

significant number of studies (e.g. Andreadis et al. (2007); García-Pintado et al. (2013); 

and Dasgupta et al. (2021)) have been conducted based on synthetic (virtual) satellite 

observations, typically generated by adding noise to a calibrated model output. However, 

uncertainties associated with the virtual observations are usually known and well-

controlled in these synthetic experiments. Therefore, empirical studies are required to 

better understand how real-world observational data may be used for real-time flood 

forecasting. This is especially true for CS social media data, which is regarded as a novel 

form of data gathering method. 

 

By exploring the use of CS social media data to improve real-time flood forecasting 

through a DA approach, this thesis contributes to an ongoing research topic which will 

bring insight into how such data can be exploited for urban flood management. 

 

1.3 Research aim and objectives 

Based on the identified research problems, this thesis aims to explore and investigate the 

potential of CS social media data to reduce uncertainty in flood inundation modelling 

through a standard sequential DA technique.  
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In order to address the thesis aim, specific research objectives are to: 

1) Develop and evaluate classification models to assess data quality of CS social media 

data based on identified quality indicators. 

2) Identify a suitable technique to estimate flood depth and associated uncertainty from 

CS social media data. 

3) Design and implement techniques of assimilating CS social media data for use in a 

sequential DA approach. 

4) Apply the proposed techniques to a case study using real CS social media data and 

benchmarking the performances of the proposed technique against those reported in 

the relevant literatures. 

5) Develop practical guidelines to facilitate the use of crowdsourced data to improve 

real-time flood forecasting. 

 

Overall, the project will seek to supplement traditional point source data (i.e. in-situ river 

level measurements) alongside more distributed CS data in the form of social media 

images and text descriptions of flood events, to reduce uncertainty associated with a flood 

forecasting model. The focus is on social media platforms, which can provide near-real 

time flood related evidence during a flood event, such as flooded images, text descriptions 

and geo-locations. Useful flood information (i.e. geo-coordinate, water depth and 

associated errors) will be extracted, estimated and updated into a flood inundation model 

through a standard data assimilation technique to investigate the performance and 

limitation of the CS dataset.  

 

1.4 Thesis outline 

This thesis is organised into a further eight chapters as follows: 

 

• Chapter 2 provides a review of the literature, including the explanation of the key 

theoretical concepts regarding flood inundation models, model conditioning and 

uncertainty analysis, crowdsourcing approach, and DA for flood forecasting. 

• Chapter 3 provides a rationale for the development of the proposed methodology. It 

involves justifications of selecting appropriate social media platform, hydrodynamic 

model and DA approach. This chapter also provides an account of how the sequential 

DA can be implemented, as well as how the flood related CS social media data can be:  
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retrieved from a social media archive; analysed to estimate flood information; and, 

integrated with LISFLOOD-FP through a sequential DA approach.  

• Chapter 4 provides details of the selected case study area in Thailand and how the 

selected hydrodynamic model was setup. It also outlines how the proposed 

methodology was implemented for the specific particular case study. Some of the 

preliminary results regarding the case study are also reported in this chapter.  

• Chapter 5 reports results regarding the quality assessment of CS social media data. 

Results obtained from the developed quality assessment models are compared and 

discussed. Based on the lessons learned from the actual case study, this chapter also 

provides specific discussions regarding the key issues associated with the use of CS 

social media data for flood risk management. 

• Chapter 6 provided results of model calibration and conditioning gained from the 

selected techniques. This chapter also provides a comparative discussion in terms of 

the implementation and performance between the model calibration and model 

conditioning methods. 

• Chapter 7 presents the outcomes of the empirical study regarding the performance of 

the proposed updating strategies employed to assimilate CS social media observations 

for real-time urban flood forecasting. It also includes discussion regarding the 

influence of global/local updating and boundary updating strategies on the flood 

forecast. 

• Chapter 8 provides an overall discussion in which connects the outcomes from the 

empirical Chapters (5-7), whilst placing these in the context of the current state of 

knowledge using relevant literatures. It identifies the opportunities and limitations of 

applying the CS social media data for real-time flood forecasting based on the 

experiences gained from real case study, and it also includes practical guidelines to 

facilitate the use of crowdsourced data for real-time flood forecasting system. 

• Chapter 9 summarises the research and outlines the main conclusions. It explicitly 

presents a synthesis of the overall contribution to the field of crowdsourcing and flood 

forecasting. Finally, it identifies areas for further research. 
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CHAPTER 2: Literature review 

This chapter provides a review of the relevant literature. Section 2.1 introduces the 

governing equations of fluid flow, whilst Section 2.2 describes the different types of 

models based on these equations. In Section 2.3, details of model calibration, validation 

and uncertainty analysis are provided, and Section 2.4 introduces the concept of 

crowdsourced data, as well as its applications for various types of natural disasters. 

Finally, section 2.5 and 2.6 briefly outlines the theories of various data assimilation (DA) 

schemes and how they have been applied to improve model flood forecasting skills, 

respectively. 

 

2.1 The governing equations of fluid motion 

The Navier Stokes equations are currently the best representation of fluid flow (Wilcox, 

2006), however their complexity means that they are expensive to solve (Alcrudo, 2002; 

Woodhead et al., 2007), and this computational expense is not always justified. Whilst 

the Navier Stokes equations are employed for 3D flood modelling, the propagation of 

waves in rivers and floodplains is typically simulated based on the assumption of either 

1D or 2D flow, and such conditions are well described by the St Venant equations (Liu, 

2014), which are a depth averaged form the Navier Stokes equations (Néelz & Pender, 

2009a). Whilst the 1D version of these equations are commonly called the St Venant 

equations, the 2D form are typically referred to as the Shallow Water Equations (SWE).  

 

2.1.1 Governing equations of 1D flow 

1D unsteady open channel flow may be expressed by the Saint-Venant Equations 

(MacArthur and DeVries, 1993). These partial differential equations were first introduced 

in 1871 by Barré de Saint-Venant, a French engineer (Litrico & Fromion, 2009; Miller, 

1984), and arise from application of momentum conservation and mass conservation. 

There are number of assumptions associated with the derivation of the Saint-Venant 

Equations (Litrico & Fromion, 2009; MacArthur & DeVries, 1993; Miller, 1984), 

including: 

1) The velocity profile is uniform and the water surface across the section is 

horizontal. 

2) The flows are gradually varied with hydrostatic pressure, so vertical accelerations 

are negligible. 
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3) The longitudinal axis of the flow is approximated by a straight line, so the 

direction of water movement is aligned with the channel centre line.  

4) The channel bed slope is small, thus cos 𝜃 ≅ 1. 

5) The variation of channel width is small. 

6) The empirical friction equations derived from steady flow assumptions, such as 

Manning or Chezy equations, are valid in unsteady flow. 

 

The two-coupled partial derivative equations that represent the Saint-Venant Equation 

are: 

Continuity Equation:      
𝜕𝑄

𝜕𝑥
+

𝜕𝐴

𝜕𝑡
= 0 2-1 

Momentum Equation:   
1

𝐴

𝜕𝑄

𝜕𝑡
+

1

𝐴

𝜕

𝜕𝑥
(
𝑄2

𝐴
) + 𝑔

𝜕ℎ

𝜕𝑥
− 𝑔(𝑆𝑜 − 𝑆𝑓) = 0 

 

2-2 

Where: 𝐴 = cross-sectional flow area, 𝑄 = discharge, 𝑆𝑓 = friction slope, 𝑆𝑜 = bed 

slope (−𝑑𝑧 𝑑𝑥⁄ ), 𝑔 = gravitational acceleration, 𝑡 = time, 𝑣 = flow velocity, 𝑥 = 

horizontal distance, 𝑧 = height of stream bottom above datum. 

 

Equation 2-2 is the 1D form of the momentum equation describing unsteady flow with 

no lateral inflow (Miller, 1984). The four terms in the momentum equation are: [Ι] is the 

local inertia term, [II] is the convective inertia term, [III] is the pressure differential term 

and the term [IV] accounts for the bed and friction slopes, respectively (Miller, 1984; 

Ponce & Simons, 1977). 

 

2.1.2 Governing equations of 2D flow 

The common governing equations for the 2D open-channel flows are the depth-averaged 

shallow-water equations (SWE) (Liu, 2014). The SWE are the governing equations of 

fluid motion used for modelling long waves such as floods, ocean tides and storm surges, 

where the wavelength is much greater than the depth of water (TUFLOW, 2016).  

 

The SWE can be either derived from the 3D Navier-Stokes (NS) equations, which are 

widely used to describe the dynamic propagation of fluid, or alternatively from the 

conservation of mass and momentum in a plane of motion (x and y directions) (Alcrudo, 

[Ι] [II] 

Ι 

[III] 

Ι

[IV] 
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2002; Liu, 2014). As with the 1D version, the assumptions involved in the derivation of 

the SWE are: 

1) Vertical velocities are neglected 

2) The hydrostatic pressure field is assumed 

3) The channel bed slope is small, thus, cos 𝜃 ≅ 1. 

4) Uniform horizontal velocity is assumed across water layer 

5) Turbulent effects are usually ignored 

6) The empirical friction equations derived from steady flow assumptions, such as 

Manning or Chezy equations, are valid in unsteady flow. 

 

The two-dimensional shallow water equations can be written in compact vector form as 

(Liu, 2014, Néelz and Pender, 2009; Alcrudo, 2002):  

𝜕𝑼

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑭 + 𝑭𝒅) +

𝜕

𝜕𝑦
(𝑮 + 𝑮𝒅) = 𝑯 + 𝑰 

2-3 

 

Where: the U is the variables vector, F and Fd and G and Gd are the convective and 

diffusive fluxes vectors in the cartesian coordinate system respectively, H is the bed slope 

and friction term vectors, and I is the infiltration source vector. The vectors U, F, Fd, G, 

Gd, H and I are defined as (Néelz and Pender, 2009; Alcrudo, 2002): 

𝑼 = (
ℎ
ℎ𝑢
ℎ𝑣

) , 𝑭 = (

ℎ𝑢
1

2
𝑔ℎ2 + ℎ𝑢2

ℎ𝑢𝑣

) , 𝑮 = (

ℎ𝑣
ℎ𝑢𝑣

1

2
𝑔ℎ2 + ℎ𝑣2

) ,𝑯 = (

0
𝑔ℎ(𝑆𝑜𝑥 − 𝑆𝑓𝑥)

𝑔ℎ(𝑆𝑜𝑦 − 𝑆𝑓𝑦)
)  2-4 

𝑭𝒅 =

(

 
 

0

−𝜀ℎ
𝜕𝑢

𝜕𝑥

−𝜀ℎ
𝜕𝑣

𝜕𝑥)

 
 

,   𝑮𝒅 =

(

 
 

0

−𝜀ℎ
𝜕𝑢

𝜕𝑦

−𝜀ℎ
𝜕𝑣

𝜕𝑦)

 
 

, 𝑰 =

(

 
 

−𝑖𝑟

−
1

2
𝑢𝑖𝑟

−
1

2
𝑣 𝑖𝑟)

 
 

 2-5 

Where: ℎ is water depth, 𝑢 𝑎𝑛𝑑 𝑣 are the depth-averaged velocities in the x and y 

directions, respectively, 𝑔 is gravitational acceleration, 𝑆0𝑥 𝑎𝑛𝑑 𝑆0𝑦 are the bed slope, 

𝑆𝑓𝑥 𝑎𝑛𝑑 𝑆𝑓𝑦 are the friction slopes in x and y directions, respectively. The friction slopes 

can be estimated using Manning formula as: 

𝑆𝑓𝑥 = −
𝑛2𝑢√𝑢2 + 𝑣2

ℎ4 3⁄
 ; 𝑆𝑓𝑦 = −

𝑛2𝑣√𝑢2 + 𝑣2

ℎ4 3⁄
 

2-6 
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Where, 𝑛 is Manning’s roughness coefficient. The diffusive fluxes are expressed in vector 

Fd and Gd which are known as viscosity terms. The 𝜀 is a kinematic viscosity coefficient 

which is the combined effect of a) fluid kinematic viscosity b) turbulent eddy viscosity 

and c) apparent viscosity (Néelz and Pender, 2009; Alcrudo, 2002). Lastly ir is the 

infiltration rate into the ground. Infiltration terms (I) can occasionally be considered in 

the 2D SWE depending on the surface catchment properties. They could be important in 

flooding problems, where “surface losses” due to infiltration and/or sewer networks may 

warrant consideration (Alcrudo, 2002). 

 

For flood modelling applications, the Coriolis force, Surface wind shear stress and 

Viscosity terms, are generally considered negligible because they have insignificant 

effects or are not fully understood in flood modelling context (Néelz and Pender, 2009). 

The kinematic and turbulent eddy viscosity terms usually have only a minor effect on 

model predictions, while the effect of apparent viscosity is not yet fully understood, 

therefore the viscosity terms are typically ignored in flood modelling context. Moreover, 

the surface wind shear stresses may influence the water depth in large floodplains, but the 

magnitude and directions are difficult to predict, thus usually ignored (Néelz and Pender, 

2009). As a result, the simplified form of the SWE can be written in vector form as:  

𝜕𝑼

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑭) +

𝜕

𝜕𝑦
(𝑮) = 𝑯 

2-7 

 

 

2.2 Flood inundation models 

The real-world processes of flooding are extremely complex. For decades, the study of 

both physical and mathematical based models has been continually developed to gain 

improved understanding of key hydrological and hydrodynamic processes. In particular, 

mathematical based models have gained attention among research communities due to 

their robustness, cost-effectiveness and ease-of-use.  

 

In general terms, mathematical models can be categorised based on the assumptions and 

mathematical structures employed in the model (Jajarmizad et al., 2012; Toombes & 

Chanson, 2011). Regarding mathematical structures, two broad types of hydrodynamic 

model can be identified, namely deterministic and stochastic models. Deterministic 

models are based on mathematical relationships among physical parameters which results 

in one combination of inputs providing one combination of outputs (Butler & Davies, 
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2011), while uncertainty is taken into account in stochastic models, which leads to an 

ensemble of different outputs in a simulation (Butler & Davies, 2011).  

In deterministic models, parameters and variables are functions of independent space and 

time variables (Holzbecher, 2012). In general, hydrodynamic models can be categorised 

depending on the number of space dimensions (Holzbecher, 2012) including zero-

dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional 

(3D) models. In particular, 0D models rely on simple volume-spreading algorithms 

(Néelz & Pender, 2013) rather than applying mathematical equations to solve physical 

processes of flood inundation, whereas 1D, 2D and 3D models solve the underlying 

mathematical equations with different degrees of assumptions.  

 

2.2.1 Zero-dimensional (0D) models 

There are no space dependencies, only time dependency in 0D models (Holzbecher, 

2012). Néelz and Pender (2013) categorised 0D models as 0-term models since they do 

not rely on any terms in the SWE, while the full-SWE, 3-term, 2-term and 1-term models 

solve the SWE differently depended on terms omitted. Most 0D models determine 

inundated areas using volume-spreading algorithms which consider continuity and 

connectivity of floodplain topography (Néelz & Pender, 2013). Examples of 0D models 

are RFSM Direct and ISIS FAST, which both determine inundation area with reference 

to topographic features in a relevant Digital Elevation Model (DEM) (Jamieson et al., 

2012). Benchmarking studies (Néelz & Pender, 2010; Néelz & Pender, 2013) indicate 

that 0-term models are capable of delivering approximate predictions of final inundation 

distributions with clear benefits in terms of computational cost. However, their 

applications are limited to large-scale applications, where only final water levels are 

required and local level process representations are less important (Néelz & Pender, 

2013). Due to the simplification of hydraulic concepts in 0D models, they can be 

categorised into ‘simplified conceptual models’ as they do not require solving physical 

processes controlling floodplain inundation (McGrath et al., 2018; Néelz & Pender, 

2009a; Teng et al., 2017). 

 

2.2.2 One-dimensional (1D) models 

In the 1D modelling approach, a series of cross-sections perpendicular to the flow 

direction characterise river channels, while floodplains are represented by extensions to 
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the river cross-sections (Brunner, 2016). In addition to flow in open channels, full or part-

full pipe and sewer systems can also be represented by 1D models, and either steady or 

unsteady flows can be simulated (Butler & Davies, 2011). 1D steady flow can be 

explained using the principle of energy conservation and energy equation, while 1D 

unsteady flow can be described by the St Venant equations introduced in Section 2.1.1. 

In most scenarios, unsteady flow is the dominant characteristic of river and floodplain 

flows (MacArthur & DeVries, 1993), and so the St Venant equations are typically 

employed.  

 

As the St Venant equations are a set of hyperbolic partial different equations (Miller, 

1984; Teng et al., 2017), analytical methods are only suitable for “trivial” scenarios, and 

all real-world application of these equations must employ some form of numerical 

solution technique. This would typically involve some form of finite difference, finite 

volume or (in rare cases) finite element methods (Hirsch, 2007).  

 

Obvious advantages of the 1D models over more complex forms are their computational 

efficiency (typically within minutes) and their ability to represent hydraulic structures. 

Moreover, a number of 1D models studies have been proven that robust and meaningful 

results are delivered when the assumptions of 1D problems are met Horritt and Bates 

(2002). Thus, 1D hydraulic models are often a preferred approach for flood studies but 

they are subject to the complexity of catchment conditions, where the flow paths are 

unknown or difficult to define appropriate cross sections to form the discrete 

representation of the river geometry (Samuels, 1990). Examples of widely available 1D 

models are (Teng et al., 2017; Tom et al., 2022) ,MIKE11 (www.mikepoweredbydhi.com), 

InfoWorks RS (www.innovyze.com), HEC-RAS 1D (https://www.hec.usace.army.mil/), 

ISIS 1D (www.floodmodeller.com) and SOBEK (https://www.deltares.nl/en/software/sobek).  

 

2.2.2.1 Simplified 1D models 

Irrespective of the type of solution method employed, its application to the St Venant 

equations can incur significant computational expense, particularly when applied over 

large domains and/or long time scales. As such, a number of simplifications to the full St 

Venant equations have been proposed by various authors, As an example, Ponce and 

Simons (1977) constructed various models based on different combinations of the four 

terms in Equation 2-2, as shown in Table 2.1. 

https://www.hec.usace.army.mil/
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Table 2.1: The wave model and combinations of terms (Ponce and Simons, 1977). 

Model Terms from the Momentum Equation 

1. Kinematic Wave [IV] 

2. Diffusion Wave [III] + [IV] 

3. Steady dynamic Wave [II] + [III] + [IV] 

4. Dynamic Wave [I] + [II] + [III] + [IV] 

5. Gravity Wave [I] + [II] + [III] 

 

Typically, the terms [I] and [II] are usually of the same order of magnitude but with 

opposite signs, thus offsetting each other (Miller, 1984; Singh, 2002). Yen (1973) also 

suggested that neglecting both terms [I] and [II] is more accurate than including only one. 

By balancing computational cost and complexity against the accuracy required by each 

wave model, the kinematic wave (1), the diffusion wave (2) and the dynamic wave (3) 

models prevail over the other two wave models (Miller, 1984).  

 

Kinematic waves tend to be more characteristic of a flood wave compared to the dynamic 

waves (Singh, 2002), primarily because the largest part of flood wave moves as a 

kinematic wave due to the domination of the bed and friction slope terms in the 

momentum equation (Miller and Cunge, 1975 cited in Miller, 1984). A number of studies 

indicate that Froude number (F) can be used as a criterion for kinematic waves, where 

Froude number (F) is given by: 

𝑭 =
𝒗

√𝒈𝒚
 

2-8 

 

Where: 𝑣 = flow velocity, 𝑔 = gravitational acceleration, 𝑦 = hydraulic mean depth. For 

F=1, flow is critical flow. If F<1, flow is subcritical flow. When F>1, flow is 

supercritical flow. 

Lighthill and Whitham (1955a) and Lighthill and Whitham (1955b) pointed out that when 

the Froude number (F) is equal to two, the dynamic and kinematic waves have the same 

celerity (wave velocity), while when the Froude number (F) is less than two, the dynamic 

component is exponentially faded out and the kinematic wave eventually dominates. 

Miller and Counge (1975) (cited in Miller, 1984) also concluded that the kinematic wave 

approximation is not recommended for highly supercritical flow because the dynamic-
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wave celerity diverges from the kinematic waves. Therefore, the kinematic wave model 

is often considered adequate for most flooding problems (Néelz and Pender, 2009; Singh, 

2002; Miller, 1984) due to the dominance of subcritical flow in typical flood inundation 

characteristics; although dynamic and diffusion waves present in typical overland flow, 

they are typically short lived and play a minor role (Singh, 2002). However, the kinematic 

wave model is typically not be applicable to urban flood problems, where supercritical 

flows and manmade structures, such as buildings, bridges, levees and streets exist (Néelz 

and Pender, 2009).  

 

2.2.3 Two-dimensional (2D) models 

Unlike the use of cross sections in 1D models, polygon grids or meshes are used to 

represent topographic information in 2D models (Liu, 2014; Toombes & Chanson, 2011). 

This approach allows flows between individual cells to be calculated using a variety of 

different techniques (e.g. finite difference, finite volume, finite element) to solve the 

governing SWE (Néelz & Pender, 2010).  

While the main advantages of 1D models are their ease of use, computational efficiency 

and the ability to represent hydraulic structures, the fundamental approach neglects some 

important aspects important to flood inundation modelling. Moreover, some prior 

knowledge of overflow direction and considerable skills may be required to effectively 

determine cross-section location in 1D models (Samuels, 1990). The 2D approach, on the 

other hand, offers a more sensible way of representing flood inundation flows. Liu (2014) 

and Horritt and Bates (2001a) suggested that the 2D modelling is a suitable approach for 

floodplain inundation prediction for two reasons. Firstly, 1D models are too simplistic to 

represent floodplain flows, while 3D models are unnecessarily complex and require high 

computational resources. Secondly, the increasing availability of remote sensing products 

such as Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR) 

facilitates the use of 2D models in terms of model parameterisation and validation (Bates, 

2012).  

 

Some common well-known 2D models currently available include (Néelz and Pender, 

2010, 2013; Teng et al., 2017; Tom et al., 2022): LISFLOOD-FP (University of Bristol), 

JFLOW (JBA), TUFLOW (BMT Group), MIKE21 (DHI), Infoworks-2D (Innovyze), 
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HEC-RAS 2D (US Army Corps of Engineers), DIVAST (Cardiff University) and Flood 

Modeller Pro 2D Solver (Jacobs). 

 

Numerically solving dynamic wave equations is computationally expensive, especially 

for the full 2D-SWE and even higher for 3D-RANS. This issue essentially limits the 

applications of both 2D and 3D flood inundation modelling to relatively small and very 

small areas respectively. This is a considerable constraint, as flood inundation can spread 

over a vast area depending on catchment topography and return period. This situation led 

to the development of simplified 2D models, as detailed in the following sub-sections. 

 

2.2.3.1 Early simplified 2D models 

To deal with limitations associated with full SWE models, more simplified approaches to 

channel and floodplain flow routing were developed (Bates & De Roo, 2000; Bradbrook 

et al., 2004; Lhomme et al., 2008).  As in the 1D formulation, the acceleration terms in 

the 2D SWE (the terms involving 𝑢 𝑎𝑛𝑑 𝑣 𝑖𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑼, 𝑭 𝑎𝑛𝑑 𝑮) can be ignored to yield 

2D diffusion wave equations (Bradbrook et al., 2004). 2D diffusion wave approximations 

are appropriate where the flow is predominantly driven by water surface slope rather than 

momentum effects (Néelz and Pender, 2009). Typically, in many cases, once the river 

banks are breached, floodwater is disconnected from its source and its behaviour is 

predominantly determined by the local topography (Bradbrook, 2006). Therefore, the 

effects of gravity and friction dominate, while dynamic effects tend to be less important 

due to low velocities (Bates & De Roo, 2000; Bradbrook et al., 2004).  

 

During the last two decades, there has been significant development of simplified 2D 

flood inundation models, such as LISFLOOD-FP (Bates and De Roo, 2000) and JFLOW 

(Bradbrook et al., 2004). These models have been extensively tested and developed and, 

for certain scenarios, can provide comparative results compared to fully dynamic SWE 

models at considerably less computational cost. For shallow water flow, topographically 

driven 2D diffusion wave models have been shown to provide similar quality as fully 

hydrodynamic 2D models (Bradbrook et al., 2005; Horritt & Bates, 2001b).  

 

Notwithstanding the above, most early simplified 2D raster-based models suffered from 

“chequerboard” oscillations, resulting in erroneous flow reversal between time steps. 

These oscillations could develop rapidly and spread, destroying the solution. In the early 
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versions of LISFLOOD-FP for example, the time step was selected by the user, and a 

trial-and-error process was required to achieve stable solutions (Hunter et al., 2005b). It 

was later found that the oscillation issue was related to the selection of the time step, since 

the model solution (e.g. JFLOW or LISFLOOD-FP) was based on explicit forward 

differencing, and the time step must be small enough to ensure the surface disturbance 

does not propagate beyond the boundaries of a grid cell within a time step (Bradbrook et 

al., 2004). In general, the smaller time step leads to the better model accuracy, therefore 

there is a trade-off between model stability and computational efficiency is important 

(Bradbrook et al., 2004; Hunter et al., 2005b).  

 

Later, a flow limiter (function of flow depth, time step and grid cell size) was introduced 

to prevent chequerboard oscillations in areas of deep water, by setting a maximum flow 

between cells (Hunter et al., 2005b). The aim of using flow limiter was to limit the amount 

of water fluxed into adjunct cells to ensure that it was not large enough to reverse the flow 

at the next time step (Hunter et al., 2005b). Hunter et al. (2005b) also pointed out that, 

using a flow limiter leads to sensitivity issues related to cell size and time step, while the 

Manning’s n is less sensitive. An alternative approach of dealing with the chequerboard 

oscillations was also purposed by Hunter et al. (2005b) by applying an adaptive time step 

algorithm based on Von Neumann condition. However, later work by Hunter et al. (2006) 

reported that while the adaptive time step algorithm provided a better performance than 

the original fixed time step version of LISFLOOD-FP, the computational cost also 

dramatically increased.  

 

Aside from the time step limitation associated with use of an explicit differencing scheme, 

another reason for the oscillatory behaviour of early simplified models was that they 

effectively ignored the inertial terms, which became more influential in deeper flow 

conditions (Bradbrook et al., 2005). The simplified 2D models (LISFLOOD-FP and 

JFLOW) were further tested to compare model run time with the full 2D shallow-water 

equation models (TUFLOW, DIVAST-TVD and TRENT) for a high-resolution grid (2m) 

DEM by Hunter et al. (2008). Hunter et al. (2008) reported that all the shallow-water 

model simulations took approximately 1 hour to simulate a flood event (July 2002) in a 

rectangle 1 km x 0.4 km area in the city of Glasgow, UK. While the simplified diffusion 

wave codes took several times longer. The longer run time results of LISFLOOD-FP and 

JFLOW were caused by the development of very small timesteps to ensure model stability 



   

 

17 

and hence increases computational burden (Hunter et al., 2008). Whereas the explicit 

TRENT and DIVAST-TVD codes required relatively lower runtime compared to the 

simplified diffusion models. As a result, Hunter et al. (2008) suggested that, for the high-

resolution DEM (2m), inclusion of inertial terms in diffusion wave equations may allow 

the use of a larger time step, and consequently less computational runtime. 

 

The following sub-sections briefly describe two simplified 2D flood inundation models, 

namely LISFLOOD-FP and RFSM. 

 

2.2.3.2 LISFLOOD-FP 

LISFLOOD-FP was first developed in 1999 by Bates and De Roo (2000) for research 

purposes by the University of Bristol. The model is an extension of the LISFLOOD 

catchment model and is designed specifically for channel and floodplain hydraulic 

routing problems (Bates and De Roo, 2000). It is a raster-based model, developed to 

operate in conjunction with high-resolution raster Digital Elevation Models (DEM) 

(Bates and De Roo, 2000). The model consists of a number of solvers that simulate the 

propagation of flood waves along channels and across floodplains using simplifications 

of the SWE (Bates et al., 2013). In LISFLOOD-FP, channel flow is described using a 1D 

kinematic wave treatment, while a 2D diffusion wave approach is applied on the 

floodplain surface.  

 

For channel flow, the 1D Saint-Venant equations are numerically solved by an explicit 

finite difference procedure. The simplest choice of the channel flow models is a 1D 

kinematic wave approximation (“kinematic” solver), which omits all terms except the 

friction and bed gradient terms. Thus, the water is allowed to leave the calculation 

domains freely in the Kinematic mode. In contrast, in the “diffusive” mode, the water 

slope term is taken into account in the solver, thus is able to predict backwater effects 

(Bates et al., 2013). Another method for channel flow is the “sub-grid channel” model, 

which is designed to operate over large data sparse areas where detailed channel 

information is not available (Neal et al., 2012). Table 2.2 provides description of the 

solvers available for calculating channel flow. 
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Table 2.2: Description of the solvers available for calculating channel flow  

(Modified after Bates et al., 2013). 

Solver Dimensions Shallow water terms 

included 

Shallow water terms 

assumed negligible 

Kinematic 1D Friction slope and water slope 

including bed gradient only 

Local and convective 

acceleration and free surface 

gradient 

Diffusive 1D Friction slope and water slope 

including bed and free surface 

gradients 

Local and convective 

acceleration 

Sub-grid 

channel 

1D Friction and water slopes, 

local acceleration 

Convective acceleration 

 

For floodplain flow solvers, once the bankfull depth is exceeded in the 1D channel 

routing, the water may be routed into adjacent floodplain areas of the DEM (Bates and 

De Roo, 2000). Floodplain flows are discretized over a grid of square cells, which allows 

the model to represent 2-D dynamic flow fields on the floodplain (Horritt & Bates, 

2001b). There are a number of floodplain flow solvers available in LISFLOOD-FP 

including, as summarised in Table 2.3. 

Table 2.3 Description of the solvers available for calculating floodplain flow 

(Modified after Bates et al., 2013). 

Solver Dimensions Shallow water terms included 

Shallow water 

terms assumed 

negligible 

Routing 1D on 2D grid 
User specified velocity and bed 

slope direction only  
All 

Flow-limited 1D on 2D grid Friction and water slopes 

Local and 

convective 

acceleration 

Adaptive 1D on 2D grid As above As above 

Acceleration 
1D on 2D grid, 

friction terms in 2D 

Friction and water slopes, local 

acceleration 

Convective 

acceleration 

Roe 2D All terms None 

 

In brief, the “routing” solver is the simplest method to transfer water between cells. If 

implemented, this solver is only applied to cells containing either very shallow water (<1 

mm as default or user defined) or where water slopes are very high (>10% or user defined) 

(Bates et al., 2013). Water flows with a fixed flow velocity from the specified cell into 

the adjacent cell which has the lowest elevation. If the above condition is not met, the 

acceleration scheme is used for the flow calculation (Bates et al., 2013). Next in terms of 
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complexity, the “flow-limited” solver approximates the diffusion wave equations by 

neglecting both local and convective acceleration terms. This solver requires a user to 

specify a fix time step which typically needs to be very short to maintain model stability.  

This flow-limited scheme suffers from stability issues, unless the specified model time 

step is very small, which will subsequently increase model run time (Bates et al., 2013). 

The “adaptive” solver was developed to tackle the issues related to the flow-limited 

scheme by applying adaptive time step and, whilst it does solve the instability issue, it 

leads to a significant increase in computation time and is hence not recommended for 

high resolution simulation (Bates et al., 2013). This deficiency led to the development of 

the “acceleration” solver which includes all the terms in the SWE except for the 

convective acceleration term, and the time step varies according to the Courant-

Friedrichs-Lewy (CFL) condition. In comparison to the adaptive solver, the acceleration 

solver can greatly reduce calculation time (Bates et al., 2013; Falter et al., 2013). Finally, 

all the components in full SWEs were included in the “Roe” solver. The scheme uses an 

approximate Riemann solver to solve the full SWEs with a shock capturing scheme (Bates 

et al., 2013). However, Bates et al. (2013) suggested that due to the limited numbers of 

testing scenarios, this solver may not be robust as the other available solvers. 

 

The latest LISFLOOD-FP version (V 8.0) was released in 2021 and the solver was 

improved to support parallelisation computing on multi-core CPU and GPU architectures 

(Shaw et al., 2021). 

 

2.2.3.3 RFSM (Rapid Flood Spreading Model) 

The Rapid Flood Spreading Model (RFSM) is a simplified sub-element hydraulic model 

developed by HR Wallingford. The first version of RFSM (Direct RFSM) employed a 

simple spreading algorithm based on continuity and topographic connectivity (Néelz & 

Pender, 2013). Direct RFSM was very computationally efficient, however it only 

delivered the final inundation stat. RFSM was further improved by adding physical 

processes within the spreading algorithm including multiple spilling and friction 

(Lhomme et al., 2008). The next version, Dynamic RFSM, incorporated a time-stepping 

analytical approximation to the diffusion wave (Jamieson et al., 2012), whilst the latest 

version, RFSM EDA (Explicit Diffusion wave with Acceleration term), is based on a 

diffusive approximation to shallow water equations and includes a local acceleration 

(local inertia) term to ensure model stability and shorter runtimes (Jamieson et al., 2012). 
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RFSM EDA applies the same meshing system as the original Direct RFSM (see Gouldby et 

al. (2015)), where the floodplain topography is pre-processed and divided into elementary 

areas called Impact Zones (IZs) as shown in Figure 2.1. This type of pre-processing 

significantly reduces the number of computational cells in a typical DEM to far fewer IZs. 

This results in a relatively coarse mesh for flow calculations, which reduces computational 

expense, whilst retaining the detailed topographical information available from the original 

DEM (Gouldby et al., 2015). As a result, flood inundation over large scales can be achieved 

with this type of simplification. 

 

Figure 2.1: Meshing system employs in the RFSM (Adopted from Lhomme et al., 2008) 

The various version of RFSM were categorised thus the UK Environment Agency’s 2D 

benchmarking reports: Direct RFSM  0-term; Dynamic RFSM  2-term; RFSM EDA  

3-term. It was reported that the series of RFSM provided comparable accuracy of the 

models results with fast runtimes compared with other models in the same category. 

 

2.2.4 Three-dimensional (3D) models 

Due to the computational limitations, modelling the entire floodplain in 3D is not 

typically necessary. However, some specific applications, such as designing spillways 

and levees or dam break analysis, may require the type of data only available from 3D 

hydraulic models. Some examples of currently available 3D hydraulic are (Teng et al., 

2017; Tom et al., 2022): Delft3D, TUFLOW FV, Flow-3D, Fluent, MIKE 3, Phoenix FD 

and OpenFOAM. 

 

2.3 Model Calibration, Validation and Uncertainty Analysis 

Calibration and validation are crucial steps in all types of environmental modelling and 

simulation. Model calibration is the process of identifying and adjusting a set of 

appropriate values for parameters so that a model can reproduce outputs as closely as 

possible to observed data (Di Baldassarre, 2012; Gupta et al., 2005; Woodhead et al., 
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2007). Model validation refers to the process of evaluating whether a model is capable of 

predicting accurate outputs with respect to the specific application, for periods outside a 

calibration period (Alcrudo, 2002; Di Baldassarre, 2012). A validated model is expected 

to deliver simulated results that lie within acceptable ranges of accuracy (Di Baldassarre, 

2012). 

 

Besides model calibration and validation, model verification, which is the process of 

ensuring that the numerical solution employed within the model code is correctly 

implemented with respect to the conceptual model (Di Baldassarre, 2012; Oberkampf & 

Trucano, 2002), is also an important element in model credibility (Oberkampf & Trucano, 

2002) (See Figure 2.2). 

 

Figure 2.2: Phases of modelling and simulation  

(Adopted from Oberkampf and Trucano, 2002, citing Schlesinger et al., 1979) 

Two types of models are identified in Figure 2.2. A conceptual model refers to one that 

uses governing equations or relationships that describe the reality of a system, whereas a 

computerised model is an operational program that implements a conceptual model 

(Schlesinger, 1979). As demonstrated in Figure 2.2, the reality is firstly analysed and 

turned into a conceptual model, which is then translated into a computerised model, 

mostly through computer coding. In this process, model or code verification is performed 

to ensure the computerised model accurately represents a conceptual model (Oberkampf 

& Trucano, 2002). While the model validation is the process of assessing how well the 

reality is modelled by the computerised model. 
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Apart from the model calibration and validation, uncertainty associated with the model 

outputs also needs to be analysed and addressed. Even though, many methods have been 

proposed to estimated uncertainty in recent years, there remains a need for better 

understanding and identification of the sources of uncertainty, as well as better 

quantification of model uncertainty (Di Baldassarre, 2012, Alcrudo, 2002). In flood 

inundation modelling, uncertainty is caused by different sources (Beven, 2005; Gupta et 

al., 2005; Solomatine & Shrestha, 2009), such as input data (e.g. boundary conditions and 

topographic data), calibration data (e.g. in-situ data, remotely sensed data), model 

parameters (e.g. Manning’s coefficients) and model structural errors (e.g. space and time 

discretisation in numerical algorithms). 

 

2.3.1 Model Calibration 

Model calibration is a process of parameter adjustment to gain model outputs that best 

match the dynamic behaviour of the reality (Gupta et al., 2005), which is usually 

represented by series of measurements or observations. In general, it is possible to 

estimate the parameters of models by physical measurements or prior estimations. 

However, these “generic” parameters are typically not optimal in terms of minimising the 

mismatch between modelled and observed data (Beven, 2012). This is because some 

degrees of simplified assumptions are assumed in all model codes, both to enhance model 

stability and to reduce complexity, hence all models are subject to a degree of structural 

error that is commonly compensated for by parameter calibration (Bates et al., 2014). As 

a result, values of parameters obtained from calibration of models should be recognised 

as effective values that may not have true physical meanings outside of the model 

structure within which they were calibrated (Bates et al., 2014; Woodhead et al, 2007). 

Manning’s coefficients in river channels and floodplains are typically parameters to be 

calibrated in a flood inundation simulation, and hence the published table of such 

coefficients should be regarded as only a guide to the likely range (Di Baldassarre, 2012) 

due to different interpretation between physical and effective parameters in the model 

calibration process. 

  

2.3.1.1 Performance measures 

To properly assess and compare different sets of parameters, it is necessary to quantify 

the match between simulated and observed data. There are many different quantitative 

measures of goodness of fit, known variously as objective functions, performance 
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measures, fitness measures or likelihood measures (Beven, 2012). An objective function 

is a numerical summary of the magnitude of the residuals, which is the difference between 

observed and simulated data (Gupta et al., 2005). Typically, the main goal of calibration 

is to seek a set of parameters which can optimise (minimise or maximise) the performance 

measure. Automatic optimisation techniques (e.g. Newton’s algorithm and particle swarm 

optimisation) are typically employed to search for optimal parameters (Gupta et al., 

2005). 

  

Traditionally, flood inundation models have been calibrated and validated against point 

time series data, such as state and discharge hydrographs recorded at gaging stations. 

With advances in remote sensing technologies, spatially distributed data such as flood 

extent area can also be acquired and employed in calibration and validation processes. 

However, different data types of observations require different performance measures to 

properly quantify the goodness of fit. For point data, common measures of goodness of 

fit are Nash-Sutcliffe efficiency (NSE), Coefficient of determination (r2), Mean Absolute 

Error (MAE) and Root Mean Squared Error (RMSE). Similarly, the contingency table of 

the binary pattern data has been widely used to evaluate the model performance in the 

case of flood extent observations. Some well-known performance measures for point data 

and spatially distributed binary pattern data are discussed below. 

• Point data 

o Nash-Sutcliffe Efficiency (NSE) 

Nash and Sutcliffe Efficiency is defined as: 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖 − �̅�)2𝑛
𝑖=1

 2-9 

Where, O and P are observed and predicted values respectively. �̅� is the mean 

value of the observations.  

The NSE ranges between -∞ and +1, with a perfect match between observed and 

predicted values being indicated by a NSE value of 1. An NSE values less than 

zero indicates that the mean of the observed values is a better estimate than the 

model prediction (Krause et al., 2005). As the NSE is based on the sum of error 

variance (Krause et al., 2005), greater weight is given to high/peak values, and 

hence lesser weight is given to the prediction of low values (Beven, 2012). 
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o Coefficient of determination (r2) 

The coefficient of determination (r2) is defined as the squared value of the 

coefficient of correlation (r), which can be determined as: 

𝑟2 =

[
 
 
 

∑ (𝑂𝑖 − �̅�)(𝑃𝑖 − �̅�)𝑛
𝑖=1

√∑ (𝑂𝑖 − �̅�)2𝑛
𝑖=1  √∑ 𝑃𝑖 − �̅�2𝑛

𝑖=1 ]
 
 
 
2

 2-10 

The r2 ranges lie between value of 0 and 1, which indicates how much the observed 

dispersion is explained by the prediction (Krause et al., 2005), with high r2 values 

indicating less error variance. As with NSE, the coefficient of determination is also 

sensitive to outlier high/peak values. Furthermore, a model with a high r2 does not 

necessarily mean that the model predictions fit the observed data well, as r2 only 

quantifies the dispersion of the data; thus a model which associated with systematic 

biases can still produce high r2 value (Krause et al., 2005). 

o Mean Absolute Error (MAE) 

The Mean Absolute Error (MAE) is defined as: 

𝑀𝐴𝐸 =
1

𝑁
(∑|𝑂𝑖 − 𝑃𝑖|

𝑛

𝑖=1

) 2-11 

The MAE measures the average magnitude of the residuals between observed and 

modelled data. Absolute differences are used, so all individual residuals are equally 

weighted in the MAE (Chai & Draxler, 2014). MAE values can range from 0 to 

∞, with lower MAE values indicating better model predictions.  

o Root Mean Squared Error (RMSE) 

The Root Mean Squared Error (RMSE) is defined as: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
(∑(𝑂𝑖 − 𝑃𝑖)

2

𝑛

𝑖=1

) 2-12 

The RMSE has been used as a standard tool for model evaluation studies for many 

years (Chai & Draxler, 2014). By definition, the RMSE is very similar to the MAE 

with some distinct differences. The RMSE attributed more weight to larger 

residuals (Chai and Draxler, 2014) through use of the squared sign, while the MAE 

treats all residuals equally. This weighting property in the RMSE is prefer in some 
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applications such as flood hydrograph modelling, where large residuals are in 

focused (Beven, 2012).  

• Spatially distributed binary pattern data 

Besides point data, assessing 2D flood model results against spatially distributed 

observed data such as wet/dry (binary) maps of flood extent is also important. 

Model predictions of inundation extent can be compared with the binary pattern 

observations using measures of fit based on a contingency table (Aronica et al., 

2002; Hunter et al., 2005a), which categorises the number of simulated and 

observed wet and dry pixels (Di Baldassarre, 2012). Table 2.4 demonstrates the 

contingency table of possible data/model combinations for a binary classification 

scheme (Aronica et al., 2002). 

Table 2.4: Contingency table of possible data for a binary classification scheme 

 
Present in observed 

data (D1) 

Absent in observed 

data (D0) 

Present in model (M1) M1D1 M1D0 

Absent in model (M0) M0D1 M0D0 

Based on above contingency table, two measures commonly used in flood 

inundation modelling are showed below.  

Firstly, the measure used in Aronica et al. (2002): 

𝐹(1) =
∑ 𝑃𝑖

𝑀1𝐷1𝑛
𝑖=1

∑ 𝑃𝑖
𝑀1𝐷1𝑛

𝑖=1 + ∑ 𝑃𝑖
𝑀1𝐷0𝑛

𝑖=1 + ∑ 𝑃𝑖
𝑀0𝐷1𝑛

𝑖=1

 2-13 

Secondly, the measure used in Hunter et al. (2005): 

𝐹(2) =
∑ 𝑃𝑖

𝑀1𝐷1  𝑛
𝑖=1 − ∑ 𝑃𝑖

𝑀1𝐷0𝑛
𝑖=1

∑ 𝑃𝑖
𝑀1𝐷1𝑛

𝑖=1 + ∑ 𝑃𝑖
𝑀1𝐷0𝑛

𝑖=1 + ∑ 𝑃𝑖
𝑀0𝐷1𝑛

𝑖=1

 2-14 

𝐹(1) ranges from 0 to 1 while 𝐹(2)  ranges from -1 to 1. The additional term 

−∑ 𝑃𝑖
𝑀1𝐷0𝑛

𝑖=1  in 𝐹(2) is applied to penalise over-prediction of the flood extent (Di 

Baldassarre, 2012; Hunter et al., 2005a).  
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2.3.1.2 Problems with binary pattern measures 

Given the calibration and evaluation of flood inundation models are a prerequisite for 

their successful application, it is important to recognise problems and limitations 

associated with the performance measure used. This sub-section outlines three main 

issues associated with the binary pattern performance measures, namely 1) double-

penalty effect 2) magnitude effect and 3) influence of domain size.  

• Double-penalty effect 

A forecast model that predicts a spatial feature, such as flood extent, will be 

penalised twice if it predicts the feature at the wrong time or place: once for 

missing the feature at the right spot/at the right time and once for the false alarm 

at the wrong spot/at the wrong time (Lledó et al., 2023). This is known as the 

“double-penalty effect”, which will result in large errors being assigned for small 

displacements errors, leading to poor quantification of fit under the influence of 

the displacement of features (Magyar and Sambridge, 2022). As a result, measure-

orientated approaches based on point-wise comparisons, such as the MAE and 

RMSE can often lead to ambiguous conclusions due to this double-penalty effect 

(Haben et al., 2014). 

• Magnitude effect 

Magnitude effect refers to the lack of consistency between the binary performance 

measures and the size of flood (Stephens et al., 2014). Generally, it is expected 

that the relationship between the flood volume and the outcomes of binary 

performance measures (flood extent) is directly proportional, where large flood 

size typically means large flood extent. However, in reality, this is not always the 

case. For example, it might be possible that the flood extent is insensitive to the 

flood size if the overflowing floodwater is well-confined within some controlled 

areas. In fact, the sensitivity between the flood size and the flood extent is greatly 

dependent on the topography. As such, the magnitude effect severely restricts the 

application of binary pattern performance matrices due to the lack of consistency 

in size of flood (Stephens et al., 2014). 

• Influence of domain size 

The most common binary measure to access accuracy is simply the proportion 

between cells that are correctly classified and the entire cells in the study domain, 
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also called Proportion Correct or F<1>. However, for binary flood map, such 

measure weight both correct “wet” (correctly predicted as flooded cell) and 

correct “dry” (correctly predicted as non-flooded cell) events equally (Stephens et 

al., 2014). However, the F<1> measure tends to overestimate the performance of a 

flood model if the domain size is large. This is because the size of the non-flooded 

area is typically much greater than the size of the flood itself, hence the F<1> would 

provide optimistic assessment of flood extent as all non-flooded cells in the entire 

domain are taken into account equally (Aronica et al., 2002; Stephens et al., 2014). 

The influence of domain size leads to the use of the Critical Success Index (CSI) 

or F<2> (herein refers to the equation 2-13). With the F<2> measure, the number of 

correctly predicted dry cells are not taken into account, which eliminate the bias 

caused by the influence of domain size. However, this measure still be affected 

by the double penalty and magnitude effects occurring in binary pattern measures 

(Stephens et al., 2014). 

2.3.1.3 Parameter optimisation  

Traditionally model calibration has been undertaken manually, using a combination of 

experience and trial and error to identify the best (realistic) parameter sets to maximise 

the match between simulated and observed data. However, there are now a number of 

automatic optimisation techniques which can be utilised to search for the best parameter 

sets. One of the most increasingly used approaches is the Particle Swarm Optimization 

(PSO) algorithm, originally proposed by Kennedy and Eberhart (1995). The PSO 

algorithm is a well-known stochastic-based search algorithm inspired by the social 

behaviour of bird flocks looking for corn (Kennedy & Eberhart, 1995). It is an iterative 

process which requires current best-known individual and neighbourhood positions to 

determine the next move for each particle until all particles converge to the best position 

to optimise the objective function. The steps in the standard PSO algorithm can be 

summarised thus (Aitken et al., 2022; Mohamed et al., 2010; Yang et al., 2021). 

 

• Step 1 swarm initialisation: All particles are randomly assigned initial positions 

(parameter sets) based on pre-defined search space. 

• Step 2 fitness evaluation: The fitness of each individual (particle) is evaluated 

through a performance measure and objective function. At this step, the personal 

best solution (𝑃𝑏𝑒𝑠𝑡,𝑖
𝑘 ), which is the best position that particle 𝑖 has visited so far 
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until the current iteration 𝑘, is determined for each particle. The personal best 

solution (𝑃𝑏𝑒𝑠𝑡,𝑖
𝑘 ) of all particles are then compared to determine the global best 

solution (𝐺𝑏𝑒𝑠𝑡,𝑖
𝑘 ), which represents the overall best position of the swarm. 

• Step 3 velocity and position updating: The next position of each particle is 

updated for the next iteration (𝑘 + 1). To determine the next position, the first step 

is to update velocity of each particle using equation 2-15. The updated velocity is 

then used to determine the next position using equation 2-16, respectively. Figure 

2.3 illustrates the velocity update mechanism in PSO. 

• Step 4 Iteration: The last step is to repeat the steps 2-4 until a termination criterion 

is satisfied (e.g. reaching maximum iteration or convergence criterion). 

 

𝑉𝑖
𝑘+1 = 𝜔𝑉𝑖

𝑘 + 𝐶1𝑅1(𝑃𝑏𝑒𝑠𝑡,𝑖
𝑘 − 𝑃𝑖

𝑘) + 𝐶2𝑅2(𝐺𝑏𝑒𝑠𝑡,𝑖
𝑘 − 𝑃𝑖

𝑘) 

 

2-15 

𝑃𝑖
𝑘+1 = 𝑃𝑖

𝑘 + 𝑉𝑖
𝑘+1 2-16 

 

 

 

 

 

 

 

 

Figure 2.3: Velocity and position updating (modified after Mohamed et al. (2010)) 

 

The parameters in the equations 2-15 and 2-16 are as follows: 

𝑉𝑖
𝑘 is the velocity vector of the particle 𝑖 at iteration 𝑘. 

𝑃𝑖
𝑘 is the position vector of the particle 𝑖 at iteration 𝑘. 

𝑃𝑏𝑒𝑠𝑡,𝑖
𝑘  𝑎𝑛𝑑 𝐺𝑏𝑒𝑠𝑡,𝑖

𝑘  are the best-known personal and global positions, respectively. 

𝑅1 𝑎𝑛𝑑 𝑅2  ∈ [0,1]  are random numbers, sampled from a uniform distribution. 
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𝐶1 𝑎𝑛𝑑 𝐶2 are learning parameters used to scale the influence of the cognitive and 

social components respectively. 

Lastly, 𝜔  denotes the inertia weight which represents the contribution of the 

current velocity of an individual particle to its velocity in the next iteration.  

 

An effective optimisation algorithm should properly trade-off between two important 

searching aspects including exploration and exploitation properties (Engelbrecht, 2007). 

In short, exploitation is the ability to explore different regions of the search space, while 

exploitation is the ability to fine-tune the search around a promising area to improve a 

candidate solution (Engelbrecht, 2007). In PSO, inertia weight (𝜔) ensures convergent 

behaviour by controlling the exploration and exploitation abilities of the algorithm 

(Engelbrecht, 2007). Large values of 𝜔 (≥ 1) facilitate exploration, whereas small values 

of 𝜔 stimulates local exploration of the swarm. In the past two decades, a number of 

techniques have been proposed to improve the performance of the PSO algorithm by 

modifying the inertia weight and velocity. Well-known techniques include linearly 

decreasing inertia weight (Shi & Eberhart, 1999), fuzzy adaptive inertia weight (Shi & 

Eberhart, 2001) and velocity clamping (Engelbrecht, 2007). 

 

2.3.2 Model Validation 

Once the model is calibrated, the model validation can then be proceeded using calibrated 

parameters. As previously described, model validation is the process of demonstrating 

that the model is capable of simulating sufficiently accurate predictions (Refsgaard, 

1997). In comparison with calibration, validation does not specifically address how the 

parameters can be altered to improve the agreement between simulations and 

observations (Oberkampf and Trucano, 2002), rather it is a process of analysing and 

evaluating the performance of the model when it is tested outside the calibrated data 

range. The various measures of goodness of fit used in calibration can also be 

implemented to quantify the accuracy in validation process. 

 

The choice of the validation technique to be implemented depends mainly on the 

availability of observed data (Molinari et al., 2019). One commonly used technique is the 

split-sample validation test (Arsenault et al., 2018; Biondi et al., 2012; Refsgaard, 1997), 

where the observed data is divided into two groups, one for calibration and the other for 

validation. The basic splitting strategy can be varied, and its application depends 
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primarily on the type and number of available data. However, as the split-sample 

technique merely uses part of data in the validation process, it may introduce some bias 

into the system as it may depend heavily on how the data is divided.  

 

Apart from split sample validation, more elaborate validation approaches, such as K-Fold 

and Leave-One-Out cross-validations, can also be implemented. The algorithm of K-Fold 

cross-validation can be described as following (Ellis & Mookim, 2009): 

1) Equally divided the observed dataset is into K subsets 

2) For the kth part, calibrate the model parameters using the other k-1 parts of the data 

and validate the model with the kth part of the data 

3) Repeat the step 2 for k=1,2,3…K and compute the total prediction errors 

 

In this case, if K equals to the sample size, the method is called “Leave One Out” cross-

validation, which can be seen as an extreme case of K-Fold cross-validation. The 

advantage of the cross-validation approaches is that bias is minimised as the entire set of 

observed data is equally taken into account. 

 

2.3.3 Uncertainty Analysis 

Uncertainty is caused by the lack of knowledge or the inability to accurately measure or 

calculate an observed input, which leads to differences between the simulated results and 

the true stage of a system (Boelee et al., 2019). Generally, there are two types of 

uncertainty, namely aleatory and epistemic (Kiureghian & Ditlevsen, 2009). Aleatory 

uncertainty refers to the inherent randomness in nature of the physical world, while 

epistemic uncertainty arises from a lack of knowledge or an inability to measure or model 

the system (Boelee et al., 2019; Li et al., 2013). The ability to quantify uncertainty is 

imperative for environmental modelling (Teng et al., 2017), as it provides additional 

information about the reliability of the model outputs. 

 

For flood inundation modelling, given that the number of degrees of freedom in flood 

models is relatively large, it is possible that many different combinations of effective 

parameter sets can similarly satisfy the objective function (Aronica et al., 1998; Bates et 

al., 2014; Woodhead et al., 2007). This then leads to the concept of equifinality, where 

equally acceptable simulation results can be achieved through various parameter sets 

(Aronica et al., 1998; Beven & Freer, 2001). Such equifinality in flood inundation 
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modelling has been well recognised (Bates et al., 2014), and results in uncertainty in 

parameter values and related uncertainty in model predictions (Aronica et al., 1998). In 

response to equifinality, uncertainty analysis techniques, such as the Generalized 

Likelihood Uncertainty Estimation (GLUE) have been developed to deal with such 

problems (Woodhead et al., 2007). 

 

2.3.3.1 Generalized Likelihood Uncertainty Estimation (GLUE) 

The Generalized Likelihood Uncertainty Estimation (GLUE) methodology was first 

introduced by Beven and Binley in 1992. It is effectively an extension of the Generalised 

Sensitivity Analysis (GSA) approach, which applies Monte Carlo realisations of sets of 

parameters and criteria (Beven, 2012). To date, the GLUE method has proved to be a 

useful tool for uncertainty analysis in flood inundation modelling (Aronica et al., 2002; 

Aronica et al., 1998; Horritt, 2006; Hunter et al., 2005a) due to its flexibility, ease of use 

and its ability to account for all sources of uncertainty in hydraulic modelling (Di 

Baldassarre, 2012).   

 

The GLUE methodology is based on rejecting the concept that there is a unique optimum 

parameter set in any model calibration (Hunter et al., 2005a). Instead, sets of parameters 

that provide results within an acceptable range are retained as “behavioural models” and 

those results that lie outside the range are rejected as “non-behavioural models” (Beven 

& Binley, 2013). The basic steps of the GLUE procedure are as follows (Aronica et al., 

1998; Di Baldassarre, 2012): 

1) Selection of the parameter ranges and sampling strategy 

The first step of GLUE is to select the most influential parameters and decide the 

range of each parameter space. The selection of feasible ranges of parameter space 

is heavily dependent upon expert knowledge of the system (Aronica et al., 1998). 

Typically, the Manning coefficients assigned to the river channel and floodplains 

are the selected parameter sets in flood inundation modelling (Woodhead et al, 

2007). Once the parameters and ranges are selected, a number of parameter sets 

within the selected ranges are generated, typically via uniform a sampling 

strategy, although prior knowledge of a particular parameter could also be 

incorporated in sampling strategy(Montanari, 2005).  

2) Run all the parameter sets and assess all results through goodness-of-fit measures 
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In this step, the model is run for each parameter set, and the model output is 

measured against available observations. The performance of each trial parameter 

set is assessed through some goodness of fit measure (Montanari, 2005). The 

selection of goodness of fit measures will depend on the type of available observed 

data.  

3) Identify and Retain parameter sets that result in behavioural model and reject 

those identified as non-behavioural 

After all models are run, the parameter sets that provide goodness of fit measure 

that satisfy the limits of acceptability are retained as behavioural, while those that 

do not are rejected as non-behavioural (Beven, 2012).  

