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Abstract

The following thesis is a feasibility study for the controlled deployment of robotic
scaffolding structures on randomly tumbling objects with low-magnitude gravita-
tional field for use in space applications such as space debris removal, spacecraft
maintenance and asteroids capture and mining. The proposed solution is based on
the novel use of self-reconfigurable modular robots performing deployments on ran-
domly tumbling objects as a task-driven reconfiguration or manipulation through
reconfiguration. The robot design focused on its control strategy which used a
decentralised modular controller with two levels. One high-level behaviour-based
component and one low-level component generating commands via a constrained
optimisation using either a linear or a non-linear model predictive control approach
and constituting a novel control method for rotating objects via angular momentum
exchanges and mass distribution changes. The controller design relied on modelling
the robot modules and the object as a rotating discretised deformable continuum
whose rigid part, the object, was an ellipsoid. All parameters were normalised when
possible and disturbances, sensors and actuator errors were modelled respectively
as biased white noises and coloured noises. The correctness of the overall control
algorithm was ensured. The main objective of the MPC controllers was to control
the deployment of a module from the tip of the spinning axis to the plane contain-
ing the object’s centre of mass while coiling around the spinning axis and ensuring
the object’s rotational state tracked a reference state. Simulations showed that the
nonlinear MPC controller should be preferred over a linear one and that, for a mass
ratio of the object’s to the module’s equal to 10000, the nonlinear MPC controller
is best suited to stability maintenance and meets the deployment requirement, sug-
gesting that the proposed solution would be acceptable for medium-size objects such
as asteroids.
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Chapter 1

Introduction

1.1 Motivation

On 25/11/2015, the US congress passed the U.S. Commercial Space Launch Com-

petitiveness Act authorising U.S. citizens to explore and recover space resources for

commercial purposes [39]. This reflects that the space industry now represents a

significant and strategic part of the global economy. In 2014, it was worth 330 bil-

lion dollars worldwide. This amount had doubled over the ten year between 2005

and 2014 growing at an average 7 percents compound annual rate. Three quarters

of this output was the result of commercial activities and revenues from commercial

space products and services accounted for more than a third of the global industry’s

worth [22].

Mining space resources borne by near-Earth asteroids (NEA) could offer sub-

stantial impact and benefits: a secure access to as well as an increase of the supply

of critical mineral resources providing geopolitical stability, promoting economic

growth and fostering technological development in many fields like artificial intelli-

gence and robotics [61].

Asteroids are expected to contain excellent and easy to mine ores such as precious

metals like platinum group metal (PGM), gold or germanium as well as metallic in-

dustrial resources like nickel-iron and cobalt [61]. Moreover, some asteroids harbour

significant quantities of water which could be used in space either as fuel for space

engines or for supporting life [20] and may harbour other volatiles such as ammo-

1



Chapter 1: Introduction

nia, carbon dioxide or methane [61]. The available quantity of those resources can

only be statistically estimated [48], but precious metal are expected to be in higher

concentrations in asteroids than in the Earth crust [61]. In order to illustrate the

economic value of these NEAs resources, it is estimated that they collectively har-

bour 37E15 kg of iron worth 11000 trillion dollars at current Earth prices [34] and

one 100m-diameter PMG-bearing asteroid alone would provide a tenth of the 2011

world platinum production [11].

Most asteroids are located in the asteroids belt between Mars and Jupiter out of

immediate reach as the energy expenditure involved would be, at least for now, pro-

hibitive. Near Earth asteroids (NEAs) are therefore considered as the prime targets

for the first space mining operations. These NEAs have orbits which near Earth on

a regularly basis. As of 2015, the number of known NEAs is 10,337 according to

the international astronomical union [61]. 861 of them have a diameter larger than

one km [61] and if other objects, such as comets, are included the population of

near-Earth objects (NEOs) increases significantly. For diameters larger than 100m,

the number of NEOs nears 20,000 [36] a number which goes up to 10 millions for

diameters larger than 20m [36].

Asteroids are uncontrolled and uncooperative objects devoid of any docking de-

vice [61]. Their shapes are irregular, in particular for small ones (i.e. with diameter

lower than 100km). Due to their their irregular shape, their rotational motion can-

not be described in terms of principal axis of rotation but rather as a tumbling

motion i.e. a rotation around a dynamic axis [20, 34]. For the biggest asteroids, the

equatorial velocity can be of the order of tens of km/s [61] and the magnitude of

the gravitation force at their surface is extremely small. This combination of lack

of gravitation and centrifugal forces and relative velocity at the surface renders any

attempt to land, maintain contact with and deploy on the surface very challenging.

There have already been one successful attempt to reach asteroids. The Hayabusa

mission successfully landed on the surface and collected surface sample of the aster-

oid Itokawa number 25143 in 2005. However, contact was brief and not secured [34].

Secure attachment to the surface of an asteroid by a probe remains to be tested [34].

2
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Currently, NASA is in the planning of yet another mission: the Asteroid Redirect

Mission (ARM) which proposes to bring back a captured asteroid in a lunar orbit

for further human exploration [61].

Among the engineering challenges faced by such missions, the attitude control

problem is of particular interest for it constrains critical tasks such as the rendezvous

and docking to an asteroid, the mining process itself and the accuracy of the trajec-

tory should this asteroid be retrieved to where it should be mined or consumed.

In [61, 34] various strategies are envisaged to de-spin rotating asteroids. In [34], it

is estimated that in order to de-spin a rapidly rotating 100m-diameter asteroid whose

mass is of the order of a few million tonnes, about one tonne of chemical propellant

would be required to do so completely, assuming the propellent would be readily

available on the asteroid itself. However, these methods may prove impractical or

energy expensive. For one, finding propellent material on the spot and in sufficient

quantity assumes accuracy of its estimation process and ability to retrieve it easily

in other words without too involved a mining process. It also assumes autonomous,

accurate and secure anchoring of devices on a very uneven surface under the quasi

absence of light, landmarks and gravitation force (of the order of mm
s2

) [34]. The

most common devices controlling attitude are internal torquers like reaction wheels

and external torquers like thrusters. For practical scaling reasons, only thrusters

could realistically be used. These devices use respectively mass movements and

reaction mass as a way to actuate. Usually, any changes of mass distribution such

as appendages is considered as disturbances however, leaving it as an unexplored

method of attitude control.

With all of the above in mind, using a modular self-reconfigurable robot offers

an original alternative for tumbling objects manipulation or attitude control. The

basic robot architecture under consideration is one where each module remains in

communication with and is attached to at least one other module. The reconfigu-

ration process sees modules move on top of one another changing the robot shape

volume and mass distribution. This deployment is coupled with exchange of angular

momentum between the modules and the tumbling object. The potential benefits

3
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of such an approach are multiple. It could circumvent the risks associated with

multiple landings in micro-gravity by enveloping the tumbling object instead of po-

tentially bouncing off it. Moreover, the strong argument for enveloping a tumbling

object with a self-reconfigurable robot is that it provides a ”scaffolding” structure

or ”tracks” along which other robot could latch on to perform tasks and have ac-

curately placed propulsion systems for instance. Considering the importance of the

mass payback ratio (i.e. the mass retrieved to the mass sent) as a key driver to

maximise when designing a space mining missions, this ”scaffolding” solution would

certainly help maximise the ratio of area or volume covered to the mass deployed.

Finally, one could even imagine that a modular self-reconfigurable robot could de-

ploy in such a way that it alters the mass distribution of a tumbling object so as

to make it more symmetrical. In doing so, maintaining a constant spinning rate

around an axis of symmetry would be much easier rendering the overall attitude of

the system more stable. One practical application of this could be the possibility of

generating and maintaining an artificial gravitation force on the largest objects with

an appropriate centrifugal force. It is with consideration of all of the above that the

research reported in this thesis has endeavoured to explore the feasibility of using a

self-reconfigurable robotic attitude control system.

1.2 Study aims and objectives

1.2.1 Study Aims

The specific aims of the research carried out were:

1. Model the dynamic interactions between an uncooperative random-shaped

tumbling object with low-magnitude gravitation field and a modular device

moving on the surface of this object in order to describe the effects of dynamic

changes in mass distribution to the overall system and the resulting exchanges

of angular momentum between the object and the device.

2. Derive from the above model a simple behaviour-based decentralized algorithm

controlling the deployment of a modular self-reconfigurable robot over the
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surface of the object as a continuous chain of modules circling around the main

spin axis. The problem is akin to the resolution of a constrained optimization

or tracking problem in the sense that the deployment should make the object’s

rotational state converge to a reference rotational state.

3. Verify and validate the robot controller concept and correctness at the lower

module level and at the higher robot level through computer simulations.

1.2.2 Contributions and Achievements

This PhD thesis met the objectives of the preceding section through two main orig-

inal contributions which give ground to the further exploration a self-reconfigurable

robotic structure concept for space application:

1. The design of a combined behaviour-based and model predictive control al-

gorithm for the module of a decentralised modular self-reconfigurable robotic

structure which controls the deployment of this structure on the surface of

an ellipsoidal object rotating in a low-gravity field while manipulating the

rotational state of this object.

2. The partial validation of the above approach through simulations of the de-

ployment of one module only. These simulations showed that a module can

successfully deploy to a target surface location on the object’s surface while

partially driving the object’s rotational state to a pure spin or at least to

a state close to its initial rotational state avoiding divergence to degenerate

uncontrollable rotational states.

These contributions are based on the following original work:

1. A physical model of the modular self-reconfigurable robot and its interactions

with the environment based on a deformable rotating continuum with vari-

able mass approach. This physical model contains all the relevant dynamics,

perturbations, constraints and parameters to simulate the robot accurately

and provide the basis upon which a model predictive controller for the robot’s

modules was designed.
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2. The design of a basic decentralised hardware architecture concurrently with a

task-focused two-level decentralised control algorithm for each robot module

enabling the robot to perform a manipulation through reconfiguration of the

entire robot body via changes of mass distribution. The top-level controller

controls the reconfiguration and deployment of the robot on the object’s sur-

face using task-driven behaviours organised in a tree structure. The low-level

controller uses a state space representation and a model predictive control ap-

proach to track a reference state trajectory representing the ideal final robot

configuration and ideal final rotational state for the object. The overall system

composed of the object and the robot was proven to be either at best neutrally

stable or unstable and its controllability could not be proven. However, under

the hypothesis of partial controllability via the model predictive controller, the

correctness of the overall two-level controller was proven.

3. The performance evaluation of the low-level module controller through the

extensive simulation of the linear and nonlinear model predictive controllers

of one module deploying on the object’s surface under 32 initial conditions

parametrised by the object geometry, the mass ratio of the object’s to the

module’s and the object’s initial rotational state. The simulations showed that

the nonlinear model predictive controller should be chosen over the linear one.

The simulations also validated the nonlinear model predictive controller for

driving the module’s deployment to a target location but not for controlling the

system’s rotational state which never converge to the reference rotational state.

However, the simulations showed that the nonlinear model predictive controller

could be used effectively for a strategy focusing on stabilising the system’s

initial rotational state. This strategy trades off controllability for stability by

combining the controller with a stiffening of the system through an increase

of the mass ratio which is shown to be the main stabilising parameter. The

benefit of stability outweighs the risk of divergence while trying to converge to

a reference rotational state and in this case, the proposed self-reconfigurable

robot is suited for objects involving a mass ratio of at least 1000 or more.
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The outline of the work carried out to produce these original contributions will

be found in the next section 1.2.3, while the details of the contributions will be

found in the conclusion in chapter 6.

1.2.3 Solution Outline and Objectives

1.2.3.1 Chapter 2: The Origin of the Concept

After a presentation of the space environment the deployable robotic “scaffolding”

structure would have to operate in, an introduction to basic spacecrafts requirements

and design was conducted in chapter 2 and combined with a review of the currently

planned methods for active space debris capturing and removal to gain an overview

of the current and potential ways of manipulating non-cooperative object in space.

After an introduction to reconfigurable robots, an analysis of their potential use in

space application was performed with a focus on how they provide another method

of dealing with uncooperative randomly tumbling object with benefits of their own.

1.2.3.2 Chapter 3: Modelling the Problem

The study then delved into the physical modelling of the interactions between a

randomly tumbling object and another object, or surface mass, moving at its surface.

This in order to size and derive design guidelines and parameters for a modular robot

whose primary objective would be to deploy all over the surface of such an object.

The problem was approached by considering the tumbling object and the surface

mass as one rotating continuum with a rigid part, the object and a deformable part,

the surface mass. The discretisation of an existing model of rotational dynamics of

a deformable medium led to the building of a simulation of the rotation of an object

with multiple surface masses at its surface. All simulation parameters are presented

in the chapter. A brief analysis of potential landing sites was also conducted while

all important mathematical derivations can be found in appendices.
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1.2.3.3 Chapter 4: Designing the Robot Controller

The study then moved on to the design of the robot. While spanning the whole

spectrum of design requirements, the chapter focused on the control aspect of the

design. The choice of approach was driven by concerns for fault recovery and led to

the design of a decentralised behaviour-based algorithm where each module makes

a decision based on communication with its immediate neighbours, each module

passing information along. The behaviour-based algorithm is seconded by a Linear

(MPC) or Non-Linear Model Predictive Controller (NMPC), based on chapter 3’s

model, which ensures that a module deploys while tracking a reference rotational

state of the object. The objective of the control algorithm is to lead to the deploy-

ment of modules as a continuous chain over the surface of the object so as to cover

a continuous trajectory circling around the main spin axis.

1.2.3.4 Chapter 5: Simulation Results

The results of the simulation of a single mass deploying on the rotating object are

reported here leaving the simulation of the entire robot for future work.

1.2.3.5 Conclusion:

Finally a summary of findings and contributions is provided in the conclusion.
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Literature Review

2.1 Scope of the Literature Review

As this thesis is covering a multi-disciplinary field, this section will define the

scope of the literature review which sets the boundaries of the thesis.

1. The first part of the literature review is dedicated to understanding of the

environment the robot is to operate in and focusses on asteroid dynamics.

This introduction constitutes the basis upon which a physical model of the

rotational interaction between the robot and the asteroid is to be derived.

This first part introduces:

(a) the origin of asteroid motion and the types of rotations they experienced,

(b) the perturbations affecting asteroids motion, in particular their rotation,

(c) the approach to planning the landing phase and the choice of landing

site,

(d) the approach to modelling:

� the dynamics of the rotational interaction between the robot and the

asteroid,

� the perturbations,

� the sensors and actuators noise.
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2. The second part of the literature review is dedicated to review the methods

and challenges of spacecraft design which condition the robot design. It is

completed by a presentation of current asteroid and spaced debris capture

methods. This second part introduces:

(a) the basics of spacecraft design and engineering requirements for space

operations,

(b) attitude control and asteroids and debris de-spin methods,

(c) the current designs envisaged for tackling asteroid and space debris cap-

ture.

3. The third part of the literature review is dedicated to the presentation of

Self-Reconfigurable robots with a focus on control. The discussion of the vari-

ous control methods emphasises the need for a flexible and easy-to-implement

controller with a capability to ”understand” its environment and produce ac-

tuation commands accordingly. This third part introduces:

(a) a Self-Reconfigurable robots taxonomy,

(b) Self-Reconfigurable robots hardware capabilities,

(c) the self-reconfiguration problem

(d) why a task-base self-reconfiguration is the method of choice for designing

a controller and its translation into

(e) a need for a high-level behaviour-based controller coupled with

(f) a lower-level controller based on a physical model of the environment

which lends itself well to an implementation of a linear and nonlinear

model predictive controller.

2.2 Dynamics of Asteroids

The design drivers and parameters of the “scaffolding” robotic system to be de-

signed in this PhD study are dependent on the wider mission parameters prior to and
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during deployment on an asteroid. These mission parameters include the approach

and rendezvous orbits of the spacecraft carrying the robot as well as the robot opti-

mal landing site. Moreover, the rotational dynamics of the target asteroid needs to

be understood to ensure that the physical hypotheses conditioning the planning of

the robot deployment are valid, that the robot deployment is feasible and that the

chances of mission failures are lowered. This section provides a briefs review of the

Near Earth Asteroids (NEAs) and main-belt asteroids dynamic properties which are

fed into the robot design.

2.2.1 Asteroids’ Origin

NEAs are assumed to originate from the main asteroid belt between Jupiter and

Mars under the influence of orbital resonances with Jupiter [41]. A brief introduction

of the origin and dynamics of the belt asteroids gives important insights into the

problem of reaching, landing and deploying a device on the surface of an asteroid.

This subsection and the following highlight the challenges faced by such a mission.

The main asteroid belt is a very large collection of solid bodies orbiting the sun

between Jupiter and Mars and occupying a torus-shaped volume. These bodies have

irregular shapes and are much smaller than planets. They are assumed to have been

formed during the process of gravitational accretion of dust and gas which led to the

formation of the Solar System and its planets. This hypothesis states that, in the

main asteroid belt region, the perturbing influence of the gravitation force exerted

by Jupiter on these small bodies prevented the formation of planet-sized bodies

by increasing their relative velocities to such a level that shattering post collision

dominated over accretion [18, 43, 55, 62].

Broadly speaking, asteroids can be found as stand alone and, in this case, are

usually large (10 km diameter or more) or in families or clusters of asteroids. These

families originate from catastrophic collisions undergone by a large body and cluster

around it while moving together on an average orbit. Family member of 1 km in

diameter or less contribute the most to the population of these families [18, 43, 55,

62].
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2.2.2 A Classification of Asteroids’ Rotation State

This section lists the types of rotations that asteroids experience in order to show

the diversity of situations the robot controller is to face during deployment.

According to the asteroid lightcurve database [67] containing data for more than

15,000 bodies, asteroids can be classified by rotation period in four categories: typ-

ical rotators, slow rotators, fast rotators and tumblers. The rotational period can

be sidereal, i.e. with respect to fixed stars, or synodic, i.e. with respect to the Sun.

In the case of main-belt asteroids, the difference between the two measures can be

neglected.

Typical Rotators Typical rotators have a period of rotation between 2 and 20

hours [67].

Slow Rotators Slow rotators have an exceptionally long period of rotation, longer

than 100 hours up to longer than 1000 hours in a few cases. These asteroids typically

measure between 1 and 20 km in diameter [67].

Fast Rotators Fast rotators have an exceptionally short period of rotation: 2.2

hours or less. Typically, they have a diameters measuring less than 1 km, the ma-

jority of them being shorter than 100 meters. The rotation period has a lower limit

corresponding to the disintegration of the asteroid which occurs when the centrifu-

gal force is greater than the gravitational force holding it together. Consequently,

asteroids with a diameter over 100 meters are possibly conglomerations of smaller

pieces loosely kept together by gravitation [67].

Tumblers Tumblers are bodies with unequal moments of inertia which do not

rotate in a constant manner with a constant period. Tumbling can be caused by the

YORP effect [67].
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2.2.3 Perturbations Affecting the Dynamics of Asteroids

This section introduces the main perturbations to asteroid dynamics which affect

key mission parameters: the target asteroid’s orbit in the Solar System, the target

asteroid’s rendezvous orbits and the target asteroid’s rotational motion.

The orbital and rotational motions of asteroids are both strongly perturbed by

two main types of disturbances [62]:

1. gravitational perturbations which are due to the gravitational forces ex-

erted by the many bodies present in the Solar System, particularly the Sun

and the major planets.

2. solar radiation perturbations which are due to the heat, light and other

radiations given off by the Sun. These can be divided into:

(a) the Yarkovsky effect

(b) the YORP (Yarkovsky–O’Keefe–Radzievskii–Paddack) effect

(c) the Poynting–Robertson effect

2.2.3.1 Gravitational Perturbations Effects on Orbits About an Asteroid

Gravitational perturbations are mostly concerned with the orbit of the bodies

under their influence and engender resonance phenomena. This section will focus on

their influence on a spacecraft orbit about an asteroid. These orbital perturbations

have to be taken into account for choosing the robot landing site on the surface of

the asteroid. Indeed, the impact of robot landing sets the initial rotational state of

the asteroid on which the robot will start to deploy.

In [51], the author evaluates the stability of near-synchronous orbits about ce-

lestial bodies modelled as ellipsoids. This gives rise to a two-type ellipsoid clas-

sification based on whether these ellipsoids possess two stable and two unstable

near-synchronous orbits (defined as Type 1) or only unstable near-synchronous or-

bits (defined as Type 2). The classification is not fixed and depends on three main

parameters:
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1. the ellipsoid shape: oblate ellipsoids are of Type 1 and prolate ellipsoids

tend to be of Type 2.

2. the ellipsoid mass distribution and density: the more dense the ellip-

soid is, the more stable are its two near-synchronous orbits,

3. the ellipsoid rotational state: an increasing rotational velocity increases

instability.

The two main sources of perturbations are gravitational attraction and radiation

pressure from the Sun. Two regimes can be defined from this dichotomy: a body

dominated regime and the solar regime [53].

Body Dominated Regime occurs when the gravitational attraction of the as-

teroid is larger than the Sun’s perturbations. If an equilibrium orbit can be found,

i.e. a periodic orbit, methods exist to determine a motion around the asteroid if

such a motion can be proven to remain stable. This is mostly possible for uniformly

rotating asteroids. In the general case, however, asteroids may only have unstable

equilibria in the vicinity of their equatorial plane, depending on their shape, mass

distribution and rotational state. Finally, specific resonances of the considered orbit

with the asteroid are also to be taken into account [53].

Solar Regime occurs when the Sun perturbations are larger than the gravita-

tional attraction of the asteroid which is usually the case except for objects with

very low area to mass ratios. Although it is possible to analyse both the Sun’s

gravitation and radiation pressure perturbations together, it is difficult to find but

limited analytical solutions. Model based on the solar pressure perturbation can

only provide sufficient conditions for a spacecraft to be bound to a stable orbit [53].

The model-based classification presented at the beginning of this section illus-

trates the challenge of finding a stable orbit around an asteroid to enable a smooth

landing. In reality, the gravitational attraction and radiation pressure from the

Sun make these orbits among the most perturbed to be found in the solar system.
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Consequently, close proximity operations are extremely challenging. Uncontrolled

trajectories are highly unstable and sensitive to small changes in initial conditions

and even actively controlled trajectories are chaotic and can be become random.

This implies that within a few orbits, i.e. within a time span ranging from a few

hours to a few days, the spacecraft can either impact or escape [51].

2.2.3.2 Solar Radiation Perturbations Effect on Asteroids’ Rotation State

Solar radiation perturbations affect bodies (and spacecrafts alike) throughout the

Solar System and in particular small bodies because of their lower mass to surface

area ratio. This perturbation is a radiation pressure producing forces and torques

on the bodies altering their translational motion, i.e. their orbits, and their angular

velocity which can accelerate or decelerate [62]. This section introduces the nature

and order of magnitude of Solar radiation perturbations effects.

Yarkovsky effect As an asteroid rotates, its Sun-facing side absorbs heat from

the Sun while its dark side re-emits this heat. The Yarkovsky effect is the production

by this irradiated thermal flux of an impulse or infinitesimal amount of thrust either

opposite or along the direction of the orbital motion of the asteroid. The net effect of

the consequent deceleration or acceleration is a drift in orbital semi-major axis over

millions of years, i.e. a change of orbit, which is most noticeable for smaller asteroids

about 40 kilometres in diameter. As an example, the of order of magnitude of the

drift in semi-major axis of a main-belt asteroids of 1 km in size is around 10−4AU

per million of years [62].

YORP effect The YORP effect is the alteration of an asteroid’s angular mo-

mentum due to a net torque produced by thermal irradiation. Depending on their

size, shape, composition, mass distribution and rotation state, the asteroids rotation

rate can either increase or decrease. Moreover, YORP torques produce changes of

obliquity angles (the angle between a perpendicular to the asteroid’s orbital plane

and its spin axis) which usually tend to an asymptotic value. However, the increase

of obliquity angle can change the rotation state to such an extent that the aster-
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oids transitions to a new stable rotation state via a tumbling rotation or undergoes

possible YORP cycles [62]. The YORP torque affects mainly small asteroids of size

< 10km but its magnitude is small and takes effect over a long period of time [14].

In [52], the author estimated that, under the effect of the YORP torque, the despin

of well-studied asteroids with known shape models and known rotation poles would

take between 0.1 million and 500 billion years. Therefore the YORP torque can be

treated as a perturbation to the torque free rotational motion [14].

Poynting–Robertson effect The Poynting–Robertson effect applies to grain-size

particles which gradually spiral and disappear into the Sun. This effect is out of

scope of this PhD study [27].

2.2.4 Approach to Landing Site Choice

As seen in section 2.2.3.1, orbits around an asteroid, including stable ones, are

chaotic. A spacecraft orbiting an asteroid is likely to either impact or escape over a

very short period of time spanning hours or days. Therefore , for this PhD study, it

is assumed that the spacecraft carrying the robot will not have the time to perform

a smooth landing. Assuming the spacecraft impacts the surface of the asteroid at a

small relative velocity, this impact is nevertheless likely to have an influence on the

initial rotation state of the asteroid over which the robot will deploy. In order to

evaluate and minimise the effect of the landing impact, the landing will be modelled

in chapter 3 by considering the asteroid as a body with a time-variable mass with

an instantaneous change of mass.

2.2.5 Approach to Dynamics, Perturbations and Noise Mod-

elling

The perturbations affecting the mission design were listed in sections 2.2.3.1 and

2.2.3.2. In this section, their magnitude, frequency, time span and bandwidth are

considered in order to understand how best to produce an accurate physical model

of the dynamics interactions between the deploying robot and its target asteroid
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which should include a perturbations and noise model.

As per [62], for a main-belt asteroids of 1 km in size, the gravitational perturba-

tions was estimated to cause a drift in semi-major axis of 15, 000km over a million

of years. Similarly, in [52], for the asteroids under consideration, the upper bound

of the estimated rotational deceleration due to the YORP torque is of the order of

−2.0 ·10−16rad/s2 producing its full de-spinning effect over 140, 000 years. For both

the gravitational and radiation perturbations, over the scale of a mission which,

between reaching the asteroid, deploying on it and maybe retrieving it, would span

at best a few years, their magnitude and time scale result in a negligible effect on

the angular momentum of a target asteroid. For the system of interest in this PhD

study, i.e. the system composed of the asteroid and the robot, the fastest dynamic

states are the angular velocity of the asteroid and the deployment velocity of the

robot at its surface. Consequently, this system can be modelled as an isolated sys-

tem using conservation of energy and momentum to derive torque free rotational

equations of motion from first principles. The Euler equations can also be used

as approximations and both the gravitational and radiation perturbations can be

introduced as small perturbations [14]. Considering the respective magnitude of

the gravitational and radiation perturbations and the fact that the YORP effect

is caused by the infrared radiation from the Sun, both these perturbations will be

aggregated and modelled as a biased finite-bandwidth noise.

The sources of noise extend to sensors and actuators noise. The sensor of interest

for this study is the gyroscope which enables the robot to measure the rotational

state of the combined asteroid and robot system. Actual values of space grade

gyroscope noise data can be found in [33].

As for the actuators, there is a priori no power and energy requirements on the

motors to be incorporated in the robot as it is one of this study’s objective to attempt

an estimation of these requirements. Therefore, similarly to the perturbations, it is

assumed that the actuators noise can be aggregated with the sensors’ and will be

modelled as a gyroscope’s noise.

The perturbations and noise will be formally modelled in chapter 3 section 3.5.6.
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2.3 Spacecraft design basics and requirements

The space environment is one of extremes and is very challenging for robots to

operate in. This imposes specific drivers on robotics technology for space. In this

section, a brief introduction of spacecraft engineering concepts will be made with an

emphasis on the impact and research challenges imposed on the design of robotic

systems for space and specifically to the problem tackled by this thesis.

2.3.1 Spacecraft Design Constraints versus Robotics

Spacecraft are designed under stringent constraints which also apply to space

robot design.

Firstly, spacecrafts are require to have a high robustness threshold to any source

of stress whether mechanical, like the vibration and impact of launch and potentially

landing, or radiations and extreme thermal gradients. Therefore, the structure and

mechanical design of a space robot should proceed from the same standard, robust-

ness being one of its key engineering drivers [19].

Secondly, for a spacecraft, mechanical actuation systems are usually a poten-

tial single point of failure and therefore reduced to the essential while for a robot,

actuation being the mode of interaction with the environment, it is crucial to its

performance. Spacecraft actuation systems encompass propulsion systems, attitude

control systems or even mechanical systems for the deployment of large structures.

In comparison, robotic actuation systems increase design complexity by an order

of magnitude in terms of the performance required by the various interactions the

robot has with its environment [19].

Thirdly, the approach to control differ significantly. For spacecrafts, control relies

on dynamic models while for robots, the various environments may be completely

unknown a priori. Robots controllers are intended to learn and adapt [19].

Spacecrafts’ design common practice usually splits the various components into

eight subsystems [19]:

1. Propulsion system;
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2. Attitude control subsystem which control the orientation of the spacecraft to

ensure that all components point in the correct direction;

3. Structural and Mechanical;

4. Power subsystem;

5. Thermal control subsystem;

6. Communications subsystem;

7. Onboard data handling (computer) subsystem;

8. Payload subsystem which provides the business end of the spacecraft.

For trade-offs and resources allocation, there are usually five main design bud-

gets [19]:

1. The cost budget capping the costs of the design, development, construction,

validation, and launch of a spacecraft;

2. The mass budget capping the total mass of the spacecraft to be launched;

imposing a trade-off between weightiness and structural flexibility;

3. The propellant budget limiting the manoeuvring capability (function of the

total mass of the spacecraft);

4. The power budget limiting the power and energy available to each spacecraft

subsystem and the payload, imposing a trade-off between power, efficiency and

computational resources;

5. The data budget limiting the communications capabilities and onboard storage

capacity.

Additional constraints are placed upon spacecraft reliability (above 90% typi-

cally). This requires extensive testing and validation under space-like conditions, a

capacity for upgrade and repair-by-replacement of modules disfavouring soft comput-

ing methods. The driver here is the limitation of mechanical complexity. For space

robots, these additional constraints translate into the following requirements [19]:
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1. Using lightweight components to minimise launch mass but resistant enough

to launch/impact loads (typically up to 20 g axial acceleration and 145 dB

acoustic noise for launch);

2. Having a limited volume at launch;

3. Being capable of operating in vacuum environment using materials resistant

to outgassing in vacuum and dry lubrication;

4. Possessing control algorithms dealing with the effects of microgravity such as

no ground reaction and significant non-linear dynamics effects and restricting

motion with low speeds ( 0.01m/s) to compensate for the lack of damping and

dissipating medium.

5. Being capable of sustaining extreme temperature gradients and thermal cycling

between -120C to 60C usually;

6. Having electronic components resistant to an environment full of highly charged

particle and radiations;

7. Being capable of efficient real-time control and navigation operations with

limited onboard computational resources;

8. Being resistant to electrostatic charging and discharging due to the lack of

grounding;

9. If required, being capable of performing image processing in an environment

with poor illumination;

10. Having a high level of autonomy under the constraint of point 7.

2.3.2 Whole-system Design Methodology

According to [45], it is recommended that robots designed for space applications

use appropriate system engineering methods. The entire system, comprising the

robot, supporting infrastructure, the human-in-the-loop component and their inter-

actions must be taken into account as it is actually more important to the success
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and robustness of the space-robotic system than any robot-specific technology (like

mobility, dexterity or intelligence).

2.3.3 Attitude Control Hardware

This section will focus on providing some background on attitude control system

already in use. In current spacecrafts, the attitude control system (ACS) provides

attitude stabilization and attitude manoeuvre control. It produces control torques

in response to a disturbance torques measured as an error by the attitude determi-

nation system (ADS) and in response to pointing requirements. Attitude control

hardware can be divided into active and passive control devices as will be seen in

the subsequent sections. The passive hardware does not consume power, does not

require a communication interface and is set to remove a predefined amount of en-

ergy from the spacecraft. The active hardware can adjust the amount of energy

removed. Both types of hardware modify the angular momentum of the spacecraft

at any given time.

2.3.4 Active Attitude Control Actuators

Reaction Wheels: Reaction wheels change the spacecraft angular momentum

by changing their own angular momentum about their axis of rotation. They are

used for coarse as well as fine pointing. They can store a limited amount of an-

gular momentum depending on power availability and motor design and experience

saturation [35].

Magnetorquer: The magnetorquer is a magnetic dipole generating a moment by

passing through the Earth’s magnetic field and dependent on the orbital position.

It is used in low to medium Earth orbit for coarse pointing and performs space-

craft detumbling and reaction wheels’ angular momentum reduction. This actuator

cannot be used outside earth orbit [35].

Thrusters: Thrusters generate thrust by expelling propellant through a nozzle.

When placed at a moment arm from the centre of mass of the spacecraft, they
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generate a torque about the centre of mass. When used for attitude control only,

they work in pairs in order to minimise translational motion. They are used for both

coarse and fine pointing. However, their use is limited by the amount of propellant

and power available on the spacecraft [35].

Passive Attitude Control Actuators: These actuators provide restoring torques

and remove (or add sometimes) angular momentum without the need for active con-

trol. They are coarse pointing actuators only. Passive attitude actuators are not

usable outside earth orbits [35].

Hysteresis Rod: The hysteresis rod is a piece of ferromagnetic material which

uses the variation of the magnetic field strength with the spacecraft orbital position

to generate a magnetic flux density. This process reduces angular momentum of the

spacecraft over time [35].

Permanent Magnets: The permanent magnet is a permanent dipole which can

only stabilize a spacecraft about two axes [35].

2.4 Attitude Control and De-spin of an Asteroid:

This section will examine what solution are currently put forward to capture and

de-spin asteroids and will focus on the very capture mechanisms and task of de-

spin and not on specific mission phases. These solutions assume that Near Earth

Asteroids (NEAs) are tumbling, non-cooperative objects which will be de-spun au-

tonomously in deep space.

In [5], an asteroid capture with a bag is proposed. Despite some station keeping

prior to capture to synchronised the main spinning rate and axis with the NEA,

it is expected that there would still be a residual relative angular velocity with the

spacecraft which would undergo some impact. The bag would then be tightly cinched

to drawn up the asteroid against the spacecraft to constrain its position and attitude

so that forces and torques could be applied by the spacecraft. In order to have some

order of size, the study provides an estimate of the time and mass of propellant
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required to de-spin the entire system: spacecraft and asteroid. It was estimated

that in order to de-spin an asteroid of 12m by 6m diameter cylindrical shape with

a 1100t mass rotating at 1RPM about its major axis, 33 minutes of continuous

firing would be necessary consuming about 306 kg of propellant (approximately one

third of the total mass of the asteroid) which could be considered as quite expensive.

The study also proposes the alternative method of anchoring the spacecraft to the

surface of the asteroid and winching its way to the surface to drill for regolith on

the spot using the bag for retrieve.

In a similar study [47], Carlos Roithmayr proposes an almost identical approach.

The asteroid is also of the order of 7m diameter and has the same agreeable cylin-

drical shape with known moments of inertia. Conveniently, there is no need for

identification of parameters and the study confirms the order of magnitude of the

propellant mass required to perform the de-spin, around 300kg for 1000t asteroid.

It only optimises the moment arm length at which thruster are fired in order to

maximises torques.

In [25], a similar spacecraft design is pursued but the authors abandon the idea

of matching the spin rate of the spacecraft with the spin rate of the asteroid along

its main axis of rotation prior to capture on the ground of excessive propellant

expenses. The study briefly describes another enveloping approached with a bag

which facilitates passive damping of the tumbling motion toward major-axis spin,

only to dismiss the feasibility of the mechanical design. The study then describes

how the latter problem can be circumvented by proposing an inflatable exoskele-

ton attached directly to the spacecraft bus. The bag then collapses around the

asteroid with the help of actively controlled winches to achieve passive damping.

The captured asteroid is modelled by a 6-DOF joint connected to the rest of the

body of the spacecraft via translational and rotational spring-dampers. Simulations

seems to confirm asymptotic viscoelastic energy dissipation and convergence of the

combined spacecraft-asteroid system toward a flat spin. Grip and Ono nevertheless

could not conclude whether this system could be physically realizable with current

space-qualified materials.
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Finally, in [58] the authors follow in the footsteps of the previous studies. How-

ever, here the asteroid mass is assumed to be distributed in the most general possible

way, meaning it can be asymmetric with three distinct principal moments of inertia.

Nonetheless these moments of inertia are yet again assumed to be known. As for the

previous studies model-based de-spin controller are designed to be asymptotically

stable, and stay within specified thruster limits, thrusting being the main actuation

option. Results are again of the same order of magnitude in terms of propellant

mass used.

2.5 Active space debris capturing and removal

methods

In order to complement the methods of asteroid capture and de-spin exposed

in section 2.4, this section will briefly introduce a few conceptual designs of active

space debris removal which is a similar problem to asteroid capture in many respects.

In [56] an excellent review is provided of the current trend in the industry. This

section essentially follows the structure of the paper.

2.5.1 Stiff connection capturing

Stiff connection capturing methods involve the use of tentacles, arms and multiple

arms.

Tentacles embrace the space debris with a clamping mechanism either directly

or as an extension of a robotic arm. Ideally the target is embraced before physical

contact. That way, the chaser satellite does not bounce and the attitude control

system is allowed to stand by during capturing. The clamping mechanism then

locks and the new chaser-target system turns stiff.

Single arm technology has been applied in many on-orbit servicing missions but

always in the case of cooperative target objects. However, space debris are uncoop-

erative and sometimes tumbling objects. There are three main use for an arm in the

context of space debris removal. It would be first used to minimise the consequences
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of the unavoidable impact at contact. Different methods have been suggested and

are related to the control of the direction of the relative velocity between chaser and

target or the relationship between impact force and base force or the configuration

between the service satellite and target. Particular methods like visual servoing

are also envisaged to predict the relative motion between the target and the chaser

satellite. But they require visual markers which can be very challenging to rely on

in space. The second use is for de-tumbling. Tumbling rates below 3◦ · s−1 would be

considered easy to reduce but tumbling rates above 30◦ ·s−1 would not be considered

manageable. For tumbling rate between 3◦ · s−1 and 30◦ · s−1 a release of some of

the residual angular momentum of the target by soft and static contact would be

considered prior to further de-tumbling. Other potential solutions involving arms

include Ion-Beam shepherding by transfer of angular momentum and optimal con-

trol techniques with identification of the target unknown inertia parameters. The

third and final use of a robotic arm is for an indispensable phase before capturing:

the attitude synchronization which could be achieved by relative position tracking

and attitude reorientation.

A multiple arms approach can also be envisaged to combine forces but also to

take advantage of an improved overall flexibility through cooperation for providing

a stabilizing effect for instance.

A final word on the mechanical end effector which is of prime importance as it

is directly involved in the capturing motion and contacts with the target. There

are several concepts of mechanical end effectors for capturing space debris. These

include probes for the nozzle cone of an apogee kick motor, payload attach fitting

devices, articulated hands, fingered mechanisms and universal grippers.

2.5.2 Flexible connection capturing

In section 2.5.1, the connection between the chaser satellite and the target is stiff,

making the combined spacecraft-object system controllable and stable. However,

this solution increases dramatically the mass to control and therefore all the different

costs and in particular the energy expenditure. In order to overcome this drawback,
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flexible connection capturing methods in which the end effector and chaser satellite

are connected by a tether, are considered as available options.

The first “flexible” option is net capturing with either a net or a gripper mech-

anism as end-effectors. Net capture mechanism consists of four flying weights in

each corner of a net. The flying weight or bullet is shot by a spring system, the

net gun. These four bullets help expand the large net to ensure that the target is

wrapped up. With this method, it is not necessary to know the mass, moments of

inertia and other parameter a priori for capture. Parabolic flight experiments have

been performed by GMV and ESA to validate the net deployment and capturing

simulations. Net capturing is held as one of the most promising capturing meth-

ods as it allows a large distance between chaser satellite and target, so that close

rendezvous and docking are not mandatory. Moreover, it is flexible, light weighted

and cost effective. However, more research is required in such areas like net mod-

elling, contact influence, deployment and tumbling compatibility. Contact is also a

problematic area as it is unavoidable during capturing process. The main risk is to

create more and smaller debris or worse to lead to mission failure if the wrapping

up is improper. Nonetheless net capturing is compatible with tumbling space debris

and no attitude synchronization is needed. Close range rendezvous and removal

would be less difficult. However, the acceptable tumbling range of a target is not

yet understandable and a net may be twined by a high tumbling angular velocity

thus rendering the spacecraft-object system uncontrollable.

The second “flexible” option is a tether–gripper mechanism. Similarly to the net

capturing mechanism the end-effector in the tether–gripper mechanism is shot as a

3-finger gripper to capture a target. This 3-finger gripper is designed for a precise

and stable catch of a specific part of the target precisely and stably. Requirements

for tether–gripper mechanism are therefore more stringent and more complicated

than net capturing. Post-capture attitude control is also problematic since the

movement of the combined spacecraft-target system is unpredictable and therefore

requires identification of inertia parameters to be achieved. Attitude control is a

necessary condition for subsequent mission phases like de-orbiting to go ahead.
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The third and last “flexible” option is a harpoon mechanism shot from the space-

craft to penetrate into large space debris objects which would be pulled to de-orbit.

Despite the high risk of generating new space debris, it is considered as an attractive

capturing method because of its compatibility with different shaped targets, stand-

off distance allowed and no grappling point needed. However, it is not capable of

dealing with a piece of debris with high tumbling rate. It is also favoured for an-

choring a spacecraft onto an asteroid. In this latter situation, the risk of generating

adverse space debris is also present. High tumbling rates would also be prohibitive.

The section 2.6 will examine some features of modular self-reconfigurable robots

relevant to our proposed study.

2.6 Reconfigurable robots

This section is based on the book by Kasper Stoy [63] which provide a review and

synthesis of the state state of the art in self-reconfigurable robot or SR as they will

be called from this point on. It provides an introduction to SR robot leading to

the description of the relevant capabilities they can offer for the problem this study

sought to address.

SR robots are modular robots which are able to dynamically (i.e. while active)

change shape by themselves. In general. their modules are independent units en-

capsulating all the sensors, actuators, processing power and communication tools

required to perform their different functionalities. The shape shifting process is a

sequence of modular disconnections, connections and moves along the entire struc-

ture. SR are interesting for their potential high degree of redundancy and therefore

robustness to module failure, their versatility with many different shapes for one

robot and possible combinations with other robots, their adaptability to various

tasks and their cheapness of production SR are similar in spirit to swarm robotics

with many small and relatively non-complex units [63].

In [63] is provided a useful classification of self-reconfigurable robots in terms of

size and number of modules. The classification is broken down into three categories:
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2.6.1 Pack Robots (Tens of Modules)

Each module is a functional unit with enough strength to lift one or a group

of several other modules. In these robots, each module is essential to the overall

functioning of the robot imposing strict coordination between modules. Pack robots

have a limited scalability (when considering hundreds of modules) due to the fact

that they are either controlled centrally or their modules are tightly coupled with

local communication. Exploratory/inspection type of tasks are expected to be ap-

plications for this type of robots combined with the ability to perform gaits such as

running, climbing or rolling. [63]

2.6.2 Herd Robots (Hundreds of Modules)

These robots are formed by a number of modules of the order of several hun-

dreds of modules which, taken individually, are not encapsulated functional units.

Moreover their strength is limited to the order of magnitude required to lift one

module up. In order to obtain useful functionalities, the grouping of modules into

functional units is required. Although herd robots architecture still requires a hier-

archical control approach for both hardware and software, the number of modules

allows for enough redundancy so as to relax the coordination requirement between

modules without impacting the performance of the robot. It is probably the most

challenging type of robot in terms of control with a core critical set of modules to

maintain in tight coordination while allowing the rest of the modules to operate with

less stringent coordination in a more swarm-like fashion. The increase in complexity

and number of modules allows for more functionalities to be implemented by dif-

ferentiation of modules design. Therefore, herd robots present the most interesting

range of potential applications for our purpose in terms of interactions with heavy

objects or the building or reinforcement of structures [63].

2.6.3 Swarm Robots

These robots are formed by thousands of modules with limited individual im-

portance relative to the whole robot. Individual modules have weak functionalities
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despite being highly autonomous. This implies that building a functional unit re-

quires a large number of modules. Control is decentralised and the robot develops

according to local rules of interactions. As it depends on stochastic randomness,

this approach is difficult to scale down to a few hundreds of modules. The main

potential application for swarm reconfigurable robotics is as a type of construction

materials [63].