4) Determine the likelihood for each behavioural model and rescale to produce a 

cumulative sum of unity 

After non-behavioural parameter sets are rejected, the likelihood weight of each 

behavioural parameter set is determined. Point observed data, for example, the 

weight can be expressed as a function of the measure of fit, MAEi, of the 

behavioural model (Di Baldassarre, 2012): 

𝑊𝑖 =
𝑚𝑎𝑥(𝑀𝐴𝐸𝑖) − 𝑀𝐴𝐸𝑖

𝑚𝑎𝑥(𝑀𝐴𝐸𝑖) − 𝑚𝑖𝑛(𝑀𝐴𝐸𝑖)
 

2-17 

Where:  𝑚𝑎𝑥(𝑀𝐴𝐸𝑖) and 𝑚𝑖𝑛(𝑀𝐴𝐸𝑖) are the maximum and minimum value of 

the MAE of the ith behavioural model, respectively. Similarly, in case of binary 

flood extent data, the flood likelihood for each pixel, i (𝑃𝑖
𝑓𝑙𝑜𝑜𝑑

)  can also be 

expressed in 𝐹(2) as (Aronica et al., 2002): 

𝑃𝑖
𝑓𝑙𝑜𝑜𝑑

=
∑ 𝑓𝑖𝑗 𝐹𝑗

(2)
𝑗

∑ 𝐹𝑗
(2)

𝑗

 

2-18 

Where:  𝑓𝑖𝑗 takes a value of 1 for a flood pixel and is 0 otherwise and 𝐹𝑗
(2)

 is the 

global performance measure for model realisation for simulation j.  

 

Then, the likelihood weights are rescaled to produce a cumulative sum of 1 to 

yield a distribution function for the parameter sets (Beven and Binley, 1992), 
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which allows uncertainty bounds corresponding to an assigned confidence level 

to be derived (Montanari, 2005)1. 

 

As described above, the GLUE procedure involves a number of subjective decisions 

(Hunter et al., 2005; Montanari, 2005), including decisions about: feasible ranges and 

sampling strategy; appropriate goodness of fit measures; criteria and threshold for 

acceptance and rejection of parameter set; and updating or combining generalised 

likelihood measures. Due to the subjective characteristics of GLUE, it is important that 

decisions made in the GLUE procedure are transparent and unambiguous (Hunter et al., 

2005; Montanari, 2005). 

 

In addition to those outlined above, another advantage of GLUE is that the method allows 

the likelihood measures to be combined and updated through Bayes theorem (Hunter et 

al., 2005a). When new observed data become available, further updating of the likelihood 

function can be performed to gradually refine the uncertainty estimation of the system 

(Beven and Binley, 1992). 

 

2.4 Crowdsourcing 

Flood inundation modelling requires series of distributed data to parameterise and 

validate the spatial results (Bates, 2004). Traditionally, data collected from static physical 

instruments, such as flow or water level time series at gauging stations or catchment 

outlets, have been applied as model boundary conditions and/or validation data. However, 

the scarcity of data in both spatial and temporal domains is a major problem of these 

traditional types of data (Mazzoleni, 2017). Only data from a small number of 

points/stations in a catchment is typically available, due to related investment and 

maintenance costs. 

 

In the past two decades, remote sensing has been increasingly recognised as a potential 

source of data that can be exploited in flood inundation modelling. Nevertheless, during 

a flood event, only a few or limited numbers of high-medium resolutions satellite images 

 

1 It may be seen that the traditional parameter calibration search for an optimal objective function is an 

extreme case of the GLUE procedure, where the optimal solution is given a likelihood of 1 and all others 

are set to zero (Beven and Binley, 1992). 
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are typically captured. Thus, remote sensing products are subjected to a trade-off between 

spatial and temporal resolutions and uncertainties such as cloud cover in optical remote 

sensing and speckle noise in radar images. 

 

Recently, with technological improvements, smartphones with embedded low-cost sensor 

and Assisted Global Positioning System (A-GPS) have become affordable. Together with 

rapid development of social media platforms and mobile applications, observed data can 

be seamlessly transferred and securely stored in online repositories. These improvements 

offer new approach to data collection through personal devices, and such crowdsourcing 

has emerged as a promising approach to data collections (Zheng et al., 2018). The word 

“crowdsourcing” is a combination of the words “crowd” and “outsourcing”, which was 

first described by Howe (2006) as “the act of a company or institution taking a function 

once performed by employees and outsourcing it to an undefined (and generally large) 

network of people in the form of an open call”. More recently, the definition has been 

relaxed and is now closely linked to the potential and developments of information and 

communications technology, and in particular the internet and social media (WMO, 

2017).  

 

Crowdsourcing can be considered as one type of citizen science, which is a research 

technique that enlists the public in gathering scientific information (Bonney et al., 2009). 

Citizen Science is defined as scientific activities in which non-professional scientists 

voluntarily participate in data collection, analysis and dissemination of a scientific project 

(Haklay, 2013). As shown in Figure 2.4, citizen science can be categorised into four levels 

based on levels of participation and engagement (Haklay, 2013).  

 

Figure 2.4: Levels of participation and engagement in citizen science  
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(Adopted from Haklay, 2013) 

Haklay (2013) described the four levels of participation and engagement in citizen science 

as the following: 

• Level 1 “Crowdsourcing” is the most basic level of participation and engagement 

in citizen science. The participation is limited to only data collection, while the 

cognitive engagement is minimal (Haklay, 2013).  

• Level 2 “Distributed intelligence” relies on the cognitive ability of the participants 

to carry out a simple interpretation activity (Haklay, 2013).  

• Level 3 “Participatory science” requires volunteers to participate in problem 

definition and design data collection method. At this level, the volunteers become 

experts in the data collection and analysis through their involvement (Haklay, 

2013). 

• Level 4 “Extreme citizen science” engages citizens as scientists involved in 

research design, data collection, analysis and result interpretation (Zheng et al., 

2018). At this ultimate level, both professional and non-professional scientists 

continuously collaborate on achieving a specific goal (Haklay, 2013). 

 

2.4.1 Benefits and Potential 

Crowdsourcing can be applied in a wide range of applications using different principles. 

In this sub-section some advantages of crowdsourcing are briefly identified including 

spatial and temporal coverage, accessibility and speed, and cost. 

 

2.4.1.1 Spatial and temporal coverage 

High spatial and temporal information can be achieved through crowdsourcing methods. 

Especially during a disaster, such as flood or earthquake, social media are normally used 

as common platforms to share personal experiences and/or update information. This is a 

powerful tool for crisis communication (WMO, 2017). With the aid of low-cost and 

citizen-owned sensors, information from different areas and times can be collected and 

shared in almost real time on common platforms using different kinds of media, such as 

videos, pictures and messages. Compared to more formal measurement methods, such as 

gauging stations or remote sensing, crowdsourcing can provide much higher spatial and 

temporal resolution (Zheng et al., 2018). However, unlike formal data collection methods, 

crowdsourcing information is usually associated with high uncertainty due to the different 
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backgrounds and motivations of participants. Thus, quality control for crowdsourcing 

data is key if such data is to be used for applications such as flood modelling. 

 

2.4.1.2 Accessibility and speed 

Other benefits of crowdsourcing are its accessibility and the speed of information 

circulation (WMO, 2017). Frequently during a disaster, updated data are needed in many 

locations where official observations are either not available or are relatively difficult to 

access. Crowdsourcing allows individuals to report on local and specific conditions where 

help is needed. Such local information can be reported in real time, which allows officials 

to rapidly respond based on the information provided. Flood mapping, for example, can 

be updated by using crowdsourcing data in conjunction with remote sensing data, which 

can be used for emergency response and flood management purposes. 

 

2.4.1.3 Cost 

Another important feature of crowdsourcing is its relatively low cost. In fact, the first 

level of citizen science (crowdsourcing) only requires citizens to act as sensors to collect 

information, whilst higher levels of citizen science requires more participant engagement, 

such as data interpretation and analysis, which can be more costly (Bonney et al., 2009). 

However, by considering the quantity of high-quality data that citizen science projects 

are able to acquire once the infrastructure for a project is created, the citizen science model 

is cost-effective over the long term (Bonney et al., 2009). 

 

Existing social media platforms can be utilised during a disaster. For example, collecting 

and analysing texts and pictures posted and shared from Twitter or Facebook can be done 

with no cost. Nonetheless, typically only a small proportion of information on social 

media contains relevant information applicable to the purpose (WMO, 2017).  

 

In addition to existing social platforms, mobile crowdsourcing applications can be 

developed and used in different areas. An idea of using citizens as sensor to collect 

georeferenced data is referred to Volunteered Geographic Information (VGI), which is a 

version of crowdsourcing proposed by Goodchild (2007). In many cases, volunteered 

geographical information (VGI) has proven successful as a means of data acquiring 

timely and detailed geographic information at very low cost. OpenStreetMap (OSM) is a 
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successful example of VGI application, which aims to create a free digital map through 

the engagement of participants.  

 

Specific crowdsourcing applications can also be adopted to collect information for a 

specific purpose. For example, UN-ASIGN is a geo-reference photo mobile application 

used by the UN (United Nations) under the UNOSAT program to assess and verify radar 

satellite images acquired during a disaster such as flooding, earthquake and tsunami. UN-

ASIGN is a freely available mobile application that allow users to acquire photos with 

date and time and geo-tagging based using A-GPS embedded in smartphones (WMO, 

2017). Consequently, high quality crowdsourced (CS) information can be acquired 

through a specific designed platform, which can be optimized on a large scale, with lower 

investments. The UN-ASIGN was used during the 2011 flood in Bangkok, Thailand, to 

validate and assess the extent of the flooding in urban environments detected from radar 

satellite images (WMO, 2017). 

2.4.2 Quality assessment methods for crowdsourcing 

There has recently been a rapid growth in interest in crowdsourcing and its applications 

in various disciplines. However, as noted above, crowdsourced data suffers from quality 

issues (Goodchild & Li, 2012), and uncertainty regarding the quality of crowdsourced 

data is often cited as a major obstacle in its more widespread use  (Bott & Young, 2012).  

 

Participatory openness greatly facilitates the large quantities of CS data, but unlike the 

traditional authoritative geographic information, CS data carries no assurance of quality 

(Goodchild & Li, 2012).  

 

There are various quality factors that make CS data less acceptable to most scientists, 

especially that gathered through data mining of social media. Some of these factors 

include: observational and sampling errors; lack of completeness; issues related to trust 

and creditability; social and political bias in some cases (Zheng et al., 2018). Thus, it is 

important to apply a method or framework for validating and assessing the quality of data 

contributed by citizens with a geographic component (Meek et al., 2014), so that users 

can assess and decide if the available CS data are fit-for-purpose (Zheng et al., 2018). 

There are different types of approaches that proposed to deal with the perceived lack of 

quality of CS data, as outlined in the subsections below. 
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2.4.2.1 Comparison with gold standard 

The most straightforward way to quantify CS data validity is to compare it with data 

collected by experts or some form of authoritative database; this approach is referred to 

as a comparison with a gold standard dataset (Zheng et al., 2018).  

 

Foody et al. (2013) compared the volunteered geographic information (VGI) of land cover 

types identified by 65 volunteers against those defined by consensus amongst the experts. 

The task was to visually interpret land cover types from satellite images of 299 sites, with 

latent class analysis being used to estimate the accuracy of each volunteer’s labelling. The 

authors reported that although results gained from individual volunteer was relatively 

poor compared to the reference data (overall accuracy ~ 50%), outcomes from combining 

data from multiple volunteers using the latent class model demonstrated an improvement 

in terms of overall classification accuracy (overall accuracy ~ 60%). They also concluded 

that the latent class model provided a means to directly estimate the producer’s accuracy 

of the volunteer data sources without reference data.  

 

Haklay (2010) also assessed CS data quality by comparison with an authoritative 

database. In the study, geographical CS data obtained from OSM (OpenStreetMap) of 

London was compared with Ordnance Survey (OS) datasets. The analysis showed that 

OSM information can be reasonably accurate with an average positional displacement of 

6 m compared with the Ordnance Survey (OS) datasets. 

 

2.4.2.2 Majority consensus 

A consensus-based approach can be applied to provide a form of quality assurance for CS 

data (Goodchild & Li, 2012). In essence this is based on the concept that, given sufficient 

CS data at a given location, the judgment of a majority of contributors is more likely to 

represent the ground truth than those of a minority. Thus, majority consensus can be used 

to validate or correct errors by individuals (Goodchild & Li, 2012). Furthermore, CS data 

collected at the same location can be combined using a consensus-based approach such 

as majority weighting (Zheng et al., 2018), where greater weight is giving to a spatial 

clustering of similar reports than to a single report (Goodchild & Li, 2012). 

 

This basic approach can be referred to as Linus’s Law, which originated in the area of 

software engineering, and states that “Given enough eyeballs, all bugs are shallow”, i.e. 
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software bugs that are most likely to be found and corrected if a large number of 

programmers are involved in the development of the code (Goodchild & Li, 2012). 

Similarly, Linus’s Law can also be translated and applied to provide a form of quality 

assurance for sites such as Wikipedia, an online encyclopaedia content, that rely on 

numbers of volunteers to edit and correct the error (Goodchild and Li, 2012). 

 

2.4.2.3 Measures of credibility and trustworthiness 

Credibility and trustworthiness are highly related to data quality. There is often an attempt 

to bypass data quality from trustworthiness due to the lack of quality data in typical 

crowdsourcing information (Leibovici et al., 2017). Goodchild and Li (2012) termed this 

as the social approach, since it relies on a hierarchy of trusted individuals who act as 

moderators. In citizen science, trusted contributors can be promoted to become an expert 

based on experiences or contributions (Leibovici et al., 2017), and the data captured by a 

trustee is often considered as high-quality data due to the credibility and trustworthiness 

of the acquired source. Furthermore, crowdsourcing data quality can be assessed not only 

from provider credibility, but also the consistency, completeness and correctness of the 

data provided. VGI data quality, for example, can be assessed through provided 

geographic information (Goodchild & Glennon, 2010). In case of disaster response, 

trustworthiness can be built based on reported location, a geo-reference photograph and 

incident details, which expected to be consistency with the previous incidents reported by 

other contributors (Goodchild and Li, 2012). 

 

2.4.3 Applications of CS social media data 

Over the past decade, a number of studies have been undertaken to investigate the utility 

of CS social media data for various types of natural disasters.  

 

Ostermann and Spinsanti (2012) reported a successful case study on the early detection 

of forest fires in Europe by analysing social media content from Twitter. The authors 

proposed a scoring function to filter relevant information and performed spatiotemporal 

clustering to detect potential areas of forest fire. Similarly, Aulov et al. (2014) developed 

a platform for the collection and analysis of social media data, called AsonMaps, designed 

to assist emergency responders by monitoring heterogeneous social media for content 

related to natural disasters. The AsonMaps was tested against the 2012 Hurricane Sandy 

using social media data from Twitter and Instagram.  
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Jongman et al. (2015) assessed the utility of using crowdsourcing social media from 

Twitter and near-real-time satellite data to support effective humanitarian response of 

flooding in Pakistan and the Philippines. Three key aspects of flooding, including 

location, timing and impacts, were analysed and the results were compared between 

different data sources. Heat maps based on filtered keywords of flood related tweets 

(messages) were produced, analysed and compared with flood extent map derived from 

satellite signal. The timing of tweets was also considered to assess the capabilities of CS 

data for early flood detection. 

More recently, Rosser et al. (2017) estimated flood inundation extent of the 2014 floods 

in Oxford,  using a Bayesian statistical model that fused remote sensing, social media and 

topographic data sources. For CS social media data, the photograph-sharing, Flickr was 

used as a source of volunteered photographs in the study, with only flood-related and 

geotagged imagery within the study area and time frame being retrieved from the Flickr 

database. In conjunction with topographic data, viewshed analysis was applied to identify 

potential flood extent from the retrieved flood images. Weights-of-evidence (WoE) 

analysis, a Bayesian probabilistic method, was then adopted to estimate the probability 

of flood inundation by fusing three different data sources from crowdsourcing, remote 

sensing and topographic data. This study demonstrates the possibility of integrating non-

authoritative social media data with other typical data in flood assessment. 

 

Finally, Smith et al. (2017) proposed a framework capable of monitoring and detecting a 

storm event and rainfall from real-time crowdsourcing data from Twitter messages. 

Information extracted from Tweet messages was integrated with a hydrodynamic model 

based on semantic terms and identified locations to highlight flood-affected areas. They 

proposed a modelling framework designed to detect real-time CS data to trigger the 

simulation from a hydrodynamic flood model. This work demonstrated the possibility of 

incorporating CS social media data with a hydrodynamic flood model for urban flood 

management. 

 

2.5 Data assimilation for inundation forecasting 

Numerical modelling has long been applied to simulate dynamic physical processes in 

various disciplines, such as weather forecasting, climate change and hydrology. These 
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models can be used to predict the future behaviour of a system, giving that the initial 

states of the system are known correctly. However, most of the models used are not able 

to accurately simulate all of the key processes for a number of reasons. Firstly, current 

theoretical understanding may not be totally understood, which results in simplifications 

and assumptions of the models. Secondly, the physical processes may involve many 

different parameters, and it may be impractical to account for all of these, especially 

considering that some parameters may be correlated. Thirdly, the true initial conditions 

of a system may either not be known or extremely difficult to determine. Finally, 

discretisation of model grids and the governing equations can also lead to errors in 

simulations. All these numerical model limitations and assumptions can cause large 

uncertainty in the estimation of the actual state of a system over time. 

 

Apart from numerical models, observations (measurement of the state system at a discrete 

time), can also be used to represent the state of the system at the observed time. However, 

as discussed previously, such observations typically lack spatial and temporal resolutions. 

Observations also contain some form of error, either caused by imprecise measuring 

devices or measuring methodologies (Lahoz & Schneider, 2014).  

 

To reduce the uncertainty associated with numerical models and discrete information in 

observations, model forecasts and observed data can be efficiently integrated through 

some form of Data Assimilation (DA) process. In particular, DA allows the optimal 

estimates of the systems of interest to be determined by integrating both data from models 

and observations (Lahoz and Schneider, 2014). In this way, DA adds value to the model 

by constraining it with observations, and adds value to the observations by filling in 

observation gaps (Lahoz et al., 2010). 

 

There are two broad types of DA algorithms, namely sequential and variational 

assimilation (Bouttier & Courtier, 2002; Lahoz & Schneider, 2014). In sequential 

assimilation, a probabilistic framework is adopted to give estimates of the whole system 

state sequentially by propagating information forward in time (Bertino et al., 2003; 

Talagrand, 2010). Variational assimilation refers to the minimisation of the objective 

function or penalty function, that measures the discrepancy between model solutions and 

observed data (Talagrand, 2010). Prior to discussing sequential and variational 
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assimilations, it is worthwhile to describe some key notations and vocabularies generally 

used in DA algorithms. 

• The background system (models) 

For numerical models that represent a physical system, the state of the system is 

represented by a vector called the state vector x. The true state at the time of the analysis 

is referred to xt
, while the xf denotes a priori or background estimate of the true state or a 

forecast from the model. However, it is impractical to know the exact true state value of 

xt. Thus, the goal of the DA is to estimate xa, where superscript a is termed the “analysis” 

which refers to the best estimate of the true state vector (xt). 

The state vector at time t-1 is evolved to time t through a system modelled by the discrete 

equations: 

𝒙𝑡
𝑓

= 𝑴𝑡−1,𝑡(𝒙𝑡−1
𝑎 ) + 𝒘𝑡 ;    𝒘𝑡~𝒩𝑛(0, 𝑸𝑡) 
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Where, 𝒙𝑡
𝑓
 is the 𝑛-dimensional model state vector of interest at time 𝑡, 𝑴𝑡−1,𝑡 is the 

forward model operator, describing the model evolution of the states vector from time      

t-1 to time t. The vector term 𝒘𝑡 accounts for model error, which represented by a 

Gaussian white noise process with error covariance matrix 𝑸𝑡. 

The observational system 

For observations, they are gathered and represented as an observation vector y, which 

obtained from the measurement of the system at a specific time. In practice, it is often not 

possible to directly compare the observations (y) with the model state vector (x). This is 

because y may not be observed at the exact location or at the same degree of freedom 

compared to the model grid (Bouttier & Courtier, 2002). Hence, an observation operator 

(H) is typically required to map the model state vector x to the measurement space, where 

y resides (Lahoz & Schneider, 2014). The observations at time t can be described as: 

𝒚𝑡 = 𝑯𝑡(𝒙𝑡) + 𝒗𝑡 ;    𝒗𝑡~𝒩𝑚(0, 𝑹𝑡) 2-20 

Where, 𝒚𝑡 is the observed 𝑚-dimensional data vector at time 𝑡, Ht is the observation 

operator that relates the model state (𝒙𝑡) to the observation space. The vector term 𝒗𝑡 is 

the observation error, which is a Gaussian white noise process with error covariance 

matrix 𝑹𝑡. 
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2.5.1 Sequential assimilation schemes 

Sequential assimilation relies on a probabilistic framework to sequentially determine 

estimates of the state by propagating information forward in time (Bertino et al., 2003). 

By assuming that the initial state vector (𝒙𝑡−1
𝑓

) are known at time t-1. The innovations 

(𝒚𝒕−𝟏 − 𝑯(𝒙𝒕−𝟏
𝒇

)), which is the difference of the observations and model forecast, are 

used to correct the background state vector at time t-1 to obtain updated estimate known 

as the analysis state (𝒙𝑡−1
𝑎 ). The model is then evolved forward in time until a new 

observation (𝒚𝒕) is available at time t. Then, the model forecast at time t becomes the 

background state, denoted by 𝒙𝒕
𝒇
. The background is then corrected by innovations term 

(𝒚𝒕 − 𝑯(𝒙𝒕
𝒇
)) to obtain an updated analysis at this time (𝒙𝑡

𝑎) and the process is repeated 

when a new observation is available. At each iteration, not only the state vector is updated, 

but the covariance matrix associated with the analysis state (𝑷𝒂) is also propagated 

through the Bayes’s theorem. 

• The Kalman Filter (KF) 

The Kalman Filter (KF) is a filtering algorithm which provides optimal least square 

estimates for DA problems (Shukla, 2016). The solution given by the Kalman Filter (KF) 

is optimal under assumptions (Barillec, 2008; Shukla, 2016):  

1) The forward model (M) and the observation operator (H) are both linear,  

2) The model and the observation errors can be represented by Gaussian 

distribution and 

3) The model and observation error processes are assumed white noise 

processes, hence uncorrelated in time between its values 

 

Under these assumptions, the optimal sequential assimilation scheme is taken to be the 

best linear estimate of the solution to the least-squares assimilation problem (Nichols, 

2010) which allows the forecast error covariance matrix at time t (𝑷𝒕
𝒇
) to be explicitly 

calculated from the analysis error covariance matrix (𝑷𝒕−𝟏
𝒂 ) at time t-1.  

 

The KF follows a two-step procedure including prediction and assimilation steps and 

these steps are repeated. The prediction step propagates the model state vector forward in 

time, while the assimilation step updates the state’s distribution given a new observation 

(Barillec, 2008). When a new observation information is available, the observation is 
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assimilated back into the forecast model to update an analysis state vector (𝒙𝑡
𝑎) and 

explicitly reproduces the error covariance matrix (𝑷𝒕
𝒂). The two-step in the KF are: 

 

1) Prediction step: 

The model state vector is evolved in time along with associated error covariance 

matrix based on previous state information or known initial state. 

Evolve mean state to time of observation:  𝒙𝒕
𝒇

= 𝑴𝒕𝒙𝒕−𝟏
𝒂     2-21 

Evolve error covariance matrix:       𝑷𝒕
𝒇

= 𝑴𝒕𝑷𝒕−𝟏
𝒂 𝑴𝒕

𝑻 + 𝑸𝒕 
2-22 

 

2) Assimilation step:  

Given a new observation, the state’s distribution is updated as: 

Update mean state given observation: 𝒙𝒕
𝒂 = 𝒙𝒕

𝒇
+ 𝑲𝒕[𝒚𝒕 − 𝑯𝒕𝒙𝒕

𝒇
]   2-23 

Update the Kalman Gain Matrix:  𝑲𝒕 = 𝑷𝒕
𝒇
𝑯𝒕

𝑻[𝑯𝒕𝑷𝒕
𝒇
𝑯𝒕

𝑻 + 𝑹𝒕]
−𝟏

  2-24 

Update error covariance given observation:  𝑷𝒕
𝒂 = [𝑰 − 𝑲𝒕𝑯𝒕]𝑷𝒕

𝒇
 2-25 

Where, Q and R is the error covariance matrix of the model and observation, respectively. 

The term K is the Kalman gain matrix, which operates as relative weight given to 

observations and background based on error associated with each information. Figure 2.5 

illustrates the two-step in the KF algorithm.  

 

Figure 2.5: The Kalman Filter (KF) algorithm. 

• The Extended Kalman Filter (EKF) 
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In more general cases, the system model (M) and observational operator (H) is often non-

linear. In this case, the KF can also be generalised to apply with non-linear ℳ and ℋ 

operators by adopting a tangent linear model to compute the Jacobians of the dynamical 

model and the observation operator (Barillec, 2008). The scheme is called Extended 

Kalman Filter (EKF).  

However, with linear approximations applied in the EKF, the optimal solution in the KF 

is lost, only sub-optimal approximation of the state of the system is achieved with the 

EKF. The linearisation of non-linear ℳ and ℋ can be approximated with Taylor 

expansion. The forecast and analysis steps are similar to the KF algorithm, but the non-

linear ℳ and ℋ of the dynamical model and the observation operator are approximated 

by the tangent linear model. Here, the tangent linear matrix of ℳ and ℋ at time t are 

denoted by �̂�𝒕 and �̂�𝒕, respectively. In particular, the non-linear model (ℳ) and the 

observational operators (ℋ) are replaced by its tangent linear estimates (�̂�𝒕 and �̂�𝒕) to 

propagate the covariance matrix (𝑷). Whereas the non-linear ℳ and ℋ are used to 

determine the forecast and analysis state model in the EKF. The two steps in the EKF are: 

1) Prediction step: 

𝒙𝒕
𝒇

= ℳ𝒕𝒙𝒕−𝟏
𝒂     2-26 

𝑷𝒕
𝒇

= �̂�𝒕𝑷𝒕−𝟏
𝒂 �̂�𝒕

𝑻 + 𝑸𝒕 
2-27 

2) Assimilation step:  

Given a new observation, the state’s distribution is updated as: 

𝒙𝒕
𝒂 = 𝒙𝒕

𝒇
+ 𝑲𝒕[𝒚𝒕 − ℋ𝒕𝒙𝒕

𝒇
]   2-28 

𝑲𝒕𝑲𝒕 = 𝑷𝒕
𝒇
�̂�𝒕

𝑻[�̂�𝒕𝑷𝒕
𝒇
�̂�𝒕

𝑻 + 𝑹𝒕]
−𝟏

  2-29 

𝑷𝒕
𝒂 = [𝑰 − 𝑲𝒕�̂�𝒕]𝑷𝒕

𝒇
 2-30 

Where, �̂� 𝑎𝑛𝑑 �̂� are the tangent linear estimate of the dynamical model and the 

observation operator (ℳ and ℋ), respectively. 

 

In case of weakly non-linear system, reasonable approximation of solution can be 

expected from the EKF, however, the EKF can lead to unstable approximations if the 

model and observation operator are strongly non-linear (Shukla, 2016). In practice, there 

are some limitations in implementing the KF and EKF. Firstly, the schemes are 
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prohibitively computational expensive, especially for large scale applications (Reichle, 

2008). This is because the KF and EKF require the explicit calculation and necessary 

storage costs of error covariance matrices, Pa and Pf at every iteration (Lahoz & 

Schneider, 2014). This is simply not feasible in practice given the dimensions of the 

problems and the size of the matrix for most environmental applications. Secondly, the 

model error covariance matrix (P) is difficult to explicitly determine if the model is 

complex and involves various parameters. 

 

To overcome the above limitations, ensemble methods are developed, which avoid 

explicitly evolving the full covariance matrix by attempting to estimate the probability 

density functions (PDFs) using a finite number of model realisations (Lahoz & Schneider, 

2014). The two main ensemble methods including the Ensemble Kalman Filter (EnKF) 

and the Particle Filter are discussed in the following sub-sections. 

• The Ensemble Kalman Filter (EnKF) 

As previously mentioned, the original KF is limited to linear assumptions. Whereas the 

KF is generalised to non-linear ℳ and ℋ operators using tangent linear approximation 

in the EKF. However, in practice, the computational costs of the KF and EKF are highly 

expensive (Lahoz & Schneider, 2014). In addition, it is vague in terms of how to best 

describe the model error covariance matrix (Houtekamer & Mitchell, 2005). 

 

An alternative method, namely Ensamble Kalman Filter (EnKF), is introduced to 

circumvent such limitations. In the EnKF, a limited random ensemble of states (typically 

30-100 members) is modelled to represent the best estimate of the state vector and its 

related error covariance (Evensen, 1994). With an ensemble of state vectors, an empirical 

error variance can be computed, which is used as a proxy for the exact error variance (P) 

in the KF and EKF.  

 

The initial ensemble is constructed by sampling from the initial distribution (Barillec, 

2008). Given 𝑁 ensemble members, each ensemble state member x(n) is then evolved 

using the (non-linear) model (ℳ), giving initial samplings of state vectors. The average 

of all ensembles forecast (�̅�𝑡
𝑓
) and associated empirical error covariance (𝑷𝑡

𝑓
) can be 

computed as: 

1) Prediction step: 
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𝒙𝑡
(𝑛)𝑓

= ℳ𝑡𝒙𝑡−1
(𝑛)𝑎

    2-31 

�̅�𝑡
𝑓

=
1

𝑁
∑ 𝒙𝑡

(𝑛)𝑓

𝑁

𝑁=1

 2-32 

𝑷𝑡
𝑓

=
1

𝑁 − 1
∑(𝒙𝑡

(𝑛)𝑓
− �̅�𝑡

𝑓
)

𝑁

𝑁=1

(𝒙𝑡
(𝑛)𝑓

− �̅�𝑡
𝑓
)
𝑇
 2-33 

2) Assimilation step:  

Given a new observation, the analysis state’s distribution can be updated as: 

�̅�𝑡
𝑎 =

1

𝑁
∑ 𝒙𝑡

(𝑛)𝑎

𝑁

𝑁=1

  2-34 

𝒙𝑡
(𝑛)𝑎

= 𝒙𝑡
(𝑛)𝑓

+ 𝐾𝑢[𝒚𝑖 − ℋ𝑡𝒙𝑡
(𝑛)𝑓

]   2-35 

Ideally, multiple observations yi are required to map with each ensemble model forecast. 

However, only a single measurement at time t (yt) is usually available (Barillec, 2008). 

As a result, perturbed observations are typically implemented to randomly generate 

observation for each ensemble model forecast. The perturbed observations can be 

generated as: 𝑦𝑖 = 𝑦𝑡 + 𝑢𝑖, where 𝑢𝑖 is sampling from the Gaussian distribution 

representing errors associated with the observations, 𝑢𝑖~𝑁(0, 𝑅). Thus, in EnKF, the 

error covariance matrix of observations (R) is replaced by empirical (Ru), which can be 

defined as (Bocquet, 2014): 

𝑅𝑢 =
1

𝑁 − 1
∑𝑢𝑖

𝑁

𝑖=1

𝑢𝑖
𝑇 

Then, the Kalman gain (Ku) can be computed as: 

𝐾𝑢 = 𝑃𝑡
𝑓
ℋ𝑡

𝑇[ℋ𝑡𝑃𝑡
𝑓
ℋ𝑡

𝑇 + 𝑅𝑢]
−1

 

Here, the matrix product of 𝑃𝑡
𝑓
ℋ𝑡

𝑇and ℋ𝑡𝑃𝑡
𝑓
ℋ𝑡

𝑇, can be computed from: 

𝑃𝑡
𝑓
ℋ𝑡

𝑇 =
1

𝑁 − 1
∑(𝑥𝑖

𝑓
− 𝑥𝑖

𝑓̅̅̅̅
)

𝑁

𝑖=1

(ℋ𝑥𝑖
𝑓

− 𝑦𝑓̅̅̅̅ )
𝑇
 

And      ℋ𝑡𝑃𝑡
𝑓
ℋ𝑡

𝑇 =
1

𝑁−1
∑ (ℋ𝑥𝑖

𝑓
− 𝑦𝑓̅̅̅̅ )𝑁

𝑖=1 (ℋ𝑥𝑖
𝑓

− 𝑦𝑓̅̅̅̅ )
𝑇
 

Where     𝑦𝑓̅̅̅̅ =
1

𝑁
∑ 𝐻(𝑥𝑖

𝑓
)𝑁

𝑖=1  

Then, the analysis error covariance can be numerically computed as (�̂�𝑎): 
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𝑷𝑎 =
1

𝑁 − 1
∑(𝒙𝑡

(𝑛)𝑎
− �̅�𝑡

𝑎)

𝑁

𝑁=1

(𝒙𝑡
(𝑛)𝑓

− �̅�𝑡
𝑎)

𝑇
 

With the formulation of the EnKF, difficulties presented in the general KF and the EKF 

can be solved. Firstly, the computational costs are greatly reduced. This is because the 

explicit calculation of error covariance matrices is not required and can be implicitly 

computed from the ensemble members. Moreover, the operation on the ensemble 

members is independent, which allows parallel computation. Secondly, the EnKF 

algorithm can be apply with non-linear model systems (ℳ) and observational operators 

(ℋ), without linearization approximations. Thirdly, model error covariance matrix can 

be easily computed through ensemble members.  

 

Nevertheless, there are several issues that need to be considered when developing the 

EnKF. First, the analysis results are sensitive to ensemble size. Under-sampling can lead 

to filter divergence. Secondly, Gaussian distribution is assumed for both non-linear model 

systems (ℳ ) and observational operators (ℋ ). Figure 2.6 illustrates the schematic 

diagram of the EnKF algorithm.  

 

Figure 2.6: The schematic of Ensemble Kalman Filter (EnKF) algorithm. 

 

o The problems of small ensemble size 

In large scale applications, such as weather and reginal flood forecasts, the 

ensemble size (𝑁𝑒𝑛𝑠) is typically constrained by the cost of integrating the 

forecast model (ℳ) (Houtekamer et al., 2016). In such forecasting systems, it is 

frequently found that the ensemble size (𝑁𝑒𝑛𝑠)  is substantially less than the state 
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dimension (𝑁𝑚𝑜𝑑𝑒𝑙), which is typically in the order of millions (Houtekamer et 

al., 2016; Katzfuss et al., 2016). Although, it is possible to approximately 

represent a covariance matrix using a low-rank ensemble approximation with 

fewer realizations than the state dimension, the use of such small ensemble size 

can cause issues regarding sampling error and filter divergence (Ehrendoefer, 

2007; Evensen et al., 2022b).  

 

The sampling error refers to the appearance of noise in the estimated forecast-

error covariance matrix (𝑷𝒇), that are estimated from small ensemble size which 

are subsequently used to compute the gain matrix (Ehrendoefer, 2007). The 

sampling error on the 𝑷𝒇 often results in spurious correlations between spatially 

distant points throughout the physical domain (Ehrendoefer, 2007; Hung et al., 

2019). Such spurious effects can lead to unrealistic corrections at grid points or 

cells that are physically remote from the location of observation. 

 

In addition, the term “filter divergence” used herein refers to the classical type 

of filter divergence where the analysis-error covariance (𝑷𝒂) is repeatedly 

underestimated during the cycling process (Hamill, 2006). As a result, the 

estimated forecast-error covariance matrix (𝑷𝒇) becomes unrealistically 

overestimated, which in turn underweighting or disregarding the new 

observations (Ehrendoefer, 2007). Such underestimation of the analysis-error 

covariance (𝑷𝒂) is a systematic effect in the EnKF due to the small ensemble 

size used (Ehrendoefer, 2007). In fact, even with a flawless model, filter 

divergence can still happen if the forecast-error covariance is estimated from a 

small ensemble (Hamill, 2006). The filter divergence can also be considered as 

a sampling-size related issue as sampling error tends to be large for small 

ensembles, hence there is a high change that the forecast-error covariances are 

poorly estimated (Ehrendoefer, 2007). 

 

o The methods of localisation and inflation 

To alleviate the aforementioned issue, various techniques have been proposed to 

reduce the noise in the estimated forecast-error covariance matrix (𝑷𝒇). 

Localisation methods, namely covariance localisation and domain localisation 

are well-known strategies that have been applied to the EnKF to compensate for 
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running small ensemble sizes. In short, the covariance localisation refers to the 

modification of the forecast-error covariance matrix to suppress unrealistic long-

distance spurious correlations, induced by noise arising from the small sample 

size (Ehrendoefer, 2007). In domain localisation, the assimilation is 

independently applied to a series of disjoint local domains in physical space, 

where only observations within some pre-defined cut-off areas are considered 

(García-Pintado et al., 2015; Kirchgessner et al., 2014). The localization 

formulations not only allow for the appropriate handling of spurious effects 

brought on by the use of small ensemble sizes, but such methods can also be 

adopted to avoid filter divergence (Ehrendoefer, 2007). 

 

Regarding filter divergence, apart from the localisation methods, Anderson and 

Anderson (1999) have suggested another method that entails broadening or 

inflating the prior distribution by multiplying the covariance matrix by a 

tuneable factor. This method is called “multiplicative inflation” in which the 

forecast-error covariance (𝑷𝒇) is multiplied by a factor slightly greater than one 

(Houtekamer et al., 2016). In operational ensemble DA systems, inflation is 

typically required to prevent filter divergence caused by the small ensemble sizes 

(Evensen et al., 2022a). The inflation method can be seen as a measure 

complementing localisation to maintain covariances at a realistically large level 

(Ehrendoefer, 2007; Evensen et al., 2022a). Additionally, inflation may also be 

interpreted as an effort to account for model error as it is expected that model 

forecasts would contain additional uncertainty due to the imperfect model 

representation as the model progressed over time (Ehrendoefer, 2007). 

 

• The Particle Filter (PF) 

The Particle Filter (PF) is a sequential ensemble filtering method based on Bayesian 

estimation (Giustarini et al., 2011). The main advantage of the PF over the EnKF is that 

the PF relaxes the assumption of Gaussian distribution in both observations and model 

errors (Matgen et al., 2010). Thus, the PF approach can be applied to handle the 

propagation of non-Gaussian distributions in hydraulic models and observations (Xu et 

al., 2017). However, the main drawback of the PF is that it requires considered amount 

of ensemble members to reasonably represent the prior distribution of the model, which 
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results in higher computationally intensive than those required in the EnKF (Xu et al., 

2017). 

 

Similar to the EnKF, the PF avoids explicitly obtaining analytical probability density 

function of state variables and parameters by employing Monte Carlo simulation to 

generate a limited number of random draws called ensemble members or particles (van 

Leeuwen, 2009; Xu et al., 2017). The assumption is that the true probability densities can 

be adequately represented by large enough numbers of particles (Xu et al., 2017). Each 

ensemble forecast is then weighted based on the agreement with available observations. 

The simple implementation of the PF is based on the Sequential Importance Sampling 

(SIS) and Sequential Importance Resampling (SIR) (van Leeuwen, 2009). 

 

o Sequential Importance Sampling (SIS) 

With the ensemble of particles, the non-linear model is evolved in time for each 

ensemble particle. The weight associated with each particle is computed based 

on the discrepancy between forecast and available observation. The weight is 

then attached to each corresponding particle. It is important to note that in the 

PF approach, the model states and parameters are not modified, only relative 

weights are updated when new observations are available. Figure 2.7 illustrates 

the schematic diagram of the particle filter with importance sampling. The 

weight of each particle in the Figure 2.7 corresponds to the size of the bullets on 

this axis. At time t=0, all particles have equal weight while at time t=10 and t=20 

each particle is assigned with a new weight according to the analysis (van 

Leeuwen, 2009). 

 

Figure 2.7: schematic diagram of the particle filter with importance sampling  

(Adopted from van Leeuwen, 2009) 



   

 

52 

However, the SIS algorithm suffers from filter degeneracy, where after a few 

updated steps, a particle gets all weight, while other particles are assigned with 

very low weights (van Leeuwen, 2009). As a result, only a few particles are 

effectively dominate in the filter, which results in lack of diversity in the updated 

ensemble particles. One way to mitigate this degeneracy issue is to apply 

Sequential Importance Resampling (SIR) scheme (Matgen et al., 2010). 

o Sequential Importance Resampling (SIR) 

The Sequential Importance Resampling (SIR) is designed to reduce the effect of 

filter degeneracy (many particles obtain negligible weights during the analysis). 

In the SIR, the particles that assigned very low weights are abandoned, while the 

particles with high weights are duplicated (van Leeuwen, 2009). More copies are 

generated for the higher weight of particle. After the low weight particles are 

discarded and high weight particle are duplicated, the weight of all posterior 

particles is equal again (van Leeuwen, 2009). Figure 2.8 illustrates the schematic 

diagram of the particle filter with importance resampling. As shown in Figure 

2.8, all particles have equal weight at time zero. At time 10 the particles are 

weighted according to the likelihood and resampled to obtain an equal-weight 

ensemble. 

 

Figure 2.8: schematic diagram of the particle filter with importance resampling 

(Adopted from van Leeuwen, 2009). 

2.5.2 Variational assimilation 

Variational assimilation is based on the optimal control theory, where optimisation is 

performed on model parameters to minimise the misfit between the solutions of the model 
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and a set of observations (Bertino et al., 2003). In this section, two main variational 

methods are described including 3D and 4D Variational methods (3D-Var and 4D-Var). 

In the 3D-Var, the temporal dimension is excluded, only three spatial dimensions is 

considered in the analysis at the time of observations are available. Whereas the 4D-Var 

generalise the 3D-Var scheme by accumulating the observations over a time window and 

minimizing over the model trajectory (Shukla, 2016). 

• 3D-Var 

The optimisation in the variational assimilation can be regarded as a class of inverse 

problem (Bannister, 2007). Instead of computing gain matrices, the variational methods 

seek a set of initial model parameters that optimise the cost function, defined as 𝐽(𝑥) 

(Bouttier & Courtier, 2002). 𝐽(𝑥) is a functional of the state vector x, which is designed 

to be a global measure of the departures between the model analysis (xa) with respect to 

two independent representations (Bannister, 2007). One is the observation (y) and another 

is the model forecast (xb). In the 3D-Var, the solution is sought iteratively by performing 

several evaluations of the cost function: 

𝐽(𝑥) =
1

2
(𝑥 − 𝑥𝑏)𝑇𝑩−1(𝑥 − 𝑥𝑏) +

1

2
(𝑦 − 𝐻(𝑥))𝑇𝑹−1(𝑦 − 𝐻(𝑥)) 

                                        =                       𝐽𝐵(𝑥)               +                            𝐽𝑂(𝑥) 

Where, the first term (𝐽𝐵) quantifies the misfit to the background (model) and the second 

term (𝐽𝑂) is the misfit to the observations. The term B is the background error covariance 

matrix and R is the observational error covariance matrix. The analysis state (xa) is then 

found by minimising the cost function J [x]: 

𝑥𝑎 = 𝐴𝑟𝑔𝑚𝑖𝑛 𝐽(𝑥) 

For non-linear observation operator ℋ(𝑥), the solution can be obtained by an iterative 

minimization algorithm (e.g. gradient descent, conjugate gradient, quasi-Newton, etc.), 

which requires the computation of the gradient of the cost function with respect to the 

state vector (∇𝐽(𝑥)) at each iterative step (Rabier & Liu, 2003). At the minimum of the 

objective function, the gradient is equal to zero (Talagrand, 2010). The direct way to solve 

for the model state vector (x) that yields the minimum value of cost function is to 

determine analytical expressions for the gradient, and solve for the minimizing 

components of x. However, given the complexity of obtaining analytical expressions for 
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the gradient of the cost function, this method is only limited to simple small dimension 

problems (Talagrand, 2010). An alternative way of computing the gradient of the cost 

function is to use the “adjoint model”. However, developing adjoint of flood models can 

pose difficulties. 

• 4D-Var 

The 4D-Var is a development of the 3D-Var, which the temporal dimension is included 

(Lahoz & Schneider, 2014). Instead of carrying out the minimisation at the specific time 

of available observations, the 4D-Var method accumulates the observations over a time 

window and minimizing the cost function over the model trajectory (Shukla, 2016). In 

other words, the 4D-Var is a smoothing algorithm, which allows more observations over 

a time window to better constrain model trajectory by searching the initial conditions that 

minimise the cost function (Barillec, 2008). To date, the 4D-Var method has been widely 

adopted by many numerical weather prediction (NWP) agencies due to the flexibility in 

the time window and better representation of dynamic problems (Bannister, 2007). In 

general, the 4D-Var algorithm can be classified into two categories including Strong 

Constraint and Weak Constraint 4D-Var. 

 

In the strong constraint formulation, the perfect model over assimilation period is 

assumed (Bannister, 2007), which means the model errors are neglected. Similar to those 

in the 3D-Var but with a series of observations over the time window, the initial state 

vector that minimise the cost function is seek. The cost function of the Strong Constraint 

4D-Var can be expressed as (Barillec, 2008): 

𝐽(𝑥0:𝐿) =
1

2
(𝑥0 − 𝑥0

𝑏)
𝑇
𝑩−1(𝑥0 − 𝑥0

𝑏) +
1

2
∑(𝑦𝑘 − 𝐻(𝑥𝑘))

𝑇

𝐿

𝑘=0

𝑹−1(𝑦𝑘 − 𝐻(𝑥𝑘)) 

                                =                       𝐽𝐵(𝑥0)                  +                            𝐽𝑂(𝑥0:𝐿) 

Where, L is the assimilation time window, starting from time t-L to current time t. The 

observations are available at times 1,2,3,…,t-1,t. The 𝐽𝐵(𝑥0) term minimises the departure 

from the background at the beginning of the time window, whereas the 𝐽𝑂(𝑥0:𝐿) term 

minimises the entire departure of the trajectory from a series of observations over the 

considered time window (Barillec, 2008). Figure 2.9 illustrates the schematic diagram of 

the 4D-Var. 
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Figure 2.9: Schematic diagram of the 4D-Var (Adopted from Lahoz and Schneider, 2014) 

As mentioned in the 3D-Var, the gradient of the cost function with respect to the state 

vector (∇J(x)) is required for an optimising algorithm to search for analysis state vector 

that yields minimum cost function. In large applications, adjoint model is required to 

solve for the optimal solutions, which can be difficult to implement in some cases. 

 

In case of weak constraint 4D-Var, the assumption of error-free model is relaxed. The 

model error is assumed to follow Gaussian distribution. However, the relaxation of error 

associated with the model leads to higher computational requirement compared to the 

strong formulation (Shukla, 2016). Also, the adjoint model is required to seek for optimal 

solution. 

2.6 Data assimilation for flood inundation forecasting 

There have been a number of attempts to improve real-time flood forecasting by 

incorporating the latest available observations into hydrodynamic models through 

different DA techniques. Most of the observational information has been derived from 

traditional data collection methods (e.g. in-situ and remote sensing observations). To date, 

a number of authors have successfully demonstrated the usefulness of traditional 

observations to enhance model forecasting skills. However, it is found that the use of CS 

observations in conjunction with DA techniques to improve flood forecasting model is 

relatively limited. Even though, the characteristic of CS data can fulfil some of the 

limitations presented in the traditional observations (i.e. the lack of spatial and temporal 

coverages), data quality remains a significant challenge with CS data as there is no 

"inbuilt" system of quality assurance (Goodchild & Glennon, 2010; Goodchild & Li, 

2012), which is has hampered its more widespread use by the scientific community. The 

following sub-sections outline some of the work of authors who employed in-situ, remote 
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sensing and CS observations to reduce uncertainty in flood forecasting model through 

various DA techniques. 

 

2.6.1 Assimilating in-situ observations 

The earliest studies which investigated the potential of DA for flood inundation 

estimation were based on data from river gauging stations. For example, Madsen et al. 

(2003) applied a standard EnKF to assimilate water level (WL) measurements from three 

gauging stations in the northern part of Italy to update initial conditions of the 1D river 

model (MIKE 11). The ensemble size of 50 was used in the study as it gave a reasonable 

compromise between the computational costs and the accuracy of the covariance 

estimation. The authors showed that the updating procedure significantly improved model 

forecasting skills for lead time up to 48 hours compared to forecasts without updating.  

 

Furthermore, Madsen and Skotner (2005) proposed a novel adaptive state updating 

technique which applied pre-defined gain functions that reflect typical error correlation 

structures to propagate model state corrections along river reaches. The proposed 

technique was tested by assimilating a series of real WL measurements, collected along 

the Pasig River, the Philippines in September 2001, into the MIKE 11 using the EnKF 

scheme. The authors reported that their efficient updating technique was capable of 

providing robust and accurate forecast results with slightly more computational expensive 

than model forecasting without updating.  

 

In Neal et al. (2007), both WLs in the river channel and on the floodplain were monitored 

along the river Crouch, (Essex, UK) and assimilated into the ISIS-1D river model using 

a standard EnKF technique. The authors illustrated that the EnKF let to an increase in 

forecast accuracy of between 50% and 70% depending on the monitored locations. The 

authors also recommended that 2D-hydraulic models and more spatially sensor data were 

required to improve flood estimations, especially on the floodplain areas.  

 

More recently, Jafarzadegan et al. (2021) assimilated WL data from gauge stations into a 

2D flood model (LISFLOOD-FP) to simulate a largescale flood of the San Jacinto River 

basin (Texas, US). The EnKF scheme was employed for dual correction of model state 

variable and model parameter (channel roughness). The authors showed that the proposed 
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dual update procedure reduced the underestimation of probabilistic flood inundation 

mapping by approximately 7%. 

 

2.6.2 Assimilating remote sensing observations 

In addition to in-situ observations, in the past two decades, many authors have 

investigated the potential of updating hydraulic models using satellite-based SAR 

observations. For example, Andreadis et al. (2007) used synthetic (virtual) satellite-based 

SAR observations, produced by adding noise to the “truth” (calibrated model simulation), 

to investigate the performance of model state and inflow updating through EnKF scheme. 

Similarly, Matgen et al. (2010) also utilised synthetic satellite-based observations of WLs 

to update both model state and discharge at the upstream boundary of 1D hydraulic model 

(HEC-RAS) using a particle filter (PF) approach. The authors (i.e. Andreadis et al. (2007); 

Matgen et al. (2010)) highlighted that the improvement due to DA is limited and short-

lived if only the model state is corrected, this is because the positive impact of the model 

state update is rapidly diminished by the persistence of the initial condition (e.g. inflow 

discharge). As a result, to alleviate this issue, a combination of model state and input 

updating is recommended (Andreadis et al. (2007); Matgen et al. (2010)). This finding 

was later confirmed in the work by García-Pintado et al. (2013) who simultaneously 

updated the inflow error at the boundary condition and model state using synthetic SAR-

type WL observations. Moreover, in García-Pintado et al. (2013) the sensitivity of the 

model forecast performance to satellite visit parameters was also investigated. The study 

demonstrated that assimilating satellite imagery obtained early in the flood (during the 

rising limb) has a larger influence in terms of forecast improvement compared to that 

obtained and assimilated after the flood peak. 

 

Interestingly however, the number of published papers regarding the use of real satellite 

images in DA approaches for urban flood forecasting is relatively limited. One of many 

reasons is that, as flood hazard is inherently local in nature, it is difficult to accurately 

predict timing and location, and thus almost impossible to ensure adequate satellite 

coverage (Schumann & Moller, 2015). As a result, local flood hazards are unlikely to be 

captured by medium-high spatial resolution (30m/pixel) satellite-based sensors. Despite 

the low probability of capturing flood dynamics through high resolution satellite remote 

sensing, a few real case studies have been reported the use of a series of SAR images to 

reduce uncertainty in flood forecasting using DA schemes. Some of the literatures that 
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utilised actual satellite images to improve flood forecasting through DA techniques are 

Giustarini et al. (2011), García-Pintado et al. (2015) and Hostache et al. (2018). 

 

Giustarini et al. (2011) applied a PF-based assimilation scheme to integrate WLs, derived 

from two SAR images acquired by the ERS-2 and ENVISAT satellites, into a 1D 

hydraulic model (HEC-RAS) of the Alzette River, Luxembourg. The WL at each cross-

section location was derived by superimposed flood extent extracted from the SAR 

images on a DEM to estimate WL based on river shoreline. In Giustarini et al. (2011) two 

variants of state updating techniques including global and local particle weighting 

procedures were proposed and investigated.  

 

García-Pintado et al. (2015) examined the performance of different spatially based filter 

localisation techniques using a sequent of seven SAR images obtained by the COSMO-

SkyMed (CSK) constellation over the Severn and Avon rivers in the south-west of 

England. A novel along-network localisation technique was proposed to update the 

observation error covariance matrix and the results were compared to those obtained from 

global and the standard Euclidean distance-based local formulations. The outcomes of 

García-Pintado et al. (2015) indicated the need for filter localisation to avoid filter 

divergence, which occurred when the global filter was applied. Furthermore, in García-

Pintado et al. (2015) the channel friction was also updated along with WLs and inflow 

error. However, the authors reported that the feedback of friction estimation on the flood 

forecast within the case study appeared to be minimal. 

 

Instead of assimilating WLs, Hostache et al. (2018) proposed an alternative method that 

allows flood extent maps derived from SAR images to be directly assimilated into a 

hydraulic model. The proposed methodology was implemented on the River Severn 

catchment area (England) by directly assimilated flood extent maps derived from Envisat 

images into a 2D hydraulic model (LISFLOOD-FP) using a PF-based assimilation 

scheme. Specifically, each particle contained different streamflow hydrograph generated 

by perturbed rainfall inputs; the weight associated with each particle is updated according 

to the degree of match between model forecast and observed flood extent at the 

assimilation time step. The authors highlighted that the main advantage of this method is 

that it is capable of assimilating flood extent rather than water levels; therefore, avoiding 

the non-trivial step of converting flood extent shorelines into WLs. 
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2.6.3 Assimilating CS social media observations 

Even though, a number of literatures have indicated that CS information collected through 

social media has great potential to supplement traditional data collection methods during 

a flood, the use of CS social media data to support real-time flood forecasting through 

DA approach is currently limited among scientific communities. One of many reasons for 

this is that the quality of observations collected by contributors is not guaranteed, which 

leads to a wide range of variation in associated uncertainty (Lahoz & Schneider, 2014). 

However, in DA context, the observations with large errors (larger than those in the model 

forecast) should be screened out as they can cause degradation in model forecast after 

assimilation. Thus, it is necessary to assess the quality associated with CS social media 

data and discard those identified as low-quality information. Despite the quality concern 

in CS social media data, there have been a few attempts to assimilate CS social media 

data to improve hydrodynamic forecasting. These include the works by Mazzoleni et al. 

(2015), Mazzoleni et al. (2017) and Annis and Nardi (2019). 

 

Mazzoleni et al. (2015) examined the potential of assimilating VGI observations of 

discharge (data collected by local volunteers) to improve the results of hydrological 

models. However, due to the lack of actual VGI data at the time of their study, synthetic 

VGI observations were generated by mimicking the intermittent behaviour of volunteers 

(e.g. observations in daytime and peak hours) and employed in the study. The authors 

showed that the assimilation of VGI observations could lead to a noticeable improvement 

of the model performance, especially if the observation were carried out by the trained 

volunteers during the flood peak. 

 

Later, Mazzoleni et al. (2017) conducted a further investigation regarding how VGI 

observations, can be utilised to improve flood prediction by incorporating with 

hydrological models through DA approach. Synthetic WL data was generated to represent 

WL observations collected by volunteers and utilised in four case studies. The error 

associated with the synthetic VGI observations was assumed to follow Normal 

distribution with zero mean and pre-defined standard deviation (Mazzoleni et al., 2017). 

The authors pointed out that the accuracies of VGI observations have greater influence 

on the model results than the irregular frequencies of VGI observations at which the 

streamflow data are assimilated. This finding indicates the potential of VGI and CS data 

to support flood forecasting system through DA approaches.  
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More recently, Annis and Nardi (2019) reported a case study of assimilating CS-derived 

WL data extracted from a video streaming platform (YouTube) into a 2D hydraulic model 

(FLO-2D). In the study by Annis and Nardi (2019), locations and water depths were 

manually extracted and verified by comparing with non-flooded images from Google 

Street View, whereas the error of the water depth estimation was assumed to follow a 

normal distribution with a constant variance of 0.2 metres. However, it is argued that error 

(uncertainty) associated with the water depth estimated from CS social media data should 

be assessed independently for each observation, this is because there is no built-in quality 

assurance system in place for CS social media data (Songchon et al., 2021). To this end, 

the use of VGI and CS data for DA will remain challenging in the near future, despite the 

optimistic results published in the literatures and the fact that the number of social media 

users will continue to rise in the coming years. 
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CHAPTER 3: Methodology 

In this chapter, the rationale behind the design and execution of the research programme 

is detailed. This involves selecting an appropriate social media platform, hydrodynamic 

model, and data assimilation approach. Furthermore, it covers comprehensive details of 

how the research was designed and carried out in sequential steps. First, the research 

design of CS social media data is introduced in Section 3.1. Secondly, a description of 

the selected hydrodynamic model and associated sources of uncertainty is presented in 

Section 3.2. The methods employed to calibrate the model parameters are described in 

Section 3.3. Implementation of the DA approach and updating strategies are explained in 

Section 3.4, followed by an overview of the experimental designs to examine the 

performance of different updating strategies in Section 3.5. A flowchart of the overall 

research methodology is illustrated in Figure 3.1. 

 

To facilitate discussion, some of details regarding the case study used to illustrate the 

developed methodology are discussed in this chapter. A detailed description of the case 

study area and available data is provided in Chapter 4 of this thesis. 

 

3.1 Research design of CS social media data 

The relatively recent emergence of social media platforms allied to the more widespread 

availability of low-cost sensor and Assisted Global Positioning System (A-GPS) in 

smartphones, means that collecting high resolution spatial and temporal information 

during a disaster have become feasible through individual contributions (Songchon et al., 

2021). These technological improvements offer a new approach to data collection, 

commonly referred to as crowdsourcing (Zheng et al., 2018), which offers insightful 

information collected by individuals (Songchon et al., 2021). With social networking, 

crowdsourced (CS) social media data can be spread globally in near real-time. However, 

uncertainty associated with CS data is a major obstacle to its more widespread use in 

research communities (Bott & Young, 2012; Goodchild & Li, 2012). A key element of 

this research was to thus to develop a method to assess the quality of CS data, in order to 

screen out low-quality data prior to assimilation into a hydrodynamic model.  
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Figure 3.1: Flowchart of the research methodology.
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The following sub-sections describe; factors to considered when selecting a social media 

platform (3.1.1); mining Twitter data (3.1.2); approximating geolocation from Twitter 

metadata (3.1.3); verifying quality of Twitter data (3.1.4); quality assessment methods 

(3.1.5); and a method to estimate flood depth and associated uncertainty from CS social 

media images (3.1.7). Sub-sections 3.1.2 to 3.1.6 have been published and are reproduced 

from Songchon et al. (2021). 