2.6.4 Desired Properties of SR Robots

This section lists different properties a SR robot designer could seek to achieve.

The following definitions are taken from [63] pages 30 to 40.

Versatility is the ability to adapt or be adapted to many different functions or

activities.

Adaptability is the ability to perform tasks even if the task or the environment

changes a little.

Robustness is the ability to operate for many hours and to handle hardware and

software failures.

Polymorphy is the ability to assume many different shapes.

Metamorphy is the ability to autonomously change among different shapes.

Scalability is the maintenance of the performance of the robot with an increasing

number of modules.

Responsiveness is the reaction/response time of the robot.

Functionality is the measures how functional requirements are met.
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2.6.5 Types of SR robots

For SR robots, hardware and software design are coupled and linked to specific

solutions. The following classes of SR robots are the most relevant for this study.

Their definitions are taken form [63] page 42.

Chain-type which are chains of modules primarily design for fixed shape locomo-

tion.

Figure 2.1: A Chain Type Robot: the Polybot [23]
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Lattice-type where modules are positioned in a lattice structure like atoms in a

crystalline solid. They are easy to reconfigure but perform efficient gait with

difficulty.

Figure 2.2: A Lattice Type Robot: the ATRON [13]

Hybrid which could be both in lattice as well as in a tree or chain topology. They

can exist in two forms: either chain-type or lattice-type but not at the same

time. These robots will often use a chain-type form to achieve efficient loco-

motion then change into a lattice-type for self-reconfiguration.

Figure 2.3: A Hybrid Type Robot: the M-TRAN [1]
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2.6.6 Computing and Communication Infrastructure

Computing and communication infrastructure is an area still very much in an

exploratory phase. From [63] pages 83 to 91, the following interesting points can be

made:

As far computing capabilities are concerned, it is possible to run small operating

systems on modules of relatively small size and even use convenient programming

abstractions such as threads. However, the development of controllers has hardly

been explored so far.

Regarding the communication system, it is a critical design driver for the per-

formance of the robot and is classified in the following categories:

Centralised communication system When actuators of all modules connect to

a centralised host computer.

Localised communication system When each module can only communicate

with neighbouring modules

Global communication system when it reaches over the entire structure

Multi-modal communication system When it combines both local and global

communications

Stigmergic communication system When the environment provides the medium

through which communication occurs.

Finally regarding sensing capabilities, the selection and use of appropriate sensors

is application-driven. The current focus on capabilities demonstration has left this

area of SR robot design limited.

2.6.7 The Self-Reconfiguration problem

Self-reconfigurable robots have modules which can move around with respect to

each other to change the overall shape of the robot. The self-reconfiguration problem

deals with how to move these modules around to facilitate a useful change of shape.

Usually software solutions are hardware and application specific.
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The self-reconfiguration problem can be broken down into three sub-classes of

problems depending on the angle of attack to solving the problem. These can be

found in [63] page 6:

Searches: Searches for the sequence of module moves that will take the robot from

an initial configuration to a goal configuration.

Control: Individual module controllers make the individual modules move and the

robot’s goal configuration emerges from the initial configuration.

Task-driven: Here the goal of the controllers is for the robot to perform its tasks.

Reconfiguration of the robot is a process which emerges from the task com-

pletion process.

Practical solutions are mixed approaches from all three classes. The goal config-

uration is imposed by the task, while modules control is decentralised, distributed

and combined with some search techniques.

The solutions to the self-reconfiguration problem have so far only been specific.

Simplification can be made, but the difficulty essentially stems from several factors

related to the motion constraints of the modules and their connectivity, the type of

subconfigurations encountered, whether there are configurations with local minima

or whether modules get in each other’s way. [63]

2.6.8 Task-driven self-reconfiguration the way forward

A task-driven approach is by far the most appealing and the simplest from a

conceptual and implementation point of view. Inferring a desired goal configuration

from a task is a very difficult proposition which may prove intractable, especially if

the environment is unknown beforehand, dynamic and complex. The focus placed on

the completion of the task to be performed allows for the relaxation of any constraint

on the self-reconfiguration process so as not to interfere with the task. This is the

approach that will guide the design of the solution presented in this study [63].
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2.6.9 Gaits and Manipulations: Introductions to Control of

SR Robots

The task of deploying a SR robot on the surface of a randomly tumbling object

can be viewed as a manipulation task in a dynamic configuration. Indeed, the robot

deployment will generate disturbances which could either be mitigated or taken

advantage of for achieving a better rotating state. In this perspective, it is interesting

to mention how SR robots control manipulation tasks as well as robotic gaits. Some

aspects of gait control are either similar or could be useful for manipulation .There

is currently more research available for gaits than for manipulation. In this section

will be laid out the control approaches currently in use as per chapter 9 of [63].

2.6.9.1 Gaits Control

Gait control is performed with fixed configurations. For locomotion, momentum

transfer approaches which do not involve self-reconfiguration are preferred. The

cyclic property of locomotion is readily exploited by control methods. The loco-

motion types that have already been demonstrated are caterpillaring, side-winding,

walking using four or six legs, rolling, climbing and tight rope walking. Below is a

list of current gait control methods.

Gait control tables: The method is based on tables containing steps and motion

to perform during steps. These tables represent a complete cycle of gait along

with module synchronisation requirements and are preferably implemented

with a centralised controller.

Hormone-based control Hormones are messages passed down the chain of mod-

ules which contain information about what the emitting module is doing. This

method introduces delays in the sequences of control steps. The sequence of

one module is delayed with a fixed number of steps compared to a neighbour-

ing module. This approach has two advantages: modules stay synchronised

and they can be added or removed at will.

Role-based control The method is not based on discrete sets of actions sepa-
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rated by coordination pauses but rather on joint positions between modules

prescribed by functions of time that capture the gait as one cyclic motion.

Distributed control: The control of complex gait can be distributed in order to

deal with the fact that modules perform different motions, depending on their

position in the configuration. It usually works with modules selecting their

function based on the local configuration and/or on their parent’s function if

it is required.

To date there are no methods to automate development of gaits online. A promis-

ing approach which has also potential applications to manipulation is general pattern

generation (CPG). It is a bioinspired approach based on neural networks which pro-

duces an output similar to the action function in role-based control. Networks can

be evolved by genetic algorithms to control the gait of a SR robot. A general pattern

generator could sense changes in the terrain via the gait and optimise the gait online

thanks to this information [63].

2.6.9.2 Manipulations Control

Manipulations with self-reconfigurable robots is a work in progress. The general

idea is that modules connected in a chain configuration can form a serial manipu-

lator with properties similar to those of traditional robot manipulators. However,

implementing such a concept is faced with a couple of important challenges: the

calculation of the inverse kinematics for a chain of modules and more importantly,

the increase of the strength of individual modules and the improvement of the co-

operation between them. The challenge faced by this and subsequent studies will

be to find a way to make modules produce cooperative actuations that allows them

to produce larger forces than those produced individually [63].

2.6.10 Designing an SR Robot Controller: the Challenges

The ability of a robot to perform a task stems from the interaction between its

environment, its body and its controller. The particularity of SR robots is to have a
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changeable body structure which can be optimised concurrently with their controller

to meet the complexity and widen the range of performable real tasks. While this

approach avoids a simplicity versus versatility trade-off, there is currently a lack of

methods for developing intelligent controllers for SR robots [63]. In the next section,

the controller design method will be narrowed down to a behaviour based approach.

2.6.11 From Basic Functionalities to Behaviours

A good definition of behaviour based algorithms can be found in [59]. It is

quoted here to highlight the rational for choosing such an approach( [59] page 309):

”Behaviour-based control employs a set of distributed, interacting modules, called

behaviours, that collectively achieve the desired system-level behaviour. Behaviours

are patterns of the robot’s activity emerging from interactions between the robot

and its environment. They are control modules that cluster sets of constraints in

order to achieve and maintain a goal. Each behaviour receives inputs from sensors

and/or other behaviours in the system, and provides outputs to the robot’s actu-

ators or to other behaviours. Thus, a behaviour-based controller is a structured

network of interacting behaviours, with no centralized world representation or focus

of control. Instead, individual behaviours and networks of behaviours maintain any

state information and models.”

This approach is particularly suited to the this study because behaviours provide

a way of rendering tasks manageable rather than focusing on simplifying the tasks

themselves by trying to split them into well-defined subtasks. Behaviours are low-

level control programs with freedom of implementation which can be improved and

combined into a coherent controller in order to tackle the complexity of real tasks.

Each behaviour solves one aspect of a task (ex obstacle avoidance, navigation. . . ) to

achieve high-level deliberation at system level. Behaviour-based systems are good for

environments with dynamic changes where excellent response time and adaptability

are essential along with the possibility to do some learning and planning. Finally

and most importantly, these systems scale well to multi-robot control providing

robustness and fostering adaptive group behaviour [59].
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Behaviours Adaptation Behaviours adaptation is an optimisation process of an

already implemented behaviour to adapt it to aspects of a specific task that were

unknown at the time of implementation. The changes made are incremental rather

than radical. They are but a few studies of behaviour adaptation of SR robots in

the literature and they tend to focus on adapting the controller or the body but

not both at the same time, and only in the context of stereotypical tasks. One of

the major challenges of behaviour adaptation is online adaptation which remains an

open problem.

Behaviour Selection Behaviour selection is the continuous process of choosing

which behaviour is active based on changes in the environment or the task. The

process monitors sensors inputs and behaviours internal parameters to decide which

behaviour should be active. It can decide to switch between behaviours while oper-

ating and ultimately change the behaviour mode of the robot.

Behaviour Mode Behaviour mode control is higher level of behaviour control

whose purpose is to manage and coordinate different behaviours hierarchies to in-

crease the versatility of a robot. In its most general form, a behaviour-based con-

troller is a network of behaviour modes which are coupled with transition modes.

These transition modes connect the behaviour modes and manage changes from one

behaviour mode to another. Behaviour mode control is a unifying approach to SR

robots control where real tasks can be divided into simpler subtasks and optimal

behaviours designed both in terms of control and bodily structure.

In conclusion, behaviour control provides a flexible method of designing a complete

solution to a task and robot controllers. It allows complete change of behaviour,

combinations and adaptations to changes in the environment or to the task, thus

rendering a robot adaptable, robust and versatile.
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2.6.12 Low-Level Control and Interaction with the Environ-

ment

The deployment of the robot on the surface of a tumbling uncooperative object

is an inertial process with competitive objectives. The aim of the deployment for

each module is to travel on the robot structure and on the surface of the object

towards a target surface location. This motion relative to the surface can cause the

object to depart significantly and irreversibly from its initial rotational state. It is

therefore paramount that the module’s motion causes the least possible disturbance

to the rotational motion of the object while doing so in a timely fashion with respect

to the fastest dynamic state of the system, in other words, before the disturbances

take effect. In this respect, the controller’s goal is to provide a required output, the

convergence of the deploying robot module to its target location on the surface of

the object while tracking the initial or prescribed rotational state of this object. As

such, the controller is required to be able to deal with multiple states, to optimise

and to abide by constraints. A Model Predictive Controller lends itself quite well to

meet these requirements.

2.6.12.1 Principle of Model Predictive Control

Model predictive control (MPC) covers a range of control methods which make

explicit use of a dynamic model of the process to obtain the control commands by

minimizing an objective function while satisfying a set of constraints. The usual

structure (whose detail can be found in [8] pages 3 and 4) of these controllers is the

following:

1. use of the model to predict the process output at future time instants called

the horizon,

2. calculation over the horizon of a control sequence minimizing an objective

function then

3. implementation of a receding strategy: application of only the first control

signal of the sequence calculated at each step [8].
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2.6.12.2 Advantages and Drawbacks of MPC

Advantages MPC has a number of advantages over other control methods [8]:

� it can be used to control a huge diversity of systems with simple or complex

dynamics alike, long time delays and even used to control unstable systems

� it deals with multivariable cases

� it compensates for dead times

� it uses feedforward control to compensate for measurable disturbances

� it is easily implemented

� it includes the treatment of constraints

� it can help track a known future reference which is one of its intended use in

this study

� it is easily extendable

Drawbacks MPC drawbacks include [8]:

� its derivation can be complex

� all added extensions require extra computation at every sampling time as in

the case of adaptive control and constraints

� an accurate model of the process is required for the controller‘s prediction

process

� it can be difficult to prove stability and robustness

2.6.12.3 Comparison between Linear and Nonlinear MPC

Conceptually, the extension of MPC techniques to nonlinear processes is straight-

forward. However, designing a nonlinear MPC faces many challenges.

The first challenge is the availability of a nonlinear model either from first princi-

ples or from experimental data. For experimental models, identification techniques
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for nonlinear processes are lacking. Fortunately for this study, an explicit model can

be derived from Newton’s second law of motion [8, 37, 40, 38].

The second challenge is that the NMPC control problem is a nonconvex opti-

mization problem whose resolution is significantly more difficult than the quadratic

problem and can involve tackling local optima which impacts the quality of con-

troller and its stability. Nonlinear systems stability and robustness problems are

complex and still open in most cases, although methods of proof are now available

and are used in this study [8, 37, 40, 38].

The third challenge is the computation time required for the NMPC control

command to be calculated. It is a critical consideration with respect to the hardware

computing power which has to be implemented into a real system and it is also a

critical consideration with respect to the time constant or time span of the dynamics

of the system as the controller should operate sufficiently fast to tackle the problem

efficiently i.e. within an acceptable time frame for the mission [8, 37, 40, 38].

The benefit of having an explicit nonlinear model to be used in a NMPC con-

troller has to be balanced against the possibility of using a MPC controller which

would be an easier option. A comparison of the respective performance of a NMPC

and its linearised MPC version is carried out in this study.

2.6.12.4 Stability of Linear and Nonlinear MPC

Under general assumptions, infinite horizon optimal controllers for linear processes

guarantee a stable closed-loop in the limited case when all process variables are

unconstrained. Constrained optimal control problems face two main challenges.

On the one hand, they have to be solved using a finite horizon and on the other

hand constraints introduce non linearities which make the derivation of an explicit

description of the control law but impossible and the study of stability very difficult.

In order to prove stability, the main idea is to show that the infinite horizon cost

function is monotonically decreasing (i.e. that it is a Lyapunov function ) under

the necessary condition of feasibility of the derived control laws. Two approaches

which link stability to a constraint satisfaction problem can be taken to do this.
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The first approach considers the cost function as being composed of two parts: one

with a finite horizon and constrained, and the other with an infinite horizon and

unconstrained. The second approach consists of adding a terminal state constraints

and using a finite control horizon. In both cases, terminal state penalization and

terminal sets are the basic techniques used to enforce the final state. However, final

state contraction constraints have to be used carefully as these are very restrictive

for many control problems and can lead to infeasibility. Infeasibility can be tackled

by removing the state constraints during the initial part of the infinite horizon and a

linear MPC with soft constraints and state feedback can also asymptotically stabilize

any stabilizable system [8, 37, 40, 38].

For non-linear MPC (NMPC), even with a perfect model, there is no guarantee

of closed-loop stability in spite of the optimization algorithm finding a solution. The

main approaches which successfully tackle the stability problem always start with a

state space framework and a regulator analysis. A list of the main techniques can

be found below:

1. Infinite horizon This consists of increasing the control and prediction hori-

zons to infinity in which case the cost function is a Lyapunov function which

provides stability. However, it is difficult to implement since it requires the

computation of a large set of decision variables at each sampling time.

2. Terminal constraint This uses a finite horizon and ensures stability by adding

a state terminal constraint enforcing a zero final state and control command at

the end of the finite horizon. However, it introduces extra computational costs

and restricts the operating region, which makes it very difficult to implement.

3. Dual control With dual control, a region is defined around the final state

inside which the system is driven to the final state by a linear state feedback

controller. The NMPC algorithm is used outside the region with the prediction

horizon decreasing at each sampling time and once the state enters the region,

the controller switches to a previously computed linear strategy.

4. Quasi-infinite horizon This uses the dual control technique but only for the
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computation of the terminal cost. The control action is determined by solving

a finite horizon problem but the linear controller is never used even inside the

terminal region.

Stability can be guaranteed by solving the constrained NMPC in a finite horizon

with either a terminal set which the final predicted state is constrained to reach

and/or a terminal cost or cost of the terminal state. However, this can be difficult

to implement because of the non-convexity of the optimisation problem rendering the

linear control region hard to compute with multiple potential solutions. Nonetheless,

asymptotic stability of the controller can be achieved with suboptimal solutions. In

other words, stability can be guaranteed when the optimization problem is feasible

but at the expense of optimality. Any feasible solution ensures feasibility, and hence

constraint satisfaction. It is then sufficient to consider any feasible solution with

associated strictly decreasing cost to guaranty asymptotic stability. Although sub-

optimality is not ideal with respect to performance and timescale, it would be good

enough for this feasibility study. Another possibility to lower the computational

requirement is to remove the terminal constraint, especially when the system’s is

unconstrained [8, 37, 40, 38].

Finally, beyond stability analyses, the robustness to modelling errors is difficult

to assess, especially in view of the fact that stability results are valid for perfect

models which is not often the case in reality. In the context of this feasibility study,

the evaluation of robustness could only be empirical through simulations which

include perturbations to be modelled in chapter 3 [8, 37, 40, 38].

2.6.12.5 MPC Conclusion

For the design of the low-level module controller, linear and nonlinear Model

Predictive Control approaches offer flexible and varied techniques which are very

well suited to the control problem tackled in this study [8, 37, 40, 38]. Below are

summarised the main reasons why:

1. MPC techniques can draw on explicit physical models.
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2. MPC techniques use an optimisation process to produce control commands

with derivable stability properties.

3. Multiple objectives can be combined in a state space formulation with one

cost/objective function. These objectives can be tracked as one reference tra-

jectory only.

4. A set of parameters is available for the design and tuning the controller in

terms of performance and stability. These are the following:

(a) the time horizon of the optimisation

(b) the cost function weights with or without terminal cost

(c) soft or hard constraints such as feasibility or terminal sets

5. There is flexibility in the analysis and synthesis of the controller with the

possibility of reducing it to a regulator analysis and combining linear and

nonlinear MPC techniques to play on the trade off between optimality of the

control command solution and the closed-loop stability and timescale of the

plant.

In the next section, the solution proposed by this study will be outlined with a

focus on how it bridges the domains exposed in this chapter while addressing in a

novel way some of their respective gaps.

2.7 Gap analysis and Solution Rational

The methods for de-spinning an asteroid described in sections 2.4 and 2.5 all use

model-based attitude control. These dynamic models use parameters like moments

of inertia to describe the rotational motion of the spacecraft and calculate the con-

trol inputs to the various actuators. However, all of these studies assume that the

asteroid dynamic parameters are known a priori and are readily usable for compu-

tations which is an impractical proposition in reality. Space debris removal missions

face similar problems but some take the more realistic approach of identifying the
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unknown dynamic parameters of the target object to be de-orbited. This identi-

fication process usually relies on the input of disturbances whose measured effects

feedback into the model to tune the parameters. This process is relatively inexpen-

sive energy-wise providing the mass ratio between the spacecraft and the object is

in favour of the former or balanced.

This latter aspect of scalability represents one of the biggest challenges to the use

of traditional spacecraft and actuation methods for all types and sizes of objects.

Most of the works produced to date on asteroid capture and de-spin envisage a

scenario where the mass and size of the asteroid and the spacecraft are of the same

order of magnitude or in favour of the spacecraft. Sizing up traditional actuators like

momentum wheels or thrusters seems rather impractical when considering asteroids

with diameters of the order of 100m or more.

Another disadvantage of traditional asteroid capture and de-spin by spacecraft

is that most of these solutions put forward different ways of enveloping the asteroid

but all rely on friction to remove rotational energy from the asteroid. Enveloping,

in this perspective, has implications on the mechanical design and structure of the

spacecraft which has to be able to sustain collisions and in a way which does not

endanger some of the key components and appendages of the spacecraft such as

its solar panels for instance. It also has implications on other key aspects of the

mission such as the propellant consumption which, if underestimated, could lead to

failure. Finally, energy dissipation does not necessarily mean a better situation to

handle. It means, as per [7], that the rotation will settle about the major axis of the

object. Although this is the lowest energy and a stable rotational state, the rotation

occurs about the axis with the largest moment of inertia. Since objects are never

symmetrical, it makes the point of capture a critical parameter for object retrieval

as it affects the maintenance of the pointing direction.

The tentacles approaches exposed in [56] for active debris removal are the inspi-

ration behind using SR robots for capturing and building on uncooperative rotating

objects, as SR robots were viewed as a mean to expand the tentacles approach to a

more active and versatile solution.
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There are no general solution to the reconfiguration problem. Solutions are usu-

ally found for specific applications where the problem definition is detailed and the

engineering requirements for the SR robot are specifically suited to the problem

definition [63]. For the task at hand of deploying a structure on a rotating unco-

operative object, the end configuration is known and prescribed: a coiled chain of

module going from the tip of the spin axis of the object round to the plane contain-

ing the centre of mass. In order to simplify the problem further, avoid local minima

and disconnections and allow greater focus on the physical effect of deployment, the

way the module should move around the structure is also prescribed: one-by-one

deployment.

On the one hand, the problem is a reconfiguration by control, as defined in sec-

tion 2.6.7, where the robot controller makes the robot modules move in such a way

as to end up in the prescribed configuration. On the other hand, the interactions

with the physical environment and the tracking of a reference state trajectory add

an extra set of constraints that are more akin to suit a task-driven reconfiguration.

The closer class to which this task belongs to is the manipulations class. In the lit-

erature, manipulations involve interactions between the environment and the robot

reconfiguring as an end effector. There is not a real body of work for designing

controller for manipulation tasks other than in this setting [63]. The task at hand

in this study could be better defined as a manipulation through reconfiguration of

the entire body via changes of mass distribution and while taking into account sen-

sory inputs from the environment in a kind of stigmergic way. No guidelines have

been found in the literature for this specific situation and no reference to the use

of changes of mass distribution as a control mechanism has been found for a space

application.

To all of the preceding constraints, another set of constraints has to be added

which is specific to the space environment: redundancy and robustness. Only a de-

centralised controller can really fulfil it. This implies that, although each module can

take inputs from the neighbouring modules and its environment, it makes decisions

independently with no reliance on a central controller. As with any decentralised
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system, the emergence of the right behaviour and the correctness of its controller are

hard to predict and ensure at the design phase [63]. In order to ensure that the robot

behaves correctly, a top-down approach to the controller design is more appropri-

ate than its reverse traditional bottom up approach for decentralised systems. The

rotational dynamic model of a deformable medium developed in [66] can be used

to accurately model the physical interactions of the rotating object and the robot

modules. This model considers the deformable medium as being composed of a rigid

part which can be equated to the rotating object of this study and a deformable part

or moving part which can be equated to the moving robot modules. This physical

understanding of the environment and the tasks can be then bridged back with the

low level controller of each module in the form of a Linear (MPC) or Non Linear

(NMPC) Model Predicative Controller which ensures correctness and compliance

with the disturbance minimisation constraint. Then, the higher level of control can

use a behaviour-based approach whose design in simple terms and correctness assess-

ment is rendered easier because the emergence of a behaviour complying with the

physical constraints of the problem has been taken into account at the lowest level

of the controller. To the knowledge of the author, this controller design approach

has not been attempted for a SR robots yet. Finally, it is envisaged that tackling

the physical interactions at the lowest controller level will improve design flexibility

for the higher level allowing expansion of the controller ability to tackle other tasks

such as identifying inertia parameters or developing more active actuation methods.

The detail of the implementation of the design principles of the robot modules

controller laid out in this section will be found in chapter 3 for the physical model

and in chapter 4 for the entire controller.
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Chapter 3

Dynamic Model of a Rotating

Ellipsoid with Relatively Rotating

Additional Surface Masses and

Landing Site Selection

In this chapter is laid out a dynamic model describing the interactions between

a free-floating rotating object of any shape and other objects moving freely on

its surface. This model assumes that this collection of objects forms an isolated

system modelled as a continuum and subject to small and negligible perturbations

in magnitude and timescale. The proposed model characterises the internal angular

momentum exchanges of the system while it experiences changes in mass distribution

in other words deformation. The chapter also highlights the way control parameters

will be chosen for the robot’s modules controller in the next chapter and deals

with the selection of the robot’s landing site as well as the set up of the system’s

simulation.
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3.1 Introduction: the Yo-Yo de-spin mechanism

towards continuum modelling

3.1.1 The Yo-Yo de-spin mechanism model and limitations

The yo-yo de-spin mechanism is as device used to de-spin symmetrical objects. It

consists of a pair of masses each attached to its own cable. Both of these cables are

wound around the object. When released while the symmetric object is spinning, the

masses are projected outward by the centrifugal force. The resulting cable tension

exert a moment on the spinning object which slows its angular velocity as the cable

unwinds. [16]

In this section the object is defined as a cylinder. Because the mass distribution

is symmetrical, the cylinder spins around its axis of symmetry Oz and all the forces

exerted by the yo-yo de-spin mechanism are located in the perpendicular plane

passing through the cylinder’s centre of mass i.e. the plane of symmetry. Therefore,

the analysis of the dynamics can be performed in 2D and for one mass. Figure 3.1

below shows a 2D schematic of one of the masses of a yo-yo de-spin mechanism

attached to a cylinder. [16]

In [16] page 576-580, the yo-yo de-spin mechanism is modelled and its design

drivers and parameters derived and sized. In the following paragraph, a short sum-

mary of the modelling process presented in the book is reproduced in order to intro-

duce the approach that is developed in this thesis and to highlights the difference

between the two.

In [16], the system is assumed to be composed of a cylinder with radius R, mo-

ment of inertia about the Oz axis Iz and rotational speed about the Oz axis ω, two

additional masses of respective mass m
2

and two massless cables. The mechanism

controlling the de-spin, the two additional masses and cables, is a passive mecha-

nism. The main control design parameter i.e. the length of the cables as well as

all of the dynamic properties which describe the interactions between the yo-yo de-

spin mechanism and the cylinder are system specific and derived from the system

parameters described above.
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Figure 3.1: Yo-Yo De-spin Mechanism Diagram.

Drawing on the extensiveness and conservation of the angular momentum and en-

ergy combined with geometric observations, a total de-spin of the cylinder is achieved

by attaching the two additional masses to cables with length l = R
√

1 + Iz
mR2 which

unwrap over a total angle φ =
√

1 + Iz
mR2 . The cylinder’s angular velocity can be

expressed as a function of time ω =
( 2Iz

mR2
Iz
mR2+ω0

2t2
−1
)
ω0 where ω0 is the initial angular

velocity of the cylinder. Moreover, between the start of the de-spinning process and

its completion the cylinder travels over an angle θ1 =
√

1 + Iz
mR2

(
π
2
−1
)
. Finally the

magnitude of the cable tension N can even be assessed as a time-dependent function

N = 2Iz
R

1+ Iz
mR2 ω0

3t

(1+ Iz
mR2+ω0

2t2)2
[16].

All the parameters presented above give quantitative information on the state

of the system but none describes how the relative motion of the additional mass

affects the rate of change of angular momentum of the cylinder ḣ. ḣ is equal to

the moment exerted by cable tensions of magnitude N . From a control perspective,

the cable tension is the only available parameter given by the dynamic model which

could constitute a control command. The problem of the deployment of multiple

modules on the surface of a rotating object is akin to the deployment of mobile robots
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which require linear and angular velocity and acceleration as control inputs. For a

deformable rotating object, four variables affect the rate of change of its angular

momentum: its angular velocity and acceleration, its mass distribution or moment

of inertia and its deformation rate all of which are available from first principle

using a continuum model and can be used for feedback control. The modelling of

the rotating object and yo-yo de-spin mechanism as a continuum will be the object

of the next section.

3.1.2 The Yo-Yo de-spin mechanism from a continuum per-

spective

In this section, the entire system (cylinder and yo-yo de-spin mechanism) will

be modelled as a continuum and seen from the perspective of angular momentum

exchange between parts of this continuum and material deformation. The various

components of the system are laid out in Figure 3.1.

It assumed that the system is isolated, that the cables have no inertia and that the

additional masses do not rotate on themselves and can be modelled as point masses.

Also, given the symmetry of the system, its dynamic properties can be modelled

from the perspective of just one additional mass totalling the to additional masses.

Three frames of reference are necessary to describe the interaction between the

masses and the cylinder. All of these frames are centred on O the cylinder’s centre of

mass. Restricting the description of the dynamics to the plane of symmetry, the first

frame is the fixed inertial frame (O,
−→
X,
−→
Y) (not shown in Figure 3.1). The second is

the body frame (O,
−→
i Body,

−→
j Body) attached to the body and rotating with angular

velocity ω = θ̇1 in the inertial frame. The third frame is the polar coordinate frame

(O,−→e r,
−→e θ) following the centre of mass of the detached mass and rotating with

angular velocity θ̇ in the inertial frame.

Using the extensive property of the angular momentum, the system total angular

momentum
−→
L [Total] is:

−→
L [Total] =

−→
L [Cylinder] +

−→
L [Mass] (3.1)

50



Chapter 3: Dynamic Model of a Rotating Ellipsoid with Relatively Rotating
Additional Surface Masses and Landing Site Selection

The mass has a velocity −→v and both the cylinder and the mass rotate about Oz.

With
−→
k a unit vector of Oz, from first principle we have:

−→
L [Total] =

[
IZ
]
ω
−→
k +−→r ∧m−→v (3.2)

Expressing −→r and −→v in polar coordinates gives:

−→
L [Total] =

[
IZ

]
ω
−→
k + mr−→er ∧ (ṙ−→er + rθ̇−→eθ) (3.3)

Since −→er ∧ −→eθ =
−→
k :

−→
L [Total] =

[
IZ

]
ω
−→
k + mr2θ̇

−→
k (3.4)

Hence the magnitude of the angular momentum is:

L[Total] = ||
−→
L [Total]|| =

[
IZ

]
ω + mr2θ̇ (3.5)

As per formulae (10.111) in [16] page 578:

L[Total] = [IZ ]ω +mR2[ω + (ω + φ̇)φ2] (3.6)

Which leads to

mr2θ̇ = mR2[ω + (ω + φ̇)φ2] (3.7)

θ̇ =
R2

r2
[ω + (ω + φ̇)φ2] (3.8)

Using the Pythagorean theorem as per Figure 3.1:

r2 = R2(1 + φ2) (3.9)

As per formulae (10.115) in [16] page 579:

φ̇ = ω0 (3.10)
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Finally, the absolute angular velocity of the additional masses:

θ̇ =
[ω + (ω + ω0)ω

2
0t

2]

1 + ω2
0t

2
(3.11)

From (3.11) the additional masses angular velocity relative to cylinder is given

by:

θ̇rel = θ̇ − ω =
ω3
0t

2

1 + ω2
0t

2
(3.12)

Differentiating (3.9) gives:

ṙ =
Rω2

0t√
1 + ω0

2t2
(3.13)

From the point of view of a deformable finite material continuum, ṙ and θ̇rel

respectively represent its linear and angular rates of deformation. Considering the

yo-yo de-spin/cylinder system from this perspective, the cylinder constitutes a rigid

part while the additional masses constitute a deformable part. Moreover, these rates

of deformation are relative velocities which usually constitute the control commands

of mobile robots. The modules of the SR robot considered in this study can be re-

garded as mobile robot moving on the surface of the rotating free-floating object. It

naturally follows that the SR robot and rotating free-floating object can be modelled

as one deformable finite material continuum where the object constitutes the rigid

part while the robot constitutes its discretised deformable part and where deforma-

tion rates and their accelerations are translated into control inputs. This idea will

be formalised in 3.2.

3.2 System Modelling Using Rotational Dynam-

ics of a Deformable Medium

In this section the system will be modelled as a continuum, a most general ap-

proach for a first principle derivation of the dynamic interactions between the ro-
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tating object and the robot. In particular, this approach exploits the extensiveness

property of angular momentum to discretize the system and enables clear separation

between the object and the robot. Finally, the relative motion between the object

and the robot is shown and made clearer by the introduction of three different frames

of reference. The original derivation of the model can be found in [66]. For the pur-

pose of the verification of its correctness, it was rederived from a programmatic

perspective to ensure a consistent writing convention for vectors and tensors used in

the simulations’ code. A partial version of this derivation can be found in appendix

A where the focus was placed on the particle level where the main calculations occur.

When not stated otherwise, a simple application of the integral operator is required

to ensure validity over the continuum.

3.2.1 System definition

In the very general sense, the system was defined as a randomly tumbling de-

formable continuum with a rigid part and a deformable part. This definition is

necessary and sufficient to derive the model that will be use throughout this study.

For the purpose of studying the interaction of a deploying self-reconfigurable

robot on the surface of a rotating object, the system was further specified and

should be understood as follows:

� The rigid part was defined as a randomly tumbling and uncooperative object

like an asteroid for instance.

� The deformable part was assumed to be attached or in contact with the rigid

part at all times allowing for exchange of momentum through contact forces.

� The deformable part was further defined as either a moving rigid mass or

modules of a self-reconfigurable robot in constant contact with one another.

The system’s model will be presented in the next sections on the basis of these defi-

nitions. For the purpose of illustration, figure 3.2 below shows the general definition

of a system and figure 3.3 shows a robot deployment.
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Figure 3.2: System Diagram.

Figure 3.3: Example of a System Deployment.

3.2.2 Physical Hypotheses

As per section 2.2.5, the system defined in 3.2.1 is subject to very small perturba-

tions both in magnitude and timescale. Consequently, the system was assumed to

be isolated and in pure rotation with respect to the inertial frame defined in 3.2.3.

No external forces or moments are exerted on the system and no energy is coming

in or out of it. The total energy of the system is therefore constant:

TTotal = TPotential + TKinetic = constant (3.14)

as well as the total angular momentum vector which is also conserved:

−→
L inertial =

−−−−−−→
constant (3.15)
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It is further assumed that any moving part of the system possesses an internal

energy storage containing enough but unquantified amount of potential energy to be

able to move relative to the object to any target position and compensate frictions

and dissipation while moving. This was equivalent to neglecting friction forces. The

transfer of energy was also assumed to have no hysteresis i.e. it is instantaneous.

Moreover, in the perspective of simplifying the analysis and exploitation of the

model for the design of the robot controller, this study focused on pure exchange

of momentum through contact forces and its parametrization with relative angular

positions velocities and accelerations. It was therefore assumed that the moments

arising from stresses induced in the continuum by relative motions are neglected and

the assessment of their impact left for future work.

Finally, the moving part was assumed to maintain contact with the surface of the

object at all times while moving. This creates an holonomic constraint the impact

of which was taken into account as will be seen in 3.2.6 and appendix D.

3.2.3 Frames of References and Relative Angular Velocity

3.2.3.1 Frames of References

The clear description of the interactions and relative motion between the rigid

part and moving part of the continuum, the tumbling object and the robot is best

achieved by attaching a frame of reference to each of these parts. It is however

feasible and more practical to set the origins of these frame at the centre of mass

of the continuum. The following frames definitions are taken directly from [66] and

reproduced here to describe how the model derivation was approached.

The entire space is assumed to be a field to which is attached a Euclidean vector

space and a Euclidean point space.

The continuum is formed of a rigid part and deformable moving parts. The

relative rotational motion of the moving parts compared to the rigid part rather the

difference between two absolute angular velocities is best seen from the point of view

of an extra amount of angular velocity added to a rigid-body angular velocity that

would be a base angular velocity across the continuum. This helps defined formally
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three frames of reference:

1) An inertial Cartesian coordinate frame of reference centred on the centre of

mass of the continuum [O] ≡ (O, ~ui) where ~ui are basis vectors.

2) A rotating Cartesian frame of reference with same origin at the centre of

mass of the continuum attached to the rigid part and representing the rigid-body

rotation of the continuum [O′] ≡ (O,
−→
u′i(t)) where

−→
u′i(t) are time-dependent basis

vectors. [O′] rotates with respect to [O] with angular velocity
−→
Ω(t)

3) Another rotating Cartesian frame of reference with same origin at the centre

of mass of the continuum and attached to each moving part, [O′′] ≡ (O,
−→
u′′i (x′, t))

rotating relative to [O′] with a non-rigid body rotation where
−→
u′′i (x′, t) is a configura-

tion (in [O′]) and time dependent vector basis. [O′′] rotates with respect to [O′] with

an angular velocity
−→
Ψ(x′, t). Each moving particle can be regarded as possessing

its own system [O′′] despite having its origin in O. [O′′] is responsible for a rotation

different from that of [O′] relative to [O].

The three frames above have the same origin O at the centre of mass of the

continuum. This choice results from the hypothesis in 3.2.2 that the continuum

does not have a translational motion in the inertial frame [O] and that consequently

the centre of mass remains at its initial position in [O]. Conversely, in a frame

attached to another point of the continuum, the centre of mass would appear to

move with any occurring deformation.

3.2.3.2 Non-Rigid Body Rotation Frame [O′′]

The deformation of the continuum is best measured by a deformation rate and

acceleration fields which are simply the translational velocity and acceleration of a

moving particle (
−→
v′′ and

−̇→
v′′) expressed in and with respect to its own [O′′] frame.

Angular velocities are usually expressed in body frame out of convenience [60].

Moreover, the three frames [O], [O′] and [O′′] have the same origin O. In addition,

as will later be see in section 3.3, if a moving part of the continuum rotates on itself

about the radial axis passing through the origin of the frame, it does not contribute

to the overall exchange of angular momentum. A point mass approximation for each
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robot module is therefore perfectly reasonable.

In this perspective, a convenient way of introducing explicit angular quantities is

to define [O′′] as a local spherical coordinate frame attached to the moving part of the

continuum or robot module. As illustrated in Figure 3.2, the spherical coordinate

base is defined as

−→er =


cos(φ) sin(θ)

sin(φ) sin(θ)

cos(θ)

 (3.16)

−→eθ =


cos(φ) cos(θ)

cos(φ) sin(θ)

− sin(θ)

 (3.17)

−→eφ =


− sin(φ)

cos(φ)

0

 (3.18)

In the body frame [O′], the location any moving mass on the surface of the

rotating object is given by

−→x ′ = r−→er (3.19)

where r is the radial length

3.2.3.3 Relative Angular Velocity

To summarise, the total rotational velocity is a field quantity
−→
Ω(x, t) for the total

rotation of the configurations of the continuum relative to the inertial frame [O].

−→
Ω(x, t) =

−→
Ω(t) +

−→
Ψ(x, t) (3.20)

~Ω(t) spins of [O′] relative to [O] and is the rigid body rotation of continuum. ~Ψ(x, t)

spins of [O′′] relative to [O′] expressed in inertial system [O] and is the non-rigid

body rotation of the configurations of the continuum or relative angular velocity.
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Using the local spherical coordinates defined in 3.2.3.2 and vector identification

and differentiation, the relative rotational speed and acceleration projected in the

body frame are respectively:

−→
Ψ(x, t) =


− sin(φ)θ̇

cos(φ)θ̇

φ̇

 (3.21)

and

−̇→
Ψ(x, t) =


− sin(φ)θ̈ − cos(φ)φ̇θ̇

cos(φ)θ̈ − sin(φ)φ̇θ̇

φ̈

 (3.22)

3.2.4 Continuous model

In this section, is laid out the general continuous model of a deformable rotating

continuum. Originally derived in [66], it was rederived for the purpose of verification

and consistency of writing convention across vectors and tensors used in the simu-

lations’ code. The convention followed is that left of the dyadic product ⊗, vectors

are column and right of the dyadic product ⊗ vectors are row. The essential part

of the rederivation can be found in appendix A.

3.2.4.1 The Model

In order to avoid loading the reader with notations the notations introduced in

3.2.3.3 were simplified. In its most general version, the model includes moments

exerted on the system from internal stresses and external forces although these are

neglected.

�

−→
Ω(t), the rigid body rotation constant over the continuum but dependent on

time becomes
−→
Ω

�

−→
Ψ(−→x , t) the added angular velocity relative to the rigid body’s and dependent

on position within the continuum and time becomes
−→
Ψ.
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� [I](−→x , t) the continuum’s moment of inertia matrix over the entire continuum

dependent on position within the continuum and time becomes [I].

�
−→x is the position vector of a particle of the continuum.

�

−̇→
x′′0 is the velocity vector of a particle of the continuum as viewed from the

frame [O′′] when [O′′] is stationary.

�

−̈→
x′′0 is the acceleration vector of a particle of the continuum as viewed from the

frame [O′′] when [O′′] is stationary.

�

−→
MBody =

−→
0 the system is isolated no body force moments are exerted on it.

�

−→
MStresses =

−→
0 any stress produced by the interaction between a moving mass

or module and the object is neglected.

�

−→
MPerturbations =

−→
0 the moment exerted by the small perturbations introduced

in section 2.2.5 can be neglected but will later be reintroduced to evaluate the

robustness of the modules’ low-level controller.

The continuous model is the following:

[I] ·
−̇→
Ω +

−→
Ω ∧ [I] ·

−→
Ω = −

∫
m

2
[
(
−̇→
x′′0 ·
−→x )[1]−

−̇→
x′′0 ⊗

−→x
]
·
−→
Ω · dm

−
∫
m

[[
(−→x · −→x )[1]− (−→x ⊗−→x )

]
·
−̇→
Ψ

+
[
2(−→x · −̇→x )[1]− (−̇→x ⊗−→x )− (−→x ⊗ −̇→x )

]
·
−→
Ψ

]
· dm

−
∫
m

[
(−→x ⊗

−̇→
x′′0)− (

−̇→
x′′0 ⊗

−→x )
]
·
−→
Ψ · dm

−
∫
m

[
(−→x ⊗−→x ) ∧

−→
Ψ + ((−→x ⊗−→x ) ∧

−→
Ψ)T

]
·
−→
Ω · dm

−
∫
m

(−→x ∧
−̈→
x′′0) · dm

+
−→
MBody +

−→
MStresses +

−→
MPerturbations

(3.23)

3.2.4.2 Derivation valid in any vector basis

A rotation is a linear application which conserves norms, angles, scalar, cross

and dyadic products and transforms a vector basis into another. As it transforms
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vectors independently of the mass distribution, it can be applied outside and inside

the integral operator indifferently in the model derivation. In addition, all the chosen

frames of reference share the same origin. This implies that expressing vectors in

one frame or another is achieved by applying a rotation only. This further implies

that the model can be expressed in any frame of reference directly by just replacing

any vector by its expression in a specific frame. The writing of the differential

equation of the angular velocity’s is therefore frame-independent. Any −→x vector

can be viewed as being expressed in any frame.

3.2.5 Discrete Normalised Model with Point Mass Non-Rigid

Parts

For this model all parameters were normalised as per 3.5.1.1. This implies also

that [I] is normalised per unit of robot mass m and becomes [In] = 1
m

[I].

Defining nr as the number of robots modules:

[In] ·
−̇→
Ω +

−→
Ω ∧ [In] ·

−→
Ω =

nr∑
i=1

(
− 2
[
(
−̇→
x′′0 ·
−→x )[1]−

−̇→
x′′0 ⊗

−→x
]
·
−→
Ω

−
[[

(−→x · −→x )[1]− (−→x ⊗−→x )
]
·
−̇→
Ψ

+
[
2(−→x · −̇→x )[1]− (−̇→x ⊗−→x )− (−→x ⊗ −̇→x )

]
·
−→
Ψ

]
−
[
(−→x ⊗

−̇→
x′′0)− (

−̇→
x′′0 ⊗

−→x )
]
·
−→
Ψ

−
[
(−→x ⊗−→x ) ∧

−→
Ψ + ((−→x ⊗−→x ) ∧

−→
Ψ)T

]
·
−→
Ω

− (−→x ∧
−̈→
x′′0)

)

+
−→
MBody +

−→
MStresses +

−→
MPerturbations

(3.24)

All vectors depend on the index number i.

3.24 undergoes a verification with an application ot the yo-yo de-spin mechanism

in appendix A.
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3.2.6 Modelling the Randomly Tumbling Object as an El-

lipsoid

From a dynamics stand point, the description of the rotational motion of a ran-

domly tumbling object requires a minimum of three inertia parameters, the three

moments of inertia about its principle axes. They contain all the information re-

quired to describe the object’s mass distribution without any reference to its shape

or volume. However, information about the relative position between the object and

the robot’s modules deploying on its surface is required to accurately calculate the

moments they exert on each other as per model in 3.2.4 and 3.2.5. It is difficult and

impractical to try to obtain the equation of the surface of an object of any shape. In

order to circumvent this problem, asteroids could be modelled as ellipsoids which in

many cases could be considered as a good approximation [34]. The equation of the

surface of an ellipsoid in Cartesian coordinates system or spherical coordinates is

easy to obtain along with its moment of inertia. The holonomic constraints between

the robot and the object is also easily derivable (please refer to appendix D for its

derivation) and contribute to the overall accuracy of the model. This is why the

randomly tumbling object is modelled as an ellipsoid in this study.