 

3.1.1 Selection of social media platforms 

There are two main aspects that need to be considered when selecting social media 

platforms. Firstly, social media demographics and usage in the study area should be 

examined. This is because CS data is greatly relied on the contribution of social media 

users. High frequency of user involvements can be expected in popular social networks 

and vice versa. Hence, appropriate social media platforms should be selected based on 

the user demographics in the study area. Secondly, the data access policies of the potential 

platforms should be reviewed. Depending on business directions, different platforms have 

different data access control policies. Currently, Meta (Facebook, and Instagram) has very 

strict policies regarding public data access through API (application programming 

interfaces) to protect user privacy, which perhaps reflects their more friend-centric basis. 

However, other platforms such as Twitter and Flickr tend to have less restrictive data 

access policies, which allow public posts/images to be searched and retrieved through 

API.  

 

As detailed in Chapter 4, the research case study location is the city of Phetchaburi in 

Thailand. As of February 2022, there were 56.85 million active social media users in 

Thailand (Kemp, 2022), equivalent to about to approximately 86% of the country’s 66.17 

million population (SSO, 2021). Although, the most active social media platforms in 

Thailand are Facebook (50.05 million users) and Instagram (18.50 million users), 

retrieving public content through API is currently very limited for these platforms. And 

whilst Twitter has less users in Thailand (11.45 million), its relatively open access policy 

and very news-centric outlook meant it was selected for research purposes. It should be 

noted that the use of Flickr was also investigated, however this platform typically has a 

less news-centric approach, and as such tends to have fewer posts related to noteworthy 
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events such as flooding; this was the case with the selected case study and hence Flickr 

was discounted.  

 

3.1.2 Data mining and filtering methods 

To date, Twitter API v2 offers an academic research access level for a qualified user, 

which allows access to Twitter’s full archive and access to advanced search operators. 

The API enables programmatic access to Twitter archives based on applied filters 

(keywords, hashtags, specified date, locations, languages, etc.). In the proposed 

methodology, two categories of query keywords are applied to search for flood related 

Tweets. The first category was flood related keywords, such as floods, overflow and 

inundation, while the second category was location related keywords, designed to match 

Tweets relevant to the study area. Although Tweets with geolocation data are clearly 

preferred, most users disable this option due to privacy reasons, and the location related 

keywords are thus introduced to filter relevant spatial information.  

 

To minimise the manual process of identifying location keywords, names of local streets, 

roads and public locations (e.g. local shops and restaurants) within the study area are 

directly exported from existing and online map databases, such as local GIS databases 

and OpenStreetMap (OSM), and applied as location related keywords. In addition, map 

features (points, lines and polygons), associated with location keywords, are also 

extracted to approximate the geolocations of Tweets (see section 3.1.3).  

 

To account for typing errors, wildcards (an asterisk “*” and a question mark “?”) were 

applied to maximise search results. In addition to the keywords, advanced query operators 

(“-is:retweet”, “has:images” and “has:links”) were also applied to retrieve original 

Tweets that contain embedded images or links. This was to filter out false positive or 

irrelevant information from plain text Tweets. 

 

3.1.3 Approximating geolocation from map features 

In addition to Tweet texts and images, metadata of each Tweet is also accessible through 

Twitter’s API. This metadata contains additional information, such as number of retweets 

and followers, Tweet ID, username, and geolocation (if enabled). As outlined above, most 
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Twitter users disable the geolocation feature, and thus an extra step is required to 

approximate the geolocation for the majority of Tweets. 

 

The geolocation of each Tweet can be implicitly approximated based on the Tweet 

message and the surrounding environment apparent in the Tweet image. Although, 

manual inspection of Tweet messages and images would provide more accurate 

geolocation, the proposed method is intended to be as automated as possible to facilitate 

real-time data gathering during an actual flood event. To this end, geolocations are 

approximated from the feature locations (point, polyline, and polygon) previously 

exported along with the location keywords.  This is a straightforward procedure for point 

features (e.g., schools and restaurants), where the geolocation of a Tweet image is 

assigned as the same location of the point feature specified in the OSM or the GIS data. 

For polyline features with a length less than 0.5 kilometre (e.g. alleys) and polygon 

features with an area less than 0.25 square kilometre (e.g. recreation parks), the midpoint 

of the polyline and centroid of the polygon are assigned as the image location, 

respectively. For longer polylines (e.g. main roads) and larger polygons (e.g. colleges and 

universities), the geolocation of images must be manually determined by comparing 

Tweet images with Google Street View (Google, n.d.). Figure 3.2 shows examples of 

point, polyline and polygon features. 

 

 

 

 

Feature type: Point Feature type: Long Polyline Feature type: Large Polygon 

Figure 3.2: Examples of point, polyline and polygon features. 

(Basemap data: ©OpenStreetMap contributors) (Modified after Songchon et al. (2021)). 

 

3.1.4 Labelling data quality classes 

After geolocations are approximated and assigned for each Tweet, the next step in 

developing a quality assessment model for CS data is data labelling. All of the flood 

related Tweets retrieved from the data mining process need to be labelled with associated 

quality classes. This is an important process in the development of a classification model 
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in which the model can learn from a training dataset, while the model performance can 

be evaluated using a testing dataset; note that the training set is taken from the total dataset 

and the validation dataset consists of the remaining data not used for training. The 

developed approach employs two quality labels (categories), namely high-quality and 

low-quality, based on some form of recognised flood evidence (e.g. satellite images, 

authoritative flood report). The developed approach uses the data labelling approach 

detailed below. 

 

1) Remotely sensed flood extent. Tweet geolocations are overlayed on a satellite 

flood extent. If the Tweet geolocation is located in the flood extent, a high-quality 

label will be assigned.  

2) Authoritative data. Tweets not classified as high-quality using step 1, are checked 

against a list of flood affected areas reported in some form of recognised, 

authoritative data. If the Tweet text contains location keywords listed in the 

authoritative data, a high-quality label will be assigned.  

3) Manual assessment. Tweets not classified as high-quality using steps 1 or 2, are 

manually assessed and assigned quality labels based on evidence in the Tweet’s 

metadata and images. If the Tweet contains flood images and its geolocation can 

be verified using Google Street View, the Tweet will be labelled as high-quality.  

4) Low quality. Tweets not classified as high-quality using steps 1-3 will be labelled 

as low-quality. 

 

3.1.5 Quality assessment of CS data 

This section explains how automated quality assessment methods are developed by 

learning from the training dataset, labelled using the steps outlined above. The developed 

methods will allow the quality of CS social media data to be automatically assessed in 

near real-time. To automatically classify the quality of CS social media data, two types 

of classification methods were considered, namely logistic regression and fuzzy logic. 

Both methods have potential to be adopted to assess the quality of Twitter data, however 

they differ in their basic concept and implementation. Logistic regression relies on 

weights assigned to independent variables determined during training processes, while 

fuzzy logic systems construct a set of if-then rules formulated from prior knowledge or 
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experience (Kayacan & Khanesar, 2016). Both methods were developed and trained using 

actual CS social media data Tweeted during flood events.  

  

3.1.5.1 Development of binary logistic regression (BLR) model  

The goal of regression analysis is to find the best fitting model to describe the relationship 

between an outcome (dependent) variable and a set of predictor (independent) variables 

(Hosmer et al., 2013). In contrast to linear regression, the outcome variable of a logistic 

regression model is binary or dichotomous, which means the model is a prevailing 

algorithm for classification problems. Logistic regression can be applied for binary, 

multinomial or ordinal outcome. In this study, binary logistic regression was adopted to 

assess the quality of CS social media data. Given a set of predictor variables, the algorithm 

can model the possibility that the observation belongs to a particular class using logit 

transformation. The logit transformation is defined as the following: 

𝐿𝑜𝑔𝑖𝑡(𝑃) = 𝑙𝑛
𝑃

(1 − 𝑃)
 =  𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯+ 𝑤𝑛𝑥𝑛 

3-1 

 

Where, 𝑥1, 𝑥2, … , 𝑥𝑛 are the predictor variables, 𝑤0 is the bias term (intercept) and the 

𝑤1, 𝑤2, … , 𝑤𝑛 are the estimated weight coefficients. P is the estimated probability of event 

occurrence, and the Logit(P) is the logarithm of the odds (𝑃 (1 − 𝑃)⁄ ). The probability 

(P) can be determined as: 

𝑃 =
𝑒(𝑤0+𝑤1𝑥1+𝑤2𝑥2+⋯+𝑤𝑛𝑥𝑛)

1 − 𝑒(𝑤0+𝑤1𝑥1+𝑤2𝑥2+⋯+𝑤𝑛𝑥𝑛)
=

1

1 + 𝑒−(𝑤0+𝑤1𝑥1+𝑤2𝑥2+⋯+𝑤𝑛𝑥𝑛)
 

3-2 

 

Equation 3-2 is an inverse of the Logit(P) function, which is applied to turn the range of 

outcomes from real numbers (ℝ) in the logit function into a probability range from zero 

to one [0,1]. With the logistic regression model, an appropriate quality class could be 

assigned to CS social media data based on the probability. 

 

• Predictor variables 

Information extracted from Twitter metadata (e.g. geolocation, timestamp, number of 

retweet) can be related to indicate the overall data quality of a Tweet. Predictor variables 

can be any combination of factors that significantly influence the dependent variable. 
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Based on Twitter metadata, spatiotemporal and geographical features, five predictor 

variables were initially identified including:  

 

1) Retweet ratio (𝑥1) refers to a ratio between the retweet count and the natural 

logarithm of Twitter followers. 

𝑅𝑒𝑡𝑤𝑒𝑒𝑡 𝑟𝑎𝑡𝑖𝑜 =
𝑅𝑒𝑡𝑤𝑒𝑒𝑡

𝑙𝑛(𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠)
 

3-3 

2) Spatiotemporal index (𝑥2) refers to an agreement on Twitter data based on 

flood location and timestamp. This indicator indicates that there is high 

possibility of flood occurrence if the flood-related content is consistently 

Tweeted from the same area in approximately the same time frame. Both spatial 

and temporal information of Tweets were simultaneously analysed to create 

spatiotemporal clustering based on specified thresholds. With the 

spatiotemporal threshold, Tweets can be grouped as spatiotemporal clusters. 

Spatiotemporal index (𝑥2) is the total number of Tweets within the cluster. It 

should be noted that the optimal value of spatiotemporal threshold is problem 

dependent. For the case study, a sensitivity analysis was applied to identify the 

optimal spatiotemporal threshold that maximise model performance against the 

training dataset (see section 4.5.4). 

3) Distance to nearest neighbour (𝑥3) refers to distance from referencing Tweet to 

the nearest Tweet location. 

4) Flood risk zone (𝑥4) refers to flood zones in the study area, which indicates the 

likelihood of flooding in the study area. This predictor variable was included as 

it is independent of other Tweets. 

5) Distance to the nearest river (𝑥5) refers to the distance from referencing Tweet 

to the nearest river. This predictor variable was introduced to account for 

geographical features of the study area into the model. 

 

In addition to the predictor variables outlined above, the inclusion of floodwater depth 

was also explored, as it would clearly be a useful variable for inclusion into flood 

inundation models. However, the process of automatically extracting floodwater depth 

from Tweeted images, typically by referencing parts of submerged objects with standard 

dimensions of ubiquitous objects, can be problematic. Although, machine learning 
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techniques for image identification (e.g. Convolutional Neural Network) could be 

adopted to facilitate the automation (see for example Chaudhary et al. (2020)), a 

considerable number of flooding images are required for model training to achieve 

reliable floodwater depth prediction, thus limiting its practical application.  

 

• K-fold Cross Validation  

A good model should perform equally-well for both training and testing data, which 

indicates the generalisation of the model. K-fold Cross Validation (K-CV) is a popular 

technique commonly applied to address the generalisation capability of BLR models 

when encountering unseen data. The K-CV is a data partitioning technique that allows all 

data in the sample to be used for both training and validation purposes. The value of K is 

often selected based on data size; a lower K means less variance and thus, high bias, and 

vice versa (Rodriguez et al., 2010; Shao et al., 2013). In practice, a value of K=5 or 10 is 

very common in the field of machine learning (Hastie et al., 2009). The K-fold cross 

validation can be performed as follows: 

Step 1: Data is randomly split into K folds/parts with roughly equal size. 

Step 2: For each k in 1,2,3,…,K, a model is trained using the other K-1 folds as training 

data, while the kth fold is held-out for validation. At each kth iteration, model 

accuracy is determined using the held-out (k) fold and retained for overall model 

performance assessment. This step is repeated K times. 

Step 3: After K iterations, model performances (accuracy) of all K models are averaged 

for overall model evaluation.  

 

3.1.5.2 Development of fuzzy logic model 

In addition to the BLR, a fuzzy logic model was also developed to assess the quality of 

CS social media data using the same dataset. Fuzzy logic systems (FLS) provide a 

systematic approach to deal with imprecise, vague, and ambiguous information, which 

are common problems in human communications (Hauser-Davis et al., 2012; Oladokun 

et al., 2017). The FLS is an extension of conventional Boolean logic that can handle grey 

areas, where there is no absolute answer between categories. The theory is based on 

degree of truth and relied on linguistic variables, and FLS seeks to incorporate experience 

(prior knowledge) in from of linguistic rules into the decision-making process.  
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In general, there are two types of fuzzy inference systems: Mamdani (Mamdani & 

Assilian, 1975) and Sugeno (Takagi & Sugeno, 1985). The main difference between 

Mamdani and Sugeno systems is the way outputs are determined. The outputs of the 

Mamdani system are fuzzy sets, which require computation of the centroid of a two-

dimensional area, while those of the Sugeno system are singleton output membership 

functions, which are either linear or constant (MathWorks, 2021). For complex problems, 

the Sugeno system is generally preferred as it is more computationally efficient than the 

Mamdani system (Rustum, 2009). The Mamdani system, on the other hand, has 

widespread acceptance because it is easy to understand and well-suited to human inputs 

(MathWorks, 2021; Oladokun et al., 2017). Therefore, in this methodology, the Mamdani 

fuzzy interference system was adopted to classify quality level of the Twitter data.  

 

A FLS consists of four components including 1) fuzzification, 2) rule base, 3) inference 

and 4) defuzzification. Figure 3.3 illustrates the four components of the FLS. 

1) Fuzzification

2) If-then Rules

3) Inference

4) Defuzzification

Fuzzy input 

sets

Fuzzy output 

sets

Crisp

Output

Crisp

Input

 

Figure 3.3: The four components of the FLS (Modified after Kayacan & Khanesar, 2016). 

 

1) Fuzzification is a process of transforming crisp input values into fuzzy input sets 

using membership functions. A similar set of the predictor variables applied in 

the BLR model (Retweet ratio, x1; Spatiotemporal index, x2; Distance to the 

nearest neighbour, x3; and Flood risk zone, x4), were converted into fuzzy 

variables through membership functions. The fuzzy set of each input variable 

was implemented separately based on the relationship between input and quality 

output in training dataset. The fuzzy sets of input variables were adjusted to 

maximise the overall training accuracy. After the process, a crisp input was 

converted into a fuzzy set, where the variable was described in terms of 

membership degree. 
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2) Rule base contains a set of rules that are usually formulated from the prior 

knowledge or empirical approaches (Kayacan & Khanesar, 2016). With fuzzy 

if-then rules, the relationship between predictor variables and an outcome 

variable can be connected and represented using linguistic variables. There are 

various methods to formulate rules in rule base, such as expert knowledge, neural 

networks, and empirical approaches. In this study, rules were formulated by 

observing the relationship between input and output data of the training dataset. 

Specifically, two steps were taken to extract initial if-then rules. Firstly, the 

training data were grouped based on their similarity to discover underlying 

patterns. Secondly, if-then rules that best describe the input-output relationship 

were formulated for each group. This can be referred to as knowledge extraction 

from actual data, where if-then rules were extracted based on input-output 

relationships of the training data. Following the development of a prototyping 

model, the rules and membership functions were manually adjusted to maximise 

the training accuracy. The rules were altered with different combinations of 

predictor variables using fuzzy logic operators (“AND” and “OR” operations) 

and the shape of membership functions (parameters) were fine-tuned for 

ensuring optimal adjustment.  

 

3) Inference is the process by which a set of fuzzy outputs is produced from a given 

fuzzy input and if-then rules specified in rule base. Each rule is separately 

evaluated based on fuzzy input to determine fuzzy output. Fuzzy outputs are then 

combined to determine final decision. 

 

4) Defuzzification is the process which turns a set of fuzzy outputs into a 

meaningful single output. In this study, fuzzy output is referred as a degree of 

membership value that belongs to high-quality and low-quality categories. Fuzzy 

outputs, generated from fuzzy rules, were aggregated into a single fuzzy set, and 

translated into a crisp output using the centroid defuzzification method. 

 

3.1.6 Flood depth and uncertainty estimation from CS social media images 

With the assessment models, quality of flood related Tweet can be categorised into either 

high-quality or low-quality. Only the high-quality Tweets are considered to integrate with 
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flood predictions in the following steps, while those classified as low-quality data are 

discarded. This can be seen as quality control process to screen out anomalies in CS 

observations, which can cause failure in DA procedures due to inconsistency between 

observations and model predictions (García-Pintado et al., 2015). 

 

To be able to assimilate CS observations into flood inundation models, floodwater depth 

and associated uncertainty need to be estimated. For this study, floodwater level will be 

estimated by referencing parts of submerged objects with dimensions of standard objects 

appear in the Twitter images. The idea is similar to that proposed by Chaudhary et al. 

(2019), but with manual classification of reference objects and floodwater estimation in 

this case. Twitter images are classified into reference classes based on the type of objects 

appear in the images. Thus, it is important to select reference classes that are ubiquitous 

in urban environments and have low variance in standard dimensions (see section 4.5.6 

for details of reference classes used for the case study). Figure 3.4 illustrates an example 

of flood depth estimation from a CS image. 

 

 

Figure 3.4: An example of how flood depth is estimated from a CS image.  

(Source of image: https://twitter.com/i/web/status/933872651629600768.) 

In terms of uncertainty, two approaches were considered to approximate that related to 

water depths estimated from Twitter images, namely:  

(1)  Assuming that uncertainty is in proportion to the estimated water depth 

(2)  Referring to uncertainty associated with each reference class 

 

Taking the image in Figure 3.4 for example, with approach (1) and an assumption that 

the standard deviation (SD) is equal to 10% of the estimated water depth, the uncertainty 

can be estimated as 4.4 centimetres. Whilst, with approach (2), the SD of the water depth 
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is related to the uncertainty associated with the reference class, which is 4.1 centimetres 

in this case (SD of pickup tire diameter class). In approach (1), the uncertainty solely 

relies on the estimated water depth, regardless of the uncertainty in the dimension of the 

reference object. Ideally, this approach could be accurately applied for reference objects 

that are consistent in size, such as footpath height and tyre diameter. In reality, however, 

the dimensions of reference objects within the same class can vary significantly due to 

different models/standards. Hence, the uncertainties of the reference objects should be 

taken into account, and thus approach (2) was applied to estimate uncertainty associated 

with water depth obtained from Twitter images in the developed methodology. 

 

3.2 Research design of hydrodynamic models 

This section describes criteria applied to select an appropriate hydrodynamic model that 

is suitable for assimilating CS information into the system. It also identifies potential 

sources of model uncertainty in which significantly induce uncertainty in the model 

predictions. 

 

3.2.1 Selection of a hydrodynamic model 

To be applicable for near real-time assimilation of CS data in urban environments, a 

hydrodynamic model should be selected based on the following criteria: 

 

1) Two-dimensional (2D) simulation. As the developed methodology is primarily 

focussed on urban applications, where man-made features such as buildings, 

levees and roads need to be taken into account when simulating flood flows. As a 

result, 1D simulation, which represents river channel and floodplain using a series 

of river cross-sections, would not be sufficient for such complex urban 

topography. In addition, as the locations of CS observations can be dispersed 

across floodplain areas, 2D simulation is preferred, so that predicted flood depths 

can be directly mapped with those from CS observations. 

2) Efficient model runtime. The model solver should be computationally efficient to 

reduce model runtime to be applicable for real-time data assimilation of CS 

observations. Typically, 2D open-channel flows are simulated using the full 

SWEs (Liu, 2014) which, while delivering relatively accurate results, carry 

substantial computational costs, resulting in high model runtimes for, especially 
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for large domains. Thus, to be able to simulate in 2D while maintaining reasonable 

model runtimes, the use of a simplified 2D model is preferable. With a simplified 

approach, some terms in fully dynamic wave equation are neglected, which 

reduces computational burden while still being able to provide acceptable 

predictions (Bates & De Roo, 2000). 

3) Ability to stop and restart the model during the simulation. The ability to pause, 

update inputs and parameters, and restart is essential to assimilate CS observations 

into any simulation model. In other words, flexibility in model execution is 

essential to support DA procedures. The model manual should be thoroughly 

checked to ensure that CS observations can be sequentially updated into the 

system during the simulation. 

 

Based on the above criteria, the simplified raster-based flood inundation model 

LISFLOOD-FP (Bates and De Roo (2000) namely, was identified as an appropriate 

hydrodynamic model. As outlined in Chapter 2, LISFLOOD-FP solvers have been 

regularly improved in both 1D and 2D to provide various options for calculating channel 

flow (e.g., kinematic and diffusive) and floodplain flow (e.g. flow limited, adaptive, 

acceleration and Roe). In addition to the ability to simulate simplified 2D flows, 

LISFLOOD-FP is very flexible in terms of inputs modification and model execution. The 

model can be executed through a single command line followed by the name of model 

parameter file (.par file), which is particularly useful for running the model in a batch file 

as well as updating model inputs by altering details in the model parameter file. 

 

3.2.2 Primary sources of model uncertainty 

There are numbers of causes of uncertainty that influence flood simulation results. 

Typically, the most important sources of model uncertainty in hydrologic and 

hydrodynamic models are (Beven, 2012; Environment Agency, 2017): 

• Uncertainties from model parameters; 

• Uncertainties from initial and boundary conditions, and model inputs; 

• Uncertainties from the model structure; and, 

• Uncertainties from both known omissions and unknown omissions 
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The uncertainty caused by model parameters and boundary conditions are the primary 

sources of uncertainty in flood forecasting. The Manning coefficient in particular, is one 

to the main sources of uncertainty for two main reasons; it cannot be directly measured, 

and it cannot realistically account for the inherent non-homogeneity of land sources. 

Apart from the Manning coefficient, the estimation of river discharge or inflow 

hydrograph is often associated with high uncertainty, especially during a flood event (Di 

Baldassarre & Montanari, 2009). In operational practice, river discharge is typically 

converted from river stage observations through a stage-discharge relationship, also 

called a rating curve. Hence, an additional error is introduced by the imperfect estimation 

of the rating curve (Di Baldassarre & Montanari, 2009). Moreover, during flooding, the 

uncertainty of river discharge measurements will be induced significantly by interpolating 

and extrapolating the rating curve beyond the calibration range, which is typically 

developed under ordinary flow conditions rather than the type of high flow conditions 

present during flood events (Di Baldassarre & Montanari, 2009).  

 

As a result, given the available data and LISFLOOD-FP model configurations, three 

variables of interest were considered as the major sources of uncertainty in this study, 

namely: channel Manning coefficient; floodplain Manning coefficient; and, magnitude of 

the inflow hydrograph. The uncertainty caused by the remaining sources of error, such as 

model structure and overlooked factors, was considered to be insignificant compared to 

the interested variables. 

 

3.3 Model calibration and conditioning 

Model parameter estimation can be determined based on two different concepts, namely 

model calibration and model conditioning. Model calibration assumes an optimum 

parameter set, where parameter values are adjusted either manually or by an optimisation 

algorithm until the mismatch between model results and observations (best fit parameter 

set) has been minimised (Beven, 2012). On the other hand, the method of model 

conditioning rejects the concept of an optimum parameter set in favour of equifinality of 

models and parameter sets (Beven, 2012). With the equifinality concept, multiple 

parameter sets that demonstrate model predictions within acceptable fits to observations 

are retained as behavioural parameter sets (Beven, 2012). Herein, both model calibration 

and conditioning concepts were adopted for different purposes.  
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As the focus of the study is the use of CS social media data to improve WL predictions 

in urbanised areas, floodplain in-situ WL measurements are often not available. 

Moreover, it is extremely difficult to monitor changes in flood WL in an urbanised 

environment using satellite observations, due both to their limited temporal and spatial 

coverage as well as the inherent complexity of urban areas. These limitations post a 

problem in terms of model performance assessment, as there is typically no benchmark 

dataset which can accurately represent flood dynamics in urban areas. As a result, model 

calibration was undertaken to provide a benchmark simulation for performance 

assessment purposes. The model prediction from the optimal parameter set, that best fitted 

the CS observations, will be adopted as a comparator benchmark data set. This approach 

allows the performance of different DA approaches to be assessed by benchmarking their 

results against those of the comparator benchmark data set at any location (cell) within 

the study domain. 

 

Model conditioning was adopted to estimate ranges of parameters (i.e. channel and 

floodplain Manning’s coefficients, inflow magnitude) that provided acceptable model 

predictions compared to CS observations. Although, the ranges of model parameters can 

theoretically be identified using empirical studies, such information only serve as 

guidelines. To this end, model conditioning was adopted to fine-tune the ranges of model 

parameters that suit the specific case study. In this regard, the model conditioning can be 

seen as a part of DA, as a form of quality control of model parameters, to ensure that 

parameter outliers are detected and screened out, hence improving the quality of the 

ensemble generation (See Section 3.4.2 for generation of ensemble inputs). 

 

To quantify the performance of model parameters, a quantitative measure of performance 

or goodness of fit is required to evaluate WL predictions acquired by LISFLOOD-FP 

against CS observations. Beven (2012) suggested that the choice of a likelihood measure 

should be determined based on the nature of the prediction problem and type of 

observational data. Given the interest is the prediction of WL in urban areas and the CS 

observations are random data points, a widely used performance measure based on error 

variance, the Nash-Sutcliffe Efficiency (Nash & Sutcliffe, 1970) was applied to evaluate 

model goodness of fit for both model calibration and conditioning. 
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3.3.1 Model calibration using PSO algorithm 

For model calibration, the PSO algorithm was applied to search for the optimal model 

parameter set that maximised the NSE value. The PSO algorithm was selected because 

of its advantages over other optimisation algorithms (Gopalakrishnan, 2013; Mohamed 

et al., 2010), including derivative-free requirements, ability to handle complex objective 

functions and ease of implementation.  

 

With the PSO, the best combination of the three model parameters (channel and 

floodplain Manning coefficients and the magnitude of the inflow hydrograph) that 

maximise the NSE value was searched within the search space boundary for each 

parameter. The appropriate search space of the three variables is problem-specific; 

specifying too large a search space will lead to an increase in model realisations as the 

algorithm needs to search through a greater area, whilst the global solution may be missed 

if too small search space is specified. 

 

In addition to the search space, appropriate swarm size (number of particles in the swarm) 

and maximum number of iterations are required. A larger swarm means larger parts of 

the search space can be explored per iteration (Engelbrecht, 2007). And whilst too few 

iterations may prematurely terminate the search before suitable convergence is reached, 

too many iterations may result in unnecessary computational burden (Engelbrecht, 2007). 

Therefore, choosing swarm size or number of maximum iterations is problem-dependent, 

which requires a trade-off between the swarm size or number of iteration and available 

computational resources.  

 

The following steps describe the PSO algorithm after Mohamed et al. (2010), as 

implemented by this study. 

 

• Step 1 swarm initialisation: All particles are randomly assigned initial positions 

(parameter sets) based on the pre-defined parameter searching space.  

• Step 2 fitness evaluation: The fitness of each individual particle is evaluated 

against CS observations using the NSE performance measure. At this step, the 

personal best position (𝑃𝑏𝑒𝑠𝑡,𝑖
𝑘 ) is updated by comparing the current NSE value 

against that from the previous personal best so far (𝑃𝑏𝑒𝑠𝑡,𝑖
𝑘−1 ). If the current position 
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is better than the previous personal best position (𝑃𝑏𝑒𝑠𝑡,𝑖
𝑘−1 ) , the 𝑃𝑏𝑒𝑠𝑡,𝑖

𝑘  will be 

updated by the current fitness value and position correspondingly. After the 

personal best position is updated for all particles, the global best position (𝐺𝑏𝑒𝑠𝑡,𝑖
𝑘 ) 

is then updated accordingly. 

• Step 3 velocity and position updating: The next position of each particle 

(𝑃𝑖
𝑘+1) is determined using the equations 2-15 and 2-16 as detailed in Chapter 2, 

Section 2.3.1, which involve random numbers (i.e. 𝑅1 and 𝑅2) and user defined 

parameters (i.e. 𝐶1, 𝐶2 and 𝜔). For this study, 𝑅1 and 𝑅2 ∈ [0,1] were randomly 

sampled from a uniform distribution. Whilst the value of 1.65 was set as learning 

parameters for both 𝐶1 and 𝐶2. Lastly, the constant value of 0.7 was used for the 

inertia weight. These uses-defined parameters were utilised after the default 

values used in the algorithm by Mohamed et al. (2010). 

• Step 4 Iteration: Steps 2-4 are repeated until a termination criterion is satisfied 

(e.g. reaching maximum iteration or convergence criterion). 

 

3.3.2 Model conditioning using the GLUE method 

As previously discussed, the idea of the equifinality allows multiple model parameter sets 

that give model results within an acceptable range to be recognised. Especially for flood 

modelling, the number of degrees of freedom in flood models are relatively large, thus it 

is possible that many different combinations of an effective parameter sets can similarly 

satisfy the objective function (Aronica et al., 1998; Bates et al., 2014; Montanari, 2005). 

Therefore, in this case, the idea of optimum parameter set loses creditability, which leads 

to uncertainty in the calibration problem (Aronica et al., 1998) as well as methods of 

model conditioning (Beven, 2012). 

 

Herein, the GLUE procedure was implemented to estimate feasible parameter ranges that 

give reliable flood predictions (behavioural models) compared to the CS observations. 

The implementation of GLUE, however, involves a number of subjective decisions to be 

made including (Beven, 2012; Hunter et al., 2005a): 

• Parameter ranges and distributions 

• Sampling strategy 

• Goodness-of-fit measure and conditions of rejecting non-behavioural models 
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Whilst, implementing GLUE involves a number of subjective decisions, it is important 

that decisions made in the GLUE procedure must be transparent and unambiguous 

(Hunter et al., 2005a; Montanari, 2005). The details of decision making and how the 

GLUE procedure was implemented in this study were described in the following sub-

section. 

 

The first step of GLUE is to select the most effect parameters and decide the range of 

each parameter space. The aim is to select sensible parameter spaces that are wide enough 

to include good fits of the model (Beven, 2012; Beven & Freer, 2001). In most cases, the 

selection of feasible range of parameter space relies upon expert knowledge of the system 

(Aronica et al., 1998; Hunter et al., 2005a). Similar to the PSO search space, the three 

variables and their uncertainty ranges were also utilised in the GLUE implementation. 

The chosen ranges were justified based on the underlying land use and topography of the 

study domain along with previous studies, as discussed in Section 3.2.2. For parameter 

distributions, a uniform prior was assigned to reflect the lack of prior knowledge 

regarding the distribution function of uncertainty for each parameter. 

 

Secondly, the choice of sampling strategy can be important if large number of parameters 

and broad uncertainty ranges are included in the analysis (Beven, 2012). A selected 

sampling size must be adequate to define the response surface of the objective function. 

For models with low runtime, Monte Carlo methods can be applied to randomly run 

thousands of simulations to define the response surface. However, such methods have not 

been widely used in hydrologic and hydraulic modelling due to high computational 

expense and model runtime (Beven, 2012).  

 

Thirdly, given the point data type of CS time-series data, the NSE was selected as 

performance measure to evaluate model efficiency by comparing the prediction results 

against the CS observations. Based on the interpretation of the NSE index, 0.6 was set as 

a threshold value to determine behavioural and non-behavioural models. Parameter sets 

that provide the NSE value greater than or equal to 0.6 were retained for further analysis, 

while the others, with the NSE values lower than 0.6, are rejected as non-behavioural 

model. The selection of the threshold value might seem arbitrary; however, it is expected 

that the NSE threshold value of 0.6 can be effectively recognised good model parameter 
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sets that provide simulation results within the acceptable range when comparing with the 

observed WL from CS data. 

3.4 Research design of DA approach 

3.4.1 Selection of a DA method 

The DA scheme used throughout this work is based on a standard version of Ensemble 

Kalman Filter (EnKF) by Evensen (1994). Along with variational DA schemes, the EnKF 

has become a method of choice especially for large-scale environmental modelling 

(García-Pintado et al., 2013). To date, the EnKF has been developed and employed in 

many operational applications (Houtekamer & Mitchell, 2005), such as weather, storm 

surge and flood forecast.  

 

The use of EnKF in earth science disciplines has been widely recognised for three main 

reasons. First, it can effectively deal with non-linear systems (Lahoz & Schneider, 2014). 

Secondly, for complex models with many parameters involved, the model error 

covariance matrix (P) can be implicitly determined from the spread of the ensemble 

(Reichle, 2008). In addition, compared to variational schemes, the determination of 

adjoint model, which can be problematic for a complex system, are not required to 

optimise an objective function. Thirdly, the EnKF scheme can be effectively applied for 

large-scale applications (Houtekamer & Mitchell, 2005) as it does not require the explicit 

calculation and necessary storage of error covariance matrices (P), and hence 

computational and storage costs can be significantly reduced (Lahoz & Schneider, 2014). 

Despite the advantages, it is important to note that Gaussian error probability distribution 

is assumed for both model systems and observational operators in the EnKF (García-

Pintado et al., 2013; Reichle, 2008), which may not be true for many applications. 

 

In addition to the EnKF, the Particle Filter (PF) scheme was also considered as it does 

not require the Gaussian assumption. However, by not assuming Gaussian assumption, 

the PF scheme requires a large number of particles to adequately represent the probability 

distribution of error in both model and the observation (García-Pintado et al., 2013; 

Snyder et al., 2008) or the PF scheme will suffer from filter degeneracy, where after a 

few updated steps, a particle gets all weight, while other particles are assigned with very 

low weights (van Leeuwen, 2009). This requirement of large number of particles limits 
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the use of the PF approach, especially for large dimensional problems (e.g. 2D 

hydrodynamic models) due to the high cost of simulation.  

 

For the reasons outlined above, the EnKF was deemed an appropriate method to improve 

2D flood predictions (LISFLOOD-FP) in urban areas using CS data, which can be 

considered as a highly non-linear system that involves multiple sources of uncertainties 

in model inputs and parameters. 

 

3.4.2 Generation of ensemble inputs 

3.4.2.1 Ensemble size 

The first step of implementing the EnKF is to choose an ensemble size. This step is 

crucial, as the ensemble size can influence accuracy of the analysis, as uncertainty is only 

quantified within the range spanned by the ensemble (García-Pintado et al., 2013). Thus, 

the estimation of error variance of the analysis becomes more accurate as the ensemble 

size increases (Lahoz & Schneider, 2014). However, as the ensemble size grows, the more 

computational resource required. Therefore, there is a trade-off between ensemble size 

and available computational resource.  

 

Nevertheless, the feasibility of the EnKF with much smaller ensemble sizes than the 

dimension of the dynamical system (e.g. model grid cells in LISFLOOD-FP 2D) has been 

theoretically and experimentally demonstrated in various applications (Roth et al., 2017), 

such as land surface data assimilation (Yin et al., 2015) and operational weather 

prediction (Houtekamer & Mitchell, 2005). Yin et al. (2015) showed that the accuracy of 

the uncertainty estimation is drastically improved when the ensemble size is increased 

from 1 to 10, while the benefits of assimilation diminish with further increases in 

ensemble size. These findings are in line with the work by Crow and Wood (2003), who 

found little improvement in DA analysis when increasing the ensemble sizes between 50 

and 1,000. Crow and Wood (2003) also suggested that, for ensemble sizes of more than 

50, errors arising from alternative error sources (e.g., measurement biases and non-

Gaussian error distributions) play a larger role than the errors arising from the finite 

ensemble sizes. 
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3.4.2.2 Ensemble parameters 

Once the appropriate ensemble size is determined, the next step is to generate ensemble 

model inputs and parameters from previously identified sources of model uncertainty 

(channel and floodplain Manning’s N values and inflow magnitude). Although, there are 

many other sources of error that can affect model results (e.g. representation of urban 

environment), their impacts are assumed to be negligible compared to those considered 

in this study. However, not all the samples will be employed in the EnKF analysis, as 

they need to be verified against the performance measure (the NSE threshold) in the 

GLUE results, and only the samplings that had been identified as behavioural parameter 

sets will be selected for further analysis. In this regard, the GLUE procedure can be seen 

as Quality Control (QC) of the model parameters. This step is to ensure the outliers in 

model uncertainty generation are detected and screened out, which improves the quality 

of the ensemble generation.  

 

For the generation of the inflow hydrograph, apart from the stationary bias (the magnitude 

of inflow hydrograph), a white noise term was further imposed on the biased inflow 

hydrograph as a stochastic component. For river discharge, the errors increase when the 

river discharge increases (Di Baldassarre & Montanari, 2009; Van Wesemael et al., 

2019). Hence, in the developed methodology, the stochastic error was generated as the 

proportion of the measured discharge, where high flow regions are associated with high 

errors and vice versa. The perturbation of the measured inflow hydrograph was obtained 

as follows: 

𝑄𝑝𝑒𝑟𝑡𝑢𝑏𝑒𝑑,𝑡
(𝑒𝑛)

= (∝(𝑒𝑛)+ 𝜖𝑡) ∙ 𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑡
(𝑒𝑛)

 3.4 

Where, the superscript (en) denotes an ensemble member en of the ensemble size of N. 

𝑄𝑝𝑒𝑟𝑡𝑢𝑏𝑒𝑑,𝑡
(𝑛)

 and 𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑡
(𝑛)

 are the perturbed and measured inflow discharge at time t of 

the ensemble member en, respectively. ∝(𝑛) is the random stationary bias (the magnitude 

of inflow hydrograph) of the ensemble member n (∝ is the time independent variable); 

and 𝜖𝑡~𝑁(0, 𝜎2) is a multiplicative Gaussian white noise term with a standard deviation 

of 𝜎, representing a random error in discharge measurements. In this study, the standard 

deviation (𝜎) of multiplicative random error in the inflow hydrograph was assumed at 

5% of measured discharge (𝜎 = 0.05 𝑚3/s).  The 𝜎 value was selected based on the 

findings of an empirical study by Di Baldassarre and Montanari (2009) which indicated 
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that the overall error (systematic and random errors) in river discharge can range from 

6.2% to 42.8%, with an average value of 25.6%. These figures were taken into 

consideration when determining the random error. Herein, the random error in river 

discharge is assumed minor compared to the systematic error (bias), as it is anticipated 

that the major source of uncertainty in inflow discharge would come from the rating curve 

applied to estimate discharge from water stage measurement. 

 

3.4.3 Observation quality control and perturbation 

In general, the analysis of DA techniques, such as EnKF and particle filters are sensitive 

to an outlier in an observation (García-Pintado et al., 2015). The unlikely observations 

should be filtered out to prevent unexpected inconsistency of observations compared to 

model predictions. In particular, given the focus of this research is CS social media data, 

which has no built-in quality assurance (QA) in place, a quality control (QC) of the CS 

observations is required. Herein, two approaches; including logistic regression and fuzzy 

logic models, were developed and tested to assess quality of the Twitter images collected 

during the flood events. Only the Tweets classified as high-quality are further considered 

in the EnKF scheme, whereas those classified as low-quality are disregarded in this step. 

 

After the QC process, the WL is estimated from the Twitter image by comparing flood 

level with the size of a standard reference object appeared in the image using the 

methodology explained in Section 3.1.6. The estimated WL is further perturbed to 

generate a 100 ensemble of WL observations. As previously discussed in Section 3.1.6, 

the uncertainty of the WL observation was estimated based on uncertainty of the 

referencing category. The perturbation of the WL observation can be generated as 

follows: 

𝒚𝑡
(𝑖)

= 𝒚𝑡 + 𝒗𝑡
(𝑖)

 3.5 

Where, 𝒚𝑡
(𝑖)

 is a perturbed WL observation, the superscript (i) denote the ensemble 

member for i = 1, 2, …, N., and 𝒚𝑡 is the WL observation of the Tweet image at time t. 

Lastly, the term  𝒗𝑡
(𝑖)

 is sampling from the white noise Gaussian distribution representing 

errors associated with the observations, 𝒗𝑡
(𝑖)

~𝑁(0, 𝑹𝑡), where 𝑹𝑡 is the error covariance 

matrix of the observation, which can be empirically estimated based on the variance (𝜎𝑖
2) 
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associated with the dimensions of the referencing category used for WL estimation (See 

section 3.1.6). 

 

3.4.4 Dealing with asynchronous data 

The CS social media data is contributed by hundreds to thousands of social media users 

with varying purposes and independent of each other. This type of data can be defined as 

asynchronous observations (Mazzoleni et al., 2017) because the arriving frequency of the 

CS social media data is unpredictable and inconsistent in time. Hence, it is highly possible 

that flood images are publicly posted or tweeted at a time that does not correspond model 

time steps. Although, the EnKF can handle asynchronous observations by assimilating an 

observation in real-time, the approach is not well suited to operational applications. This 

is because such an approach requires a disruption of the ensemble integration to stop, 

analyse, update and restart the system, which can become too costly if performed 

frequently (Sakov et al., 2010). It is therefore preferable to have observations that 

corresponding to the model time step. 

 

For this reason, a modification of the CS social media data is required to handle 

asynchronous observations. To date, various methods have been proposed to handle 

asynchronous observations, such as Four-Dimensional Ensemble Kalman Filter 

(4DEnKF) by Hunt et al. (2004) and Asynchronous Ensemble Kalman Filter (AEnKF) 

by Sakov et al. (2010). In this study, a straightforward and pragmatic approach proposed 

by Mazzoleni et al. (2017) called “data assimilation of crowdsourced observations 

(DACO)” was modified and employed. Specifically, both original and modified DACO 

were developed based on the same assumption that the change in model states and in the 

error covariance matrices within the two consecutive model time steps can be assumed 

linear. While the original DACO method undertook DA analysis at the time of CS 

observations and assumed the results could be applied at the next computational model 

timestep, the approach used in this study (modified DACO) converted CS observations 

into “virtual observations” by assuming the difference in WLs (between observation and 

model forecast) at the observation time is equal to that at the next model timestep, 

allowing DA analysis to be undertaken as normal at the next model timestep. 
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Figure 3.5 illustrates the graphical representation of the modified DACO method. The 

first step is similar to the DACO method by Mazzoleni et al. (2017), in which the model 

state (WL in this case) at the corresponding time to the CS observation is estimated by 

assuming a linear relationship of the model states between the two consecutive model 

time steps (tj and tj+1) (See step (1) in Figure 3.5). The model states at the observation 

time can be linearly interpolated as follows: 

𝒙𝑡∗ = 𝒙𝑡𝑗
+ (𝒙𝑡𝑗+1

− 𝒙𝑡𝑗
) ∙

𝑡∗ − 𝑡𝑗
𝑡𝑗+1 − 𝑡𝑗

 
3.6 

Where, 𝑡∗ is the observation arrival time; 𝑡𝑗 and 𝑡𝑗+1 are the two consecutive model time 

steps between the observation arrival time; and 𝒙 is the predicted model states at the 

subscription time. 

 

Figure 3.5: Graphical representation of the modified DACO method  

(adapted after Mazzoleni et al. (2017)). 

After applying equation (3.6), the innovations at time 𝑡∗ can be determined at the arrival 

time of the observation (See step (2) in Figure 3.5). Then, by assuming constant 

innovations between the two consecutive model time steps (tj and tj+1), the innovations 

are applied at time tj+1  to calculate the Kalman gain and update for the model states (𝒙𝑎) 

at the model timestep (See step (3) in Figure 3.5). It can be seen that with the modified 

DACO method, observed WL at time 𝑡∗ (𝒚𝑡∗) is interpolated to obtain observed WL at 

time 𝑡𝑗+1 (𝒚𝑡𝑗+1
), which is corresponding to the model time step. However, due to the 

linear assumption of WL predictions between consecutive model time steps, this 

methodology is only valid when applied over a short model timestep, where a non-linear 
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function can be simplified with multiple linear functions with small discretisation. Hence, 

by considering the historical flood characteristics of the study area, in which surface 

floods gradually occurred and lasted for 5-7 days, a 1-hour model timestep was deemed 

appropriate and it was applied in the LISFLOOD-FP simulations throughout the study. 

 

3.4.5 State update strategies 

Generally, there are two types of state update strategies, namely global and local 

formulations. For the global formulation, the model state variables (i.e., WLs and flooded 

areas) are simultaneously updated and corrected for all flooded cells (or river cross 

sections for 1D hydraulic models) within the study domain. On the other hand, for the 

local formulation, the assimilation is independently applied to either confine the effect of 

observations within some cut-off area or directly improve the background error 

covariance matrices (Farchi & Bocquet, 2019; García-Pintado et al., 2015). In this study, 

the efficiencies of both global and local formulations were tested and compared using the 

CS social media observations in an urban environment. 

 

3.4.5.1 Global state update strategy 

In a global filter, it is assumed that all the wet cells (both in the river and floodplains) are 

highly dependent on each other, hence it is reasonable to update WLs in all wet cells 

simultaneously based on the Kalman gain derived from an observation.    

 

In terms of implementation, a point-based CS observation is firstly perturbed to yield 100 

ensemble WL observations. Next, they are integrated with the ensemble WLs predicted by 

the LISFLOOD-FP at the corresponding location/cell using the EnKF. Herein, the EnKF 

analysis was carried out in a scalar mode, where only the WL at the observed location/cell 

being considered. The resulting increment determined at the observed cell is applied to 

correct the forecast WL for all the wet cells across the study domain, where all the wet cells 

are assumed connected and treated as a single entity in the global update strategy. It is 

important to note that, in this study, the Kalman gain is not used to spread information 

spatially.  

 

As previously discussed in the section 3.4.4, asynchronous observations (observations that 

are made at a time that does not coincide with model time steps) can hinder the operational 
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applications. Thus prior to the analysis step, the WL derived from a CS observation is 

altered according to the modified DACO detailed in the section 3.4.4 to obtain a new 

(virtual) WL observation corresponding to the model time step. With the modification to 

the CS observations, the EnKF analysis is undertaken at only the end of each model time 

step, which greatly reduces the number of disruptions caused by restarting the LISFLOOD-

FP. 

 

The implementation is straightforward for a single observation reported during an 

assimilation window, in which an asynchronous observation can be transformed into a 

virtual observation at the next model time step using the modified DACO method prior to 

the EnKF analysis. However, in case of multiple arrivals of CS data within the same 

assimilation window, an extra step is required to integrate all the independent observations 

into a combined observation before updating the model state (WL) at the end of assimilation 

window. Figure 3.6 illustrates a graphical representation explaining steps applied to 

combine multiple observations into a single observation in the global state updating 

strategy. In this study, the error of water depth obtained from a CS observation is assumed 

independent and to follow a Gaussian distribution. Hence, the mean and associated error of 

observed water depths estimated from multiple CS observations can be combined using the 

product of multiple Gaussian functions. The combined mean analysis WL of m 

observations can be determined using weighted averages as follows: 

�̅�𝑖=1…𝑚 = [
𝑥𝑖=1

𝜎𝑖=1
2 +

𝑥𝑖=2

𝜎𝑖=2
2 + ⋯+

𝑥𝑖=𝑚

𝜎𝑖=𝑚
2 ] ∙ 𝜎𝑖=1…𝑚

2 = [∑
𝑥𝑖

𝜎𝑖
2

𝑚

𝑖=1

] ∙ 𝜎𝑖=1…𝑚
2  3.7 

Since the probability density function (PDF) of the CS WL is assumed Gaussian and 

independent, the combined error variance of m observations (𝜎𝑖=1…𝑚
2 ) can be estimated 

using the combined variance of multiple Gaussian PDFs as follows (Bromiley, 2003): 

1

𝜎𝑖=1…𝑚
2 =

1

𝜎𝑖=1
2 +

1

𝜎𝑖=2
2 + ⋯+

1

𝜎𝑖=𝑚
2 = ∑

1

𝜎𝑖
2

𝑚

𝑖=1

 3.8 

From equation 3.8Error! Reference source not found., it can be seen that the estimation 

of the combined analysis WL takes into account the error variance resulting from each 

observation, where more weight is given to the analysis associated with less error 

covariance. By applying equations 3.7Error! Reference source not found. and 
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3.8Error! Reference source not found., multiple CS observations that are reported 

within the same assimilation window can be combined based on their analysis error 

covariances. 

 

 

Step 0: The figures in the left column 

illustrate processes to deal with two 

asynchronous CS observations reported 

within the same model time step. 

 

Step 1: The modified DACO method is 

applied to transform CS observations into 

virtual observations that are corresponding to 

the model time step. 

 

Step 2: Multiple (virtual) observations are 

integrated to obtain a combined observation 

at the model time step. Equations 3.7 and 3.8 

are applied to determine the combined mean 

WL (�̅�) and associated error variance (𝜎2), 

respectively. 

 

Step 3: The combined mean WL (�̅�) is 

perturbed to generate ensemble observations 

by following the steps detailed in sections 

3.1.6 and 4.5.6. Then, the EnKF is applied 

(process in scalar mode at the observed 

cell/location) to determine the analysis WL 

for each ensemble member. The resulting 

increment analysed at the observed cell is 

applied to update WL for all the wet cells in 

the entire domain. 

Figure 3.6: Graphical representation of steps to integrate multiple asynchronous observations.  

Determine the update analysis 

at the model time step 2 
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It is worth noting that the approach applied to combine multiple observations using 

equations 3.7 and 3.8 is not a standard technique. The main reason for the development 

of this particular approach is to reduce the transmission costs (the cost associated with the 

processes of stopping, exporting and restarting the LISFLOOP-FP model) which can be 

dominate if frequent observations are assimilated. Nevertheless, by combining 

observations through equations 3.7 and 3.8 prior to the perturbation and assimilation 

processes, the benefit of having multiple observations within the same assimilation 

window might be lost as the observations were combined into a virtual observation at the 

end of each model time step. Alternatively, if the error observations are not correlated, it 

is possible to combine all the observations in one large batch and process them 

simultaneously (See appendix A in Dance (2004) for a proof of the equivalence between 

sequential and simultaneous processing). As a result, apart from the approach applied 

herein (combining multiple observations before processing), the sequential batch 

processing can also be adopted to effectively handle multiple observations. 

 

3.4.5.2 Local state update strategy 

Localisation is based on the assumption that correlations between variables decrease at 

a rapid rate with physical distance (Farchi & Bocquet, 2019). In general, localisation 

methods can be categorised into two main categories, namely covariance localisation and 

domain localisation (Cheng et al., 2021; García-Pintado et al., 2015). Covariance 

localisation refers to a process of ‘cutting off’ long-range spurious correlations in the 

error covariance matrices, hence the estimation of the forecast error covariance is more 

accurate (Petrie & Dance, 2010). With domain localisation, the assimilation is 

independently applied to a series of disjoint local domains in physical space, where only 

observations within some pre-defined cut-off areas are considered (García-Pintado et al., 

2015; Kirchgessner et al., 2014). The developed methodology employed the localisation 

approach to separately apply the EnKF for each pre-defined sub-domain. This approach 

was selected because of ease of implementation and computational efficiency, in which 

updates on different sub-domains are undertaken separately and can therefore support 

parallelisation.  

 

Different techniques can be applied to partition the study domain into multiple local 

domains. Euclidean distance for example, can be applied to limit the influence of point-
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based observations into some cut-off radius, however such approach does not take 

topography into account, and it is thus not suitable for the type of urban flooding dealt 

with herein. To this end, a topography-based localisation approach is proposed in this 

study to take local depressions into account when determining area of influence for CS 

observations. 

 

The implementation of the topography-based localisation requires a pre-processing step 

to partition the study domain into sub-domains called depression zones (DZs). The main 

idea of DZs is similar to the impact zones (IZs) used in the Rapid Flood Spreading Model 

(RFSM), where the DZs are delineated around a depression area that the water would 

drain to the same topographic low point (Jamieson et al., 2012). Within each DZ, it can 

be assumed that the water surface elevations in all flooded cells are highly correlated. 

Hence, the model state (WL) of all flooded cells in the active DZ can be simultaneously 

updated according to the analysis gains from CS observations that are reported within the 

zone. The use of DZs to divide study domain into zones was selected as it allows the 

topography to be taken into accounted in the analysis to limit the influence of the 

observations within the pre-defined depression zones (DZs). 

 

Herein, a semi-automatic raster-based algorithm proposed by Wu et al. (2019) was 

applied to identify DZs in the DEM. The algorithm can be summarised into three steps: 

 

1. Smoothing the DEM. Random errors in the DEM are suppressed using a smoothing 

filter. In this study, the 3x3 median filter was applied to filter out data noise from the 

original DEM 

2. Identifying depression cells. Depression and non-depression cells are subsequently 

identified using the priority-flood algorithm (Wang & Liu, 2006). In this step, the 

smoothed DEM is analysed by the priority-flood algorithm to identify and fill the 

sinks in the DEM, which results in a depression-filled DEM (Wu et al., 2019). An 

elevation difference grid is then generated by subtracting the original DEM from the 

depression-filled DEM, in which the cell value represents a depression depth. The 

cells in the elevation difference grid with the value of zero are identified as non-

depression cells, whilst the cells with positive values are identified as depression 

cells. 
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3. Growing regions. The connected depression cells are grouped together to represent 

low regions (called seeds) of each DZ. Subsequently, the region-group algorithm was 

applied to expand low region based on the initial seeds and the topography until the 

boundary of each DZ is found along topographic crests. In this step, information 

about minimum size and depth of each DZ is required to set criteria in order to 

remove small and shallow depressions (Wu et al., 2019).  

 

Since the minimum size and depth are user-defined parameters, appropriate values 

(thresholds) are depending on the topography and the DEM resolution (Jamieson et al., 

2012). Choosing too small size and shallow depth thresholds will lead to many small 

DZs, which could hamper the performance of domain localisation technique. While too 

large threshold values will result in a large region of each DZ, which means the influence 

of CS observations could be overestimated in the localisation context.  

 

After the pre-processing step, the influence of CS observations is confined to the area 

within the DZ in which the observations are located. In the analysis stage, the model state 

is only updated for wet cells within the DZ, while the model state of those cells in other 

DZs that do not contain observations remain unchanged. The state updating strategy 

within an active DZ is similar to the global localisation approach, where all the cells in 

the DZ are updated according to the increments (the difference between the analysis and 

the forecast) resulting from the EnKF analysis in each time step. Also, in case of multiple 

arrivals of CS data in the same DZ and assimilation window, the equations Error! 

Reference source not found. and Error! Reference source not found. were applied to 

integrate all the analysis from each observation before updating the model state. 

 

3.4.6 Boundary input update strategies 

The most common and straightforward use of water level observations to improve flood 

inundation forecasting skills is the type of state updating discussed above. However, a 

number of studies (i.e. Andreadis et al. (2007); García-Pintado et al. (2013); Matgen et 

al. (2010)) have pointed out that the improvement due to state updating alone has a short 

time span (Grimaldi et al., 2016). This is because the overall impact of state updating on 

DA can be limited by the persistence of the boundary conditions, which effectively 

governs the flow regime (Andreadis et al., 2007). To tackle the short-lived improvement 
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problem, a combination of state and input updating has been examined and suggested by 

several authors (e.g. Andreadis et al. (2007); Barthélémy et al. (2017); García-Pintado et 

al. (2013); Matgen et al. (2010)).  

 

An appropriate approach to correct inflow or outflow boundary condition will depend on 

the available data and research objectives. An autoregressive model is a standard 

approach applied to predict and correct inflow errors at the next time step based on the 

errors in the previous time steps. However, model coefficients of the autoregressive 

model would need to be estimated with historical inflow records for each in-situ station, 

which may not be available in data-sparse catchments (Matgen et al., 2010; Neal et al., 

2007). An alternative approach would be to correct the inflow as a part of state updating, 

in which the CS observations are also utilised to correct the inflow information at 

boundaries through a rating curve established at the inflow observed locations 

(Barthélémy et al., 2017; Matgen et al., 2010).  

In the developed methodology, the performance of the latter method was examined using 

a state augmentation approach.  The employment of the state augmentation is deemed 

justified for two main reasons. First, it allows the model state vector to be augmented with 

additional model parameters of interest (e.g. Manning coefficients and inflow magnitude) 

and simultaneously analyse as part of the same process in the EnKF scheme (Cooper, 

2019). Secondly, correlations between the errors in the model state and the errors in model 

parameters of interest are taken into accounted within the DA scheme (García-Pintado et 

al., 2015). The following sub-sections described how upstream and downstream boundary 

conditions were corrected (as a part of state updating), respectively. 

 

3.4.6.1 Updating upstream boundary condition (inflow) 

Similar to most modelled river systems, the upstream forcings in the case study used 

herein are described by discharge time-series, in this case derived from hourly observed 

water levels through the rating curve. In the EnKF scheme, it is possible to update inflow 

as part of the DA process at each analysis step (Cooper, 2019). The approach carried out 

herein is adapted based on the standard “state-augmentation” method. The main 

difference between the approach applied in this study and the standard state-augmentation 
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is that it does not use the full augmented cross-covariance matrix to calculate the 

increments to the discharge bias directly. 