As per [34], it is hard to find any pieces of asteroid mass distribution data other

than density and sometimes estimated moments of inertia. In line with this, uniform

mass distribution is assumed for the ellipsoid. As will be seen later, this hypothesis

will conveniently simplify the modelling process by maintaining the centre of mass

O of the ellipsoid at the centre of its volume.

Assuming that the centre of mass of the ellipsoid is the origin O of the inertial

frame [O] defined in 3.2.3, the equation of its surface in Cartesian coordinates is:

x2

a2
+
y2

b2
+
z2

c2
= 1 (3.25)

where a, b, c are positive real numbers representing half the length of the re-

spective principal axes X, Y , Z where the points (a, 0, 0), (0, b, 0) and (0, 0, c) lie at

their intersection with the surface.
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In this study, the convention establishes the Z axis as the main rotating or

spinning axis. All shape considerations are therefore parametrised with respect to

the length c.

� If (a = b) > c, the ellipsoid is an oblate spheroid (Figure 3.4).

� If (a = b) < c, the ellipsoid is a prolate spheroid (Figure 3.5).

� If a = b = c, the ellipsoid is a sphere.

� If a > b > c, the ellipsoid is a general or tri-axial ellipsoid.

Figure 3.4: Oblate Ellipsoid.

Figure 3.5: Prolate Ellipsoid.

The moments of inertia of an ellipsoid are easily obtained as follows:

Along a or X axis

Ix =
MR

5
(b2 + c2) (3.26)

Along b or Y axis

Iy =
MR

5
(a2 + c2) (3.27)
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Along c or Z axis

Iz =
MR

5
(a2 + b2) (3.28)

where MR is the normalised mass of the ellipsoid per unit of robot module mass.

Parameters normalisation will be covered in more details in section 3.5.1.1.

The longest axis (shortest axis) has the smallest (largest) moment of inertia

receptively. The major axis has the maximum moment of inertia while the minor

axis has the minimum moment of inertia [60].

3.3 Non-Contributing Rotation of an Additional

Mass and Point Mass Hypothesis

The section examines the possibility of modelling each robot module as a point

mass. The reason for such an approximation is that these modules are small in

comparison to the object and it should lead to the simplification of the model by

avoiding intensive computation for calculating local time-dependent moment of in-

ertia matrices. This comes down to neglecting the rotation of a module on its own

axis.

Let’s examine, in frame [O′], a simple situation where there is the body (the

rigid part) and one point mass m moving on its surface (the non-rigid part). As

the angular momentum is an extensive quantity the contribution of each part can

be separated as follows:

−→
L [O′] =

[
I
[O′]
Body(t)

]−→
Ωt +

[
I
[O′]
Mass(x, t)

](−→
Ωt +

−→
Ψ(x, t)

)
(3.29)

−→
L [O′] =

([
I
[O′]
Body(t)

]
+
[
I
[O′]
Mass(x, t)

])−→
Ωt +

[
I
[O′]
Mass(x, t)

]−→
Ψ(x, t) (3.30)

where
[
I
[O′]
Mass(x, t)

]
= m

[
r2[Id]− r−→er ⊗ r−→er

]
in spherical coordinates (−→x = r−→er)
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In spherical coordinates:

[
I
[O′]
Mass(x, t)

]
= m


1− cos(φ)2 sin(θ)2 − sin(φ) cos(φ) sin(θ)2 − cos(θ) cos(φ) sin(θ)

− cos(φ) sin(φ) sin(θ)2 1− sin(φ)2 sin(θ)2 − cos(θ) sin(φ) sin(θ)

− cos(φ) sin(θ) cos(θ) − sin(φ) sin(θ) cos(θ) sin(θ)2


(3.31)

Calculating the determinant gives:

det(
[
I
[O′]
Mass(x, t)

]
) = 1− cos(φ)2sin(θ)2 − sin(φ)2sin(θ)2 − cos(θ)2 (3.32)

det(
[
I
[O′]
Mass(x, t)

]
) = sin(θ)2 − sin(θ)2(cos(φ)2 + sin(φ)2) = 0 (3.33)

The instantaneous eigenvalues of
[
I
[O′]
Mass(x, t)

]
are 1, 1 and 0. Its rank is therefore

2 at any given time.

Assuming that:

[
IMass(x, t)

]
=


I1 I2 I3

I4 I5 I6

I7 I8 I9

 (3.34)

then a relative angular velocity
−→
Ψ(x, t) that would not contribute to the overall

angular momentum would satisfy the equation below:

−→
Ψ(x, t) = Ψz


−

I1 I2

I4 I5


−1 I3

I6


1

 (3.35)

where Ψz can be any function.

At any one time the first 2 rows combine into the third with the coefficient

µ =

−cos(φ) ∗ tan(θ)

−sin(φ) ∗ tan(θ)

 (3.36)
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Leading to:

−→
Ψ(x, t) = Ψz


cos(φ) tan(θ)

sin(φ) tan(θ)

1

 (3.37)

Eventually:

−→
Ψ(x, t) = Ψz


cos(φ) sin(θ)

sin(φ) sin(θ)

cos(θ)

 (3.38)

It can be easily verified that
[
I
[O′]
Mass(x, t)

]−→
Ψ(x, t) =

−→
0 . When the point mass

rotates on itself about the radial axis, it does not contribute to the overall angular

momentum. Only motions in the spherical coordinates φ and θ have a contribution.

Anticipating on the module design in chapter 4, there is no practical application

for a rotation about the radial axis as it does not cause a relative motion on the

surface of the object. Moreover, the intention for the module is not to use it as

a substitute for a momentum wheel. Therefore, modelling robot modules as point

masses is perfectly coherent hypothesis.

3.4 Landing Site Selection

3.4.1 Modelling the Landing

Landing generates a disturbance to the rotational motion of the object and sets

the initial conditions under which the robot will deploy. The optimal landing site

should therefore generate minimum disturbance. A strong assumption was made to

help with this optimisation process. It postulates that the robot is split in two parts

or two identical robots each landing at opposite site on the surface of the object

i.e. symmetrically with respect to the centre of mass. This in order to preserve the

initial location of the centre of mass in the inertial frame.

The modelling or rather sizing of the landing site impact on the initial condition

of the rotational state of the entire system drew on [17]. The object on which the

robot is landing is modelled as a body with time-variable mass with an instantaneous
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change of mass. The model of mass addition used is entirely derived in [17] but

adapted to the hypotheses defining the intended application of this study.

Most notably, the angular momentum for body addition was calculated at the

centre of mass O of the object, origin of the previously defined frames of reference

in section 3.2.3. The addition of mass being symmetric with respect to O, these

calculations remain valid since O does not change location relative to the inertial

frame.

3.4.2 Systems Definitions and Properties

Three systems have to be defined, the notations are taken from [17]:

1. S is the object prior to the addition of mass m. It possesses a mass M , a

moment of inertia [IS], a linear velocity −→v S, an angular velocity
−→
ΩS and an

angular momentum with respect to O
−→
L S.

2. S1 is the system after landing (object and robot) with mass (M + m), mo-

ment of inertia [IS1], linear velocity −→v S1, angular velocity
−→
ΩS1 and angular

momentum with respect to O
−→
L S1.

3. S2 is the additional mass m or robot prior to landing with moment of inertia

[IS2], linear velocity −→v S2, angular velocity
−→
ΩS2 and angular momentum

−→
L S2

with respect to its own centre of mass.

4. −→ρ S1 is the vector linking the centre of mass of the original object O and the

centre of mass of the new object post landing S1.

5. −→ρ S2 is the vector linking the centre of mass of the original object O and the

centre of mass of the additional mass S2.

3.4.3 Physical Assumptions

1. The original object and the additional mass constitute an isolated system prior

and after the addition of this mass. There are no external forces or moments

exerted on this system.
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2. The additional mass is defined as a point mass which implies no rotation about

its centre of mass i.e.
−→
L S2 =

−→
0 .

3. Only pure angular motion is relevant for this study. Therefore, the linear

velocity of the object is neglected and set to the nil vector in the inertial

frame: −→v S1 =
−→
0 .

4. It was assumed that the touch down is occurring under the smoothest condi-

tions possible meaning that during the last phase of approach prior to landing,

the robot’s rotational motion matches the object’s.

5. It was assumed that the object has a much larger mass than the additional

mass i.e. M � m.

6. Finally, it was assumed that the robot was constituted of two parts landing

synchronously on the surface of the object S in symmetric positions with

respect to the centre of mass O of the object: −→ρ S1 =
−→
0 .

3.4.4 Angular Momentum Change During Landing

According to [17] page 16 formulae (2.34), the variation of the angular momentum

during mass addition is:

∆
−→
L O =

−→
L S1 −

−→
L S2 −

−→
L S +−→ρS2 ∧m

(−→v S1 −−→v S2

)
(3.39)

From [17] page 20 quote:

”According to the principle of the angular momentum, the variation of the an-

gular momentum (2.34) page16 in the time interval ∆t is equal to the impulse JM,

which is the sum of the impulse of the moment
−→
MFr

0 of the resultant force for the

point O and of the impulse of the resultant torque
−→
M, caused by active and reaction

torques, i.e:”

∆
−→
L O = (

−→
MFr

0 +
−→
M)∆t =

−→
J M (3.40)

Again from [17] page 20 quote: ”If impulses of torques
−→
J M are quite small, due

to short time ∆t, system is assumed to be without action of external torques. In
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that case variation of the angular momentum is ∆
−→
L O =

−→
0 ie angular momentums

of the system before and after mass variation remains invariable.”

From section 3.4.3, under assumption number 2
−→
L S2 =

−→
0 , under number 3

−→v S1 =
−→
0 and number 4 leads to

−→
J M ≈ −→0 .

Hence equation 3.39 becomes:

[IS1

]−→
ΩS1 = [IS

]−→
ΩS +−→ρS2 ∧m−→v S2 (3.41)

Since there are two robots landing symmetrically with respect to the centre

of mass of the object, for the first robot m
2
−→ρS2 ∧ −→v S2 and for the second robot

m
2
−→ρS2 ∧ −−→v S2. The overall velocity of the additional mass is

−→
0 . This finally leads

to:

−→
L S1 =

−→
L S (3.42)

3.4.5 Error Vector and Sizing Method

As was seen in section 3.4.4, the addition of mass alters the angular velocity

either by pure mass addition or by mass addition combined with relative angular

momentum if there is a velocity difference at impact. For the purpose of this sizing

exercise, an error vector was added to the original angular velocity −→ε t such that

−→
Ω1
t =
−→
Ω0
t +−→ε t where

−→
Ω0
t is the angular velocity of the object before landing and

−→
Ω1
t

is the angular velocity of the object after landing. Then considering the additional

mass as rigidly attached to the object and using the result in section 3.4.4 in body

frame [O′]:

([
IBody

]
+
[
IMass(x1, t1)

])−→
Ω1

t =
[
IBody

]−→
Ω0

t (3.43)

Finally

−→ε t = −
([

IBody

]
+
[
IMass(x1, t1)

])−1([
IMass(x1, t1)

]−→
Ω0

t

)
(3.44)

68



Chapter 3: Dynamic Model of a Rotating Ellipsoid with Relatively Rotating
Additional Surface Masses and Landing Site Selection

The impact of landing is then measured by the normalised error:

ε =
‖ −→ε t ‖
‖
−→
Ω0
t ‖

(3.45)

The norm of
−→
Ω0
t was chosen to be equal to the upper bound of the norm of an

asymmetric ellipsoid’s angular velocity. The reason being that, as per equation 3.56

in section 3.5.3.2, this norm explicitly depends on the parameter h2

2T
which prescribes

the magnitude of the angular momentum as a function of the level of kinetic energy

and which is bounded by the lowest and largest value of the moments of inertia of

the object. It is a very convenient parameter for describing explicitly the dynamic

properties of the object. All the quantities were normalised as per section 3.5.1.1

and five values of h2

2T
were chosen over the range of moments of inertia of the object.

The error simulation results are presented in the next section.

3.4.6 Landing Site Location Impact on the Rotational State

of the Target Asteroid

3.4.6.1 Landing Error Simulation Set Up

The landing error was calculated, as per formulae 3.44 and 3.45 in section 3.4.5,

for ten ellipsoids, four mass ratios of the ellipsoid to the robot and five values of h2

2T

chosen over the range of moments of inertia of the object. For each combination of

these parameters, the value of the landing error was minimised over a wide range of

landing site located by spherical coordinates angles (θ, φ) ∈ [0, π] × [0, 2π[. These

minimum values will now be analyse against the parameters values.

The values of the parameters are found in tables 3.1, 3.2 and 3.3 below.

The range of normalised moments of inertia of the ellipsoids in table 3.3 are calcu-

lated as per equations 3.26, 3.27 and 3.28 in section 3.2.6 and Imax = max(Ix, Iy, Iz)

and Imin = min(Ix, Iy, Iz).
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Ellipsoid 1st Semi-Axis Length 2nd Semi-Axis Length 3rd Semi-Axis Length
Sphere 1 1 1
Prolate 1

10
1
10

1
Prolate 1

2
1
2

1
Prolate 4

5
4
5

1
Oblate 5

4
5
4

1
Oblate 2 2 1
Oblate 10 10 1

Asymmetric 1
10

4
5

1
Asymmetric 1

3
1
2

1
Asymmetric 4

5
9
10

1

Table 3.1: Ellipsoids Dimensions Normalised by the Body’s Z Semi-Axis Length

Mass Ratio 10 100 1000 10000

Table 3.2: Dimensionless Mass Ratios Ellipsoid to Robot

h2

2T
Imin

(3Imin+Imax)
4

(Imin+Imax)
2

(Imin+3Imax)
4

Imax

Table 3.3: Dimensionless h2

2T
Parameter Values

3.4.6.2 Landing Error Simulation Results Analysis

In table 3.4 below, the spherical coordinates of the optimum landing sites are

displayed for various initial rotational states of the ellipsoid which are parametrised

by h2

2T
.

Ellipsoid / h2

2T
Imin

(3Imin+Imax)
4

(Imin+Imax)
2

(Imin+3Imax)
4

Imax
Sphere (1, 1, 1) (90◦, 0◦) (90◦, 0◦) (90◦, 0◦) (90◦, 0◦) (90◦, 0◦)

Prolate ( 1
10
, 1
10
, 1) (0◦, 0◦) (9◦, 45◦) (9◦, 90◦) (18◦, 225◦) (90◦, 225◦)

Prolate (1
2
, 1
2
, 1) (0◦, 0◦) (27◦, 225◦) (45◦, 225◦) (54◦, 225◦) (90◦, 225◦)

Prolate (4
5
, 4
5
, 1) (0◦, 0◦) (36◦, 45◦) (54◦, 45◦) (63◦, 225◦) (90◦, 225◦)

Oblate (5
4
, 5
4
, 1) (90◦, 225◦) (72◦, 45◦) (54◦, 225◦) (45◦, 225◦) (0◦, 0◦)

Oblate (2, 2, 1) (90◦, 225◦) (72◦, 225◦) (63◦, 45◦) (45◦, 225◦) (0◦, 0◦)
Oblate (10, 10, 1) (90◦, 225◦) (72◦, 225◦) (63◦, 225◦) (45◦, 45◦) (0◦, 0◦)

Asymmetric ( 1
10
, 4
5
, 1) (0◦, 0◦) (45◦, 225◦) (54◦, 45◦) (72◦, 225◦) (90◦, 225◦)

Asymmetric (1
3
, 1
2
, 1) (0◦, 0◦) (27◦, 45◦) (36◦, 225◦) (74◦, 225◦) (90◦, 225◦)

Asymmetric (4
5
, 9
10
, 1) (0◦, 0◦) (45◦, 225◦) (54◦, 45◦) (72◦, 45◦) (90◦, 45◦)

Table 3.4: Optimal Landing Site in Spherical Angles (θ, φ) in Degrees

The parameter h2

2T
sets the rotation state of the object and in particular the

location of its instantaneous axis of rotation. For symmetric objects it will influence
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the nutation angle and precession motion. In general, when h2

2T
= Imin, the objects

spins about its minor axis whereas when h2

2T
= Imax, the objects spins about its

major axis. For intermediary values of h2

2T
, it is difficult to locate the axis of rotation

whose location also depends on the inertia properties of the object.

For spheres and symmetric ellipsoids the angle φ is not significant due to the

symmetry of these objects but is relevant for asymmetric objects.

Spheres have an infinite number of axes of symmetry and all these axes are

principal axes with identical values of moment of inertia about them. The results

in table 3.4 indicate that the location of the landing is independent of the location

of the axis of rotation and could be anywhere between the tip of the axis and the

median plane perpendicular to it. The landing model in sections 3.4.3 and 3.4.4

assumes that the robot relative velocity and relative angular velocity with respect

to the object are negligible and that angular momentum is transferred without a

torque impulse. Adding to this the fact that the angular momentum of the object is

collinear with the angular momentum of the robot at landing, the absence of effect

at landing is coherent.

Symmetric ellipsoids are of two types: prolate and oblate. The axis of spin

of prolate ellipsoids is their minor axis with moment of inertia equals to Imin and

hence an unstable axis when the ellipsoids’ kinetic energy is dissipated [60]. The

axis of spin of oblate ellipsoids is their major axis with moment of inertia equals to

Imax and hence a stable axis when the ellipsoids’ kinetic energy is dissipated [60].

In this analysis, the spin axis is the Z axis against which the spherical coordinate

angle θ is measured. The results in table 3.4 indicate that when the ellipsoid is in

pure spin whether about its minor or major axis, it is optimal to land at the tip

of this spinning axis. In table 3.4, the pure spin results for an oblate ellipsoid are

the opposite of the results of a prolate ellipsoid which is to be expected given the

fact that the main spin axis is the major axis for an oblate ellipsoid and the minor

axis for a prolate ellipsoid and that in a symmetric ellipsoid the major and minor

axes are perpendicular to each other. This validates in part the model defined in

section 3.4.4. For other rotational states, it is difficult to infer the cause of the
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optimality of the given landing location. The current hypothesis assumes that the

optimal landing site corresponds to the tip of the spinning axis under the current

rotational state and that an interpolation model could be fairly accurate. However,

the validation of such an hypothesis is left for further work as the choice of landing

site is not the main focus this PhD study.

Asymmetric ellipsoids results follow those of the prolate symmetric case. This is

consistent with the fact that their minor axis is their Z axis just like for the prolate

ellipsoids. The same hypothesis about the landing location on the tip of the current

instantaneous spin axis is envisaged. Again, the investigation of this hypothesis it

is left for future work.

Interestingly, the spherical angle φ in table 3.4 often takes the value 225◦. The

reason for this is unclear as this value appears for symmetric and asymmetric ellip-

soids alike. The landing model used is very idealised and a more accurate model is

to be designed to make a meaningful investigation into this fact.

The magnitude of the angular velocity error at landing will now be analysed.
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Figure 3.6: Sphere Landing Normalised Error.

The magnitude of the relative angular velocity error for spheres is extremely low
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and is well below 2 · 10−15%. For each mass ratio, the error is constant which is

consistent with the indifference in landing site location observed in table 3.4. From

these results, only the mass ratio affects the magnitude of the angular velocity error

at landing. The relative angular velocity error can be completely neglected for mass

ratios equal to or higher than 1, 000.
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Figure 3.7: Prolate Ellipsoid Landing Normalised Error.
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Figure 3.8: Prolate Ellipsoid Landing Normalised Error.
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Figure 3.9: Prolate Ellipsoid Landing Normalised Error.

For prolate ellipsoids, the magnitude of the relative angular velocity error at
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landing is nil when the objects spins about its major or minor axis which is consistent

with the optimal location of landing. The magnitude of the relative angular velocity

error at landing increases with prolateness but the spread of error values increases

with prolateness. For a given prolateness, the mass ratio is the main parameter

affecting the error’s magnitude which decreases with increasing value of the mass

ratio. In the cases presented here, the error reaches a maximum of 4% which occurs

when the axis of rotation is the furthest from the principal axes. This is consistent

with the fact that in the symmetric case the principal axes are stable axes of rotation.

Moreover, this relative error is very low and as a first approximation, the initial

rotation state of the object prior to deployment could be considered the same as

before landing. In any case, the relative angular velocity error can be completely

neglected for mass ratios equal to or higher than 1, 000.
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Figure 3.10: Oblate Ellipsoid Landing Normalised Error.
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Figure 3.11: Oblate Ellipsoid Landing Normalised Error.
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Figure 3.12: Oblate Ellipsoid Landing Normalised Error.

For oblate ellipsoids, the magnitude of the relative angular velocity error at
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landing behaves similarly to the prolate case. It is nil when the objects spins about

its major or minor axis which is consistent with the optimal location of landing. The

magnitude of the relative angular velocity error at landing decreases with oblateness

but the spread of error values increases with oblateness. For a given oblateness, the

mass ratio is the main parameter affecting the error’s magnitude which decreases

with increasing value of the mass ratio. In the cases presented here, the error reaches

a maximum at 1.5% which occurs when the axis of rotation is the furthest from the

principal axes, despite the inconsistent and unexplained outlier found in figure 3.12

at Imin+Imax
2

. This is consistent with the fact that in the symmetric case the principal

axes are stable axes of rotation. Moreover, this relative error is very low and as a

first approximation, the initial rotation state of the object prior to deployment could

be considered the same as before landing. In any case, the relative angular velocity

error can be completely neglected for mass ratios equal to or higher than 1, 000.
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Figure 3.13: Asymmetric Ellipsoid Landing Normalised Error.
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Figure 3.14: Asymmetric Ellipsoid Landing Normalised Error.
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Figure 3.15: Asymmetric Ellipsoid Landing Normalised Error.

For asymmetric ellipsoids, the magnitude of the relative angular velocity error
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at landing is nil when the object spins about its minor axis which is consistent with

the optimal location of landing and is similar to the prolate and oblate cases in this

respect. The magnitude of the relative angular velocity error at landing increases

with the degree of symmetry of the object and again, the mass ratio is the main

parameter affecting its magnitude which decreases with increasing value of the mass

ratio. In the cases presented here, the maximum relative angular velocity error varies

between 0.4% for the less symmetrical object and 3.5% for the most symmetrical

object and occurs when the axis of rotation is the furthest from the principal axes.

This is consistent with the fact that it is easier to spin about the minor axis and that

stability increases with angular velocity. Moreover, this relative error is very low and

as a first approximation, the initial rotation state of the object prior to deployment

could be considered the same as before landing. In any case, the relative angular

velocity error can be completely neglected for mass ratios equal to or higher than

1, 000.

3.4.6.3 Landing Location: Conclusion

In this conclusion, the landing location analysis will be summarised as a set of

design recommendations for the mission.

1. For all ellipsoidal objects, the optimal landing site is located at the tip of the

current rotation axis. This location is independent of the mass ratio of the

object’s mass to the robot’s mass but depends on the initial rotation state of

the object prescribed by the parameter h2

2T
. If the object’s axis of rotation is

stable, the identification of the location of its tip should be attempted prior

to landing.

2. The magnitude of the disturbing effect of the landing on the rotational state

of the object increases with symmetry, oblateness and prolateness.

3. In general, the magnitude of the disturbing effect of the landing is very low,

of the order of 1% to 5% at worst, and decreases with increasing values of the

mass ratio between the object and the robot. For mass ratios equal to or higher
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than 1, 000, this effect can be completely neglected. Therefore, under this prior

condition, landing at any point of the surface of the object can be considered

as both feasible and acceptable from the standpoint of not disturbing the

rotational state of the object.

3.5 Ellipsoid’s and Robot’s Simulation Set Up

3.5.1 Parametrization

3.5.1.1 Normalised parameters

Whenever possible, a dimensionless analysis was sought in order to delve into the

interrelationships and relative strengths of the system’s fundamental properties and

avoid explicit references to units or magnitude of the quantities involved.

The problem under study was mainly concerned with the shape of the system,

its mass distribution, the relative magnitude of the mass of the object and the robot

and the absolute and relative angular velocities of the system and its components.

The primary normalised parameters were:

� The norm of the initial angular velocity which was taken to be equal to 1 and

normalised per unit of angular velocity with respect to the angular velocity of

a common spherical asteroid, the sizing of which is presented in the following

section.

ω0 = 1 (3.46)

� The mass ratio between the object and the robot so that the influence of mass

is measured per unit of robot mass.

MR =
mObject

mRobot

(3.47)

� The dimensions of the ellipsoid are given by its semi-axes lengths a for the X

axis, b for the Y , and c for the Z axis. In this study, the conventional choice

for the main rotating or spinning axis is Z. All length units were expressed
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per unit of Z semi-axis length c.

From the normalisation of these primary parameters, other key parameters could be

normalised. These were:

� The moments of inertia of the ellipsoid were normalised per unit of Z semi-axis

length and per unit of robot mass as per the following formulae:

Ix =
1

5
MR(b2normalised + 1) (3.48)

Iy =
1

5
MR(a2normalised + 1) (3.49)

Iz =
1

5
MR(a2normalised + b2normalised) (3.50)

� The rotational kinetic energy parametrising the angular velocity of asymmetric

bodies was also normalised per unit of Z semi-axis length and per unit of

robot mass as consequence of normalising lengths and mass as per the follwing

formulae:

T =
MRωnormanised

2

5
=
MR

5
(3.51)

� The ratio of the square of the angular momentum to the kinetic energy L2

2T
or h2

2T

parametrising the angular velocity of asymmetric bodies was also normalised

per unit of Z semi-axis length and per unit of robot mass as a consequence of

normalising lengths and mass. The following dimensional analysis of the ratio

shows how the normalisation is propagated:

h2

2T
≡ [M ]2[L]4[T ]−2

[M ][L]2[T ]−2
= [M ][L]2 (3.52)

3.5.1.2 Angular Velocity and Kinetic Energy Sizing

In order to have a reference point and obtain simulation results with realistic

physical values, the sizing of the angular velocity and rotational kinetic energy of a
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common spherical asteroid was undertaken with all data taken from [34] pages 39

and 116:

Assuming the asteroid of interest is perfectly spherical and of the most common

stony-irons type, the mid-range density of such asteroids is ρ = 5500 kg
m3 . Moreover,

the majority of NEAs are less than 100m in diameter and have rotation periods of

a few minutes. Assuming, for this study, that the asteroid had a rotation period of

5min and a radius r = 100m, the following angular velocity and rotational kinetic

energy values were derived:

� The norm of the angular velocity vector was ω0 = 2π
5∗60 = 0.02094rad.s−1

� The asteroid’s mass was m = ρ4
3
πr3 = 2.30e+ 10kg

� Its rotational kinetic energy was T = 1
2
Iω0

2 = 1
2
2
5
mr2ω0

2 = 20.21GJ

3.5.2 Size of Integration Steps

In this section, the simulation integration steps are sized to appropriately capture

the dynamics of the system [10].

In order to do so, the Nyquist Sampling theorem, which is usually applied in

signal processing, is used to provide guidelines for finding the most appropriate size

of the integration of step.

In [57] page 11, Shannon’s version of the Nyquist Sampling theorem states:

”THEOREM 1: If a function f(t) contains no frequencies higher than W cycles

per seconds, it is completely determined by giving its ordinates at a series of points

spaced 1/(2W ) seconds apart.”

As per the review of the robot and asteroid environment in section 2.2.5 and the

model of the physical interactions between the robot and the asteroid presented in

section 3.2.4.1, the fastest dynamic states are the angular velocity of the asteroid

and the deployment velocity of the robot at its surface. Moreover, both these states

and the perturbations and noise affecting them have a finite number of frequencies

and are of bounded bandwidth.

According to the Nyquist-Shannon theorem, the maximum sampling period is the
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duration of the fastest half cycle among all the system’s frequencies i.e. the smallest

period which can be defined as the sampling period Ts. Therefore, the sampling

period Ts was chosen to be equal to half the revolution period of the asteroid as its

angular velocity is a priori the fastest dynamic state of all.

Time units were then normalised by the sampling period Ts to ensure that the

iteration time interval was proportional to the Nyquist-Shannon sampling rate and

captured the dynamics of the system appropriately. Each time unit interval dt

was normalised to become a dimensionless time interval dτ = dt
TS

. It was found

experimentally that normalising a time interval dt = 0.1s to a dimensionless time

interval dτ = 0.1
TS

was suitable to simulate the robot-asteroid system.

For later results, the time will be displayed as seconds but these seconds are

normalised time units.

3.5.3 Reference Angular Velocity of a Torque-Free Rotating

Ellipsoid

As will be seen in ??, the engineering objectives for the robot require the explicit

knowledge of the angular velocity
−→
Ω or state of the rotating object when no external

moments are exerted on it. The purpose for it is to have its time-domain state prior

to any contact or interaction and to have a reference state trajectory to for the robot

controller to track.

An analytical solution for this angular velocity can be obtained by solving as set

of differential equations called the Euler equations with zero-moment. The deriva-

tion of these equations can be found in [64] pages 111-113.

Two cases have to be distinguished when solving the Euler equations.

3.5.3.1 Symmetric Bodies

The first is for symmetrical bodies i.e. when two moments of inertia are equal

for instance when Ix = Iy. The body is then in constant spin and can be subject

to precession and nutation. The solution can be found in [64] pages 113-116. This

solution has been normalised as per 3.5.1.1 for the purpose of this study.
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The normalisation implies that the angular velocity
−→
Ω =


ωx

ωy

ωz

 is a unit vector

with ωx
2 + ωy

2 + ωz
2 = 1 and |ωz| = n ≤ 1 with n constant.

Defining λ as:

λ = n
(Iz − Ix

Ix

)
(3.53)

The components of the angular velocity and their time derivatives are:

ω̇x = −λ
√

1− n2 sin(λt)

ω̇y = λ
√

1− n2 cos(λt)

ω̇z = 0

(3.54)

ωx =
√

1− n2 cos(λt)

ωy =
√

1− n2 sin(λt)

ωz = n

(3.55)

3.5.3.2 Asymmetric Bodies

The second case is for asymmetrical bodies i.e. when the moments of inertia are

unequal for instance when Ix < Iy < Iz. The body is then in a tumbling motion.

Although a partial solution can be found in the literature and in particular in [64]

pages 126-130, a complete solution could not be found. A complete and explicit

derivation was performed for this study and is to be read in appendix E. This

solution has been normalised as per 3.5.1.1 for the purpose of this study.

∀(t, k2) ∈ R × [0,+∞[, with moments of inertia Imin < Imid < Imax, magnitude
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of angular momentum h and rotational kinetic energy T :

ω̇mid = −N

√
h2 − 2TImin

Imid(Imid − Imin)
cn(Nt, k2)dn(Nt, k2)

ω̇max = −N

√
h2 − 2TImin

Imax(Ixmax − Imin)
sn(Nt, k2)dn(Nt, k2)

ω̇min = −Nk2
√

2TImax − h2
Imin(Imax − Imin)

sn(Nt, k2)cn(Nt, k2)

(3.56)

ωmid = −

√
h2 − 2TImin

Imid(Imid − Imin)
sn(Nt, k2)

ωmax =

√
h2 − 2TImin

Imax(Ixmax − Imin)
cn(Nt, k2)

ωmin =

√
2TImax − h2

Imin(Imax − Imin)
dn(Nt, k2)

(3.57)

where:

k =

√(Imax − Imid
Imid − Imin

)(h2 − 2TImin
2TImax − h2

)
(3.58)

N =

√
(Imid − Imin)(2TImax − h2)

ImaxImidImin
(3.59)

sn(x,m) is the sine amplitude elliptic function. cn(x,m) is the cosine amplitude

elliptic function. dn(x,m) is the Jacobi elliptic dn function.

3.5.4 Initial Condition

The initial condition refers to the rotational state of the object prior to deployment

of the robot and specifically to its angular velocity which will become a tracked

trajectory by the robot controller. For each object shape, there is one parameter

that will set the the initial angular velocity. The value of these parameters will be

chosen at the onset of each simulation.

� Sphere: in this case it is simply the normalised angular velocity ω0 = 1 about

the original Z body axis of the object.
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� Symmetric Ellipsoid: it is the constant parameter n with n = |ωz| ≤ 1.

� Asymmetric Ellipsoid: it is the parameter h2

2T
.

3.5.5 ODE First Order Integration

In order to propagate the state of the system, a simple first order ode integration

was used. In practice, for general non-linear system with state space representation

at instant t:

Ẋ = f(X, t) (3.60)

this took, over the given fixed sampling rate dt, the discrete programmatic form:

Xt+1 = Xt + dt ∗ f(Xt, t) (3.61)

3.5.6 Perturbations and Noise Modelling

The physical model presented in section 3.2 represents an idealised description of

the rotation state and interactions of the robot-asteroid system which neglects two

important sources of errors.

The first source of errors are the system parameters. These parameters are

specific, fixed or time-dependent quantities characterising the system’s properties

and whose evaluation is subject to measurement errors. In the case of model 3.23,

the most important model parameters are the various mass and moment of inertia

quantities which affect the rotational state of the system. The rotational state is

measured by the robot gyroscope and therefore the effect of these parameters errors

can be picked up by the gyroscope as a measurement bias. Moreover, in section

2.2.5, it was assumed that actuators and sensors noise could be aggregated in the

noise experienced by the robot gyroscope. In [33], the gyroscope’s error is described

as being the result of biases and random noise which can be modelled as a biased

white noise and include the model parameters errors as a bias.

The second source of errors are the assumptions made to derive the model. In the

case of model 3.23, the robot-asteroid system is assumed to be isolated. However,
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as per section 2.2.5, the system’s environment is perturbed. The perturbations

magnitude and timescale are such that over the time span of the mission these

perturbations can be considered as a coloured noise from the infrared spectrum.

In this section the models of the perturbations and sensor and actuator noises is

presented.

3.5.6.1 Gyroscope Noise Model

The gyroscope model used in this study was taken from the classic gyroscope

model found in [33]:

−→ω gyro = −→ω true +
−→
b +−→n (3.62)

where −→ω true is the true angular velocity,
−→
b is the gyroscope drift rate bias, driven

by the angular velocity random walk process and −→n is a white noise affecting the

measurements.

In the table below are found the magnitudes of the random walks instantaneous

standard deviations for a typical space grade gyroscope. These values were used

to simulate actuators and sensors noise and were taken from [33] for the rate and

angular random walks and from [9] for the drift rate bias.

Process Value Units

Angular Random Walk 3.35 · 10−8 rad · s−1
2

Rate Random Walk 8.08 · 10−13 rad · s−3
2

Drift Rate Bias 3.23 · 10−6 rad · s−1

Table 3.5: Bias and Noise Magnitudes

3.5.6.2 Modelling White Noise

Model The white noise was modelled as a Wiener Process, i.e. normalised and

instantaneous 0-mean normally distributed process uncorrelated with itself from one

instant to the next with each components of −→n :


ni ∼ N(0, σi)

nj ∼ N(0, σj)

nk ∼ N(0, σk)

.

As per [49], the frequency and magnitude of these random normally distributed

numbers are described by two parameters: their expected value µ and their stan-
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dard deviation σ. In this study, frequency and magnitude were prescribed through

the definition of the standard deviations only. The value of these instantaneous

standard deviations were taken from table 3.5 and normalised in time unit to use

the normalised integration time step dτ defined in section 3.5.2. In order to do so,

the instantaneous standard deviation of the angular random walk was divided by

T
1
2
s and the rate random walk by T

3
2
s , where Ts is the sampling rate period defined

in 3.5.2.

The main drawback of white noises is the fact that it is almost surely continuous

everywhere but cannot be derived. Instantaneous abrupt changes in direction and

abnormally large values can occur which is not realistic [49]. However, since any

linear combinations of normally distributed random variables remains a normally

distributed random variable [49] and since this white noise is propagated through

the measurements of the gyroscopes, by assuming that the system is completely

observable by a linear observer, which is the working hypothesis for the design of

the robot controller developed in 4.3.9, the white noise model can be solely applied

to the observer.

Normally Distributed Number Generation Pseudo-random normally dis-

tributed numbers were generated with the Lehmer’s algorithm in combination with

Box and Muller’s method. This approach use the property of the inversion of the

cumulative distribution function and gives reproducible results as the random val-

ues are given once and for all. For further details about the method, the reader is

referred to [49] pages 371-372, 375 and 378.

3.5.6.3 Radiation Perturbation Noise Model

As seen in section 2.2.5, the YORP torque provides a constant but small rotational

acceleration due to the infrared radiation from the Sun. For this feasibility study,

the value of this rotational acceleration was set as a constant whose value was taken

from [52] as the maximum value of all the coefficient presented in table 2 page 445:

α2 = 2 · 10−16rad · s−2. This rotational acceleration value was arbitrarily taken

so that the radiation perturbation had a realistic magnitude. Finally, in order to
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simulate the infrared noise, a 0-mean white noise was be added to the rotational

acceleration but with a limited bandwidth bounded at one standard deviation.

The model is as follows:

−→
MRadiation =


α2 + εi(t)

α2 + εj(t)

α2 + εk(t)

 (3.63)

where
−→
MRadiation is the moment created by the radiation perturbation and εi,j,k(t) ∼

N(0, σ). The standard deviation was arbitrarily chosen at σ = 10−17rad · s−2.

It is not realistic to expect the magnitude of the radiation perturbation moment

to have equal components. However, as tumbling asteroids have a dynamic axis of

spin, the model presented here is a coarse but good enough approximation for a

feasibility study.

3.6 Conclusion

In this chapter, a physical model of the interactions between the rotating object

and the SR robot deploying on its surface has been presented. It considers the

object and the robot as one rotating continuum with a rigid part, the object and a

moving deformable part, the robot with point mass modules. The three frames of

reference necessary for its derivation were presented and all the model’s parameters

normalised. The object was modelled as a uniformly distributed ellipsoid whose

initial angular velocity were the solutions of the Euler equations. Initial conditions

and landing sites were also sized. Finally errors and disturbances were modelled

both as coloured and biased white noises. In the next chapter, the model will be

used for deriving the robot’s modules low-level model-based controller.
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Robot Design and Control

In this chapter, the engineering application is defined along with all the necessary

assumptions. The goal of this chapter is the design a SR robot and specifically its

controller in order to simulate and evaluate the feasibility of the deployment of a

modular robotic structure at the surface of an uncooperative tumbling object in

space. This will encompass all the physical hypotheses, the precise definition of the

task, the engineering requirements and the design of the controller to be simulated.

4.1 Engineering Application: Definition Require-

ments and Assumptions

The engineering application for this PhD study is formally defined as the au-

tonomous construction and deployment of decentralised modular scaffolding struc-

tures around free-floating randomly tumbling objects in space. The study is nar-

rowed down to the simulation of a modular decentralised SR robot controller in

order to assess the possibility and feasibility of such constructions.

4.1.1 Robot Design and Assumed Properties

The SR robot is assumed to be made out of identical autonomous spherical mod-

ules capable of moving on top of one another while maintaining connection at all

times. This structure was chosen to enable the entire SR robot to deploy itself as
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continuous structures at the surface of the object while maintaining contact at all

time with this surface. To this end, the design assumptions are the following:

1. Each module possesses an autonomous controller capable of using the module’s

state, its direct neighbours’ and the object’s, to make decisions about what

actions to undertake given its state and its immediate neighbours’ and to

send commands to its actuators. States information can be transmitted and

received between modules.

2. The communication architecture is local, each module can communicate with

its direct neighbours. Information can be passed down a chain of modules.

3. Each module possesses the necessary actuators to move on the object’s surface,

on top of the other modules, help other module to move, anchor itself to the

surface and detach itself from the surface or other modules as the situation

requires. Moreover, each module possesses actuators mounted with encoders

to estimate the robot’s odometry like a simple mobile robot.

4. Each module possesses sensor capabilities to retrieve its rotational state, the

rotational state of the object and its linear velocity and acceleration at the

surface at any given time. To this end, it possesses a gyroscope measuring its

own absolute angular velocity and an accelerometer giving linear acceleration

data.

5. Each module possesses independent internal energy storage but can also share

its energy resource with other modules if required.

6. Each module is a sphere that can be considered as a point mass with respect

to the object the robot is deploying on.

And the operating assumptions are:

1. Each module goes one after the other and one by one over the chain laid by

preceding modules.

2. On the surface each module operates like a mobile robot.
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3. If a module is faulty, it can be detected, released and replaced in the limit of

number availability.

4. When a module reaches its destination, it anchors itself to the surface and

retains all levels of connectivity (attachment and communication) with the

preceding module.

In the spirit of this feasibility study, the above requirements were left very broad

and, although the general design is feasible, the current state of the art of the

hardware makes its actual realisation unrealistic for now. This is however good

enough for keeping the focus on the physics of the problem and the development of

an initial module controller and robot control algorithm.

The inclusion of a proper fault detection mechanism was avoided as it would

have introduced a level of complexity which would detract from the main objective

of this feasibility study. It was therefore left out of its scope and, although taken

into account in the design of the robot, it was assumed that the system was free

from faults and malfunction.

4.1.2 Task Description Goals and Objectives

The task under consideration begins after the SR robot’s landing and anchoring

on the surface of a free-floating randomly tumbling object. It consists of the robot

autonomous deployment from an initial lattice configuration to a chain configuration

coiling around the object and maintaining contact with its surface at all times. The

overall task goals are the following:

1. Deployment of the robot as a chain of modules circling half a revolution around

the surface of the object from the tip of its main rotational axis to the median

plane.

2. Stability maintenance and minimisation of the disturbance created by the

robot deployment.

3. Convergence of the object’s rotational state to a prescribed state.
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This translates into the following specific objectives:

1. Deployment of a nr-modules robot should result in a final chain configuration

with each module i anchored at position (θi, φi) = (i π
2(nr−1) , i

π
nr−1)i∈[0,nr−1] in

spherical coordinates with respect to the body frame [O′].

2. Stabilisation and disturbance minimisation via optimisation of a cost function.

3. Tracking a time-varying reference trajectory
−→
Xref which contains the object’s

rotation state objectives as well as the target anchoring positions for each

modules.

4.1.3 Stability Definition

The task defined in section 4.1.2 is underpinned by the solution to an optimisation,

tracking and stabilisation problem. Stability, in particular, has to be understood in

the perspective of the general handling of the object which, for instance, should be

maintained in a constant pointing direction during retrieval operations. Resistance

to degeneration into a tumbling state is therefore paramount as, as per [60], the

more an object spins, the more stable the direction to which its spinning axis points.

Hence, the deployment of the robot should leave the object’s angular rotating state

at least neutrally stable. Ideally, the robot deployment would render any tracked

reference object’s rotational state asymptotically stable and in particular pure spin.

This section will address the definition of stability which would guide the con-

struction of a suitable module controller to perform the task defined in section 4.1.2.

As mentioned, this revolves primarily around the object’s angular rotational state

and the classic Liapunov stability which can be used in the design of model-based

controllers.

Stability: This classic definitions of stability can be found in [68] page 7. There

are reproduced here for clarity:

Considering a general autonomous vector field (i.e. not time-dependent) ∀x ∈ Rn

ẋ = f(x) (4.1)
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Let x(t) be any solution of 4.1.

Liapunov Stability: x(t) is said to be stable (or Liapunov stable) if, given ε > 0

∃ δ(ε) > 0 such that, ∀ y(t) solution of 4.1 satisfying |x(t0) − y(t0)| < δ(ε) (where

|.| is a norm on Rn ), then ∀t > t0, t0 ∈ R |x(t)− y(t)| < ε.

Asymptotic Stability: x(t) is said to be asymptotically stable if it is Liapunov

stable and ∀ y(t) solution of 4.1, ∃ b > 0 constant such that, if |x(t0) − y(t0)| < b,

then limt→+∞ |x(t)− y(t)| = 0.

A solution which is not stable is said to be unstable.

The Liapunov definition of stability is the stability criterion chosen for this study.

In chapter 3, a physical model of the interaction between a rigid body and an object

moving on its surface was laid out. From this model, a model based controller for

the SR robot will be derived in section 4.2. From the linearisation of this model

and the optimisation quadratic cost function, the Liapunov stability will be checked.

But first the system under study and its plant model need to be defined along with

all its physical assumptions. This is the purpose of the section 4.1.5. In the next

section, the measures used to assess the SR robot performance are defined as these

were fed into the system’s plant modelling.

4.1.4 Measures for the Robot Task Performance

In order to assess whether the objectives listed in section 4.1.2 were met as well

as have empirical stability measures should stability be difficult to prove formally,

the following performance measures were further specified:

1. Achievement of task:

(a) Did a single module manage to go from point (θ, φ) = (0, 0) to point

(θ, φ) = (π
2
, π) on the surface of the ellipsoid following a continuous tra-

jectory: True or False

(b) Did the nr-module robot achieve full deployment with each module i

being laid continuously one after the other from point (θ, φ) = (0, 0) to
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its target anchoring point at (θi, φi) = (i π
2(nr−1) , i

π
nr−1)i∈[0,nr−1] on the

surface of the ellipsoid: True or False

2. Stability and controllability of the task:

(a) Measurement of the nutation angle ν = arctan
(√[IX ]2ω2

X+[IY ]2ω2
Y

|[IZ ]ωZ |

)
accord-

ing to [60] page 98. If ν increases, the rotational state of the object is

less stable.

(b) Measurement of the error vector −→ε t such that
−→
Ω(t) =

−→
Ωref (t) + −→ε t as

per chapter 3 section 3.4.5. −→ε t should ideally converge and stay as close

to
−→
0 as possible. Empirical measurements will include the phase space

orbits of the object’s rotational state. In particular, it will be examined

whether:

i. −→ε t is increasing, decreasing or periodic respectively indicating insta-

bility, asymptotic stability or neutral stability.

ii. The controlled system can converge to any reference state in par-

ticular whether the object can converge to a state of pure spin or

despin.

iii. The model parameters influence the stability and controllability and

if so in which proportion.

(c) Measurement of the rigid or body rotational kinetic energy: 1
2

−→
Ω1
t

T
[IObject]

−→
Ω1

t

to evaluate the state and stability of the object in conjunction with the

nutation angle. Energy dissipation combined with increased nutation an-

gle is indicative of nutation instability and of a state degenerating towards

rotation about the major axis [60].

3. Duration of the task:

(a) Comparison between the timescale of the controller and of the object’s

rotational dynamics. Is the controller timescale appropriate: True or

False

(b) Measurement of the controller timescale for each controller type to eval-

uate which is the fastest.
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(c) Measurement of the controller timescale against the model parameters to

evaluate their respective influence on this timescale

The next section will tackle all the modelling assumptions for the controller

design.

4.1.5 Low-Level Module Controller Derivation Hypotheses

The low-level module controller was based on an explicit plant model derived

from the discrete model 3.24 in chapter 3. This section lists the various hypotheses

behind this derivation and discusses some of its limitations.

4.1.5.1 System Definition

The system that the controller’s plant is describing is defined as the combination

of a free-floating object and one or two modular SR robots of the type designed in

this chapter.

4.1.5.2 Physical Hypotheses

The physical hypotheses underpinning the plant model derivation are:

1. All frames of reference which are used are defined in section 3.2.3.

2. The system is isolated and only in pure rotation with respect to the inertial

frame of reference.

3. The system is subject to disturbances defined in chapter 3 section 3.5.6 as

gyroscope noise and radiation perturbations. The gyroscope is disturbed by a

drift bias and random walk as per model (3.62) and the radiation perturbations

produce an extra moment as per model (3.63). These disturbances are realistic

in their timescale and magnitude.

4. Friction and stress forces and moments arising from the relative motion of each

robot module with respect to the object are assumed to be overcomable and

each module is able to move freely at the surface of the object.
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5. Each SR robot module is in contact with the object surface at all times creating

an holonomic liaison.

4.1.5.3 Hypotheses for the Object

The specific hypotheses concerning the object are the following:

1. The object is rigid. As per [67], asteroids with a diameter over 100 meters

can be conglomerations of smaller pieces loosely kept together by gravitation.

The rigidity hypothesis is only valid below a limit rotation rate which is not

considered in this study.

2. The object’s mass is uniformly distributed. As per [34], this is unrealistic but

allows for the centre of mass of the object to remain at the same location in

space as the origins of the frames of reference. This simplifies the calcula-

tions and computations required without loss of generality with respect to the

capture of the dynamics of the system.

3. The object is assumed to be an ellipsoid. As per [34], in many cases this could

be considered as a good approximation of the general aspect of the object’s

shape. The main advantages of such a model are:

(a) The explicit calculation of the holonomic liaison between the object and

each robot module.

(b) The object is symmetric with respect to the centre of its volume which

again allows for the centre of mass of the object to remain at the same

location in space as the origins of the frames of reference.

In general however, the surface of an asteroid is uneven and likely to be de-

formable. Nonetheless, as the moments of inertia are the only parameters

required to characterise the object’s mass distribution, the SR robot could

deploy in such a way as to form an ellipsoidal structure around the object and

still fulfil the ellipsoidal hypothesis without changing the validity of the model.
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4.1.5.4 Landing and Set Up Prior to Deployment

For the robot landing and set up prior to deployment, it was assumed that:

1. Two separate and identical SR robots land synchronously at symmetric loca-

tion with respect to the object’s centre of mass (the system is now composed

of the object and two robots). This hypothesis is extremely difficult to fulfil

in reality and was made only to preserve the symmetry of the overall system,

allowing for the centre of mass of the object to remain at the same location

in space as the origins of the frames of reference while avoiding the loss of

generality with respect to the capture of the dynamics of the system, i.e. all

of the interactions between the object and the robots could be modelled from

the point of view of one robot only.

2. The landings occur at both tips of the object Z axis. As per 3.4.6.3, the

landing site should be chosen close to the current rotation axis but can be

chosen anywhere with negligible disturbing effects on the rotational state of the

object. In this study, the Z axis is the reference rotation axis and the direction

of the robot deployment was chosen to start from the tip of the Z axis all the

way to the plane containing the object’s centre of mass. The initial conditions

of the simulations were chosen to assess any possible initial condition and

therefore these initial conditions reflect and contain any disturbing effect from

landing.

4.1.5.5 Deployment Strategy

The deployment strategy was designed on two principles:

1. The prescription of a final configuration for the robot taking the form of a

chain configuration starting at the tip of the Z axis, coiling around the Z axis

and ending at the plane containing the object’s centre of mass. This general

requirement being achieved thanks to:

2. A decentralised optimisation based on a cost function: each module moving in

turns and one after the other, first following previous modules’ paths and then
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tracking a reference trajectory on the surface of the object to anchor itself at

its given target location.

4.1.5.6 Reference Trajectories

A reference trajectory for the system defined in section 4.1.5.1 is a desired final

state of the system. It corresponds to a deployed robot rigidly attached to the

object and a system in torque-free rotational motion. This will be formally defined

in section 4.2.4 with the model states. The system final rotational motion state will

be described by the solutions of the Euler equations which are available in sections

3.5.3.1 and 3.5.3.2.

4.1.5.7 Model Parameters

All model parameters were normalised as per section 3.5.1.1 in chapter 3.

4.1.5.8 Deployment Illustrations

In figures 4.1 and 4.2 below are two illustrations of the system in operation. In

figure 4.1, the two robots have landed at the tip of the Z axis and are ready to be

deployed. In figure 4.2 the two robots have finished their deployments and are coiled

around the object about the Z axis.
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Figure 4.1: Robots at Landing Sites (the Two Tips of the Spin Axis) in Lattice
Form.
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Figure 4.2: Symmetrical Deployment of the Two Robots from Both Tips of the Spin
Axis.
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4.2 Low-Level Module Controller’s Plant State

Space Modelling

In this section, model 3.24 is rewritten as a state space model for the controller

design. nr is defined as the number of robots modules which are identified by their

index number i. The choice of commands as angular accelerations is justified by the

fact that on the surface each module can be viewed as mobile robot whose ground

speed and acceleration can be translated into angular velocity and acceleration given

the dimension and shape of the ellipsoidal object. The frame of reference of choice

is the body frame rigidly attached to the object which uses the object’s principal

axes as frame axes. In this frame, all vectors are expressed in spherical coordinates.

4.2.1 State Definition

The state
−→
X is defined as:

−→
X =


−→
Ω

−→
Θ

−̇→
Θ

 (4.2)

where:

1.
−→
Ω is the rigid angular velocity of the model which is also the angular velocity

of the object.

2.
−→
Θ groups the spherical coordinates

−→
Θi =

θi
φi

 in body frame of all the robot’s

modules:

−→
Θ =



θ1

φ1

...

θnr

φnr


(4.3)

3.
−̇→
Θ groups the non-rigid, relative angular velocities

−̇→
Θi =

θ̇i
φ̇i

 of all the robot’s
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modules:

−̇→
Θ =



θ̇1

φ̇1

...

θ̇nr

φ̇nr


(4.4)

4.2.2 Relative Angular Velocity Definition

The non-rigid or individual modules angular velocities and accelerations relative

to the object are:

1.
−→
Ψi =


− sin(φi)θ̇i

cos(φi)θ̇i

φ̇i

 the relative angular velocity of module i.

2.
−̇→
Ψi =


− sin(φi)θ̈i − cos(φi)φ̇iθ̇i

cos(φi)θ̈i − sin(φi)φ̇iθ̇i

φ̈i

 relative angular acceleration of module i.

4.2.3 Control Commands Definition

The control command vector −→u which groups all the robot’s modules control

commands −→u i =
−̈→
Θi =

θ̈i
φ̈i


i∈[0,nr]

is:

−→u =
−̈→
Θ =



θ̈1

φ̈1

...

¨θnr

φ̈nr


(4.5)
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4.2.4 Reference State Trajectory and Reference Control Com-

mand

In this section the reference trajectory and corresponding control command is

further defined in relation to the low-level controller’s objectives.

The reference trajectory corresponds to the object-robot system in its final state,

i.e. when it is in a rigid torque-free rotation with all the robot modules deployed

and attached rigidly to the surface of the object at their respective target location.

Let
−→
Xref =


−→
Ωref

−→
Θref

−̇→
Θref

 be the reference trajectory at all time (∀ t ≥ 0), then:

1.
−→
Ωref follows the Euler torque-free rigid rotation equation where [In] is the

final normalised moment of inertia matrix of the whole object-robot system:

[In] ·
−̇→
Ωref + (

−→
Ωref ∧ [In] ·

−→
Ωref ) =

−→
0 (4.6)

2.
−→
Θref represents all the target anchoring locations for each of the robot’s mod-

ules, ∀ t ≥ 0:

−→
Θref =



π
2(nr−1)

π
nr−1

...

π
2

π


2nr×1

(4.7)

3.
−̇→
Θref represents all the modules’ relative velocities which are nil in the final

state, ∀ t ≥ 0:

−̇→
Θref =

−→
0 2nr×1 (4.8)

4. −→u ref represents all the module’s relative acceleration or control command

which are nil in the final state, as per equation 4.13, ∀ t ≥ 0:

−→u ref =
−→
0 2nr×1 (4.9)
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4.2.5 Nonlinear State Space Model

In this section, a nonlinear state space plant model for the module’s controller

will be derived from the discrete model (3.24). States will be shifted by a reference

trajectory as defined in section 4.2.4 so as to obtain a non linear state space plant

model centred at the origin (0, 0) while making this origin state a time-invariant

equilibrium.

Since [In] is the normalised moment of inertia over the entire object and robot

system, it is always invertible. This allows the normalised model (3.24) to be put

in the following form:

−̇→
Ω = f(

−→
Ω ,
−→
Θ,
−̇→
Θ,
−̈→
Θ) (4.10)

with

f(
−→
Ω ,
−→
Θ,
−̇→
Θ,
−̈→
Θ) = −[In]−1 · (

−→
Ω ∧ [In] ·

−→
Ω)

− [In]−1 ·
nr∑
i=1

[
2
[
(
−̇→
x′′i0 ·
−→x i)[1]−

−̇→
x′′i0 ⊗

−→x i

]
·
−→
Ω

+

[[
(−→x i · −→x i)[1]− (−→x i ⊗−→x i)

]
·
−̇→
Ψi

+
[
2(−→x i · −̇→x i)[1]− (−̇→x i ⊗−→x i)− (−→x i ⊗ −̇→x i)

]
·
−→
Ψi

]
+
[
(−→x i ⊗

−̇→
x′′i0)− (

−̇→
x′′i0 ⊗

−→x i)
]
·
−→
Ψi

+
[
(−→x i ⊗−→x i) ∧

−→
Ψi + ((−→x i ⊗−→x i) ∧

−→
Ψi)

T
]
·
−→
Ω

+ (−→x i ∧
−̈→
x′′i0)

]

(4.11)

Leading to a first state space model:


−̇→
Ω

−̇→
Θ

−̈→
Θ

 = g(
−→
Ω ,
−→
Θ,
−̇→
Θ,−→u ) =


f(
−→
Ω ,
−→
Θ,
−̇→
Θ,
−̈→
Θ)

−̇→
Θ

−→u

 (4.12)

which is of a non-linear first order model of the form:

−̇→
X = g(

−→
X,−→u ) (4.13)
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Let
−→
Xref =


−→
Ωref

−→
Θref

−̇→
Θref

 be an admissible reference trajectory and−→u ref its associated

admissible reference command.

Without changing the description of the dynamics of the system, the model

(4.12)/(4.13) can be shifted by the value of an admissible reference trajectory. This

leads to a second formulation of the state space model as:

h(
−→
X,−→u ) = g(

−→
X,−→u )− g(

−→
Xref ,

−→u ref ) (4.14)

Immediately, h(
−→
Xref ,

−→u ref ) =
−→
0 . h has an equilibrium state at (

−→
Xref ,

−→u ref ).

This equilibrium state can be further shifted at the origin of h by introducing the

variable change
−→
Z =

−→
X −

−→
Xref and −→uZ = −→u −−→u ref .

This lead to the final definition of the state space model:

−̇→
Z = h(

−→
Z ,−→uZ) = g(

−→
Z +

−→
Xref ,

−→uZ +−→u ref )− g(
−→
Xref ,

−→u ref ) (4.15)

−̇→
Z = h(

−→
Z ,−→uZ) has a time-invariant equilibrium at (

−→
0 (2nr+3)×1,

−→
0 2nr×1).

4.2.6 Linear State Space Model

In this section, the model (4.15) is linearised both in the perspective of an analysis

of the stability of the system and of a derivation of a linear control law.

Assuming a small deviation from the reference trajectory, h in model (4.15) can

be linearised about its equilibrium at (
−→
0 (2nr+3)×1,

−→
0 2nr×1) which gives the linearised

system for h as follows:

−̇→
Z = [A](t) ·

−→
Z + [B](t) · −→uZ (4.16)

With

[A](t) =

[
∂h

∂
−→
Z

]
(0,0) =

[
∂g

∂
−→
X

]
(
−→
Xref ,

−→u ref ) (4.17)
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[B](t) =

[
∂h

∂−→uZ

]
(0,0) =

[
∂g

∂−→u

]
(
−→
Xref ,

−→u ref ) (4.18)

where

[
∂h

∂
−→
Z

]
is the time-varying Jacobian of h with respect to the state variables,[

∂h
∂−→uZ

]
the time-varying Jacobian of h with respect to the manipulated variables,[

∂g

∂
−→
X

]
is the time-varying Jacobian matrix of g with respect to the state variables

and

[
∂g
∂−→u

]
is the time-varying Jacobian matrix of g with respect to the manipulated

variables.

The derivation of the Jacobian of g, which is used both by the linear system

(4.16) and the NMPC optimisation process, can be found in appendix B.

4.2.7 Explicit Linear State Space Model

In this section, the explicit expression of the matrices [A](t) and [B](t) of model

4.16 will be given and will be used for the stability and controllability analysis of

the one module only case in section 4.3.8. In the rest of the section, the components

of the reference angular velocity
−→
Ωref are defined as ωx, ωy and ωz.
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4.2.7.1 Single Module Case

In the single module case, the state has a dimension of 7 × 1 and the module

reaches the position (π
2
, π). In this case, the matrix [A](t) is equal to:

[A](t) =

0 Iy−Iz
Ix

ωz
Iy−Iz
Ix

ωy a2 Ix+Iz−Iy
Ix(Iz+a2)

ωxωy a2 Iz−Ix−Iy
Ix(Iy+a2)

ωxωz 0 0

Iz+a2−Ix
Iy+a2

ωz 0 Iz+a2−Ix
Iy+a2

ωx a2 ω
2
z−ω2

x

Iy+a2
a2 Ix+Iy−Iz

Ix(Iy+a2)
ωyωz 0 a2ωx

Iy+a2

Ix−(Iy+a2)
Iz+a2

ωy
Ix−(Iy+a2)
Iz+a2

ωx 0 a2 Iy−Iz−Ix
Ix(Iz+a2)

ωyωz a2
ω2
x−ω2

y

Iz+a2
a2ωx
Iz+a2

0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0


(4.19)

and the matrix [B](t) is equal to:

[B] =



0 0

a2

Iy+a2
0

0 −a2
Iz+a2

0 0

0 0

1 0

0 1



(4.20)

Both [A](t) and [B] are bounded matrices with [B] time-invariant.

In the case of pure spin, the torque-free reference angular velocity has a constant
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value ωz about Z and [A](t) becomes time-invariant:

[A] =



0 Iy−Iz
Ix

ωz 0 0 0 0 0

Iz+a2−Ix
Iy+a2

ωz 0 0 a2 ω2
z

Iy+a2
0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0



(4.21)

4.2.7.2 Multiple Modules Case

Again in the multiple module case, as per appendix B, all entries of all Jacobians

are bounded. Hence, both [A](t) and [B] are bounded matrices with [B] time-

invariant. Again, [A](t) is time-invariant when the torque-free reference angular

velocity is a pure spin.

4.3 Module Controller Design

In this section, the low-level controller of the individual robot module is designed.

The approach taken focused on the minimisation of its complexity. The control

problem can be best described as a combination of a tracking and set point control

problems. Indeed, the objective for each module was to converge to a target position

on the surface of the object in a timely fashion with respect to the timescale of the

objects dynamics while ensuring that the object’s angular velocity tracked a desired

angular velocity. As per section 4.2, the state was defined so that the controller

could be formulated as a regulator which is equivalent to tracking one reference

trajectory. However, this tracking trajectory contains physically coupled objectives

since by reaching its target surface location, the module necessarily changes the

rotational state of the object.

From the formulation of the state space model of the individual module plant in

section 4.2 and the physical model (3.24) of the interactions between the robot and
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the object, different control strategies could be pursued. The analysis of the stability

and controllability of the robot-object system defined in section 4.1.5.1 prompted

the choice of a model predictive control strategy over other strategies such as using

a LQR regulator.

Before performing this stability and controllability analysis, preliminary hy-

potheses will be established regarding the feasible and admissible trajectory sets

in order to reduce the constraints placed on the controller for the calculations of

the control commands. The controller will then be formally analysed and take two

forms: a linear model predictive controller and a nonlinear model predictive con-

troller, whose simulation and comparison is the subject of chapter 5.

4.3.1 Unicity of Each Trajectory

As per Cauchy-Lipschitz theorem found in [44] page 6 for each initial value
−→
X0

and each initial time t0 ∈ R and each locally Lebesgue integrable control function

−→u : R2nr → R2nr there is a unique trajectory
−→
X(t) with

−→
X(t0) ∀t ∈ R.

The system 4.14 is continuous and differentiable hence it is Lipschitz and all

trajectories are unique.

4.3.2 Admissibility

Admissibility is a property characterising the system trajectories which are possi-

ble according to a given set of constraints. It could represent the set of all physically

possible trajectories but not necessarily and other constraints could also apply.

The formal definition of Admissibility can be found in [26] page 48:

Consider a control system 4.14 and the state and control constraint sets X ⊆ X

and U(x) ⊆ U with X the set of all possible states and U the set of all possible

control commands.

1. The states x ∈ X are called admissible states and the control values u ∈ U(x)

are called admissible control values for x. The elements of the set Y = [(x, u) ∈

X × U |x ∈ X, u ∈ U(x)] are called admissible pairs.
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2. For N ∈ N and an initial value x0 ∈ X, a control sequence u ∈ UN and

the corresponding trajectory xu(k, x0) are admissible for x0 up to time N , if

(xu(k, x0), u(k)) ∈ Y ∀k = 0, ..., N − 1 and xu(N, x0) ∈ X holds. The set of

admissible control sequences for x0 up to time N is denoted by UN(x0).

3. A control sequence u ∈ U∞ and the corresponding trajectory xu(k, x0) are

called admissible for x0 if they are admissible for x0 up to every time N ∈ N.

The set of admissible control sequences for x0 is denoted by U∞(x0).

4. A (possibly time varying) feedback law µ : N0×X→ U is called admissible if

µ(n, x) ∈ U1(x) holds for all x ∈ X and all n ∈ N0.

This PhD study is a feasibility study. Therefore, it was decided that the con-

troller was not to be restrained in its search for a solution how unrealistic this

solution may come out to be. This meant that there were a priori no mathematical

constraints on the state and control values, i.e. not even a restraint to what is physi-

cally possible. In other words, despite the fact that the system has a constant energy

level, all angular velocities and acceleration are admissible and any energy expen-

diture is allowed as well as instant power levels. Hence, the sets of constraints are

X = X and U(x) = U . Defining nr as the number of robot modules, the admissible

sets are:

X = R3 × ([0, π]× [0, 2π[×R2)nr (4.22)

U = R2nr (4.23)

This a priori definition of the admissible sets will be narrowed down later when

designing a controller for the particular application problem under study. Two phys-

ical constraints will then be taken into account to design the controller appropriately

and realistically:

1. The angular velocity is constrained by Newton’s second law of motion and

described by model (3.23) in chapter 3. This will be an implicit constraint

which does not change the definition of X the admissible set.
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2. The amount of energy in the system is bounded: there exists a finite amount

of energy E for which ∀ t ≥ 0
∫ +∞
0
−→u (t)T [Λ−→u ]−→u (t)dt ≤ E where −→u (t) are the

control commands over the infinite time-horizon and [Λ−→u ] is a positive semi-

definite diagonal matrix with diagonal entries of equal value. This defines a

new control commands admissible set:

UE =

{
u ∈ U

∣∣∣∣∣
∫ +∞

0

−→u (t)T [Λ−→u ]−→u (t)dt ≤ E

}
(4.24)

4.3.3 Viability

Viability characterises whether or not a current system state to which is applied

a set of admissible commands will lead to a new admissible state.

Viability is defined in [26] page 49 as an assumption with an important implica-

tion for feasibility:

∀x ∈ X ∃u ∈ U(x) such that f(x, u) ∈ X (4.25)

Given the no constraints hypothesis made on admissibility in section 4.3.2, vi-

ability is guaranteed for system (4.14) since ∀x ∈ X and ∀u ∈ U , f(x, u) ∈ X.

Restraining U to UE has no influence on the size of X which implies that system

(4.12) is still viable in this case:

∀x ∈ X ∃u ∈ UE(x) such that f(x, u) ∈ X (4.26)

4.3.4 Feasibility

Feasibility characterises the achievability of finding a solution to the derivation of

admissible control commands.

Feasibility is defined in [26] page 49:

A control problem is feasible if for an initial state value x0, the set over which

the control commands are calculated is not empty i.e. over an infinite time horizon

U∞(x0) 6= ∅.
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As per [26] page 49, viability implies feasibility, the control problem for this

study is therefore feasible over the entire sets R2nr and UE. In particular, the later

defined MPC and NMPC optimisations are both feasible.

4.3.5 Stabilisability Controllability and Choice of Control

Method

In this section, the stabilisability and controllability of model (4.15) will be ex-

amined through its linearisation and for the particular case when the object is in

pure spin which is the ideal final state the object and system should be in at the

end of deployment. In this case, the linearisation is time-invariant. The limitations

encountered lead to the choice of model predictive control as a control method for

this study.

4.3.5.1 Stability of the Nonlinear Model via Linearisation

In this section, it is assumed that the object is initially in pure spin. As per

section 4.2.7.1, this implies that the linearised system is time-invariant.

The stability study of the nonlinear model (4.15) was approach via the stability

study of its linearisation (4.16) using the following results:

1. ”If the linearisation of nonlinear system is time-invariant then having all eigen-

values in the open left-half plane guarantees local uniform asymptotic stability

of the origin of the nonlinear system.”( [50] chapter 5 pages 216-217).

2. ”If at least one of the eigenvalues of the linearisation lies in the open right-half

plane then the origin is unstable.”( [50] chapter 5 pages 216-217).

3. ”When any one of the eigenvalues has zero real part, stability cannot be de-

termined by linearisation.”( [50] chapter 7 pages 288)
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The characteristic polynomial of matrix [A] (formula (4.21)) is:

P (λ) = −λ5 ·
[
(Ix · a2 + Ix · Iy) · λ2

+ω2
z · (Iz2 − Iy · a2 + Iz · a2

+Ix · Iy − Ix · Iz − Iy · Iz)
] (4.27)

By virtue of the principle of the excluded third, two possibilities:

1. ω2
z = 0, the reference trajectory corresponds to a system at rest and the control

objective is de-spinning the object. In this case, [A] has seven nil eigenvalues

and regardless of the shape of the object. No conclusion can be drawn on the

stability of the equilibrium at the origin of system (4.15).

2. ω2
z > 0, the reference trajectory corresponds to a system in a state of pure spin

and the control objective is to bring the object to a state of pure spin. In this

case, [A] has five nil eigenvalues and since (Ix · a2 + Ix · Iy) > 0, the values of

the two remaining eigenvalues depend on the sign of Iz2−Iy ·a2 +Iz ·a2 +Ix ·

Iy − Ix · Iz − Iy · Iz. Expressing the moments of inertia with the normalised

semi-axes length of the ellipsoid with c = 1 and defining m = 0.2MR with

MR the mass ratio of the object to the module, further calculations show that

the values of the two remaining eigenvalues of [A] depend on the sign of:

[a2(1 +m)−m](b2 − 1) (4.28)

Again two possibilities here:

(a) If [a2(1 +m)−m](b2− 1) ≥ 0 then all eigenvalues of [A] have a zero real

part and no conclusion can be drawn on the stability of the equilibrium

at the origin of system (4.15).

(b) If [a2(1 + m) −m](b2 − 1) < 0 then one eigenvalue of [A] has a strictly

positive real part, one has a strictly negative real part and the equilibrium

of system (4.15) is unstable.
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The stability study of the linearisation of system (4.15) can only predict those

cases which are unstable. For all the other cases, no conclusion can be drawn on the

stability of the equilibrium without a higher order analysis. However, the dimension

of the centre space equalling that of the state space, no use can be made of a

centre manifolds approach based on the three centre manifolds theorems which can

be found in [50] chapter 7 page 310-311. Therefore, only a higher order stability

analysis without the possibility of reducing the dimension of the problem can be

pursued. This would entail the direct application of Lyapunov basic theorems (to

be found in [50] chapter 5) or the building of a Lyapunov function. Both of these

approaches require the derivation of the second order dynamics in the form of an

array of seven 7 × 7 Hessian matrices in a third-order tensor. This was left for

future work. In the absence of a criteria to establish whether or not the nonlinear

equilibrium is stable, this equilibrium will be referred from now on as potentially

stable.

Table 4.1 below summarises the conclusions about the system stability for each

type of object’s shape. The mention ”N/A” corresponds to those cases which are

not applicable to the ellipsoid shape in question because of the values of a and b.

As a reminder about the ellipsoid shapes:

� The oblate case corresponds to (a = b) > (c = 1).

� The prolate case corresponds to (a = b) < (c = 1).

� The sphere case corresponds to a = b = (c = 1).

� The asymmetric case corresponds to a 6= b 6= (c = 1).

a b Oblate Ellipsoid Prolate Ellipsoid Asymmetric Ellipsoid
a >

√
m
m+1

b > 1 Potentially Stable N/A Potentially Stable

a >
√

m
m+1

b < 1 N/A Unstable Unstable

a <
√

m
m+1

b > 1 N/A N/A Unstable

a <
√

m
m+1

b < 1 N/A Potentially Stable Potentially Stable

Table 4.1: Influence of the Object’s Shape on the Stability of the System’s Spin

Although the potentially stable equilibrium could prove to be unstable after

further analysis, the limit condition (4.28) may parametrise a potential bifurcation
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between a stable and unstable behaviour for the equilibrium. Hence, the behaviour

of this limit is worth exploring.

Figures 4.3, 4.4 and 4.5 below show the evolution of the limit condition (4.28)

with respect to the mass ratio between the object and the module, highlighting

the relationship between spin stability of the object’s shape. The limit condition is

strictly increasing with the mass ratio. It reaches the value 0.9 for a mass ratio of

about 20 and tends to 1 at infinity.
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Figure 4.3: Stability Limit vs. Mass Ratio (Small MR).
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Figure 4.4: Stability Limit vs. Mass Ratio (Medium MR).
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Figure 4.5: Stability Limit vs. Mass Ratio (Large MR).
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The conclusions which can be drawn for system (4.15) are the following:

1. For all object shape, a state of rotational rest (despin) is always potentially

stable.

2. When the object is an oblate ellipsoid or a sphere a state of pure spin is always

potentially stable.

3. When the object is a prolate ellipsoid, a state of pure spin is unstable when

a(= b) ∈]
√

m
m+1

, 1[. This condition corresponds to prolate shapes close to a

spherical shape. These prolate shapes for which the spin is unstable get closer

to a spherical shape when the mass ratio between the object and the module

increases (see figures 4.3, 4.4 and 4.5 above). Spheres are the limit shapes for

which the system spin is potentially stable as per point number 1 above.

4. When the object is asymmetric, the shapes of the object for which the state

of pure spin is unstable tend to a limit shape when the mass ratio between

the object and the module increases. This limit shape corresponds to cases

where the object’s spin axis (in this case the Z axis) is the unstable medium

principal axis i.e. (a < c < b) or (b < c ≤ a).

As a general conclusion, it seems a better option a priori to aim for a final despun

state rather than a final state of pure spin since for the despun state the shape of

the object bears no influence on its potential stability. In the next section, the

controllability through linearisation will be examined.
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4.3.5.2 Controllability of the Linear Model

In this section, the controllability and stabilisability by a linear control law of

system (4.15) is examined through its linearisation. The general definition of con-

trollability can be found in [6] page 45:

A plant is controllable for a pair of state (
−→
X0,
−→
X) if there exists a control which

takes the plant from state
−→
X0 to state

−→
X in a finite time interval. A plant is then

fully controllable if it is controllable for every possible pair of states (
−→
X0,
−→
X).

The indirect method of Lyapunov provides a mean to stabilise a nonlinear model

with a linear feedback control obtained via its linearisation. It is found in [50] chapter

6 pages 236-237:

1. For a nonlinear system with an equilibrium at the origin, if the linearised

time invariant system is completely controllable then there exits a matrix [K]

such that the feedback control law [K]x locally stabilises the nonlinear control

system.

2. Even when the linearisation is time varying, then stabilisation of the resulting

time varying linear system stabilises the nonlinear time varying system.

The key to finding a stabilising feedback linear control law for system (4.15) is

the complete controllability of its linearisation (4.16). As was established in section

4.3.5, for a system in a pure state of spin its linearisation is time-invariant. In

this case the linearised model (4.16) is completely controllable if matrices [A] and

[B] are completely controllable i.e. when the rank of the controllability matrix

[B,AB, ...,An−1B] is equal to the size of the state n with n = 7 in this study [50].

Assuming that the system’s trajectory is close to a pure spin reference trajectory,

the rank of the controllability matrix was calculated for ten ellipsoidal shapes and

for a set of normalised dimensionless angular velocities as well as for a set of mass

ratios. The dimensionless angular velocity in this context can be understood as a

measure of the amount of normalised dimensionless kinetic energy relative to the

inertia of the object and therefore as a measure of stability of the system, since for

a spinning object, the faster the spin the more stable the object is [60].
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The parameters sets for the ellipsoids dimensions, the dimensionless spin rate

and mass ratios were respectively:

� Ellipsoids’ Normalised Dimensions:


a

b

c

 =


1 1

2
1
10

8
10

10 10
8

2 1
10

1
3

8
10

1 1
2

1
10

8
10

10 10
8

2 8
10

1
2

9
10

1 1 1 1 1 1 1 1 1 1


� ω0 ∈ {0, 1, 10, 100, 1000, 10000, 100000}

� MR ∈ {10, 100, 1000, 10000, 100000}

The results for each of the ten ellipsoid shapes are displayed below in ten tables.

ω0 / MassRatio 10 100 1000 10000 100000
0 4 4 4 4 4
1 5 5 5 5 5
10 5 5 5 5 5
100 5 5 5 5 5
1000 5 5 5 5 5
10000 5 5 5 5 5
100000 5 5 5 5 5

Table 4.2: Rank of the Controllability Matrix for the Sphere

For spheres, the controllability matrix always has a rank of 5 unless the system

does not rotate in which case its rank is equal to 4. The linear system (4.16) is not

controllable and no conclusion can be drawn as to the possibility of stabilising the

system (4.15) with a time-invariant linear control law. Neither the mass ratio nor the

dimensionless angular velocity bears any influence on the rank of the controllability

matrix.

ω0 / MassRatio 10 100 1000 10000 100000
0 4 4 4 4 4
1 6 6 6 6 6
10 6 6 6 6 6
100 6 6 6 6 6
1000 2 2 6 6 6
10000 2 2 2 2 2
100000 2 2 2 2 2

Table 4.3: Rank of the Controllability Matrix for the Ellipsoid a=1
2

b=1
2

c=1
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For the prolate ellipsoid (1
2
, 1
2
, 1), the controllability matrix has a rank of 6 for

dimensionless angular velocity up to a 1000 and 2 for dimensionless angular velocity

of 10000 or more. If the system does not rotate the rank is equal to 4. The linear

system (4.16) is not controllable and no conclusion can be drawn as to the possibility

of stabilising the system (4.15) with a time-invariant linear control law. The rank of

the controllability matrix does not depend on the mass ratio but on the dimensionless

angular velocity except for the limit cases when the angular velocity is equal to 1000

and the mass ratio below 100. This later situation is to be contrasted with the two

other prolate ellipsoids where the mass ratio bears strictly no influence on the rank

of the controllability matrix.

ω0 / MassRatio 10 100 1000 10000 100000
0 4 4 4 4 4
1 6 6 6 6 6
10 6 6 6 6 6
100 6 6 6 6 6
1000 6 6 6 6 6
10000 2 2 2 2 2
100000 2 2 2 2 2

Table 4.4: Rank of the Controllability Matrix for the Ellipsoid a= 1
10

b= 1
10

c=1

For the prolate ellipsoid ( 1
10
, 1
10
, 1), the controllability matrix has a rank of 6

for dimensionless angular velocity up to a 1000 and 2 for dimensionless angular

velocity of 10000 or more. If the system does not rotate the rank is equal to 4. The

linear system (4.16) is not controllable and no conclusion can be drawn as to the

possibility of stabilising the system (4.15) with a time-invariant linear control law.

The rank of the controllability matrix does not depend on the mass ratio but on the

dimensionless angular velocity.
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ω0 / MassRatio 10 100 1000 10000 100000
0 4 4 4 4 4
1 6 6 6 6 6
10 6 6 6 6 6
100 6 6 6 6 6
1000 6 6 6 6 6
10000 2 2 2 2 2
100000 2 2 2 2 2

Table 4.5: Rank of the Controllability Matrix for the Ellipsoid a= 8
10

b= 8
10

c=1

For the prolate ellipsoid ( 8
10
, 8
10
, 1), the controllability matrix has a rank of 6

for dimensionless angular velocity up to a 1000 and 2 for dimensionless angular

velocity of 10000 or more. If the system does not rotate the rank is equal to 4. The

linear system (4.16) is not controllable and no conclusion can be drawn as to the

possibility of stabilising the system (4.15) with a time-invariant linear control law.

The rank of the controllability matrix does not depend on the mass ratio but on the

dimensionless angular velocity.

ω0 / MassRatio 10 100 1000 10000 100000
0 4 4 4 4 4
1 6 6 6 6 6
10 6 6 6 6 6
100 6 6 6 6 6
1000 2 2 6 6 6
10000 2 2 2 2 2
100000 2 2 2 2 2

Table 4.6: Rank of the Controllability Matrix for the Ellipsoid a=10 b=10 c=1

For the oblate ellipsoid (10, 10, 1), the controllability matrix has a rank of 6 for

dimensionless angular velocity up to a 1000 and 2 for dimensionless angular velocity

of 10000 or more. The shift from rank 6 to rank 2 occurs when the angular velocity

is equal to 1000 and the mass ratio below 100. If the system does not rotate the

rank is equal to 4. The linear system (4.16) is not controllable and no conclusion can

be drawn as to the possibility of stabilising the system (4.15) with a time-invariant

linear control law. The rank of the controllability matrix depends mostly on the

dimensionless angular velocity and on the mass ratio near the rank shift.
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ω0 / MassRatio 10 100 1000 10000 100000
0 4 4 4 4 4
1 6 6 6 6 6
10 6 6 6 6 6
100 6 6 6 6 6
1000 2 2 6 6 6
10000 2 2 2 2 2
100000 2 2 2 2 2

Table 4.7: Rank of the Controllability Matrix for the Ellipsoid a=2 b=2 c=1

For the oblate ellipsoid (2, 2, 1), the controllability matrix has a rank of 6 for

dimensionless angular velocity up to a 1000 and 2 for dimensionless angular velocity

of 10000 or more. The shift from rank 6 to rank 2 occurs when the angular velocity

is equal to 1000 and the mass ratio below 100. If the system does not rotate the

rank is equal to 4. The linear system (4.16) is not controllable and no conclusion can

be drawn as to the possibility of stabilising the system (4.15) with a time-invariant

linear control law. The rank of the controllability matrix depends mostly on the

dimensionless angular velocity and on the mass ratio near the rank shift.

ω0 / MassRatio 10 100 1000 10000 100000
0 4 4 4 4 4
1 6 6 6 6 6
10 6 6 6 6 6
100 6 6 6 6 6
1000 2 6 6 6 6
10000 2 2 2 2 2
100000 2 2 2 2 2

Table 4.8: Rank of the Controllability Matrix for the Ellipsoid a=5
4

b=5
4

c=1

For the oblate ellipsoid (5
4
, 5
4
, 1), the controllability matrix has a rank of 6 for

dimensionless angular velocity up to a 1000 and 2 for dimensionless angular velocity

of 10000 or more. The shift from rank 6 to rank 2 occurs when the angular velocity

is equal to 1000 and the mass ratio below 10. If the system does not rotate the rank

is equal to 4. The linear system (4.16) is not controllable and no conclusion can

be drawn as to the possibility of stabilising the system (4.15) with a time-invariant

linear control law. The rank of the controllability matrix depends mostly on the

dimensionless angular velocity and on the mass ratio near the rank shift.
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ω0 / MassRatio 10 100 1000 10000 100000
0 4 4 4 4 4
1 6 6 6 6 6
10 6 6 6 6 6
100 6 6 6 6 6
1000 6 6 6 6 6
10000 2 2 2 2 2
100000 2 2 2 2 2

Table 4.9: Rank of the Controllability Matrix for the Ellipsoid a= 1
10

b= 8
10

c=1

For the asymmetric ellipsoid ( 1
10
, 8
10
, 1), the controllability matrix has a rank of

6 for dimensionless angular velocity up to a 1000 and 2 for dimensionless angular

velocity of 10000 or more. If the system does not rotate the rank is equal to 4. The

linear system (4.16) is not controllable and no conclusion can be drawn as to the

possibility of stabilising the system (4.15) with a time-invariant linear control law.

The rank of the controllability matrix does not depend on the mass ratio but on the

dimensionless angular velocity. Despite having a very asymmetric shape with spread

dimensions, this case is close and similar to the prolate ellipsoid cases ( 1
10
, 1
10
, 1) and

( 8
10
, 8
10
, 1).

ω0 / MassRatio 10 100 1000 10000 100000
0 4 4 4 4 4
1 6 6 6 6 6
10 6 6 6 6 6
100 6 6 6 6 6
1000 2 2 6 6 6
10000 2 2 2 2 2
100000 2 2 2 2 2

Table 4.10: Rank of the Controllability Matrix for the Ellipsoid a=1
3

b=1
2

c=1

For the asymmetric ellipsoid (1
3
, 1
2
, 1), the controllability matrix has a rank of

6 for dimensionless angular velocity up to a 1000 and 2 for dimensionless angular

velocity of 10000 or more. If the system does not rotate the rank is equal to 4. The

linear system (4.16) is not controllable and no conclusion can be drawn as to the

possibility of stabilising the system (4.15) with a time-invariant linear control law.

The rank of the controllability matrix does not depend on the mass ratio but on the

dimensionless angular velocity except for the limit cases when the angular velocity
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is equal to 1000 and the mass ratio below 100. By the object’s dimension, this case

is close and similar to the prolate ellipsoid case (1
2
, 1
2
, 1).

ω0 / MassRatio 10 100 1000 10000 100000
0 4 4 4 4 4
1 6 6 6 6 6
10 6 6 6 6 6
100 6 6 6 6 6
1000 6 6 6 6 6
10000 2 2 2 2 2
100000 2 2 2 2 2

Table 4.11: Rank of the Controllability Matrix for the Ellipsoid a= 8
10

b= 9
10

c=1

For the asymmetric ellipsoid ( 8
10
, 9
10
, 1), the controllability matrix has a rank of

6 for dimensionless angular velocity up to a 1000 and 2 for dimensionless angular

velocity of 10000 or more. If the system does not rotate the rank is equal to 4. The

linear system (4.16) is not controllable and no conclusion can be drawn as to the

possibility of stabilising the system (4.15) with a time-invariant linear control law.

The rank of the controllability matrix does not depend on the mass ratio but on

the dimensionless angular velocity. By the object’s dimension, this case is close and

similar to the prolate ellipsoid case ( 8
10
, 8
10
, 1).

From the above analysis, the system (4.15) is underactuated in all configurations.

In most real situations in terms of mass ratio and dimensionless angular velocity,

only one state should remain uncontrollable except when the objective is to despin

the object in which case three out of the seven states will not be controllable. In

order to ensure a better controllability and therefore a better chance of successfully

meeting the task objectives, it seems a priori better to have the system converge

to a state of spin rather than despining it. Finally, it is interesting to observe that

when the dimensionless angular velocity has a very large magnitude compared to

the inertia of the system, the system becomes really underactuated with only two

states being controllable. In this case, the object’s kinetic energy level is such that

the object’s spin is extremely stable and therefore resistant to the disturbing effect

of a module moving at its surface. In this case, making the system converge to a

pure state of spin would be extremely difficult and energy intensive.
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4.3.5.3 Choice of a Model Predictive Control Approach

The stabilisability and controllability analysis of model (4.15) was conducted

through its linearisation (4.16) for the specific cases where the reference state tra-

jectory describes the object in a pure state of spin which the desired final state for

this study’s intended engineering application.

In section 4.3.5.1, it was shown that the system’s stability with respect to differ-

ent ellipsoid shapes is dependent on the mass ratio between the object and the robot

module. Two cases emerged. The system is either clearly unstable or potentially

stable. In this later case, all the eigenvalues of the linearised model (4.16) have zero

real parts. Consequently the origin of system (4.15) could possess very different be-

haviours ranging from stability with a well defined albeit small domain of attraction

to plain insatiability. Complex behaviours such as having an equilibrium which is

attractive for certain trajectories while repulsive for others are also possible.

In section 4.3.5.2, the controllability analysis of the linearised system (4.16)

clearly showed that the system is underactuated in all configurations. The magni-

tude of the angular velocity or spin rate is the main parameter affecting the control-

lability of the system (4.15). Controllability deceases with the spin rate but only

for very large magnitudes with respect to the system’s inertia. As per section 2.2.2,

very large spin rates are not possible in practice. Therefore, it can be expected

that the rank of the controllability matrix for a real system would be equal to 6.

Moreover, given the stabilising effect of increasing spin rate, it is to be expected

that the difficulty to converge to a pure state of spin will increase with the initial

angular velocity deviation from a pure spin reference state.