 

Since the ensemble inflow hydrographs were generated by perturbing an observed 

hydrograph with the stationary biases and white noise term (see equation 3.4), instead of 

updating discharge data directly, the inflow magnitude (bias) applied to corrupted 

discharge time-series are corrected. Hence, in this case, the inflow magnitude parameters 

(∝) are analysed and updated simultaneously as part of the EnKF process in each 

updating time step. The process of updating inflow magnitude from observed CS data can 

be described in four steps (See Figure 3.6 for graphical representation of the inflow update 

procedures).  

1) Determination of WL at the upstream boundary that corresponds to the CS observation. 

This can be done by assuming an innovation (the difference between the WL 

observations and the model forecast) at the upstream boundary location is equal to the 

innovation determined at the CS location. Hence, the corresponding WL at the 

upstream boundary can be estimated by integrating the innovation with the background 

WL, which derived from background (prior) discharge (inflow hydrograph with the 

bias determined in the previous analysis step) through the rating curve. 

2) Estimation of the corresponding discharge at the upstream boundary. In this step, the 

WL that corresponds to the CS observation is converted into corresponding discharge 

using the rating curve at upstream boundary location. 

3) Calculation of the bias value (∝) that corresponds to the CS observation. Once the 

corresponding discharge is determined in the step (2), the corresponding bias (∝𝑐) 

can be subsequently estimated according to the proportion of the corresponding and 

background discharge values (𝑄𝑐 𝑄𝑏)⁄  as follows. 

∝𝑐= (
𝑄𝑐

𝑄𝑏
) ∙∝𝑏 

3-9 

 

Where, Q and ∝ are the discharge and bias, correspondingly; subscript b and c denote 

the background (value before updating) and corresponding (value that corresponds 

to the observed CS data) stages, respectively. 
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4) Determination of the analysis inflow bias. In this final step, the discharge time-series 

for each member of the ensemble are updated according to the analysis bias (∝𝑎) 

determined by the EnKF. Herein, a persistence model is assumed for the evolution 

of bias during the forecast step, which means that the value of ∝ is constant in time 

and only updated at assimilation times. As the state vector is augmented with the 

inflow bias (𝒙𝑎𝑢𝑔), the standard EnKF equations can also be applied to 𝒙𝑎𝑢𝑔 to 

update model state and inflow bias, simultaneously. With the augmentation, the 

correlations between the errors in the state vectors and the errors in inflow biases are 

taken into account in the assimilation scheme (García-Pintado et al., 2015). The 

analysis bias (∝𝑎) is subsequently applied to the original inflow hydrograph to update 

upstream boundary condition, which evolves LISFLOOD-FP forward in time to the 

next time step.
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Step 1: Determination of WL at the upstream boundary (WLc). 

 
Step 2: Estimation of the corresponding discharge at the upstream boundary (Qc). 

 
Step 3: Calculation of the bias value that corresponds to the CS observation (∝c). 

 
Step 4: Determination of the analysis inflow bias (∝a). 

Figure 3.7: Graphical representation of the updating inflow bias from an observed CS data. 
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3.4.6.2 Updating downstream boundary condition (outflow) 

Typically, downstream conditions are described by a time series water stage 

measurements. Uncertainty induced by the measurement of the river stage is significantly 

less than uncertainty in discharge estimation, which induced by the extrapolation of the 

rating curve (Di Baldassarre & Montanari, 2009). Hence, it is more reasonable to update 

inflow hydrograph rather than downstream river stage boundary condition, in which 

associated with less uncertainty. However, for data scarce regions, downstream 

information may not be available or can be poorly known as the floodwater may inundate 

beyond the controlled confining margin at the downstream station. As a result, the 

performance of updating downstream WL boundary input was also considered and 

investigated in this study. 

 

In terms of implementation, WL inputs at the downstream boundary are subsequently 

updated according to the increments resulting from the analysis of the global state update. 

This means that, for each ensemble member, the same amount of the WL correction 

obtained from the global state updating is also applied to correct downstream WL time-

series input. However, the effect of updating the downstream WL input only at the 

assimilation time can be minimal and can cause model instability due to a sudden change 

in WL time-series. Thus, the downstream WL is not only updated at the assimilation time, 

but also applied to update WL at the successive time steps until the next assimilation time. 

Figure 3.8 illustrates graphical representation of updating downstream WL.  

 

One may notice that the influence of the DA might be overestimated by applying the 

correction to the successive WL time-series until a new CS observation is available. This 

can be the case for satellite observations which are occasionally available, typically in 

days. Nevertheless, this is not the case for the CS data in urban areas, which is frequently 

contributed by hundreds to thousands social media users during flooding. Thus, the effect 

of previous downstream WL updates diminishes every time the new CS observation is 

assimilated into the system. Hence, the assumption of updating successive WL until the 

next assimilation time is deemed justified in this case. 
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Assimilation at time T1 

 

Assimilation at time T2 

Figure 3.8: Graphical representation of updating downstream WL. 

 

3.5 Experimental design  

In this section, experiments and assumptions designed to examine the performance of 

different updating strategies are described. In total, 8 scenarios (Experiment A-H) of 

different updating strategies were tested and compared using an identical LISFLOOD-FP 

model setup (e.g., acceleration solver mode, initial model timestep and ensemble inputs). 

The experimental design for each experiment is summarised in Table 3.1. 
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Table 3.1: Summary of update strategies applied for experiment A-G 

Experiment Update strategy Descriptions 

A Open loop No DA is applied (free run) 

B Global state update 
Simultaneously update all wet cells in the study 

domain 

C Local state update (DZs) Only update wet cells within the DZs 

D 
Local state update 

(DZs + river cells) 
Experiment C + update WL in river cells 

E Local state & inflow update Experiment C + Upstream boundary update 

F 
Local state & downstream 

boundary update 
Experiment C + Downstream boundary update 

G 
Local state update with 

free flow downstream boundary 
Experiment C with free flow downstream BC 

H 

Local state update & upstream 

and downstream boundaries 

update 

Experiment C + Upstream boundary update + 

Downstream boundary update 

 

3.5.1 Experiment A: Open loop 

Open loop (OL) simulation refers to a free forecast run of LISFLOOD-FP without 

assimilating new observations to update the system. The performance of the OL 

simulation was then used as a benchmark to examine the improvement due to different 

updating strategies applied in the experiment B-H. In the OL simulation, 100 LISFLOOD-

FP models were independently forwarded using the ensemble inputs generated in the 

previous step. The downstream boundary condition is identical for all 100 runs, which is 

controlled by the time-varying WL measurements obtained at the downstream boundary. 

Figure 3.9 illustrates graphical representation of the experiment A (Open loop). 

 

 

Figure 3.9: Graphical representation of the experiment A (Open loop). 
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3.5.2 Experiment B: Global state update 

Experiment B refers to a global filter, in which the WL values in all wet cells are 

simultaneously updated according to the EnKF analysis. This experiment is based on the 

assumption that WLs in the entire domain are highly dependent, hence all the WL values 

in the wet cells can be globally corrected. Graphical representation of the experiment B 

(global state update) is shown in Figure 3.10. 

 

Figure 3.10: Graphical representation of the experiment B (Global state update). 

3.5.3 Experiment C: Local state update (depression zones) 

For experiment C, domain localisation is utilised to confine the influence of the CS 

observations within the pre-defined cut-off area (DZs). Only wet cells within the DZ, 

where CS observation is reported, are locally corrected. Whilst the WL in the cells outside 

the considered DZ remain unchanged. This experiment assumes strong correlation of WL 

between cells located within the same DZ, whereas no correlation of WL is assumed for 

cells between DZs. Figure 3.11 shows graphical representation of the experiment C: Local 

state update (depression zones only). 
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Figure 3.11: Graphical representation of the experiment C and D (Local state update). 

3.5.4 Experiment D: Local state update (depression zones + river cells) 

Experiment D is similar to the experiment C, which the WL is locally updated based on 

the DZs. However, apart from only update cells within the DZ, cells which represent the 

river channel (called river cells) are also updated. Similar to the experiment C, the EnKF 

analysis was carried out locally at an observed cell, then the increments gained from the 

analysis were applied to update WL at both active DZ and river cells (See a spatial 

schematic in Figure 3.11). 

 

The rationale behind the inclusion of the river cells in the experiment D is that there 

should be a strong correlation between the WL in the river and that in the floodplain. This 

is because in case of a fluvial flood, the WL in the river typically rose and overflowed 

onto surrounding urban areas, thus it is reasonable to assume that the WLs in the river 

cells and those cells in the DZs where the observations are reported, are highly correlated. 

With the assumption applied in the experiment D, the effect of localisation is expanded 

to include river cells. Thus by updating the WL in the river cells, an overflowing 

floodwater along the river is also expected to be corrected. 
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Figure 3.12: Example of spatial schematic of the experiment D (depression zones + river cells) 

 

3.5.5 Experiment E: Local state & inflow update 

As previously discussed in the section 3.4.6, it has been found that the effect of state 

updating alone is limited by the persistence of the initial condition (Andreadis et al., 

2007). Hence, in the experiment E, a combination of local state and inflow updating was 

applied to examine the improvement due to updating upstream boundary condition. The 

inflow update is based on the assumption that there is a high correlation between observed 

WL and the inflow. Thus, the observed WL can be related back to the upstream boundary 

and applied to update the inflow time-series input. Figure 3.13 illustrates graphical 

representation of the experiment E (Local state & inflow update). 

 

 

 Observation location 

 Active observation at time t 

 Active depression zone 

  River cells 

 

 Note: The WL in both active depression 

zone and river cells are updated according 

to the increments gained from the analysis 

at the observed location where the flood 

incident was reported (Tweet location). 
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Figure 3.13: Graphical representation of the experiment E (Local state & inflow update). 

3.5.6 Experiment F: Local state & downstream boundary update 

Apart from the upstream boundary update, a combination of updating local state and 

downstream boundary was also investigated in the experiment F. The experiment was 

designed to test the possibility of applying downstream boundary update to improve 

model forecasting skills under the limited information available scenario. In the 

experiment F, the increment resulting from the analysis stage of the state update was 

subsequently applied to correct WL measurement at the downstream boundary (See 

Figure 3.14). 

 

Figure 3.14: Graphical representation of the experiment F  

(Local state & downstream boundary update). 
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3.5.7 Experiment G: Local state update with free flow downstream boundary 

Since the outflow information at the downstream boundary is limited, a different 

approach was implemented and investigated. Instead of updating WL time-series at 

downstream boundary, the downstream model setup was switched from time-varying WL 

to normal depth calculation (free flow) in the experiment G. With the normal depth 

assumption, uniform flow condition is assumed at the downstream boundary. By 

approximating an energy slope is equal to the channel bed slope, the normal depth for the 

downstream WL can be back-calculated using Manning’s equation (Bates et al., 2013). 

Herein, an average channel bed slope of the river is applied to force normal depth 

calculation at the downstream boundary in the LISFLOOD-FP setup. Figure 3.15 

illustrates graphical representation of the experiment G (Local state update with free flow 

downstream boundary). 

 

Figure 3.15: Graphical representation of the experiment G  

(Local state update with free flow downstream boundary). 

3.5.8 Experiment H: Local state update with upstream and downstream boundaries 

update 

To further investigate impact of the boundary update, a combination of the: local state 

update, the upstream inflow update and the downstream stage boundary update is 

examined in experiment H. The assumptions are similar to those applied for the inflow 

boundary update (experiment E) and downstream boundary update (experiment F) in 

which it is assumed that there is a high correlation between observed WL and the flow at 

boundaries (inflow and outflow, respectively). Herein, boundary conditions at both 
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upstream (discharge) and downstream (WL) are simultaneously updated along with the 

local state update according to the increment resulting from the EnKF analysis at each 

assimilation time.  

 

Figure 3.16: Graphical representation of the experiment H  

(Local state update with upstream and downstream boundaries update). 

 

3.6 Chapter summary 

The chapter provides an elaborate description of how the methodology was designed and 

implemented. First, research design of CS social media data was presented. This includes 

selection of a social media platform, data mining, quality assessment and uncertainty 

estimation of CS social media data. Secondly, criteria for selection of the hydrological 

model were explained. Thirdly, approaches to perform model calibration and 

conditioning were presented. Next, implementation of the EnKF and various updating 

strategies were outlined. Lastly, experiments designed to examine the performance of 

different updating strategies were demonstrated. The following chapter will present 

details of the case study area and available data, where the developed methodology was 

implemented and evaluated.  
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CHAPTER 4: The Phetchaburi case study 

The method developed in Chapter 3 of this thesis has been implemented and tested against 

a real flood event in Thailand. This chapter firstly details the characteristics of the study 

area as well as the available data. It also describes background information on the floods 

that occurred between 2016 and 2018, that form the focus for the case study. In addition, 

it includes details of how the available data were combined and modified to match model 

requirements. Finally, it comprehensively explains how the developed methodology was 

implemented against the real case study in Thailand. 

4.1 Background of the study area 

The Phetchaburi River catchment, in southern Thailand, was selected as the study area as 

Phetchaburi City experienced fluvial flooding in three consecutive years from 2016 to 

2018. The Phetchaburi River catchment is one of the main 22 catchments in Thailand, 

and it consists of three sub-catchments, namely 1) Upper Phetchaburi 2) Mae-Prachan 

and 3) Lower Phetchaburi. Figure 4.1 demonstrates the Phetchaburi catchment area, main 

rivers and sub-catchment boundaries. The two principal rivers in the catchment area are 

the Phetchaburi and Mae-Prachan rivers. The Phetchaburi River originates from Tanaosri 

Mountain, with a combination of creeks and streams in the upper sub-catchment (Panin, 

2008). The Mae-Prachan tributary joins the Phetchaburi River before it flows through the 

Phetchaburi urban area, eventually discharging into the gulf of Thailand. The wet 

monsoon typically runs from May to September, bringing precipitation throughout the 

catchment, especially in upstream areas. In extreme cases, heavy rainfall in the upstream 

catchment generates a large amount of excess surface runoff, which causes severe 

flooding in the Phetchaburi urban area. 

 

Most of the upper Phetchaburi sub-catchment is mountainous, with sloping terrain and an 

average height of more than 700 metres above mean sea level (MSL). Figure 4.2 shows 

the terrain of the Phetchaburi Catchment derived from the 30 metre Shuttle Radar 

Topography Mission (SRTM). The terrain of the Mae-Prachan sub-catchment is similar 

to the upper Phetchaburi sub-catchment, where the upper part is mainly mountainous and 

hilly terrain. As shown in Figure 4.2, flat terrain starts from just upstream of the 

confluence of the Upper Phetchaburi River and Mae-Prachan tributary, and spreads over 

the Lower Phetchaburi sub-catchment, where the land is mainly used for agriculture, 
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community settlements and tourism (Wijitkosum & Sriburi, 2019). The urban area in the 

Lower Phetchaburi sub-catchment is the main focus of the case study, because it is the 

most affected area in terms of economic losses and numbers of people affected by flood 

events. 

 

 
Figure 4.1: The Phetchaburi catchment area, main rivers and sub-catchment boundaries 

 

 

Figure 4.2: The 30-metre SRTM of the Phetchaburi Catchment.  

Urban Area 

Flow direction 
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Precipitation maps from 19-22 November 2017 

              19 Nov 2017                  20 Nov 2017                   21 Nov 2017                  22 Nov 2017 

 

 

Daily discharge-water year 2017 (Station B.10) 

  

Figure 4.3: Precipitation maps derived from the Global Satellite Mapping of Precipitation 

(GSMap) data during the 2017 flood event (above) and daily discharge at station B.10 during water 

year 2017 (below) (Source of precipitation maps: https://www.hii.or.th) 

4.2 The 2016-2018 Phetchaburi flood events 

Phetchaburi city suffered from three consecutive years of fluvial flooding between 2016 

and 2018 (November for the 2016 and 2017 events; and August for the 2018 event). These 

flood events were caused by heavy rainfall in the upper catchment which, as the 

catchment was already saturated during the regular monsoon season (May to September), 

caused excess surface runoff and rapidly rising river levels and discharges. The peak 

discharge at Ban Tha Yang B.10 station (see Figure 4.3) reached 213, 283 and 192 m3/s 
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for the 2016, 2017 and 2018 flood events, respectively; for reference, the bankfull 

capacity of the Phetchaburi River when passing through the urban area is only 150 m3/s. 

Figure 4.3 shows precipitation maps derived from the Global Satellite Mapping of 

Precipitation (GSMap) data during the 2017 flood event (above) and daily discharge at 

station B.10 during the whole of 2017 (below). 

 

4.3 Available Data 

Most of data used in this case study was acquired from Thai Government agencies. 

Topographic data for Phetchaburi city was provided by the Land Development 

Department of Thailand, whilst records of water level, discharge data, river cross sections 

and aerial images were supplied by the Royal Irrigation and Water resources departments 

of Thailand. In addition, use was also made of the daily reports (authoritative records) 

published by the Department of Disaster Prevention and Mitigation (DDPM) of Thailand. 

Apart from the traditional measurements and authoritative records, the use of remote 

sensing satellite images was also considered. However, due to the relatively small scale 

of Phetchaburi city (~30 sq.km.), only limited relevant satellite data was available for the 

case study. This general lack of suitable observational and remote sensed data again 

emphasises the need for other data collection methods, such as crowdsourcing 

approaches, to supplement the traditional observations. 

 

4.3.1 Topography data 

The DEM data, supplied by the Land Development Department of Thailand, was 

produced by digital photogrammetry from aerial stereo photographs, with the relevant 

images acquired during 2004-2006. The DEM boundary covers most of the Phetchaburi 

catchment area, with a spatial resolution of 5 metres. Although a DEM with a spatial 

resolution of less than one metre is typically preferred for urban flood simulation, this 

data was the only data currently available for the case study location2, and the 5-metre 

spatial resolution is considered adequate to represent buildings, main roads/streets and 

the river itself (the average river width of the Phetchaburi River is approximately 50 

metres). Furthermore, given the area of the Phetchaburi city (~30 sq.km.), the 5-metre 

 

2 Light Detection and Ranging (LiDAR) DEMs are currently available for some areas in Thailand, although 

current access is restricted to the general public. For the Phetchaburi catchment, LiDAR mapping is 

expected to take place in 2025. 
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spatial resolution DEM is deemed appropriate in terms of the trade-off between model 

representation and computational burden. 

 

4.3.2 River cross sections 

River cross sectional data was taken from a 2019 survey of the Lower Phetchaburi River 

by the Royal Irrigation Department of Thailand. In total, this yielded 389 regularly spaced 

cross sections over a distance of approximately 79 kilometres, from the confluence of the 

Upper Phetchaburi River and Mae-Prachan tributary to the estuary at the Gulf of 

Thailand. For each cross section, the profile spanned approximately 200 metres (100 

metres to the left and right of river centre line).  

 

4.3.3 Aerial imagery data 

Aerial imagery of the Lower Phetchaburi catchment was obtained by the geo-informatics 

technology division of the Royal Irrigation Department of Thailand. These aerial 

photographs were acquired in February 2019 using a digital mapping camera attached to 

a fixed wing unmanned aerial vehicle (UAV). Series of images were then orthorectified 

to apply corrections for distortions and georeferenced using ground control points. The 

resolution of the imagery is approximately 15 cm per pixel, and it covers the Lower 

Phetchaburi urban corridor through Phetchaburi city. In this study, building footprints 

were manually extracted from these aerial images, and used to modify the available DEM 

to account for the detailed urban environment. Details of how the DEM was modified to 

represent the urban environment of the Phetchaburi city are provided in Section 4.4.  

 

Figure 4.4 illustrates an aerial image of the Phetchaburi River taken by the UAV and 

examples of river cross section profile at cross section ID 123 and 124, respectively. 
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Figure 4.4: Examples of river cross section survey data. 

  

Figure 4.5: Daily average water level record of four hydrological stations during the flood event in 

November 2017.  
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4.3.4 Water level and discharge measurements 

Water level and discharge measurements were obtained from the hydrology division of 

Royal Irrigation Department of Thailand. The hydrological stations are located at 

strategic locations along the Phetchaburi Rivers, and hourly water level (WL) 

measurements were available for the last 5-10 years. At each gauging station, a time-

series of flow data (discharge) was generated by converting the WL measurements into 

discharge through station rating curves. Figure 4.5 illustrates the location of hydrological 

stations and examples of daily average WL record during the flood event in November 

2017. 

 

4.3.5 Remote sensing observations  

Apart from the official data provided by the Thai authorities, the use of open data remote 

sensing observations (e.g. Sentinel 1A, Landsat-8) to identify flood extent was also 

investigated. However, open data satellite missions that passed over Phetchaburi city 

during the flood events were designed to capture low to medium resolution images, and 

were thus mostly not applicable for small scale flood studies. Although, Sentinel-1A was 

able to acquire several Synthetic Aperture Radar (SAR) images in the Interferometric 

Wide swath mode (5x20 metres spatial resolution) during the flood events, initial 

investigation revealed that they were unable to identify flood affected areas in the 

complex urban environment of Phetchaburi city. This was because SAR signals are 

typically reflected off sharp corners in built-up environments in urban areas and only very 

few open flooded areas can be successfully identified with relatively low SAR sensor 

resolutions (Schumann & Moller, 2015). Similarly, whilst the Landsat-8 optical mission 

was also able to capture a few flood images over Phetchaburi city, most of these images 

were severely cloud affected (>90% cloud cover), and hence not suitable to determine 

flood extent. There was however one Landsat-8 image, from November 25, 2017, that 

had relatively low cloud cover (25%). This image was pre-processed and, using the 

Modified Normalized Difference Water Index (See Appendix 2), used to determine a 

flood extent for the 2017 event. In addition to the Landsat image, the daily flood reports 

published by the Department of Disaster Prevention and Mitigation of Thailand were also 

used to determine flood extent. Both the Landsat image and the daily reports were used 

to verify the quality of CS social media data retrieved from Twitter archive. 
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4.4 The modification of a digital elevation model (DEM) 

To take the urban environment into account in any flood simulations, it was necessary to 

add building footprints onto the “bare earth” DEM. Building footprint polygons were 

manually extracted from aerial images, and superimposed onto the DEM by given 

relevant cells an elevation “uplift” of 6 metres. It should be noted that the 6 metre uplift 

was not intended to depict actual building heights, rather it was to ensure that buildings 

would be taken into account in the 2D urban flood modelling. Figure 4.6 illustrates the 

building footprints extracted from the aerial images. 

 

Apart from the building footprints, the original DEM also did not include the river 

bathymetry. As such, the series of river cross section data was integrated into the DEM 

using HEC-RAS Mapper. The created channel terrain model was then merged with the 

original DEM which does not accurately represent the terrain below the water surface to 

create an improved terrain model for 2D flood simulation. 

 

Figure 4.6: Building footprints overlaid on online OpenStreetMap base map. 

(Source: Base map and data from OpenStreetMap and OpenStreetMap Foundation 

https://www.openstreetmap.org and contributors.) 
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4.5 Implementation of the quality assessment models: The Phetchaburi case study 

The following sections detail how the quality assessment method developed in Chapter 3 

of this thesis was implemented and tested against the Phetchaburi city case study. 

 

4.5.1 Data mining of CS social media data from Twitter archive 

During the 2016-2018 Phetchaburi flood events, there was a significant increase in 

posting and sharing of flood-related content on social media, including large numbers of 

flood images. Figure 4.7 shows examples of flooding images Tweeted during the 2017 

flood event. Apart from individual use, social media platforms, such as Facebook and 

Twitter, were also used by local government agencies for communication and emergency 

aid distribution. 

 

 
I 

 
II 

 
III 

Figure 4.7: Examples of flooding images Tweeted during the 2017 flood event. (Sources of image I, 

II and III: Twitter (2017) photos by @nuhkome, @nationphoto and @js100radio, respectively).  

 

As outlined in Chapter 3, Twitter was identified as an appropriate platform for CS social 

media data due to the Twitter demographics in Thailand and its news-centric policy, 

which allows real-time data access through Twitter API. The location related flood 

keywords were pulled from two map databases, namely OpenStreetMap (OSM) and the 

local GIS data provided by the Phetchaburi municipality. For the OSM, all values from 5 

keys (amenity, tourism, leisure, highway and railway) were exported from the study area. 

For the local GIS database, all feature names in the Thai language were exported (not 

available in English). In total, 434 and 385 names and associated locations were pulled 

from the OSM and local GIS databases, respectively. The names were applied as location 

keywords, while the feature types and locations were used to identify Tweet geolocation 

in the next step.  
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Example of the English and Thai equivalent search keywords and query operators applied 

to collect CS data from the Twitter archive for the Phetchaburi case study are shown in 

Table 4.1. 

Table 4.1: Example of search keywords & query operators 

Categories English Thai 

Flood related keywords flood*, flooding, inundat*, 

overflow*, emergency, river, 

help*, warn*,  

Kirogi, Babinca, cyclone, … 

ท่วม, น ้ำท่วม, เออ่,  
ลน้, ฉุกเฉิน, แม่น ้ำ,  
ช่วยเหลือ, เตือน,  

คีโรกี, บำบินคำ, พำย,ุ … 
Location related 

keywords 
Thailand, Thai*, Phet*,  

Pongsuriya Road,  

Phetkasem road,  

Kaeng-Krachan dam, … 

ไทย, ประเทศไทย, เมืองเพชร,  
ถนนพงษสุ์ริยำ,  
ถนนเพชรเกษม,   

เข่ือนแก่งกระจำน, … 
Query operators -is:retweet, has:images, 

has:links 
n/a 

 

By combining the search keywords and query operators with search timeframes that 

matched the flood events, relevant Tweet contents were extracted from the Twitter 

archive. In total, 3,286 original Tweets with embedded images were retrieved from 676 

Twitter accounts during the flood events from 2016 to 2018 (see Table 4.2). As expected, 

time-series analysis demonstrates that the number of Tweets per day corresponded with 

observed water levels during the flood peak period. Figure 4.8 shows time series of daily 

Tweet frequency and water level observed at the centre of Phetchaburi city during the 

2016 flood event (see Appendix 1 for time-series analysis of the 2017 and 2018 flood 

events). 

 

Table 4.2: Number of Tweets retrieved from Twitter archive by flood events (2016 – 2018)  

(adopted from Songchon et al. (2021)) 

Year 2016 2017 2018 

Searching time frame 27th Oct -13th Nov 14th Nov -2nd Dec 15th Aug -31st Aug 

Number of original Tweets 810 1,320 1,156 

Flood related images  164 192 138 
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Figure 4.8: Time series analysis of the 2016 flood event (adopted from Songchon et al. (2021)). 

 

A data cleaning process was necessary to screen out duplicate Tweets or those with 

irrelevant flood contents, such as advertisements through trending hashtags (Tweets that 

contain flood keywords but are attached to product advertisement images). After the data 

cleaning process, 2,792 Tweets (85%) were excluded from the dataset, while the 

remaining 494 (15%) Tweets were further analysed for image geolocations, as discussed 

below. 

 

4.5.2 Semi-automatic geolocation approximation 

As is typical, it was found that very few Twitter users enabled the geolocation option (21 

out of 676 accounts) to allow exact location to be reported in Tweet’s metadata, and thus 

the coordinate location of each image was determined based on the Tweet message and 

the surrounding environment apparent in the Tweet image. To lessen manual operations 

required to identify geolocation, the semi-automatic approach outlined in Section 3.1.3 

was used to approximate geolocation of Tweet images based on the feature vectors (point, 

polyline, and polygon) previously exported along with the location keywords. Table 4.3 

summarises the key criteria applied to approximate Twitter geolocations.
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Table 4.3: Criteria applied to approximate Twitter geolocations. (Basemap data: ©OpenStreetMap contributors) (Modified after Songchon et al. (2021)). 

Feature types 
Classification 

criteria 

Approaches to approximate 

geolocation of Tweet image 
Examples of Tweet images 

Approximate 

geolocation 

1) Point point data identical to the point feature 

 

  
Phetchaburi police station 

2) Short 

polyline 
length < 0.5 km midpoint of the polyline  

 
 

Thewet Alley 

3) Small 

polygon 
area < 0.25 km2 centroid of the polygon 

 

 
Wat Yai Suwannaram (Temple) 

4) Long 

polyline 
length ≥ 0.5 km 

manual check Tweet image 

with Google Street view 

 

 
Kiri-Ratthaya Road 

5) Large 

polygon 
area ≥ 0.25 km2 

manual check Tweet image 

with Google Street view 

 

 
Phetchaburi Vocational Education College 
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By matching Tweet text with the names extracted from the map databases, the procedure 

outlined above was able to automatically identify 308 Tweet geolocations, while the 

remaining 186 Tweets were manually geolocated using Google Street View. This resulted 

in the spatial pattern of flood-related images retrieved from Twitter during the 2016-2018 

flood events shown in Figure 4.9. 

 

Figure 4.9: Location of study area (left) and the spatial pattern of flood-related images Tweeted 

during flood events 2016-2018 (right). Tweet Data overlaid on ESRI online basemaps (Esri-

Thailand, 2020) (Adopted from Songchon et al. (2021). 

4.5.3 Labelling data quality classes  

After geolocations are approximated and assigned, the next step was to assign a quality 

label to each of the 494 retrieved Tweets, using the approach outlined in Section 3.1.4, 

namely: 

 

1. Remotely sensed flood extent. Tweet geolocations were overlayed on the flood 

extent derived from Landsat-8 over Phetchaburi city with only 25% land cloud 

cover during the 2017 flood event. Although, satellite images were also available 

during the 2016 and 2018 flood events, most of the study area was covered with 

clouds (> 90%), and thus the available extents were not suitable. Herein, the 
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Modified Normalized Difference Water Index (MNDWI) developed by Xu (2006) 

was adopted to extract water extent from the Landsat 8 image for the case study. 

Figure 4.10 illustrates the MNDVI map derived from the Landsat-8 image over 

the Phetchaburi. Details of how flood extent was extracted from the Landsat-8 

image is provided in Appendix 2. 

 

Figure 4.10: Modified NDWI of Landsat-8 image over the Phetchaburi study area 

(adapted from Songchon et al. (2021)). 

2. Authoritative data. Tweets not identified as high quality using flood extent data, 

were then checked against the daily disaster reports published by the Department 

of Disaster Prevention and Mitigation (DDPM) of Thailand. If the Tweet text 

contained location keywords listed in the reports, a high-quality label was 

assigned.  

3. Manual check. Tweets not identified as high quality using either of the two steps 

outlined above (126 out of 494 Tweet images) were assessed manually. If the 

Tweet contained flood images and its geolocation could be verified using Google 

Street View, the Tweet was labelled as high-quality.  

4. Low quality. Tweets not classified as high quality using the previous three steps 

were labelled as low-quality. 

 



   

 

119 

 

Following the labelling process, 440 (89.1%) of the 494 flood relevant Tweets were 

labelled as high-quality, while 54 Tweets (10.1%) were labelled as low-quality. It is also 

worth mentioning that, although some Tweets classified as low-quality contained actual 

flood information, there was not enough evidence to convince that the tweet location was 

correct. 

 

4.5.4 Binary Logistic Regression (BLR) model 

This sub-section has two parts. The first details determination of the parameters behind 

the case study specific variables of the BLR model, whilst the second part describes the 

approach taken to determine the coefficients in the BLR model that maximise the model 

accuracy against the case study training dataset. In this study, the 2016 and 2018 flood 

dataset were applied as training dataset, while the 2017 flood dataset was retained as 

testing dataset for model evaluation purpose. It is worth noting that the case study specific 

variables, statistical tests and K-fold cross validation were developed using the training 

dataset (the 2016 and 2018 flood dataset). 

 

4.5.4.1 Case study specific variables 

Whilst three of the variables within the BLR model require no scenario-specific treatment 

(retweet ratio, distance to nearest neighbour, distance to nearest river), the spatiotemporal 

index (𝒙𝟐) and the flood risk zone (𝒙𝟒) variables are highly dependent on local 

conditions, and thus required additional development. 

 

To determine a representative spatiotemporal index, all the retrieved Tweets were 

categorised into clusters based on timestamp and geolocation using spatiotemporal 

analysis. For the temporal threshold, a 6 hour timeframe was selected based on time series 

analysis case study floods which indicated that, as water levels peaked and remained at 

maximum levels for at least 3-4 days (see Figure 4.8), the flood condition and water level 

are not likely to significantly change within a 6-hour timeframe.  For the spatial threshold, 

a sensitivity analysis was performed to observe the effect of changes to the overall model 

accuracy. Logistic regression models were built based on different spatial thresholds 

ranging from 100 to 1,200 meters with intervals of 100 meter. The optimal model 

accuracy of 90.07% was reached with a spatial threshold of 800 meters. Therefore, the 
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800 metres radius was selected as spatial threshold for spatiotemporal index. Figure 4.11 

illustrates the overall model accuracy results from different spatial threshold values. 

 

Figure 4.11: Result of sensitivity analysis of spatial thresholds. 

 

In terms of the flood risk zone variable, the dataset used was the national flood risk map 

of Thailand (https://data.go.th). This data outlines three flood risk zones (low, medium 

and high), classified based on historical flood data acquired from series of satellite images 

(2004 to 2013) and terrain elevation data (OGD, 2022). As such, the flood risk zone 

variable used for the case study could have the value of 1, 2 and 3, corresponding to low, 

medium and high flood risk zone, respectively.  

 

4.5.4.2 Statistical tests and K-fold cross validation 

Prior to the final development of the BLR model, two statistical tests were carried out 

including multicollinearity analysis and likelihood ratio test. The former aims to assess 

the intercorrelations among the predictor variables, while the latter determines whether 

the predictor variables are significantly related to the outcome variable (Hosmer et al., 

2013). In addition to the multicollinearity analysis and likelihood ratio test, K-fold cross 

validation was applied to examine the generalisability of the training dataset. 

 

• Multicollinearity analysis 

The multicollinearity analysis aims to assess the intercorrelations between the predictor 

variables in a regression model. This is to ensure all the predictor variables are 

independent from each other. It can prevent misleading results as high multicollinearity 

can increase the standard error of the estimate of the coefficients (Spicer, 2005). Herein, 

the Variance Inflation Factor (VIF) was applied to assess the impact of collinearity among 

the predictive variables. The VIF for the jth predictor can be determined as: 
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𝑉𝐼𝐹𝑗 =
1

1 − 𝑅𝑗
2 

 4-1 

Where: 𝑅𝑗
2 is a goodness-of-fit measure for linear regression models obtained by 

regressing the jth predictor on the remaining predictors. A VIF value of 1 indicates that 

there is no correlation among the jth predictor and the remaining variables. While a VIF 

value that exceeds 5 or 10 often indicates a certain degree of multicollinearity (Hung et 

al., 2016; James et al., 2017). In this study, a threshold value of 5 was set to indicate 

multicollinearity. Table 4.4 reports the results of multicollinearity analysis in which 

indicates that there is no multicollinearity between the predictor variables as all the 

predictors shows a VIF value less than 5. 

Table 4.4: Multicollinearity Analysis 

Predictors VIF 

X1: Retweet ratio 1.011 

X2: Spatiotemporal index 1.662 

X3: Distance to the nearest neighbour 1.575 

X4: Flood risk zone 1.064 

X5: Distance to the nearest river 1.242 

 

• Likelihood ratio test 

The likelihood ratio test determines whether there is a meaningful relationship between 

the predictor variables and the outcome variable. The likelihood-ratio test is a hypothesis 

test applied to assess the significant of predictor variables to the outcome variable. The 

test is performed by comparing goodness of fit of two models using the ratio of their 

likelihoods, where one model is comprised of all input variables (full model), and the 

other is comprised of reduced input variables (Hosmer et al., 2013). The likelihood-ratio 

test statistic can be computed as: 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑅𝑎𝑡𝑖𝑜 (𝐺) = −2 ∗  𝑙𝑛 (
𝐿(𝑚𝑜𝑑𝑒𝑙1)

𝐿(𝑚𝑜𝑑𝑒𝑙2)
) = 2(𝑙𝑜𝑔𝑙𝑖𝑘(𝑚𝑜𝑑𝑒𝑙2) − 𝑙𝑜𝑔𝑙𝑖𝑘(𝑚𝑜𝑑𝑒𝑙1)) 

4-2 

Where:  𝐿(𝑚𝑜𝑑𝑒𝑙) denotes the likelihood of the model, and 𝑙𝑜𝑔𝑙𝑖𝑘(𝑚𝑜𝑑𝑒𝑙) is the log 

likelihood of the model. 𝑀𝑜𝑑𝑒𝑙1 is the reduced model (some model input variables are 

omitted), and 𝑚𝑜𝑑𝑒𝑙2 is the saturated model (full model). 
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The resulting likelihood ratio test is distributed as a chi-squared random variable χ2(ν) 

with degree of freedom (ν) equal to the number of omitted variables (Hosmer et al., 2013). 

For this study, the statistical test of the null (H0) and alternative (H1) hypotheses were set 

as follows: 

H0: the predictor variable is not significant to the model outcome,  

H1: the predictor variable is significant to the model outcome 

At significant level of 0.05, if the p-value is less than the significant level, the null 

hypothesis (H0) is rejected, which indicates that there is convincing evidence that the 

variable is significant in predicting the model outcome. Whereas, if the test fails to reject 

the null hypothesis (H0), this suggests that omitting the variables from the model does not 

significantly affect the fit of the model to the outcome variable. This is an iterative 

process, which one predictor valuable was omitted at a time to assess the significance of 

each variable (degree of freedom (ν) =1), until the p-value of all remaining variables is 

within the significant level of 0.05. The model coefficients were also recalculated at every 

iteration.  

 

After two iterations, a variable, namely 𝒙5: distance to the nearest river, was excluded 

from the model as it failed to reject the null hypothesis (H0) (p-value of Chi-Square 

statistic > 0.05) (See Appendix 3 for Results of Likelihood Ratio Test). This suggests that 

the predictive variable 𝒙5 (distance to the nearest river) is not a significant variable in 

predicting the quality of flood related Twitter data. Hence, the predictive variable (𝒙5) is 

excluded from further analysis. Therefore, the four remaining input variables, including 

(𝒙1) Retweet ratio, (𝒙2)Spatiotemporal index (𝒙3), Distance to nearest neighbour and (𝒙4) 

Flood risk zone were further considered for model development. 

 

• K-fold cross validation 

To address the generalisation of the training dataset (the 2016 and 2018 Tweet data), 10-

fold cross validation (K=10) was performed, where each CS observation in the dataset 

was used for validation exactly once (See Section 3.1.5.1 for the steps to implement K-

fold cross validation). With the 10-fold cross validation, the average model classification 

accuracy of 89.06% with standard deviation of 5% was achieved, indicating the 
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generalised performance of the logistic regression model when encountering an unseen 

dataset. 

 

4.5.4.3 Determination of BLR model coefficients 

There are many different approaches available to determine the coefficients in the BLR 

model that maximise the model accuracy against the case study training dataset. Herein, 

the BLR was developed using Scikit-learn python library (Pedregosa et al., 2011), which 

provides a range of supervised and unsupervised machine learning algorithms for data 

analysis. The solver (Limited memory Broyden–Fletcher–Goldfarb–Shanno method, L-

BFGS) was applied to search for the best-fit coefficients for the logistic regression model 

using the training data. The BFGS is an optimization method that belongs in the family 

of quasi-Newton algorithms. The main advantage of the quasi-Newton algorithms is that 

they do not require the second-order derivatives (Hessian matrix) to be computed, thus 

accelerating the calculation. Instead, the Hessian is approximated by measuring the 

changes in gradients over iterations. As the name suggests, the Limited memory BFGS 

(L-BFGS) is based on the BFGS updating formula but modified for solving large scale 

optimization problems (Nocedal & Wright, 2006). In contrast to the original BFGS, 

which stores all the Hessian matrices approximation at every iteration, L-BFGS stores 

only a few vectors that represent the approximation implicitly (Liu et al., 2016; Nocedal 

& Wright, 2006), hence reducing computational requirements. With the L-BFGS solver, 

a set of weight coefficients that minimize the mismatch between the model results and 

the training data can be determined. 

 

4.5.5 Fuzzy logic system (FLS) model 

Compared to the BLR model, the goal of the construction of the if-then rules and the 

membership functions in the FLS is similar to the model fitting in the BLR model, in 

which the if-then rules and membership functions are adjusted according to the training 

dataset to maximise the model accuracy. Herein, both if-then rules and membership 

functions were iteratively adjusted through manual processes until an optimal set were 

determined that maximised model accuracy. 

 

For if-then rules, a set of rules were formulated based on knowledge extraction approach 

in which the underlying relationships between inputs (predictor variables) and output 
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(data quality classes) were extracted from the training dataset. The extracted knowledge 

(the underlying relationships) was then analysed to form a set of rules that capable of 

explaining relationship between predictor variables and quality of CS data. Table 4.5 

shows the final if-then rules formulated from the training dataset. 

Table 4.5: The final if-then rules formulated from the training dataset  

(adopted from Songchon et al. (2021)). 

Rule If (antecedent) Then (consequent) 

1 If (RE is high) Then (Quality is high) 

2 If (ST is high) Then (Quality is high) 

3 

4 

If (NN is low) 

If (FZ is high) AND (ST is low) 

Then (Quality is high) 

Then (Quality is high) 

5 If (RE is high) AND (ST is low) Then (Quality is low) 

6 If (RE is high) AND (NN is high) Then (Quality is low) 

7 

8 

If (FZ is low) AND (ST is low) 

If (ST is low) AND (NN is high) 

Then (Quality is low) 

Then (Quality is low) 

(RE-Retweet ratio, ST-Spatiotemporal index, NN-distance to the Nearest Neighbour, FZ- Flood risk Zone) 

 

After the construction of the if-then rules, membership functions, which apply to 

transform crisp input values into fuzzy input sets, are developed for each predictor 

variable. There are many forms of membership functions (e.g. triangular, trapezoidal, 

gaussian and sigmoid) which can be applied to describe crisp input value in terms of fuzzy 

sets. In this study, the membership functions were constructed based on trapezoidal shape 

due to its simplicity and ease of implementation. Similar to the construction of the if-then 

rules, the shape of trapezoidal membership function (parameters) for each predictor 

variable was manually adjusted to maximise the model accuracy against the training 

dataset. This is an iterative process in which the parameters of the membership function 

are fine-tuned to ensure maximum model accuracy. Figure 4.12 illustrates the four 

components of the FLS and the membership function for each predictor variable. 
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Figure 4.12: An example of Fuzzy logic system for assessing quality level of Twitter data  

(adopted from Songchon et al. (2021)). 

 

4.5.6 Flood depth and uncertainty estimation from CS social media images 

As discussed elsewhere, floodwater depth was manually estimated by referencing parts 

of submerged objects with dimensions of standard objects appear in Twitter images. By 

reviewing the retrieved flood related Twitter images, reference objects were categorised 

into six reference classes (see Table 4.6) including: footpath; sedan car; pickup truck; 

motorcycle; male height (Thai); and, female height (Thai). 

 

For footpaths, the average height and standard deviation were determined based on 

Thailand road construction guideline by DRR (2015). While for sedan car, pickup truck, 

and motorcycle, average tire dimension and standard deviations for each type of vehicle 

were determined based on new vehicle registration reported in 2019 by the Department 

of Land Transport of Thailand (See Appendix 4). Lastly, the mean and standard deviation 

of heights of Thai males and females were based on the studies by Chittawatanarat et al. 

(2012) and Chumpathat et al. (2016). 

Crisp output 
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Table 4.6: Details of reference classes. 

No. 
Reference 

class 
Sub-Class 

Average 

Standard 

Height 

(cm.) 

SD 

(standard 

deviation) 

(cm.) 

Tweet count by flood 

event 

Total 

count 

(2016-

2018) 

Total in 

percentage 
Sources 

2016 

flood 

2017 

flood 

2018 

flood 

1 Edge footpath Footpath height 15.00 2.50 38 53 27 118 24% 
Standard road construction 

drawing (DRR, 2015) 

2 
Sedan tire 

diameter 

Tire diameter 61.70 2.80 4 4 4 12 2% Thailand Transport statistic 

report 2019 (See Appendix 4A) Tyre sidewall 11.50 1.10 4 4 4 12 2% 

3 
Pickup truck 

tire diameter 

Tire diameter 73.40 4.10 49 54 45 148 30% Thailand Transport statistic 

report 2019 (See Appendix 4B) Tyre sidewall 15.00 1.80 12 14 12 38 8% 

4 
Motorcycle 

tire diameter 
Tire diameter 54.70 4.90 23 24 20 67 14% 

Thailand Transport statistic 

report 2019 (See Appendix 4C) 

5 
Men height 

(Thai) 

Height 166.10 6.00 10 10 9 29 6% 

Chittawatanarat et al. (2012) 

Knee height 48.60 3.30 9 9 7 25 5% 

6 
Women 

height (Thai) 

Height 155.10 5.40 5 5 3 13 3% 
Chittawatanarat et al. (2012); 

Chumpathat et al. (2016) 
Knee height 42.10 3.00 8 8 5 21 4% 

  
Non-flood images 2 7 2 11 2% 
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4.6 Setting up LISFLOOD-FP simulations for the Phetchaburi case study 

This section explains how the LISFLOOD-FP was set up to simulate the Phetchaburi 

flooding.  

 

4.6.1 Topographic data 

For terrain representation, the original DEM was modified to incorporate river 

bathymetry and building footprint, as detailed in Section 4.4. In terms of Manning 

coefficients, a binary raster grid file with the same dimensions and resolution as the DEM 

file was generated to specify Manning coefficient for either river and non-river cells, i.e. 

all river cells had the same Manning value and all floodplain cells had the same Manning 

value. One might argue that the urban environments in floodplain area could be better 

represented using spatially distributed Manning coefficients according to land use in the 

study area rather than using global parameters. However, there are two reasons for the 

simplification using global Manning coefficients for river channel and floodplain areas in 

this study. The first reason is to keep dimensionality in the problem low, as an increase 

in dimensionality would result in an exponentially increase in the ensemble size required 

to represent error variance of the system. The second reason is that there have been 

reported in literatures (e.g. Hostache et al. (2010); Van Wesemael et al. (2019)) that 

spatially distributed Manning coefficients have not been shown to significantly improve 

outcomes of flood simulations. Therefore, global values were utilised for both channel 

and floodplain Manning coefficients. 

 

The implementation of the topography-based localisation approach requires a pre-

processing step to partition the study domain into sub-domains called depression zones 

(DZs). Herein, the semi-automatic raster-based algorithm developed detailed in section 

3.4.5.2 (Wu et al., 2019) was applied to identify DZs for the Phetchaburi case study. 

 

In terms of implementation, the DZs were generated using a minimum size of 0.1 km2 

and a minimum depth of 0.1 m. Different parameters would result in different size of 

DZs, which applied to confine the influence of CS observations within DZ in the 

topography-based localisation. It is important to note that the sensitivity between these 

threshold values and the performance of the domain localisation in the EnKF was not 

conducted in this study. The implementation of partitioning the DZs was performed using 
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the LiDAR toolbox for ArcGIS Pro developed by Wu (2021). In total, 82 DZs were 

generated with an average size of 0.34 square kilometre. Figure 4.13 illustrates the 

boundaries of the 82 depression zones (DZs). 

 
Figure 4.13: Illustration of the 82 DZs boundaries, with DEM. 

4.6.2 Boundary conditions 

The main inflow was described by a discharge time-series, derived from hourly observed 

water levels, through the rating curve at Ban-Lat station. In addition to the Phetchaburi 

River, the inflow from the two irrigation canals alongside the main river were also 

considered. The inflow from both irrigation canals was assumed constant at the maximum 

capacity of the canals (1.65 m3/s) during the flood period. This inflow value is very minor 

compared to the usual inflow of the Phetchaburi River (100-150 m3/s).  

 

For the downstream boundary, the outflow of the Phetchaburi River was controlled by 

the time-varying water level (WL) measurements obtained at the Phetchaburi City station. 

In addition to the outflow specified at this station, outflow that occurred at the edge of the 
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domain was set as a free flow boundary condition, so the model was forced to calculate 

the normal depth for the downstream water level at the boundary based on the terrain 

slope. Figure 4.14 illustrates boundary conditions set up for the study domain. 

 

It should be noted that, as detailed in Section 3.4.6, the initial boundary conditions 

described above were varied for some of the updating strategies.  

 

 

Figure 4.14: Boundary conditions set up for the study domain. 

4.6.3 Numerical solver 

LISFLOOD-FP was run in the “acceleration” mode, which is a simplified form of the 

SWEs, where the convective acceleration term is assumed negligible (Bates et al., 2013). 

With the acceleration solver, the model time step varies according to the Courant-

Friedrichs-Lewy condition and is related to the cell size and water depth, hence 

significantly decrease the computation time compared with the adaptive solver (Bates et 

al., 2013). The computing efficiency of the acceleration solver is a very important 
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component for this thesis as it allows the assimilation of CS social media data in real-

time. 

 

4.7 Identifying model parameter ranges  

Based on the identified primary sources of model uncertainty outlined in Section 3.2.2 

(channel and floodplain Manning coefficients and inflow magnitude), this section details 

how the ranges of these parameters were determined for both model calibration and 

conditioning. 

 

For the channel and floodplain Manning coefficients, the effective range was defined 

based on the underlying land coverage types of the study domain using the guidelines by 

Arcement and Schneider (1989) and Chow (1959). The range of 0.01-0.08 was used for 

global channel Manning coefficient to reflect the meandering river shape with moderate 

eroded side slopes of the Phetchaburi River. For floodplains, the range of the Manning 

coefficient was set between 0.01 and 0.10 to reflect the complexity of the urban 

topography. One can notice that the chosen ranges are relatively wide. This is to reflect 

the fact that model simulations are subject to a degree of structural error that is commonly 

compensated for by Manning coefficients of main channel and floodplain in model 

calibration (Bates et al., 2014). As a result, values of Manning coefficients obtained from 

model calibration should be recognised as effective values that may not entirely 

correspond to physical value ranges suggested in empirical studies (Bates et al., 2014; Di 

Baldassarre, 2012). 

 

For the inflow magnitude, the inflow error was assumed to be ±20% of the observed 

inflow value. The range of error in the inflow hydrograph was determined based on the 

empirical study by Di Baldassarre and Montanari (2009). Although, this inflow error 

estimation does not take into account precise details of water level measurements and 

rating curve calibration of the gauging stations in the study domain, the error ranges are 

expected to be sufficiently broad to cover that caused by the imperfect rating curve.  

 

Table 4.7 summarises the uncertainty ranges and discrete intervals used in the Phetchaburi 

case study, in the implementation of the PSO and GLUE procedures for model calibration 

and conditioning, respectively. For the PSO, given the high computational cost required 
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to simulate LISFLOOD-FP for the Phetchaburi case study (4-5 hours per simulation), the 

swarm size of 12 and the maximum number of iterations of 20 were set for the PSO 

algorithm in this study. The steps of how to implement the PSO algorithm were provided 

in Section 3.3.1. For the GLUE analysis, based on the average model runtime, a uniform 

sampling strategy was applied to evenly divide parameter ranges into discrete intervals 

(see Table 4.7). In total, 400 runs of LISFLOOD-FP were made with different 

input/parameter sets to form the response surface of the NSE performance measure. 

 

Table 4.7: Sources of model uncertainty, parameter ranges and discrete intervals. 

Sources of model 

uncertainty 

Feasible range 

(For PSO and 

GLUE analysis) 

Discrete intervals  

(For GLUE analysis) 
Sources 

1) Channel manning 

coefficient 
0.01 to 0.08 

Discretise evenly 

every 0.01 (8 levels) 

Based on the study 

domain and the value 

ranges suggested by 

Arcement and 

Schneider (1989) and 

Chow (1959) 

2) Floodplain 

Manning coefficient 
0.01 to 0.10 

Discretise evenly 

every 0.01 (10 levels) 

3) Inflow Magnitude -20% to +20% 
Discretise evenly 

every 10% (5 levels) 

Based on the study by 

Di Baldassarre and 

Montanari (2009) 

 

4.8 Ensemble generation for the EnKF 

For the implementation of the EnKF, an ensemble size of 100 was applied throughout the 

study. This size was chosen based on available computing resources, to maintain 

reasonable computing time. Once the ensemble size was determined, the next step was to 

randomly generate ensemble model inputs and parameters from the previously identified 

sources of model uncertainty (channel and floodplain Manning’s N values and inflow 

magnitude). Herein, only the first 100 samplings that had been identified as behavioural 

parameter sets in the GLUE analysis were selected for further analysis. Figure 4.15 

illustrates the 100 ensemble model inputs. 



   

 

132 

 

 

 

Figure 4.15: Ensemble generation of channel and floodplain Manning’s N coefficients (above) and 

perturbed inflow hydrographs (below). 

 

Apart from the Manning coefficients and inflow magnitude, the remaining parameters 

and model configurations were identical for all ensemble runs. For DA analysis, the 

LISFLOOD-FP simulation was set up for 5 days during the 2017 flood period from 22 to 

26 November 2017, including a 12-hour warm-up period. For each ensemble run, the 

water depth file generated at the end of the warm-up period was applied as initial 

conditions for the model simulation. In addition, the LISFLOOD-FP was simulated at an 

hourly scale (export results every 1 hour), with the initial model timestep of 0.5 seconds.  

An hourly interval was chosen because it is corresponded to the time interval of the WL 

measurements at both upstream and downstream boundaries; and hence facilitates the 

implementation of the EnKF. It is also a typical timeframe used in operational flood 

monitoring systems as floods can occur quickly and have a short-term impact on river 

Colour indicates the magnitude 

applied to perturb inflow hydrograph. 
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dynamics (Jafarzadegan et al., 2021). For the initial model timestep, based on preliminary 

model runs using the initial model timesteps between 0.1 and 2 seconds, model runtime 

and simulation results do not sensitive to the value of the initial model timestep used as 

the timestep is automatically evolved in accordance with the Courant-Friedrichs-Lewy 

condition in the acceleration solver. 

 

4.9 Computational Resources 

Although, LISFLOOD-FP is a simplified hydrodynamic model with efficient 

computational performance, computational demand increases significantly when it is run 

using a 2D solver over a large domain, particular if for fine 2D grids. In the Phetchaburi 

case study, LISFLOOD-FP was utilised to simulate flood inundation over a 30 km2 area. 

To capture sufficient details in an urban environment, such as roads and buildings, a 

moderate-resolution 5m DEM was used to represent urban topography. In total, the study 

domain equated to 1.2 million grids/cells, with approximately of 0.72 to 0.84 million 

effective cells (~ 65% of total cells were in flooded areas). 

 

Initial simulations on a standard desktop computer (Intel Core i9 CPU @ 3.70GHz, 10 

cores, 16 GB RAM) showed that LISFLOOD-FP required approximately 4-5 hours of 

computational time to complete a 5-day flood simulation on the study domain without 

assimilating an observation. Thus, with 100 ensemble simulations, the computational 

time would increase dramatically to about 21 days to sequentially complete all 

simulations. Given current typical computer performance, it is obvious that parallelisation 

and high-performance computing (HPC) are required to facilitate the EnKF approach to 

be feasible for near real-time flood forecasting.  

 

For this project, access to HPC was granted from two UK scientific providers, namely: 

the Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk) funded 

by the University of Edinburgh and EPSRC (EP/P020267/1); and, the Centre for 

Environmental Data Analysis JASMIN computing facility (http://www.jasmin.ac.uk). 

 

With access to HPC facilities, batch computing is possible for LISFLOOD-FP 

simulations, which means that the 100 ensemble members can be simultaneously 

executed, stopped, and restarted within the DA algorithm. Herein, a single CPU core per 
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job was assigned to simulate each ensemble run, which resulted in approximately 30 

hours computational time for all the 100 ensemble members. This is nearly 17 times faster 

than the runtime required by the standard computer, and clearly illustrates the feasibility 

of the developed approach for operational DA of flood forecasting. 

 

4.10 Chapter summary 

This chapter provided detailed description of the study area and available data. It also 

describes how the developed method described in Chapter 3 was implemented and tested 

against a real flood event in Phetchaburi city (Thailand). 

 

Section 4.1 introduced general information regarding the Phetchaburi River catchment in 

Thailand. Section 4.2 provided brief description of the historical floods occurred in the 

Phetchaburi River catchment between 2016 and 2018. Next, Section 4.3 described data 

gathered from relevant agencies, which were used as inputs in flood simulation. The 

available data includes topography data, river cross sections, aerial imagery data, water 

level and discharge measurements, and remote sensing observation. Section 4.4 explained 

how the building footprints and river cross sections were integrated with the original 

DEM to improve the representation of build-up environment and river channel 

bathymetry of the Phetchaburi urban area. 

 

In addition to the background information of the study area and available data, this chapter 

also provides comprehensive details of how the proposed methodology can be 

implemented to a real case study. Section 4.5 describes the development of the quality 

assess methods (BLR and FLS models) to a specific case study while Section 4.6 explains 

steps of setting up LISFLOOD-FP simulation for the case study. Whereas the model 

parameter ranges that suit the characteristic of the study area were identified in Section 

4.7. Furthermore, Section 4.8 describes steps to generate ensemble model inputs for the 

EnKF analysis. Lastly, the available computational resources were described in Section 

4.9. 
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CHAPTER 5: Quality assessment of CS social media data 

Quality assessment results obtained from the binary logistic regression and fuzzy logic 

models are reported in Sections 0 and 5.2 respectively, while Section 5.3.1 compares and 

discusses the advantages and limitations of both strategies. Aside from issues related to 

data quality concern, Section 5.3.2 discusses other factors that need to be taken into 

account when adopting crowdsourcing methods to acquire information during disasters. 

It should be noted that parts of this chapter (Sections 5.1, 5.2 and 5.3.1) were published 

in Songchon et al. (2021), and are reproduced in this thesis. 

 

5.1 The Binary Logistic Regression (BLR) model 

This section reports results obtained from the binary logistic regression model. 

5.1.1 Model Coefficients 

After eliminating the insignificant variable (Distance to the nearest river, 𝑥5), the 

remaining 4 variables (Retweet ratio, 𝑋1; Spatiotemporal index,  𝑋2; Distance to the 

nearest neighbour, 𝑋3; and Flood risk zone, 𝑋4) were applied as independent variables to 

determine the model coefficients that best fitted the training dataset (see Table 5.1). As 

described in Chapter 4, the 494 Tweet images were split into two datasets for training and 

testing purposes, with 302 Tweet images from the 2016 and 2018 flood events being used 

as training data, and the 192 Tweet images collected during the 2017 flood being used for 

model testing.  