In order to explore the stability of system (4.15) further, only the basic Lyapunov

theorems can be used. As mentioned above, all the eigenvalues of its linearisation

about the reference trajectory have zero real parts. In the 1-dimensional case when

the first derivative is zero at the equilibrium point, the second derivative positivity or

negativity in the neighbourhood of the equilibrium point respectively identifies the

maximum of a convex function or the minimum of a concave function. Extrapolating

on this 1-dimension case, the derivation of a third order tensor composed of Hessian
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matrices would help to determine the stability of each of the sub-state spaces. Each

of these sub-state spaces could be stable or unstable. This analysis has been left for

future work.

However, given that the matrices of the linear system (4.16) are either time-

invariant or periodic and bounded since the system is conservative and the potential

energy contained in the battery is finite, it was assumed that, at least in some cases,

a non-empty and invariant domain of attraction exists around the equilibrium or

that the linearised system is stabilisable. In both cases, as per [12, 21], a Lyapunov

function bounding an infinite horizon quadratic cost function can be constructed

which helps prove the existence of stabilising control commands as will be seen in

section 4.3.8.

In conclusion, offline infinite horizon techniques such as Linear Quadratic Regu-

lator (LQR) providing constant linear feedback gains cannot be used. The feedback

control law, if it exists is likely to be time-varying. The construction of the con-

trol commands for a system whose stability properties are unknown can only be

an online exploration. A model predictive control approach offers the possibility to

channel the search through an optimisation with a quadratic cost function which

lends itself well to the construction of a Lyapunov function to be used for the proof

of existence of the control commands. This is why this approach was taken for the

low-level module controller design.

4.3.6 Model Predictive Control Formulation

As per the previous section, a Model Predictive Control (MPC) approach was

chosen for the low-level module controller design. In this section, the MPC method

is formally defined with a formulation suiting both the linear and nonlinear cases.

The system’s state space model (4.15) is continuous. Continuous models with

infinite time horizons have interesting stability properties [26]. With this in mind

and drawing on the formulation of the NMPC control optimisation procedure in [24]

chapter 2, the following definition has been adopted for this study:
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Given a continuous evolution model in time:

ẋ(t) = f(x(t), u(t), t) (4.29)

with state x(t), initial condition x(0) ∈ Rn, control command u(t) and a finite or

infinite time horizon T > 0, the objective is to minimize a cost function with stage

cost function l at time t and terminal cost S when T is finite (it disappears when

T = +∞):

JT (x[t0, T ], u[t0, T ], t0) =

∫ T

t0

l(x(t), u(t), t)dt+ S(x(T ), T ) (4.30)

subject to the inequality constraints ∀t ∈ [t0, T ]:

umin ≤ u(t) ≤ umax

g(x(t), u(t), t) ≤ 0

(4.31)

In real world applications, it is impossible to use a continuous model and infinite

time horizon. The model needs to go through discretisation and relies on data

sampling. As per [26] page 72, this led to a new formulation of (4.30) for finite or

infinite time horizon T > 0:

Given the evolution model at from instant k to k + 1:

xu(k + 1, x0) = f(xu(k, x0), u(k)) (4.32)

With initial state at instant n:

xu(n, x0) = x0 (4.33)

Minimize:

JT (x[n, T ], u[n, T ], n) =
T∑
k=0

l(xu(k, x0), u(k), n+ k)

with respect to u(·) ∈ U∞(x0) admissible control commands

(4.34)
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There is no need here to introduce the sampling time rate in these equations

as it is simply a normalised and factorisable constant variable that would bear no

influence on the optimisation process.

4.3.7 Cost Function

The choice of cost function for the model predictive control optimisation in this

study was guided by the assumption made in section 4.3.5.3 that there exists a

bounded domain of attraction around system’s (4.15) equilibrium.

In order to prove the existence of a stabilising sequence of control commands

for a nonlinear system at its equilibrium, most theorems found in [26] assume that

the cost function is bounded by that two unbounded strictly increasing continuous

functions. In most cases, especially when stabilisability of the linearised system

can be proven (cf [26] page 137), a quadratic cost function fulfils these theorems’

hypotheses. Moreover, as per [26] pages 124 and 139, a large time horizon is to be

preferred to a final stabilising terminal constraints cost since the large time horizon

is stabilising and avoids a huge computational cost.

In light of the above, the cost function for the optimisation problem was chosen

to be a quadratic function with an infinite time horizon. Under conditions stated

in section 4.3.8, this form of the cost function leads to the derivation of suboptimal

asymptotically stabilising control commands.

In what follows, the states are viewed from the stand point of their original

definition for clarity even though the actual system that is studied is system (4.15).

In its continuous and most general form, the cost is as the follows:

J = J∞(
−→
X(t),−→u (t), t) =∫ +∞

0

(
−→
Ω(t)−

−→
Ωref (t))T [Λ−→

Ω
](
−→
Ω(t)−

−→
Ωref (t))dt+∫ +∞

0

(
−→
Θ(t)−

−→
Θref (t))T [Λ−→

Θ
](
−→
Θ(t)−

−→
Θref (t))dt+∫ +∞

0

(
−̇→
Θ(t)−

−̇→
Θref (t))T [Λ−̇→

Θ
](
−̇→
Θ(t)−

−̇→
Θref (t))dt+∫ +∞

0

(−→u (t)−−→u ref (t))T [Λ−→u ](−→u (t)−−→u ref (t))dt

(4.35)
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where [Λ−→
Ω

], [Λ−→
Θ

], [Λ−̇→
Θ

] and [Λ−→u ] are positive semi-definite diagonal matrices

with diagonal entries of equal value. [Λ−→
Ω

] represents the importance of the object’s

initial angular velocity tracking. [Λ−→
Θ

] represents the importance of the objective of

the individual module of reaching its target destination at the surface of the object.

[Λ−̇→
Θ

] represents the constraints placed on the individual module relative angular

velocity with respect to the object. Finally, [Λ−→u ] represents the constraints placed

on each individual module’s energy expenditure.

During the practical optimisation process, the system is actually sampled and

the cost function had to be discretised and was discretised in such a way so as to

match the sampling rate. As per section 4.3.6, there is no need here to introduce

the constant sampling time rate in these equations as it is simply a normalised

and factorisable constant variable that would bear no influence on the optimisation

process. The time-horizon p is an integer chosen to be large enough to be considered

a good approximation of an infinite time-horizon (see section 4.5). The discrete cost

function took the following form:

J = Jp(
−→
X(tj),

−→u (tj), tj) =

Λ−→
Ω

p∑
j=1

||
−→
Ω(tj)−

−→
Ωref (tj)||2+

Λ−→
Θ

p∑
j=1

||
−→
Θ(tj)−

−→
Θref (tj)||2+

Λ−̇→
Θ

p∑
j=1

||
−̇→
Θ(tj)−

−̇→
Θref (tj)||2+

Λ−→u

p∑
j=1

||−→u (tj)−−→u ref (tj)||2

(4.36)

where Λ−→
Ω

, Λ−→
Θ

, Λ−̇→
Θ

and Λ−→u are the positive real diagonal entries of [Λ−→
Ω

], [Λ−→
Θ

],

[Λ−̇→
Θ

] and [Λ−→u ] and where j is the index of the discrete time instant tj.

4.3.8 Optimal Control Commands Existence and Stability

In section 4.1.3, the stability objective constrains the robot to deploy in such

a way that the new rigid angular velocity of the system tracks a reference angular
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velocity for the object. Under its hypotheses, theorem 4.16 in [26] pages 84-85 states

the existence of a suboptimal control law which would asymptotically stabilize the

closed-loop system as per the definition 2.16 given in [26] page 32. This has to

be understood as the convergence over time ad infinitum of the state towards the

tracked reference trajectory. Hence, the existence of a solution or possibility of

meeting the aforementioned objective is established. Providing the assumption of

existence of a bounded domain of attraction combined with the current proven

properties of system (4.15) all hypotheses of theorem 4.16 can be fulfilled.

Below are listed the system’s definitions and properties which fulfil the theorem’s

assumptions. The states are viewed from the stand point of their original definition

for clarity even though the actual system that is studied is system (4.15).

1. The control problem is an infinite-horizon time-varying optimal control prob-

lem for a system of the form
−̇→
X = g(

−→
X,−→u ) for system (4.12) or

−̇→
Z = h(

−→
Z ,−→uZ)

for system (4.15).

2. By construction, for the time-varying reference state
−→
Xref defined in section

4.2.4, there exists a control sequence −→u ref to track
−→
Xref . It is −→u ref =

−→
0 ∀

t ≥ 0 i.e. do nothing.
−→
Xref and −→u ref are admissible and feasible.

3. As per the definition of the cost function J (4.36) the state cost at time t is:

l(
−→
X(t),−→u (t), t) =

(
−→
Ω(t)−

−→
Ωref (t))T [Λ−→

Ω
](
−→
Ω(t)−

−→
Ωref (t))+

(
−→
Θ(t)−

−→
Θref (t))T [Λ−→

Θ
](
−→
Θ(t)−

−→
Θref (t))+

(
−̇→
Θ(t)−

−̇→
Θref (t))T [Λ−̇→

Θ
](
−̇→
Θ(t)−

−̇→
Θref (t))+

(−→u (t)−−→u ref (t))T [Λ−→u ](−→u (t)−−→u ref (t))

(4.37)

Since l is quadratic and [Λ−→
Ω

], [Λ−→
Θ

], [Λ−̇→
Θ

] and [Λ−→u ] are positive semi-definite

diagonal matrices with diagonal entries of equal value:

(a) ∀ t ≥ 0, l(
−→
Xref (t),−→u ref (t), t) = 0.
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(b) ∀ t ≥ 0, ∀
−→
X(t) ∈ X with

−→
X(t) 6=

−→
Xref (t) and ∀ −→u (t) ∈ U ,

l(
−→
X(t),−→u (t), t) > 0.

(a) and (b) satisfy assumption 3.8 in [26] page 53.

4. Finally there exists three continuous strictly increasing and unbounded func-

tions α1, α2 and α3 such that α1(0) = 0, α2(0) = 0, α3(0) = 0 and such that

the three inequalities (4.12) in [26] page 79 are satisfied.

Proof As per the definition of the cost function J (4.36), J is a quadratic func-

tion whose weights are positive semi-definite diagonal matrices with diagonal

entries of equal value.

(a) From the definition of [Λ−→
Ω

], [Λ−→
Θ

], [Λ−̇→
Θ

] and [Λ−→u ] in section 4.3.7, one

can define the real number Λ = min(Λ−→
Ω
,Λ−→

Θ
,Λ−̇→

Θ
) and the matrix [Λ] =

Λ · [Id]nr×nr .

Then by definition of l:

∀ t ≥ 0, ∀
−→
X(t) ∈ X and ∀ −→u (t) ∈ U :

l(
−→
X(t),−→u (t), t) ≥ 1

2
(
−→
X(t)−

−→
Xref (t))

T [Λ](
−→
X(t)−

−→
Xref (t))

which leads to the construction of α3 as α3(x) = 1
2
Λx2

(b) As per section 4.3.5.3, it is admitted that there exists a bounded domain

of attraction around the reference trajectory in other words the origin

of system (4.15). As per [12] and with the further assumption that the

linearisation (4.16) is stabilisable on this local domain of attraction for

the equilibrium point at the origin, the infinite horizon cost function can

be bounded by a quadratic terminal cost which ensures the system ends

up in a terminal region in the neighbourhood of the origin. This leads to

the construction of α2(x) as:

α2(
−→
X(t)) =

∫ Tf
0
l(
−→
X(t),−→u (t), t)dt+

−→
XT (Tf )[P]

−→
X(Tf )

where [P] is the constant matrix of the quadratic terminal cost.

(c) From the definition of [Λ−→
Ω

], [Λ−→
Θ

], [Λ−̇→
Θ

] and [Λ−→u ] in section 4.3.7, one

can define the real number Λ = min(Λ−→
Ω
,Λ−→

Θ
,Λ−̇→

Θ
) and the matrix [Λ] =

Λ · [Id]nr×nr .
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Then by definition of J∞:

∀ t ≥ 0, ∀
−→
X(t) ∈ X and ∀ −→u (t) ∈ U :

J∞(
−→
X(t),−→u (t), t) > l(

−→
X(t),−→u (t), t).

Hence J∞(
−→
X(t),−→u (t), t) ≥ 1

2
(
−→
X(t)−

−→
Xref (t))T [Λ](

−→
X(t)−

−→
Xref (t))

which leads to the construction of α1(x) as α1(x) = 1
2
Λx2

Providing the existence of a domain of attraction and the possibility of stabilising

system (4.16), the above assumptions fulfil the theorem and ensure the existence of

a suboptimal feedback control law which asymptotically stabilises system (4.15) at

its origin and on the set X = R3 × ([0, π] × [0, 2π[×R2)nr . In plain terms, since

system (4.15) is equivalent to system (4.12), it means that, for each robot module,

a control sequence can be found for this module to track any reference trajectory

i.e. to reach its deployment goal on the surface of the object while ensuring that

the angular velocity of the system stays as close as possible to the reference angular

velocity.

4.3.9 Observability of the State

A complete definition of observability can be found in [6] page 52. The state of

a plant is observable if it can be determined using a finite observation sequence. A

plant is fully observable if its complete state is observable.

The intersection of a plane and ellipsoid is an ellipse [4]. Drawing on this property

and on our assumptions about the individual robot module in section 4.1.1, an

estimation model combining the geometrical properties of the object with angular

velocities, linear accelerations and odometry data can be derived to estimate the

module’s relative angular velocity and acceleration with respect to the object as

well as the absolute angular velocity of the object. The details of such derivation is

left for future work but a brief outline is presented here.

Assuming that the local radius of the ellipsoid is constant and equal to R given

the relative size of the object and a robot module i, the linear velocities of this

module

vθ
vφ

 and its accelerations

aθ
aφ

 expressed in the local spherical coordinate
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system are simply divided by the radius R to obtain the relative angular velocity

and acceleration of the module i with respect to the objects as follows:

θ̇i
φ̇i

 =

 vθ
R

vφ
R

 (4.38)

θ̈i
φ̈i

 =

 aθ
R

aφ
R

 (4.39)

Once the relative angular velocity of module i is known as per formulae (3.37)

in chapter 3 it is simply subtracted from the absolute angular velocity given by

its gyroscope to obtain the absolute angular velocity of the object:
−→
ΩObjectMeas =

−→
ΩAbsoluteMeas −

−→
ΨMeas.

Alternatively or as a complement in a sensor fusion approach, if the sensory data

of the other modules is available to the observing module, the already anchored

modules gyroscope data could be used directly. As any already anchored module

would not have any relative angular velocity with respect to the object, its gyroscope

data would contain the rigid angular velocity i.e. the angular velocity of the object.

The state observer of each robot module i is assumed to be based on a likeness

of the previous models (4.38) and (4.39) and capable of observing the rigid angular

velocity of the object. For the purpose of this study, it was simply modelled as a full

linear observer with added gyroscope noise as defined by model (3.62). Is follows

that:

−→
Y i =


1 0 0

0 1 0

0 0 1

 ·

ωx

ωy

ωz

+
−→
b +−→n (4.40)

where
−→
Ω (x,t) =


ωx

ωy

ωz

 is the true angular velocity,
−→
b is the gyroscope drift rate

bias, driven by the angular velocity random walk process and −→n is a white noise

affecting the measurements.
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4.3.10 UKF: Unscented Kalman Filter

Kalman filters have two main applications [65]:

1. they are used to optimally estimate the states of a system which can only be

measured indirectly.

2. they are used to fuse and optimise multi-sensor measurements to best estimate

the states of a system when noise is present.

Kalman filters are used in navigation and control problems and mainly for linear

systems with quadratic cost functions for in this case, states estimates are prov-

ably optimal. Kalman filters are easy to implement and even work with nonlinear

systems or systems with non-quadratic cost functions. In this cases, they usually

take a linearised form called the Extended Kalman Filter (EKF). Compared to al-

ternatives such as Hidden Markov Models (HMMs) and Particle Filters which are

heuristics with much weaker provable performance guarantees, Kalman filters are

far less computationally intensive [65].

As per section 4.3.9, the states of system (4.15) are observable but subject to a

drift rate bias associated with a white noise coming from the gyroscope. Moreover

the control problem is nonlinear with an associated quadratic cost function. Based

on these two system features, a Kalman filter is an appropriate states estimation

method.

Two choices were available for the implementation of this Kalman filter: the

Extended Kalman Filter (EKF) or the Unscented Kalman Filter (UKF).

In essence, the EKF simply linearises nonlinear models so that a traditional

linear Kalman filter could be used with this nonlinear model. However, it is difficult

to implement and tune, and is only reliable for systems that are almost linear on the

time scale of the update intervals. On the other hand, the UKF generalizes the EKF

to nonlinear systems without a linearisation step and without restriction to Gaussian

distributions. It provides more accurate estimation and better performance than the

EKF for practically all applications [32].

In [31], the author exposes the difficulty to perform estimations for nonlinear

135



Chapter 4: Robot Design and Control

systems: “Estimation in nonlinear systems is extremely difficult. The optimal

(Bayesian) solution to the problem requires the propagation of the description of

the full probability density function (pdf). This solution is extremely general and

incorporates aspects such as multimodality, asymmetries, discontinuities. However,

because the form of the pdf is not restricted, it cannot, in general, be described

using a finite number of parameters. Therefore, any practical estimator must use

an approximation of some kind.”

The limitations of the EKF come from the linearisation process which is only

reliable if the error propagation is well approximated by a linear function. For this,

the model’s Jacobian matrix has to exist but its derivation and computation can be

a very difficult and error-prone [31].

The UKF algorithm works as follows: it uses sample points of a Gaussian dis-

tribution, with a given mean and covariance, that are past through the nonlinear

function of the model and then processed with a weighted linear regression to ob-

tain the expected value and covariance of the estimated state. In doing so, it cap-

tures high-order information about the distribution with a fixed, small number of

points [31]. Details of its algorithm and derivation can be found in [65] chapter 3.

As per [31], the UKF has a number of interesting properties:

1. its algorithm can be use as a “black box”. For any given model, it can calculate

the predicted quantities for any given transformation.

2. its computational cost is of the same order of magnitude as the EKF.

3. it does not require the calculation of any derivatives since it includes the

second-order “bias correction” term of the truncated second-order filter.

4. its algorithm can tackle discontinuous transformations.

Given that system (4.15) is highly nonlinear and for all the above reasons,

the UKF was chosen for this study and was implemented in MATLAB using the

unscentedKalmanFilter function.
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4.3.11 Matlab Implementation

4.3.11.1 MPC in Matlab

Matlab uses two built-in QP (Quadratic Problem) solvers for performing the op-

timisation of the MPC control problem. These are:

1. The active-set solver uses the KWIK active-set algorithm which requires a

positive definite Hessian matrix. This algorithm reaches a best solution by

determining which constraints will influence the final result of the optimization

and provides fast and robust performance for small-scale and medium-scale

optimization problems.

2. The interior-point solver uses a primal-dual interior-point algorithm with Mehro-

tra predictor-corrector. This algorithm reaches a best solution by travers-

ing the interior of the feasible region and provides superior performance for

large-scale optimization problems, such as MPC applications that enforce con-

straints over large prediction and control horizons. Details can be found in [46].

Both these algorithms are used in a sequential fashion the details of their implemen-

tation can be found in [54]. The active-set solver was chosen for this study, as its

empirical timescale evaluation proved fast enough.

4.3.11.2 NMPC in Matlab

By default, Matlab uses the fmincon function with the SQP algorithm. SQPs or

Sequential quadratic programming are a class of algorithms used for solving real-

life non-linear optimization problems because of their ability to tackle all degrees

of non-linearity including in the constraints. SQPs combine two approaches: the

active set method and Newton’s method, the details of which can be found in [42].

SQPs require the explicit analytic calculation of model derivatives prior to iterating

to a solution which constitute a further input to the optimisation problem under
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study whose general form is as follows:

minf(x)

subject to h(x) = 0

and g(x) ≤ 0

(4.41)

where f(x), h(x), and g(x) could be non-linear functions of a vector x. [42]

In this study, the above default SQP algorithm was used to solve the NMPC

problem with Matlab and the Jacobian of the model required to perform the opti-

misation was explicitly derived by the author in appendix B.

4.4 Robot Control Algorithm Design

Section 4.3 dealt with one of the essential part of the module’s controller respon-

sible for ensuring its deployment while tracking a reference state trajectory: the

MPC/NMPC controller. However, both of these MPC controllers are used for the

deployment subtask when the module is specifically deploying on the surface of the

object. The modules has to tackle other tasks before and after this subtask. The

design of a basic overall module’s controller encompassing all the tasks it has to

perform is the subject of this section.

4.4.1 Task-Driven Self-Reconfiguration Approach

As per engineering objectives in sections 4.1.1 and 4.1.2, there are no requirement

on the shape of the robot at the end of its deployment. It is only required to

be wound around the object about its main spin axis until it reaches the object’s

where its centre of mass and its other principal axes lie i.e. at spherical coordinate

θ = π
2
. Consequently, the robot reconfiguration falls into the category of task-driven

reconfigurations. The decentralised approach to the robot controller means that

the design is shifted to the module’s controller. Each module seeks to complete its

individual deployment objective leading to the emergence of the robot shape and
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to completion of the robot’s task. Based on the robot’s task and its environment a

behaviour-based controller approach was taken for the controller design.

4.4.2 Behaviours Based Algorithm Design Principles

Following a ”from simple to the complex” design pattern with an emphasis on

parallelism, the general guidelines under which the algorithm was designed can be

found in [59] page 313:

1. ”Use behaviours as the building block of both decision-making and action

execution processes;

2. Use distributed parallel evaluation and concurrent control over lower-level be-

haviours, which take real time inputs from sensory data and send real-time

commands to effectors;

3. Have no centralized components, each module carrying out its own responsi-

bilities.”

4.4.3 Robot Behaviours Based Algorithm

In figures 4.6, 4.7 and 4.8 below is shown the behaviour tree designed for the

robot’s modules controller broken into three sub-diagrams. It uses the py trees

python library, the API of which can be found along with the definition and the

function of each of the behaviour listed in the legend in the documentation at this

URL [2].

The root node runs in parallel the three fundamental behaviours of a robot

module:

1. Listening continuously to its own sensors data and the communication data

from the other modules.

2. Helping other modules to move or requesting help from other modules to move

itself or another module (e.g. if the module is trapped in a lattice for instance).
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3. Deploying itself until it finds the optimal place to anchor itself at the surface

of the object.

In section 4.1.1, the operating assumptions 3 states that if a module is faulty,

it can be detected, released and replaced in the limit of number availability. Since

the focus of this study was to analyse the physical effect of reconfiguration rather

than the details of its implementation and failure management, it was assumed

that the ”Help Mode” behaviour enables each robot module to successfully perform

collaborative manoeuvrers in order to:

1. release itself or other modules when enclosed in the starting lattice,

2. remove obstacles, i.e. faulty modules, by releasing them in space and

3. keep a clear path at all times for each module to deploy.

Moreover, catastrophic failures, where a large number of module fail for instance,

were also ignored and assumed never to materialise: the robot is always able to

deploy itself.
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Figure 4.6: Robot Algorithm Top Level.
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Figure 4.7: Robot Algorithm Initialisation.
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Figure 4.8: Robot Algorithm Deployment.
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4.4.4 Correctness of the Controller

In this section, the correctness of the module’s controller algorithm is briefly

examined alongside its termination. Correctness is defined as per [15] page 6: ”for

every input instance, the algorithm halts with correct output”.

4.4.4.1 Initialisation Sequence

If at any point of the initialisation sequence a FAILURE status or the absence

of a status is detected the initialisation node returns FAILURE and publishes its

status to all the other modules if it can. If it cannot publish, the other modules that

are initialised detect this absence of communication and identify the faulty module’s

position via an elimination process. In any case, the controller algorithm returns

the correct output: FAILURE and terminates.

If the initialisation of the module is successful, the behaviour ”Initialisation”

returns and locks a SUCCESS status.

4.4.4.2 Principle of Deployment

The main idea behind the module deployment is a one-by-one approach:

1. Each module gets released from the original lattice from the top layer to the

bottom layer and from the outside of the top plane to the inside of the top

plane.

2. Each module then travels down to the surface on the side of the lattice to

reach the very near position of the first anchored module. This is possible if

the first anchored module is both on the bottom plane and at least on one of

its edges.

3. Each module then proceeds to move on top of the already deployed and an-

chored modules to reach the end of the chain.

4. Each module then uses its MPC/NMPC controller to reach its final goal loca-

tion on the surface of the object and finally anchors.
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4.4.4.3 Deployment: Getting out of the Lattice

In a lattice form the robot module has up to six connections, two per direction. If

three connections or less are used, the module is ready to be deployed. The behaviour

”Is it My Turn” returns SUCCESS when confirmation that no other module will

deploy has reached the module.

The module can then proceed to the next sequence ”Reach Starting Point”.

The moving module travels first on the top plane to reach the side where the first

anchored module is. Then it follows down a path on the side plane to the first

anchored module.

At every point it relies on the ”Can I Deploy” behaviour to detect failed modules

and achieve a viable route via collaboration. It returns a RUNNING status if a

problem is encountered until this problem is solved and returns SUCCESS. Until

the module reaches the first anchored module, ”Deploy to Anchored Module” returns

RUNNING and upon reaching it, it returns SUCCESS.

”Reach Starting Point” then returns SUCCESS. The module then moves on the

next deployment sequence ”Follow the Chain”.

4.4.4.4 Deployment: Follow the Chain

The ”Follow the Chain” behaviour uses the same ”Can I Deploy” behaviour as

above, to tackle encountered module failures. ”Can I Deploy” is in a sequence with

”Follow Chain of Anchoring Behaviour” which returns RUNNING until the module

reaches the end of the chain upon which it returns SUCCESS. The module then

moves on to the surface for the final phase of deployment.

4.4.4.5 Deployment: Go On the Surface and Anchor the Chain

”Get on Surface” returns RUNNING until the module is on the surface of the

object. The behaviour then returns SUCCESS.

With the ”MPC Controlled Deployment” behaviour, the MPC/NMPC controller

is triggered for the module to reach the target deployment goal point where it will

anchor. As per section 4.3.8, for both the cases of the MPC and NMPC controllers,
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the existence of a control sequence that ensures success is likely and assumed. Fur-

ther assuming the optimisation procedure finds such a control sequence, the module

reaches the goal and the behaviour returns SUCCESS.

The last behaviour ”Anchoring” ensures that the deploying module connects to

the previously anchored module. The module then sends various messages to all the

other modules informing them of its successful deployment allowing another module

to deploy. If possible, the module then broadcasts all its sensory inputs and allows

power sharing before returning SUCCESS.

4.4.4.6 Conclusion

As per sections 4.4.4.3, 4.4.4.4 and 4.4.4.5, the sub-behaviours of the ”Deploy-

ment” behaviour return SUCCESS sequentially which leads ”Deployment” to return

SUCCESS. This ends the deployment of a single module at its optimal target goal

position. The control algorithm is correct.

4.5 Experimental Setup

In this section are detailed the actual values of the parameters used in the simu-

lations. These parameters are:

� Number of Modules: 10

� Optimisation Cost Function Weights:

1. Λ−→
Ω

= 1 Λ−→
Θ

= 1 Λ−̇→
Θ

= 0 Λ−→u = 1
2

2. Λ−→
Ω

= 1 Λ−→
Θ

= 1 Λ−̇→
Θ

= 1 Λ−→u = 1

� Prediction Horizon = 20 steps

� Modules’ Target Location in Spherical Coordinates:θ
φ

 =

0.1745 0.3491 0.5236 0.6981 0.8727 1.0472 1.2217 1.3963 1.5708

0.3491 0.6981 1.0472 1.3963 1.7453 2.0944 2.4435 2.7925 3.1416


� End Condition for a Module’s Deployment: θ and φ to be within 0.01rad i.e.

5.7◦ of their respective targets to ensure termination.
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� Optimisation Constraints: None

� Normalised Process, Measurement and Disturbance Noise: σ ∈ [0; 0.05; 0.1; 0.2].

Actual values of gyroscope bias and noise data can be found in table 3.62 and

in [33].

� Ellipsoids’ Normalised Dimensions:


a

b

c

 =


1 1

2
1
10

8
10

10 10
8

2 1
10

1
3

8
10

1 1
2

1
10

8
10

10 10
8

2 8
10

1
2

9
10

1 1 1 1 1 1 1 1 1 1


� Mass Ratio of the Object’s to the Robot’s: MR ∈ [10, 100, 1000, 10000]

� Initial Normalised Spin Rate for Symmetric Objects: ωZinit ∈ [0.5; 0.75; 1]

� Initial Condition for Asymmetric Body Parameter:

h2

2T
∈ [Imin,

(Imin+Imid)
2

, Imid,
(Imid+Imax)

2
, Imax] with moments of inertia calcu-

lated as per section 3.5.1.1.

� Reference Angular velocity Value of a Common Asteroid: ω0 = 0.02094rad−1.

4.6 Conclusion

In this chapter, the engineering objectives and the basic design of the robot have

been presented. The focus was placed on designing a state space model for simulating

the robot’s deployment on an object and an individual module controller at two

levels. The first atomic level dealt with the design of a MPC/NMPC controller

based on a state space model and destined to ensure that the module’s deployment

on the surface of the object occurs while tracking a reference angular velocity for

the object. The second level dealt with the design of a behaviour-based controller

aimed at ensuring the task would be performed while including some basic failure

management. Finally the values of the parameters of the simulation were given. In

chapter 5 will be presented the results of the simulations of the deployment of only

one module.
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Feasibility Study and Validation:

Simulation of the Deployment of a

Single Robot Module

5.1 Objectives and Simulations Parameters

This chapter is dedicated to the simulation, verification and validation and empir-

ical performance evaluation of the robot’s low-level module controller and, for this

purpose, focuses on the deployment of one module only. The evaluation of the full

robot deployment was left for future work.

5.1.1 Objectives

As per section 1.2, the low-level module controller’s objective is to track a ref-

erence trajectory using a MPC controller. This reference trajectory includes the

target anchoring location of the module, its surface velocity encoded in spherical

coordinates and a target object’s angular velocity. This controller objective can be

further spilt into more precise and quantifiable objectives. These objectives are the

following:

1. The deployment of the module on the surface of the object from the starting

point (θ, φ) = (0, 0) at the tip of the Z axis (in spherical coordinates) to its
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target location on the object at (θ, φ) = (π
2
, π) (in local spherical coordinates).

2. The deployment of the module along a surface trajectory coiling around the Z

axis, i.e. this trajectory should describe a whole revolution about the Z axis.

This objective is implied by the preceding one but deserves to be explicitly

stated to guide a heuristic evaluation of the controller’s performance. As a

structure intended to be used by other devices to exploit or manipulate the

object, it is important that all points of the object’s surface is reachable from

the structure and ideally within a reasonable average distance from it. In this

study, this objective did not feature explicitly in the controller’s design and left

for future work. However, a heuristic evaluation of the shape of the module

trajectory on the surface was performed by visual inspection in order to assess

what further work should be carried out to tackle this aspect.

3. The tracking and ideally the convergence towards a reference object’s rota-

tional state which is either a pure state of spin or is despun. Both of these

states are optimal from the point of view of the maintenance of the point-

ing direction of the axis of rotation which would be a requirement for future

operations on the object such as its retrieval.

4. The delivery of the above objectives within a time frame which is compatible

with the timescale of the entire system.

5.1.2 Scenarios and Simulations Parameters

This section details all the simulations parameters i.e. the simulations scenarios

and all the MPC controller design parameters.

5.1.2.1 Simulations

The simulations sought to span the various situations that the robot would en-

counter. As such, the simulations depended on the following parameters:

1. The shape of the object the robot would deploy on which were chosen to be

ellipsoids parametrised by there normalised semi-axis lengths. As per table
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5.2, for all mass ratios, the shape instability parameters is
√

m
m+1

≥ 0.8165.

For all the ellipsoids chosen for the simulations, the system is potentially stable

but close to the instability threshold in two cases. The chosen shapes and their

stability status are:

Ellipsoid Type a b c System Stability Status
Prolate 1

10
1
10

1 Potentially Stable
Prolate 1

2
1
2

1 Potentially Stable
Prolate 8

10
8
10

1 Potentially Stable (Close to Unstable)
Sphere 1 1 1 Potentially Stable

Asymmetric 1
10

8
10

1 Potentially Stable
Asymmetric 1

3
1
2

1 Potentially Stable
Asymmetric 8

10
9
10

1 Potentially Stable (Close to Unstable)
Oblate 5

4
5
4

1 Potentially Stable
Oblate 2 2 1 Potentially Stable
Oblate 10 10 1 Potentially Stable

Table 5.1: Ellipsoids Normalised Semi-Axes Lengths

2. The mass ratio of the object’s mass to the robot’s or single module’s in this

case. The simulated values were:

Mass Ratio 10 100 1000 10000

Table 5.2: Mass Ratios: Object to Module

3. The initial level of energy of the object with respect to its inertia was fixed at

a level found in the environment. Its kinetic energy and moments of inertia

were normalised. The angular velocity used for normalisation is the one sized

in section 3.5.1.2: ω0 = 0.02094 rad · s−1.

4. The initial rotational state condition (i.e.the degree of nutation or tumbling)

depended on the geometry of the ellipsoid. For symmetric ellipsoids, the pro-

portion of the total angular velocity allocated to the spin axis component was

parametrised by ωZinit whose values were:

ωZinit
1
2

3
4

1

Table 5.3: ωZinit
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For asymmetric ellipsoids, the rotational state was parametrised by the ratio of

the angular momentum to the rotational kinetic energy h2

2T
which can only take

values in the set of possible moments of inertia of the objects. Consequently,

for asymmetric ellipsoids, h2

2T
values were chosen with respect to the object’s

moments of inertia as follows:

h2

2T
Imin

(Imin+Imid)
2

Imid
(Imid+Imax)

2
Imax]

Table 5.4: Asymmetric Bodies Parameters h2

2T

5.1.2.2 Controller

The controller uses a Model Predictive Control approach implementing both the

nonlinear model (4.12) and its linearised version (4.16) which can be found in chapter

4. For both the linear and nonlinear cases, the controller’s design parameters are

the same. These parameters are listed below:

1. Reference Trajectory: The reference trajectory to be tracked described the

system in a final ideal state with an object in a pure state of spin or de-

spun. This was parametrised by the object’s angular velocity state compo-

nents which were respectively (0, 0, ωZFinal)
T or (0, 0, 0)T . The other reference

states were the target anchoring location parametrised in spherical coordinates

(θFinal, φFinal) = (π
2
, π) and a nil final angular velocity (θ̇Final, φ̇Final) = (0, 0).

2. Optimisation Cost Function Weights: Λ−→
Ω

= 1 Λ−→
Θ

= 1 Λ−̇→
Θ

= 1 Λ−→u = 1

3. Prediction Horizon = 20 steps. This number of steps is quite large and for a

numerical application a good enough approximation of an infinite time horizon.

4. End Condition for a Module’s Deployment: θ and φ to be within 0.01 rad i.e.

5.7◦ of their respective targets to ensure termination.

5. Optimisation Constraints: No optimisation constraints were implemented. In

other words, neither an end penalty cost nor a constraint function were imple-

mented. These were left for future work.
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6. Perturbations and Measurement Errors: Perturbations and measurements and

actuation errors, modelled in section 3.5.6, were not implemented. The imple-

mentation was left for future work. As a reminder and for reference only, the

values to be used are:

(a) The YORP effect coefficient value α2 = 2 ·10−16 rad ·s−2 with a standard

deviation of the coloured noise σ = 10−17 rad · s−2 (see section 3.5.6.3 for

details)

(b) The gyroscope bias and noise values which can be found in table 3.5

with the white noise standard deviations for the gyroscope model (3.62):

σ ∈ [0; 0.05; 0.1; 0.2].

5.1.3 Verification and Validation Metrics

In this chapter, the performance, verification and validation metrics defined in

4.1.4 are used for the analysis of the above objectives and to evaluate whether

future work is worth being carried out. As a reminder, these performance metrics

are:

1. Achievement of task:

(a) Did a single module manage to go from point (θ, φ) = (0, 0) to point

(θ, φ) = (π
2
, π) on the surface of the ellipsoid following a continuous tra-

jectory: True or False

(b) Did the nr-module robot achieve full deployment with each module i

being laid continuously one after the other from point (θ, φ) = (0, 0) to

its target anchoring point at (θi, φi) = (i π
2(nr−1) , i

π
nr−1)i∈[0,nr−1] on the

surface of the ellipsoid: True or False

2. Stability and controllability of the task:

(a) Measurement of the nutation angle ν = arctan
(√[IX ]2ω2

X+[IY ]2ω2
Y

|[IZ ]ωZ |

)
accord-

ing to [60] page 98. If ν increases, the rotational state of the object is

less stable.
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(b) Measurement of the error vector −→ε t such that
−→
Ω(t) =

−→
Ωref (t) + −→ε t as

per chapter 3 section 3.4.5. −→ε t should ideally converge and stay as close

to
−→
0 as possible. Empirical measurements will include the phase space

orbits of the object’s rotational state. In particular, it will be examined

whether:

i. −→ε t is increasing, decreasing or periodic respectively indicating insta-

bility, asymptotic stability or neutral stability.

ii. The controlled system can converge to any reference state in par-

ticular whether the object can converge to a state of pure spin or

despin.

iii. The model parameters influence the stability and controllability and

if so in which proportion.

(c) Measurement of the rigid or body rotational kinetic energy: 1
2

−→
Ω1
t

T
[IObject]

−→
Ω1

t

to evaluate the state and stability of the object in conjunction with the

nutation angle. Energy dissipation combined with increased nutation an-

gle is indicative of nutation instability and of a state degenerating towards

rotation about the major axis [60].

3. Duration of the task:

(a) Comparison between the timescale of the controller and of the object’s

rotational dynamics. Is the controller timescale appropriate: True or

False

(b) Measurement of the controller timescale for each controller type to eval-

uate which is the fastest.

(c) Measurement of the controller timescale against the model parameters to

evaluate their respective influence on this timescale

5.1.4 Data Processing

The data was organised into six types of graphs:
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1. The trajectory of the module on the surface of the object.

2. The object’s phase diagram of the Z component of the angular velocity. The

phase diagrams plot the Z component of the angular acceleration of the object

against its Z angular velocity component, i.e. the orbit of the Z angular

velocity component. If the orbit is a closed curve then the object is stable

as per definition page 7 in [68]. The shape or the orbit is also indicative of

the magnitude of the deviation of the angular velocity from the target angular

velocity.

3. The object’s rotational kinetic energy vs. time. On these graphs, the variations

of the rotational kinetic energy of the object normalised with respect to the

angular velocity sized in 3.5.1.2 is plotted against time, highlighting the time

evolution of the energy transfers between the object and the module moving

at its surface.

4. The object’s nutation angle vs. time. In these graphs, the time evolution of

the nutation angle is plotted. If the rotation axis is not the Z axis the nutation

angle measures a deviation around −π
2

or π
2
.

5. The nutation angle vs rotational kinetic energy. In these graphs, the rela-

tionship between the nutation angle and object’s kinetic energy is plotted to

analyse in particular whether an increase of object’s rotational kinetic energy

leads to its rotational state to be closer to a spin and reciprocally.

6. Control Commands vs. time. These graphs plot the magnitude of the module’s

control commands in spherical coordinates normalised with respect to the an-

gular velocity sized in 3.5.1.2. They indicate the direction of travel prescribed

to the module by its MPC controller as well as the level of energy expendi-

ture required over time from the module’s internal battery. The change in the

module’s angular momentum should be consistent with the energy transfers to

and changes of angular momentum of the object. The control commands are

sized with respect to an object with an initial angular velocity of magnitude

ω0 = 0.02094.
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5.1.5 Organisation of Results

The verification and validation of the low-level controller’s simulation data was

performed using the performance measures laid out in section 4.1.4. Apart from

section 5.6, the results were produced using the linear control law calculated from

the linearised model (4.16). In section 5.6, the linear law and nonlinear control law

are compared. Only a subset of the results are displayed owing to similarities which

are exposed before drawing overall conclusions.

The results were organised in different sections as follows:

1. In the first section 5.2, the linear and nonlinear control laws are compared over

a large period of time for mass ratio equals to 10, 000 and for the following

object’s geometries:

(a) The sphere a = 1, b = 1, c = 1.

(b) The symmetric ellipsoid a = 2, b = 2, c = 1

(c) The symmetric ellipsoid a = 1
2
, b = 1

2
, c = 1

(d) The asymmetric ellipsoid a = 1
10

, b = 8
10

, c = 1

(e) The asymmetric ellipsoid a = 8
10

, b = 9
10

, c = 1

Although the control law and gains were not explicitly derived, the derivation

being left for future work, this comparison gives an insight into the performance

and pertinence of the linearised versus the nonlinear model and the observed

behaviour of the system.

2. In the second section 5.3, the trajectory of the module on the ellipsoidal object

is examined. In particular it is checked whether the target location is reached,

whether the trajectory circles about the main axis of spin and, upon a heuris-

tic visual inspection, whether every point of the object’s surface is within a

reasonable distance (defined in the section) from a point of the module’s tra-

jectory. The velocity vectors are also displayed on the module’s trajectory

to show the direction of travel and the velocity’s magnitude over time. This

analysis was performed for all object’s geometries.
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3. In the third section 5.4, the requirements to asymptotically stabilise the ob-

ject’s angular velocity to a pure state of spin or a despun state are verified in

the worst case scenario where, for all shapes of ellipsoid and all mass ratios,

the object starts in an initial tumbling or highly nutated rotational state and

the module travels from the tip of the Z axis to its target location where it

stops. For each of these cases, the object’s spin phase diagram of angular

velocity about Z, the object’s kinetic energy vs. time, the object’s nutation

angle vs. time and the nutation angle vs kinetic energy are then analysed to

verify whether the rotational state of the object converged or is converging to

a stable pure state of spin or despun state.

4. In the fourth section 5.5 a deeper stability analysis is performed. The module

is no longer constrained to stop at its target location and is left free to move on

the surface of the object with the sole objective of tracking a pure state of spin

or a despun state for the object. The aim is to analyse the system’s behaviour

beyond its specification to understand empirically its timescale and whether

or not it is reasonable to assume the existence of a domain of attraction, albeit

small, near the origin. The geometry chosen for this analysis were:

(a) The sphere a = 1, b = 1, c = 1.

(b) The symmetric ellipsoid a = 2, b = 2, c = 1

(c) The symmetric ellipsoid a = 1
2
, b = 1

2
, c = 1

(d) The asymmetric ellipsoid a = 1
10

, b = 8
10

, c = 1

(e) The asymmetric ellipsoid a = 8
10

, b = 9
10

, c = 1

For each of these ellipsoids and all mass ratios, the object’s spin phase diagram

of angular velocity about Z, the object’s kinetic energy vs. time, the object’s

nutation angle vs. time and the nutation angle vs kinetic energy are then

analysed to verify whether the rotational state of the object converged or is

converging to a stable pure state of spin or despun state over time.

5. In the fifth and final section 5.6, the linear and nonlinear MPC controllers’

performance are compared by analysing again the object’s spin phase diagram
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of angular velocity about Z, the object’s kinetic energy vs. time, the object’s

nutation angle vs. time and the nutation angle vs kinetic energy for the

following object’s geometries:

(a) The sphere a = 1, b = 1, c = 1.

(b) The symmetric ellipsoid a = 2, b = 2, c = 1

(c) The symmetric ellipsoid a = 1
2
, b = 1

2
, c = 1

(d) The asymmetric ellipsoid a = 1
10

, b = 8
10

, c = 1

(e) The asymmetric ellipsoid a = 8
10

, b = 9
10

, c = 1

The analysis was performed for each of these geometries with mass ratios equal

to 1, 000 and 10, 000 and for all initial rotational state conditions. The module

was not constrained to stop at its target location and was left free to move

on the surface of the object with the sole objective of tracking a pure state of

spin for the object.

In section 5.7, final conclusions will be drawn from the commentaries made on

the presented results in all the preceding subsections.

5.2 Control Commands: A Comparison

This section deals with the analysis of the control commands (θ̈ and φ̈) produced

by both the linear and nonlinear MPC controllers.

5.2.1 Origin of the Data

The data displayed in this section corresponds to the following specific scenario:

1. Both MPC controllers track a pure state of spin for the object with a target

spin rate ω0 6= 0 for the angular velocity part of the system state.