Table 5.1: Model Coefficients 

Input Components Weight Coefficient 

Intercept (𝑤0) 3.701 

X1: Retweet ratio (𝑤1) 0.222 

X2: Spatiotemporal Index (𝑤2) 1.559 

X3: Distance to the nearest neighbour (𝑤3) 

X4: Flood risk zone (𝑤4) 

-0.441 

  0.169 

 

As shown in the Table 5.1, the sign and magnitude of the coefficients are in line with the 

assumptions explained previously in the section 3.1.5, where a positive sign means that 

the effect of the predictor variable increases the possibility of the CS data being 

categorised as high-quality data, and vice versa. The final binary logistic model for 

assessing CS social media data can be written as: 
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𝑃 =
1

1 + 𝑒−(3.701+0.222𝑥1+1.5591𝑥2−0.441𝑥3+0.169𝑥4)
 

5-1 

Where, P is the estimated probability that the Tweet data belongs to the high-quality class. 

5.1.2 Receiver Operating Characteristics (ROC) Curve Analysis 

To deal with an imbalanced distribution of high-quality (n=279) and low-quality (n=23) 

Tweets in the training dataset, Receiver Operating Characteristics (ROC) Curve Analysis 

was applied to identify the optimal threshold, which depicts relative trade-offs between 

benefits (true positives) and costs (false positives) (Fawcett, 2006). The ROC curves are 

2-dimenstional graphs in which the True Positive Rate (TPR, also called hit rate) is plotted 

on the Y axis, and the False Positive Rate (FPR, also called false alarm rate) is plotted on 

the X axis, at various threshold values (Fawcett, 2006; Hung et al., 2016). The TPR and 

FPR can be calculated from: 

𝑇𝑃𝑅 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

𝐹𝑃𝑅 =
𝐹𝑃

(𝐹𝑃 + 𝐹𝑁)
 

5-2 

 

 

5-3 

 

Where: TP is True Positive (the model correctly predicts the positive class); TN is True 

Negative (the model correctly predicts the negative class); FP is False Positive (the model 

incorrectly predicts the positive class); and, FN is False Negative (the model incorrectly 

predicts the negative class). 

 

The point (0,1) on the top left corner of the ROC graph represents perfect classification, 

where the TPR is 100% and the FPR is zero. Thus, the optimal threshold, which provides 

the best trade-off between the TPR and FPR, is a point on the ROC curve with the shortest 

Euclidean distance to the point (0,1) in the ROC space. The Euclidean distance (d) of a 

point on the ROC curve to the point (0,1) can be determined from: 

𝑑 = √(1 − 𝑇𝑃𝑅)2 + 𝐹𝑃𝑅2 5-4 

 

Figure 5.1 shows the ROC curve generated from the training dataset, where the black dot 

(TPR=0.910 and FPR=0.217) represents the nearest point to the top left corner. This point 

on the ROC curve corresponds to the threshold value of 0.625, which gives the overall 

accuracy of the training dataset at 90.07%.  
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Figure 5.1: ROC curve generated from the training dataset. 

After the training process, the logit model in the equation 5-1 was tested using the Tweet 

data acquired during the 2017 flood event. The 2017 dataset was verified using data 

derived from the Landsat-8 image and the authoritative data as detailed in the Section 

4.5.3. The results showed that the accuracy of the model with the testing dataset was 85.42%.  

 

In addition to the overall accuracy, F1-score is a useful performance measure particularly 

for comparing the performance of classification models. The F1-score is the harmonic 

mean of precision and recall, and can be calculated as follow: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Where:          𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 ; and  𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 

5-5 

 

 

Table 5.2 (a) and (b) summary the confusion matrix, model accuracy and F1-score for the 

training and testing datasets, respectively. 

 

5.2 Fuzzy logic model 

To develop a fuzzy logic model, a sensitivity analysis was performed to select and adjust 

suitable membership functions, if-then rules and a defuzzification method. The results of 

altering a single predictor variable while the rest were held constant were compared with 

the baseline results (the training dataset). To develop a membership function for each 
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predictor variable, the relationship between inputs and baseline outputs were observed to 

identify a range of predictor values that correspond with the outputs. Similarly, the if-

then rules were also generated based on knowledge gained from observing the 

relationship between predictor variables and the verified outcomes in the training dataset. 

For defuzzification, centroid, bisector, and middle of maximum defuzzification methods 

were examined. The model results were found to be less sensitive to the defuzzification 

method, and thus the less computationally expensive centroid method was adopted to 

translate fuzzy output into a crisp value. An input data with the crisp output value of more 

than 0.5 cut-off value was considered as high-quality data. Otherwise, the data was 

classified as low-quality. 

 

With the unseen (testing) data, the accuracy and the F1-Score of the fuzzy logic classifier 

were 86.46% and 92.49% respectively (See Table 5.2). Figure 5.2 demonstrates the spatial 

pattern of the 2017 testing dataset (fuzzy logic approach) overlaid on the flood extent map 

derived from Landsat-8 image and the ESRI online basemap (Esri-Thailand, 2020). 

Examples of flood-related images Tweeted during the 2017 flood event were also shown in 

the Figure 5.2 (a, b, c and d). 

 

Table 5.2: Confusion matrix, accuracy, and F1-Score of the BLR and fuzzy logic models. 

(a) Training dataset 

Training Dataset Predicted Outcome Overall Accuracy 

(TN+TP)/Population 

F1-Score 

High-quality Low-quality 

Ground 

truth 

High-quality  TP: 254 (256) FN: 25 (23) 
90.07% (89.07%) 94.42% (93.94%) 

Low-quality FP:   5 (10)  TN: 18 (13)  

(b) Testing dataset 

Testing Dataset Predicted Outcome Overall Accuracy 

(TN+TP)/Population 

F1-Score 

High-quality Low-quality 

Ground 

truth 

High-quality  TP: 155 (160) FN: 6 (1) 
85.42% (86.46%) 91.72% (92.49%) 

Low-quality FP:   22 (25)  TN: 9 (6)  

* Round bracket indicates the result obtained from the fuzzy logic model. 

** TN=True Negative, TP=True Positive, FP=False Positive and FN= False Negative  

  



   

 

139 

 

 

 

Figure 5.2: (Right) Spatial pattern of the 2017 testing dataset (fuzzy logic approach) overlaid on the 

flood extent map derived from the Landsat-8 image and ESRI online basemap (Esri (Thailand), 

2021). (Left) Examples of Twitter images demonstrate a true negative, false positive, true positive 

and false negative outcome of the model prediction (Source of images: https://twitter.com/) (Adopted 

from Songchon et al. (2021)).  

(a) True Negative 

(b) False Positive 

(c) True Positive 

(d) False Negative 



   

 

140 

 

5.3 Discussion 

This section compares and discusses the performances of the BLR and fuzzy logic 

models.  

 

5.3.1 Performance of BLR and FLS models 

Overall, the performance of both the BLR and fuzzy logic models demonstrates the 

potential of the developed methodologies for assessing the quality level of crowdsourced 

social media data. Nonetheless, there are some important aspects for both models that 

need to be addressed. 

 

For the regression model, the magnitude of the model coefficient demonstrates that the 

spatiotemporal index (SI) and distance to the nearest neighbour (NN) are the two most 

influential predictor variables on the data quality. This is the case for most true-positive 

outcomes in urban areas, where flood incidences were repeatedly Tweeted. The findings 

also confirm the validity of the crowdsourcing approach (Goodchild & Li, 2012) which 

refers to the ability of a group of contributors to validate information reports by 

individuals. This is particularly useful in accessing the reliability of the CS data, where a 

single observation of the presence of a flood is confirmed and strengthen by additional 

observations from the neighbouring locations. 

 

However, it was found that most of the false negative results from the regression model 

were reported in isolated Tweets. This suggests that the regression model may fail to 

classify high-quality Tweets that were reported outside of the spatiotemporal cluster. 

Although, the retweet ratio (RR) and flood risk zone (FZ) were designed to be 

independent of the clusters, they are the least two impactful factors among the predictor 

variables. As a result, the regression model often treats an isolated Tweet, regardless of 

the retweet ratio and flood risk zone, as low-quality data, although this is not always the 

case. This means that potentially useful information might be misinterpreted when 

running the algorithm in real time, especially at an early stage of flooding, when only few 

flood incidents are Tweeted.  

 

For the fuzzy logic system, the predicted outcomes were predominantly governed by the 

if-then rules and fuzzy membership functions. Compared to the regression model, the 
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difference between training and testing performance (the generalisation gap) of the FLS 

was slightly narrower than that of regression model (2.61% for FLS versus 4.65% for 

BLR); a narrower generalisation gap suggests that the fuzzy logic model is slightly more 

generalised to unseen dataset. In addition, the FLS was able to handle isolated Tweets 

significantly better than the logistic regression model, as the number of false negatives in 

the FLS is significantly lower than that of the regression model for the testing dataset (1 

for FLS versus 6 for BLR). As an example, image (c) in Figure 5.2 shows that, whilst the 

tweet location is isolated but correctly classified as high-quality data by the FLS because 

it is located in the high flood risk zone, the Tweet was incorrectly classified as low-quality 

data by the BLR model due to its low spatiotemporal index value. This illustrates the main 

advantage of the FLS over the regression model, as the FLS is flexible in terms of 

generating rules and membership functions and can be effectively applied to deal with 

nonlinear systems (Chen et al., 2019; Kayacan & Khanesar, 2016).  

 

Although, the findings demonstrate that the fuzzy logic approach outperforms the logistic 

regression analysis, the implementation of the FLS involves some degree of subjectivity 

in terms of deriving appropriate rules and membership functions. This is because the if-

then rules and fuzzy sets were manually interpreted in accordance with input-output 

relationships of the training data, which could be defined differently by individuals. As a 

result, the extracted rules and membership functions could be biased toward human 

heuristic (implicit bias), when assumptions are made based on beliefs and personal 

experiences. Nevertheless, fine-tuning the rules and membership functions to maximise 

the training accuracy can help mitigate uncertainty due to the subjectivity. In contrast to 

the fuzzy logic approach, the BLR model is relatively simple and straightforward as its 

implementation does not involve subjective decisions. The model coefficients were 

determined entirely based on training dataset, hence the performance of the BLR model 

is significantly based on the quality of the training dataset. 

5.3.2 Issues encountered during the implementation 

Although, CS social media data are promising for use to support flood risk modelling, 

there are issues/limitations beyond quality control that need to be thoroughly considered 

when adopting crowdsourced data for natural hazard managements. Generally, both the 

strength and weakness of crowdsourced information derives from its participatory 

openness (Bott & Young, 2012). Based on the experience gained during the 
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implementation, data processing and data privacy are the two main areas, which requires 

further attention when dealing with CS social media data. 

5.3.2.1 Data processing 

When compared to more established means of flood monitoring, such as stream and rain 

gauges or remote sensing techniques, crowdsourcing is a novel sort of data collection that 

necessitates specialised techniques to transform it into useful information. Such data tends 

to be noisy and unstructured (Zheng et al., 2018), and pre-processing is therefore crucial 

in the data mining process to filter out unsuitable data. Additionally, data mining post-

processing is also essential to handle the resulting unstructured and incomplete data sets. 

 

Herein, even though 3,286 original flood related tweets (with attached images) were 

retrieved based on the specified keywords, searching time frame and query operators, 

only 15% (494 tweets) were considered to be useful information. It was found that a large 

number of irrelevant tweets were involved with marketing purposes, where trending 

keywords or hashtags were included in tweet contents to reach a wider audience on social 

media. This is a common issue of mining data from social media sites due to a high degree 

of communication openness. Hence, there is a need for a more robust algorithm to exclude 

such misleading information from further analysis. 

 

After eliminating noisy data, post-processing is required to manage unstructured and 

incomplete data. For flood related applications, accurate image location is crucial, and if 

missing it could considerably downgrade the quality of related crowdsourced data. 

However, the geolocation option is off by default in Twitter, and many other social media 

platforms, and less than 5% of the retrieved flood related Tweets in this study were 

attached with geolocation (latitude and longitude). As a result, an alternative approach 

was developed to estimate Tweet locations based on Tweet texts and the surrounding 

environment apparent in the Tweet images. Although some of the retrieved Tweets 

explicitly specified image locations in the Tweet text, which is very useful for identifying 

exact locations, the process of approximating geolocation based on surrounding 

environment appeared in the Tweet images is time-consuming, as the task was done 

manually. This is one of drawbacks that significantly hampers the utility of 

crowdsourcing methods when compared to traditional data collection methods.  
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5.3.2.2 Data privacy 

Another important aspect when adopting a crowdsourcing approach is data privacy. This 

includes both 1) privacy concerns of the participants involved in gathering and publicly 

sharing information in the field, and 2) privacy policy of social media platforms. 

 

For participants, even though social media users are allowed to customise the types of 

data they share publicly, many are reluctant to disclose sensitive information (e.g. age 

and location). As an example, only 3.1% (21 out of 676) of the Twitter users used in this 

study allowed exact location to be tracked and reported in Tweet’s metadata. This results 

in the incompleteness in CS social media data as some of key information is concealed. 

The issue of privacy concerns among social users can be serious as there is no guarantee 

that their private information will not be abused or exploited. For example, many 

crowdsourcing projects involve recording GPS locations where data is being collected, 

this can be a particular concern for some participants who are afraid that their regular 

travel pattern could be tracked (Preece, 2016). This is the case for social media 

crowdsourcing in which historical posts/tweets is stored in platform’s archive and can be 

accessed by general public. On the other hand, for the volunteer networking, purposes of 

data collection are usually well communicated to the participants, and it also usually 

operates on a closed platform, hence only project managers or authorised applicants can 

access to the data. A clear communication of how the data will be used and a secure 

ecosystem can increase willingness of volunteers to share their personal and sensitive 

contents. 

 

In terms of privacy policy, although the policy of each social media platform is subject to 

business goals and legal obligations, it is important to understand and be aware of the 

current privacy policy of each platform. To date, Twitter has been widely recognised as 

a prime source of data for many crowdsourcing applications, as one of Twitter’s policies 

is to disclose Tweet content as broadly as possible (Twitter, 2022b). With Application 

Programming Interfaces (API), real-time monitoring of Twitter based on keywords and 

search operators is possible. On the other hand, Meta (Facebook, and Instagram) has very 

strict policies regarding public data access through API (Songchon et al. (2021); Tavra et 

al. (2021)). Aside from the obvious impact of not been able to use CS data from certain 

platforms, the lack of other “open-access” platforms leaves users over-reliant on a small 
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number of platforms, which may alter their privacy policies in the future due to changes 

in business directions and/or legal regulations. Thus, it is crucial to develop an application 

that is flexible to deal with multiple social media platforms and be able to integrate 

crowdsourced data with some other means of data collection types, such as volunteer 

networks and traditional data.  

 

5.4 Chapter summary 

This chapter presents, compares, and discusses findings of applying two different 

techniques, binary logistic regression (BLR) and fuzzy logic system (FLS), to assess the 

quality of CS social media data acquired from Twitter during flood events in Thailand.  

 

Section 5.1 and 5.2 explain results obtained from the BLR and FLS models, respectively. 

Both models incorporated four predictor variables (retweet index, spatiotemporal index, 

distance to the nearest neighbour, and flood risk zone), and achieved testing accuracies 

of 85.42% and 86.46% for the BLR and FLS, correspondingly. In overall, the results of 

both methodologies demonstrate the potential for assessing the quality of flood related 

CS social media data. 

 

Section 5.3.1 then provides a thorough analysis regarding the performance of both 

strategies. The weight coefficients of the BLR model indicate that time and location of 

the Tweets, which form a spatiotemporal index, were the most significant input that 

impact on quality probability. The findings also suggest that the FLS outperforms the 

regression approach when dealing with isolated data, however this must be balanced 

against the greater subjectiveness required in determining the rules and membership 

functions for the FLS.  

 

Then, section 5.3.2 explored concerns related to the use of CS social media data for 

disaster management based on the actual case study. Besides the data quality issue, 

crowdsourcing methods also suffer from data processing and data privacy. First, pre- and 

post-processing are required to transform CS social media data into useful information, 

as it can be noisy and unstructured. Second, there is a great concern among social media 

users regarding disclosing private information, which could compromise their privacy 

and safety.  
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This chapter has provided comprehensive analysis regarding the performance of the BLR 

and FLS models in assessing the quality of flood related Twitter data. The following 

chapter (chapter 6) will report and discuss findings obtained from the model calibration 

and conditioning using the PSO and GLUE algorithms.  
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CHAPTER 6: Model calibration and conditioning 

Results gained from the model calibration and conditioning using the PSO and GLUE 

algorithms are reported in Section 6.1 and 6.2, respectively. Furthermore, based on the 

behavioural parameter sets, probabilistic flood maps were generated to sequentially 

present the evolution of the Phetchaburi flood map in Section 6.2.3. Lastly, performances 

and results generated by the two algorithms are thoroughly examined and discussed in 

Section 6.3. 

6.1 Model calibration using PSO  

6.1.1 Performance of the PSO algorithm 

As discussed previously, a swarm size (particles) of 12 and a maximum number of 

iterations of 20 were set for the PSO algorithm, resulting in 240 model realisations. At 

approximately 4 hours per simulation, totally runtime on a standard computer (Intel Core 

i9 CPU @ 3.70GHz, 10 cores, 16 GB RAM), was about 30 days for the whole calibration 

process based.  

 
Figure 6.1: Evolution of the NSE values. 

In terms of performance measure, the NSE value improved along with an increase in 

number of iterations (see Figure 6.1) After 12 iterations (12 x 12 particles = 144 model 

realisations), the NSE values were converged to above 0.6 for all particles. From 

iteration 13 onwards, the 3 model parameters (channel and floodplain manning 
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coefficients and the magnitude of the inflow hydrograph) were fine tuned to maximise 

the NSE values. At iteration 20, the NSE values of the 12 particles varied from 0.8860 

to 0.9376.  

   

 

Figure 6.2: Progress of the channel & floodplain Manning coefficients (above) and magnitude of 

inflow (below) to convergence for 1, 3, 5, 10, 16 and 20 iterations. (Colour indicates particle ID.)  
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Additionally, the progress of the three parameters at various stages of the iteration process 

is shown in Figure 6.2. The initial parameter positions of all particles were randomly 

generated around the predefined parameter ranges (See Figure 6.2, iteration 1). With the 

PSO algorithm, the next movement of an individual particle in parameter space was 

governed by previous promising positions and the current best position of the population 

(Yang et al., 2021). Figure 6.2 illustrates rapid movement of individual particles at the 

early phase of the iteration process (iteration 1 to 10 in Figure 6.2). Once all the particles 

have moved into potential parameter territories, gradual improvement in terms of the NSE 

values and particle movement can be observed (See iteration 16 to 20 in Figure 6.2). At 

the 20th iteration, the best parameter set that corresponded to the maximum NSE value of 

0.9376 was 0.0427, 0.0475, and 1.076 for channel & floodplain manning coefficients and 

the inflow magnitude (bias), respectively.  

 

The scatter plot in Figure 6.3 compares the flood depth estimated from the CS 

observations against those predicted from the LISFLOOD-FP using the best calibrated 

parameter set from the PSO algorithm. Flooding images (a, b, c and d) in Figure 6.3 

correspond to the selected points in the scatter plot where the WL in model prediction is 

significantly diverted from the CS observation. It is found that the majority of CS 

observations that are off from the model predictions were tweeted during the early 

flooding period (e.g. points a, b and c in Figure 6.3). This finding is reasonable given that 

the modelling error interval at the early rising limb of the hydrograph can be substantial 

(Douinot et al., 2017). Apart from the high error during the rising limb, the scatter plot in 

Figure 6.3 also reveals that at high flood depth region (water depth > 0.6 metres), the 

difference between model prediction and CS observation tends to be higher than those 

observed in the low flood depth region (see point d in Figure 6.3). One of many reasons 

for this is that the average Thai men and women heights (See Table 4.6 in Chapter 4 for 

details of reference classes) were used as reference dimension when estimating flood 

depth from Twitter images in the high flood depth region. However, people height is not 

standardised and can be highly varied according to various factors (e.g. age and 

nationality); hence such uncertainty in human height can lead to error in flood depth 

estimation in CS observations. 
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(a) 

 

(b)

 

(c) 

 

(d) 

 

Figure 6.3: Comparison of the water depth estimated from the CS observations against those 

predicted from the LISFLOOD-FP using the best calibrated parameter set (scatter plot) and 

examples of flooding images that correspond to points a, b, c and d in the scatter plot (images a-d). 
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6.2 Model conditioning using GLUE 

This section reports results of the GLUE methodology outlined in the Chapter 3.  

6.2.1 Performance of the GLUE algorithm 

For the GLUE methodology, 400 model realisations were performed by uniformly 

varying the three parameters, including channel and floodplain manning coefficients and 

the inflow magnitude. In terms of computation time, a HPC was utilised to run 

LISFLOOD-FP in batch mode, since each model realisations can be simulated 

independently. In total, approximately 27 hours was required for the GLUE methodology 

by independently assigning one CPU core per job (simulation).  

 

With the 400 model realisations, a response surface of the objective function (NSE 

performance measure) can be generated. Figure 6.4 illustrates the 3D response surface 

and contour plot of the channel & floodplain manning coefficients at various inflow 

biases. With the GLUE methodology, the maximum NSE value is 0.9385 and corresponds 

to a parameter set of 0.04, 0.04 and 1.2 for the channel and floodplain manning 

coefficients and the inflow magnitude (bias), respectively. Overall, relatively high NSE 

regions (NSE>0.9) can be found for all inflow magnitudes (0.8-1.2) with different 

combinations of Manning coefficients in the range (0.04-0.06) for channel and (0.04-

0.07) for floodplain coefficients. The results obtained from the GLUE analysis indicate 

that it is possible to similarly satisfy the objective function (NSE threshold) with many 

different combinations of an effective parameter sets. This finding reinforces the concept 

of the equifinality, which accepts multiple solutions. 

 

Moreover, with a gradual increase in the inflow magnitude, the position of the 

performance maximum also moves along the diagonal line of the contour plots of channel 

and floodplain coefficients (See Figure 6.4). Specifically, as the inflow magnitude 

increases, the corresponding channel and floodplain Manning coefficients are forced to 

decrease simultaneously to remain in high NSE regions in the response surface and vice 

versa.   
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Figure 6.4: 3D response surface and contour plot of the channel & floodplain Manning coefficients 

at various inflow biases.  
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Furthermore, the contour plots in Figure 6.4 demonstrate that the model performance is 

poor (NSE<0) if a low channel coefficient (< 0.025) is employed, regardless of the 

floodplain coefficients and inflow biases. However, as the channel coefficient increases 

(> 0.025), inflow magnitude (bias) and floodplain coefficient tend to have more impact 

on model performance. This is intuitive, as river depths are highly dependent on the 

channel coefficient, and a low value will reduce the likelihood to overtopping. The other 

parameters become more influential, when the overtopping occurs. This finding is in line 

with previous GLUE studies by Aronica et al. (2002) and Bates et al. (2004), who also 

reported that the position of the performance maximum is more sensitive to change in 

channel rather than floodplain coefficient in case of fluvial flooding. 

 

6.2.2 Behavioural model parameters 

Once the response surface of the performance measure was generated, non-behavioural 

simulations were eliminated based on the selected criteria. However, as previously 

discussed in Chapters 2 and 3, deciding on rejection criteria involves subjective decisions 

and is not straightforward. Selecting a high NSE threshold would result in many 

simulations being rejected as non-behavioural, which means that some potential 

parameter sets would be incorrectly eliminated from the analysis. In contrast, a low NSE 

threshold will lead to many behavioural simulations, which may include unrealistic 

parameter sets. Thus, to select an appropriate criterion, one may need to take uncertainty 

associated with the calibration data into account as it is benchmarked against the model 

predictions. In this study, an absolute threshold of the NSE performance measure of 0.6 

was applied to reject non-behavioural model parameter sets. This criterion was selected 

based on initial investigations of the response surface and the meaning of the NSE value 

itself. A bar chart in Figure 6.5 illustrates the number of simulations retained as 

behavioural model at various NSE threshold values. 
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Figure 6.5: Number of simulations retained as behavioural model at various NSE threshold values. 

By applying the 0.6 NSE threshold, 304 parameter sets were rejected as non-behavioural 

while the remaining 96 were retained as behavioural parameter sets. The distribution of 

the behavioural simulations by each parameter is illustrated using dot plot and histogram 

in Figure 6.6. 

  

 

Figure 6.6: Dot plot and histogram of the behavioural simulations by the channel (upper left) and 

floodplain (upper right) coefficients and the inflow bias (lower). 
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In terms of distribution of the behavioural models, the histogram of the channel and 

floodplain parameters show similar patterns, which tend to follow a normal distribution, 

where most of the behavioural models are scattered around the value of 0.05 for both 

channel and floodplain coefficients. In contrast, for the histogram of the inflow bias, the 

behavioural models seem to uniformly scatter across all the inflow bias parameter space. 

6.2.3 Probabilistic inundation maps 

Apart from the distribution patterns of behavioural model parameters, the spatial 

uncertainty in model predictions can be revealed through probabilistic binary inundation 

maps based on the 96 behavioural models. For each behavioural model, the flood depth 

prediction in each pixel was translated into binary numbers of 1 for flooded pixel or 0 for 

non-flooded pixel. The probabilistic inundation map was then derived by integrating the 

binary flood maps from all the behavioural models. The flood probabilities for each pixel 

can be calculated based on the quantity of flooded and non-flooded pixels from the same 

location across all the behavioural models. The flood probabilities for each pixel (𝑃𝑖
𝑓𝑙𝑜𝑜𝑑

) 

can be determined as follow: 

𝑃𝑖
𝑓𝑙𝑜𝑜𝑑

=
𝐴𝑖

𝐴𝑖 + 𝐵𝑖
 

6-1 

 

Where, 𝐴 and 𝐵 are the frequency count of flooded and non-flooded pixel at pixel location 

𝑖 from all behavioural models, respectively.  

 

The value of the 𝑃𝑖
𝑓𝑙𝑜𝑜𝑑

  can vary from 0 to 1, which expresses the belief that a particular 

pixel will be flooded, given uncertainty in model parameters. The 𝑃𝑖
𝑓𝑙𝑜𝑜𝑑

 will assume a 

value of 1 for pixels that are predicted as flooded in all simulations, whereas the value of 

0 will be assigned for pixels that always predicted as dry. Figure 6.7 shows the evolution 

of the 2017 Phetchaburi flood event using probabilistic inundation maps at different 

points in time during the flood event. 

  



   

 

155 

 

22 Nov 2017: 09:30 

 

22 Nov 2017: 17:00  

 

22 Nov 2017: 20:00 

 

22 Nov 2017: 22:00 

 

Flooding probability 

 

Figure 6.7: Probabilistic flood maps at different point in time (Thailand local time) during the 

Phetchaburi flood event. 
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As expected, a 𝑃𝑖
𝑓𝑙𝑜𝑜𝑑

 of 1 is found for the river cells, as these cells are wet in all 

simulations. Other flood probabilities vary spatially across the floodplain areas. By 

comparing with the CS observations, the flood extent of 𝑃𝑖
𝑓𝑙𝑜𝑜𝑑

 with the flooding 

probability more than 0.6 coincide well with the Twitter data, which were observed from 

different locations during the flood event. These figures also illustrate that, during the 

rising limb of the discharge hydrograph, large areas of low flood probability can be 

observed, as each simulation predicted slightly different flood wave propagation based 

on model parameter inputs. Nevertheless, after some time, the uncertainty in model 

predictions was gradually reduced, as most of the behavioural simulations tend to predict 

similar results in terms of flood extent.  

 

6.3 Discussion 

This section compares the results gained from the PSO and GLUE methodologies, and 

also discusses the significance of the generated probabilistic flood map. 

6.3.1 Computation time 

In terms of total computation time, the GLUE method clearly outperforms the PSO, as all 

400 model realisations were completed within several days compared to 30 days for the 

PSO. This was primarily because, for the PSO, the next move in parameter spaces was 

based on previous results, hence the algorithm requires sequential execution of the 

LISFLOOD-FP. In contrast, the GLUE algorithm allows batch execution of the model, 

as each simulation can be set up and executed independently. Hence, the GLUE method 

greatly benefited from batch processing provided by the HPC services. 

 

However, if no HPC facilities were available, the PSO would outperform the GLUE 

algorithm in terms of computation time, as the PSO algorithm was able to converge the 

parameter sets of all 12 particles to optimal region after just 144 model realisations (12 

iterations from 12 particles), as opposed to the 400 used with GLUE. Although, the total 

computation time required by the PSO was significant, most of the computational expense 

(> 98%) was required by the LISFLOOD-FP simulations. Regardless of the model 

runtime, the PSO algorithm demonstrates promising potential to be adopted as an 

optimization method to solve the global optimal solution of nonlinear problems.  
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For future improvements, the performance of the PSO would be exponentially improved 

if the current code is modified to support parallel processing. For the GLUE algorithm, 

given the smooth response surface of the NSE objective function, it is likely that a similar 

response surface could be produced using fewer realisations of the LISFLOOD-FP. In 

addition, if the prior knowledge regarding uncertainty distribution of each model 

parameter is known, it could be incorporated to improve parameter sampling strategy in 

order to optimise numbers of model realisations. For example, as reported in Section 

6.2.2, the distribution of the behavioural channel and floodplain coefficients of the case 

study tend to follow a normal distribution with the mean value of 0.05. Given this 

information, sampling strategy in the GLUE methodology could be better designed to 

reduce the number of model realisations. However, such information is typically 

unknown, and hence requires preliminary assessment. 

 

6.3.2 Choices and Decisions on the implementation steps 

In terms of implementation, both the PSO and GLUE procedure required a number of 

decisions to be made in the selection of appropriate parameters or choices. The following 

sub-sections discuss the challenges faced during the implementation for both PSO and 

GLUE methods. 

 

6.3.2.1 PSO 

For the PSO, the values of parameter search spaces (boundaries), inertial weight, numbers 

of particles (swarm size) and maximum iteration were required during the pre-processing 

step. Once the PSO parameters were set, the algorithm was able to automatically 

determine the next position on the parameter spaces for each particle based on its own 

particle experiences and the global best position so far. The process is automated and 

continued until the convergence criterion, or the maximum iteration is reached without 

interruptions.  

 

In terms of choosing the parameters for the PSO algorithm, inertial weight (𝜔) and swarm 

size are the key parameters as they significantly influence the performance of the PSO. 

In short, the inertial weight controls the velocity of particle movements, hence it has a 

direct impact on exploration abilities of the swarm (Engelbrecht, 2007). Appropriate 

inertial weight and swarm size are problem dependent, so whilst large values of 𝜔 (high 
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velocity) facilitate the exploration of new territories in the parameter space, lower 𝜔 

values (low velocity) promote local exploration. The complex shape of the objective 

function requires an adaptive inertial weight and large swarm size to be less susceptible 

to being trapped in local minima/maxima (Engelbrecht, 2007). 

 

Based on the relatively smooth response surface of the objective function found in GLUE, 

the constant inertial weight value of 0.7 was deemed appropriate in this case, as the 

velocities decelerate toward zero to gradually promote local exploration as time increases. 

For a “rougher” response surface, an adaptive inertial weight would be more appropriate 

than a constant value. This is because, at the early phase of the optimisation process, 

larger values of the 𝜔 are required to facilitate exploration, while the 𝜔 values should be 

decreased gradually to refine the particle movements within promising regions during  

later phases. Furthermore, the maximum number of iterations (termination criterion) in 

this study was considerably limited by the LISFLOOD-FP run time. Although, the 

selected maximum iteration was relatively small (20 iterations), the PSO algorithm was 

able to locate the optimal region due to the smooth response surface of the objective 

function. 

 

6.3.2.2 GLUE 

As discussed in the previous chapter, implementing GLUE requires a number of 

subjective decisions ranging from selecting parameter ranges and distributions, through 

to sampling strategies and rejection criteria. Similar to the PSO, selecting feasible 

parameter ranges and distributions are required in the initial step, which could be 

approximate based on the prior knowledge of the system. However, for GLUE, the 

parameter space should wide enough that model good fits are not excluded (Beven, 2012). 

This is the essence of the GLUE methodology, which recognises the concept of 

equifinality, where the idea of single correct or optimal model is rejected (Beven & Freer, 

2001). In the work reported herein, three quarters of the simulations were rejected, which 

indicates that the selected parameter ranges were sufficiently wide to cover model good 

fit regions. In hindsight, channel manning coefficients between 0.01 and 0.02 could safely 

be excluded from the analysis as all the model performances in these regions were very 

poor. However, this information is problem independent and essentially remains 
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unknown until a preliminary assessment of the response surface is completed, which can 

be related to the choices of sampling strategies. 

Given that the computational expense of using LISFLOOD-FP in this case study is 

relatively high, selecting a sampling strategy was a key step as it was constrained by the 

model run time. Typically, the greater the complexity of the response surface, the greater 

the number of simulations required (Beven, 2012). To reflect the lack of prior knowledge 

of the parameter distributions in this study, a uniform independent sampling of parameters 

was adopted. Due to costly simulation of the LISFLOOD-FP, it is first better to 

preliminary access the response surface using a wide uniform grid sampling strategy. 

Then, a fine uniform grid can be assigned to concentrate in the regions of high likelihoods. 

Alternatively, Monte Carlo method is also a widely popular sampling strategy. After 

initial investigation of the response surface, a Monte Carlo technique, called “importance 

sampling”, could be applied to generate the sampling, which focuses on the high 

likelihood regions based on the prior knowledge in parameter distributions gained from 

the initial investigations. With importance sampling, model good fit regions will be 

assigned higher weight than those regions with poor model performances. Hence, there 

is more chance that the next sampling will be generated around the high likelihood 

regions. 

 

Selecting rejection criteria can be a challenging task, as this involves a subjective decision 

of what constitutes a behavioural model (Bates et al., 2004). The rejection criteria should 

be decided in conjunction with the choice of a likelihood measure, and Beven (2012) 

suggested that they should be determined by the nature of the prediction problem. If the 

interest is the accuracy of urban flood forecasting, a likelihood measure that takes account 

both flood extent as well as water level would be an appropriate choice. Herein, the 

performance of the LISFLOOD-FP was measured against the CS observations using the 

NSE. Although NSE values were determined based on flood depths, the spatial dimension 

in flood extent was also taken into account to some extent as CS observations are not 

stationary.  

 

Herein, the absolute NSE value of 0.6 was chosen as a threshold criterion to reject non-

behavioural simulations. Choosing the threshold value involves a high degree of 
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subjectivity as there is no clear-cut boundary. Beven (2006) suggested that the GLUE 

rejection criteria should be carefully selected based on the “limits of acceptability” 

approach. With this approach, the rejection criteria were set based on the acceptable 

limits, which is related to how much error is acceptable in the model predictions. To date, 

how best to decide an appropriate criterion of model acceptability is an active research 

area and remains an open question. 

 

6.3.3 Convergence and behavioural parameter sets 

In terms of convergence, the best parameter set found by the PSO algorithm was 

confirmed by the response surface form the GLUE methodology. However, at the 

maximum iteration (20th iteration), not all particles were converged to the same position 

in the parameter searching space. Instead, the overall performance of the PSO was 

gradually improved by searching around the small region where the best position was 

found. This is the case for a smooth response surface of the objective function, where the 

global best position can be found with a small swarm size (12 particles in this case) at a 

high convergence rate. For a complex response surface, a larger swarm size and more 

iterations are generally preferred as the convergence rate can be significantly lower as 

some particles can be trapped in local optima. Hence, more model realisations are 

required to allow the particles to explore and escape from local optima and prevent 

premature convergence of the algorithm. 

 

For the behavioural parameter sets, the range of the channel coefficients found in GLUE 

are in line with the empirical values suggested by Arcement and Schneider (1989) and 

Chow (1959). In the high NSE region, the channel coefficients are scattered between 

values of 0.04 and 0.06, which empirical studies characterise as a meandering river with 

moderate bed roughness and eroded side slopes. Nonetheless, the range of the floodplain 

roughness coefficients are slightly higher than expected compared with empirical studies. 

Given the relatively smooth surfaces found in urban environments (e.g. concrete roads), 

empirical data would point to low floodplain coefficients, between 0.015 and 0.030. 

However, both GLUE and the PSO analysis indicate that the floodplain coefficients 

should be in the range of 0.04 to 0.06 in order to maintain high model performances. As 

previously discussed, these differences are because the Manning values used in typical 

flood simulation models account for all types of energy losses, not just those related to 
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friction, as well as compensating for approximations, and should thus be considered 

effective coefficients. In addition, the optimal parameter ranges can be varied depending 

on the benchmarking data (observations), which is compared against the model 

predictions. Hunter et al. (2007) demonstrated that different type of observational data 

serves different purposes; for example, calibrating model performance with a satellite 

image does not test the ability of a model to simulate dynamic flooding whilst the spatially 

distributed model performance is not examined if observed water level time-series were 

used to calibrate the model.  

 

6.3.4 The probability flood map 

A major advantage of the GLUE methodology is an ability to estimate uncertainty in the 

model predictions given the source of uncertainty in model inputs. With the behavioural 

simulations, a map of spatial uncertainty in flood inundation predictions can be produced. 

The uncertainty flood map is particularly useful for flood risk studies as it provides a 

probability of an area being flooded. The quality of the probability flood map can be 

related back to how the rejection criteria were formed, as the probability of each cell being 

flooded is sensitive to the number of model realisations used to construct the uncertainty 

flood map. Clearly, high acceptance of error in model predictions allows less rejections 

of non-behavioural models. This results in higher variability of the probability in some 

sensitive areas as more model realisations are included and vice versa. Hence, the 

criterion to reject non-behavioural simulations has significant influence on the quality of 

the probability flood map. 

 

Apart from an absolute threshold applied in this study, some authors (e.g. Bates et al. 

(2004)) applied a fixed percentage of simulations from the full ensemble as a criterion to 

reject non-behavioural simulations. With this approach, the fuzziness of the 𝑃𝑖
𝑓𝑙𝑜𝑜𝑑

 is less 

sensitive to the number of model realisations used to construct the probability flood map 

(Bates et al., 2004). However, a question arises as to what percentage should be selected 

to ensure that unrealistic simulations are excluded from the analysis. Thus, irrespective 

of the approach employed, selection of an appropriate criterion requires a careful 

consideration as it influences on outcomes of the GLUE analysis. 
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With respect to the probability flood maps, it is important to note that predicted flood 

depth was not accounted for in their generation. Hence, predicted flood levels could be 

varied even though the 𝑃𝑖
𝑓𝑙𝑜𝑜𝑑

 were reported as high flooding probabilities, as the 𝑃𝑖
𝑓𝑙𝑜𝑜𝑑

 

was constructed based on binary pattern data of flood extent. Taking this into 

consideration, a series of aerial or satellite images might be a better choice for 

benchmarking the model performances in terms of generation of the probability flood 

map. However, such data is often unavailable during a flood event. 

 

6.4 Chapter summary 

This chapter presents, compares, and discusses results of parameter calibration and 

conditioning gained from the PSO and the GLUE methods, respectively. Overall, the 

global optimal position found by the PSO is confirmed by the response surface of the 

objective function in the GLUE methodology. 

 

Section 6.1 first reported the performance of the PSO algorithm in various aspects. 

Comparing with the GLUE methodology, the PSO algorithm required significantly longer 

computation time than the GLUE method due to the sequential model simulation 

requirements of the LISFLOOD-FP. Regardless of the LISFLOOD-FP run time, the PSO 

can converge all particles into the optimal region. However, more iterations are required 

in order to reach convergence at a single best solution. 

 

Section 6.2 provided a detailed description of the model conditioning using the GLUE 

methodology. With the 400 model realisations, 3D response surface of the objective 

function was constructed, which demonstrated a smooth surface throughout the parameter 

spaces. Then, the absolute NSE value of 0.6 was applied as a threshold to reject non-

behavioural simulations. In total, three fourths of the total simulations were rejected as 

non-behavioural models. The behavioural parameter sets were further analysed to access 

the distribution of each parameter. Lastly, the probabilistic flood maps were constructed 

based on the behavioural models to spatially illustrate uncertainty in flood predictions at 

different time scales. 

 

Section 6.3 discusses the performances and results gained from the PSO and GLUE 

methodologies in various aspects, including 1) computation time, 2) choices and 
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decisions on the implementation, 3) convergence and behavioural parameter sets and 4) 

the probability flood map. In overall, the findings indicate that the implementation of the 

GLUE involves more subjective decisions than the PSO, however the GLUE 

methodology allows greater flexibility in terms of user interactions during 

implementation. Although, implementing the PSO can be straightforward, choosing 

appropriate parameters is a challenging task as they can considerably influence the PSO 

performance.  

 

The behavioural parameter ranges gained from the GLUE analysis will be used to 

generate ensemble inputs for the EnKF in the next step.   
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CHAPTER 7: Assimilation of CS social media data in LISFLOOD-FP 

In this chapter, the results of applying different updating strategies to assimilate CS social 

media data in LISFLOOD-FP are presented and discussed. Section 7.1 details the 

rationale behind selecting five critical locations around Phetchaburi city to observe and 

present the evolution of flood forecast. Section 7.2 reports the performance of each 

updating strategy, whilst Section 7.3 discusses the performance of all updating strategies 

around three major topics, namely: the overall NSE performance for different updating 

strategies; the influence of global and local state update strategies on flood forecasting; 

and, the influence of upstream and downstream boundary update strategies on flood 

forecast. 

 

7.1 Observed locations 

To represent overall flood evolution and ease discussion, five important locations around 

Phetchaburi city were selected to observe water depth time-series (see Figure 7.1).  

Location I (Bandai-it Road) is a tourist attraction area where local shops and businesses 

are located, while location II (Phetkasem Road) is on a major road that connects 

Phetchaburi city to other surrounding cities; both of these locations represent areas in the 

middle of the study domain. Location III (Thasiri Temple) is close to the Phetchaburi 

River and the upstream boundary and, according to the disaster reports published by the 

Department of Disaster Prevention and Mitigation of Thailand, was one of the most flood 

affected areas during the 2017 flood event. Location IV (Pongsuriya Road) is in a densely 

populated area, close to the main river and the downstream boundary in the study domain. 

Finally, location V (Phumiruk Road) is in an area where no CS social media data was 

reported during the flood period, and it was selected to observe the more widespread 

impact of each updating strategy.  

 

7.2 Experimental Results 

This section reports the results of different updating strategies applied to assimilate 

Twitter data into LISFLOOD-FP using the EnKF scheme. An ensemble size of 100 was 

applied for all scenarios, and ensemble inputs were randomly generated based on pre-

defined parameter ranges, and were further verified with the NSE response surface gained 

from the GLUE analysis. Only the first 100 ensemble inputs that were qualified as 

behavioural parameter sets were considered in the EnKF analysis. 
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Observed 

location 
Name Description 

I Bandai It Road Tourist area with local shops & businesses 

II Phetkasem Road A major road to the Phetchaburi city 

III Thasiri Temple Most affected area during the 2017 flooding 

IV Pongsuriya Road Very populated area, close to the main river 

V Phumiruk Road Flood affected area with no twitter data 
 

Figure 7.1: Observed locations and descriptions. (Basemap: OpenStreetMap contributors. (2022); 

images I-IV: Twitter (2017) photos by @nuhkome, @nationphoto, @js100radio and @poonoi_kt, 

respectively; image V: Google Street View (2022)). 

  

Green dots and blue polygons represent Twitter locations and building 

footprints, correspondingly. 

I 

II 

III 

IV 

V 

I 

III 

IV 

II 

V 
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All of the experiments simulated a 5-day event, and were carried out using the HPC 

facilities by assigning a single CPU core per job to simulate each ensemble run 

simultaneously. Table 7.1 summarises and compares key performances of all updating 

strategies. 

 

Table 7.1: Summary of key results gained from each updating strategy. 

Experiment Update strategy Key results 

A Open loop 

- Reference results (no DA) 

- Ensemble mean forecast agrees with calibrated result 

- High uncertainty in flood forecast 

B Global state update - Inconsistency in flood-depth time-series forecast 

C Local state update 

- Impact of local state update localised to updating zone, but can 

spread to neighbouring DZs in later time steps 

- Suffers from short time span improvement 

D 
Local state and river cell 

update 
- Results similar to experiment C 

E 
Experiment C + upstream 

inflow boundary update 

- Generally, inflow boundary update leads to an over-estimation 

of model water level forecasts for upstream and mid-stream 

areas 

- Influence of inflow boundary update minimal in downstream 

areas as it is counter-balanced by downstream forcings at 

downstream boundary 

- About 10% of the ensemble run suffer from model instability 

(chequerboard oscillations) due to a sudden inflow change 

F 
Experiment C + downstream 

stage boundary update 

- Improved version of experiments C&D, with narrower 

ensemble spread for all observed locations. 

- Influence of downstream boundary minimal in upstream areas 

as it is counter-balanced by upstream forcings at the upstream 

boundary (mirror image of experiment E) 

G 
Experiment C + free flow 

downstream boundary 

- With less constraint on downstream boundary, high velocity 

flows at downstream boundary meant domain simply drained 

very quickly 

H 

Experiment C + combination 

of upstream inflow and 

downstream stage boundaries 

update 

- Fairly similar results to experiment E, in that inflow boundary 

update leads to an over-estimation of the model water level 

forecasts for the upstream and mid-stream areas 

 

Figures 7.2 to 7.6 illustrate water depth time-series for experiments A-H for the observed 

locations I, II, III, IV and V, respectively. In these figures, the green lines represent the 

100-ensemble water-depth forecasts, while the black line is the mean of the 100 ensemble 

results. The blue dotted line refers to the best result from the calibrated model parameter 

set achieved by the PSO algorithm. The filled light grey areas in experiments B-H, 

represent the ensemble spread of the experiment A in the case of no filter is applied (open 

loop), and it is included as a reference to compare the performances of different filters to 

those obtained from the open loop forecasts. 
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Observed Location I: Bandai It Road 

A 

 

B 

 

C&D 

 

E 

 

F 

 

G 

 

H 

 

Figure 7.2: Water depth forecast at the observed location I (Bandai It Road). Plot labels (A-H) refer to 

the corresponding update strategies (Table 7.1). For each plot, green lines are the forecast ensemble, 

black line is the mean forecast, blue dotted line is the best calibrated results from the PSO, and the filled 

grey area refers to the ensemble spread of the open loop runs (Experiment A), included as a reference.   
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Observed Location II: Phetkasem Road 
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F 

 

G 

 

H 

 

Figure 7.3: Water depth forecast at the observed location II (Phetkasem Road).  

Description as in Figure 7.2.  
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Observed Location III: Thasiri Temple 
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F 

 

G 

 

H 

 

Figure 7.4: Water depth forecast at the observed location III (Thasiri Temple). 

Description as in Figure 7.2.  
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Observed Location IV: Pongsuriya Road 
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Figure 7.5: Water depth forecast at the observed location IV (Pongsuriya Road).  

Description as in Figure 7.2.  
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Observed Location V: Phumiruk Road 
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Figure 7.6: Water depth forecast at the observed location V (Phumiruk Road).  

Description as in Figure 7.2.   
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Except for experiment A (open loop), the computational time was approximately at 30-

32 hours for all experiments (B-H). Experiment A only required 26 hours to complete the 

simulations, as its open loop nature meant it could continuously run without interruptions, 

whereas those involving DA (B-H) had to stop, update and restart to sequentially integrate 

the CS data into the model in the other experiments. The following sub-sections present 

results of each updating strategy. 

 

7.2.1 Experiment A (open loop) 

Overall, the water depth time-series of the ensemble mean (black line), and the calibrated 

result (blue dotted line) are in agreement over the observed time window for all of the 

observed locations. However, the forecast uncertainty of the open loop mode (represented 

by the ensemble spread) is relatively high, particularly during the flood peak period.  

 

Among the four observed locations, location IV demonstrates the lowest uncertainty 

(narrow ensemble spread) during the rising and falling limbs of the inflow hydrograph. 

This is due to the close proximity of this location to the river where overtopping occurs. 

The greater the distance to the river reach, the higher uncertainty in flood forecasts can 

be expected, as uncertain floodplain coefficients and topography have more influence on 

flood propagation in floodplain areas. This latter point is illustrated by the results for 

locations I and II, which both exhibit greater ensemble spread during the rising and failing 

limbs. 

 

In terms of the temporal dimension, the mean ensemble forecast at locations III and IV 

indicate that flood inundation began at about 12:00 and 14:00 of the 22nd of November 

2017, respectively. These findings are in line with the water level measurements at the 

Ban-Lat (upstream boundary) and Phetchaburi city (downstream boundary) stations, 

which indicate the bank overflowing at approximately similar times. For locations I and 

II, which are located further away from the river reach, the mean ensemble forecasts 

reveal that the flood water reached these locations at around 21:00 of the 22nd of 

November 2017. These results agree with CS social media data, with the first flood related 

image being tweeted just after the 22:00 from these areas. 
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7.2.2 Experiment B (global state update) 

Overall, the global state update leads to inconsistencies in forecasted water-depth time-

series for all five observed locations. Although, some parts of the ensemble mean are still 

within the open-loop ensemble spread (Experiment A), the model forecast suffers from 

sudden and inconsistent changes in water-depth time-series compared to the open loop 

run. The outcome gained form the global update strategy is far from what would be 

expected from a robust data assimilation system.  

 

With the global update strategy, all the wet cells in the study domain are simultaneously 

updated according to the increment gained from the EnKF analysis at the location where 

flood related images were tweeted. It is found that the state updates that came from the 

CS data located close to the observed areas are consistent with the LISFLOOD-FP 

forecasts, while the updates that were obtained from the CS data further away from the 

observed points are inconsistent with the model simulations. It seems that, for the global 

state update filter, the influence of the CS data is overestimated to update the water level 

at a significant distance away from the observed location. The outcomes of the global 

update strategy suggest that the correlations of flood water level between cells in 

floodplain area decrease at a rapid rate with the physical distance. 

 

7.2.3 Experiment C (local state update) 

Compared to the global update filter (Experiment B), the topography-based local state 

update strategy shows very promising results, as the results are consistent with the 

calibrated result (blue dotted line). A narrow ensemble spread of the model forecasts can 

be observed just after each analysis step, and the model forecasts are pulled back 

immediately at the analysis steps. In addition, in comparison with the open-loop ensemble 

spread, the improvement in the forecast ensemble spread can be detected from the first 

assimilation of the CS observation, especially during the rising limb of the hydrograph. 

This suggests that the sooner a CS observation is available and assimilated into the 

system, the better the model forecast can be achieved. 
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Location Experiment C (Local state update) 

I 

 

II 

 

III 

 

IV 

 

V 

 

Figure 7.7: Water depth forecast from the Experiment C (Local state update) at all five observed 

locations (I-V). Description as in Figure 7.2. 

Although, this local state update is able to significantly reduce model uncertainty 

immediately after a DA step, any improvement diminishes within 2-12 hours depending 

on observed locations. Considering Figure 7.7, model predictions at locations III and IV 

can be seen to rapidly reverse back to the open loop forecasts within a few hours, while 

the predictions at locations I and II take longer (approximately 10-15 hours) to revert 

back to the open loop forecasts. These findings indicate that improvements due to the 

assimilation also depends on the distance between the observed location and the model 

boundaries, as locations III and IV are close to the upstream and downstream boundaries 

respectively, whilst locations I and II are in the middle of the study domain, far from the 
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river reach and model boundaries. The reversion to the open loop forecasts indicates that 

the propagation of flood dynamic in the study domain is mainly influenced by the 

persistence of boundary conditions. 

 

Even though the influence of local state updates is mainly localised to the updating zone, 

the impact can spread to neighbouring depression zones in the following time steps. As 

an example, consider location V which has no flood related Twitter images reported 

within its DZ; a small ripple in water level forecasts can be observed compared to the 

relatively smooth open loop results, indicating that the impact of water state update 

applied at a neighbouring DZs cascading to DZs where no CS data is reported at 

subsequent time steps. However, it is clear that the improvement due to the cascading of 

flood to the neighbouring areas is minimal.   

 

7.2.4 Experiment D (local state and river cells update) 

The update configuration for experiment D was similar to experiment C except that the 

river cells were also updated along with the wet cells in the DZ, where the CS data were 

reported. Overall, the results of experiment D are similar to those of experiment C for all 

of the observed locations. Initially, it was expected that the impact of the river stage 

updating would spread to the DZs along the river faster than when updating only the cells 

within the DZs that the flood images were tweeted. However, the results reveal that there 

was no significant improvement in model forecasting due to the addition of river cell state 

updates. These findings suggest that the effect of the river cell update also becomes 

rapidly wiped out by the persistence of the boundary conditions, which governs the flow 

regime in the Phetchaburi River. Moreover, the majority of the water state updates were 

in the range of ± 40 centimetres, which is relatively small compared to the average depth 

of Phetchaburi River (approximately 5-7 metres). Hence, it is possible that the impact of 

the river cells state update is insignificant compared to the those impacts from the 

boundary conditions. 

 

7.2.5 Experiment E (local state update + upstream boundary update) 

To extend the short term impact on results, a combination of the local state and inflow 

update was introduced in experiment E. Instead of updating discharge data directly, the 

biases (magnitudes) applied to corrupt discharge time-series were corrected according to 
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the discrepancy between the CS observations and model predictions. In general, the 

inflow boundary update led to an over-estimation of the model water level forecasts for 

the upstream (location III) and mid-stream (location I, II and V) areas. Moreover, no 

improvement can be detected at location IV, close to the downstream boundary. This 

suggests that the influence of the inflow boundary update is limited to the upstream area 

and counter-balanced by the downstream forcings at the downstream boundary. For 

locations I, II, III and V (upstream and midstream areas), the forecasts from experiment 

E demonstrate an improvement during the rising limb of the hydrograph as the ensemble 

spread is narrower than that of the local state update alone. This is due to an early inflow 

update, in which the upstream boundary condition was corrected based on a Tweet during 

the early stage of the flood event. Figure 7.8 illustrates the evolution of the inflow biases 

and the inflow hydrograph along the sequential assimilation steps. As detailed previously, 

a persistence model has been assumed for the evolution of inflow bias (∝) during the 

forecast step, which means that the value of ∝ is constant in time and only updated at 

assimilation times.  

 

 

Figure 7.8: Evolution of the inflow hydrograph (above) and inflow biases (below) along the sequential 

assimilation steps. For the inflow hydrograph, blue lines are the inflow hydrograph ensemble, the 

black line is the mean of inflow hydrographs, the filled grey area is the ensemble spread and the grey 

line is the mean average of the inflow ensemble with no updates. For the inflow biases, the blue lines 

are the inflow bias ensemble and the black line is the mean of the inflow biases. 
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However, the inflow update strategy tends to overestimate the discharge values, 

especially during the peak of the hydrograph (high-flow conditions). These 

overestimations indicate that there is a high uncertainty associated with the rating curve 

at Ban-Lat station, probably induced by extrapolating the rating curve for high flow 

conditions. As the rating curve was used to translate the water level estimated from 

Twitter images into the corresponding upstream discharge, high uncertainties in this 

relationship were thus introduced into the system, especially during the flood peak. This 

is a typical issue of using a rating curve to estimate the river discharge under high flow 

conditions, because stage-discharge relationships tend to be derived and calibrated using 

river discharge measurement related to the “ordinary” quasi-steady flow conditions, and 

are then extrapolated to estimate river discharge for high flow conditions beyond the 

calibration range (Di Baldassarre & Montanari, 2009). This is the case for Ban-Lat station 

in which the rating curve tends to overestimate the river discharge under high flow 

conditions. 

 

The results also confirm that the impact of the inflow update requires some time to travel 

from the upstream boundary to take effect at the observed locations. For example, for 

locations I and II, the impact of the inflow update can be observed after the inflow biases 

were updated into the system, as significant changes in water level forecast can be 

detected after the assimilation time even though there is no new observation at the 

subsequent timesteps; in contrast, the results of experiment C&D demonstrated a 

smoother water level forecast at the same period. Moreover, the influence of the inflow 

boundary update can be seen to be global, in that its impact is not limited to the area/zone 

where the relevant Tweet was reported. This can be clearly seen with reference to location 

V where, despite the overestimation of flood levels during the flood peak period, the 

model predictions and their ensemble spread of water level were also influenced by the 

inflow boundary update even though this location has no flood-related Twitter reported 

within the area. 

 

Although, the combination of local state and inflow update demonstrates a promising 

outcome, it was found that the inflow update filter is prone to a sudden change of river 

discharge, which can cause model instability (chequerboard oscillations) in the 

LISFLOOD-FP outputs. Approximately 7-10% of the ensemble members suffered from 
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chequerboard oscillations, mostly at low channel Manning coefficient setups (< 0.035). 

The chequerboard oscillation started from cells in the main river and expanded to all river 

cells in the following time steps, resulting in unrealistic model forecasts. These unrealistic 

model forecasts can greatly hamper the robustness of the system, and it is thus necessary 

to monitor and detect model instability problems and exclude unstable runs from further 

analysis. 

 

7.2.6 Experiment F (local state update + downstream boundary update) 

Experiment F examined the performance of a combination of local state and downstream 

boundary update. In this experiment, the increments resulting from the analysis stage of 

the local state update were applied to correct the water level measurements at the 

downstream boundary. Figure 7.9 shows the evolution of the updated water level applied 

at the downstream boundary. Overall, the results of this experiment appear to be an 

improved version of experiments C&D, as they show a narrower ensemble spread for all 

observed locations, and the mean ensemble forecast is also in closer agreement with the 

calibrated simulation from the PSO. This first point is particularly apparent at locations 

I, II and V, all of which are located far from the river, where the spread of the ensemble 

forecasts is significantly narrower than those of the experiments C, D and E. The model 

forecasts at locations III and IV, which are located closer to the river, show a slight 

improvement in terms of the ensemble spread of the model forecasts. Taken together, 

these observations suggest that the downstream boundary update has a similar limitation 

as the upstream inflow update, in which its influence is counter-balanced by the inflow 

boundary, especially in areas along the river where water levels are mainly controlled by 

the river discharge. 
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Figure 7.9: Evolution of the updated water level applied at the downstream boundary. The blue lines 

are the downstream water level ensemble applied in the experiment F, and the black line is the 

downstream water level measurement at the Phetchaburi City station with no downstream update, 

included as a reference.  