2. The initial rotational state of the object corresponds to the worst case scenario

where symmetric objects nutate with Wzinit = 0.5 and asymmetric objects

tumble with h2

2T
= Imid, where Imid is the moment of inertia about the object’s

unstable axis.
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3. The module is not constrained to stop at its target location and is left free to

move on the surface of the object with the sole objective of tracking a pure

state of spin for the object. The aim is to analyse the system’s behaviour near

the origin over a large timescale.

4. The mass ratio of the object’s to the module is fixed at 10, 000.

5.2.2 Data Description

The data is displayed for specific shapes representative of the whole spectrum of

possible situations encountered by the robot. These shapes encompass a sphere, one

oblate, one prolate and one asymmetric ellipsoids which are:

Ellipsoid Type a b c System Stability Status
Prolate 1

2
1
2

1 Potentially Stable
Sphere 1 1 1 Potentially Stable

Asymmetric 1
10

8
10

1 Potentially Stable
Asymmetric 8

10
9
10

1 Potentially Stable (Close to Unstable)
Oblate 2 2 1 Potentially Stable

Table 5.5: Ellipsoids Normalised Semi-Axes Lengths

No control gains or control commands function calculations were performed and

this was left for future work. All the results obtained across the simulation param-

eters space were similar. Therefore, all descriptions and commentaries made on the

data displayed below remain valid:

1. For all ellipsoidal shapes

2. For all initial conditions of the object’s rotational state.

3. For all mass ratios MR

4. Whether the objective is to track a pure state of spin or a despun state.

5. For both the linear and nonlinear MPC controller.

6. For potentially stable and unstable systems.
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Figure 5.1: Linear Results for θ̈
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Figure 5.2: Linear Results for φ̈
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Figure 5.3: Non Linear Results for θ̈
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Figure 5.4: Non Linear Results for φ̈

Figure 5.5: Comparison Between the Control Commands Generated by the Linear
and Nonlinear Controllers
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From figure 5.5, the following observations were made:

1. The timescale of the linear control law in figures 5.1 and 5.2 is 10 times faster

than for the nonlinear control law in figures 5.3 and 5.4.

2. However, for each ellipsoid and after a finite amount of time, the linear control

law commands diverge leading the object’s angular velocity part of the sys-

tem’s state to diverge too as will be seen in section 5.5. The nonlinear control

commands all converge to 0 over time as can be expected of a regulator.

3. The shape of the control command curves are identical for θ̈ and φ̈ for both the

linear and nonlinear control laws. The magnitude of the angular acceleration

produced by the linear control law is of the order of 100 rad · s−2 which is

extremely large and physically unrealistic. The magnitude of the angular

acceleration produced by the nonlinear control law goes up to a maximum of

0.012 rad ·s−2 which is perfectly realistic both from a physical and engineering

point of view in terms of energy storage and hardware capabilities. For both

the linear and nonlinear control laws, the magnitude of φ̈ is twice that of θ̈.

4. The smaller the moment of inertia about the minor axis compared to the other

moments of inertia, the longer it takes for the angular velocity state to diverge

under the input of the linear or nonlinear feedback control law.

5.2.3 Conclusion

The linear control law is much faster than the nonlinear control law but does not

deliver satisfactorily on the objectives set out for the controller. This will be con-

firmed and expanded upon in later sections. The above data calls for the following

conclusions and comments:

1. The low-level controller is designed to be a regulator tracking the equilibrium

at the origin. However, the linear control law is not stabilising as instability

sets in over time. A higher order analysis (2nd order and higher) into the

nature of the system’s equilibrium would be beneficial to inform the control
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law design further. From the available data, using the nonlinear law only or a

combination of the linear and nonlinear control law is a priori the only options

for the controller.

2. The nonlinear control law performs better in terms of delivering a realistic

set of control commands despite a longer timescale. The nonlinear controller

takes two to seven days to converge the state of the system to the reference

state against about 15 minutes for the linear control law. This timescale is

acceptable with respect to the timescale of the system, i.e. of the robot de-

ployment on the object. Indeed, over this timespan perturbations experienced

by asteroids are negligible. Only the nonlinear model provides a sufficient level

of prediction accuracy required to produce a performant control law by the

controller.

3. From a pure empirical observation, it is not possible to know whether the con-

trol law is linear or nonlinear. However, the proportionality observed between

φ̈ and θ̈, the magnitude of φ̈ is twice that of θ̈, suggests that, the dimension

of the control space is 1. The respective set of values φ ∈ [0, 2π] and θ ∈ [0, π]

are browsed at a comparable pace. This coupling is consistent with the lack

of controllability of the system determined in chapter 4. As will be seen in

the next section, it has a significant impact on the shape of the module tra-

jectory on the surface of the object and in particular whether it coils about

the rotation axis in a manner that would make all parts of the object’s surface

easily reachable from the structure. Future work should endeavour to deter-

mine whether tuning could be achieved to influence the shape of the module

surface trajectory and whether the optimal control law is possibly linear and

constant in time which would render its offline calculation possible.

4. Finally, for the feedback loop system with either the linear or nonlinear control

law, the smaller the moment of inertia about the minor axis compared to the

other moments of inertia, the more stable the system is. In practice, for

symmetric ellipsoids, this means that stability decreases with oblateness and
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increases with prolateness. For asymmetric ellipsoids, stability increases with

a decreasing minor axis moment of inertia.

In the next section, the trajectory of the module on the surface of the object will

be analyse.

5.3 Surface Trajectory and Reaching the Target

Location

This section deals with the analysis of the trajectory of the module on the surface

of the object.

5.3.1 Origin of the Data

The data displayed in this section corresponds to the following specific scenario:

1. The MPC controller is tracking a pure state of spin for the object with a target

spin rate ω0 6= 0.

2. The initial rotational state of the object corresponds to the worst case scenario

where symmetric objects nutate with Wzinit = 0.5 and asymmetric objects

tumble with h2

2T
= Imid, where Imid is the moment of inertia about the unstable

axis.

All the results obtained across the simulation parameters space were similar.

Therefore, all descriptions and commentaries made on the data displayed below

remain valid:

1. For all ellipsoidal shapes

2. For all initial conditions of the object’s rotational state.

3. For all mass ratios

4. Whether the objective is to track a pure state of spin or a despun state.

5. For both the linear and nonlinear MPC controller.
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6. For potentially stable and unstable systems.

5.3.2 Data Description

The data is displayed in two parts. The first set of graphs (figures 5.12) show all

the symmetric ellipsoid cases and the second set of graphs show (figures 5.17) the

asymmetric cases along with the sphere limit case.

In what follows, coverage is defined as a ”visual inspection” heuristic measuring

the ability of a device to reach, from the deployed robotic structure, any subsection

of an object’s surface. Dividing each object’s surface into 18 contiguous sections

separated by meridians every 20◦ as per graphs below, a good coverage should cor-

respond to a situation where the module trajectory passing through two consecutive

meridians is not very short. In other words, the module should move away from the

tip of the Z axis as quickly as possible and then coil about the Z axis to its anchoring

target.

Looking at figures 5.6 to 5.16 below, in all cases:

1. The controller always achieved the deployment objective. The module always

reached and stopped at the target anchoring location.

2. The module trajectory is not dependent on the mass ratio MR. For all the

cases displayed, the trajectories are identical and appear one on top of the

others.

3. As per figure 5.14, for limit cases such as (a = 0.8, b = 0.9, c = 1) where

the object has a geometry close to one for which the system is unstable, the

deployment objective is achieved.

4. Upon visual inspection, in nearly every cases, the module trajectory covers only

half of the meridians of the object’s top hemisphere. The target location at

(π
2
, 2π) has been chosen so as to obtain a module trajectory providing coverage

of the entire surface of the object. As such, the module trajectory is expected

to cover all meridians of the object’s surface about the Z axis. The observed

trajectories coil about the Z axis in two stage. The first stage corresponds to
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the case φ ∈ [0, π], each trajectory coils very near the object’s pole as if the

module was rotating on the spot. The second stage corresponds to φ ∈]π, 2π]

where the module really starts moving from the pole to the median plane. The

module controller only provides half the intended coverage.

5. The module trajectory depends on the shape of the object. Upon visual in-

spection, prolate objects have a better overall surface coverage than oblate

ones. In figure 5.6, for the prolate ellipsoid (a = 1
10
, b = 1

10
, c = 1), the tra-

jectory moves away from the pole early on, enabling a coverage on all the

meridians. In figure 5.11, for the oblate ellipsoid (a = 10, b = 10, c = 1), the

trajectory coils tightly very near the object’s pole to then descend over one

single meridian, i.e. ”straight down” without coiling, leaving less of half of the

object’s surface reachable.

6. As shown by the arrows on the trajectories, for the linear control law, the target

anchoring location is reached with a significant residual velocity. Similarly, for

the nonlinear control law, the target anchoring location is reached but with a

residual velocity of four orders of magnitude less.
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Figure 5.6: a=0.1 b=0.1 c=1

Figure 5.7: a=0.8 b=0.8 c=1

Figure 5.8: a=2 b=2 c=1

Figure 5.9: a=0.5 b=0.5 c=1

Figure 5.10: a=1.25 b=1.25 c=1

Figure 5.11: a=10 b=10 c=1

Figure 5.12: Module Surface Trajectory with Direction of Travel for Symmetric
Ellipsoids
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Figure 5.13: a=0.1 b=0.8 c=1

Figure 5.14: a=0.8 b=0.9 c=1

Figure 5.15: a=0.33 b=0.5 c=1

Figure 5.16: Sphere

Figure 5.17: Module Surface Trajectory with Direction of Travel for Asymmetric
Ellipsoids and the Spherical Stability Limit Case
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5.3.3 Conclusion

The following conclusions were drawn:

1. The deployment objective at the target anchoring location is always achieved

and is achieved independently from the mass ratio of the object’s to the mod-

ule’s. The angular velocity and target anchoring location objectives are cou-

pled through the cost function only but have different timescales which is

shown by the fact that there is a residual angular velocity at the target an-

choring location while overtime the nonlinear control commands tend to 0.

Further investigation needs to be made into the possibility of synchronising

the achievement of the target anchoring position and angular velocity objec-

tives.

2. Coverage, as defined in section 5.3.2, is less than required. Instead of covering

all meridians of the top hemisphere of the object, the module trajectory covers

only half of them. The proportional constraints observed between the control

commands suggests that the module is underactuated and that the dimension

of the control space is 1. This negatively impacts the coverage. The module

position state φ is faster than the module position state θ which causes the

module to coil about the Z axis too close to the pole. Ideally, the two states

should be decoupled so as to constrain θ to be faster than φ at the onset and

slower than φ afterwards in order to distribute the trajectory better on the

surface. For instance, the module trajectory could coil about the Z axis more

than one time. Finally, coverage increases with prolateness and decreases with

oblateness.

3. In order to improve the coverage of the deployed structure, future work should

include:

(a) Add a penalty cost to the cost function to force for either the position

state and/or the angular velocity state to be close to its reference state.

(b) Add an extra constraint set to the controller such as a set of landmark

surface points through which the module has to go before reaching its
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target anchoring location.

(c) Add modes to the low-level controller with the first tackling deployment

near the pole of the object and the second tackling deployment away form

the object’s pole.

(d) Adapt the high level controller to deploy modules in different directions,

i.e. have multiple chain structures.

In the next section, systemic stability will be analysed.

5.4 Linear Model Predictive Control Law Perfor-

mance and Stability: Spin Tracking Case

This section analyses the system’s behaviour under the linear law over the time

span it takes for the module to reach its target anchoring location and stop. As

was established in the previous sections, the linear MPC law is not stabilising as

its output diverges over time but the timescale of the convergence of the module

to its anchoring location is much shorter than that of the angular velocity of the

object. Therefore, the aim here is to examine the physical effects on and stability

of the system over the time span of the module deployment, i.e. when instability

has possibly not yet set in. Finally, in all cases, the nonlinear MPC law produces

much better stability results than the linear control law and offer a suitable solution

should the faster linear control law perform poorly.

5.4.1 Origin of the Data

The data displayed in this section corresponds to the following specific scenario:

1. The MPC controller is tracking a pure state of spin for the object with a target

spin rate ω0 6= 0.

2. The initial rotational state of the object corresponds to the worst case scenario

where symmetric objects nutate with Wzinit = 0.5 and asymmetric objects
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tumble with h2

2T
= Imid, where Imid is the moment of inertia about the unstable

axis.

3. The data is collecting until the module stops at its target anchoring location.

All the results obtained across the simulation parameters space were similar for

both the linear and nonlinear MPC controller and were identical to those produced

when the objective was to track a despun state. Therefore, all descriptions and

commentaries made on the data displayed below remain valid:

1. For all mass ratios

2. Whether the objective is to track a pure state of spin or a despun state.

3. For both the linear and nonlinear MPC controller.

4. For potentially stable and unstable systems.

In each of the following sections, the system’s stability is examined with phase di-

agrams along with the evolutions of the nutation angle and of the object’s rotational

kinetic energy.

169



Chapter 5: Feasibility Study and Validation: Simulation of the Deployment of a
Single Robot Module

5.4.2 Symmetric Ellipsoids
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Figure 5.18: Phase Diagram
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Figure 5.19: Nutation vs. Time
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Figure 5.20: Kinetic Energy vs. Time
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Figure 5.21: Nutation vs. Kinetic Energy

Figure 5.22: Stability for the Prolate Case (a=0.1 b=0.1 c=1)
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For the prolate ellipsoid case (a = 1
10
, b = 1

10
, c = 1), the phase diagram indi-

cates that, for a mass ratio equal to MR = 10, over the time span of the module

deployment, the object experienced a very large deceleration and a reversal of its

angular velocity to reach a magnitude nearly three orders of magnitude above its

initial value. For mass ratio MR = 100, the magnitude increases by a factor of ten.

For mass ratios MR = 1000 and MR = 10000, the effect of the module deployment

on the rotational state of the system is negligible.

This is confirmed by the level of kinetic energy which is constant over time for

mass ratios MR = 100 MR = 1000 and MR = 10000 but rises coherently and

sharply for MR = 10 increasing by two orders of magnitude.

The nutation angle decreases over the module deployment from 1.57 rad to round

about 0.8 rad for mass ratio MR = 10 and from 1.57 rad to round about 1.4 rad

for mass ratio MR = 100. For all other mass ratios, the nutation angle remains

constant although it decreases very slowly passed the anchoring location.

Lastly the nutation angle decreases with increasing rotational kinetic energy

which is consistent with a convergence of the rotational state towards a pure state

of spin. Indeed increasing the spin rate, i.e. the rotational kinetic energy, increases

rotational stability about the spinning axis.

The lower the mass ratio of the object’s to the module’s, the larger the deploy-

ment effect on the rotational state of the system. For mass ratios of MR = 1000 or

more this effect is negligible.
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Figure 5.23: Phase Diagram
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Figure 5.24: Nutation vs. Time
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Figure 5.25: Kinetic Energy vs. Time
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Figure 5.26: Nutation vs. Kinetic Energy

Figure 5.27: Stability for the Prolate Case (a=0.5 b=0.5 c=1)
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For the prolate ellipsoid case (a = 1
2
, b = 1

2
, c = 1), the phase diagram indi-

cates that, for a mass ratio equal to MR = 10, over the time span of the module

deployment, the object experienced a very large deceleration and a reversal of its

angular velocity to reach a magnitude nearly three orders of magnitude above its

initial value. For mass ratio MR = 100, the magnitude increases by a factor of ten.

For mass ratios MR = 1000 and MR = 10000, the effect of the module deployment

on the rotational state of the system is negligible.

This is confirmed by the level of kinetic energy which is constant over time for

mass ratios MR = 1000 and MR = 10000 but rises coherently and sharply for

MR = 10 increasing by three orders of magnitude and for MR = 100 increasing by

two orders of magnitude.

The nutation angle evolution exhibits the same pattern regardless of the mass

ratio but with a timescale dependent on the mass ratio. In figure 5.24, for mass

ratio MR = 10, the nutation angle starts by increasing reaching 1.57 rad but then

decreases over the rest of the module deployment from 1.57 rad to round about 0.3

rad. As confirmed by figure 5.24, the nutation angle reaches a local minimum of 0.3

rad. The timescale of the nutation angle evolution increases with increasing mass

ratios in proportions that remain to be determined. For mass ratio MR = 10000, it

is no longer observable on the graph.

Again, the nutation angle decreases with increasing rotational kinetic energy

which is consistent with a convergence of the rotational state towards a pure state

of spin. The lower the mass ratio of the object’s to the module’s, the larger the

deployment effect on the rotational state of the system. For mass ratios of MR =

1000 or more this effect is negligible.
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Figure 5.28: Phase Diagram
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Figure 5.29: Nutation vs. Time
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Figure 5.30: Kinetic Energy vs. Time
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Figure 5.31: Nutation vs. Kinetic Energy

Figure 5.32: Stability for the Prolate Case (a=0.8 b=0.8 c=1)
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For the prolate ellipsoid case (a = 4
5
, b = 4

5
, c = 1), the phase diagram indi-

cates that, for a mass ratio equal to MR = 10, over the time span of the module

deployment, the object experienced a very large deceleration and a reversal of its

angular velocity to reach a magnitude nearly three orders of magnitude above its

initial value. For mass ratio MR = 100, the magnitude increases by a factor of ten.

For mass ratios MR = 1000 and MR = 10000, the effect of the module deployment

on the rotational state of the system is negligible.

This is confirmed by the level of kinetic energy which is constant over time for

mass ratios MR = 1000 and MR = 10000 but rises coherently and sharply for

MR = 10 increasing by three orders of magnitude and for MR = 100 increasing by

two orders of magnitude.

The nutation angle evolution exhibits the same pattern regardless of the mass

ratio but with a timescale dependent on the mass ratio. In figure 5.29, for mass

ratio MR = 10, the nutation angle starts by increasing reaching 1.57 rad but then

decreases over the rest of the module deployment from 1.57 rad to round about 0.4

rad. As confirmed by figure 5.29, the nutation angle reaches a local minimum of 0.4

rad. The timescale of the nutation angle evolution increases with increasing mass

ratios in proportions that remain to be determined. For mass ratio MR = 10000, it

is no longer observable on the graph. The timescale is also slightly faster than for

(a = 1
10
, b = 1

10
, c = 1) and (a = 1

2
, b = 1

2
, c = 1). For the ellipsoid (a = 4

5
, b = 4

5
, c =

1) and mass ratio MR = 10, the local minimum of the nutation angle is reached

before two normalised seconds while for the other two ellipsoids, the local minimum

is reached after. This is indicative that for prolate shapes closer to a sphere, the

timescale of the nutation angle evolution becomes increasingly faster.

Again, the nutation angle decreases with increasing rotational kinetic energy

which is consistent with a convergence of the rotational state towards a pure state

of spin. The lower the mass ratio of the object’s to the module’s, the larger the

deployment effect on the rotational state of the system. For mass ratios of MR =

10000 or more this effect is negligible.
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Figure 5.33: Phase Diagram
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Figure 5.34: Nutation vs. Time
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Figure 5.35: Kinetic Energy vs. Time
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Figure 5.36: Nutation vs. Kinetic Energy

Figure 5.37: Stability for the Oblate Case (a=1.25 b=1.25 c=1)
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For the oblate ellipsoid case (a = 5
4
, b = 5

4
, c = 1), the phase diagram indicates

that, for a mass ratio equal to MR = 10, over the time span of the module deploy-

ment, the object experienced a very large deceleration and a reversal of its angular

velocity to reach a magnitude nearly three orders of magnitude above its initial

value. For mass ratio MR = 100, the magnitude increases by a factor of ten. For

mass ratios MR = 1000 and MR = 10000, the effect of the module deployment on

the rotational state of the system is negligible.

This is confirmed by the level of kinetic energy which is constant over time for

mass ratios MR = 1000 and MR = 10000 but rises coherently and sharply for

MR = 10 increasing by four orders of magnitude and for MR = 100 increasing by

three orders of magnitude. This is one order of magnitude more than for prolate

ellipsoids.

The nutation angle evolution exhibits the same pattern regardless of the mass

ratio but with a timescale dependent on the mass ratio. In figure 5.34, for mass

ratio MR = 10, the nutation angle starts by increasing reaching 1.57 rad but then

decreases over the rest of the module deployment from 1.57 rad to round about 0.4

rad. As confirmed by figure 5.34, the nutation angle reaches a local minimum of 0.4

rad. The timescale of the nutation angle evolution increases with increasing mass

ratios in proportions that remain to be determined. For mass ratio MR = 10000, it

is no longer observable on the graph.

Again, the nutation angle decreases with increasing rotational kinetic energy

which is consistent with a convergence of the rotational state towards a pure state

of spin. The lower the mass ratio of the object’s to the module’s, the larger the

deployment effect on the rotational state of the system. For mass ratios of MR =

10000 or more this effect is negligible.
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Figure 5.38: Phase Diagram
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Figure 5.39: Nutation vs. Time
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Figure 5.40: Kinetic Energy vs. Time
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Figure 5.41: Nutation vs. Kinetic Energy

Figure 5.42: Stability for the Oblate Case (a=2 b=2 c=1)
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For the oblate ellipsoid case (a = 2, b = 2, c = 1), the phase diagram indicates

that, for a mass ratio equal to MR = 10, over the time span of the module deploy-

ment, the object experienced a very large deceleration and a reversal of its angular

velocity to reach a magnitude nearly three orders of magnitude above its initial

value. For mass ratio MR = 100, the magnitude increases by a factor of ten. For

mass ratios MR = 1000 and MR = 10000, the effect of the module deployment on

the rotational state of the system is negligible.

This is confirmed by the level of kinetic energy which is constant over time for

mass ratios MR = 1000 and MR = 10000 but rises coherently and sharply for

MR = 10 increasing by four orders of magnitude and for MR = 100 increasing by

three orders of magnitude. This is one order of magnitude more than for prolate

ellipsoids.

The nutation angle evolution exhibits the same pattern regardless of the mass

ratio but with a timescale dependent on the mass ratio. In figure 5.39, for mass

ratio MR = 10, the nutation angle starts by increasing reaching 1.57 rad but then

decreases over the rest of the module deployment from 1.57 rad to round about 0.4

rad. As confirmed by figure 5.39, the nutation angle reaches a local minimum of 0.4

rad. The timescale of the nutation angle evolution increases with increasing mass

ratios in proportions that remain to be determined. For mass ratio MR = 10000, it

is no longer observable on the graph.

Again, the nutation angle decreases with increasing rotational kinetic energy

which is consistent with a convergence of the rotational state towards a pure state

of spin. The lower the mass ratio of the object’s to the module’s, the larger the

deployment effect on the rotational state of the system. For mass ratios of MR =

10000 or more this effect is negligible.
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Figure 5.43: Phase Diagram
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Figure 5.44: Nutation vs. Time
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Figure 5.45: Kinetic Energy vs. Time
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Figure 5.46: Nutation vs. Kinetic Energy

Figure 5.47: Stability for the Oblate Case (a=10 b=10 c=1)
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For the oblate ellipsoid case (a = 10, b = 10, c = 1), the phase diagram indi-

cates that, for a mass ratio equal to MR = 10, over the time span of the module

deployment, the object experienced a very large deceleration and a reversal of its

angular velocity to reach a magnitude nearly three orders of magnitude above its

initial value. For mass ratio MR = 100, the magnitude increases by a factor of ten.

For mass ratios MR = 1000 and MR = 10000, the effect of the module deployment

on the rotational state of the system is negligible.

This is confirmed by the level of kinetic energy which is constant over time for

mass ratios MR = 1000 and MR = 10000 but rises coherently and sharply for

MR = 10 increasing by five orders of magnitude and for MR = 100 increasing by

four orders of magnitude. This is one order of magnitude more than for prolate

ellipsoids.

The nutation angle evolution exhibits the same pattern regardless of the mass

ratio but with a timescale dependent on the mass ratio. In figure 5.44, for mass

ratio MR = 10, the nutation angle starts by increasing reaching 1.57 rad but then

decreases over the rest of the module deployment from 1.57 rad to round about 0.4

rad. As confirmed by figure 5.44, the nutation angle reaches a local minimum of 0.4

rad. The timescale of the nutation angle evolution increases with increasing mass

ratios in proportions that remain to be determined. For mass ratio MR = 10000, it

is no longer observable on the graph. The timescale is also slightly faster than for

(a = 5
4
, b = 5

4
, c = 1) than for the other two. For the ellipsoid (a = 10, b = 10, c = 1)

and (a = 2, b = 2, c = 1) and mass ratio MR = 10, the local minimum of the

nutation angle is reached after two normalised seconds while for (a = 5
4
, b = 5

4
, c = 1),

the local minimum is reached before. This is indicative that for oblate shapes closer

to a sphere, the timescale of the nutation angle evolution becomes increasingly faster.

Again, the nutation angle decreases with increasing rotational kinetic energy

which is consistent with a convergence of the rotational state towards a pure state

of spin. The lower the mass ratio of the object’s to the module’s, the larger the

deployment effect on the rotational state of the system. For mass ratios of MR =

10000 or more this effect is negligible.
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5.4.3 Asymmetric Ellipsoids and Limit Cases

The first limit case is the perfect sphere. As per section ??, spheres separates

potentially stable and unstable shapes.
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Figure 5.48: Phase Diagram
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Figure 5.49: Nutation vs. Time
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Figure 5.50: Kinetic Energy vs. Time
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Figure 5.51: Nutation vs. Kinetic energy

Figure 5.52: Stability for the Sphere Case

For the spherical case, the phase diagram indicates that, for a mass ratio equal

to MR = 10, over the time span of the module deployment, the object experienced

a very large deceleration and a reversal of its angular velocity to reach a magnitude

nearly three orders of magnitude above its initial value. For mass ratio MR = 100,

the magnitude increases by a factor of ten. For mass ratios MR = 1000 and MR =

10000, the effect of the module deployment on the rotational state of the system is

negligible.
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This is confirmed by the level of kinetic energy which rises coherently and sharply

for MR = 10 increasing by four orders of magnitude and for MR = 100 increasing

by three orders of magnitude. This is the same order of magnitude as for prolate

ellipsoids. For mass ratios MR = 1000 and MR = 10000, the level of rotational

kinetic energy is constant at the start and after two normalised seconds starts to

decrease. For mass ratio MR = 10 and MR = 100, the early behaviour is similar

before the steep rise. The scale of the graph does not make it visible.

The nutation angle evolution exhibits the same pattern regardless of the mass

ratio but with a timescale dependent on the mass ratio. In figure 5.49, for mass

ratio MR = 10, the nutation angle starts by increasing reaching 1.57 rad but then

decreases over the rest of the module deployment from 1.57 rad to round about 0.4

rad. As confirmed by figure 5.51, the nutation angle reaches a local minimum of 0.4

rad. The timescale of the nutation angle evolution increases with increasing mass

ratios in proportions that remain to be determined. For mass ratio MR = 10000, it

is no longer observable on the graph. The nutation angle evolution shows that the

system does not fully recover from the nutation caused by the module deployment.

Since a sphere is symmetrical about all its principal axes, it is always in a pure

state of spin. What the residual nutation means in this case is that the spinning

axis direction has permanently diverged by about 20◦ from its original pointing

direction.

Again, the nutation angle decreases with increasing rotational kinetic energy

which is consistent with a convergence of the rotational state towards a pure state

of spin. The lower the mass ratio of the object’s to the module’s, the larger the

deployment effect on the rotational state of the system. For mass ratios of MR =

10000 or more this effect is negligible.
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Figure 5.53: Phase Diagram
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Figure 5.54: Nutation vs. Time
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Figure 5.55: Kinetic Energy vs. Time
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Figure 5.56: Nutation vs. Kinetic Energy

Figure 5.57: Stability for the Asymmetric Case (a=0.1 b=0.8 c=1)
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For the asymmetric ellipsoid case (a = 1
10
, b = 8

10
, c = 1), the phase diagram

indicates that, for a mass ratio equal to MR = 10, over the time span of the module

deployment, the object experienced a very large deceleration and a reversal of its

angular velocity to reach a magnitude nearly three orders of magnitude above its

initial value. For mass ratio MR = 100, the magnitude increases by a factor of ten.

For mass ratios MR = 1000 and MR = 10000, the effect of the module deployment

on the rotational state of the system is negligible.

The orbit for MR = 10 and MR = 100 is closed or about to close. Although it

cannot be observed on the graph, it is also the case forMR = 1000 andMR = 10000.

This indicates that, over the course of the module deployment, a return to the initial

angular velocity magnitude about the Z axis which is the minor principal axis.

The level of rotational kinetic energy is constant for all mass ratios except be-

tween 1.5 and 2 normalised seconds where a brief surge or drop occurs before the

level of rotational kinetic energy returns to its initial level. The level of rotational

kinetic energy is of the same order of magnitude as for prolate ellipsoids.

In figure 5.54, for MR = 1000 and MR = 10000, the nutation angle departs from

its initial value of 0.85 rad to reach 1.57 rad to finally converge to its initial value.

For MR = 100, the nutation angle departs from its initial value twice and finally

converges to its initial value of 0.85 rad. For MR = 10, the nutation angle evolution

exhibits the same pattern but for the fact that the nutation angle converges to 0.2

rad indicating a change of rotation axis towards the minor Z axis. For all mass

ratios the timescale is similar with a slight increase for decreasing mass ratios.

Again, the nutation angle decreases with increasing rotational kinetic energy

which is consistent with a convergence of the rotational state towards a pure state

of spin. However, for this asymmetric case, the nutation angle does not converge to

a local minimum. Extrapolating on the exhibited trend, the nutation angle could

possibly converge to 0 rad which would correspond to a pure state of spin about the

minor principal axis. In this respect, in the asymmetric object case, the linear law

exhibits a far better performance than in the symmetric object case.

Again, the lower the mass ratio of the object’s to the module’s, the larger the
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deployment effect on the rotational state of the system. For mass ratios of MR =

10000 or more this effect is negligible.
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Figure 5.58: Phase Diagram
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Figure 5.59: Nutation vs. Time
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Figure 5.60: Kinetic Energy vs. Time
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Figure 5.61: Nutation vs. Kinetic Energy

Figure 5.62: Stability for the Asymmetric Case (a=0.33 b=0.5 c=1)
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For the asymmetric ellipsoid case (a = 1
3
, b = 1

2
, c = 1), the phase diagram

indicates that, for a mass ratio equal to MR = 10, over the time span of the module

deployment, the object experienced a very large deceleration and a reversal of its

angular velocity to reach a magnitude nearly two orders of magnitude above its

initial value. For mass ratio MR = 100, the magnitude increases by a factor of ten.

For mass ratios MR = 1000 and MR = 10000, the effect of the module deployment

on the rotational state of the system is negligible. The orbits are similar to the

symmetric cases. The rest of the graphs share similarities with both the previous

asymmetric case and the symmetric cases.

The level of rotational kinetic energy is constant for all mass ratios except be-

tween 1.5 and 2 normalised seconds where a brief surge or drop occurs before the level

of rotational kinetic energy returns to its initial level, except for MR = 10 where

the rotational kinetic energy settles at a new higher level. The level of rotational

kinetic energy is of the same order of magnitude as for prolate ellipsoids.

In figure 5.59, for MR = 10000, the nutation angle remains constant at 1.35 rad.

For MR = 1000, the nutation angle departs from its initial value of 1.35 rad to reach

1.45 rad to finally converge to 1.4 rad. For MR = 100, the nutation angle departs

from its initial value of 1.35 rad to reach 1.57 rad to finally converge to 1 rad.

Finally, for MR = 10, the nutation angle departs from its initial value of 1.35 rad

to reach 1.57 rad to finally converge to 0.3 rad indicating a change of rotation axis

towards the minor Z axis. The timescale of the nutation angle evolution increases

with increasing mass ratios in proportions that remain to be determined. For mass

ratio MR = 10000, it is no longer observable on the graph.

Again, the nutation angle decreases with increasing rotational kinetic energy

which is consistent with a convergence of the rotational state towards a pure state

of spin. For this asymmetric case, the nutation angle converges to a local minimum

at 0.3 rad. What the residual nutation angle means in this case is that the rotation

axis pointing fluctuates inside a 20◦ cone. In this respect, in the asymmetric object

case, the linear law exhibits a better performance than in the symmetric object case.

Again, the lower the mass ratio of the object’s to the module’s, the larger the
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deployment effect on the rotational state of the system. For mass ratios of MR =

10000 or more this effect is negligible.
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Figure 5.63: Phase Diagram
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Figure 5.64: Nutation vs. Time
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Figure 5.65: Kinetic Energy vs. Time
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Figure 5.66: Nutation vs. Kinetic Energy

Figure 5.67: Stability for the Asymmetric Case (a=0.8 b=0.9 c=1)
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For the asymmetric ellipsoid case (a = 8
10
, b = 9

10
, c = 1), the phase diagram

indicates that, for a mass ratio equal to MR = 10, over the time span of the module

deployment, the object experienced a very large deceleration and a reversal of its

angular velocity to reach a magnitude nearly two orders of magnitude above its

initial value. For mass ratio MR = 100, the magnitude increases by a factor of ten.

For mass ratios MR = 1000 and MR = 10000, the effect of the module deployment

on the rotational state of the system is negligible. The orbits are similar to the

symmetric cases. The rest of the graphs share similarities with both the previous

asymmetric case and the symmetric cases.

The level of rotational kinetic energy is constant for MR = 1000 and MR =

10000 with a slight decrease after 1.5 normalised second. It increases for MR = 100

and diverges for MR = 10. The level of rotational kinetic energy is of the same

order of magnitude as for prolate ellipsoids.

The nutation angle evolution exhibits the same pattern regardless of the mass

ratio but with a timescale dependent on the mass ratio. In figure 5.64, for mass ratio

MR = 10, the nutation angle starts by increasing from 1.15 rad to 1.57 rad but then

decreases over the rest of the module deployment from 1.57 rad to round about 0.4

rad. As confirmed by figure 5.64, the nutation angle reaches a local minimum of 0.4

rad. The timescale of the nutation angle evolution increases with increasing mass

ratios in proportions that remain to be determined. For mass ratio MR = 10000, it

is no longer observable on the graph. This behaviour is similar to those exhibited

for the prolate ellipsoids cases.

Again, the nutation angle decreases with increasing rotational kinetic energy

which is consistent with a convergence of the rotational state towards a pure state

of spin. For this asymmetric case, the nutation angle converges to a local minimum

at 0.4 rad. What the residual nutation angle means in this case is that the rotation

axis pointing fluctuates inside a 20◦ cone. In this respect, in the asymmetric object

case, the linear law exhibits a similar performance to the symmetric object case.

Again, the lower the mass ratio of the object’s to the module’s, the larger the

deployment effect on the rotational state of the system. For mass ratios of MR =
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10000 or more this effect is negligible.

5.4.4 Conclusion

As the objective of deploying to the target anchoring location is always fulfilled,

this section examined the stability performance of the linear law from the point of

view of the behaviour of the system’s rotational state up to the successful deployment

of one module to its target anchoring location. As mentioned in section 5.4.1, the

results displayed in sections 5.4.2 and 5.4.3 are identical to those produced for a

reference trajectory where the objective is to track a despun state. The results

displayed in this section correspond to worst case initial conditions in terms of the

object’s initial rotational state. Nonetheless, for all other initial conditions the

results are similar. Therefore, the conclusions drawn below are also valid for other

initial conditions which will be examined in greater depth in the next section.

With respect to the deployment objectives and owing to the similarities between

the linear and nonlinear control law results, the observations made in sections 5.4.2

and 5.4.3 led to the following conclusions:

1. The results showed that despite challenging initial rotational states and initial

divergence of the nutation angle, both the linear and nonlinear controllers

drove the nutation angle to a minimum value in [0.3 rad, 0.4 rad], i.e. [17◦,

23◦]. Indeed the trends shown by the graphs indicate that after reaching this

minimum value the nutation angle would increase again. Consequently, for

both the linear and nonlinear control laws, the system’s objective of reaching

either a pure state of spin a despun state is not achieved and a precise pointing

direction for the rotation axis cannot be achieved with the current version of

the controller.

2. For both the linear and nonlinear control laws, there is always a residual

angular velocity at the module target anchoring location. The low-level module

controller should behave like a regulator and the module should not have any

residual angular velocity upon reaching the target anchoring location. This
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suggest a timescale difference between angular velocity and anchoring location

states which should be corrected with future work.

3. There is no provision for a dissipative energy mechanism in the design of the

low-level module controller. Despite the fact that, as per section 5.2, the

low-level module controller can output positive or negative control commands,

this is not sufficient for dissipating the rotational kinetic energy of the object.

Therefore, despinning the object is not achievable under the current controller

design.

4. The linear law values correspond to extremely large and unrealistic energy re-

quirements. The nonlinear law on the other hand provides far more reasonable

results. In this respect and if its timescale allows it, the nonlinear law should

be preferred for implementation.

5. Finally, the system’s objective of reaching either a pure state of spin a de-

spun state is impaired by large mass ratios. For MR ≥ 1000, the nutation

angle remains close to its initial value and is not influenced by the module

deployment.

6. The mass ratio is the parameter which bears the greater influence on the

controller’s performance. All control inputs have the same order of magnitude

regardless of the magnitude of the module’s moments of inertia, hence the

lower the mass ratio, the lower the difference between the inertia of the object

and the module, the greater the energy transfer between the module and the

object, all other parameters being equal. Consequently:

(a) The lower the mass ratio, the greater the control effects but the greater

the possibility and magnitude of divergence.

(b) Stability increases with increasing mass ratios.

7. Finally, the shape of the object influences the controller’s performance. This

influence of shape is best captured with respect to the limit case of the sphere

as follows:
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(a) Systems with asymmetric objects are more resistant to divergence than

systems with a symmetric object.

(b) The more symmetric the object is, the more the control commands tend

to diverge.

(c) Stability increases with prolateness and oblateness when departing from

an initial spherical shape.

(d) Finally, the timescale of the system increases with symmetry. It decreases

with prolateness and oblateness when departing from an initial spherical

shape and the limit case of the sphere has the largest timescale.

This conclusions section will end with some general comments:

1. It was established in chapter 4 that the system is not controllable. The sys-

tem’s controllability matrix has at best a rank of 6 or a rank of 4 for the despin

tracking case. The results presented in this section show a correlation between

increasing rotational kinetic energy and decreasing nutation angle. However,

for both the pure spin or despin tracking cases, the results of the controller ac-

tions are the same which makes it unclear what the real influence of controller

is. Indeed, the energy only transferred to the object by the module. There

is no provision for a dissipative mechanism which would draw out rotational

kinetic energy from the object. At constant rotational kinetic energy level,

for an isolated system, an increase in moment of inertia leads to a decrease

of the magnitude of the angular velocity. The magnitude of the influence of

mass distribution should be evaluated in order to investigate the possibility of

explicitly involving changes of mass distribution in the deployment strategy

and controller design.

2. The reason for the convergence to a nutation state as opposed to a convergence

to a nutationless state is unclear. It seems that the closer the rotational state

to its equilibrium spinning state, the harder it is to control, especially about

the minor unstable axis. Further investigations are required into this.
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3. As per previous point, the introduction of a nutation damper should be in-

vestigated to complement the work of the controller and help the convergence

process. But this is left for future work.

4. For equal angular velocities, oblate objects have a higher level of rotational ki-

netic energy than prolate objects because of the moment of inertia about their

spinning axis is the largest in magnitude as opposed to prolate objects where

the moment of inertia about their spinning axis is the lowest in magnitude.

In the next section, the performance of the control laws will be examined of

longer timescale.

5.5 Linear Model Predictive Control Law: Stabil-

isation of the Spin Tracking Case

This section analyses the system’s behaviour under the linear law over an un-

bounded time span where the module is left free to carry on moving beyond its

target anchoring location. As was established in the previous sections, the linear

MPC law is not stabilising as its output diverges over time and the timescale of the

convergence of the module to its anchoring location is much shorter than that of

the angular velocity of the object. The aim here is to further examine the physical

effects on and stability of the system over an unbounded time span in order to eval-

uate the timescale difference between deployment and angular velocity states as well

as to examine the influence of initial conditions. Again, in all cases, the nonlinear

MPC law produces much better stability results than the linear control law and an

explicit comparison will be made in the next section 5.6.

5.5.1 Origin of the Data

The data displayed in this section corresponds to the following specific scenario:

1. The linear MPC controller tracks a pure state of spin for the object with a

target spin rate ω0 6= 0 for the angular velocity part of the system state.
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2. All initial rotational state of the object are represented: for symmetric objects

Wzinit ∈ {0.5, 0.75, 1} and for asymmetric objects

h2

2T
∈ {Imin, Imin+Imid2

, Imid,
Imax+Imid

2
, Imax}.

3. The module is not constrained to stop at its target location and is left free to

move on the surface of the object with the sole objective of tracking a pure

state of spin for the object. The aim is to analyse the system’s behaviour near

the origin over a large timescale.

5.5.2 Data Description

The data is displayed for specific shapes representative of a spectrum of realistic

situations the robot could encounter. These shapes encompass a sphere, one oblate,

one prolate and one asymmetric ellipsoids which are:

Ellipsoid Type a b c System Stability Status
Prolate 1

2
1
2

1 Potentially Stable
Sphere 1 1 1 Potentially Stable

Asymmetric 1
10

8
10

1 Potentially Stable
Asymmetric 8

10
9
10

1 Potentially Stable (Close to Unstable)
Oblate 2 2 1 Potentially Stable

Table 5.6: Ellipsoids Normalised Semi-Axes Lengths

All the results obtained for the linear MPC controller across all simulation pa-

rameters were identical to those produced when the objective was to track a despun

state. Therefore, all descriptions and commentaries made on the data displayed

below remain valid:

1. For all ellipsoidal shapes

2. For all mass ratios MR

3. Whether the objective is to track a pure state of spin or a despun state.

In each of the following sections, the system’s stability is examined with phase di-

agrams along with the evolutions of the nutation angle and of the object’s rotational

kinetic energy.
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5.5.3 Sphere Case

As per section 5.4, for the sphere case, the linear control law enables the module

to reach its target anchoring location within 3 normalised seconds. As per figures

5.69 and 5.70 below, the nutation angle and the object’s rotational kinetic energy

diverge after 4 normalised seconds. Both the rotational kinetic energy and nutation

angle diverge exhibiting high frequencies with large changes in magnitude which are

indicative of an accelerating tumbling state. The frequency increases with increasing

mass ratio and the amplitude decreases with increasing mass ratio. Instability sets in

very shortly after the module deployed successfully. The instability and deployment

timescales are nearly concurrent and therefore way too close in time for the linear

control law to be of practical use.
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Figure 5.68: Phase Diagrams for the Z
Axis (Sphere)

0 1 2 3 4 5 6 7 8 9

Time (Normalised Seconds)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ra
d

Object Nutation Angle vs. Time

MR=10
MR=100
MR=1000
MR=10000

Figure 5.69: Phase Diagrams for the Z
Axis (Sphere)
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Figure 5.70: Phase Diagrams for the Z
Axis (Sphere)
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Figure 5.71: Phase Diagrams for the Z
Axis (Sphere)

Figure 5.72: Sphere Z Axis Stability Free Motion

196



Chapter 5: Feasibility Study and Validation: Simulation of the Deployment of a
Single Robot Module

5.5.4 Symmetric Case (a = 0.5, b = 0.5, c = 1)

In this subsection, the linear control law is assessed for three different initial

object’s rotational states. For each of these initial conditions, two sets of graphs are

used. One set with all the mass ratios and the other with only the highest mass

ratios to account for the differences in scale.

5.5.4.1 Initial Condition Wzinit = 0.5

As per section 5.4, for the prolate ellipsoid (a = 0.5, b = 0.5, c = 1), the linear

control law enables the module to reach its target anchoring location within 2 nor-

malised seconds. As per figures 5.73 and 5.81 below, the nutation angle and the

object’s rotational kinetic energy diverge after 4 normalised seconds. Both the ro-

tational kinetic energy and nutation angle diverge exhibiting high frequencies with

large changes in magnitude which are indicative of an accelerating tumbling state.

Instability sets in very shortly after the module deployed successfully. The instabil-

ity and deployment timescales are nearly concurrent and therefore way too close in

time for the linear control law to be of practical use. Interestingly, the frequency of

the nutation angle evolution is at least an order of magnitude higher for the two in-

termediary mass ratios MR = 100 and MR = 1, 000 than for the lowest and largest

mass ratios respectively MR = 10 and MR = 10, 000. An order of size analysis of

the ratio of rotational kinetic energy to inertia would conclude that an increase in

inertia should prompt a decrease of the frequency of the nutation angle evolution.