7.2.7 Experiment G (local state update + freeflow downstream boundary) 

In experiment G, the update configuration is similar to that in experiment C, but the 

downstream boundary is switched from a time-varying water level measurement to a 

normal depth calculation (free flow). The free flow boundary was introduced to examine 

flood dynamics under a less restricted downstream boundary condition, as the outflow at 

the downstream boundary was not well confined within the river channel during the flood.  

 

The free flowing downstream boundary results in water levels rapidly decreasing at all of 

the observed points, except at location III which is located close to the upstream 

boundary. Although, the local state update was able to bring the forecasted levels back to 

those near the observed WL (CS data) at the assimilation times, the predicted levels again 

reduced sharply at subsequent model time steps. This scenario results from high velocity 

flows at the downstream boundary, as the outflow was allowed to leave the study domain 

freely according to the normal depth assumption. Therefore, although a narrow ensemble 

spread can be observed, the model predictions are far from reality, as predicted levels 

predictions are much less than those in the CS observations. In addition, in comparison 

with the calibrated simulation from the PSO, the flood extent generated using the free 

flow downstream boundary condition clearly underestimates the impact of the 2017 

Phetchaburi flooding, especially in downstream areas.  
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The influence of the free flow downstream boundary condition can also be seen to be less 

sensitive to the model predictions at observed location III, which is located in the 

upstream area, as the flood-depth predictions are fairly similar to the results obtained from 

experiments C & D.  

 

The very limited impact of the free flow downstream boundary condition at location III, 

in the upstream area, concurs with the results of experiment F (local state and downstream 

boundary update), and indicates that the influence of the downstream boundary update is 

cancelled out by the upstream boundary condition at the upstream areas. 

 

7.2.8 Experiment H (local state update + both upstream and downstream boundaries 

update) 

Experiment H is a combination of the: local state update, the upstream inflow update and 

the downstream stage boundary update. The water depth predictions at the observed 

locations in both upstream and midstream areas demonstrate an improvement in terms of 

ensemble spread at an early stage of the assimilation process. However, after a few model 

timesteps (3-4 hours), the model predictions tend to overestimate the flood level. This 

pattern is similar to the results of experiment E in which the uncertainty in the rating curve 

led to an overestimation of the updated inflow hydrographs during the flood peak. Even 

though water level measurements at the downstream boundary were also updated, the 

outcomes of experiment H remain similar to those from experiment E, in which the 

downstream boundary was not updated. This indicates that, for this particular scenario, 

the upstream inflow boundary update has a greater impact on the model forecasts than the 

downstream boundary update. This may be caused by a large degree of overestimation of 

the inflow hydrograph in which the rating curve is extrapolated to estimate river discharge 

beyond the calibration ranges. 

 

For location IV, in the downstream area, the effect of the inflow update is less significant, 

as the flood level forecasts of experiment H show little sign of the overestimation seen in 

the upstream and midstream areas. This again confirms that the influence of the boundary 

update strategies depends on the distance between observed locations and the updating 

boundary; the closer distance to the updating boundary the more impact to the model 

forecasts can be expected and vice versa. 
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7.3 Spatial plots 

7.3.1 The ensemble forecast error covariance matrix (P) 

This section reports the ensemble error covariance matrix (P), showing the updated 

forecast error covariance between WL at a particular point observed at the Location III 

(Thasiri Temple) and predicted WLs elsewhere (see Figure 7.10).  
 

 
(Experiment B) Global state update 

 
 (Experiment C) Local state update 

 
(Experiment E) Local state + upstream 

boundary (inflow) update 

 
(Experiment F) Local state + downstream 

boundary state update 

 
(100 x Cov) 

Figure 7.10: Updated error covariance between the state variable (WL) observed at the Location III 

(Thasiri Temple, red cross) and the state vector (WL) elsewhere at the time 20:00 (22 Nov 2017). 
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 (Experiment G) Local state update with 

freeflow downstream boundary condition 

 
(Experiment H) Local state + both upstream 

& downstream boundaries update 

 
(100 x Cov) 

Figure 7.10 (Cont.): Updated error covariance between the state variable (WL) observed at the 

Location III (Thasiri Temple, red cross) and the state vector (WL) elsewhere at the time 20:00            

(22 Nov 2017). 

Overall, the error covariance matrix (P) (Figure 7.10) of the global state update strategy 

(Experiment B) clearly demonstrates the spurious correlations over long spatial distances, 

where many distant WL predictions are highly correlated with the observation at the 

location III. This is the result of the global state update approach, which leads to 

unrealistic corrections of WLs throughout the domain. On the other hand, for the local 

state update strategies (Experiments C-H), the influence of the topography-based 

localisation leads to a different situation, where the WLs in the active depression zone 

(DZ) are highly correlated with the observation reported within the same zone. Whereas, 

at distant cells which are far from the active DZ, the spatial plots of error covariance 

matrix (P) demonstrate low correlation values.  In addition, one might notice that there 

are little pockets (small regions) of high correlation (purple) in the experiments C-H. By 

comparing the locations of these pockets with the topography data, it is found that these 

little pockets correspond to water bodies such as small ponds and swamps. This finding 

suggests that there is a strong correlation between the WL at the observed location and 

that at nearby water bodies in the study domain. 
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7.3.2 Analysis increments 

This section provides examples of the analysis increments (the difference between analysis and 

forecast), showing the effects of the different updating strategies. It is important to note that for 

this work, the EnKF analysis was only performed in scalar mode at the cells where the WLs were 

observed and the resulting increments were then applied to correct the WLs for all the wet cells 

throughout the domain (depending on the updating strategy used). Figure 7.11 illustrates the 

analysis increments applied to correct the WLs forecast at the time 20:00 on 22nd of November 

2017 for the updating strategies B, C and D, respectively. The top panel shows histogram of state 

increments for all the 100 ensemble members at the observed time. The bottom panel illustrates 

the spatial plots of the mean analysis increments for different updating strategies. 

 

Global state update  

(Experiment B) 

Local state update  

(Experiment C) 

Local state and river cells update 

(Experiment D) 
 

 

 

 

 

 

 

Mean analysis increment = -0.0326 m. 

 

Mean analysis increment = -0.0376 m. 

 

Mean analysis increment = -0.0366 m. 

 

Figure 7.11: Analysis increments applied to correct the WLs forecast at the time 20:00 on 

the 22nd of November 2017. The top panel shows histograms of the increments applied to 

correct the state variable for the updating strategies B, C and D, respectively. The bottom 
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panel shows the spatial plots of the mean analysis increments. Black star indicates the 

location of Twitter data at the assimilation time.   
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7.4 Discussion 

This section compares and discusses the performances and results gained from different 

updating strategies in three key aspects. First, the overall NSE performance of each model 

strategy is assessed and compared with the performance of the open loop strategy. 

Secondly, the influence of the global and local state update strategies to the improvement 

of the model forecasting skills are discussed. This section also compares the outcomes 

against similar published studies. Thirdly, the influence of upstream inflow and 

downstream state updates on flood forecasts are compared and discussed. It also pointed 

out the advantages and limitations of each updating strategy. 

 

7.4.1 Overall NSE performance for different updating strategies 

Overall NSE performance of model simulations for different updating strategies at all the 

observed locations are presented in Figure 7.12. The boxplots in Figure 7.12 represent the 

distribution of the NSE values for each updating strategy. Each boxplot contains 100 NSE 

values (< 100 for the experiment E and H due to the model instability), which were 

determined by comparing the flood depth forecast time-series of each ensemble member 

against the best calibrated forecast time-series obtained from the PSO analysis (referred 

to as the green lines and blue dotted lines in Figures 7.2-7.6, respectively). The perfect 

match between the model forecast and the calibrated result is indicated when the NSE 

value is equal to 1. 

 

As would be expected from the preceding discussion, the average NSE performance of 

experiment B (global update) and experiment G (free flow downstream boundary) are 

worse than the performance of the open loop run (Experiment A), as the majority of the 

boxplot appears in the low NSE regions. In contrast, improvement in terms of model 

forecasts can be seen in experiments C and D (local state update and local + river cell 

state update), and F (local state + downstream state update), as the boxplots are in the 

high NSE regions for all observed locations. Moreover, the interquartile range, which is 

the box range from the first quartile (Q1) to the third quartile (Q3), of experiments C&D 

and F are narrower than the open loop boxplot. This implies that the variance in the 

ensemble model forecast of the experiment C&D and F are lower than that in the open 

loop simulation.  
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Figure 7.12: Overall NSE performance of model simulations for different updating strategies. 

I II III IV V 
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Among all the filter configurations, the boxplots of the overall NSE performance shows 

that the combination of local state and downstream state update (experiment F) is the best 

updating strategy. It is the improved version of the local state update alone (experiments 

C&D) as the boxplot of the experiment F shows a narrow interquartile range (small box) 

and appears in higher NSE region compared to the boxplot of the other configurations for 

all observed locations. The improvement in experiment F over experiments C&D is due 

to the downstream state boundary update which extends the effect of the EnKF analysis 

in the model forecasting skills. 

In terms of experiment E (local state and upstream inflow boundary update) and H 

(combination of local state update, upstream and downstream boundary update), the 

overall NSE performances can be seen to depend significantly on the location of the 

observed points. The boxplot of the observed locations at the upstream (III) and 

midstream (I, II and V) areas demonstrate lower NSE performances than those NSE of 

the open loop simulations. This is primarily due to the overestimation of river discharge 

arising due to the extrapolation of the rating curve under high flow conditions. However, 

this overestimation is less apparent at the downstream location point (IV), where the 

boxplots of experiments E and H are similar to that of the open loop simulations 

(experiment A), reinforcing the concept that the influence of the inflow update is limited 

to a certain distance from the upstream boundary and is counter-balanced by the 

downstream forcing terms at the downstream boundary. 

 

7.4.2 Influence of state update strategies on flood forecast 

The global state update leads to inconsistencies in flood forecasts throughout the domain. 

It is obvious that this outcome is considerably short of what a robust data assimilation 

system would produce, indicating that the assumption that water levels in the entire 

domain are highly dependent, is not valid for this particular case study. The main reason 

for this shortcoming is that the influence of the point-based CS social media data is 

overestimated, which results in unrealistic WL update at cells that are distant from the 

observed location. Given the fact that the case study focuses on flood simulation in a 

small-scale urban area, local depressions and buildings can significantly influence the 

correlations of flood WL between cells, especially in floodplain areas. 
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On the other hand, the topography-based localisation technique demonstrates promising 

results as flood predictions are consistent with the calibrated simulation from the PSO 

analysis. Comparing to a typical domain localisation technique, which assumes the 

influence of the observation is limited to within some pre-defined cut-off radius or 

Euclidean distance from the observation, the topography-based localisation used herein 

is more physically meaningful, as local depressions in the topography are taken into 

accounted in the analysis to limit the influence of the observations within the pre-defined 

depression zones (DZs). 

 

In terms of model forecasting performance, the local update is more robust to outliers in 

the observations, as the influence of the state update is limited to the cells within the DZ 

in which the observations are located. However, the local update strategy alone suffers 

from both local and short-lived improvements. Firstly, even though the impact of local 

state updates can cascade to neighbouring DZs at subsequent timesteps, the influence is 

minimal. Secondly, whilst the uncertainty in flood forecast is immediately decreased at 

assimilation time, this is short-lived. Depending on location, any improvement diminishes 

within 2-12 hours. The problem of non-persistent model improvement has also been 

reported by other authors such as Andreadis et al. (2007); Cooper (2018, 2019); Hostache 

et al. (2018); Matgen et al. (2010), who conclude that model improvements due to the 

state update alone is limited by the persistence of the boundary conditions, which govern 

the flow regime.  This also explains the similarity between the results of experiments C 

and D, where the improvements related to state updating of river cells (experiment D) are 

rapidly wiped out by the persistence of the boundary conditions. 

 

7.4.3 Influence of boundary input update strategies on flood forecast 

To tackle the short-lived improvements associated with purely state updates, a 

combination of state and input updating has been examined and suggested by several 

authors (e.g. Giustarini et al. (2011); Hostache et al. (2018); Matgen et al. (2010); Neal et 

al. (2007)). Herein, experiments E to H investigated the improvements in the model 

forecasting skills by updating both state and boundary inputs using different 

configurations. Although the impact of a combination of state and boundary inputs update 

to the model forecast lasted longer than that of the state update alone, there are some 

important issues that need to be discussed.  
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Firstly, although longer-term model improvements can be achieved, the impact of the 

boundary input update requires a longer time to improve model forecasting compared to 

the local state update, which generally immediately enhances forecasts. This seems 

intuitive as the inflow hydrographs or downstream state measurements were altered 

according to the EnKF analysis and applied as updated inputs at the upstream/downstream 

boundary, hence any improvements due to the inflow update are expected to travel along 

with the flood dynamics to the observed points. As a result, the timing of the impact of 

the upstream boundary update will depend on flow velocities, whilst the timing of the 

downstream boundary update impact will depend on the extent of the backwater effect, 

which itself can delay the surface runoff and prolong the flood period. 

 

Secondly, the influence of the inflow boundary update is limited to the upstream and 

midstream areas, and is counter-balanced by the downstream forcings at the downstream 

boundary and vice versa. At locations far from the updating boundary, the improvement 

in model forecast is insignificant, as the water levels at any location are primarily 

influenced by the closest boundary condition. In addition to distance from boundaries, 

location relative to bank breach also plays a significant role in the extent and timing of 

boundary update impact, as the river channel itself acts as “fast track” to the bank breach 

and can hence cascade updates rapidly to nearby areas. 

 

Thirdly, in comparison with local state updates, the inflow update leads to an 

overestimation of the water level forecasts, especially for upstream and mid-stream areas. 

The overestimation in water level forecasts is caused primarily by high uncertainties 

associated with the rating curve applied to convert water levels into river discharges, 

particularly when extrapolated to estimate river discharge for high flow conditions during 

the flood. Di Baldassarre and Montanari (2009) showed that the uncertainty induced by 

the extrapolation of the rating curve beyond the measurement range dominates other 

errors in high flow conditions, with errors ranging from 6.2% - 42.8%, with an average 

value of 25.6%. Hence, errors in river discharge estimated by the rating curve under high 

flow conditions during a flood can be significant and can thus have a large impact on 

model forecasts. This is also the case for the rating curve at Ban-Lat station in which the 

overestimation in water level forecasts is induced by extrapolating the rating curve. 
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Fourthly, in contrast to the local state update, the impact of the boundary input update is 

global. Unlike the local update strategy, the impact of updating a boundary condition is 

not limited to the areas where the observations are located. This impact is partial global 

as it rather dependent on the influence of the boundary condition relative to the flood 

dynamics, i.e. impact of boundary update can be counter-balanced by the boundary at the 

other end of the study domain.  

 

In addition to its partial global nature, boundary updates occur with every single CS 

observation, and as a result related forecasts are highly dynamic and adaptive according 

to the CS observations. This is one of the main advantages of CS social media data over 

remote sensing observations, which exhibit far lower temporal resolutions. However, as 

outlined previously, CS data requires careful quality assessment to ensure outliers are not 

assimilated into the system, which can hamper the robustness of the boundary input 

update strategies. 

 

Finally, the inflow boundary update strategy is prone to the model instability due to a 

sudden change in the inflow hydrograph. The findings demonstrate that approximately 7-

10% of the total ensemble runs suffer from the chequerboard oscillations problem, as a 

small change in water level under high flow conditions can result in a large change in 

discharge value. This is because of the power-law relationship between river discharge 

and the river state of the rating curve. A sudden jump in inflow hydrograph may 

sometimes causes model instability in the LISFLOOD-FP, especially with the low 

Manning coefficient setups. To maintain robustness of the EnKF approach, it is essential 

to detect the ensemble runs that suffer from the chequerboard oscillation and exclude 

them from the analysis. 

 

7.5 Chapter summary 

This chapter presents, compares, and discusses results gained from different updating 

strategies applied to improve the model forecasting skills. Overall, the global state update 

strategy leads to inconsistency in flood forecasts throughout the domain. Whilst the local 

state update demonstrates an improvement in the water level forecasts immediately after 

the CS data is assimilated into the system. However, the local update strategy alone 

suffers from local and short-lived improvements.  
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To extend the short time-span improvements in the local update, a combination of local 

state and boundary update strategy was investigated. The outcomes of the inflow 

boundary update demonstrate an overestimation in water level forecasts for the upstream 

and mid-stream areas, which indicates that the rating curve applied to convert the water 

level into river discharge is associated with high uncertainty, especially under high flow 

conditions. Moreover, the model forecasts of both upstream and downstream boundary 

update strategies suggest that influence of the boundary update is limited to the areas 

close to the updating boundary and counter-balanced by the forcing terms at the other end 

of the domain. Additionally, it is found that some of the ensemble members 

(approximately 7-10%) suffered from the chequerboard oscillations in which mostly 

occurs at the low channel Manning coefficient setups. Hence, a monitoring system is 

required to detect and exclude the simulations that are instable from the analysis. 

 

Among all the filter configurations, boxplot of the overall NSE performance shows that 

the combination of local state and downstream state update is the best updating strategy. 

It is the improved version of the local state update alone as the boxplot shows a narrow 

interquartile range and appears in higher NSE region compared to the boxplot of the local 

state update filter for all observed locations. 

 

Next chapter will extensively compare and discuss the main findings of this thesis in the 

light of the existing literatures in the wider context.  
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CHAPTER 8: Discussion 

As outlined in the Introduction, the main purpose of this thesis was to investigate the 

feasibility of incorporating CS social media data into a flood inundation model, using a 

sequential DA approach to improve urban flood forecasting skills. Chapter 3 provided 

comprehensive details of the research methodology, while Chapter 4 briefly described the 

case study area, available data and implementation. Chapters 5-7 reported the results of 

the developed methodology applied to the case study, including quality assessment of CS 

social media data, model calibration and conditioning, and DA of CS social media data. 

In addition, key points regarding the findings of these individual topics were specifically 

discussed in the Chapters 5-7. This chapter draws together, discusses, and summarises 

the main findings in light of existing literature. The structure of this chapter follows the 

discussion framework illustrated in Figure 8.1. 

 

8.1 The role of CS social media data in flood management 

As previously discussed, the quality of CS data is a major concern that necessitates 

additional treatments in detecting outliers (Fogliaroni et al., 2018; Zheng et al., 2018); 

this is because CS data contributed by non-experts does not always comply with any 

quality standards due to the lack of centralised control over the creation process (Degrossi 

et al., 2018). Quality assessment thus becomes an important part of the process when 

making use of CS data. Frameworks for handling CS social media data and associated 

quality assessment methods should be developed and designed according to the intended 

use. This section compares and discusses the approach used in this thesis, alongside those 

presented in the literature, with a focus on different phases of flood management (i.e. 

preparedness, response, and recovery). 
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Figure 8.1: Discussion framework, related works and areas of improvement. 
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8.1.1 Preparedness (before flooding) 

In the preparing phase, reliable flood monitoring and detection systems are key to mitigate 

the impact of flooding. In-situ measurements are typically employed to automatically 

monitor and detect extreme rainfall and water levels. However, such systems are costly 

to operate and maintain in the long run (Revilla-Romero et al., 2016). To this end, social 

media crowdsourcing offers an alternative data collection method which can support 

traditional methods especially during disasters. For flood monitoring and detection 

purposes, providing timely information is imperative, and hence the development of 

crowdsourcing frameworks should focus on data mining processes to effectively monitor 

and detect social media posts regarding a flood event.  

 

Current data mining methods applied for monitoring and detecting floods from CS social 

media are mostly based on text-based analysis. This is because text-based social media 

data covers a significantly larger CS dataset than the approach utilised in this thesis in 

which only tweets with embedded images are used. This variation in approach is primarily 

due to the different aims of the various studies, where the ability to detect abnormalities 

in social media posts are key for flood monitoring and detecting purposes, while data 

accuracy and uncertainty are the key components of flood forecasting in DA schemes. 

 

To deal with large amount of text-based data, a machine learning-based semantic analysis 

is  widely employed to automatically interpret, filter, and extract the relevant information 

from text-based social media data. Smith et al. (2017) and de Bruijn et al. (2020) 

demonstrated the feasibility of applying automated semantic analysis to monitor and 

detect unusual text-based Tweets regarding the occurrence of pluvial floods. In agreement 

with the findings found in this thesis, both of these studies reported a high correlation 

between the number of tweets and flooding magnitude during events. This implies that it 

is feasible to detect urban flooding through monitoring real-time flood related 

tweets/posts.  

 

In addition to semantic analysis, spatiotemporal clustering analysis was also employed as 

the main quality indicator for CS social media data in the study by Smith et al. (2017). 

This is in line with the model coefficients of the BLR model reported in Chapter 5, which 

indicates that the spatiotemporal index is the most impactful quality indicator among the 
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predictor variables. This can be related to the First Law of Geography in which 

“Everything is related to everything else, but near things are more related than distant 

things” (Tobler, 1970). As a result, high-quality data can be expected if the geographic 

information provided by the CS data is consistent with what is already known in that 

location and surrounding area (Goodchild & Li, 2012). 

 

To this end, semantic analysis could be applicable to the proposed methodology in which 

the useful flood information such as estimated flood depth, flow direction and inundation 

location could be extracted and interpreted from text-based Tweets. This could 

significantly reduce the burden of manual interactions in the verification process. 

However, a robust quality assessment method would be required to deal with large 

numbers of irrelevant Tweets. 

 

8.1.2 Response (during flooding) 

For the response phase, accurate forecasting is crucial for identifying flood effected areas 

where emergency responses should be deployed. To predict flood evolution, information 

typically extracted from CS social media data are flood depth and geolocation. This 

information can then be intersected directly with topographic data (DEM), combined with 

other data sources (remote sensing), or assimilated into flood inundation models to 

monitor flood dynamics. However, text-based social media data alone is often insufficient 

to provide adequate details on both floodwater level and location. This is different from 

the information collected through the volunteered geographic information (VGI) 

approach in which the contributors are usually trained and aware of the project objectives 

(Senaratne et al., 2016), thus data completeness is not usually an issue. As a result, 

posts/tweets with embedded images are preferred if social media is utilised as data source 

for flood forecasting, as floodwater depth and location can be approximated from flood 

related images.  

 

However, the results in Chapter 5 highlighted that the extraction of flood related 

information from Twitter images requires some manual interventions. The fundamental 

cause of this is that there are currently no robust algorithms that can reliably estimate 

floodwater depth from arbitrary flood images gathered from social media, which can be 

taken from any angles ( variation in the field of view) with different image qualities 

( variation in the lens and cameras used). Moreover, due to the openness inherent in 
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the crowdsourcing approach, CS social media data can be in various forms and formats, 

and it is therefore difficult and expensive to develop a fully automatic system. To date, a 

number of methods have been developed to automatically classify and extract information 

from social media images (e.g. supervised machine learning), however the reliability and 

feasibility of such methods for operational flood forecasting remain questionable. 

 

The usefulness of CS social media data in assisting near real-time flood forecasting has 

been demonstrated in some studies. For instance, Fohringer et al. (2015) utilised images 

collected from social media platforms (Twitter and Flickr) for rapid flood inundation 

mapping in the city of Dresden, Germany. In addition, Rosser et al. (2017) presented a 

method for estimating flood inundation extent by fusing information extracted from 

geotagged images (Flickr) with satellite remote sensing data. In agreement with the 

approach followed in this thesis, both studies indicated that the process of extracting flood 

information (e.g. floodwater depth and geolocation) from social media images required 

some manual interventions.  

 

8.1.3 Recovery (after flooding) 

CS social media data can also play an important role in supporting post-disaster recovery 

in urban areas, primarily by helping to facilitate the dissemination of emergency 

information (Kongthon et al., 2012). Based on the case study presented in this thesis, it 

would appear that, although the number of flood related posts/tweets decreased in the 

aftermath of flood events, significant numbers of social media users were continuing to 

share flood-damage-related information. In combination with other forms of data, CS 

social media data can thus help pinpoint affected areas and accelerate the damage 

assessment process. Dashti et al. (2014) outlined how CS social media data (Twitter) was 

used to help plan and prioritise field visits to rapidly assess damage to key infrastructure 

damage (e.g. bridges, roads and buildings) following the 2013 flooding in Colorado, 

USA. The authors also suggested that pre-analysing lists of terms frequently used by the 

lay public to match the mission objectives would be advantageous, as appropriate 

keywords would help minimise the large number of irrelevant and low-quality 

posts/tweets. Apart from the post-disaster reconstruction services, CS social media can 

also be utilised to support the socioeconomic recovery of disaster victims in the form of 

relief packages (Ogie et al., 2022). A study by Zhang et al. (2021) for example, semantic 

analysis was applied in the aftermath of the 2013 Typhoon Haiyan (Philippines) to 
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analyse and categorise tweet massages into six types of needs (i.e. shelter, energy, food, 

clothing, medical, and water). The results were consistent with actual demand distribution 

which suggesting that CS social media data can be utilised to map the spatial distribution 

of the demand and organise the logistics of aid supplies in accordance with the needs of 

flood victims. 

8.2 Quality assessment methods for CS social media data 

To date, most quality assessment approaches for CS social media data are developed 

using intrinsic methods, in which the quality is assessed based on the evolution of the 

data itself (metadata) (Fogliaroni et al., 2018; Songchon et al., 2021). In contrast, extrinsic 

methods asses the quality of CS data by comparison against authoritative data or external 

knowledge (e.g. Haklay (2010)). However, it is typically not possible to access 

authoritative data in near real-time due to limited data availability and licensing 

restrictions (Antoniou & Skopeliti, 2015), and consequently an intrinsic approach is the 

preferred method for timely applications as it does not require external knowledge to 

access data quality (Criscuolo et al., 2016), and hence speeds up the assessment process.  

The quality assessment methods applied in this thesis (BLR and FLS) were developed 

based on an intrinsic approach in which the quality indicators were evolved from Tweet 

metadata. However, by basing quality indicators on Tweet metadata alone, both methods 

failed to correctly classify a small number of isolated Tweets. As the inclusion of 

historical flood maps as an external quality indicator led to better classification results, it 

is clear that external knowledge would be a beneficial addition to the developed 

approaches, albeit with a detrimental impact on timeliness. 

 

In terms of the BLR model, the coefficients of the model are in line with those reported 

in a similar study by Hung et al. (2016), who also applied a BLR model to assess the 

credibility of VGI collected during the 2011 and 2013 Brisbane flood in Australia. 

Specifically, Hung et al. (2016) reported a proportional relationship between distance to 

the nearest VGI and data quality, i.e. the greater the distance, the lower the possibility of 

a high-quality classification. This findings, and those from the work reported herein, 

confirms the use of crowdsourcing approach proposed by Goodchild and Li (2012) to 

validate an individual contribution using a group of contributors. 
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In addition to the type of BLR and FLS models developed in this study, Spinsanti and 

Ostermann (2013) proposed a scoring-based approach to assess the quality of social 

media content, whereby the scoring functions were based on literature reviews and 

discussions with experts. This is similar to the FLS model presented herein, in which the 

if-then rules were generated based on knowledge gained from observing the relationship 

between predictor variables and the verified outcomes in the training dataset. Hence, there 

is a need for model calibration to adjust scoring functions and if-then rules in the scoring-

based and FLS approaches, respectively. This is to reduce the degree of subjectivity in 

the implementation processes. 

 

Based on the results of the case study, it is clear that the main issue associated with CS 

social media data is the lack of quality assurance. This is partly because social media 

users are not aware of how flood related images published on social networks can be 

utilised to benefit the general public. Better communication of how individuals can 

contribute to mitigate the impacts of flooding through social media could potentially 

attract more, and better quality, relevant CS data. Such awareness raising, would help 

shift the level of participation and engagement in citizen science project from 

crowdsourcing (Level 1: Citizen as sensors) to distributed intelligence (Level 2: Citizens 

act as interpreters) (Haklay, 2013). 

 

8.3 Model conditioning & calibration 

This section compares and discusses issues regarding the implementation and the 

performance of GLUE and PSO algorithms in the light of relevant literatures. 

 

8.3.1 GLUE 

Whilst previous studies have highlighted the utility of traditional observations (flood 

extent and water level measurements) in constraining model predictions, this thesis has 

demonstrated that CS social media data also offers substantial potential for confining 

model parameter ranges. By comparing the results found in this thesis with those reported 

in relevant flood studies (e.g. Bates et al. (2004); Jung and Merwade (2012); Hunter et al. 

(2005a) and, Aronica et al. (2002)) the following key points can be highlighted: 

 

Firstly, although the optimal parameter set that corresponds to the maximum performance 

measure (NSE) is somewhat different from the values reported from empirical studies 
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(e.g. Chow (1959)), the range of behavioural parameters are well confined within 

reasonable ranges, and this finding parallels that of Horritt and Bates (2001b), who 

explored the LISFLOOD-FP model sensitivity to channel and floodplain specifications. 

The differences between the floodplain manning values gained from empirical studies 

and model calibration confirms the assumption that calibrated parameters should really 

be recognised as effective values. This is because some degree of simplified assumptions 

are assumed in all model codes to enhance model stability and reduce complexity, and 

hence all models are subject to a degree of structural error that is commonly compensated 

for by parameters calibration (Bates et al., 2014). 

 

Secondly, it is found that the model performance measure is more sensitive to channel 

rather than floodplain coefficients. This result is in line with that reported by others 

(Aronica et al. (2002); Bates et al. (2004); Horritt and Bates (2001b), who also reported 

greater sensitivity to effective channel coefficient for a raster-based model (LISFLOOD-

FP). As discussed previously, the main reason for this is that river depths, and hence the 

possibility of overtopping, are highly dependent on the channel coefficient, while 

floodplain parameters only become influential once overtopping has occurred. Although, 

it can be concluded that the LISFLOOD-FP results reported herein are consistent with 

previous studies and well-behaved with respect to calibration, and may not hold for other 

reaches with different flood characteristics and terrain data. 

 

Thirdly, apart from the Manning coefficients, the response surfaces indicate that the 

model performance measure is sensitive to inflow magnitude to a certain extent. This is 

consistent with the finding of Jung and Merwade (2012), who investigated uncertainty 

quantification in flood inundation mapping using GLUE. This is because the overall flood 

inundation process is mainly driven by the inflow and the uncertainty in the inflow is 

expected to add the maximum uncertainty among all other variables (Andreadis et al., 

2007; Jung & Merwade, 2012).  

 

Fourthly, compared to previous work which applied flood extent from satellite images or 

water level measurements from in-situ networks to measure model performance, the work 

reported herein showed that it is possible to utilise information extracted from social 

media to confine model behavioural parameters. Although CS social media data are point-

based (water level) observations, and thus cannot compete with the spatial resolution of 
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satellite-based earth observation, it can incorporate some element of flood extent through 

the spatial variation of CS locations. Given the difference in spatial and temporal 

resolutions to traditional observations, the outcomes presented herein demonstrate that it 

is feasible to assess model performance and quantify model uncertainty using 

observational data derived from social media. 

In terms of implementation, the main drawback of the GLUE methodology is the 

subjectivity involved in decision processes (e.g. sampling strategy and rejecting criteria). 

As a result, it is important to understand the significance of subjective assumptions made 

during the GLUE implementation, as such insights can help one make better decisions 

for specific scenarios. As mentioned earlier however, the subjectiveness inherent in the 

GLUE methodology remains an open-ended question and one which requires further 

investigations. 

 

8.3.2 PSO 

In contrast to the GLUE methodology, the PSO algorithm seeks to identify the optimal 

parameter set that best fits the validation data. This thesis utilised the PSO algorithm to 

compare and confirm the results obtained from the GLUE method. In light of the case 

study, there are three key points regarding the PSO algorithm that need to be emphasised. 

Firstly, although the results showed that the PSO was able to find global optimal solution, 

it relies on sequential simulations of the flood model, which greatly hampers the overall 

performance of the PSO with respect to computation time. Regardless of the model run 

time, the PSO code itself has potential as an optimisation solution method for nonlinear 

problems, especially for simplified models that require low computational resources. To 

this end, the full benefit of the PSO algorithm can be realised through the convergence of 

the global solution. In terms of improvement, it is suggested that the current PSO code 

should be extended to support parallel processing to accelerate the model runtime. 

 

Secondly, the use of PSO algorithm could be extended to search for the global solution 

in the case of the objective function has a large number of dimensions. This is the main 

advantage of the PSO in which it can be applied to deal with high dimensionality 

problems. In this study, for example, if a fourth variable is added to the existing three 

variables (i.e. channel and floodplain coefficients and inflow magnitude), the number of 

model realisations required to construct a response surface in the GLUE methodology 



   

 

201 

 

would grow exponentially. On the other hand, a number of studies have demonstrated 

that PSO algorithm can be effectively applied to calibrate multiple model variables, 

simultaneously. For instance, Yang et al. (2021) applied PSO algorithm with 1D HEC-

RAS to calibrate channel Manning coefficients for 313 river reaches (313 unknown 

variables) in Changshu City (China) using 20 particles with 400 iterations (8,000 model 

realisations). The simulation of each model realisation took ~5 seconds and the whole 

calibration process took approximately 12 hours. The results of calibrated channel 

coefficients were generally consistent with reality, although there were some irrational 

values at river reaches close to the boundary domain. This indicates the potential of the 

PSO to solve for an optimal set of parameters in high dimensionality problems. However, 

it does not eliminate the need for parallel computing to accelerate the model runtime in 

the case of 2D modelling. 

 

Thirdly, and similar to application of GLUE, it was found that the implementation of the 

PSO involves some subjective decisions, including the choice of parameter search spaces 

(boundaries), inertial weight, numbers of particles (swarm size) and maximum iterations. 

Although, the PSO algorithm is able to automatically determine the next position on the 

parameter spaces for each particle, based on its own past experience and the present global 

best position, choices have to be made during the pre-processing step which influence the 

performance of the PSO algorithm in finding optimal solution (Engelbrecht, 2007). The 

inertial weight (𝜔) for example, has a direct impact on exploration abilities of the swarm, 

hence the value of 𝜔 is particularly important to ensure convergent behaviour 

(Engelbrecht, 2007). It is thus important to understand the role of each parameter and 

make decisions that best fit the problem. 

 

8.4 DA for flood forecasting 

This section compares and discusses the use of CS social media data in DA analysis with 

reference to other research using different types of observations (remote sensing and in-

situ) and updating techniques to improve flood forecasting skills in various aspects. 

 

8.4.1 Model state update 

8.4.1.1 Global state update 

The results in Chapter 7 illustrate that the global state update leads to inconsistencies in 

flood forecasts throughout the study domain. This finding is consistent with the study by 
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García-Pintado et al. (2015), who also remarked on the unlikely outcomes of a global 

updating scheme. The authors concluded that, the global formulation leads to spurious 

correlations which have a dominant effect, which allows an observation to excessively 

influence the updating at a significant distance away from the observed location. This is 

also the case for the inconsistencies identified in this thesis which indicates that the 

correlation between flood depth decreases rapidly with physical distance on the 

floodplain. 

 

Interestingly, there is some previous research that reported acceptable results using the 

global state update procedure. Giustarini et al. (2011) compared the performance of global 

and local weighting procedures using a particle filter-based assimilation scheme in a 1D 

hydraulic model, and concluded that the global weighting procedure favours compromise 

solutions that provide acceptable results over the entire river reach, albeit with poor 

performance at many local levels. More recently, Jafarzadegan et al. (2021) also 

demonstrated a possibility of the global state update with the EnKF scheme to improve 

real-time flood inundation mapping using river water level measurements. Nevertheless, 

the characteristics of the observations used in both Giustarini et al. (2011) and 

Jafarzadegan et al. (2021) are fundamentally different to those of the CS social media 

data used in this case study. The main difference relates to the location of the observations 

used for analysis. Giustarini et al. (2011) assimilated satellite-based water level 

observations into a 1D river model, and Jafarzadegan et al. (2021) assimilated gauged 

water level observations into their model; these approaches clearly differ from the 

floodplain CS observations assimilated into the model described in this thesis.  

 

The approach followed by Jafarzadegan et al. (2021) also differs in terms of spatial 

resolution and scale. As they used a DEM with a relatively low spatial resolution (120-

metre) to simulate regional flooding in Texas. In such a scenario, the simulated water 

levels in the river cells may well be highly correlated with those cells in floodplain areas 

for large scale flood simulations. However, as has been illustrated in this thesis, this 

rationale does not necessarily hold at smaller scales and/or finer resolutions. With the 

type of medium resolution DEM (5-metre) employed herein, the complex detail of urban 

environments (e.g. roads, buildings, local depressions) can be better represented, and 

hence have more impact on local conditions; hence, it is possible that flood levels at some 
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disconnected floodplain areas are not correlated with those in river cells or floodplain 

areas that are distance away from the observations. 

 

8.4.1.2 Local state update 

To deal with the type of spurious correlations identified with global state updates, a 

localisation technique was investigated in the case study presented herein. In general, 

localisation is typically employed to mitigate the impact of under-sampling in which the 

ensemble size is too small to be statistically representative of the system (Petrie & Dance, 

2010). It also allows the methods to work with high-dimensional geophysical models, 

such as weather forecasting, ocean and river modelling (Kirchgessner et al., 2014). The 

fundamental principle behind the localisation concept is that dynamical systems can 

locally act like low-dimensional systems (Kirchgessner et al., 2014). Localisation can be 

either applied directly to the error covariance matrices, referred to as covariance 

localisation (CL), or applied independently to a series of disjoint local domains in 

physical space, referred to as domain localisation (DL) (Grimaldi et al., 2016).  

 

The technique employed in this thesis is the DL in which the WLs of cells within the pre-

defined areas (DZs), are corrected based on CS data within that DZ. The DL approach 

has also been adopted in various DA flood studies (Giustarini et al. (2011); Andreadis 

and Schumann (2014); García-Pintado et al. (2015)), albeit implemented with different 

types of observational data and techniques. This section compares the main findings 

obtained from this thesis with those reported in these relevant studies.   

 

Firstly, as reported in the Chapter 7, the results obtained from the topography-based 

localisation demonstrate that the improvement due to the local state update is essentially 

confined within the DZs where the CS data is reported. Even though, it can be observed 

that the water state update applied at an active DZ can cascade to the neighbouring DZs 

where no CS data is reported at subsequent time steps, the improvement due to the 

cascading is minimal. This conclusion is consistent with that made in the empirical study 

by Giustarini et al. (2011), who looked at the effectiveness of utilising a local weighting 

approach to integrate WL obtained from SAR observations into a 1D HEC-RAS using a 

particle filter (PF) scheme. Despite the use of different types of DA schemes and 

modelling approaches, the authors reported that the local weighting procedure produced 

a satisfactory result at a local level (at each cross-section in 1D model). 
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Secondly, the results obtained from experiments C (local state update) and  D (local state 

and river cells update) indicate that the positive impact of the local update strategy only 

last for a limited time (2-12 hours depending on the observed locations), and the 

timeseries of WL predictions quickly revert to the open-loop forecasts (Experiment A). 

This finding is in agreement to that reported in the work by Andreadis and Schumann 

(2014), who investigated the impact of assimilating partial (spatial) coverage of satellite 

observations (i.e. satellite image coverage does not coincide with the whole model 

domain) to estimate and correct the model state and inflow input boundary. The authors 

reported that, the partial (local) state update affects a river reach of a few km, while the 

persistence of the positive impact disappears after 1-7 days (a time step of 1 day was used) 

because of the influence of the boundary inflows. Another consistent result is that the 

persistence of the state update is dependent on the distance between the observed location 

and the model boundaries, in which the closer observed location to the upstream or 

downstream boundary means the shorter positive impact due to the state update, and vice 

versa. 

 

Thirdly, the localisation strategy used in this thesis clearly mitigated the impact of 

spurious correlations caused by the outliers in CS data compared to the global state update 

(experiment B), resulting in a more reliable system. CS social media data is typically 

associated with relatively high errors compared to data obtained from more established 

data collection methods (such as in-situ or remote sensing), hence the use of a localisation 

technique helps to minimise the impact of any CS social media data that may be highly 

uncertain, helping to maintain system robustness.  

 

This conclusion is in line with that drawn in the study by García-Pintado et al. (2015), 

who proposed a spatially-based filter localisation technique to assimilate WLs derived 

from a series of SAR images into LISFLOOD-FP. The along-network-based localisation 

is a novel approach developed by García-Pintado et al. (2015) in which the river network 

is taken into account to amend the observation error covariance matrices according to 

their along-network matric, i.e. the weight (influence) of local observation is decreased 

as a function of distance according to their novel along-network approach. This differs 

from the approach employed herein, where the weight function is spatially controlled by 

the pre-defined areas (DZs); it is constant within the observation DZ, and equal to zero 
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elsewhere. Despite the use of different localisation strategies, the outcomes are 

comparable in that the localisation procedures led to a robust situation with respect to 

outliers. 

 

8.4.2 Model boundary update 

The results in Chapter 7 clearly demonstrate that updating the model state (WL) alone 

suffers from short-life improvements due to the persistence of the boundary conditions. 

To deal with the issue, some authors have suggested a combination of both state and input 

updates to maintain the model forecasts on the right track for a longer time frame. To this 

end, a combination of 1) local model state and inflow discharge update and 2) local model 

state and downstream state update were implemented and evaluated based on the 

Phetchaburi case study. 

8.4.2.1 Inflow discharge update 

As illustrated in experiment E, the upstream inflow boundary update strategy leads to an 

overestimation of WL throughout the domain. There are two main reasons for this.  

 

Firstly, there is a weak correlation between the CS WLs observed in floodplain areas and 

the WLs at the input boundary. The approach utilised to update discharge information in 

this thesis assumed that there is a high correlation between WLs obtained from CS social 

media data and the inflow, however the results of the experiment E revealed that urban 

topography of the Phetchaburi city (e.g. man-made structures and local depressions) leads 

to a low correlation between WLs at the upstream boundary and those observed by 

crowdsourcing approach in floodplain areas. This issue is similar to that observed in the 

global update strategy, where the WLs obtained from CS social media data failed to 

correct model state at a significant distance away from the observed locations.  

 

Secondly, the overestimation in flood prediction may be caused by the rating curve, used 

to convert WL measurements into discharge data at Ban-Lat station. As previously 

discussed in Section 7.3.3, the rating curve at Ban-Lat station is typical of those used 

around the world in that it was developed from data collected during ordinary flow 

conditions, and extrapolated to estimate river discharge for high flow conditions. Hence, 

it is likely that the high errors associated with the rating curve at the Ban-Lat station cause 

the overestimation of the river discharge during the flood peak. This finding is consistent 
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with a similar study by Andreadis and Schumann (2014), who also investigated the 

performance of upstream inflow boundary update by indirectly relating flood width 

measurements (derived from SAR observations) with discharges at the upstream 

boundary using a power law. The authors reported that even though the assimilation of 

flood widths reduced errors in some discharge estimations, assimilating width 

observations (to update discharge at upstream boundary) tended to degrade forecast 

quality due to the complicated relationship between discharge and flood width 

measurement. This outcome implies that the errors associated with the relationships 

applied to indirectly estimate inflow discharge in both studies are significant, which result 

in degradation in the model forecasting skills.  

 

8.4.2.2 Downstream state update 

In addition to an upstream inflow boundary update, a combination of model state update 

and downstream boundary update is also possible. Experiment F adopted this approach 

by updating the downstream WL measurements according to the increments resulting 

from the analysis stage of the model stage update at the observed location. The results of 

the case study showed that this approach produced an improved outcome over those with 

different updating strategies. Overall, the mean ensemble forecast of WL time-series was 

consistent with that generated by the calibrated model from the PSO with a narrow 

ensemble spread.  

 

To further examine and compare the results, a model simulation of state update with a 

free flow downstream boundary (Experiment G) was also tested. Interestingly, the model 

prediction showed that the forecasted water level rapidly decreased for all of the observed 

points, as water quickly drained from the study domain. This result confirms the outcome 

of experiment F, which suggested that downstream backwater effect has a significant 

impact on flood forecasting in this case study and in other similar scenarios. This finding 

is in agreement with the outcome of the study by Madsen and Skotner (2005) who applied 

a harmonic error forecast model to correct error in downstream river WL measurement 

due to tidal variations. The authors demonstrated that the erroneous conditions imposed 

at the downstream boundary were effectively corrected by utilising the harmonic 

behaviour of the model error in the error forecast model. 
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The improved results due to the downstream state update in experiment F suggest that, 

although there are a number of unknowns which lead to simplifying assumptions in the 

model setup, the errors caused by these assumptions can be gradually mitigated by 

sequentially assimilating new information (observations) into the forecast system to pull 

the model forecasts back onto the right track.  

 

Finally, regardless of specific updating strategy, it is clear that failure to identify CS 

observations with large uncertainties can lead to degradation in the model forecast. This 

is a shortcoming in the EnKF scheme in which it tends to lose accuracy dramatically when 

the system encounters an unlikely observation that is inconsistent with the predictive 

distribution of the model (Vanden-Eijnden & Weare, 2013). In addition to the forecast 

degradation, in an extreme case an outlier can sometimes lead to model instability due to 

an abrupt shift in model inputs or parameters. As a result, quality control of the 

observations is crucial, especially for operational flood forecasting as it ensures system 

robustness. 

 

8.5 Guidance for the use of CS social media data in flood forecasting 

Given the results from the case study and the comparison with previous research, it is 

clear that CS social media data can be used to enhance flood forecasting. Based on the 

lesson learned from the Phetchaburi case study, this section provides practical guidance 

for the use of CS social media data to improve real-time flood forecasting system through 

DA schemes. It highlights common pitfalls and explains the implementation in general 

terms, so that other studies can follow and adapt the methodology to suit their specific 

requirements. 

 

The guidance for the implementation of the proposed methodology can be summarised 

into four sub-sections, including 1) Basic requirements 2) Dealing with CS social media 

data 3) Model conditioning and 4) the EnKF scheme. Figure 8.2 illustrates the four steps 

of the implementation guidance. 
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Figure 8.2: Guidance for the use of CS social media data in real-time flood forecasting. 

 

8.5.1 Basic requirements 

Prior to implementation, one should have access to suitable CS data sources. 

Demographics of social media users in the study domain should be assessed in order to 

identify appropriate data sources. In many cases, Twitter will be the most appropriate data 

source due to its global user base and news-centric policies. The Twitter API allows 

programmatic access to monitor real-time Tweets. To date, free access to the Twitter API 

is possible for academic researchers and non-commercial use (Twitter, 2022a). Apart 

from the access to data sources, gaining access to high performance computing (HPC) 

facilities is also highly recommended, as this will allow parallel simulation of ensemble 

members.  

 

8.5.2 Dealing with CS social media data 

Once the study domain, appropriate social media platform and hydraulic model are 

identified, the following steps should be followed: 
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1) Data mining: In this step, two types of keywords should be identified including 

flood-related and location-related keywords. The keywords should include all 

common languages used in the study domain (e.g. English and local languages). 

Location-related keywords, such as names of local roads and restaurants in the 

study domain, should be extracted from existing map databases. These keywords 

should be pre-identified, to help minimise the large number of irrelevant 

posts/tweets. In addition to keywords, the use of query operators (e.g. AND and 

OR), wildcards (e.g. an asterisk “*” and a question mark “?”) is also recommended 

to maximise search results. 

 

2) Approximating geolocation and data cleaning: As most users will disable the 

geolocation function, specific location-keywords previously extracted from the 

local map database, should be utilised to help identify geolocations, and hence 

minimise manual interventions. Geolocations for CS observations not identified 

via keywords will need to be manually identified by comparing CS images with 

suitable mapping applications, such as Google Street View. During manual 

operations, data cleaning should be carried out to identify irrelevant Tweets (e.g. 

duplicates or advertisements through trending hashtags).  

 

3) Data labelling: In this step, all forms of available flood evidence (e.g. satellite 

images, authoritative flood report) should be identified. Manual assessment is 

advised for CS data that fail to verify against the available flood evidence since 

some CS images may clearly show where flooding has occurred. 

 

4) Development of quality assessment model: A binary logistic model tends to offer 

the best balance between performance, subjectivity and useability. Prior to the 

development of a suitable model, the predictor variables used to represent the 

quality of CS data should be identified. As an intrinsic approach should be used 

for timely applications, the predictor variables should be selected based on 

available metadata. Statistical tests (multicollinearity analysis and likelihood ratio 

test) should be employed to assess intercorrelations and identify insignificant 

variables, correspondingly.  
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5) Estimation of flood depth and uncertainty: The informal nature of CS social 

media data means fully automatic extraction of floodwater depths images is 

currently not reliable. Flood depth for each Tweet must therefore be estimated, by 

referencing parts of submerged objects with dimensions of standard objects that 

appear in the flooding images. The uncertainty of the estimated flood depth is then 

referred to the uncertainty associated with the reference class.  

 

8.5.3 Model conditioning 

The following steps involve the implementation of model conditioning which employ to 

identify behavioural model parameter ranges. 

 

1) Sources of model uncertainty and uncertainty ranges: The most significant 

sources of uncertainty for the scenario under consideration should be identified, 

and initial ranges should be selected based on empirical studies. These ranges 

should be sufficiently wide enough to recognise good and bad fits of the model.  

 

2) Sampling strategy: If the cost of model realisation is high, an appropriate 

sampling strategy should be employed to reduce the numbers of model 

realisations required to construct a response surface of the objective function. A 

preliminary review of the response surface using a wide uniform grid sampling 

strategy should help identify regions of high likelihoods where a finer uniform 

grid or inform a Monte Carlo technique can be employed. 

 

3) Rejection criteria: Choosing rejection criteria can be difficult, as it involves 

subjectivity. Whilst there is little firm guidance, the availability of observational 

data in most real-world scenarios often limits the choice of rejection criteria. The 

threshold for behavioural models should be set based on the acceptable limits, 

which is related to how much error in model predictions is considered acceptable. 

 

8.5.4 The EnKF scheme 

The following steps explains the implementation of the EnKF. 

 

1) Ensemble generation: As the performance of the ensemble forecasts is highly 

correlated to the quality of the ensemble generation methods, particular attention 
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should be given to the method used to perturb the forcing data to generate 

ensemble inputs. Ensemble size will typically be a compromise between the flood 

model computational costs and the accuracy of the covariance estimation. 

 

2) Quality control: To ensure model stability, some form of quality control during 

the ensemble generation is recommended as extreme model inputs may cause 

model instability, and lead to a failure in the ensemble analysis. As an example, 

the GLUE methodology can be effectively employed to filter out extreme model 

inputs (non-behavioural models). 

 

3) Updating strategy: A local update strategy for model state is recommended over 

a global update strategy to limit the influence of any CS observation within a pre-

defined area. A topographic-based localisation method seems to be the most 

logical approach, though specific scenarios may warrant an alternative approach. 

In addition to state updating, some form of boundary updating will invariably be 

required to prolong the beneficial impact of any data assimilation. The precise 

form of any boundary update strategy will be scenario specific (e.g. flood 

characteristics, data availability, associated uncertainty, etc), and must account for 

inherent limitations; in particular, the extrapolation of rating curve data out with 

its calibration range may lead to significant problems with stage/discharge driven 

boundaries. 

 

8.6 The takeover of Twitter 

Recently, Elon Musk became Twitter’s owner after taking over the company on the 28th 

of October 2022 (Siddiqui & Dwoskin, 2022). The change of ownership could affect 

current operational rules and editorial policies (MacCarthy, 2022), which will invariably 

result in changes to the algorithms applied to monitor discussions and recommend 

relevant content on the platform. Although this may impact how sensitive and/or 

controversial information is dealt with, it is considered unlikely that such changes will 

impact the type of information used in the developed methodology presented herein. 
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8.7 Chapter summary 

This chapter compares and discusses the main findings with those from the relevant 

literatures in various aspects. The overall discussion framework is summarised and 

illustrated in the Figure 8.1.  

Section 8.1 discusses the role of CS social media data for urban flood management in 

three different stages including 1) preparedness 2) response and 3) recovery. Strengths 

and weaknesses of the approach used in this thesis and the approaches presented in the 

literatures were thoroughly discussed. Section 8.2 emphasises on the techniques and 

methods applied to assess CS social media data. Based on the unique characteristics of 

the CS data, it is suggested that the quality assessment should be constructed based upon 

intrinsic methods in which the quality is assessed based on the evolution of the data itself.  

 

Section 8.3 highlights the key findings with respect to the performance and the 

implementation of the GLUE and PSO algorithms, while Section 8.4 discusses and 

compares the results of applying CS social media data to improve flood forecasting 

system against those literatures using different types of observations (remote sensing and 

in-situ) and updating techniques to improve flood forecasting skills. Furthermore, based 

on the lesson learned from the case study, a practical guideline to facilitate the use of 

crowdsourced social media data for real-time flood forecasting was developed and 

presented in Section 8.5. Lastly, the impact of the recent taking over of Twitter is briefly 

discussed in Section 8.6. 
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CHAPTER 9: Conclusions and recommendations 

This thesis has sought to critically investigate ways to make use of CS social media data 

in a sequential DA approach to improve real-time urban flood inundation forecasting. The 

developed methodology was tested and used to simulate the 2017 Phetchaburi (Thailand) 

flood event through various DA updating strategies. This Chapter summarises the main 

findings, emphasises the core research contributions, present limitations of the research, 

and recommend opportunities for further research. These aim to stimulate thought and 

provoke discussion regarding the potential and future implications of CS social media 

data to improve urban flood management through DA approaches. 

 

9.1 Summary of the main findings 

9.1.1 Quality assessment of CS social media data 

Quality assessment is a necessary process to mitigate the significant uncertainties 

associated with information collected through a crowdsourcing approach. During the 

retrieving of relevant Twitter data, it is found that the quality of many preliminary Tweets 

was relatively poor. Significant numbers of retrieved Tweets were associated with non-

relevant contexts in which social media was used to reach large audiences for commercial 

purposes (i.e. trending keywords or hashtags were included in Tweet contents). It is to be 

expected that post from other social media platforms also suffer from similar issues. This 

indicates the need for a quality assessment method to further screen out non-relevant and 

low-quality data. In addition to irrelevant Tweets, data privacy concerns can also greatly 

hinder the quality of available CS social media data in terms of data completeness, which 

can necessitate additional processes to estimate the missing information (i.e. image 

location and flood depth). 

 

For quality assessment, the performance of the developed BLR and FLS models 

demonstrates the potential of the methodologies for assessing the quality level of CS 

social media data. The calibrated BLR coefficients shows that the spatiotemporal index 

(SI) is the most influential predictor variable on the data quality. This outcome reveals 

the strength of the crowdsourcing approach, which allows an intrinsic method to assess 

quality of information based on the evolution of the data itself. On the other hand, the 

high coefficient of the spatiotemporal index in the BLR model also comes with the 

downside, in which there is a high potential for isolated Tweets to be incorrectly classified 
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as low-quality data. The outcomes presented in Chapter 4 indicate that this problem can 

be alleviated to some extent by using a more flexible fuzzy logic approach, where the 

design of if-then rules and membership functions can be independently tailored to match 

the problem and allow better treatment of isolated Tweets.  

 

Notwithstanding the more nuanced treatment of isolated Tweets and marginally better 

overall performance, the implementation of the FLS model involves some degree of 

subjectivity in terms of deriving appropriate rules and membership functions. This is a 

commonly encountered issue of fuzzy-type approaches, and it means that the extracted 

rules and membership functions could be biased toward human heuristic (implicit bias), 

when assumptions are made based on beliefs and personal experiences. 

 

Another important issue regarding the implementation of the quality assessment models 

is the inevitability of manual interventions. This thesis has showed that, with existing 

knowledge and technology, some manual processes are required to accurately extract 

information from CS social media data. This is due to the lack of inbuilt quality assurance 

in the crowdsourcing approach which results in a large variety of formats, structures and 

qualities in information retrieved from social media.  

 

9.1.2 Model calibration and conditioning 

Model conditioning is a crucial pre-processing step to identify behavioural model 

parameter ranges in ensemble generation within the EnKF procedure, which allows the 

results of flood simulations to be confined within feasible regions. The GLUE procedure 

can be effectively applied to identify sensible parameter ranges that correspond to the 

behavioural models. Selecting the parameter ranges by purely relying on the empirical 

parameter ranges in literature may result in large uncertainties in flood simulation, as 

there is often a significant difference between empirical and effective parameter ranges. 

As such, the GLUE step can be regarded as quality control of the ensemble generation 

process within the EnKF procedure. 

 

In addition to the GLUE methodology, the PSO has shown potential as an optimisation 

solution method for nonlinear problems. Chapter 5 demonstrates that the PSO is capable 

of searching the optimal parameter set for the 2D flood inundation model. Although in 

this thesis, the overall runtime of the PSO in finding the optimal parameter set was 
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significant (30 days), most of the time (more than 98%) was required by the 2D 

LISFLOOD-FP simulations rather than the PSO itself. This indicates that there is an 

opportunity to adopt the PSO algorithm in 2D flood modelling if the code could be 

modified to support parallel processing. 

 

9.1.3 Sequential DA of CS social media data into a flood inundation model 

In this thesis, various strategies have investigated to assimilate CS social media 

observations into LISFLOOD-FP. It can be concluded that, with an appropriate approach, 

CS social media data can be utilised to improve flood forecasting performance through 

EnKF. There are several key findings that need to be highlighted regarding the use of CS 

social media data in the DA approach.  

 

First of all, it is clear that the global state update strategy suffers from inconsistencies in 

flood forecasts throughout the domain, primarily caused by spurious correlations that are 

not properly damped. On the other hand, the topography-based localisation strategy 

demonstrates encouraging results, as flood depth predictions are consistent with the 

calibrated simulation from the PSO analysis for all the observed points. The work 

reported herein also revealed that the local state update strategy is more robust to outliers 

in observations compared to the global state update strategy, as the influence of the state 

update is confined to cells within the DZ in which the observations are located. 