This suggests the possible existence of a resonance phenomenon parametrised by

the mass ratio MR the investigation of which is left for future work.
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Figure 5.73: Wzinit = 0.5
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Figure 5.74: Wzinit = 0.5
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Figure 5.75: Wzinit = 0.5
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Figure 5.76: Wzinit = 0.5

Figure 5.77: Phase Diagrams for the Z Axis (a=0.5 b=0.5 c=1)
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Figure 5.78: Wzinit = 0.5
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Figure 5.79: Wzinit = 0.5
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Figure 5.80: Wzinit = 0.5
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Figure 5.81: Wzinit = 0.5

Figure 5.82: Phase Diagrams for the Z Axis (a=0.5 b=0.5 c=1)
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5.5.4.2 Initial Condition Wzinit = 0.75

As per section 5.4, for the prolate ellipsoid (a = 0.5, b = 0.5, c = 1), the linear

control law enables the module to reach its target anchoring location within 2 nor-

malised seconds. As per figures 5.83 and 5.91 below, the nutation angle and the

object’s rotational kinetic energy diverge after 4 normalised seconds. Both the ro-

tational kinetic energy and nutation angle diverge exhibiting high frequencies with

large changes in magnitude which are indicative of an accelerating tumbling state.

Instability sets in very shortly after the module deployed successfully. The instabil-

ity and deployment timescales are nearly concurrent and therefore way too close in

time for the linear control law to be of practical use. Again, the frequency of the

nutation angle evolution is at least an order of magnitude higher for the two interme-

diary mass ratios MR = 100 and MR = 1, 000 than for the lowest and largest mass

ratios respectively MR = 10 and MR = 10, 000 and orders of magnitude larger

for Wzinit = 0.75 than for Wzinit = 0.5. An order of size analysis of the ratio of

rotational kinetic energy to inertia would conclude that an increase in inertia should

prompt a decrease of the frequency of the nutation angle evolution. This suggests

the possible existence of a resonance phenomenon parametrised by the mass ratio

MR the investigation of which is left for future work.
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Figure 5.83: Wzinit = 0.75
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Figure 5.84: Wzinit = 0.75

0 5 10 15 20 25 30

Time (Normalised Seconds)

0

2

4

6

8

10

12

14

N
or

m
al

is
ed

 D
im

en
si

on
le

ss
 E

ne
rg

y

#10 8 Object Kinetic Energy vs. Time

MR=10000
MR=1000
MR=100
MR=10

Figure 5.85: Wzinit = 0.75
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Figure 5.86: Wzinit = 0.75

Figure 5.87: Phase Diagrams for the Z Axis (a=0.5 b=0.5 c=1)
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Figure 5.88: Wzinit = 0.75
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Figure 5.89: Wzinit = 0.75
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Figure 5.90: Wzinit = 0.75
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Figure 5.91: Wzinit = 0.75

Figure 5.92: Phase Diagrams for the Z Axis (a=0.5 b=0.5 c=1)
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5.5.4.3 Initial Condition Wzinit = 1

As per section 5.4, for the prolate ellipsoid (a = 0.5, b = 0.5, c = 1), the linear

control law enables the module to reach its target anchoring location within 2 nor-

malised seconds. As per figures 5.93 and 5.101 below, the nutation angle and the

object’s rotational kinetic energy diverge after 4 normalised seconds. Both the ro-

tational kinetic energy and nutation angle diverge exhibiting high frequencies with

large changes in magnitude which are indicative of an accelerating tumbling state.

Both the frequency and the amplitude increase with decreasing mass ratio. Insta-

bility sets in very shortly after the module deployed successfully. For MR = 10, 000,

however, non-expanding closed orbits can be observed which is indicative of stability

at least over a longer period of time, 12 normalised seconds in this case, than for

lower mass ratios. Nonetheless, the instability and deployment timescales are nearly

concurrent and therefore way too close in time for the linear control law to be of

practical use.
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Figure 5.93: Wzinit = 1
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Figure 5.94: Wzinit = 1
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Figure 5.95: Wzinit = 1
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Figure 5.96: Wzinit = 1

Figure 5.97: Phase Diagrams for the Z Axis (a=0.5 b=0.5 c=1)
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Figure 5.98: Wzinit = 1
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Figure 5.99: Wzinit = 1
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Figure 5.100: Wzinit = 1
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Figure 5.101: Wzinit = 1

Figure 5.102: Phase Diagrams for the Z Axis (a=0.5 b=0.5 c=1)
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5.5.5 Symmetric Case (a = 2, b = 2, c = 1)

In this subsection, the linear control law is assessed for three different initial

object’s rotational states. For each of these initial conditions, two sets of graphs are

used. One set with all the mass ratios and the other with only the highest mass

ratios to account for the differences in scale.

5.5.5.1 Initial Condition Wzinit = 0.5

As per section 5.4, for the oblate ellipsoid (a = 2, b = 2, c = 1), the linear control

law enables the module to reach its target anchoring location within 2 normalised

seconds. As per figures 5.103 and 5.111 below, the nutation angle and the object’s

rotational kinetic energy diverge after 2 normalised seconds for MR = 1, 000 and

immediately for all other MR. Both the rotational kinetic energy and nutation

angle diverge exhibiting high frequencies with large changes in magnitude which

are indicative of an accelerating tumbling state. Instability sets in immediately al-

though the module deploys successfully. The linear control law is of no practical

use. Interestingly, the frequency of the nutation angle evolution is at least an order

of magnitude higher for the two mass ratios MR = 100 and MR = 10, 000 than

for MR = 10 and MR = 1, 000. An order of size analysis of the ratio of rotational

kinetic energy to inertia would conclude that an increase in inertia should prompt

a decrease of the frequency of the nutation angle evolution. This suggests the pos-

sible existence of a resonance phenomenon parametrised by the mass ratio MR the

investigation of which is left for future work.
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Figure 5.103: Wzinit = 0.5
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Figure 5.104: Wzinit = 0.5
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Figure 5.105: Wzinit = 0.5
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Figure 5.106: Wzinit = 0.5

Figure 5.107: Phase Diagrams for the Z Axis (a=2 b=2 c=1)
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Figure 5.108: Wzinit = 0.5
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Figure 5.109: Wzinit = 0.5
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Figure 5.110: Wzinit = 0.5
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Figure 5.111: Wzinit = 0.5

Figure 5.112: Phase Diagrams for the Z Axis (a=2 b=2 c=1)
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5.5.5.2 Initial Condition Wzinit = 0.75

As per section 5.4, for the oblate ellipsoid (a = 2, b = 2, c = 1), the linear control

law enables the module to reach its target anchoring location within 2 normalised

seconds. As per figures 5.113 and 5.121 below, the nutation angle and the object’s

rotational kinetic energy diverge after 2 normalised seconds for MR = 1, 000 and

immediately for all other MR. Both the rotational kinetic energy and nutation

angle diverge exhibiting high frequencies with large changes in magnitude which

are indicative of an accelerating tumbling state. Instability sets in immediately

although the module deploys successfully. The linear control law is of no practical

use. Interestingly, the frequency of the nutation angle evolution is at least an order

of magnitude higher for the two mass ratios MR = 100 and MR = 10, 000 than

for MR = 10 and MR = 1, 000 and larger for Wzinit = 0.75 than for Wzinit = 0.5.

An order of size analysis of the ratio of rotational kinetic energy to inertia would

conclude that an increase in inertia should prompt a decrease of the frequency of

the nutation angle evolution. This suggests the possible existence of a resonance

phenomenon parametrised by the mass ratio MR the investigation of which is left

for future work.
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Figure 5.113: Wzinit = 0.75
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Figure 5.114: Wzinit = 0.75
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Figure 5.115: Wzinit = 0.75
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Figure 5.116: Wzinit = 0.75

Figure 5.117: Phase Diagrams for the Z Axis (a=2 b=2 c=1)
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Figure 5.118: Wzinit = 0.75
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Figure 5.119: Wzinit = 0.75
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Figure 5.120: Wzinit = 0.75
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Figure 5.121: Wzinit = 0.75

Figure 5.122: Phase Diagrams for the Z Axis (a=2 b=2 c=1)
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5.5.5.3 Initial Condition Wzinit = 1

As per section 5.4, for the oblate ellipsoid (a = 2, b = 2, c = 1), the linear control

law enables the module to reach its target anchoring location within 2 normalised

seconds. As per figures 5.123 and 5.131 below, the nutation angle and the object’s

rotational kinetic energy diverge after 4 normalised seconds for MR = 1, 000 and

immediately for all other MR. Both the rotational kinetic energy and nutation

angle diverge exhibiting high frequencies with large changes in magnitude which

are indicative of an accelerating tumbling state. Instability sets in immediately al-

though the module deploys successfully. The linear control law is of no practical

use. Interestingly, the frequency of the nutation angle evolution is at least an order

of magnitude higher for the two mass ratios MR = 100 and MR = 10, 000 than

for MR = 10 and MR = 1, 000. An order of size analysis of the ratio of rotational

kinetic energy to inertia would conclude that an increase in inertia should prompt

a decrease of the frequency of the nutation angle evolution. This suggests the pos-

sible existence of a resonance phenomenon parametrised by the mass ratio MR the

investigation of which is left for future work.
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Figure 5.123: Wzinit = 1
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Figure 5.124: Wzinit = 1
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Figure 5.125: Wzinit = 1
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Figure 5.126: Wzinit = 1

Figure 5.127: Phase Diagrams for the Z Axis (a=2 b=2 c=1)
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Figure 5.128: Wzinit = 1
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Figure 5.129: Wzinit = 1
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Figure 5.130: Wzinit = 1
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Figure 5.131: Wzinit = 1

Figure 5.132: Phase Diagrams for the Z Axis (a=2 b=2 c=1)
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5.5.6 Asymmetric Case (a = 0.1, b = 0.8, c = 1)

In this subsection, the linear control law is assessed for five different initial object’s

rotational states. For each of these initial conditions, two sets of graphs are used.

One set with all the mass ratios and the other with only the highest mass ratios to

account for the differences in scale. The shape of the asymmetric object corresponds

to the case of a potentially stable system.

5.5.6.1 Initial Condition h2

2T
= 130

The initial condition h2

2T
= 130 for the asymmetric ellipsoid (a = 0.1, b = 0.8, c =

1) corresponds to a initial pure state of rotation about the unstable minor axis. As

per section 5.4, the linear control law enables the module to reach its target anchor-

ing location within 2.5 normalised seconds. As per figures 5.133 and 5.141 below,

the nutation angle and the object’s rotational kinetic energy diverge immediately

for MR = 10 and MR = 100 and after 10 normalised seconds for MR = 1, 000

and MR = 10, 000. Both the rotational kinetic energy and nutation angle diverge

exhibiting high frequencies with large changes in magnitude which are indicative

of an accelerating tumbling state. Instability sets in very shortly after the module

deployed successfully. The instability and deployment timescales are nearly concur-

rent and therefore way too close in time for the linear control law to be of practical

use.
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Figure 5.133: h2
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Figure 5.134: h2

2T
= 130
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Figure 5.135: h2

2T
= 130
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Figure 5.136: h2
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= 130

Figure 5.137: Phase Diagrams for the Z Axis (a=0.1 b=0.8 c=1)
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Figure 5.138: h2
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Figure 5.139: h2
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Figure 5.140: h2

2T
= 130
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Figure 5.141: h2
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Figure 5.142: Phase Diagrams for the Z Axis (a=0.1 b=0.8 c=1)
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5.5.6.2 Initial Condition h2

2T
= 166

The initial condition h2

2T
= 166 for the asymmetric ellipsoid (a = 0.1, b = 0.8, c =

1) corresponds to a tumbling rotational state about a non-principal axis. As per

section 5.4, the linear control law enables the module to reach its target anchoring

location within 2.5 normalised seconds. As per figures 5.143 and 5.151 below, the

nutation angle and the object’s rotational kinetic energy diverge immediately for

MR = 10 and MR = 100 but remain stable for MR = 1, 000 and MR = 10, 000

over the duration of the observations as shown by the closed, albeit expanding, or-

bits in figure 5.148. Both the rotational kinetic energy and nutation angle diverge

exhibiting high frequencies with large changes in magnitude which are indicative

of an accelerating tumbling state. Instability sets in very shortly after the module

deployed successfully. The instability and deployment timescales are nearly concur-

rent and therefore way too close in time for the linear control law to be of practical

use. Given the timescale and the magnitude of the control command as per section

5.2, even for MR = 10, 000, the linear control law to be of practical use.
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Figure 5.143: h2
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Figure 5.144: h2
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Figure 5.145: h2

2T
= 166
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Figure 5.146: h2
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= 166

Figure 5.147: Phase Diagrams for the Z Axis (a=0.1 b=0.8 c=1)
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Figure 5.150: h2

2T
= 166
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Figure 5.152: Phase Diagrams for the Z Axis (a=0.1 b=0.8 c=1)
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5.5.6.3 Initial Condition h2

2T
= 202

The initial condition h2

2T
= 202 for the asymmetric ellipsoid (a = 0.1, b = 0.8, c =

1) corresponds to a initial pure state of rotation about the medium principal axis.

As per section 5.4, the linear control law enables the module to reach its target

anchoring location within 2.5 normalised seconds. As per figures 5.153 and 5.161

below, the nutation angle and the object’s rotational kinetic energy diverge immedi-

ately for MR = 10 and MR = 100 and after 10 normalised seconds for MR = 1, 000

and MR = 10, 000. Both the rotational kinetic energy and nutation angle diverge

exhibiting high frequencies with large changes in magnitude which are indicative

of an accelerating tumbling state. Instability sets in very shortly after the module

deployed successfully. The instability and deployment timescales are nearly concur-

rent and therefore way too close in time for the linear control law to be of practical

use.
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Figure 5.153: h2
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Figure 5.154: h2
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Figure 5.155: h2

2T
= 202
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Figure 5.156: h2

2T
= 202

Figure 5.157: Phase Diagrams for the Z Axis (a=0.1 b=0.8 c=1)
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Figure 5.162: Phase Diagrams for the Z Axis (a=0.1 b=0.8 c=1)
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5.5.6.4 Initial Condition h2

2T
= 265

The initial condition h2

2T
= 265 for the asymmetric ellipsoid (a = 0.1, b = 0.8, c =

1) corresponds to a tumbling rotational state about a non-principal axis. As per

section 5.4, the linear control law enables the module to reach its target anchoring

location within 2.5 normalised seconds. As per figures 5.163 and 5.171 below, the

nutation angle and the object’s rotational kinetic energy diverge immediately for

MR = 10 and MR = 100, diverge after 8 normalised seconds for MR = 1, 000 and

remain stable forMR = 10, 000 over the duration of the observations as shown by

the closed orbits in figure 5.168. Both the rotational kinetic energy and nutation

angle diverge exhibiting high frequencies with large changes in magnitude which are

indicative of an accelerating tumbling state. Instability sets in very shortly after the

module deployed successfully. The instability and deployment timescales are nearly

concurrent and therefore way too close in time for the linear control law to be of

practical use. Given the timescale and the magnitude of the control command as

per section 5.2, even for MR = 10, 000, the linear control law to be of practical use.
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Figure 5.167: Phase Diagrams for the Z Axis (a=0.1 b=0.8 c=1)
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Figure 5.172: Phase Diagrams for the Z Axis (a=0.1 b=0.8 c=1)
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5.5.6.5 Initial Condition h2

2T
= 328

The initial condition h2

2T
= 328 for the asymmetric ellipsoid (a = 0.1, b = 0.8, c =

1) corresponds to a initial pure state of rotation about the unstable major axis. As

per section 5.4, the linear control law enables the module to reach its target anchor-

ing location within 2.5 normalised seconds. As per figures 5.173 and 5.181 below,

the nutation angle and the object’s rotational kinetic energy diverge immediately

for MR = 10 and MR = 100 and after 10 normalised seconds for MR = 1, 000

and MR = 10, 000. Both the rotational kinetic energy and nutation angle diverge

exhibiting high frequencies with large changes in magnitude which are indicative

of an accelerating tumbling state. Instability sets in very shortly after the module

deployed successfully. The instability and deployment timescales are nearly concur-

rent and therefore way too close in time for the linear control law to be of practical

use.
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Figure 5.177: Phase Diagrams for the Z Axis (a=0.1 b=0.8 c=1)
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Figure 5.182: Phase Diagrams for the Z Axis (a=0.1 b=0.8 c=1)
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5.5.7 Asymmetric Case (a = 0.8, b = 0.9, c = 1)

In this subsection, the linear control law is assessed for five different initial object’s

rotational states. For each of these initial conditions, two sets of graphs are used.

One set with all the mass ratios and the other with only the highest mass ratios to

account for the differences in scale. The shape of the asymmetric object corresponds

to the case of a potentially stable system.

5.5.7.1 Initial Condition h2

2T
= 290

The initial condition h2

2T
= 290 for the asymmetric ellipsoid (a = 0.8, b = 0.9, c =

1) corresponds to a initial pure state of rotation about the unstable minor axis.

As per section 5.4, the linear control law enables the module to reach its target

anchoring location within 2.2 normalised seconds. As per figures 5.183 and 5.191

below, for MR = 10, MR = 100, the nutation angle diverge immediately and

the object’s rotational kinetic energy diverge after 6 normalised seconds. However,

both remain stable for MR = 1, 000 and MR = 10, 000 over the duration of the

observations as shown by the closed, albeit expanding, orbits in figure 5.188. System

stability increases with increasing mass ratio. In this case, the practical use of the

linear control law could be envisaged but for the fact that the timescale and the

magnitude of the control command, i.e. the energy consumption as seen in section

5.2 is prohibitive.
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Figure 5.187: Phase Diagrams for the Z Axis (a=0.8 b=0.9 c=1)
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Figure 5.192: Phase Diagrams for the Z Axis (a=0.8 b=0.9 c=1)
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5.5.7.2 Initial Condition h2

2T
= 309

The initial condition h2

2T
= 309 for the asymmetric ellipsoid (a = 0.8, b = 0.9, c =

1) corresponds to a tumbling rotational state about a non-principal axis. As per

section 5.4, the linear control law enables the module to reach its target anchoring

location within 2.2 normalised seconds. As per figures 5.193 and 5.201 below, the

nutation angle and the object’s rotational kinetic energy diverge immediately for

MR = 10, MR = 100 and MR = 1, 000 but remain stable for MR = 10, 000 over

the duration of the observations as shown by the closed, albeit expanding, orbits

in figure 5.198. Both the rotational kinetic energy and nutation angle diverge ex-

hibiting high frequencies with large changes in magnitude which are indicative of

an accelerating tumbling state. Instability sets in very shortly after the module de-

ployed successfully. The instability and deployment timescales are nearly concurrent

and therefore way too close in time for the linear control law to be of practical use.

Given the timescale and the magnitude of the control command as per section 5.2,

even for MR = 10, 000, the linear control law to be of practical use.
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Figure 5.197: Phase Diagrams for the Z Axis (a=0.8 b=0.9 c=1)
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Figure 5.202: Phase Diagrams for the Z Axis (a=0.8 b=0.9 c=1)
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5.5.7.3 Initial Condition h2

2T
= 328

The initial condition h2

2T
= 328 for the asymmetric ellipsoid (a = 0.8, b = 0.9, c =

1) corresponds to a initial pure state of rotation about the medium principal axis.

As per section 5.4, the linear control law enables the module to reach its target

anchoring location within 2.2 normalised seconds. As per figures 5.203 and 5.211

below, the nutation angle and the object’s rotational kinetic energy diverge immedi-

ately for MR = 10 and MR = 100 and after 6 normalised seconds for MR = 1, 000

and MR = 10, 000. Both the rotational kinetic energy and nutation angle diverge

exhibiting high frequencies with large changes in magnitude which are indicative

of an accelerating tumbling state. Instability sets in very shortly after the module

deployed successfully. The instability and deployment timescales are nearly concur-

rent and therefore way too close in time for the linear control law to be of practical

use.
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Figure 5.207: Phase Diagrams for the Z Axis (a=0.8 b=0.9 c=1)
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Figure 5.212: Phase Diagrams for the Z Axis (a=0.8 b=0.9 c=1)
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5.5.7.4 Initial Condition h2

2T
= 345

The initial condition h2

2T
= 345 for the asymmetric ellipsoid (a = 0.8, b = 0.9, c =

1) corresponds to a tumbling rotational state about a non-principal axis. As per

section 5.4, the linear control law enables the module to reach its target anchoring

location within 2.2 normalised seconds. As per figures 5.213 and 5.221 below, the

nutation angle and the object’s rotational kinetic energy diverge immediately for

MR = 10, MR = 100 and MR = 1, 000 but remain stable for MR = 10, 000 over

the duration of the observations as shown by the closed, albeit expanding, orbits

in figure 5.218. Both the rotational kinetic energy and nutation angle diverge ex-

hibiting high frequencies with large changes in magnitude which are indicative of

an accelerating tumbling state. Instability sets in very shortly after the module de-

ployed successfully. The instability and deployment timescales are nearly concurrent

and therefore way too close in time for the linear control law to be of practical use.

Given the timescale and the magnitude of the control command as per section 5.2,

even for MR = 10, 000, the linear control law to be of practical use.
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Figure 5.217: Phase Diagrams for the Z Axis (a=0.8 b=0.9 c=1)

240



Chapter 5: Feasibility Study and Validation: Simulation of the Deployment of a
Single Robot Module

-0.5 0 0.5 1 1.5
!!
+

-4

-3

-2

-1

0

1

2

3

4

_!! +

Object Spin Axis Phase Diagram

MR=10000
MR=1000

Figure 5.218: h2

2T
= 345

0 1 2 3 4 5 6

Time (Normalised Seconds)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

ra
d

Object Nutation Angle vs. Time

MR=10000
MR=1000

Figure 5.219: h2
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= 345

Figure 5.222: Phase Diagrams for the Z Axis (a=0.8 b=0.9 c=1)
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5.5.7.5 Initial Condition h2

2T
= 362

The initial condition h2

2T
= 362 for the asymmetric ellipsoid (a = 0.8, b = 0.9, c =

1) corresponds to a initial pure state of rotation about the unstable major axis. As

per section 5.4, the linear control law enables the module to reach its target anchor-

ing location within 2.2 normalised seconds. As per figures 5.223 and 5.231 below,

the nutation angle and the object’s rotational kinetic energy diverge immediately

for MR = 10 and MR = 100 and after 10 normalised seconds for MR = 1, 000

and MR = 10, 000. Both the rotational kinetic energy and nutation angle diverge

exhibiting high frequencies with large changes in magnitude which are indicative

of an accelerating tumbling state. Instability sets in very shortly after the module

deployed successfully. The instability and deployment timescales are nearly concur-

rent and therefore way too close in time for the linear control law to be of practical

use.
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Figure 5.224: h2
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Figure 5.227: Phase Diagrams for the Z Axis (a=0.8 b=0.9 c=1)
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Figure 5.232: Phase Diagrams for the Z Axis (a=0.8 b=0.9 c=1)
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5.5.8 Conclusions

The linear control law is not stabilising. Its timescale is very short with the module

reaching its anchoring location within normalised seconds. Rotational instability

sets in almost immediately after. The shortness of this timescale corresponds to

unrealistic high magnitude control inputs, as seen in section 5.2, which lead to an

increasing and unbounded amount of rotational kinetic energy being transferred to

the object. The linear control law cannot be used in practice. However, the analysis

of its effect on the system over time has provided some interesting insights on the

parameters influencing its nature and magnitude:

1. The mass ratio is the first parameter which bears an influence on the system’s

stability. A higher mass ratio implies that the module deployment induces

lower rotational kinetic energy transfers to the object, i.e less controllability

of the object rotational state and therefore means more stable initial condi-

tions. Conversely, a lower mass ratio implies a greater ability to control the

object rotational state. However, the relationship between rotational kinetic

energy transfer to the object and mass ratio is not monotonous, particularly

for symmetric objects where resonance of the nutation angle could be observed

for specific mass ratio. For all the the symmetric ellipsoids in this section, the

eigen values of the system’s Jacobian have zero real parts and future work

should include an analysis in the frequency domain to understand further the

relationship between mass ratio and nutation angle.

2. The second parameter influencing the system’s stability is the object’s shape

and the following general observations made were:

(a) The linear control law has a better rotational stability performance for

asymmetric object than for symmetric ones. The more symmetrical the

object, the worse is the linear control law’s rotational stability perfor-

mance.

(b) For asymmetric object cases under the control of the linear control law,

initial angular velocities about non principal axes lead to more stable
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outcome than initial angular velocities about principal axes.

(c) For symmetric ellipsoids, the system behaves in opposite ways depending

on whether the object is prolate or oblate. For prolate objects, the closer

the initial rotational state to a pure spin, the more stable the object’s

rotational state generated by the linear control law. For oblate objects,

the closer the initial rotational state to a pure spin, the more unstable

the object’s rotational state generated by the linear control law. On

a prolate object the module travels closer to the spin axis than on an

oblate object. As the module’s contribution to the moment of inertia

of the system increases with the square of its distance to the spin axis,

the destabilisation of the spin due to the change of mass distribution

generated by the module deployment on a prolate object is less than on

an oblate object. Even more so near the tip of the spin axis where the

variation of distance to the spin axis is minimum on a prolate object while

it is maximum on an oblate object.

In the next section, the performance of linear and nonlinear laws will be explicitly

compared.

5.6 Comparisons Between Linear and Nonlinear

Model Predictive Control Laws With a Con-

vergence to a State of Spin Objective

In this section, the linear and nonlinear control laws’ performance are explicitly

compared with an analysis of the system’s behaviour over an unbounded time span

where the module is left free to carry on moving beyond its target anchoring location.

An examination of the physical effects on and stability of the system was conducted

in order to compare the timescale difference and overall system’s stability for all

initial conditions.
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5.6.1 Origin of the Data

The data displayed in this section corresponds to the following specific scenario:

1. Both the linear and nonlinear MPC controllers track a pure state of spin for

the object with a target spin rate ω0 6= 0 for the angular velocity part of the

system state.

2. All initial rotational state of the object are represented: for symmetric objects

Wzinit ∈ {0.5, 0.75, 1} and for asymmetric objects

h2

2T
∈ {Imin, Imin+Imid2

, Imid,
Imax+Imid

2
, Imax}.

3. The module is not constrained to stop at its target location and is left free to

move on the surface of the object with the sole objective of tracking a pure

state of spin for the object. The aim is to analyse the system’s behaviour near

the origin over a large timescale.

4. The mass ratio of the object’s to the module is fixed at 10, 000.

5.6.2 Data Description

The data is displayed for specific shapes representative of a spectrum of realistic

situations the robot could encounter. These shapes encompass a sphere, one oblate,

one prolate and one asymmetric ellipsoids which are:

Ellipsoid Type a b c System Stability Status
Prolate 1

2
1
2

1 Potentially Stable
Sphere 1 1 1 Potentially Stable

Asymmetric 1
10

8
10

1 Potentially Stable
Asymmetric 8

10
9
10

1 Potentially Stable (Close to Unstable)
Oblate 2 2 1 Potentially Stable

Table 5.7: Ellipsoids Normalised Semi-Axes Lengths

All the results obtained across all simulation parameters were identical to those

produced when the objective was to track a despun state.

In each of the following sections, the system’s stability is examined with phase

diagrams along with the evolutions of the nutation angle and of the object’s ro-

tational kinetic energy. Because of the difference in scale between the linear and

247



Chapter 5: Feasibility Study and Validation: Simulation of the Deployment of a
Single Robot Module

nonlinear case, two sets of graphs were produced. One combines the linear and

nonlinear control laws results. The other only displays the nonlinear control laws

results.

5.6.3 Sphere Case

Figures 5.234 to 5.241 below show smooth curves for the nonlinear MPC control

law with no oscillations and a nearly closed orbit for the object’s angular velocity

which is indicative of neutral stability over the entire observation period.

Owing to the large mass ratio MR = 10, 000 which renders the system less

controllable, the nonlinear control law maintains the initial rotational state close to

a pure state of spin which, in the case of a sphere, corresponds to the maintenance

of the direction of the spinning axis. The magnitude of the nutation angle variations

is orders of magnitude less than the variations obtained with the linear control law

as is the magnitude of the rotational kinetic energy variations.

The pattern of the dynamic evolution of the nutation angle under the nonlinear

control law is akin to a typical regulator response with an overshoot at the onset of

the process followed by a decrease towards the reference value. The evolution of the

rotational kinetic energy is also consistent with the evolution of the nutation angle.

When the rotational kinetic energy decreases, the nutation angle increases and vice

versa.

The timescale of the nonlinear control law is 20 times larger than the timescale of

the linear control law. For the object sized in chapter 3 section 3.5.1.2, it corresponds

to about 8 hours which is perfectly acceptable for a space application.

The nonlinear MPC control law performs according to its specifications pro-

viding reasonable stability as well as control commands with realistic and feasible

magnitudes as per section 5.2.
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Figure 5.233: Sphere
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Figure 5.234: Sphere
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Figure 5.235: Sphere
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Figure 5.236: Sphere

Figure 5.237: Stability Diagrams for the Sphere (a=1 b=1 c=1)
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Figure 5.238: Sphere
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Figure 5.239: Sphere
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Figure 5.240: Sphere
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Figure 5.241: Sphere

Figure 5.242: Stability Diagrams for the Sphere (a=1 b=1 c=1)
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5.6.4 Symmetric Case (a = 0.5, b = 0.5, c = 1)

In this section, the MPC and NMPC control laws are compared for a prolate

ellipsoidal object.

5.6.4.1 Initial Condition Wzinit = 0.5

Figures 5.243 to 5.251 below show smooth curves for the nonlinear MPC control

law with no oscillations and a closing orbit for the object’s angular velocity which

is indicative of neutral stability over the entire observation period.

Owing to the large mass ratio MR = 10, 000 which renders the system less

controllable, the nonlinear control law does not converge to a pure state of spin but

maintains the initial rotational state, i.e. the initial nutation angle. The magnitude

of the nutation angle variations is orders of magnitude less than the variations

obtained with the linear control law as is the magnitude of the rotational kinetic

energy variations.

The pattern of the dynamic evolution of the nutation angle under the nonlinear

control law is akin to a typical regulator response with an overshoot at the onset of

the process followed by a decrease towards the reference value. The evolution of the

rotational kinetic energy is also consistent with the evolution of the nutation angle.

When the rotational kinetic energy increases, the nutation angle increases at first

and then converge back down to its initial value.

The timescale of the nonlinear control law is 20 times larger than the timescale of

the linear control law. For the object sized in chapter 3 section 3.5.1.2, it corresponds

to about 21 hours which is perfectly acceptable for a space application.

The nonlinear MPC control law performs according to its specifications pro-

viding reasonable stability as well as control commands with realistic and feasible

magnitudes as per section 5.2.
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Figure 5.243: Wzinit = 0.5
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Figure 5.244: Wzinit = 0.5
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Figure 5.245: Wzinit = 0.5
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Figure 5.246: Wzinit = 0.5

Figure 5.247: Phase Diagrams for the Z Axis Wzinit = 0.5 (a= 0.5 b= 0.5 c=1)
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Figure 5.248: Wzinit = 0.5
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Figure 5.249: Wzinit = 0.5
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Figure 5.250: Wzinit = 0.5
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Figure 5.251: Wzinit = 0.5

Figure 5.252: Phase Diagrams for the Z Axis Wzinit = 0.5 (a= 0.5 b= 0.5 c=1)
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5.6.4.2 Initial Condition Wzinit = 0.75

Figures 5.253 to 5.261 below show smooth curves for the nonlinear MPC con-

trol law with no significant oscillations and a closing orbit for the object’s angular

velocity which is indicative of neutral stability over the entire observation period.

Owing to the large mass ratio MR = 10, 000 which renders the system less

controllable, the nonlinear control law does not converge to a pure state of spin but

maintains the initial rotational state, i.e. the initial nutation angle. The magnitude

of the nutation angle variations is orders of magnitude less than the variations

obtained with the linear control law as is the magnitude of the rotational kinetic

energy variations.

The pattern of the dynamic evolution of the nutation angle under the nonlinear

control law is akin to a typical regulator response with an overshoot at the onset

of the process followed by a decrease towards the reference value. The evolution of

the rotational kinetic energy is slightly inconsistent with the expected evolution of

the nutation angle since both exhibit the same monotony as opposed to inverted

monotony. Other factors, such as the change in mass distribution and its timing

with respect to the object’s rotational state which are not directly taken into account

in this study, can influence this behaviour. The Wzinit = 0.75 initial condition for

prolate ellipsoids is the most difficult to control out of the three initial conditions

presented in this study.

The timescale of the nonlinear control law is 20 times larger than the timescale of

the linear control law. For the object sized in chapter 3 section 3.5.1.2, it corresponds

to 1.5 days which is perfectly acceptable for a space application.

The nonlinear MPC control law performs according to its specifications pro-

viding reasonable stability as well as control commands with realistic and feasible

magnitudes as per section 5.2.

254



Chapter 5: Feasibility Study and Validation: Simulation of the Deployment of a
Single Robot Module

-150 -100 -50 0 50 100 150 200
!!
+

-5

-4

-3

-2

-1

0

1

2

3

4

5

_!! +

#10 4 Object Spin Axis Phase Diagram

NonLinear
Linear

Figure 5.253: Wzinit = 0.75
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Figure 5.254: Wzinit = 0.75
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Figure 5.255: Wzinit = 0.75
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Figure 5.256: Wzinit = 0.75

Figure 5.257: Phase Diagrams for the Z Axis Wzinit = 0.75 (a= 0.5 b= 0.5 c=1)
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Figure 5.258: Wzinit = 0.75

0 1 2 3 4 5 6 7 8

Normalised Dimensionless Energy #10 7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ra
d

Nutation Angle vs. Kinetic Energy

NonLinear
Linear

Figure 5.259: Wzinit = 0.75
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Figure 5.260: Wzinit = 0.75
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Figure 5.261: Wzinit = 0.75

Figure 5.262: Phase Diagrams for the Z Axis Wzinit = 0.75 (a= 0.5 b= 0.5 c=1)
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5.6.4.3 Initial Condition Wzinit = 1

Figures 5.263 to 5.271 below show smooth curves for the nonlinear MPC control

law with no oscillations and a closing orbit for the object’s angular velocity which

is indicative of neutral stability over the entire observation period.

Owing to the large mass ratio MR = 10, 000 which renders the system less

controllable, the nonlinear control law does not converge to a pure state of spin but

maintains the initial rotational state, i.e. the initial nutation angle. The magnitude

of the nutation angle variations is orders of magnitude less than the variations

obtained with the linear control law as is the magnitude of the rotational kinetic

energy variations.

The pattern of the dynamic evolution of the nutation angle under the nonlinear

control law is akin to a typical regulator response with an overshoot at the onset of

the process followed by a decrease towards the reference value. The evolution of the

rotational kinetic energy is also consistent with the evolution of the nutation angle.

When the rotational kinetic energy decreases, the nutation angle increases and vice

versa.

The timescale of the nonlinear control law is 20 times larger than the timescale of

the linear control law. For the object sized in chapter 3 section 3.5.1.2, it corresponds

to 2 days which is perfectly acceptable for a space application. The Wzinit = 1 initial

condition for prolate ellipsoids is the most perturbable of the three initial conditions

presented in this study and is therefore requires control over a longer period of time.

The nonlinear MPC control law performs according to its specifications pro-

viding reasonable stability as well as control commands with realistic and feasible

magnitudes as per section 5.2.
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Figure 5.263: Wzinit = 1
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Figure 5.264: Wzinit = 1
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Figure 5.265: Wzinit = 1
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Figure 5.266: Wzinit = 1

Figure 5.267: Phase Diagrams for the Z Axis Wzinit = 1 (a= 0.5 b= 0.5 c=1)
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Figure 5.268: Wzinit = 1
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Figure 5.269: Wzinit = 1
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Figure 5.270: Wzinit = 1
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Figure 5.271: Wzinit = 1

Figure 5.272: Phase Diagrams for the Z Axis Wzinit = 1 (a= 0.5 b= 0.5 c=1)
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5.6.5 Symmetric Case (a = 2, b = 2, c = 1)

In this section, the MPC and NMPC control laws are compared for an oblate

ellipsoidal object.

5.6.5.1 Initial Condition Wzinit = 0.5

Figures 5.273 to 5.281 below show smooth curves for the nonlinear MPC control

law with no oscillations and a closing orbit for the object’s angular velocity which

is indicative of neutral stability over the entire observation period.

Owing to the large mass ratio MR = 10, 000 which renders the system less

controllable, the nonlinear control law does not converge to a pure state of spin but

maintains the initial rotational state, i.e. the initial nutation angle close to its initial

value here 3% higher. The magnitude of the nutation angle variations is orders of

magnitude less than the variations obtained with the linear control law as is the

magnitude of the rotational kinetic energy variations.

The pattern of the dynamic evolution of the nutation angle under the nonlinear

control law is akin to a typical regulator response with an overshoot at the onset

of the process followed by a decrease towards the new nutation angle value. The

evolution of the rotational kinetic energy is also consistent with the evolution of the

nutation angle. When the rotational kinetic energy decreases, the nutation angle

increases at first and then converge back down to its initial value when the rotational

kinetic energy settles.

The timescale of the nonlinear control law is 20 times larger than the timescale of

the linear control law. For the object sized in chapter 3 section 3.5.1.2, it corresponds

to about 21 hours which is perfectly acceptable for a space application.

The nonlinear MPC control law performs according to its specifications pro-

viding reasonable stability as well as control commands with realistic and feasible

magnitudes as per section 5.2.
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Figure 5.273: Wzinit = 0.5
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Figure 5.274: Wzinit = 0.5
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Figure 5.275: Wzinit = 0.5
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Figure 5.276: Wzinit = 0.5

Figure 5.277: Phase Diagrams for the Z Axis Wzinit = 0.5 (a= 2 b= 2 c=1)
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Figure 5.278: Wzinit = 0.5
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Figure 5.279: Wzinit = 0.5
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Figure 5.280: Wzinit = 0.5
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Figure 5.281: Wzinit = 0.5

Figure 5.282: Phase Diagrams for the Z Axis Wzinit = 0.5 (a= 2 b= 2 c=1)
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5.6.5.2 Initial Condition Wzinit = 0.75

Figures 5.283 to 5.291 below show smooth curves for the nonlinear MPC con-

trol law with no significant oscillations and a closing orbit for the object’s angular

velocity which is indicative of neutral stability over the entire observation period.

Owing to the large mass ratio MR = 10, 000 which renders the system less

controllable, the nonlinear control law does not converge to a pure state of spin but

maintains the initial rotational state, i.e. the initial nutation angle close to its initial

values, here %0.02 lower. The magnitude of the nutation angle variations is orders

of magnitude less than the variations obtained with the linear control law as is the

magnitude of the rotational kinetic energy variations.

The pattern of the dynamic evolution of the nutation angle under the nonlinear

control law is akin to a typical regulator response with an overshoot at the onset of

the process followed by a decrease towards the reference value. The evolution of the

rotational kinetic energy is also consistent with the evolution of the nutation angle.

When the rotational kinetic energy decreases, the nutation angle increases at first

and then decreases as the rotational kinetic energy increases again. The Wzinit =

0.75 initial condition for oblate ellipsoids is the most difficult to control out of the

three initial conditions presented in this study.

The timescale of the nonlinear control law is 20 times larger than the timescale of

the linear control law. For the object sized in chapter 3 section 3.5.1.2, it corresponds

to 1.5 days which is perfectly acceptable for a space application.

The nonlinear MPC control law performs according to its specifications pro-

viding reasonable stability as well as control commands with realistic and feasible

magnitudes as per section 5.2.
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Figure 5.283: Wzinit = 0.75
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Figure 5.284: Wzinit = 0.75
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Figure 5.285: Wzinit = 0.75

0 50 100 150 200 250 300 350 400

Time (Normalised Seconds)

0.5036

0.5037

0.5038

0.5039

0.504

0.5041

0.5042

0.5043

ra
d

Object Nutation Angle vs. Time

NonLinear

Figure 5.286: Wzinit = 0.75

Figure 5.287: Phase Diagrams for the Z Axis Wzinit = 0.75 (a= 2 b= 2 c=1)
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Figure 5.288: Wzinit = 0.75

0 2 4 6 8 10 12

Normalised Dimensionless Energy #10 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ra
d

Nutation Angle vs. Kinetic Energy

NonLinear
Linear

Figure 5.289: Wzinit = 0.75
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Figure 5.290: Wzinit = 0.75
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Figure 5.291: Wzinit = 0.75

Figure 5.292: Phase Diagrams for the Z Axis Wzinit = 0.75 (a= 2 b= 2 c=1)
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5.6.5.3 Initial Condition Wzinit = 1

Figures 5.293 to 5.301 below show smooth curves for the nonlinear MPC control

law with no oscillations and a closing orbit for the object’s angular velocity which

is indicative of neutral stability over the entire observation period.

Owing to the large mass ratio MR = 10, 000 which renders the system less

controllable, the nonlinear control law does not converge to a pure state of spin but

maintains the initial rotational state, i.e. the initial nutation angle close to its initial

value, here 0.03% higher. The magnitude of the nutation angle variations is orders

of magnitude less than the variations obtained with the linear control law as is the

magnitude of the rotational kinetic energy variations.

The pattern of the dynamic evolution of the nutation angle under the nonlinear

control law is akin to a typical regulator response with an overshoot at the onset of

the process followed by a decrease towards the reference value. The evolution of the

rotational kinetic energy is also consistent with the evolution of the nutation angle.

When the rotational kinetic energy decreases, the nutation angle increases and vice

versa.

The timescale of the nonlinear control law is 20 times larger than the timescale of

the linear control law. For the object sized in chapter 3 section 3.5.1.2, it corresponds

to less than 2 days which is perfectly acceptable for a space application. The Wzinit

= 1 initial condition for prolate ellipsoids is the most perturbable of the three initial

conditions presented in this study and is therefore requires control over a longer

period of time.

The nonlinear MPC control law performs according to its specifications pro-

viding reasonable stability as well as control commands with realistic and feasible

magnitudes as per section 5.2.
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Figure 5.293: Wzinit = 1
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Figure 5.294: Wzinit = 1
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Figure 5.295: Wzinit = 1
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Figure 5.296: Wzinit = 1

Figure 5.297: Phase Diagrams for the Z Axis Wzinit = 1 (a= 2 b= 2 c=1)
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Figure 5.298: Wzinit = 1

0 0.5 1 1.5 2 2.5 3 3.5

Normalised Dimensionless Energy #10 7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ra
d

Nutation Angle vs. Kinetic Energy

NonLinear
Linear

Figure 5.299: Wzinit = 1
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Figure 5.300: Wzinit = 1
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Figure 5.301: Wzinit = 1

Figure 5.302: Phase Diagrams for the Z Axis Wzinit = 1 (a= 2 b= 2 c=1)
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5.6.6 Symmetric Case (a = 0.1, b = 0.8, c = 1)

In this section, the MPC and NMPC control laws are compared for an asymmetric

ellipsoidal object whose geometry is far from the limit case of the sphere.

5.6.6.1 Initial Condition h2

2T
= 130

Examining figures 5.303 to 5.311 below, the application of the nonlinear MPC con-

trol law results in a closing orbit for the object’s angular velocity which is indicative

of neutral stability over the entire observation period.

Owing to the large mass ratio MR = 10, 000 which renders the system less con-

trollable, the nonlinear control law maintains the initial object’s rotational state

which in this case is a spin about the minor principal axis. The final nutation angle

is close to its initial value, here 0.02% higher. The magnitude of the nutation angle

variations is orders of magnitude less than the variations obtained with the linear

control law as is the magnitude of the rotational kinetic energy variations. The

nutation angle ends up in a steady state with a low frequency and amplitude oscil-

latory motion which is acceptable given the unstable nature of the minor principal

axis.

The pattern of the dynamic evolution of the nutation angle under the nonlinear

control law is akin to a typical regulator response with an overshoot at the onset of

the process followed by a decrease towards the reference value. The evolution of the

rotational kinetic energy is also consistent with the evolution of the nutation angle.

When the rotational kinetic energy decreases, the nutation angle increases and vice

versa.