Notwithstanding these advantages, the state update strategy alone suffers the type of from 

short-lived improvements reported in literature. 

 

Secondly, strategies combining both state and boundary updates have longer persistent 

impacts than those relying solely on state updates. Any approach employing some form 

of boundary update can be considered to be partially global, as their influence is not 

restricted to the regions where the CS data is collected. Even though the results from the 

case study showed that the impacts of an inflow update tend to last longer compared to 

those from a local state update, the inflow update leads to an overestimation of the water 

level forecasts which actually degrades forecast performance. Whilst this resulted from 

the extrapolation of the rating curve beyond the calibration range at Ban-Lat station, and 

could thus be considered very case-study specific, such extrapolation is commonplace in 

gauging systems throughout the world, and similar results could be expected elsewhere. 
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This finding does indicate the complex relationship between water levels and discharge 

which requires extra care, especially during high flow periods. 

 

Thirdly, the results of the case study presented herein indicate that the upstream and 

downstream boundary conditions are more influential to the model predictions than the 

initial model state (WLs) specified at the start of a simulation. In fact, the influence of 

model state (WLs) applied at the start of a simulation (or at each assimilation step) does 

not last long (a few to 12 hours in this case), and it is rapidly wiped out by the boundary 

conditions. Hence, it is important to emphasise on uncertainty associated with the forcing 

terms at boundaries as they have a significant impact on flood wave propagation. 

 

Fourth, a few of the updating strategies showed that an inflow update strategy can be 

prone to model instabilities due to sudden changes in the inflow input hydrograph during 

the restarting processes in the DA procedure. The case study results demonstrate that a 

sudden jump in discharge time-series can sometimes cause the chequerboard oscillations 

problem in the LISFLOOD-FP, especially with low Manning coefficient setups. This 

instability issue can lead to the collapse of the variance within the EnKF approach, as too 

much weight is being assigned to the observations due to the high error in the background 

(flood) model. 

 

Finally, although the assimilation of CS social media data demonstrates encouraging 

results, adopting crowdsourcing approach in an operational flood forecasting requires 

further investigations in terms of task automation, as some of the processes currently call 

for manual operations. Despite the shortcoming in process automation, there is a potential 

of applying CS social media data to supplement the existing data collection methods 

which can be reinforced by the unique characteristics of the crowdsourcing approach. 

 

9.2 Thesis contributions 

9.2.1 Contributions to knowledge 

This thesis provides important empirical evidence that contributes to research on both 

crowdsourcing and DA. The primary contribution of this thesis is that it has demonstrated 

the potential of CS social media data to improve flood forecasting system through a DA 

technique. It has also identified strengths and weaknesses of using CS social media data 

for urban flood management through the lessons learned from the case study in Thailand. 
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Furthermore, it has contributed to the identified research gaps including: (1) the need for 

robust quality assessment methods to deal with quality issue in crowdsourcing-based 

data; (2) how CS social media data can be utilised to improve flood forecasting skills 

through DA approach; and, (3) the need for empirical study to better understand how real-

world CS social media data may be used for real-time flood forecasting. The thesis 

findings have also identified areas in need of improvement and additional research in the 

field. 

 

9.2.2 Contributions to policy 

This thesis has identified that the contribution of flood information through public social 

media can improve flood forecasting. However, the findings revealed that the use of CS 

social media is hampered by a general lack of quality assurance. To this end, there is a 

need for governments to promote and raise awareness of how flood related information 

published on social networks can be utilised to benefit the general public. Effective 

communication on this topic should help attract more contributors and significantly 

improve the quality of CS data. This could also minimise the workload requires for 

manual interventions as the missing information from the CS observation is less expected. 

With awareness raising among contributors, the level of participation and engagement in 

citizen science project will shift from crowdsourcing (Level 1: Citizen as sensors) to 

distributed intelligence (Level 2: Citizens act as interpreters).  

 

9.2.3 Contributions to practice 

Based on the case study presented herein, this thesis has identified the possible obstacles 

that one may encounter when putting the methodology into practice. Potential solutions 

were investigated and compared the results against those from the existing literatures, 

thus identifying areas that are in need of improvement. Practical guidance for the use of 

CS social media to improve real-time flood forecasting system was also developed. This 

guidance can assist practitioners to avoid possible pitfalls and determine how to make 

improvements to their methods. Even though the outcomes of this research on application 

of the developed methodology to one case study, they can serve as a guideline for those 

who want to explore the potential of CS social media data for disaster management. 
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9.3 Research limitations 

In order to maintain transparency and put the research findings in proper perspective, it 

is crucial to discuss the limitations of the current study.  

 

The first limitation relates to the representation of the urban topography of the 

Phetchaburi case study. In this thesis, a DEM resolution of 5 metres was utilised to 

represent the terrain of the study area, and this DEM was further modified to incorporate 

building footprints extracted from the aerial images. Despite this being the best available 

data, and typical of that available worldwide, the associated level of detail may not 

sufficiently high to distinguish small features, such as narrow alleyways. A failure to 

represent fine details in the DEM may result in errors in model predictions. However, 

such errors induced by the terrain representation in DEM are expected to be minor and 

local compared to the errors caused by those identified as major sources of model 

uncertainty (i.e. channel and floodplain Manning’s n values and inflow hydrograph). 

 

Secondly, to accelerate the model runtime, the simplified model LISFLOOD-FP was 

utilised to predict flood inundation. With a simplified approach, some terms in the full 

SWE are omitted; herein, LISFLOOD-FP used the acceleration solver in which all the 

terms in the full SWEs are included except for the convective acceleration term. The basis 

for this assumption is that the convective acceleration term is insignificant when 

compared to the other terms in the full SWEs (Abebe et al., 2016). This means that this 

type of simplified model is not suitable in situations involving highly unsteady complex 

flows, such as hydrodynamic shocks in dambreak or flash flood simulations (Néelz & 

Pender, 2013). As a result, by utilising the simplified model LISFLOOD-FP, the impact 

of hydraulic jumps and wake zones that may occur locally around buildings are ignored. 

However, the impact due to the use of simplified model in the case study is less expected 

due to the slowly varying flow conditions of the Phetchaburi flooding. 

 

Thirdly, there was probably a time lag between actual data collection time and Tweet 

time. This is one of the drawbacks of gathering observational data from social media as 

the information such as images of flooding may be collected on-site but not necessarily 

published in real-time. In this thesis, the published Tweet time embedded in the Tweet 

metadata was assumed to be the time that the image was taken, expect for those Tweets 

that specified the time the image was taken in the Tweet text. This time lag issue could 
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have an impact on the analysis, particularly in the early stages of floods when floodwater 

levels rise quickly. However, the influence of the time lag is expected to be minor because 

the quality assessment methods for CS social media data used herein take into account 

the temporal element in one of the predictor variables (spatiotemporal index). Thus, those 

Tweets with a large time lag will tends to be identified as low quality data and discarded 

from the analysis. 

 

In addition to the above limitations, there are also limitations related to certain decisions 

inherent in the developed methodology. Examples include the if-then rules in the FLS, 

the threshold for rejecting non-behavioural solutions in GLUE, and the user-defined 

parameters applied to specify the size of DZ in the topography-based localization 

technique. These subjective decisions could be biased toward human heuristic in which 

the decisions are made based on beliefs and personal experiences. In this study, trial and 

error was applied during initial investigation to understand the sensitivity between 

decisions and outcomes, in order to minimise the impact of subjectivity. However, a 

deeper sensitivity analysis might be required to gain a deeper understanding to better 

minimise the degree of subjectivity. 

 

Finally, there was a lack of traditional observations to validate the performance of the 

proposed methodology. In the case study, the calibrated flood simulation result gained 

from the PSO algorithm was utilised as “the truth” to compare with results from GLUE 

and DA. Although the lack of the sufficient traditional data necessitated such an approach, 

using the calibrated PSO simulation might contain biases and errors (e.g. initial conditions 

and setting up the model) compared to those from the observations (e.g. in-situ and remote 

sensing observations). 

 

9.4 Recommendations 

The work in this thesis has provided answers to the research problems posed in the 

introduction chapter. Based on the discussion framework illustrated in Figure 8.1, there 

are a number of areas in need of further research. These are summarised below. 

 

1) Automated Machine Learning. This thesis has identified that the extraction of 

flood related information from CS social media data requires some manual 

interventions, which greatly hinders the practical application of CS social media 
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data in terms of real-time flood forecasting. This issue calls for further research in 

the field of machine learning to develop a robust algorithm to automatically 

extract water levels from social media such as automatic image recognition and 

semantic analysis. 

 

2) Volunteer networks. The research outcomes have identified that the main reason 

for the lack of quality in data gathered from social media is the participatory 

openness. A solution to this is to raise awareness among social media users of 

how they can contribute during disasters. The CS social media approach should 

be extended to establish volunteer networks based on existing communities to 

overcome the data quality issue. For example, in Thailand, there are strong 

agricultural water user networks, called “Water User Groups” (WUG) which have 

been established in order to equitably allocate water to local farmers in irrigation 

networks. In 2014, there were 14,930 WUGs with 358,846 farmer members 

nationwide (Prakongsri & Santiboon, 2020). With appropriate tools and training, 

such networks can be transformed into VGI networks, which can provide high-

quality observations during a disaster. Moreover, by integrating existing VGI 

networks with CS social media data, the methodology could be extended to 

monitor floods in both rural and urban areas. To this end, it is recommended that 

future study should investigate how to more effectively establish and support 

volunteer networks. 

 

3) GLUE implementation. This research has demonstrated that the implementation 

of the GLUE methodology involves a significant degree of subjective decisions. 

Thus, it is recommended that future research should investigate the role of 

subjective selection in the GLUE methodology in quantifying uncertainty in flood 

modelling. Better understanding the role of subjectivity in GLUE should lead to 

more informed judgements that are tailored to a particular scenario. As a result, 

the uncertainty arising from making subjective decisions and assumptions can be 

minimised, hence enabling more appropriate uncertainty estimation. 

 

4) Parallelisation. The performance of the PSO algorithm used in this study is 

hampered considerably by the flood model runtime. Hence, to unlock the full 

potential of the PSO algorithm, it is suggested that future development should 
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focus on parallel processing for the PSO code. In addition to parallelisation, 

advanced techniques (e.g. random adjustment, linear and nonlinear decreasing and 

fuzzy adaptive inertia) which apply to evolve the value of inertia weight (𝜔) in 

order to improve speed of convergence and the quality of solutions found by the 

PSO should be further investigated.  

 

5) Localisation techniques. This thesis shows that a topography-based localisation 

technique can be effectively applied to represent the error covariance matrix. It is 

however assumed that the weight is constant within the DZ in which the 

observation is located. Future work should be undertaken to relax this assumption, 

to allow the influence of point-based observations to decrease as a function of 

their distance from the observed cells toward the boundary cells within DZ.  

 

6) Inflow discharge updating techniques. It is clear that the technique used to 

update inflow discharge in this thesis led to degradation of flood forecasting 

performance. Hence, it would be worthwhile to explore the performance of 

different inflow updating techniques. For example, instead of using the WL 

measurements at the upstream as the model boundary condition, a different 

scenario could be set up by using input flow forecast from a hydrologic model and 

assimilate the input flows from the real gauge observations to correct the 

estimated inflow and its uncertainty according to the EnKF approach.  

 

7) Combination of observations. The findings have indicated that due to the 

limitation in data quality, CS social media data should be utilised as 

supplementary data to support more established observations rather, than as a 

stand-alone observation in DA approaches. To this end, it is recommended that 

further research should focus on assimilating CS social media data in conjunction 

with different types of observations (e.g. remote sensing and gauge observations). 

Such studies would provide concrete evidence and contribute the current 

understanding regarding the role of CS social media data to support urban flood 

management. 

 

8) Extension of case study. Although his thesis has demonstrated that it is possible 

to adopted CS social media data to improve flood forecasting, this conclusion was 
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drawn based on results from a case study. Therefore, it would be interesting to 

investigate the performance of the proposed methodology in different case study 

locations. As well as further validating the developed methodology, this additional 

work would also be particularly useful in determining the impact of ensemble size 

and DZ size to overall performance. 
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Appendix 1: Time series analysis 

 

Appendix 1A: Time series analysis of the 2017 (above) and 2018 (below) flood 

events (adopted from Songchon et al. (2021)). 
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Appendix 2: Flood extent extraction from a Landsat 8 image 

This section briefly explains how the flood extent was extract from a Landsat-8 image, 

which was used to verify quality classes in the labelling process. For the 2017 flood event, 

surface water extent was extracted from a Landsat-8 image, which passed over 

Phetchaburi city (path 129, row 51) on the 25th November 2017. The image was collected 

from the United States Geological Survey (USGS) EarthExplorer data portal 

(https://earthexplorer.usgs.gov/). In this study, the Semi-Automatic Classification Plugin 

(SCP) for QGIS (Congedo, 2020) was adopted to pre-process the Landsat 8 Level-1 data 

by converting the Digital Numbers (DNs) into Top Of Atmosphere (TOA) reflectance. 

Furthermore, the panchromatic sharpening technique was also applied to improve image 

visualisation by merging high-resolution detail from panchromatic image (band 8) with 

lower resolution multispectral image to create pan-sharpened imagery. Additional pre-

processes involved band stacking and re-projecting the image to WGS84/UTM zone 47N. 

 

A straightforward and effective approach to extract flood extent is to apply water indices 

to distinguish water and non-water areas. To date, many water indices have been 

developed to extract water bodies or flood water extent. The first generation of water 

indices is the Normalised Difference Water Index (NDWI), which was introduced by 

McFeeters (1996). However, the main drawback of the NDWI is that the signal from 

built-up surfaces is not efficiently suppressed (Xu, 2006), which tends to overestimate 

water extent in urban areas. Therefore, Xu (2006) proposed a modified version of 

McFeeters’s NDWI, called “Modified Normalized Difference Water Index” (MNDWI), 

which replaces the Near Infrared (NIR) band in NDWI with the Short-wave Infrared 

(SWIR) band (See Table 1A below for multiband water indices). The MNDWI has been 

recognised as one of the most reliable and robust indices to distinguish water and non-

water area over urban areas (Feyisa et al., 2014; Huang et al., 2018), and it was adopted 

to extract water extent from the Landsat 8 image for the case study.  

Table 1A: Multiband water indices (adopted from Songchon et al. (2021)). 

Water indices Equations Sources 

NDWI (Green − NIR) / (Green + NIR) (McFeeters, 1996) 

Modified NDWI (Green – SWIR) / (Green + SWIR) (Xu, 2006) 

 

https://earthexplorer.usgs.gov/
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Once the MNDWI was calculated, an appropriate threshold value was required to 

distinguish water and non-water areas. To determine the threshold value, one hundred 

points from different geolocations over the study area were randomly selected, and 

manual verification was performed to determine whether the pixel location was in a dry 

or flooded area based on the pan-sharpened images (See Figure 1A (a,b and c) below for 

True colour composite (RGB = 432), False colour composite (RGB = 643) and MNDWI 

map, respectively. Then, an optimal threshold value was searched using a trial-and-error 

technique, with 0 as the initial threshold value. The threshold value that produced the best 

performance in terms of overall accuracy to distinguish water from non-water areas was 

assigned as the optimal threshold value. With the described method, the optimal threshold 

value of -0.310 was found with an overall accuracy of 84.0%. The water extent was then 

applied to verify the binary quality levels using the labelling procedure previously 

described. 
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(a) 

 
(b) 

 
(c) 

Figure 1A: (a) True colour composite (RGB = 432) (b) False colour composite (RGB = 643) and    

(c) Modified NDWI of Landsat-8 image over the study area (adapted from Songchon et al. (2021)). 
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Appendix 3: Results of Likelihood Ratio Test 

 

1st Iteration: 

Model 1: 4 input variables (variable name in column (*) indicates omitted variable) 

Model 2: All 5 input variables are included (Log Likelihood = -73.946) 

Excluded Variable (*) 
Log 

Likelihood 

Likelihood 

Ratio (G) 

P-Value of Chi-

Square Statistic  

(ν =1) 

Outside 

Significant 

Value 

X1: Retweet ratio -80.319 12.745 0.0004 - 

X2: Spatiotemporal index -75.959 4.026 0.044 - 

X3: Distance to the nearest neighbour -77.317 6.742 0.009 - 

X4: Flood risk zone -79.392 10.892 0.001 - 

X5: Distance to the nearest river -75.502 3.112 0.078 P-value (>0.05) 

     
 

2nd Iteration: 

Model 1: 3 input variables (variable name in column (*) indicates omitted variable) 

Model 2: 4 input variables are included (Except: X5) (Log Likelihood = -75.502) 

Excluded Variable (*) 
Log 

Likelihood 

Likelihood 

Ratio 

P-Value of Chi-

Square Statistic  

(ν =1) 

Outside 

Significant 

Value 

X1: Retweet ratio -83.274 15.543 0.0001 - 

X2: Spatiotemporal index -77.606 4.207 0.040 - 

X3: Distance to the nearest neighbour -80.800 10.595 0.001 - 

X4: Flood risk zone -80.834 10.664 0.001 - 
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Appendix 4: Tyre size of best-selling vehicles in Thailand 

 

Appendix 4A: Tyre size of best-selling sedan cars in 2019 based on numbers of new 

vehicle registration in Thailand (Sources: DLT (2019)). 

Sedan cars 

Brand Model Tyre Width  
(mm) 

percent Rim 
(mm) 

Sidewall 
(mm) 

Diameter 
(mm) 

Toyota Yaris 175/65R14 175 65 14 113.75 583.1   
185/60R15 185 60 15 111 603   
185/65R15 185 65 15 120.25 621.5   
195/50R16 195 50 16 97.5 601.4  

Vios 175/65R14 175 65 14 113.75 583.1   
185/55R15 185 55 15 101.75 584.5   
185/60R15 185 60 15 111 603   
195/50R16 195 50 16 97.5 601.4   
205/45R16 205 45 16 92.25 590.9  

Altis 185/65R14 185 65 14 120.25 596.1   
185/70R14 185 70 14 129.5 614.6   
195/60R15 195 60 15 117 615   
195/65R15 195 65 15 126.75 634.5   
205/55R16 205 55 16 112.75 631.9   
215/45R17 215 45 17 96.75 625.3  

Camry 195/60R15 195 60 15 117 615   
205/65R15 205 65 15 133.25 647.5   
205/65R16 205 65 16 133.25 672.9   
215/60R16 215 60 16 129 664.4   
215/55R17 215 55 17 118.25 668.3   
235/45R18 235 45 18 105.75 668.7 

HONDA Accord 185/70R14 185 70 14 129.5 614.6   
195/60R15 195 60 15 117 615   
195/65R15 195 65 15 126.75 634.5   
205/60R16 205 60 16 123 652.4   
215R60R16 215 60 16 129 664.4   
225R50R17 225 50 17 112.5 656.8   
235/45R18 235 45 18 105.75 668.7  

BRIO 175/65R14 175 65 14 113.75 583.1  
AMAZE 175/65R14 175 65 14 113.75 583.1  
JAZZ 175/65R14 175 65 14 113.75 583.1   

175/65R15 175 65 15 113.75 608.5   
185/55R15 185 55 15 101.75 584.5   
185/55R16 185 55 16 101.75 609.9 
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Appendix 4A (continue) 

Brand Model Tyre Width 
(mm) 

percent Rim 
(mm) 

Sidewall 
(mm) 

Diameter 
(mm) 

HONDA CIVIC 185/65R14 185 65 14 120.25 596.1   
185/65R15 185 65 15 120.25 621.5   
185/70R13 185 70 13 129.5 589.2   
185/70R14 185 70 14 129.5 614.6   
195/60R15 195 60 15 117 615   
195/65R15 195 65 15 126.75 634.5   
205/55R16 205 55 16 112.75 631.9   
215/45R17 215 45 17 96.75 625.3   
215/50R17 215 50 17 107.5 646.8   
225/40R18 225 40 18 90 637.2   
215/55R16 215 55 16 118.25 642.9  

CITY 165/80R13 165 80 13 132 594.2   
175/65R14 175 65 14 113.75 583.1   
175/65R15 175 65 15 113.75 608.5   
175/70R13 175 70 13 122.5 575.2   
185/55R15 185 55 15 101.75 584.5   
185/55R16 185 55 16 101.75 609.9   
185/60R14 185 60 14 111 577.6   
185/60R15 185 60 15 111 603 
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Appendix 4B: Tyre size of best-selling pickup trucks in 2019 based on numbers of 

new vehicle registration in Thailand. (Sources: DLT (2019)) 

Pickup trucks 

Brand Model Tyre 
Width 
(mm) 

percent 
Rim 

(mm) 
Sidewall 

(mm) 
Diameter 

(mm) 

Toyota Fortuner 265/70R16 265 70 16 185.5 777.4   
265/65R17 265 65 17 172.25 776.3   
265/60R18 265 60 18 159 775.2  

C-HR 215/60R17 215 60 17 129 689.8  
HILUX 205/70R15 205 70 15 143.5 668   

215/65R16 215 65 16 139.75 685.9   
265/65/R17 265 65 17 172.25 776.3   
265/60R18 265 60 18 159 775.2 

ISUZU D-MAX 215/70R15 215 70 15 150.5 682   
215/70R16 215 70 16 150.5 707.4   
245/70R16 245 70 16 171.5 749.4   
255/60R18 255 60 18 153 763.2   
265/60R18 265 60 18 159 775.2   
265/50R20 265 50 20 132.5 773  

MU-X 245/70R16 245 70 16 171.5 749.4   
255/60R18 255 60 18 153 763.2   
255/65R17 255 65 17 165.75 763.3   
265/60R18 265 60 18 159 775.2   
265/50R20 265 50 20 132.5 773  

MU-7 245/70R16 245 70 16 171.5 749.4 

HONDA CR-V 205/70R15 205 70 15 143.5 668   
215/65R16 215 65 16 139.75 685.9   
225/65R17 225 65 17 146.25 724.3   
235/60R18 235 60 18 141 739.2   
235/65R17 235 65 17 152.75 737.3  

HRV 215/55R17 215 55 17 118.25 668.3   
215/60R17 215 60 17 129 689.8   
225/50R18 225 50 18 112.5 682.2 
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Appendix 4C: Tyre size of best-selling motorcycles in 2019 based on numbers of 

new vehicle registration in Thailand. (Sources: DLT (2019)) 

Motorcycle 

Brand Model Tyre Width 
(mm) 

percent Rim 
(mm) 

Diameter 
(mm) 

HONDA CLICK 125i 90/90-14 TL 90 90 14 517.6 

 CLICK-I, ICON 80/90-14 NR73T 80 90 14 499.6 

 DREAM 125 70/90-17 NR70 70 90 17 557.8 

 MSX 125 SF 130/70-12 M/C 56L 130 70 12 486.8 

 PCX 125 i 100/90-14 SS-560R/TL 100 90 14 535.6 

 PCX 150 100/90-14 TL 100 90 14 535.6 

 SCOOPY i 90/90-14 NR73T 90 90 14 517.6 

 WAVE 100,125 70/90-17 NR70 70 90 17 557.8 

 WAVE 110i,  
AT WAVE 110i, 
DREAM 110i,  
WAVE 125i 

80/90-17 NR78 80 90 17 575.8 

 ZOOMER X,  
MOOVE 

110/90-12 110 90 12 502.8 

KAWASAKI D-TRACKER 150 120/80R14M/C 120 80 14 547.6 

 KSR 110 100/90-12 MB99 T/L 100 90 12 484.8 

SUZUKI BURGMAN 130/70-12 130 70 12 486.8 

 HAYATE 125 80/90-16 NR76D 80 90 16 550.4 

 JELATO 125 80/90-14 SS-5 80 90 14 499.6 

 KATANA 125 80/90-17 NR77 80 90 17 575.8 

 LET 80/90-14 80 90 14 499.6 

 RAIDER 150 R FL 80/90-17 80 90 17 575.8 

 SHOGUN 125 70/90-17 NR70 70 90 17 557.8 

 SKYDRIVE 80/90-14 80 90 14 499.6 

 SMASH 2017 70/90-17 70 90 17 557.8 

 SMASH FI 80/90-17 80 90 17 575.8 

 SMASH Revolution 70/90-17 NR78 70 90 17 557.8 

 STEP 125,  
SKY DRIVE 125 

80/90-14 NR77T 80 90 14 499.6 

YAMAHA FINO 80/90-14 NR76A 80 90 14 499.6 

 MIO 115 80/90-14 NR76A 80 90 14 499.6 

 MIO 125 90/80-14 NR76A 90 80 14 499.6 

 NOUVO ELEGANCE 80/90-16 NR76 T/L 80 90 16 550.4 

 NOUVO MX 80/90-16 NR76 80 90 16 550.4 
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Journal Paper 1:  

Quality Assessment of Crowdsourced Social Media Data for Urban Flood 

Management3 

 

Abstract 

Urban flooding can cause widespread devastation in terms of loss of life and damage to 

property. As such, monitoring urban flood evolution is crucial in identifying the most 

affected areas, where emergency response resources should be directed. Flood monitoring 

through airborne or satellite remote sensing is often limited due to weather conditions and 

urban topography. In contrast, crowdsourced data is not affected by weather or 

topography, and they hence offer great potential for urban flood monitoring through real-

time information shared by individuals. Despite the benefits, there is no guarantee of 

quality associated with crowdsourced data, which hampers its usability. In this paper, we 

present and evaluate two different approaches (binary logistic regression and fuzzy logic) 

to assess the quality of crowdsourced social media data retrieved from the public Twitter 

archive. Input variables were constructed based on Twitter metadata and spatiotemporal 

analysis. Both models were trained and tested using actual flood-related information 

Tweeted during three consecutive years of flooding in Phetchaburi City, Thailand (2016 

to 2018), and produced good results. The fuzzy logic approach is shown to perform better, 

however its implementation involves significantly more subjectivity. The ability to assess 

data quality enables the uncertainty associated with crowdsourced social media data to be 

estimated, which allows this type of data to supplement conventional observations, and 

hence improve flood management activities. 

Keywords: Crowdsourcing, social media, data quality, logistic regression, fuzzy logic 

 

 

3 This work has been published in the Computers, Environment and Urban Systems (Songchon, C., 

Wright, G., & Beevers, L. (2021). Quality assessment of crowdsourced social media data for urban flood 

management. Computers, Environment and Urban Systems, 90, 101690. 

doi:https://doi.org/10.1016/j.compenvurbsys.2021.101690). 
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1. Introduction 

Floods are the most common natural hazard that occur globally, and severe floods can 

cause significant casualties, property damage and economic losses. Approximately, 19% 

of the world population (1.47 billion people) are directly exposed to substantial risks from 

1-in-100 year flood events, and the majority of flood exposed people are located in South 

and East Asia (Rentschler & Salhab, 2020). During a flood event, observations play an 

important role in locating and monitoring inundated areas where emergency resources 

should be deployed. Typically, in-situ measurements are used to monitor flood dynamics, 

however the scarcity of data in both spatial and temporal domains is a major problem for 

these traditional data types (Mazzoleni, 2016). Understanding the dynamics of the flood 

wave as it moves through any exposed area (urban or rural) can help to manage the 

impacts during a flood (i.e. through allocating first responders) as well as assist learning 

for future hazards. Over the past two decades, remote sensing has been increasingly 

recognised as a potential source of data that can be exploited for flood monitoring and 

modelling (Bates, 2012), by picking up spatial and temporal information. Nonetheless, 

during a flood, only limited numbers of medium-high resolution satellite images are 

typically available to capture the necessary data. Thus, remote sensing products are 

subjected to a trade-off between spatial and temporal resolutions and other uncertainties, 

such as cloud cover in optical remote sensing and speckle noise in radar images 

(Pulvirenti et al., 2011; Schumann and Moller, 2015). 

Recent rapid technological improvements mean that smartphones with embedded low-

cost sensor and Assisted Global Positioning System (A-GPS) are affordable in most parts 

of the world (WMO, 2017). Together with social media platforms, information is 

seamlessly spread online in near real time. These improvements offer a new approach to 

data collection, commonly referred to as crowdsourcing (Zheng et al., 2018). Combining 

crowdsourcing with social media platforms, high resolution spatial and temporal 

information can be achieved through individual contributions, which offer information 

not currently available from traditional observations. Examples of successful case studies 

using crowdsourced social media during natural disasters include the 2016 Jakarta floods 

(Ogie et al., 2019), the 2014 Oxford floods (Rosser et al., 2017), the 2013 Colorado floods 

(Dashti et al., 2014) and the 2011 Thailand floods (Kongthon et al., 2012). 
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Despite the benefits, crowdsourced data suffer from data quality issues (Goodchild & Li, 

2012; See, 2019; Zheng et al., 2018), and uncertainty regarding the quality of data is often 

cited as a major obstacle to the more widespread use of crowdsourced data (Bott & 

Young, 2012). Therefore, assessing the quality of crowdsourced data is a clear challenge 

that can significantly improve their usefulness. To this end, the aim of the work presented 

in this paper was to develop models to assess the quality of crowdsourced social media 

data for flood management applications.  

2. Related Work 

Over the past decade, a number of studies have been undertaken to investigate the utility of 

crowdsourced social media data for various types of natural disasters. Ostermann & Spinsanti 

(2012) reported a successful case study on the early detection of forest fires in Europe by 

analysing social media content. The authors proposed a scoring function to filter relevant 

information and performed spatiotemporal clustering to detect potential areas of forest fire. 

Similarly, Aulov et al. (2014) developed a platform for the collection and analysis of social 

media data, called AsonMaps, designed to assist emergency responders by monitoring 

heterogeneous social media for content related to natural disasters. AsonMaps was tested 

against the 2012 Hurricane Sandy using social media data from Twitter and Instagram. More 

recently, Smith et al. (2017) proposed a framework capable of monitoring and detecting a 

storm event and rainfall from real-time Twitter data. Information extracted from Tweet 

messages was integrated with a hydrodynamic model based on semantic term and identified 

location to identify flood-affected areas.  

While crowdsourced data presents great potential for data collection, quality is a major 

concern, as there is no “inbuilt” quality assurance in crowdsourced data (Goodchild and 

Glennon, 2010). Therefore, there is a clear need for methods to assess the quality of 

crowdsourced data. In general, there are two approaches to assess data quality. The first 

approach refers to quality-as-accuracy (Hung et al, 2016), where crowdsourced data is 

compared to authoritative data (Haklay, 2010), which assumed to represent the truth. 

However, this approach requires access to authoritative data, which may not be possible due 

to limited data availability and licensing restrictions (Antoniou and Skopeliti, 2015; 

Fogliaroni et al., 2018). The second approach refers to quality-as-creditability (Hung et al, 

2016), where data quality is assessed based on the crowdsourced data itself (Fogliaroni et al., 

2018), hence removing the need for authoritative data. This approach is regarded as an 
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indirect method, where a proxy measure of crowdsourced data quality is referred to as data 

credibility and trustworthiness (Fogliaroni et al., 2018; Spielman, 2014). 

A number of methodologies for creditability assessment have been developed to assess the 

quality of crowdsourced data. Goodchild & Li (2012) and Haklay et al. (2013) suggested the 

use of Linus’s Law, which refers to the ability of the crowd to converge on the truth, to 

validate and correct volunteered geographic information (VGI) and crowdsourced data. 

Additionally, trust and reputation of contributors have also been applied to indicate quality of 

VGI and crowdsourced data (Fogliaroni et al., 2018; Leal et al., 2017). Regarding flood 

applications, Hung et al. (2016) proposed a logistic regression model built on spatial pattern 

analysis to assess the creditability of VGI data collected during the 2011 and 2013 Brisbane 

floods. Rosser et al. (2017) also highlighted the use of probabilistic models by applying a 

Bayesian statistical model to estimate the likelihood of flood inundation using weights-of-

evidence analysis to combine crowdsourced social media data with a satellite image.  

This study aims to investigate and compare the performance of two methodologies, a logistic 

regression model and a fuzzy logic system (FLS), for assessing the creditability of Twitter 

data. Although regression analysis has been widely applied for quality assessment of 

crowdsourced data, only a limited number of studies have explored the potential of FLS to 

the same application. In addition, previous work in this field has typically focussed on higher 

level data collecting methods, such as VGI, where quality assurance can be established. Thus, 

the novelty of this work is the development of two different approaches to assess the quality 

of crowdsourced social media data using a real case study. The paper also contributes to 

ongoing discussions regarding the possibilities and challenges of exploiting crowdsourced 

social media data during disasters.  

3. Study Area  

The city of Phetchaburi, Thailand was selected as the study area. Phetchaburi urban area 

is located along the Phetchaburi River, which originates from Tanaosri Mountain, with a 

combination of creeks and streams in the upper Phetchaburi sub-catchment (Panin, 2008). 

The river then joins with the Mae-Prachan tributary before running through the 

Phetchaburi urban area and flowing into the gulf of Thailand (Fig. 1 left). The wet 

monsoon typically runs from May to September, bringing precipitation throughout the 

catchment area, especially in the upstream area. In extreme cases, heavy rainfall in the 
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upstream area generates a large amount of excess surface runoff, which causes severe 

flooding in the Phetchaburi urban area.  

The Phetchaburi urban area suffered from three consecutive years of fluvial flooding between 

2016 and 2018. During these flood events, there was a significant increase in posting and 

sharing of flood-related content on social media, including large numbers of flood images. 

Fig. 1 (right) illustrates the spatial distribution of flood-related images Tweeted during the 

flood events. Apart from individuals, social media platforms, such as Facebook and Twitter, 

were also used by government agencies for communication and emergency aid distribution. 

 

Fig. 1 Location of the study area within Phetchaburi catchment, Thailand (left) and the spatial pattern 

of the flood-related images Tweeted during the flood events (2016-2018) (right). Data was overlaid on 

Thailand national flood risk map (Digital Government Development Agency, 2020) and the ESRI online 

basemaps (Esri (Thailand), 2020). 

4. Methodology 

4.1 General modelling approach 

Demographically, the most popular social media platforms in Thailand are Facebook, 

Twitter and Instagram. However, among these platforms only Twitter allows public 

content to be searched and retrieved from its archive through the Application 

Programming Interfaces (APIs). Thus, in this work, Twitter was used as a source of 

crowdsourced social media data.  
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To assess the quality of crowdsourced social media data, two types of classification 

methods were considered, namely logistic regression and fuzzy logic. Both methods have 

potential to be adopted to assess the quality of Twitter data, however they differ in their 

basic concept and implementation. Logistic regression relies on weights assigned to 

independent variables determined during training processes, while fuzzy logic systems 

construct a set of if-then rules formulated from prior knowledge or experience (Kayacan 

and Khanesar, 2016). In this study, both methods were developed and trained using 

crowdsourced social media data Tweeted during the flood events which occurred in 2016 

and 2018 in Phetchaburi. The performance of both models was tested against an unseen 

dataset from a 2017 flood event. A schematic diagram of the research methodology is 

illustrated in Fig. 2. Although, the methodology is intended to be completely automated, 

manual intervention is unavoidable in some steps. 

The remainder of this Section is structured as follows. Section 4.2 introduces the data 

mining strategy applied to extract relevant content from Twitter, whilst Section 4.3 

describes how the geolocation of Twitter data is determined. In section 4.4, the procedure 

developed to assign quality labels for each Tweet is explained, and the development of 

the logistic regression and fuzzy logic approaches are described in Sections 4.5 and 4.6, 

respectively. 

 

Fig. 2 Overall research methodology. 

4.2 Social media data mining and analysis 

The Twitter API platform allows all public posts to be recovered based on applied filters 

(keywords, hashtags, specified date, locations, languages, etc.). Two categories of query 

keywords were applied to search for flood related Tweets. The first category was flood 

related keywords, such as floods, overflow and inundation, while the second category 

was location related keywords, designed to match Tweets relevant to the study area. 

Although Tweets with geolocation data were preferred, most users disable this option due 
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to privacy reasons, thus location related keywords were introduced to filter relevant 

spatial information.  

To automatically specify location keywords, names and their associated locations were 

pulled from two map databases and applied as location keywords. The two map databases 

used in this study were OpenStreetMap (OSM) and local Geographic Information 

Systems (GIS) data provided by the Phetchaburi municipality. For OSM, all values from 

5 keys (amenity, tourism, leisure, highway and railway) were exported from the study 

area. For the local GIS database, all feature names in the Thai language were exported. 

In total, 434 and 385 names and associated locations were pulled from the OSM and local 

GIS databases, respectively. The names were applied as location keywords, while the 

feature types and locations were used to identify Tweet geolocation in the next step. 

To account for typing errors, wildcards (an asterisk “*” and a question mark “?”) were 

applied to maximise search results. In addition to the keywords, query operators (“-

is:retweet”, “has:images” and “has:links”) were also applied to retrieve original Tweets 

that contain embedded images or links. This was to filter out false positive or irrelevant 

information from plain text Tweets.  

In total, 3,286 original Tweets with embedded images were retrieved from 676 Twitter 

accounts during the flood events from 2016 to 2018 (See Table A.1 in Appendix A for 

results retrieved from Twitter by flood events). As would be expected, time series analysis 

shows that the number of Tweets per day corresponded with observed water levels during 

the flood peak period. Fig. 3 shows time series of daily Tweet frequency and water level 

observed at the centre of Phetchaburi city during the 2016 flood event (See Fig. A.1 in 

Appendix A for time-series analysis of the 2017 and 2018 flood events). 

  



   

 

239 

 

 

Fig. 3 Time series analysis of the 2016 flood event. 

4.3 Extracting information from Tweet metadata 

In addition to Tweet texts and images, metadata of each Tweet is also accessible through 

Twitter’s API. This metadata contains additional information, such as number of retweets 

and followers, Tweet ID, username and geolocation (if enabled). It was found that very 

few Twitter users enable the geolocation option (21 out of 676 users) to allow exact 

location to be reported in Tweet’s metadata, and thus the coordinate location of each 

image was determined based on the Tweet message and the surrounding environment 

apparent in the Tweet image. Although, manual inspection of Tweet messages and images 

would provide more accurate geolocation, the method is intended to be automated to be 

applicable for real-time data gathering during an actual flood event. Thus, the geolocation 

was approximated from the feature locations (point, polyline, and polygon) previously 

exported along with the location keywords.  This is a straightforward procedure for point 

features (e.g. schools and restaurants), where the geolocation of the Tweet image is 

assigned as the same location of the point feature specified in the OSM or the GIS data. 

For polyline features with a length less than 0.5 kilometre (e.g. alleys) and polygon 

features with an area less than 0.25 square kilometre (e.g. recreation parks), the midpoint 

of the polyline and centroid of the polygon were assigned as the image location, 

accordingly. For long polylines (length ≥ 0.5 kilometre, e.g. main roads) and large 

polygons (area ≥ 0.25 square kilometre), the geolocation of images were manually 

determined by comparing Tweet images with Google Street View (Google, n.d.). Fig. 4 

shows examples of flood images classified in each feature type. 

Before applying the above procedure to identify Tweet locations, a data cleaning process 

was required to filter out duplicate Tweets or those with irrelevant flood contents, such 
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as advertisements through trending hashtags (Tweets that contain flood keywords but are 

attached to product advertisement images). After the data cleaning process, 2,792 Tweets 

(85%) were excluded from the dataset, while the remaining 494 (15%) Tweets were 

further analysed for image geolocations. By matching Tweet text with the names 

extracted from the map databases, the procedure was able to automatically identify 308 

Tweet geolocations. The remaining 186 Tweets were manually geolocated using Google 

Street View. 

   

 

 

 

Phetchaburi Police Station Kiri-Ratthaya Road 
Phetchaburi Vocational 

Education College 

Feature type: Point Feature type: Long Polyline Feature type: Large Polygon 

Fig. 4 Examples of Tweet images classified in each feature type.  

(Basemap data: ©OpenStreetMap contributors). 

4.4 Labelling data quality classes 

To train and test the model, the 494 flood relevant Tweets needed to be labelled with 

associated quality classes. In this study, we defined two quality labels, namely high-

quality and low-quality. Based on available information, the following steps were 

followed for data labelling; 

1. Tweet geolocations were overlayed on the flood extent derived from satellite data. 

If Tweet location was located in the flood extent, a high-quality label was 

assigned. For this study, Landsat-8 was able to acquire a flood image over the 

Phetchaburi city with only 25% land cloud cover during the 2017 flood event. 

Although, satellite images were also available during the 2016 and 2018 flood 

events, most of the study area was covered with clouds (> 90%). Thus, additional 

flood evidence was required for labelling the Tweets collected from the 2016 and 

2018 flood events. 

Phetchaburi 

Police station 
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2. Apart from satellite observations, authoritative flood reports were also used to 

label the quality of flood-related Tweets. Location keywords found in Tweet text 

were checked with a list of flood affected areas reported in authoritative data. If 

the Tweet text contained location keywords listed in the authoritative reports, a 

high-quality label was assigned. The authoritative data used in the study was daily 

disaster reports published by the Department of Disaster Prevention and 

Mitigation (DDPM) of Thailand. The reports contain lists and descriptions of 

flood affected areas such as village and road names. 

3. Although use of Landsat-8 data and authoritative reports were able to assign 

quality labels for the majority of Tweets (368 of 494), a further step was required 

to assign Tweets that exhibited clear evidence of flooding and location but were 

not identified using the first two steps. Thus, the remaining 126 Tweet data were 

assessed manually and assigned quality labels based on evidence in the Tweet 

images. If the Tweet contained flood images and its geolocation could be verified 

using Google Street View, the Tweet was labelled as high-quality. The remaining 

Tweets, that failed to be verified using one of the above three steps, were labelled 

as low-quality. 

Following the labelling process, 440 (89.1%) of the 494 flood relevant Tweets were 

labelled as high-quality, while 54 Tweets (10.1%) were labelled as low-quality. It is also 

worth mentioning that, although some Tweets classified as low-quality may have actual 

contained flood information, there was not enough evidence that the tweet location was 

correct. In this study, the 2016 and 2018 flood dataset were applied as training dataset, 

while model accuracies were tested using the 2017 flood dataset. 

4.4.1 Flood extent extraction from Landsat 8 

This section briefly explains how the flood extent was extract from a Landsat-8 image. 

The Operational Land Imager (OLI) is an instrument onboard the Landsat 8 satellite 

which provides 9 spectral bands, including a panchromatic band with 16-days temporal 

resolution (USGS, 2017). For the 2017 flood event, surface water extent was extracted 

from a Landsat-8 image, which passed over Phetchaburi city (path 129, row 51) on the 

25th November 2017. The image was collected from the United States Geological Survey 

(USGS) EarthExplorer data portal (https://earthexplorer.usgs.gov/). The image is a Level-

1 precision and terrain corrected product (L1TP). The Semi-Automatic Classification 

Plugin (SCP) for QGIS (Congedo, 2016) was adopted to pre-process the Landsat 8 Level-

https://earthexplorer.usgs.gov/
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1 data by converting the Digital Numbers (DNs) into Top Of Atmosphere (TOA) 

reflectance. Furthermore, the panchromatic sharpening technique was also applied to 

improve image visualisation by merging high-resolution detail from panchromatic image 

(band 8) with lower resolution multispectral image to create pan-sharpened imagery. 

Additional pre-processes involved band stacking and re-projecting the image to 

WGS84/UTM zone 47N. 

A straightforward and effective approach to extract flood extent is to apply water indices to 

distinguish water and non-water areas. To date, many water indices have been developed to 

extract water bodies or flood water extent. The first generation of water indices is the 

Normalised Difference Water Index (NDWI), which was introduced by McFeeters (1996). 

However, the main drawback of the NDWI is that the signal from built-up surfaces is not 

efficiently suppressed (Xu, 2006), which tends to overestimate water extent in urban areas. 

Therefore, Xu (2006) proposed a modified version of McFeeters’s NDWI, called “Modified 

Normalized Difference Water Index” (MNDWI), which replaces the Near Infrared (NIR) 

band in NDWI with the Short-wave Infrared (SWIR) band (See Table 1 for multiband water 

indices). The MNDWI has been recognised as one of the most reliable and robust indices to 

distinguish water and non-water area over urban areas (Feyisa et al., 2014; Huang et al., 

2018), and it was adopted to extract water extent from the Landsat 8 image for the Phetchaburi 

study area. Fig. 5 illustrates (a) true colour composite (RGB = 432) (b) false colour composite 

(RGB = 643) and (c) Modified NDWI of Landsat-8 image over the study area. 

Table 1: Multiband water indices 

Water indices Equations Sources 

NDWI (Green − NIR) / (Green + NIR) (McFeeters, 1996) 

Modified NDWI (Green – SWIR) / (Green + SWIR) (Xu, 2006) 

Once the MNDWI was calculated, an appropriate threshold value was required to 

distinguish water and non-water areas. To determine the threshold value, initially 100 

pixels from different geolocations over the study area were randomly selected, and 

manual verification was performed to determine whether the pixel location was in a dry 

or flooded area based on the pan-sharpened images (Fig. 5a and b). Then, an optimal 

threshold value was searched using a trial-and-error technique, with 0 as the initial 

threshold value. The threshold value that produced the best performance in terms of 

overall accuracy to distinguish water from non-water areas was assigned as the optimal 

threshold value. With the described method, the optimal threshold value of -0.310 was 
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found with an overall accuracy of 84.0%. The water extent was then applied to verify the 

binary quality levels using the labelling procedure previously described. 

  

(a)                                                                          (b) 

 

(c) 

Fig. 5 (a) True colour composite (RGB = 432) (b) False colour composite (RGB = 643) 

and (c) Modified NDWI of Landsat-8 image over the study area.  
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4.5 Development of logistic regression model 

4.5.1 Logistic Regression 

The goal of regression analysis is to find the best fitting model to describe the relationship 

between an outcome (dependent) variable and a set of predictor (independent) variables 

(Hosmer et al., 2013). In contrast to linear regression, the outcome variable of a logistic 

regression model is binary or dichotomous, which means the model is a prevailing 

algorithm for classification problems. Logistic regression can be applied for binary, 

multinomial or ordinal outcome. In this study, binary logistic regression was adopted to 

assess the quality of crowdsourced social media data. By given a set of predictor 

variables, the algorithm can model the possibility of the observation belongs to a 

particular class using logit transformation. The logit transformation is defined as the 

following: 

𝐿𝑜𝑔𝑖𝑡(𝑃) = 𝑙𝑛
𝑃

(1−𝑃)
 =  𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯+ 𝑤𝑛𝑥𝑛  (Eq. 1) 

Where, 𝑥1, 𝑥2, … , 𝑥𝑛 are the predictor variables, 𝑤0 is the bias term (intercept) and the 

𝑤1, 𝑤2, … , 𝑤𝑛 are the estimated weight coefficients. P is the estimated probability of event 

occurrence and the Logit(P) is the logarithm of the odds (𝑃 (1 − 𝑃)⁄ ). The probability 

(P) can be determined as: 

𝑃 =
𝑒(𝑤0+𝑤1𝑥1+𝑤2𝑥2+⋯+𝑤𝑛𝑥𝑛)

1−𝑒(𝑤0+𝑤1𝑥1+𝑤2𝑥2+⋯+𝑤𝑛𝑥𝑛) =
1

1+𝑒−(𝑤0+𝑤1𝑥1+𝑤2𝑥2+⋯+𝑤𝑛𝑥𝑛)     (Eq. 2) 

Equation (2) is an inverse of the Logit(P) function, which is applied to turn the range of 

outcome from real number (ℝ) in the logit function into probability range from zero to 

one [0,1]. With the logistic regression model, an appropriate quality class could be 

assigned to crowdsourced social media data based on the probability.  

4.5.2 Predictor variables 

Information extracted from Twitter metadata (e.g. location, timestamp, number of 

retweet) can be related to indicate the overall data quality of a Tweet. Predictor variables 

can be any combination of factors that significantly influence on dependent variable. 
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Based on Twitter metadata, spatiotemporal and geographical features, five predictor 

variables were initially identified including:  

6) Retweet ratio (𝑥1) refers to a ratio between the retweet count and the natural 

logarithm of Twitter followers. 

𝑅𝑒𝑡𝑤𝑒𝑒𝑡 𝑟𝑎𝑡𝑖𝑜 =
𝑅𝑒𝑡𝑤𝑒𝑒𝑡

𝑙𝑛(𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠)
   (Eq. 3) 

 

7) Spatiotemporal index (𝑥2) refers to an agreement on Twitter data based on flood 

location and timestamp. This indicator indicates that there is high possibility of 

flood occurrence if the flood-related content is consistently Tweeted from the same 

area in approximately the same time frame. Both spatial and temporal information 

of Tweets were simultaneously analysed to create spatiotemporal clustering based 

on specified thresholds. For each Tweet, an 800 metres radius was applied as 

spatial threshold to search for other Tweets located within the radius of the 

referencing Tweet. Then, the temporal threshold of 6 hours window period (3 hours 

before and after the referencing timestamp) was applied as temporal threshold to 

further filter Tweets. These thresholds were selected based on a sensitivity 

analysis, which examined the effect of varying thresholds to the overall model 

accuracy (See section 4.5.3 for more details). With the spatiotemporal thresholds, 

Tweets can be grouped as spatiotemporal clusters. Spatiotemporal index (𝑥2) is 

the total number of Tweets within the cluster. 

8) Distance to nearest neighbour (𝑥3) refers to distance from referencing Tweet to the 

nearest Tweet location. 

9) Flood risk zone (𝑥4) refers to flood zones in the national flood risk map of Thailand 

(See Fig.1 (right)). A GIS layer of the flood risk map of the study area was 

collected from the Open Government Data (OGD) of Thailand (https://data.go.th/). 

The flood risk map was divided into three flood risk zones (low, medium and high), 

based on historical flood data acquired from series of satellite images during the 

period 2004 to 2013, and terrain elevation data (Digital Government Development 

Agency, 2020). As a result, the flood risk zone (𝑥4) is a discrete variable, where 

the value of 1, 2 and 3 corresponds to the low, medium and high flood risk zone, 

respectively. This predictor variable was included as it is independent of other 

Tweets. 

https://data.go.th/
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10)Distance to the nearest river (𝑥5) refers to the distance from referencing Tweet to 

the nearest river. This predictor variable was introduced to account for 

geographical features of the study area into the model. 

In addition to the five predictor variables above, the inclusion of floodwater depth data 

was also explored, as it would be a useful variable to include for inclusion into flood 

inundation models. However, the process of automatically extracting floodwater depth 

from Tweeted images, typically by referencing parts of submerged objects with standard 

dimensions of ubiquitous objects, can be problematic. Although, machine learning 

techniques for image identification (e.g. Convolutional Neural Network) could be 

adopted to facilitate the automation (see for example Chaudhary et al, 2019), a 

considerable number of flooding images are required for model training to achieve 

reliable flood water depth prediction. After initial investigations, this paper has excluded 

floodwater depth from the models because of limited availability of flood images.  

4.5.3 Spatiotemporal Threshold 

A 6-hour timeframe and an 800 metres radius was selected for the temporal and spatial 

thresholds. For the temporal threshold, the 6-hour period was selected based on time 

series analysis of flood incidences in the study area (See Fig. 3 for water level 

observations during the flood period), which indicated that, on average, the water level 

peaked and remained at the maximum level for at least 3-4 days. The temporal threshold 

was then selected based on the assumption that the flood condition and water level were 

not likely to significantly change within a 6-hour timeframe. As a result, Tweets reported 

from the same area within the 6 hours temporal threshold are expected to contain only a 

slight difference in water level.  

For the spatial threshold, a sensitivity analysis was performed to observe the effect of 

changes to the overall model accuracy. The logistic regression models were built based 

on different spatial thresholds ranging from 100 to 1,200 meters with intervals of 100 

meter.  The optimal model accuracy of 90.07% was reached with a spatial threshold of 

800 meters. Therefore, the 800 metres radius was selected as spatial threshold for 

spatiotemporal index. Fig. 6 illustrates the overall model accuracy results from different 

spatial threshold values. 
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Fig. 6 Result of sensitivity analysis of spatial thresholds. 

4.5.4 Model fitting and statistical tests 

The binary logistic regression was developed using Scikit-learn python library (Pedregosa 

et al., 2011), which provides a range of supervised and unsupervised machine learning 

algorithms for data analysis. The solver (Limited memory Broyden–Fletcher–Goldfarb–

Shanno method, L-BFGS) was applied to search for the best-fit coefficients for the 

logistic regression model using the training data. The BFGS is an optimization method 

that belongs in the family of quasi-Newton algorithms. The main advantage of the quasi-

Newton algorithms is that they do not require the second-order derivatives (Hessian 

matrix) to be computed, thus accelerating the calculation. Instead, the Hessian is 

approximated by measuring the changes in gradients over iterations. As the name 

suggests, the Limited memory BFGS (L-BFGS) is based on the BFGS updating formula 

but modified for solving large scale optimization problems (Nocedal & Wright, 2006). In 

contrast to the original BFGS, which stores all the Hessian matrices approximation at 

every iteration, L-BFGS stores only a few vectors that represent the approximation 

implicitly (Liu et al., 2016; Nocedal & Wright, 2006), hence reducing computational 

requirements. With the L-BFGS solver, a set of weight coefficients that minimize the 

mismatch between the model results and the training data can be found.  

After estimating the coefficients, two statistical tests were carried out including 

multicollinearity analysis and likelihood ratio test. The former aims to assess the 

intercorrelations among the predictor variables, while the latter determines whether the 

predictor variables are significantly related to the outcome variable (Hosmer et al., 2013). 

It was found that there was no multicollinearity between the predictor variables. The 

likelihood-ratio test indicated convincing evidence that the distance to nearest river (𝑥5) 

variable is insignificant in predicting the model outcome, and it was hence excluded from 

the model. Therefore, the four remaining input variables, including (1) Retweet ratio (2) 
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Spatiotemporal index (3) Distance to nearest neighbour, and (4) Flood risk zone were 

further considered for model development. 

4.5.5 K-fold Cross Validation 

To address overfitting and underfitting, K-fold Cross Validation (K-CV) was adopted for 

accessing the generalisation capability of the logistic regression model (Shao et al., 2013). 

The value of K is often selected based on data size; a lower K means less variance and 

thus, high bias, and vice versa (Hastie et al., 2009; Rodriguez et al., 2010). In practice, a 

value of K=5 or 10 is very common in the field of machine learning (Hastie et al., 2009). 

The K-fold cross validation was performed as follows: 

Step 1: Data was randomly split into K folds/parts with roughly equal size. 

Step 2: For each k in 1,2,3,…,K, a model was trained using the other K-1 folds as 

training data, while the kth fold was held-out for validation. At each kth 

iteration, model accuracy was determined using the held-out (k) fold and 

retained for overall model performance assessment. This step was repeated 

K times. 

Step 3: After K iterations, model performances (accuracy) of all K models were 

averaged for overall model evaluation.  

In this study, 10-fold cross validation (K=10) was performed with the training dataset, 

where each observation in the dataset was used for validation exactly once. With the 10-

fold cross validation, the average model classification accuracy of 89.06% with standard 

deviation of 5% was achieved, indicating the generalised performance of the logistic 

regression model when encountering an unseen dataset. 

4.6 Development of fuzzy logic model 

4.6.1 Fuzzy Logic System (FLS) 

In addition to binary logistic regression, a fuzzy logic model was also developed to assess 

the quality of crowdsourced social media data using the same dataset. FLS provides a 

systematic approach to deal with imprecise, vague, and ambiguous information, which 

are common problems in human communications (Hauser-Davis et al., 2012; Oladokun 

et al., 2017). The FLS is an extension of conventional Boolean logic that can handle grey 

areas, where there is no absolute answer between categories. The theory is based on 
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degree of truth and relied on linguistic variables, and FLS seeks to incorporate experience 

(prior knowledge) in from of linguistic rules into the decision-making process.  

In general, there are two types of fuzzy inference systems: Mamdani (Mamdani and 

Assilian, 1975) and Sugeno (Takagi and Sugeno, 1985). The main difference between 

Mamdani and Sugeno systems is the way outputs are determined. The outputs of the 

Mamdani system are fuzzy sets, which require computation of the centroid of a two-

dimensional area, while those of the Sugeno system are singleton output membership 

functions, which are either linear or constant (MathWorks, 2021). For complex problems, 

the Sugeno system is generally preferred as it is more computationally efficient than the 

Mamdani system (Rustum, 2009). The Mamdani system, on the other hand, has 

widespread acceptance because it is easy to understand and well-suited to human inputs 

(MathWorks, 2021; Oladokun et al., 2017). Therefore, in this study, the Mamdani fuzzy 

interference system was adopted to classify quality level of the Twitter data.  

A FLS consists of four components including fuzzification, rule base, inference and 

defuzzification. 

4.6.1.1 Fuzzification 

Fuzzification is a process of transforming crisp input values into fuzzy input sets using 

membership functions. A similar set of the four predictor variables used in the logistic 

regression model (Retweet ratio, x1; Spatiotemporal index, x2; Distance to the nearest 

neighbour, x3; and Flood risk zone, x4), were converted into fuzzy variables through 

membership functions (See Fig. 7a for membership function of input fuzzy sets). The 

fuzzy set of each input variable was implemented separately based on the relationship 

between input and quality output in training dataset. The fuzzy sets of input variables 

were adjusted to maximise the overall training accuracy. After the process, a crisp input 

was converted into a fuzzy set, where the variable was described in terms of membership 

degree. 

4.6.1.2 Rule base 

Rule base contains a set of rules that are usually formulated from the prior knowledge or 

empirical approaches (Kayacan and Khanesar, 2016). With fuzzy if-then rules, the 

relationship between predictor variables and an outcome variable can be connected and 

represented using linguistic variables. There are various methods to formulate rules in 

rule base, such as expert knowledge, neural networks, and empirical approaches. In this 
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study, rules were formulated by observing the relationship between input and output data 

of the training dataset. Specifically, two steps were taken to extract initial if-then rules. 

Firstly, the training data were grouped based on their similarity to discover underlying 

patterns. Secondly, if-then rules that best describe the input-output relationship were 

formulated for each group. This can be referred to as knowledge extraction from actual 

data, where if-then rules were extracted based on input-output relationships of the training 

data. Following the development of a prototyping model, the rules and membership 

functions were manually adjusted to maximise the training accuracy. The rules were 

altered with different combinations of predictor variables using fuzzy logic operators 

(“AND” and “OR” operations) and the shape of membership functions (parameters) were 

fine-tuned for ensuring optimal adjustment. Table 2 shows fuzzy rules applied to classify 

quality level of the Twitter data. 

4.6.1.3 Inference 

In the inference process, a set of fuzzy outputs is produced from a given fuzzy input and 

if-then rules specified in rule base. Each rule is separately evaluated based on fuzzy input 

to determine fuzzy output. Fuzzy outputs are then combined to determine final decision 

(See Fig. 7c for an example of fuzzy inference system applied to determine quality level 

of Twitter data). 

4.6.1.4 Defuzzification 

Finally, the defuzzification process turns a set of fuzzy outputs into a meaningful single 

output. In this study, fuzzy output is referred as a degree of membership value that belongs 

to high-quality and low-quality categories. Fuzzy outputs, generated from fuzzy rules, 

were aggregated into a single fuzzy set, and translated into a crisp output using the 

centroid defuzzification method (See Fig. 7d for an example of centroid defuzzification).  
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Table 2: Fuzzy rules applied to classify quality level of the Twitter data. 

Rule If (antecedent) Then (consequent) 

1 If (RE is high) Then (Quality is high) 

2 If (ST is high) Then (Quality is high) 

3 

4 

If (NN is low) 

If (FZ is high) AND (ST is low) 

Then (Quality is high) 

Then (Quality is high) 

5 If (RE is high) AND (ST is low) Then (Quality is low) 

6 If (RE is high) AND (NN is high) Then (Quality is low) 

7 

8 

If (FZ is low) AND (ST is low) 

If (ST is low) AND (NN is high) 

Then (Quality is low) 

Then (Quality is low) 

(RE: Retweet Ratio, ST: Spatiotemporal index, NN: Distance to the Nearest Neighbour, and FZ: Flood risk Zone) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: An example of Fuzzy logic system for assessing quality level of Twitter data 

(Given a crisp input of RE=0.7, ST=2, NN=200, and FZ=1). 
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5. Results 

5.1 Binary Logistic Regression 

After eliminating the identified insignificant variable (Distance to the nearest river, 𝑥5) 

and applying 10-fold cross validation, the remaining variables (Retweet index: 𝑥1, 

Spatiotemporal index: 𝑥2, Distance to the nearest neighbour: 𝑥3, and Flood risk zone: 𝑥4) 

were applied as independent variables to determine the model coefficients that best fitted 

the training dataset (See Table 3 for model coefficients). As described in Section 4.4, the 

494 Tweet images were split into two datasets for training and testing purposes. 

Specifically, 302 Tweet images collected from the 2016 and 2018 flood events were 

applied as training data, whereas the 192 Tweet images collected during the 2017 flood 

were used for model testing.  

 Table 3 Model Coefficients 

Input Components Weight Coefficient 

Intercept (𝑤0) 3.701 

X1: Retweet Index (𝑤1) 0.222 

X2: Spatiotemporal Index (𝑤2) 1.559 

X3: Distance to the nearest neighbour (𝑤3) 

X4: Flood risk zone (𝑤4) 

-0.441 

  0.169 

As shown in the Table 3, the sign and magnitude of the coefficients are in line with the 

assumptions explained previously in section 4.5.2, where a positive sign means that the 

effect of the predictor variable increases the possibility of the crowdsourced data being 

categorised as high-quality data, and vice versa. The final binary logistic model for 

assessing crowdsourced social media data can be written as: 

𝑃 =
1

1+𝑒−(3.701+0.222𝑥1+1.5591𝑥2−0.441𝑥3+0.169𝑥4)  (Eq. 4) 

Where, P is the estimated probability that the Tweet data belongs to the high-quality class.  

To deal with imbalance distribution between high-quality (n=279) and low-quality (n=23) 

Tweets in the training dataset, Receiver Operating Characteristics (ROC) Curve Analysis 

was applied to identify the optimal threshold, which depicts relative trade-offs between 

benefits (true positives) and costs (false positives) (Fawcett, 2006). The ROC curves are 

2-dimenstional graphs, in which True Positive Rate (TPR, also called hit rate) is plotted 

on the Y axis, and False Positive Rate (FPR, also called false alarm rate) is plotted on the 
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X axis, at various threshold values (Fawcett, 2006; Hung et al., 2016). The TPR and FPR 

can be calculated from TP/(TP+FN), and FP/(FP+TN), respectively (TP=True Positive, 

TN=True Negative, FP=False Positive and FN= False Negative). The point (0,1) on the 

top left corner of the ROC graph represents perfect classification, where the TPR is 100% 

and the FPR is zero (See Fig. 8). Thus, the optimal threshold, which provides the best 

trade-off between the TPR and FPR, is a point on the ROC curve with the shortest 

Euclidean distance to the point (0,1) in the ROC space. The Euclidean distance (d) of a 

point on the ROC curve to the point (0,1) can be determined from 𝑑 =

√(1 − 𝑇𝑃𝑅)2 + 𝐹𝑃𝑅2. In Fig. 8, the ROC curve was generated using the training dataset, 

where the black dot (TPR=0.910 and FPR=0.217) represents the nearest point to the top 

left corner. This point on the ROC curve corresponds to the threshold value of 0.625, 

which gives the overall accuracy of the training dataset at 90.07%.  

 

Fig. 8: ROC curve generated from the training dataset. 

After the training process, the logit model in the equation (4) was tested using the Tweet 

data acquired during the 2017 flood event. The 2017 dataset was verified using data 

derived from the Landsat-8 image and the authoritative data detailed in Section 4.4. The 

results showed that the accuracy of the model with the testing dataset was 85.42%. In 

addition, the F1-score, which is the harmonic mean of precision (TP/(TP+FP)) and recall 

(TP/(TP+FN)), was 91.72%. Table 4a and b summary the confusion matrix, model 

accuracy and F1-score for the training and testing datasets, respectively. 
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5.2 Fuzzy logic approach 

To apply the FLS, a sensitivity analysis was performed to select and adjust for suitable 

membership function, if-then rules and defuzzification method. The results of altering a 

single predictor variable while the rest were held constant were compared with the 

baseline results from the training dataset. For each predictor variable, the relationship 

between inputs and baseline outputs were observed to identify a range of predictor values 

that correspond with the output. Different types of membership functions were examined 

including, triangular, trapezoidal, and sigmoidal membership functions; a trapezoidal 

function demonstrated the best results. Similarly, if-then rules were generated based on 

knowledge gained from the training dataset. For defuzzification, centroid, bisector, and 

middle of maximum defuzzification methods were tested. The model results were found 

to be less sensitive to the defuzzification method, and the centroid method was adopted 

to translate fuzzy output into a crisp value. An input data with the crisp output value of 

more than 0.5 cut-off value was considered as high-quality data. Otherwise, the data was 

classified as low-quality. 

With the unseen (testing) data, the accuracy and the F1-Score of the fuzzy logic classifier 

were 86.46% and 92.49% respectively (See Table 4). Fig. 9 demonstrates the spatial 

pattern of the 2017 testing dataset (fuzzy logic approach) overlaid on the flood extent map 

derived from Landsat-8 image and the ESRI online basemap (Esri (Thailand), 2020). 

Examples of flood-related images Tweeted during the 2017 flood event were also shown in 

Fig. 9 (a, b, c and d).  

Table 4 Confusion matrix, accuracy, and F1-Score of the binary logistic regression and 

fuzzy logic models. 

(a) Training dataset 

Training Dataset Predicted Outcome Overall Accuracy 

(TN+TP)/Population 

F1-Score 

 High-quality Low-quality 

Ground 

truth 

High-quality  TP: 254 (256) FN: 25 (23) 
90.07% (89.07%) 94.42% (93.94%) 

Low-quality FP:   5 (10)  TN: 18 (13)  

(b) Testing dataset 

Testing Dataset Predicted Outcome Overall Accuracy 

(TN+TP)/Population 

F1-Score 

 High-quality Low-quality 

Ground 

truth 

High-quality  TP: 155 (160) FN: 6 (1) 
85.42% (86.46%) 91.72% (92.49%) 

Low-quality FP:   22 (25)  TN: 9 (6)  

* Round bracket indicates the result obtained from fuzzy logic model. 

** TN=True Negative, TP=True Positive, FP=False Positive and FN= False Negative   
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Fig. 9: (Right) Spatial pattern of the 2017 testing dataset (fuzzy logic approach) overlaid on the flood extent map 

derived from Landsat-8 image and ESRI online basemap (Esri (Thailand), 2021). (Left) Examples of images 

demonstrate a true negative, false positive, true positive and false negative outcome of the model prediction. 

6. Discussion 

Binary logistic regression and fuzzy logic models were developed and tested to classify 

the quality level of Tweets posted during flood events. Overall, the performance of both 

models demonstrates the potential of the methodologies for assessing the quality level of 

crowdsourced social media data. Nonetheless, there are some issues that need to be 

addressed.  

(a) True Negative 

(b) False Positive 

(c) True Positive 

(d) False Negative 
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For the regression model, the magnitude of the model coefficient demonstrates that the 

spatiotemporal index (SI) and distance to the nearest neighbour (NN) are the two most 

influential predictor variables on the data quality. This is the case for most true-positive 

outcomes in urban areas, where flood incidences were repeatedly Tweeted. The findings 

also confirm the validity of the crowdsourcing approach (Goodchild and Li, 2012) to 

validate an individual using a group of contributors. However, it was found that the 

majority of false negative results from the regression model were reported in isolated 

Tweets. This suggests that the regression model may fail to classify high-quality Tweets 

that were reported far from the spatiotemporal cluster. Although, the retweet ratio (RR) 

and flood risk zone (FZ) were designed to be independent of the clusters, they are the 

least two impactful factors among the predictor variables. As a result, the regression 

model often treats an isolated Tweet, regardless of the retweet ratio and flood risk zone, 

as low-quality data, although this is not always the case. This means that potentially useful 

information might be missed when running the algorithm in real time, especially at an 

early stage of flooding, when a few flood incidents are Tweeted.  

For the FLS, the predicted outcomes were predominantly governed by if-then rules and 

fuzzy membership functions. Compared to the regression model, the difference between 

training and testing performance (the generalisation gap) of the FLS was slightly narrower 

than that of regression model (2.61% for the FLS and 4.65% for the regression model). A 

narrower generalisation gap suggests that the fuzzy logic model is more generalised to 

unseen dataset. In addition, the FLS was able to handle isolated Tweets significantly 

better than the logistic regression model, as the number of false negatives in the FLS was 

lower than that of the regression model for the testing dataset. For example, image (c) in 

Fig. 9 was isolated but correctly classified as high-quality data by the FLS because it was 

located in the high flood risk zone, whereas the same Tweet was incorrectly classified as 

low quality by the regression model due to its low spatiotemporal index (SI) value. This 

illustrates the main advantage of the FLS over the regression model, in that the FLS is 

more flexible in terms of rules and membership functions and can be more effectively 

applied to deal with nonlinear systems (Chen et al, 2019; Kayacan and Khanesar, 2016).  

Although, the findings demonstrate that the fuzzy logic approach outperforms the logistic 

regression analysis, the implementation involves some degree of subjectivity in terms of 

deriving appropriate rules and membership functions. This is because the if-then rules 

and fuzzy sets were manually extracted based on input-output relationships of the training 
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data, which could be defined differently by individuals. As a result, the extracted rules 

and membership functions could be biased toward human heuristic (implicit bias), when 

assumptions are made based on beliefs and personal experiences. Nevertheless, fine-

tuning the rules and membership functions to maximise the training accuracy can help 

mitigate uncertainty due to the subjectivity.  

There are a number of factors to consider for future studies. The first relates to the type 

and format of social media data used. In addition to Twitter, other social media platforms, 

such as Flickr or more dedicated crisis response crowdsourcing platforms, such as 

Ushahidi, could be utilised to increase the sample size. However, this will depend on user 

demographics of each platform in study areas. Similarly, including plain text Tweets 

(without attached images) would also significantly increase the sample size, however 

more in-depth studies are required to examine appropriate methodologies to deal with 

large amount of irrelevant or incomplete data from plain text messages in order to reliably 

identify flood locations. Secondly, the possibility of integrating crowdsourced social 

media data with that collected from different data collection methods, such as volunteer 

networks (Haklay, 2013), is also worth exploring. As well as increasing both the quantity 

and type of useable data, such an approach could also extend the geographic scope of the 

developed methodology, particularly to those more rural areas where social media use 

and/or population densities are lower than in urban areas. 

7. Conclusions 

This paper presents a methodology and a case study of applying two techniques, binary 

logistic regression and fuzzy logic, to assess the quality of crowdsourced social media 

data acquired from Twitter during flood events in Thailand. Both models incorporated 

four predictor variables (retweet index, spatiotemporal index, distance to the nearest 

neighbour, and flood risk zone), and achieved testing accuracies of 85.42% and 86.46% 

for the logistic regression and fuzzy logic models, respectively. The weight coefficients 

of the regression model indicate that time and location of the Tweets, which form a 

spatiotemporal index, were the most significant input that impact on quality probability. 

The findings suggest that the FLS outperforms the regression approach when dealing with 

isolated data, however this must be balanced against the greater subjectiveness required 

in determining the rules and membership functions for the FLS. The results of both 

methodologies demonstrate the potential for assessing the quality of flood related 

crowdsourced social media data.  
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In addition to quality assessment, a procedure for automatically approximating Tweet 

geolocation by matching location keywords in Tweet message with GIS database was 

also introduced. The procedure was developed to minimise manual interventions, which 

reduces both subjectivity and computational runtime.  

The proposed techniques enable uncertainties associated with crowdsourced social media 

data to be estimated, which allows this type of data to supplement or integrate with 

traditional data collection methods. As such, the developed techniques will be particularly 

useful in data scarce regions (e.g. countries in Southeast Asia and Africa), where 

traditional water level gauging stations are scarce and social media use is relatively high.  

Future developments should focus on increasing data sample size by incorporating data 

from alternative crowdsourcing platforms and/or integrating crowdsourced social media 

data with different data types. Additional research could also be undertaken to incorporate 

water depth data derived from social media images, to provide richer spatially distributed 

flood information, especially in floodplain areas. All of these developments would help 

support a wider context of flood applications in real time, such as flood early warning 

systems, verification of flood extent in flood monitoring and reducing model uncertainty 

in flood simulations. Furthermore, with appropriate supporting data, the general 

approaches presented has potential to be adopted for different types of hazards, such as 

tsunamis and cyclones. 

The methodologies presented herein forms part of a wider project, where crowdsourced 

social media data will be integrated with a flood inundation model through a data 

assimilation approach. With data assimilation techniques, uncertainty (quality) associated 

with both crowdsourced observations and flood model predictions will be used to update 

model inputs, which will result in a reduction in the flood simulation output itself. 
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Appendices 

Appendix A: Data mining and time series analysis 

Table A.1: Results retrieved from Twitter by flood events (2016 – 2018) 

Year 2016 2017 2018 

Searching time frame 27th Oct -13th Nov 14th Nov -2nd Dec 15th Aug -31st Aug 

Number of original Tweets 810 1,320 1,156 

Flood related images  164 192 138 

 

 

 

Fig. A.1 Time series analysis of the 2017 (above) and 2018 (below) flood events.  
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Journal Paper 2:  

The use of crowdsourced social media data to improve flood forecasting4 

 

Abstract 

Reliable flood forecasting systems are essential for predicting and mitigating the impact 

of flooding worldwide. However, minimising flood forecast uncertainties remains a 

challenging task due to the many sources of uncertainty in underlying flood simulation 

modelling (e.g. initial and boundary conditions, model parameters, model structure). Such 

uncertainties can be reduced by employing data assimilation techniques to dynamically 

incorporate the most recent available observations into the system while accounting for 

existing uncertainties in both model and observations. However, the application of data 

assimilation methods is hampered by the characteristics of traditional observations, which 

often lack the required temporal or spatial resolution. In contrast, crowdsourcing has 

become an increasingly attractive alternative for data collection as it can provide high 

spatiotemporal resolution data, especially in urban areas. This paper investigates the 

potential of applying crowdsourced social media data to update a 2D hydraulic model 

through a standard sequential data assimilation technique for real-time urban flood 

management. The methodology was tested against a real case flood event of the 2017 

Phetchaburi flood (Thailand), and the performance of a number of different update 

strategies was evaluated by benchmarking against the calibrated model output obtained 

from a particle swarm optimisation algorithm. Empirical results demonstrate that global 

state updates suffer from inconsistencies in predicted water levels, whereas 

topographically based local state updates provide encouraging results. In agreement with 

previous research, the improvement due to the local state update alone is short-lived, and 

findings indicate that a longer lasting improvement in flood forecasting performance can 

be achieved through a combination of both state and boundary updates. Overall, the 

results indicate the feasibility of utilising crowdsourced social media data to improve the 

performance of flood forecasting systems for urban environments.  

 

4 This work has been submitted to the Journal of Hydrology and it is now under review (Songchon, C., 

Wright, G., & Beevers, L. (2022). The use of crowdsourced social media data to improve flood forecasting. 

Journal of Hydrology, under review). 
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1. Introduction 

Despite extensive efforts to reduce the risk of flooding and significant investment in both 

structural defences and Early Warning Systems (EWSs), floods continue to be a serious 

issue around the globe, resulting in significant financial loss and casualties. For European 

countries, flooding between 1980 and 2017 resulted in over 4,300 fatalities and more than 

170 billion euros in direct economic losses, almost one-third of the damages caused by 

all natural hazards (European Environment Agency, 2021). There is now persuasive 

evidence that the damage caused by flooding is increasing as a result of climate change 

(Kundzewicz, Pińskwar, & Brakenridge, 2018) as more frequent and more extreme 

weather events are being observed globally.  

To effectively design and operate both structural (e.g. levees and dams) and non-structural 

flood mitigation measures (e.g. flood forecast and warning systems), hydraulic models 

are regularly employed to simulate floods in various scenarios to support real-time flood 

warning and decision-making. Typically, hydraulic models are calibrated using 

conventional data, such as in-situ water level measurements and remote sensing 

observations (Hostache et al., 2018). However, the effectiveness of using such models for 

flood forecasting can be hampered by errors associated with calibration data, hydrological 

observations and process representation, all of which can result in uncertainty in model 

outputs. Such uncertainties can be reduced through the use of data assimilation (DA) 

techniques to dynamically update model inputs, outputs and/or state variables in 

accordance with the latest available observations (Annis, Nardi, & Castelli, 2022).  

The application of DA methods is often hampered by the characteristics of traditional 

observations (in-situ and remote sensing data). For in-situ observations, the number of 

physical gauging stations is on a downward trajectory worldwide due to a high 

maintenance costs (Hostache et al., 2018; Mazzoleni et al., 2017; Revilla-Romero, 

Wanders, Burek, Salamon, & de Roo, 2016). Moreover, near real-time access to in-situ 

observational data may not be possible in many regions (Revilla-Romero et al., 2016). In 

contrast, during the last two decades, remote sensing observations have been increasingly 

recognised as a potential source of data for flood monitoring and modelling (Bates, 2012). 

Among various types of sensors used for flood applications, synthetic aperture radar 
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(SAR) has proved useful for obtaining information on flood extent, which can then be 

combined with a Digital Elevation Model (DEM) of the floodplain to derive water level 

observations (WLOs) (García-Pintado et al., 2013).  

To date, the vast majority of observations assimilated into hydraulic models in the 

literature are synthetic, in-situ or remote sensing-derived observation of water levels. For 

example, Neal et al., (2007) conducted a case study assimilating WLOs from four in-situ 

sensors located in both channel and floodplain along the River Crouch, Essex, UK. More 

recently, Jafarzadegan et al. (2021) investigated the performance of sequential DA for 

real-time probabilistic flood inundation mapping by assimilating water stage readings 

from two gauging stations into a 2D flood inundation model. In addition to in-situ WLOs, 

many authors have investigated the potential of updating hydraulic models using 

synthetic (virtual) satellite-based SAR observations, generated by adding noise to 

calibrated model outputs (Matgen et al., 2010; García-Pintado et al., 2013; Konstantinos 

et al., 2014; Dasgupta et al., 2021; Di Mauro et al., 2021).  

Interestingly however, the number of published papers regarding the use of real satellite 

images in DA approaches for flood forecasting is relatively limited. One of many reasons 

is that, as flood hazard is inherently local in nature, it is difficult to accurately predict 

timing and location, and thus almost impossible to ensure adequate satellite coverage 

(Schumann & Moller, 2015). As a result, local flood hazards are unlikely to be captured 

by medium-high spatial resolution (30m/pixel) satellite-based sensors. Despite the low 

probability of capturing flood dynamics through high resolution satellite remote sensing, 

a few real case studies have been reported the use of a series of SAR images to reduce 

uncertainty in flood forecasting using DA schemes. Giustarini et al. (2011) applied a 

particle filter-based assimilation scheme to integrate WLOs, derived from two SAR 

images acquired by the ERS-2 and ENVISAT satellites, into a 1D hydraulic model (HEC-

RAS) of the Alzette River, Luxembourg. Similarly, García-Pintado et al. (2015) 

examined the performance of different spatially-based filter localization techniques using 

a sequent of seven SAR images obtained by the COSMO-SkyMed (CSK) constellation 

over the Severn and Avon rivers in the south-west of England. Hostache et al. (2018) also 

focussed on the River Severn, and proposed a novel approach to derive flood extent maps 

which directly assimilated data from SAR images (Envisat) into flood forecasting chains 

in order to improve near real-time flood forecasts. 
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While traditional observations (in-situ and remote sensing data) are typically regarded as 

high-quality and reliable data, they are often not available or difficult to access during a 

flood. Hence, there is a need for additional data collection methods that offers high 

availability and accessibility of the observed data during the occurrence of a flood. With 

the recent advance in mobile technologies, smartphones with integrated low-cost sensors 

and Assisted Global Positioning System (A-GPS) have become necessary, affordable and 

ubiquitous (WMO, 2017); these innovations have enabled “citizen science” (Haklay, 

2013). Citizen science can be categorised into four levels according to the level of 

participation and engagement in scientific activities, where the most basic level refers to 

“crowdsourcing” in which the citizens act as sensors (Haklay, 2013; Zheng et al., 2018). 

To date, crowdsourcing has become a potential solution for tackling some of the issues 

associated with traditional data collection methods (Zheng et al., 2018). In conjunction 

with social media platforms, high resolution spatiotemporal information can be obtained 

through individual contributions, which provide insightful information not currently 

available from traditional observations (Songchon et al., 2021). Despite its huge potential 

in a wide range of applications, data quality remains a significant challenge with 

crowdsourced (CS) data as there is no "inbuilt" system of quality assurance (Goodchild 

& Glennon, 2010; Goodchild & Li, 2012), a failing which is has hampered its more 

widespread use by the scientific community. 

This study aims to explore the potential of applying CS social media data to update a 2D 

hydraulic model through a standard sequential DA technique for real-time urban flood 

management. While previous work in this field have focussed on assimilating 

conventional observations (in-situ and/or remote sensed data) into flood inundation 

models, this study will investigate the potential for CS data gathered from a social media 

platform to improve the forecasting performance of a hydraulic model through a DA 

approach. In addition, this study also evaluated the performance of a number of different 

updating strategies (to correct model state and boundary inputs), both in terms of model 

accuracy and uncertainty quantification.  

The rest of this paper is organised as follows. Section 2 describes the three components 

of the overall methodology, whilst Section 3 details the case study domain. Section 4 

reports and compares the results of applying different updating strategies to assimilate CS 

social media data (Twitter) into a hydraulic model (LISFLOOD-FP). In Section 5, the 

results are thoroughly discussed by benchmarking the performance of the updating 
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strategies against the calibrated model results (the truth). It also includes discussion 

regarding the influence of the state update and boundary input update strategies on flood 

forecasting skills and the computation time. Lastly, the conclusions are provided in 

Section 6. 

2. Methodology 

As illustrated in Figure 1, the research methodology consisted of three components: 

Quality assessment and estimation of floodwater depth from CS social media data; Model 

conditioning and ensemble generation of model inputs; Model updating based on the 

EnKF scheme. 

 

Figure 1: A flowchart of overall methodology 

 

2.1 Quality assessment and estimation of floodwater depth from CS social media 

data 

Details related to the data mining, geolocation extraction and quality assessment of the 

CS social media data are given elsewhere (Songchon et al, 2021), and can be summarised 

thus: 
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• Based on the demographics of social media users in the study area (see Section 3) and 

the data privacy policy of social media providers, Twitter was adopted as a source of 

CS social media data in this study.  

• Twitter data was searched and retrieved using flood related and location keywords, 

and only those containing embedded images or links to images were retained.   

• The geolocations of the majority of Twitter images were automatically approximated 

based on Tweet metadata and the location keywords, while unidentified location 

images were manually determined by comparing Tweet images with the Google Street 

View.  

• The quality of the Twitter data was assessed using a binary logistic regression (BLR) 

model based on Twitter metadata, spatiotemporal analysis and historical flood maps.  

• Floodwater depth for each Tweet was estimated by referencing parts of submerged 

objects with dimensions of standard objects appear in the Twitter images. Floodwater 

depth uncertainty was assessed with reference to the uncertainty associated with each 

reference class. 

2.2 Model conditioning and ensemble generation of model inputs 

2.2.1 Hydrodynamic model selection  

The simplified raster-based flood inundation model LISFLOOD-FP (Bates and De Roo, 

2000) was selected as the ideal hydrodynamic model for this study, as it satisfied the three 

key requirements for near real-time assimilation of CS data in urban environments, i.e. it 

can simulate 2D flows, it is computationally efficient and it can be re-started during 

simulations.  

2.2.1 Model uncertainty  

Of the many sources of model uncertainty in hydrologic and hydrodynamic models 

(Beven, 2012), Manning coefficient (channel and floodplain) and the magnitude of the 

inflow hydrograph are generally considered to be the most influential (Di Baldassarre & 

Montanari, 2009; Beevers et al., 2020), and as such were considered as the major sources 

of uncertainty in this study. To quantify model uncertainty, the range of the selected 

variables were as shown in Table 1.  
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Table 1: Sources of model uncertainty, parameter ranges and discrete intervals 

Uncertainty source Range  Intervals  Notes 

Channel manning 

coefficient 
0.01 to 0.08 

Discretise evenly 

every 0.01 (8 levels) 
Based on study domain and 

value ranges suggested by 

Arcement and Schneider (1989) 

and Chow (1959) 
Floodplain manning 

coefficient 
0.01 to 0.10 

Discretise evenly 

every 0.01 (10 levels) 

Magnitude of the 

inflow hydrograph 

-20% to 

+20% 

Discretise evenly 

every 10% (5 levels) 

Based on study by Di 

Baldassarre and Montanari 

(2009) 

2.2.3 Model conditioning  

Model conditioning rejects the concept of an optimum parameter set in favour of 

equifinality of models and parameter sets (Beven, 2012), which yields multiple parameter 

sets that demonstrate model predictions within acceptable fits (Beven, 2012). In this 

study, model conditioning was undertaken using the GLUE methodology, using the 

parameter ranges and discrete intervals shown in Table 1, to identify behavioural and non-

behavioural parameter sets. The distinction between behavioural and non-behavioural 

sets was made by comparing model predictions with CS observations. Given the 

point/time-series nature of water level data, a widely used performance measure based on 

error variance, the Nash-Sutcliffe Efficiency (NSE) was employed (Nash & Sutcliffe, 

1970). Based on the interpretation of the NSE index, 0.6 was set as a threshold value; 

parameter sets with NSE values ≥ 0.6 were retained as behavioural models for further 

analysis, while those NSE values ≤ 0.6 were rejected as non-behavioural model.  

2.3 Model updating strategies based on the Ensemble Kalman Filter (EnKF) scheme 

The DA scheme used throughout this work is based on a standard version of EnKF 

(Evensen,1994), which has become a method of choice for large-scale environmental 

modelling (García-Pintado et al, 2013). This popularity stems from its effectiveness with 

non-linear systems (Lahoz & Schneider, 2014) and its computational/storage efficiency, 

particularly wrt determination of the model error covariance matrix from the spread of 

the ensemble (Reichle, 2008). 

 

2.3.1 Ensemble generation 

The size of the ensemble is a trade-off between accuracy and feasibility, as larger sizes 

increase the accuracy of error variance estimations (Lahoz & Schneider, 2014) yet require 
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more computational resources. Various studies have shown that “smaller” ensemble sizes 

can compete with unrestrained sizes (Yin et al, 2015; Houtekamer & Mitchell, 2005; 

Crow & Wood, 2003), and hence the trade-off between ensemble size and available 

resources led to an ensemble size of 100 in this study.  

Parameter sets (channel and floodplain Manning’s coefficient, inflow bias) for each 

ensemble member were randomly sample from the ranges shown in Table 1. The random 

samples were further verified against the NSE performance measure from the GLUE 

results, with only those defined as behavioural parameter sets retained. In this regard, the 

GLUE procedure can be seen as quality control of model parameters, to ensure the outliers 

in model uncertainty generation are detected and screened out, hence improving the 

quality of the ensemble generation. 

In addition to any stationary bias of the inflow hydrograph, a white noise term was also 

imposed as a stochastic component to generate a 100 ensemble of inflows. As river 

discharge measurement errors increase with magnitude (Di Baldassarre & Montanari, 

2009; Van Wesemael et al., 2019), the stochastic component was generated as the 

proportion of the measured discharge, thus: 

𝑄𝑝𝑒𝑟𝑡𝑢𝑏𝑒𝑑,𝑡
(𝑒𝑛)

= (∝(𝑒𝑛)+ 𝜖𝑡) ∙ 𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑡
(𝑒𝑛)

   (1) 

Where: the superscript (en) denotes an ensemble member en of the ensemble size of N;             

𝑄𝑝𝑒𝑟𝑡𝑢𝑏𝑒𝑑,𝑡
(𝑒𝑛)

 and 𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑡
(𝑒𝑛)

  are the perturbed and measured inflow discharge at time t of 

the ensemble member; ∝(𝑛) is the random stationary bias (the magnitude of inflow 

hydrograph) of the ensemble member; 𝜖𝑡~𝑁(0, 𝜎2) is a multiplicative Gaussian white 

noise term with a standard deviation of σ, representing a random error in discharge 

measurements. In this study, 𝜎 was assumed to be 5% of measured discharge, after 

previous research suggested that for streamflow uncertainty estimation, the non-

systematic (random) errors are generally less significant compared to the systematic 

(bias) errors (Horner et al, 2018). 

Figure 2 shows details of the parameters used in ensemble generation.  
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Figure 2: Ensemble generation of channel and floodplain Manning’s n coefficients (above) and perturbed 

inflow hydrographs (below) 

 

In a similar fashion to the generation of ensemble inflows, each CS derived water level 

was perturbed to generate a 100 ensemble of water levels. The uncertainty of any CS data 

was based on uncertainty of the referencing category, and perturbation of the water level 

observation was generated as follows: 

𝑦𝑝𝑒𝑟𝑡𝑢𝑏𝑒𝑑,𝑖
(𝑛)

= 𝐻 ∙ 𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 + 𝜂𝑖
(𝑛)

    (2) 

Where: 𝑦 is the water level vector, and the subscript i and superscript (n) denote the Tweet 

identification (ID) and the ensemble member n respectively; 𝐻 is the observational 

operator that maps an observation onto model state vector, which in this case is equal to 

an identity matrix as the LISFLOOD-FP model output matches the observation space 

Colour indicates the magnitude 

applied to perturb inflow hydrograph. 
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(water level, WL); and, 𝜂𝑖
(𝑛)

~𝑁(0, 𝜎𝑖
2) is a Gaussian white noise vector representing 

uncertainty in the observations, where 𝜎𝑖 is the standard deviation of the referencing 

category used for water level estimation of the Tweet image i. 

2.3.2 Update strategies 

Generally, there are two types of state update strategies. Global strategies update model 

state variables (e.g. water levels) simultaneously for the entire flooded domain 

(Jafarzadegan et al. (2021), whilst local strategies confine updates within some cut-off 

area (domain localisation) or directly improve the background error covariance matrices 

(covariance localisation) (Farchi & Bocquet, 2019; García-Pintado et al., 2015). In this 

study, the efficiency of both strategies was investigated: 

• Global state update strategy: All cells in the computational domain (river and 

floodplain) were assumed to be connected, and hence water levels in all wet cells 

were simultaneously corrected at each assimilation time based on the results from 

the EnKF analysis. 

• Local state update strategy: Domain localisation was adopted to independently 

correct water levels in a series of disjoint local domains in the physical space 

(depression zones, DZs) where the CS data are observed (García-Pintado et al., 

2015; Kirchgessner, Nerger, & Bunse-Gerstner, 2014). All water levels in wet 

cells within DZs, analogous to the impact zone approach used in the Rapid Flood 

Spreading Model (Jamieson et al, 2012), were updated according to the results 

from the EnKF analysis.  

To account for CS data being tweeted at a time that does not correspond to model time 

steps, a modified version of the “Data Assimilation of Crowdsourced Observations - 

DACO” method (Mazzoleni et al., 2017) was employed with both the local and global 

update strategies. Both methods were based on the same assumption that the change in 

model states and in the error covariance matrices within the two consecutive model time 

steps can be assumed linear. However, whereas the original DACO method undertook 

DA analysis at the time of CS observations and assumed the results could be applied at 

the next computational timestep, the approach used in this study converted CS 

observations into “virtual observations” by assuming the difference in water levels 

(between observation and model forecast) at the observation time was equal to that at the 



   

 

274 

 

next model timestep, allowing DA analysis to be undertaken as normal at the next 

timestep. 

In addition to the cell-centred approaches outlined above, a number of update strategies 

incorporated some element of boundary updating. This was in response to the typical 

“short lived” impact of local cell updating, which can be swamped by the persistence of 

the flow-governing boundary conditions (Andreadis et al, 2007). Boundary condition 

updates were implemented as detailed below: 

• Upstream boundary update strategy: The background inflow biases (∝b), rather 

than direct discharge was updated. This was undertaken as part of the DA process 

using state augmentation (Farchi & Bocquet, 2019; García-Pintado et al., 2015), 

and consisted of the four steps shown in Figure 3. 

• Downstream boundary update strategy: The water level corrections at the 

downstream boundary were assumed to be equal to those calculated from state 

updating. 

 

Figure 3: Graphical representation of the inflow update procedure. 

Together with the cell-centered approaches, application of the boundary update 

techniques detailed above resulted in the seven update strategies summarised in Table 2. 
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Table 2: Summary of update strategies applied for experiment A-G 

Experiment Update strategy Description 

A Open loop No DA is applied (free run) 

B Global state update 
Simultaneously update all wet cells in the 

study domain 

C Local state update (DZs) 
Only update wet cells within DZs 

containing CS data 

D 
Local state update             

(DZs + river cells) 

Experiment C & update WL in all river 

cells 

E Local state & inflow update 
Experiment C & update upstream 

boundary 

F 
Local state & downstream 

boundary update 

Experiment C & update downstream 

boundary 

G Local state & inflow update 

& downstream boundary 

update 

Experiment C & update upstream 

boundary & update downstream boundary 

2.3.3 Update strategy performance assessment 

Assessing the performance of seven different update strategies, each of which has an 

ensemble size of 100, over a large urban domain is problematic enough with traditional 

time series data at fixed points; these problems are multiplied with CS data, which varies 

both spatially and temporally. To overcome these difficulties, and to provide a comparator 

benchmark data set, a model calibration process was undertaken to determine the optimal 

model parameter set to maximise the NSE value (calculated with reference to the CS 

observations). This calibration was undertaken using a Particle Swarm Optimisation 

(PSO), because of its advantages over other optimisation algorithms (Gopalakrishnan, 

2013; Mohamed et al., 2010). Further details of the precise PSO algorithm can be found 

elsewhere (Mohamed et al., 2010), however the user-defined parameters were a swarm 

size of 12 and a maximum iteration limit of 20 to balance efficiency and computational 

burden (Engelbrecht, 2007). The maximum NSE value of the 12 particles was 0.9376, 

corresponding to 0.0427, 0.0475 and 1.076 for channel & floodplain Manning coefficient 

and inflow magnitude (bias) respectively.  

3. Case study details 

3.1 Location and flood history 

The developed methodology was tested against a real flood event in Phetchaburi, 

Thailand in 2017 (see Figure 4). This urban area suffered extensive fluvial flooding in 



   

 

276 

 

recent years (2016 – 2018), caused predominantly by surface runoff from monsoon 

rainfall in upstream areas of the Phetchaburi river catchment. Significant posting/sharing 

of flood-related content on social media occurred during recent flood events, including 

large numbers of flood images, from both individuals (see Figure 4) and government 

agencies. Further details of the case study location are available elsewhere (Songchon et 

al., 2021). 

 

Figure 4: Location of study area (left) and the spatial pattern of flood-related images Tweeted during flood 

events 2016-2018 (right). Tweet Data overlaid on ESRI online basemaps (Esri Thailand, 2020) 

3.2 Model parameters 

The key LISFLOOD-FP model parameters were as follows (see Figure 5): 

• Upstream Boundary Conditions (BC) was a discharge time-series, derived from 

hourly observed water levels through the rating curve at Ban-Lat station. 

• Downstream BC was controlled by the time-varying water level measurements 

obtained at the Phetchaburi City station. Trial runs with a free-flow (normal depth) 

downstream boundary were not successful, as the water essentially drained from 

the model domain almost immediately.  
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• Outflow at the edge of the domain was set as a free-flow boundary condition, and 

the model was forced to calculate the normal depth at the boundary based on 

terrain slope. 

• LISFLOOD-FP was run in “acceleration” mode, using a simplified form of the 

SWEs that assumes the convective acceleration term is negligible (Bates et al., 

2013). Model time step varied according to the Courant-Friedrichs-Lewy 

condition, hence significantly decreasing the computation time compared with the 

adaptive solver (Bates et al., 2013). 

• The original 5m resolution DEM was modified to incorporate river depth and 

building footprint, acquired from the river cross-section survey and aerial 

photographs.  

• Cells were assigned either a river or non-river value, and Manning coefficients 

were sampled from the ranges shown in Table 1. 

• The size of the computational domain (~30km2), the DEM resolution (5m), the 

required simulation time (~ 5 days) and the number of ensemble simulations 

(100), necessitated use of high-performance computing (HPC). For this project, 

the Cirrus UK National Tier-2 HPC Service and the Centre for Environmental 

Data Analysis JASMIN computing facility was reemployed.  
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Figure 5: Boundary conditions set up for the study domain 

3.3 Observed locations 

To represent flood evolution and ease discussion, five important locations around 

Phetchaburi city were selected to observe water depth time-series (see Figure 7.1). 

Location I (Bandai-it Road) is a tourist attraction area, where local shops and businesses 

are located, while location II (Phetkasem Road) is a major road that connects the 

Phetchaburi city and surrounding cities; locations I and II represent areas in the middle 

of the study domain. Location III (Thasiri Temple) is located close to the Phetchaburi 

River and the upstream boundary and, according to reports published by the Department 

of Disaster Prevention and Mitigation of Thailand, was one of the most flood affected 

area during the 2017 flood event. Location IV (Pongsuriya Road) is a very populated area, 

close to both the main river and the downstream boundary of the study domain. Location 

V (Phumiruk Road) was selected to help identify the evolution of the flood in an area 

where no CS social media data was reported. 
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Figure 6: Observed locations (Basemap: OpenStreetMap contributors. (2022); images I-IV: Twitter (2017) 

photos by @nuhkome, @nationphoto, @js100radio and @poonoi_kt, respectively; image V: Google Street 

View (2022)). 

4. Results 

4.1 CS data 

Following the approach outlined above and elsewhere (Songchon et al, 2021), a total of 

192 geo-located water levels were collected from Tweets twittered during the 2017 flood. 

Of these, 15 tweets (7.8%) were categorised as low-quality data while the remaining 177 

tweets (92.2%) were identified as high-quality data, and utilised in further analysis. 

 

Green dots and blue polygons represent Twitter locations and building 

footprints, correspondingly. 

I 

II 

III 

IV 

V 

I 

III 

IV 

II 

V 



   

 

280 

 

4.2 Model conditioning  

With 400 model realisations, performed by uniformly varying the three parameters, the 

response surface of the NSE performance measure was as shown in Figure 7. 304 

simulations with NSE values below 0.6 were identified as non-behavioural and were 

eliminated, leaving 96 behavioural parameter sets. The maximum NSE value was 0.9385, 

corresponding to 0.04, 0.04 and 1.2 for channel & floodplain manning coefficients and 

inflow bias respectively. 
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Inflow 

bias 3D response surface Contour plot 
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(No 
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1.1 
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Figure 7: 3D response surface and contour plot of the channel & floodplain manning coefficients at 

various inflow biases.   
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4.3 Data Assimilation 

Figures 8.1 to 8.5 illustrate water depth time-series of all seven experiments at each of 

the five observed locations. 

Observed Location I: Bandai It Road 

A 

 

B 

 

C&D 

 

E 

 

F 

 

G 

 
Figure 8.1: Water depth forecast at observed location I (Bandai It Road) for update strategies A-G. Green 

lines are forecast ensemble; Black line is forecast mean; Blue line is PSO calibrated results; Filled grey area 

represents ensemble spread of open loop experiment (A).   
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Observed Location II: Phetkasem Road 

A 

 

B 

 

C&D 

 

E 

 

F 

 

G 

 

Figure 8.2: Water depth forecast at the observed location II (Phetkasem Road).  Green lines are forecast 

ensemble; Black line is forecast mean; Blue line is PSO calibrated results; Filled grey area represents 

ensemble spread of open loop experiment (A).  
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Observed Location III: Thasiri Temple 

A 

 

B 

 

C&D 

 

E 

 

F 

 

G 

 

Figure 8.3: Water depth forecast at the observed location III (Thasiri Temple). Green lines are forecast 

ensemble; Black line is forecast mean; Blue line is PSO calibrated results; Filled grey area represents 

ensemble spread of open loop experiment (A).  
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Observed Location IV: Pongsuriya Road 

A 

 

B 

 

C&D 

 

E 

 

F 

 

G 

 

Figure 8.4: Water depth forecast at the observed location IV (Pongsuriya Road). Green lines are forecast 

ensemble; Black line is forecast mean; Blue line is PSO calibrated results; Filled grey area represents 

ensemble spread of open loop experiment (A).   
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Observed Location V: Phumiruk Road 

A 

 

B 

 

C&D 

 

E 

 

F 

 

G 

 

Figure 8.5: Water depth forecast at the observed location V (Phumiruk Road). Green lines are forecast 

ensemble; Black line is forecast mean; Blue line is PSO calibrated results; Filled grey area represents 

ensemble spread of open loop experiment (A).  
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Figure 7.8 illustrates the evolution of the inflow biases and the inflow hydrograph along 

the sequential assimilation steps. 

 

Figure 9: Evolution of the inflow biases (below) and the inflow hydrograph (above) along the sequential 

assimilation steps used in the experiment E. For the inflow biases (below), blue lines are the inflow bias 

ensemble, black line is the mean of inflow biases. For the inflow hydrograph (above), blue lines are the 

inflow hydrograph ensemble, black line is the mean of inflow hydrographs, and the filled grey area and 

grey line refer to the ensemble spread and its average of the inflow ensemble in case of no inflow update, 

respectively. 

Figure 7.9 shows the evolution of the updated water level applied at the downstream 

boundary used in experiment F. 

 

Figure 10: Evolution of the updated water level applied at the downstream boundary. 

Overall NSE performance of model simulations for different updating strategies at all the 

observed locations are compared and presented in Figure 11. The boxplots in this Figure 

represents the distribution of the NSE values for each updating strategy, i.e. each boxplot 
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contains 100 NSE values (< 100 for the experiment E and G due to the model instability), 

determined by comparing the flood depth forecast time-series of each ensemble member 

against the best calibrated forecast time-series obtained from the PSO analysis. Note that 

a perfect match between the model forecast and calibrated result is indicated when the 

NSE value is equal to 1. 

 

Figure 11: Overall NSE performance of model simulations for different updating strategies. 

5. Discussions 

5.1 Model conditioning 

For GLUE implementation it was necessary to decide on parameter ranges and 

distributions, sampling strategies and rejection criteria. Given the computational expense 

of simulating LISFLOOD-FP and the lack of prior knowledge of the parameter 

distributions in this study, a uniform independent sampling of parameters was adopted 

over more demanding approaches. The global optimum NSE point on a smooth response 

surface (Figure 7) resulting from the GLUE analysis indicates that the parameter ranges 

selected were more than sufficiently wide to cover model good fit regions. Moreover, the 

uniform independent sampling strategy is proven to be a good choice as it reflects well 

on the smooth response surface. Although the selected rejection criterion for non-

behavioural models (NSE<0.6 wrt CS data) was determined based on flood depths only, 

the spatial dimension of the flood extent was taken into account to some degree as the CS 

observations were not stationary. Consequently, the criterion could be said to be a suitable 

“likelihood measure” (Beven, 2012) for the type of urban flood forecasting under 
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consideration. Nevertheless, it is accepted that selection of appropriate criteria for model 

acceptability remains an open question. 

The range of channel Manning coefficients for ensemble members classed as 

‘behavioural’ are in line with accepted empirical values for the case study channel (i.e. 

meandering river with moderate bed roughness and eroded side slopes).  However, the 

range of floodplain Manning coefficients are slightly higher (0.04 – 0.06) than expected 

when compared with empirical studies of the type of surfaces found in urban 

environments (e.g. 0.015 - 0.030).  This latter divergence is because Manning coefficients 

account for all energy losses in the vast majority of simulation models, including 

LISFLOOD-FP, rather than just those due to surface roughness, and hence appropriate 

values for urban environments are higher than empirical surface values. 

5.2 Data Assimilation 

5.2.1 Experiments A-G 

The results shown in Figures 7.1 to 7.5 highlight the following key points related to each 

of the individual experiments. 

• Experiment A (open loop, no DA): Whilst the ensemble mean compares well with 

the PSO calibration for all observed locations, the significant spread indicates a high 

degree of uncertainty. Location IV demonstrates the lowest uncertainty (narrowest 

ensemble spread) during the rising and falling limbs of the inflow hydrograph, as it is 

close to the river where overtopping occurs, so conditions are not significantly affected 

by uncertainty associated with floodplain coefficients and topography-driven flow 

processes. In terms of the temporal dimension, the ensemble means at locations III and 

IV agree with the water level measurements at the Ban-Lat (upstream boundary) and 

Phetchaburi city (downstream boundary) stations, which indicate bank overtopping at 

approximately 12:00 and 14:00 respectively. Similarly, the ensemble means at 

locations I and II, both located further away from the river, agree with available CS 

data which indicates that flood water reached these locations sometime after 21:00 on 

November 22nd, 2017 (Thailand local time).  

• Experiment B (global state update): The global state update leads to general 

inconsistencies in forecasted water-depth time-series for all the five observed points, 

with some sudden and inconsistent changes compared to the open loop run 
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(Experiment A). Unsurprisingly, the results indicate that the correlation between flood 

depth decreases rapidly with physical distance on the floodplain. 

• Experiment C (local state update): The results from application of a topographic-

based local state update are consistent with the PSO calibration, and there is a clear 

narrowing of the ensemble spread immediately after each assimilation step. This is 

apparent from the first assimilation, during the rising limb of the hydrograph, which 

would suggest that early assimilation of CS data is an important element of improved 

model forecasts. Although the influence of any local state update is seen 

predominantly in the related DZ, cascading effects occur. As an example, the results 

for location V, which has no CS data reported within its DZ, do show some minor 

differences from the open loop simulations, indicating the effect of updates applied at 

the neighbouring DZs. Notwithstanding the above, it is also clear that any reduction in 

model uncertainty diminishes relatively quickly, the rate of which depends on location 

relative to model boundaries. As an example, model predictions at locations III and IV 

(close to the upstream and downstream boundaries respectively) reversed back to the 

open loop forecasts within a few hours, while those at locations I and II (in centre of 

study domain) took approximately 10-15 hours to revert back to the open loop 

forecasts.  

• Experiment D (local state and river cell update): These results were almost 

indistinguishable to those of experiment C for all locations, despite this strategy 

incorporating river cell as well as floodplain updates. This would suggest both that the 

effect of the river cell update is rapidly wiped out by the persistence of the boundary 

conditions, and that the scale of typical updates (± 400mm) is relatively insignificant 

in a river whose depth is approximately 5-7 metres.  

• Experiment E (local state and upstream inflow update): In comparison to 

experiment C, these results indicate that updating the inflow decreased uncertainty at 

upstream and mid-stream locations (I, II, III and V) during the rising limb of the 

hydrograph. There is no discernible impact on the downstream location (IV), 

indicating the “forcing” nature of the downstream boundary. The cascading impact of 

inflow updates in both time space can be seen by comparing the results at I/II and V 

to those from experiment C, i.e. significant changes in water level at I/II can be 

detected for some time after the latest update and the levels at location V are affected 

even though there is no CS data in its DZ. In a more general sense, this strategy tends 

to overestimate the discharge values, especially during the peak of the hydrograph (see 
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Figure 9), leading to overestimated water depths.  In addition, this update procedure 

did lead to some sudden changes in inflow, which caused model instability 

(chequerboard oscillations) in ~10% of ensemble members. 

• Experiment F (local state and downstream stage update): Incorporating a 

downstream stage update (see Figure 9) shows decreased uncertainty at all locations 

compared to the state update alone (experiment C). This is more apparent at locations 

further away from the river reach (I, II and V), which suggests a similar type of 

limitation as the upstream inflow update, in which the influence of the downstream 

update is counter-balanced by the upstream boundary, especially in the area along the 

river reach in which the water level is mainly controlled by the inflowing discharge.  

• Experiment G (local state, upstream inflow boundary and downstream stage 

update): Combining the local state update with updates to both the upstream and 

downstream boundaries led to similar results to experiment E, which combined local 

state and upstream inflow updates, i.e. an over-estimation of the model water level 

forecasts for upstream and mid-stream areas. This similarity, despite the inclusion of 

the downstream boundary update, indicates that for this particular case study the 

upstream inflow boundary update has a greater impact on the model forecasts than that 

of the downstream boundary update. Similar to the experiment E, approximately 10% 

of the ensemble runs also experience model instability as a result of the upstream 

inflow boundary update.  

5.2.2 Influence of state update strategies 

In general, the global state update strategy (experiment B) led to inconsistencies in flood 

forecasts throughout the computational domain. This finding is consistent with the study 

by García-Pintado et al. (2015), who reported that global update strategies can result in 

spurious correlations that are not properly damped, leading to unrealistic inundation 

simulations. The promise shown with some previous applications of global update 

strategies (e.g. Jafarzadegan et al., 2021) was not apparent, primarily due to differences 

in both the type of data that was assimilated (river levels) and topographic resolution 

(120m DEM). So, whilst a global update strategy could be successfully applied to a 

relatively simple and “connected” domain, where water levels in river cells may be highly 

correlated with surrounding cells representing floodplain areas, it is less likely that this 

approach would perform well in the case study scenario, where the higher spatial 

resolution (5m DEM) permits identification of salient features (e.g. roads, buildings, local 
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depressions) and can lead to low-correlations of water levels between cells some distance 

away.  

In contrast to global approaches, the use of a topography-based local update strategy 

(experiments C-G) did demonstrate some promising results, yielding flood predictions 

consistent with the calibrated PSO simulation. Importantly, the topographically based DZ 

approach bypassed the more subjective traditional techniques that typically assume some 

pre-defined radius of influence of the assimilation data, and as such was more physically 

meaningful. However, the local update strategy on its own (experiments C and D) did 

suffer from local and short-lived improvements; whilst any local update to one DZ did 

cascade to neighbouring DZs and decrease local uncertainty at subsequent timesteps, its 

overall impact was fleeting (~2-12hrs) and hence quite minimal. These findings confirm 

those of previous studies (Andreadis et al., 2007; Cooper, 2018, 2019; Hostache et al., 

2018; Matgen et al., 2010) and highlights the persistence of boundary conditions in 

governing overall conditions. This phenomenon is particularly apparent when comparing 

the results for experiments C and D, which are almost identical, indicating that the 

reductions in uncertainty associated with state updating of river cells (experiment D only) 

were rapidly wiped out by the persistence of the boundary conditions. 

5.2.3 Influence of boundary update strategies 

The results from experiments E-G, which involved some combination of state and 

boundary updates, all show some improvements in terms of extending the temporal 

impact of data assimilation. Within this general trend, there are some interesting points. 

Firstly, the impact of any boundary update takes longer to influence results compared to 

local state updates, which immediately enhance model forecasts. This seems logical as it 

clearly takes some time for any change in upstream inflow and/or downstream stage to 

cascade done to cell level depths. 

Secondly, the influence of any boundary update seems limited to specific areas of the 

domain, with the inflow update predominantly impacting upstream and midstream areas, 

whilst the downstream update has more impact on downstream areas. Again this seems 

logical, as conditions at any specific point will be more influenced by the nearest 

boundary conditions, and so the impact of any boundary update will lessen on approach 

to the fixed boundary. In addition to distance from boundaries, location relative to bank 

breach also plays a significant role in the extent and timing of boundary update impact, 
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as the river channel itself acts as “fast track” to the bank breach and can hence cascade 

updates rapidly to nearby areas. This type of forecast improvement can be particularly 

useful for the emergency response teams to allocate limited resources, as the areas around 

the bank breach are expected to be the most flood affected areas during a flood event. 

Thirdly, the observed overestimation of discharge and hence water levels with inflow 

updates, indicates that there is significant uncertainty associated with the rating curve at 

Ban-Lat station. Like most rating curves, that at Ban-Lat is single valued and has been 

derived from a limited number of approximately steady, in-bank discharges. As such, its 

use for high flow conditions involves extrapolating this data, a process which is known 

to led to significant errors (Di Baldassarre and Montanari (2009) and hence increased 

uncertainty. The checkerboard instabilities observed with some of the inflow updates is 

another disadvantage of this updating strategy, as it is essential to detect and exclude such 

ensemble runs to maintain the robustness of any EnKF analysis.  

Finally, in contrast to local and (truly) global state updates, the impact of any boundary 

update can be considered to be partially-global, as whilst its effect is not limited to the 

areas where the observations are located it can be counter-balanced by the boundary at 

the other end of the study domain depending on specific flood dynamics. In addition, as 

boundary updates are applied at each assimilation step, they can be highly dynamic and 

adaptive according to the number of CS observations.  

5.3 Computational time 

All of the experiments (A-G) were carried out using HPC facilities by assigning a single 

CPU core per job to simulate each ensemble run simultaneously. Whilst the open loop 

experiment A required 26 hours to complete the 5-day simulation, those incorporating 

data assimilation took slightly longer (30-32 hours) in order to stop, undertake EnKF 

analysis and update.  

Interestingly, all 400 GLUE model realisations were completed much quicker than the 

PSO calibration (2 days vs 30 days). This was because, te PSO algorithm bases its updated 

parameters based on the previous results and hence could not take the same advantage as 

the GLUE approach of the HPC batch capabilities. If such batch facilities were not 

available, the PSO approach would outperform GLUE in terms of computation time, as 

it was able to converge the parameter sets of all 12 particles to an optimal region just after 
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144 model realisations (12 iterations from 12 particles), with only <2% time required for 

the algorithm itself (i.e. >98% required for LISFLOOD-FP simulations). Given the 

smooth response surface of the NSE objective function (Figure 7), it is likely that similar 

GLUE results could be obtained with refined parameter ranges and sampling strategy, 

both of which would help optimise numbers of model realisations. 

6. Conclusions 

This study explored the feasibility of using CS social media data as an alternative data 

source to assimilate into a 2D flood forecasting model (LISFLOOD-FP) through a 

standard sequential DA technique (EnKF). Various combinations of (global and local) 

state updating and (upstream and downstream) boundary updating strategies were 

investigated and assessed. The proposed methodology was tested against a real case flood 

event of the 2017 Phetchaburi flood (Thailand), and the performance of each strategy was 

evaluated with reference to the calibrated model output obtained from the optimal 

parameter set through the PSO algorithm. The following key conclusions can be drawn 

from the case study: 

1. The lack of quality assurance with CS data limits their wholesale application to flood 

modelling activities. However, with an appropriate quality assessment method, CS 

data can be successfully assimilated into flood model simulations to improve accuracy 

and reduce uncertainty. 

2. Uncertainty in model forecasting can be well constrained within reasonable ranges by 

applying the GLUE procedure to identify behavioural model parameter sets in the 

generation of the ensemble inputs process. In this regard, the GLUE procedure acts as 

quality control of the uncertainty in model forecasting, ensuring that the outliers in 

model ensemble forecasting are detected and discarded, thereby improving the quality 

of ensemble generation. 

3. Whilst a topography-based local update strategy can produce flood predictions 

consistent with the benchmarking simulation, global state updates lead to inconsistent 

results in typically complex urban environments. Irrespective of application, state 

updating alone has a short-term, and hence minimal effect on model results.  

4. Strategies combining both state and boundary updates have longer lasting impacts than 

those relying solely on state updates, and generally take longer to impact simulation 
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results. Such updates can be considered to be partially-global as their influence is not 

restricted to the regions where the CS data is collected.  

5. Whilst strategies incorporating inflow updates can lead to overestimation of discharge 

and hence water levels, those that employ a downstream boundary update appear to be 

the most promising approaches. 

6. The extra computational time required for the EnKF analysis to update and regenerate 

model input files the effect is minimal. 

7. Although tangential to the original aims of the work, the results show that the PSO has 

potential as an optimization solution method for nonlinear problems, particularly if the 

current code could be modified to support parallel processing.  

Overall, the developed methodology can help realise the benefits associated with high 

temporal resolution CS data to improve the performance of flood forecasting systems for 

urban environments. 

Future developments should focus on: testing the developed methodology in different 

case study locations; assimilating CS data in conjunction with traditional (in-situ or 

remote sensing) observations; and, investigating the sensitivity of forecasting skill to the 

ensemble size.  
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