The timescale of the nonlinear control law is 20 times larger than the timescale of

the linear control law. For the object sized in chapter 3 section 3.5.1.2, it corresponds

to less than 2.5 days which is perfectly acceptable for a space application.

The nonlinear MPC control law performs according to its specifications pro-

viding reasonable stability as well as control commands with realistic and feasible

magnitudes as per section 5.2.
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Figure 5.303: h2
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Figure 5.304: h2
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Figure 5.305: h2
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Figure 5.306: h2

2T
= 130

Figure 5.307: Phase Diagrams for the Z Axis HT = 130 (a= 0.1 b= 0.8 c=1)
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Figure 5.308: h2
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= 130
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Figure 5.309: h2
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= 130
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Figure 5.310: h2
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= 130
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Figure 5.311: h2

2T
= 130

Figure 5.312: Phase Diagrams for the Z Axis HT = 130 (a= 0.1 b= 0.8 c=1)
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5.6.6.2 Initial Condition h2

2T
= 166

Examining figures 5.313 to 5.321 below, the application of the nonlinear MPC

control law results in a fully closed orbit for the object’s angular velocity which is

usually indicative of neutral stability.

However, this is a deceptive view. The time evolution of the nutation angle

shows large oscillations with an amplitude equal to 50% of the initial nutation angle

value and a period equals to 250 normalised seconds, corresponding to a 21-hour

period for the object sized in chapter 3 section 3.5.1.2. The object is tumbling and

the nonlinear control law has failed to stabilise its rotational state. Although the

linear MPC control law leads to a divergent rotational state, it performs better and

maintains the nutation angle within 5% of its initial value over the control period.

Tumbling is initiated from an initial rotation state about a non principal axis by a

drop in rotational kinetic energy and once this rotational kinetic energy increases

back to a constant level, the object’s tumbling state is steady from then on.

The timescale of the nonlinear control law is 20 times larger than the timescale of

the linear control law. For the object sized in chapter 3 section 3.5.1.2, it corresponds

to less than 1.5 days.

The nonlinear MPC control law does not perform according to its stability spec-

ifications.
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Figure 5.313: h2
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Figure 5.314: h2
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Figure 5.315: h2
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Figure 5.316: h2

2T
= 166

Figure 5.317: Phase Diagrams for the Z Axis HT = 166 (a= 0.1 b= 0.8 c=1)
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Figure 5.318: h2

2T
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Figure 5.319: h2
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Figure 5.320: h2
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Figure 5.321: h2

2T
= 166

Figure 5.322: Phase Diagrams for the Z Axis HT = 166 (a= 0.1 b= 0.8 c=1)
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5.6.6.3 Initial Condition h2

2T
= 202

Examining figures 5.323 to 5.331 below, the application of the nonlinear MPC

control law results in the divergence of the nutation angle to a value equal to π
2
.

The initial object’s rotational state corresponds to a pure spin about the medium

unstable principal axis. The initial drop of rotational energy leads to a change of

axis of rotation for one which is perpendicular to the medium principal axis, most

likely the major principal axis for which a rotation is more stable. This is confirmed

by the rotational kinetic energy level which reaches a steady state constant value

once the transition from one axis to the other is achieved.

The timescale of the nonlinear control law is 20 times larger than the timescale of

the linear control law. For the object sized in chapter 3 section 3.5.1.2, it corresponds

to less than 1 day and 18 hours which is perfectly acceptable for a space application.

The nonlinear MPC control law does not perform according to its stability spec-

ifications. However, in this case, it leads to a better more stable outcome.
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Figure 5.326: h2
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Figure 5.327: Phase Diagrams for the Z Axis HT = 202 (a= 0.1 b= 0.8 c=1)
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Figure 5.332: Phase Diagrams for the Z Axis HT = 202 (a= 0.1 b= 0.8 c=1)
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5.6.6.4 Initial Condition h2

2T
= 265

Examining figures 5.333 to 5.341 below, the application of the nonlinear MPC

control law results in a fully closed orbit for the object’s angular velocity which is

usually indicative of neutral stability.

However, this is a deceptive view. The time evolution of the nutation angle shows

large oscillations with an amplitude equal to 50% of the initial nutation angle value

to reach π
2

and a period equals to 200 normalised seconds, corresponding to a 17-hour

period for the object sized in chapter 3 section 3.5.1.2. The object is tumbling and

the nonlinear control law has failed to stabilise its rotational state. Although the

linear MPC control law leads to a divergent rotational state, it performs better and

maintains the nutation angle within 5% of its initial value over the control period.

Tumbling is initiated from an initial rotation state about a non principal axis by a

drop in rotational kinetic energy and once this rotational kinetic energy increases

back to a constant level, the object’s tumbling state is steady from then on.

The timescale of the nonlinear control law is 20 times larger than the timescale of

the linear control law. For the object sized in chapter 3 section 3.5.1.2, it corresponds

to less than 1.5 days.

The nonlinear MPC control law does not perform according to its stability spec-

ifications.
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Figure 5.337: Phase Diagrams for the Z Axis HT = 265 (a= 0.1 b= 0.8 c=1)
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Figure 5.342: Phase Diagrams for the Z Axis HT = 265 (a= 0.1 b= 0.8 c=1)
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5.6.6.5 Initial Condition h2

2T
= 328

Examining figures 5.343 to 5.351 below, the application of the nonlinear MPC con-

trol law results in a closing orbit for the object’s angular velocity which is indicative

of neutral stability over the entire observation period.

Owing to the large mass ratio MR = 10, 000 which renders the system less

controllable, the nonlinear control law maintains the initial object’s rotational state

which in this case is a spin about the major principal axis. The final nutation angle is

close to its initial value, here less than 0.01% lower. The magnitude of the nutation

angle variations is orders of magnitude less than the variations obtained with the

linear control law as is the magnitude of the rotational kinetic energy variations.

The nutation angle ends up in a steady state with a low frequency and amplitude

oscillatory motion which is acceptable given that rotation about the major principal

axis is more stable than about other axes.

The pattern of the dynamic evolution of the nutation angle under the nonlinear

control law is akin to a typical regulator response with an undershoot at the onset

of the process followed by an increase towards the reference value. The evolution

of the rotational kinetic energy is also consistent with the evolution of the nutation

angle. When the rotational kinetic energy increases, the nutation angle decreases

and vice versa.

The timescale of the nonlinear control law is 20 times larger than the timescale of

the linear control law. For the object sized in chapter 3 section 3.5.1.2, it corresponds

to less than 3.5 days which is perfectly acceptable for a space application.

The nonlinear MPC control law performs according to its specifications pro-

viding reasonable stability as well as control commands with realistic and feasible

magnitudes as per section 5.2.
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Figure 5.347: Phase Diagrams for the Z Axis HT = 328 (a= 0.1 b= 0.8 c=1)
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Figure 5.352: Phase Diagrams for the Z Axis HT = 328 (a= 0.1 b= 0.8 c=1)
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5.6.7 Symmetric Case (a = 0.8, b = 0.9, c = 1)

In this section, the MPC and NMPC control laws are compared for an asymmetric

ellipsoidal object whose geometry is close to the limit case of the sphere. The

system’s behaviour in this case is close that of a system with a prolate ellipsoid.

5.6.7.1 Initial Condition h2

2T
= 290

Examining figures 5.353 to 5.361 below, the application of the nonlinear MPC

control law results in an open orbit for the object’s angular velocity. From this shape

no conclusion can be drawn as to the stability of the system. However the magnitude

of the changes of the angular velocity is of the order of 2.5 · 10−4 rad.s−1 which is

negligible enough to be able to conclude that over the course of the observation

period, the system is stable.

Owing to the large mass ratio MR = 10, 000 which renders the system less

controllable, the nonlinear control law maintains the initial object’s rotational state

which in this case is a spin about the minor principal axis. The final nutation angle

is close to its initial value, here 0.05% higher. The magnitude of the nutation angle

variations is orders of magnitude less than the variations obtained with the linear

control law as is the magnitude of the rotational kinetic energy variations.

The pattern of the dynamic evolution of the nutation angle under the nonlinear

control law is a smooth and close to a linear increase with no oscillations which is

consistent with the evolution of the rotational kinetic energy which steadily decreases

over the observation period.

The timescale of the nonlinear control law is 20 times larger than the timescale of

the linear control law. For the object sized in chapter 3 section 3.5.1.2, it corresponds

to less than 12 hours which is perfectly acceptable for a space application.

The nonlinear MPC control law performs according to its specifications pro-

viding reasonable stability as well as control commands with realistic and feasible

magnitudes as per section 5.2.
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Figure 5.357: Phase Diagrams for the Z Axis HT = 290 (a= 0.8 b= 0.9 c=1)
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Figure 5.361: h2
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Figure 5.362: Phase Diagrams for the Z Axis HT = 290 (a= 0.8 b= 0.9 c=1)
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5.6.7.2 Initial Condition h2

2T
= 309

Examining figures 5.363 to 5.371 below, the application of the nonlinear MPC

control law results in an open orbit for the object’s angular velocity. From this shape

no conclusion can be drawn as to the stability of the system. However the magnitude

of the changes of the angular velocity is of the order of 3 · 10−2 rad.s−1 which is

negligible enough to be able to conclude that over the course of the observation

period, the system is stable.

Owing to the large mass ratio MR = 10, 000 which renders the system less

controllable, the nonlinear control law maintains the initial object’s rotational state

which in this case is a spin about a non principal axis. The final nutation angle

is close to its initial value, here 7% higher. The magnitude of the nutation angle

variations is orders of magnitude less than the variations obtained with the linear

control law as is the magnitude of the rotational kinetic energy variations.

The pattern of the dynamic evolution of the nutation angle under the nonlinear

control law is a smooth and close to a linear increase with no oscillations which is

consistent with the evolution of the rotational kinetic energy which is nearly constant

over the observation period.

The timescale of the nonlinear control law is 20 times larger than the timescale of

the linear control law. For the object sized in chapter 3 section 3.5.1.2, it corresponds

to less than 12 hours which is perfectly acceptable for a space application.

The nonlinear MPC control law performs according to its specifications pro-

viding reasonable stability as well as control commands with realistic and feasible

magnitudes as per section 5.2.
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Figure 5.367: Phase Diagrams for the Z Axis HT = 309 (a= 0.8 b= 0.9 c=1)
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Figure 5.371: h2
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Figure 5.372: Phase Diagrams for the Z Axis HT = 309 (a= 0.8 b= 0.9 c=1)
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5.6.7.3 Initial Condition h2

2T
= 328

Examining figures 5.373 to 5.381 below, the application of the nonlinear MPC

control law results in an open orbit for the object’s angular velocity. From this shape

no conclusion can be drawn as to the stability of the system. However the magnitude

of the changes of the angular velocity is of the order of 4 · 10−2 rad.s−1 which is

negligible enough to be able to conclude that over the course of the observation

period, the system is stable.

Owing to the large mass ratio MR = 10, 000 which renders the system less

controllable, the nonlinear control law maintains the initial object’s rotational state

which in this case is a spin about the medium principal axis. The final nutation

angle is close to its initial value, here 3.5% higher. The magnitude of the nutation

angle variations is orders of magnitude less than the variations obtained with the

linear control law as is the magnitude of the rotational kinetic energy variations.

The pattern of the dynamic evolution of the nutation angle under the nonlinear

control law is a smooth and close to a linear increase with no oscillations which is

the same for the evolution of the rotational kinetic energy which increases over the

observation period. This is consistent with the fact that the initial rotational state

of the system is a pure spin about the medium unstable axis. This initial state is

in the process of degenerating towards a more stable state with the input of more

rotational kinetic energy.

The timescale of the nonlinear control law is 20 times larger than the timescale of

the linear control law. For the object sized in chapter 3 section 3.5.1.2, it corresponds

to less than 12 hours which is perfectly acceptable for a space application.

The nonlinear MPC control law performs according to its specifications pro-

viding reasonable stability as well as control commands with realistic and feasible

magnitudes as per section 5.2.
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Figure 5.377: Phase Diagrams for the Z Axis HT = 328 (a= 0.8 b= 0.9 c=1)
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Figure 5.382: Phase Diagrams for the Z Axis HT = 328 (a= 0.8 b= 0.9 c=1)
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5.6.7.4 Initial Condition h2

2T
= 345

Examining figures 5.383 to 5.391 below, the application of the nonlinear MPC

control law results in an open orbit for the object’s angular velocity. From this shape

no conclusion can be drawn as to the stability of the system. However the magnitude

of the changes of the angular velocity is of the order of 2 · 10−2 rad.s−1 which is

negligible enough to be able to conclude that over the course of the observation

period, the system is stable.

Owing to the large mass ratio MR = 10, 000 which renders the system less

controllable, the nonlinear control law maintains the initial object’s rotational state

which in this case is a spin about a non principal axis. The final nutation angle is

close to its initial value, here 0.01% higher. The magnitude of the nutation angle

variations is orders of magnitude less than the variations obtained with the linear

control law as is the magnitude of the rotational kinetic energy variations.

The pattern of the dynamic evolution of the nutation angle under the nonlinear

control law is a smooth and close to a linear increase with no oscillations which is

consistent with the evolution of the rotational kinetic energy which is nearly constant

over the observation period.

The timescale of the nonlinear control law is 20 times larger than the timescale of

the linear control law. For the object sized in chapter 3 section 3.5.1.2, it corresponds

to less than 7 hours which is perfectly acceptable for a space application.

The nonlinear MPC control law performs according to its specifications pro-

viding reasonable stability as well as control commands with realistic and feasible

magnitudes as per section 5.2.
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Figure 5.387: Phase Diagrams for the Z Axis HT = 345 (a= 0.8 b= 0.9 c=1)
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Figure 5.392: Phase Diagrams for the Z Axis HT = 345 (a= 0.8 b= 0.9 c=1)
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5.6.7.5 Initial Condition h2

2T
= 362

Examining figures 5.393 to 5.401 below, the application of the nonlinear MPC

control law results in a closed orbit for the object’s angular velocity which is indica-

tive of stability. The magnitude of the changes of the angular velocity is of the order

of 1.6 · 10−3 rad.s−1 which is negligible enough.

Owing to the large mass ratio MR = 10, 000 which renders the system less

controllable, the nonlinear control law maintains the initial object’s rotational state

which in this case is a spin about the major principal axis. The final nutation angle

is close to its initial value, here 0.01% lower. The magnitude of the nutation angle

variations is orders of magnitude less than the variations obtained with the linear

control law as is the magnitude of the rotational kinetic energy variations.

The pattern of the dynamic evolution of the nutation angle under the nonlinear

control law is to drop at the onset before increasing back to a steady state value with

no oscillations. It is consistent with the evolution of the rotational kinetic energy

which mirrors that of the nutation angle over the observation period.

The timescale of the nonlinear control law is 20 times larger than the timescale of

the linear control law. For the object sized in chapter 3 section 3.5.1.2, it corresponds

to less than 3 days which is perfectly acceptable for a space application.

The nonlinear MPC control law performs according to its specifications pro-

viding reasonable stability as well as control commands with realistic and feasible

magnitudes as per section 5.2.
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Figure 5.397: Phase Diagrams for the Z Axis HT = 362 (a= 0.8 b= 0.9 c=1)
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5.6.8 Conclusions

The purpose of this section was to compare for all initial conditions the perfor-

mance of the linear and nonlinear MPC control laws with respect to their timescale

and to the overall system’s stability. The nonlinear MPC controller provides much

more accurate predictions of the system’s behaviour. It is clearly the best controller

out of the two and is the one controller to be implemented.

The comparison between the timescale of the linear and nonlinear control laws

led to the conclusion that the nonlinear MPC control law is perfectly acceptable for

a space mission. Indeed:

1. The timescale of the nonlinear MPC control law is 20 times larger than that

of the linear MPC control law.

2. The timescale of the nonlinear MPC control law could even be slower to ac-

count for other constraints. For a typical asteroid such as the one sized in

chapter 3 section 3.5.1.2, the deployment of one module can occur within

hours to days which is by far faster than the timescale of any perturbation.

3. Finally, the timescale of the nonlinear control law becomes longer with:

(a) Decreasing initial nutation angles.

(b) Initial rotational states of the object closer to a pure state of spin.

(c) Initial rotational states closer to spins about principal axes.

(d) Initial rotational states closer to spins about stable axes.

4. For symmetric ellipsoids, the timescale of the nonlinear MPC law doubles for

the initial condition Wzinit = 0.5 to the initial condition Wzinit = 1

In this section, the nonlinear control law was set to track a pure state of spin for

the object and was simulated with a large mass ratio MR = 10, 000 which rendered

the system less controllable. The control law did not lead to the convergence of

the system angular velocity state to a state of pure spin. Instead it maintained the

object’s initial rotational state while avoiding divergence which is the main downfall
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of the linear control law. The stability of the rotational state is affected by its initial

state and the shape of the object as follows:

1. The larger the initial nutation angle, the more stable this initial nutation angle

is with the nonlinear control law.

2. An initial pure state of spin is harder to maintain than a nutated one.

3. After the module has successfully deployed, the nutation angle has changed

its initial value by an offset value, albeit very small.

4. Symmetric oblate ellipsoids are more controllable when the module is away

from the spin axis and symmetric prolate ellipsoids are more controllable when

the module is close to the spin axis.

5. For asymmetric ellipsoids, it is easier for the nonlinear controller to control an

initial spin about a principal axis than an initial tumbling state. An initial

tumbling state leads to further tumbling.

6. For asymmetric ellipsoids, if the initial rotating state is close to a spin about

the medium principal axis, the controller drives the rotational state to a rota-

tion about a more stable axis most likely the major principal axis.

7. For asymmetric ellipsoids, The nutation angle always exhibits oscillations after

the module deployment is achieved.

The nutation angle and rotational kinetic energy responses are generally smooth with

a profile that would fit the response of a regulator. As per section 5.2, the nonlinear

MPC control law can be considered as stabilising and as providing control commands

with realistic and feasible magnitudes. The final object’s rotational state is close to

its initial rotational state and stable which is a favourable outcome compared to a

diverging accelerated or tumbling rotational state.

However, as mentioned earlier, the nonlinear control law does not drive the

object’s rotational state to a pure state of spin. The controllability of the system

is diminished by the high mass ratio between the object and the deploying module.
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Future work should endeavour to determine how to increase controllability. As such

two avenues can be explored:

1. Perform a study similar to this section’s with different mass ratios. Lowering

the mass ratio should, as seen in the previous sections 5.4 and 5.5, increase

the impact of the module deployment on the rotational state of the object and

therefore, increase the system’s controllability.

2. Explore further the impact of asymmetry on controllability by gauging whether

controllability increases or decreases with asymmetry of the ellipsoid’s shape

along with determining and parametrising a set of geometries for which it is

the case.

This section closes the data analysis of the feasibility and validation chapter. In

the next section, a summary of the findings and contributions will be presented.

5.7 Conclusions and Recommendations

In this section, an overview of the performance of the low-level controller will be

presented with respect to the main system parameters influencing its behaviour:

the mass ratio between the object and the module, the object’s geometry, i.e. its

shape and the system’s initial rotational state. Finally, conclusions will be drawn

on the feasibility of the robotic structure proposed in this PhD study considering

the system’s controllability properties established in chapter 4.

5.7.1 Influence of the Mass Ratio

The mass ratio of the object’s mass to the module’s is the first parameter to

consider since it bears the greatest influence on the system’s stability and control-

lability. All other parameters being equal, the influence of the mass ratio can be

summarised as follows:

1. The lower the mass ratio, the greater the rotational kinetic energy transfer

between the module and the object.
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2. Consequently as a general rule:

(a) The lower the mass ratio, the greater the controllability on the rotational

state of the system. However, this increase in controllability has to be

traded off with an increase in instability and magnitude of divergence of

the system’s rotational state, i.e. an increase in divergence of the nutation

angle and angular velocity magnitude.

(b) The higher the mass ratio, the lower the controllability on the rotational

state of the system which leads to a higher stability of the system’s ini-

tial rotational state. The system’s initial rotational state deviation from

its initial value decreases by an order of magnitude for each mass ratio

increase by the same order of magnitude.

3. The relationship between rotational kinetic energy transfer to the object and

mass ratio is however not monotonous, particularly for symmetric objects

where resonance of the nutation angle could be observed for specific mass

ratios.

5.7.2 Influence of the Object’s Shape

The object’s shape, i.e. the type of ellipsoid it is, is the second most influential pa-

rameter on the system’s stability and controllability. Only systems with potentially

stable shapes were evaluated in this PhD study. All other parameters being equal,

the influence of the object’s shape can be summarised as the following sections:

5.7.2.1 Influence of the Object Shape in Relation to The Sphere Limit

case

The following conclusions have to be understood from the standpoint of the ob-

ject’s shape departure from the limit case of the sphere. In this perspective, the

influence of the shape is as follows:

1. Systems with asymmetric objects are more resistant to divergence than sys-

tems with a symmetric object.
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2. The more symmetric the object, the worse is the control law’s rotational sta-

bility performance, i.e. the more the linear control commands tend to diverge.

3. Stability increases with prolateness and oblateness when departing from an

initial spherical shape.

4. Finally, the timescale of the system increases with symmetry. It decreases with

prolateness and oblateness when departing from an initial spherical shape and

the limit case of the sphere has the largest timescale.

5.7.2.2 Influence of the Symmetric Shapes

All other parameters being equal, oblate objects have higher levels of rotational

kinetic energy than prolate objects. Moreover, on a prolate object the module

travels closer to the spin axis than on an oblate object. This induces a greater

destabilisation, especially near the tip of the spin axis on an oblate object than on

a prolate object. Consequently:

1. Symmetric ellipsoid were more susceptible to nutation increase when their

original state was a pure spin.

2. Symmetric oblate ellipsoids are more controllable when the module is away

from the spin axis and symmetric prolate ellipsoids are more controllable when

the module is close to the spin axis.

3. Stability decreases with oblateness and increases with prolateness.

4. Finally, coverage increases with prolateness and decreases with oblateness.

5.7.2.3 Influence of the Asymmetric Shapes

The specific characteristics that can be attributed to the shape of asymmetric

objects are the following:

1. Initial angular velocities about non principal axes lead to more stable outcome

than initial angular velocities about principal axes.
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2. The nutation angle always exhibits oscillations after the module deployment

is achieved.

3. Stability increases with a decreasing minor axis moment of inertia about this

moment of inertia.

5.7.3 Influence of the Initial Conditions

Initial conditions refer here to initial rotational state of the object prior to the

module’s deployment. The general rule with initial conditions is that the closer

the rotational state to its spinning state about a principal axis, the harder it is to

control, especially about the minor unstable axis. Consequently:

1. An initial pure state of spin is harder to maintain than a nutated one.

2. The larger the initial nutation angle, the more stable this initial nutation angle

is with the nonlinear control law.

3. For asymmetric ellipsoids, it is easier for the nonlinear controller to control an

initial spin about a principal axis than an initial tumbling state. An initial

tumbling state leads to further tumbling.

4. For asymmetric ellipsoids, if the initial rotating state is close to a spin about

the medium principal axis, the controller drives the rotational state to a rota-

tion about a more stable axis most likely the major principal axis.

For symmetric ellipsoids, the timescale of the nonlinear MPC law doubles for the

initial condition Wzinit = 0.5 to the initial condition Wzinit = 1 and initial conditions

have a particular impact on the timescale of the nonlinear control law which becomes

longer with:

1. Decreasing initial nutation angles.

2. Initial rotational states of the object closer to a pure state of spin.

3. Initial rotational states closer to spins about principal axes.

4. Initial rotational states closer to spins about stable axes.
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5.7.4 Energy Levels and Controller Validation

The assessment of how realistic are the object’s levels of rotational kinetic en-

ergy offers important insights as to the validity of the controller. The linear control

law produces large and diverging control commands which corresponds to unreal-

istic energy requirements. The nonlinear law on the other hand provides far more

reasonable results. However, these evaluations are made by visual inspection for

normalised values of rotational kinetic energy. An order of size analysis in energy

units is required to evaluate the feasibility of the robotic structure proposed in this

PhD study. The following considerations were made:

1. The system was assumed to be isolated and with a constant total mechanical

energy. As there are only two distinct parts in the system: the object and

the module, the extensive property of energy implies that the evolution of the

module’s energy could be known as the opposite of the object’s kinetic energy,

the object having no potential energy. The module’s total energy comprises its

potential energy stored in the batteries, its total rotational kinetic energy and

the deformation energy which is the relative linear kinetic energy of its relative

motion from the object. The potential energy stored in the module’s batteries

was assumed to be unbounded a priori for the purpose of this feasibility study.

2. In many figures displayed in this study such as figure 5.241 for instance, the

object’s rotational kinetic energy decreases and increases during the deploy-

ment process which is indicative of back and forth transfer of energy from and

to the object. The relative angular velocity of the module is the time integral

of the the module’s relative rotational acceleration and as per section 5.2, the

low-level module controller can output positive or negative control commands.

Moreover, as per the system’s design, energy should be transferred from the

battery to the module as kinetic energy. Considering all this, the only way

for the object’s rotational kinetic energy to be transferred out of the object is

to the module. The total system’s rotational kinetic energy should therefore

increase during the module deployment. In order to study this aspect as well

as limit this study to realistic situations, the battery should be modelled as
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part of the system design.

3. There is no provision for a dissipative energy mechanism for the system in the

current design of the low-level module controller. A nutation damper should

be considered if a strategy involving despinning the system is envisaged.

4. As per the above two point, despinning the object is not achievable under the

current controller design.

5. The time evolution of the discrete normalised model 3.24 with respect to an

initial value of the relative angular velocity of the module and in the absence

of control commands should be simulated in order to understand how the

energy transfers occur between the object and the module and to assess their

magnitude.

6. A coarse order of size analysis using the asteroid data sized in chapter 3 section

3.5.1.2 in conjunction with the normalised rotational kinetic energy data from

figure 5.241 shows that, for a mass ratio MR = 10, 000, a 2300 T module trav-

elling on the surface of a 100-m radius asteroid would cover its circumference

in 1.5 minutes at 6.6 m · s−1, i.e. 23.7 km · h−1. This corresponds to the ve-

locity of a cyclist and is a priori unrealistic for the intended space application

evaluated in this study. However, this velocity is perfectly reasonable from

the point of view of an exploration study with no constraints on the module’s

energy resource and the proposed solution cannot be dismissed on physical

and engineering grounds at this stage. A priori, it would suffice to reduce the

module’s relative angular velocity to lower the energy expenditure as well as

to lower levels of disturbance to the object’s angular velocity.

5.7.5 Low-Level Controller Performance and Final Recom-

mendations

In this final section, the observed performance of the low-level module controller is

evaluated and final conclusions are drawn on the suitability of the robotic structure

proposed in this PhD study.
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5.7.5.1 Low-Level Controller Design Limitations

The low-level module controller has significant design limitations which are im-

portant to consider when evaluating its performance:

1. First, as per chapter 4, the system is not controllable. The system’s control-

lability matrix has at best a rank of 6 or a rank of 4 for the despin tracking

case and for all simulated systems, the object’s shapes were chosen such that

the eigen values of the system’s Jacobian had zero real parts, i.e. the system

were potentially stable.

2. The dimension of the control space is 1. The control commands φ̈ and θ̈ are

coupled which is consistent with the lack of controllability of the system. From

a pure empirical observation, it is not possible to know whether the control

law is linear or nonlinear and time constant or time variable.

3. The nutation angle is relevant as a stability indicator for systems with sym-

metric object only. Nonetheless, the nutation angle indicates the location of

the axis of rotation with respect to a reference axis of rotation towards which

the system should converge. In this respect, it is perfectly relevant for the

asymmetric case.

5.7.5.2 Low-Level Controller Performance Assessment

Considering the performance of the low-level module controller, the following as-

sessments were made:

1. Irrespective of size, shape and initial angular velocity, each object initial angu-

lar velocity was disturbed by the motion of the module or mass at the object’s

surface. As expected the motion of the module generated system deformation,

moments and rotational kinetic energy transfers between the object and the

module. The physical modelled derived in chapter 3 is accurate enough.

2. The low-level module’s controller objective of deploying the module to a tar-

get anchoring location on the surface of the object is always achieved and is
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achieved independently from the mass ratio of the object’s to the module’s.

However, coverage, defined as a measure of reachability of any point of the

object’s surface from the robotic structure, is only half of what it should be

with only half of the object’s top hemisphere meridians covered by the mod-

ule trajectory. This is a consequence of underactuation as per section 5.7.5.1

which limits the ability of the low-level module controller to actively shape

this trajectory. The low-level module’s controller does not provide enough

controllability.

3. As a general rule except for a minority of cases, increasing rotational kinetic

energy is correlated to decreasing nutation angle which is very positive if the

controller’s objective is to converge to a final pure state of spin. However,

both the linear and nonlinear control laws do not drive the object’s rotational

state to a pure state of spin or despun state within the deployment timespan.

After the module has successfully deployed, the nutation angle’s final value has

approximatively the same biased value, albeit small, compared to its target

value and regardless of the initial conditions. Moreover, for both the pure spin

or despin tracking cases, the results are identical which, in light of the lack

of controllability of the system, puts into question the ability of the controller

to make the rotational state of the system converge to target final rotational

state. Consequently, for both the linear and nonlinear control laws, the sys-

tem’s objective of reaching either a pure state of spin a despun state is not

achieved within the deployment timespan and a precise pointing direction for

the rotation axis cannot be achieved with the current version of the controller

and the current deployment strategy.

4. The timescale of the nonlinear MPC control law is 20 times larger than that of

the linear MPC control law. This corresponds to a two to seven days simulated

time for the nonlinear controller against about 15 minutes for the linear control

law. For a typical asteroid such as the one sized in chapter 3 section 3.5.1.2,

this translates into a module deployment time of hours to days which is by far

faster than the timescale of any perturbation. This timescale is excellent for
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a space application.

5. Module deployment and convergence to a target rotational state have differ-

ent timescale which results in the module having a residual angular velocity

relative to the object upon reaching its target anchoring location. This is a

failure of the controller which should ideally behave like a regulator and lead

to a 0 angular velocity relative to the object upon reaching the target.

6. Looking at the performance of the control laws over time past the module’s tar-

get anchoring point, the linear control law leads the system’s rotational state

to diverge with high energy inputs while the nonlinear control law is stabilis-

ing leading the relative angular velocity to 0. The nonlinear MPC control law

also provides control commands with realistic and feasible magnitudes lead-

ing the nutation angle and rotational kinetic energy to respond with generally

smooth profiles. The nonlinear MPC control law has much better stabilising

performances than te linear control law.

7. Only the nonlinear model provides a sufficient level of accuracy for predicting

the system’s behaviour in order for the controller to produce a performant

control law.

8. High mass ratios stiffen the system. Consequently, the system controllability

decreases with increasing mass ratios between the object and the deploying

module. However, increasing the mass ratio increases the stability of the

system’s initial rotational state which is a more favourable outcome than a

diverging or tumbling rotational state.

5.7.5.3 Final Recommendations

Considering the performance of the low-level module controller in section 5.7.5.2,

the following conclusions were drawn:

1. Given the performance exhibited by both the linear and nonlinear control

laws, only the nonlinear model predictive controller is suitable for the robotic
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application proposed in this PhD study having both the ability to stabilise the

system and to predict accurately the system’s dynamic behaviour.

2. However, the system is not controllable. The model predictive controller con-

trols the deployment state only and does not control the system’s rotational

state satisfactorily. The control commands are coupled with a control com-

mand space likely to be of dimension 1 instead of 2. Moreover, the timescale

of the deployment is different from the timescale of the rotational state. The

module deployment ends with the module having a residual relative angu-

lar velocity and a nutated final system rotational state with a risk of further

divergence.

3. In the design proposed in this PhD study, the model predictive controller is

only constrained by the optimisation of its cost function which enables the

controller to make the system’s rotational state converge partially to a target

rotational state. Given the preceding point, the model predictive controller

would be used most effectively in conjunction with a stiffening of the system

with an increase of the mass ratio between the object and the module. This

would allow the model predictive controller to successfully deploy the module

while maintaining a stable system’s initial rotational state. This later outcome

would be a better than risking divergence while trying to converge to a pure

state of spin or despun state, leaving this change of rotational state for a later

stage potentially using other control methods.

4. The above observations imply that the proposed robotic system is suited for

objects involving a mass ratio of at least 1000 or more. However, from an

engineering standpoint with a real system in mind, a mass ratio of 10000 or

above is to be preferred. This means that the proposed SR robot solution is

more suited to large objects. The asteroid sized in section 3.5.1.2 provides a

good example. With its mass of 2.30e + 10kg, it allows for the deployment

a SR robotic structure whose mass can be up to 2300T . For a small satellite

with mass of the order of a couple of tonnes, this solution is not realistic.
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The limitations of the proposed model predictive controller design calls for im-

provements and / or a change of control strategy. As a first step, further constraints

could be added to the model predictive controller:

1. An energy dissipation mechanism should be added to the self-reconfigurable

robotic structure to allow the possibility of despinning the object.

2. A final penalty cost could be added to the cost function to try to enforce the

convergence of the rotational state and eliminate the residual relative angular

velocity as well as the timescale issue.

3. If stabilising the initial rotational state is the strategy of choice, the timescale

could be expanded in order to try to decrease the rotational kinetic energy of

the module. Further simulations would show whether the rotational kinetic

energy transfer from the module to the object has a lower magnitude and

disturbs less the system’s initial rotational state.

4. A coverage constraint could be added to compensate for the restrictive effect

that the control commands coupling has on the geometry of the module’s

deployment trajectory.

5. Finally, given that over time, the nonlinear control law’s control commands

tend to 0, it could be worth constraining the anchoring of the module to

a location corresponding to a converged rotational state and observing the

emerging trajectory and structure and evaluating whether they satisfy the

structure continuity and coverage objectives.

The general conclusion of this thesis will be now be found in the next chapter.
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Conclusion

6.1 Work Undertaken, Contributions and Con-

clusions

The research carried out for this PhD thesis aimed at making a preliminary design

and assessing the feasibility of a novel robotic structure to be deployed on or to help

capturing randomly tumbling objects in space. The primary applications intended

for this structure are mainly space mining, general space structures deployment,

maintenance and debris removal.

The gap analysis in chapter 2 identified that the design of choice for this robotic

structure should be a modular self-reconfiguring robot with a two-level decentralised

module controller. The lower level of this module controller should be based on a

physical model of the deployment of the robot on an uncooperative random-shaped

object tumbling in a low-magnitude gravity field. The higher level of this module

controller should take the form of a simple behaviour-based decentralized algorithm.

The modules hardware should also be designed in such a way so as to be able to

perform reconfiguration and also sense their environment. In particular, the modules

should be equipped with gyroscopes to perceive the angular velocity and linear

acceleration at the surface of the object.

Given the scope of this design study, it was narrowed down to a proof of concept

i.e. to a physical analysis and to the individual module controller design to establish
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whether in principle such a robot design is feasible and could fulfil the application

deployment requirements.

The research carried out was therefore narrowed down to the following specific

study aims:

1. Model the dynamic interactions between an uncooperative random-shaped

tumbling object with low-magnitude gravitation field and a modular device

moving on the surface of this object in order to describe the effects of dynamic

changes in mass distribution to the overall system and the resulting exchanges

of angular momentum between the object and the device.

2. Derive from the above model a simple behaviour-based decentralized algorithm

controlling the deployment of a modular self-reconfigurable robot over the

surface of the object as a continuous chain of modules circling around the

main spin axis. The controller resolves a constrained optimization or tracking

problem in the sense that the deployment should make the object’s rotational

state converge to a reference rotational state.

3. Verify and validate the robot controller concept and correctness at the lower

module level and at the higher robot level through computer simulations.

These study aims were met by the general and original contributions this thesis

made. These were:

1. In chapter 3, the physical interactions between the robot and the object were

modelled and the simulation designed. The physical model, originally derived

in [66], was a general continuous model of a deformable rotating continuum.

The system under study was defined as the isolated combination of the object

and the robot at its surface. The simulation design consisted mainly in mod-

elling the object as ellipsoids, normalising the model parameters, determining

the initial conditions including the landing site, modelling perturbations as

biases coloured noises and actuation and sensing errors as biased white noises.

The specific original contributions of chapter 3 were:
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(a) A rederivation of the general continuous model of a deformable rotating

continuum [66] with explicit vectors and tensors writing convention for

the purpose of writing consistent and verifiable simulation code.

(b) A discretisation of the general continuous model of a deformable rotating

continuum explicitly separating the object as the rigid part and the robot

and its modules as the discrete deformable parts along with a normalisa-

tion of all the model parameters rendering them dimensionless.

(c) The parametrisation of the relative motion of each robot module with

respect to the object with spherical coordinates to establish that only

the azimuthal angle and polar angle angles were required for evaluating

this relative interaction.

(d) A derivation of the yo-yo de-spin mechanism equations from a continuum

perspective to illustrate and validate the above general model on a simple

two-dimensional example.

(e) The modelling of the object as an ellipsoid parametrised by its normalised

semi-axes lengths and moments of inertia.

(f) The modelling of the radiation perturbations experienced by asteroids as

a biased coloured noise.

(g) The modelling of the model errors and gyroscope and actuator noise as

an aggregate biased white noise.

(h) An explicit and complete rederivation of the Euler equations for objects

with unequal moments of inertia for simulating asymmetric torque-free

rotating objects in order to provide a reference rotational state for the

low-level module controller to track.

(i) The determination of the optimal landing sites for the robot on the surface

of the object at the tip of the current rotating axis by modelling the

system (object and robot) as one body with time-variable mass with an

instantaneous change of mass.

(j) A sizing of the simulation integration step and of realistic initial condi-
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tions for the system simulation.

(k) The derivation of the parametrisation of the holonomic liaison between

the object and each robot module.

2. In chapter 4, from its intended use as a space debris removal, spacecraft main-

tenance, asteroids capture and mining device, the study engineering applica-

tion was precisely defined as the autonomous and controlled construction and

deployment of decentralised modular and self-reconfigurable scaffolding struc-

tures around free-floating randomly tumbling objects with a low-magnitude

gravitational field in space. The chapter first dealt with the definition of

the robot task objectives and performance measurements. Broad assumptions

were made for the robot engineering requirements and hardware design to al-

low focus on the preliminary design of a decentralised control strategy with

two levels: one high-level behaviour-based component controlling the orderly

deployment of the robot on the surface of the object and one low-level compo-

nent controlling the module motion on the surface of the object by generating

commands via a constrained optimisation using either a linear or non-linear

model predictive control approach. In this perspective, the robot deployment

or reconfigurations are task-driven and akin to a manipulation through recon-

figuration of the entire robot body via changes of mass distribution. The com-

bination of the decentralised behaviour-based and Model Predictive Control

approaches with a manipulation through reconfiguration, angular momentum

exchanges and mass distribution changes is a novel use of a SR robot. This

new function aims at maintaining the entire system (object + robot) either

in a state of pure spin or despun so as to keep a stable pointing direction for

the main spinning axis for further processing such as an asteroid retrieval for

instance. The specific original contributions of chapter 4 were:

The original contributions of this work were:

(a) The transformation of the discrete model (3.24) in chapter 3 into a non-

linear state space model (4.15) with an equilibrium point at its origin
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corresponding to the system being in a state of torque-free rotating mo-

tion in space.

(b) The linearisation of the state space model (4.15) about its origin into

the linear model (4.16) and the derivation of all the necessary Jacobian

matrices.

(c) A stability analysis of the non-linear model performed through the model

linearisation which established that the system is at best neutrally sta-

ble. Oblate ellipsoids are potentially stable while prolate and asymmetric

ellipsoids can be either potentially stable or unstable. Unstable shapes

can be clearly identified by an increasing function of the mass ratio of the

object’s to the module’s. Further calculation or empirical investigation

are required to clarify the system behaviour near its equilibrium.

(d) A controllability analysis which established that:

i. The system is not completely controllable.

ii. A state of pure spin is more controllable than a despun state.

iii. If the angular velocity or rotational kinetic energy becomes too large

with respect to the magnitude of the moments of inertia of the object,

the system becomes less controllable as the level of kinetic energy

renders the object very stable.

(e) The conclusion that, with the above level of analysis, the Model Predic-

tive Control law’s existence and stabilisability property cannot be for-

mally proven. The existence of a small domain of attraction about the

equilibrium would suffice but a higher order analysis is required to con-

clude. An empirical exploratory analysis is what could be attempted and

a Model Predictive Control approach is the best suited for the exploration

of the control space.

(f) The design, for each module, of two decentralised controllers, a linear

and nonlinear Model Predictive Controller, which control its motion on

the surface of the object while tracking a reference state trajectory. This

process encompassed:
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i. The proof of unicity of trajectories, admissibility, viability and feasi-

bility of the system.

ii. A stability and controllability analysis of the system.

iii. The choice of a cost function and its weights.

iv. The proof of observability of the system’s state. The state is observ-

able on an ellipsoid with gyroscopes and accelerometers providing a

model of the local shape of the surface.

(g) The design of a decentralised behaviour-based control algorithm taking

the form of a behaviour tree. This controller controls the reconfiguration

of the robot from a lattice configuration to a chain configuration coiling

around the spinning axis of the object from the tip to the median plane,

each module moving one by one. The controller also encompasses basic

failure safety features.

(h) The proof of correctness of the above behaviour-based algorithm under

the hypothesis that the lower-level MPC controllers performs as per its

specifications.

(i) The design of a decentralised behaviour-based control algorithm for a self-

reconfigurable robot which does not rely on emergence but uses a combi-

nation of physical modelling of the environment with the implementation

of behaviours to complete a specific task and achieve a prescribed goal

with proven correctness.

3. In chapter 5, extensive simulations of one module’s deployment on the object’s

surface were carried out in order to evaluate the performance of the low-level

linear and nonlinear model predictive controllers. Simulations were carried out

for 10 object geometries under 32 initial conditions parametrised by the mass

ratio of the object’s to the module’s and the object’s initial rotational state.

The performance evaluation was based on the performance measures laid out

in section 4.1.4 and the observation of:

(a) The trajectory of the module on the surface of the object.
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(b) The object’s phase diagram of the Z component of the angular velocity.

(c) The object’s rotational kinetic energy vs. time.

(d) The object’s nutation angle vs. time.

(e) The nutation angle vs rotational kinetic energy.

(f) The magnitude of the control commands vs. time.

The results originated from both linear and nonlinear control law data and

their display was limited to the most significant cases highlighting similarities

when it was relevant to do so. The results were organised in five sections

respectively focusing on:

(a) A comparison of the linear and nonlinear control commands over a large

period of time for a mass ratio equals to 10, 000.

(b) An examination of the coverage of the module trajectory on the surface

of the object coupled with a check that the module reached its target

anchoring location.

(c) The requirement to asymptotically stabilise the object’s angular velocity

to a pure state of spin or a despun state while the module travelling from

the tip of the Z axis converges to its target anchoring location.

(d) The requirement to asymptotically stabilise the object’s angular velocity

to a pure state of spin or a despun state beyond the timescale required

by the controller’s requirements in order to evaluate whether convergence

of the rotational state occurs overtime despite the lack of controllability

identified in chapter 4.

(e) A final holistic comparison between the linear and nonlinear MPC con-

trollers’ performance.

The simulations highlighted the following points:

(a) Coverage, defined as a measure of reachability of any point of the object’s

surface from the robotic structure, is only half of what it should be with
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only half of the object’s top hemisphere meridians covered by the module

trajectory.

(b) The model predictive controller controls the deployment state only and

does not control the system’s rotational state satisfactorily. The control

commands are coupled with a control command space likely to be of

dimension 1 instead of 2.

(c) The nonlinear model predictive controller has nonetheless both the ability

to stabilise the system with the relative angular velocity converging to 0

overtime and to predict accurately the system’s dynamic behaviour.

(d) However, for both the linear and nonlinear control laws, the system’s ob-

jective of converging either to a pure state of spin or a despun state is not

achieved within the deployment timespan as deployment and convergence

have different timescale. The final rotational state is always nutated.

(e) The timescale of the nonlinear control is perfectly acceptable for a space

application and could be longer.

(f) The nonlinear MPC control law provides control commands with realistic

and feasible magnitudes.

(g) High mass ratios stiffen the system. The lower the mass ratio, the greater

the system controllability but the greater the possibility and magnitude

of divergence. Conversely, stability increases with increasing mass ratios.

The general conclusion of this work is that the nonlinear model predictive

controller should be chosen over the linear one. The simulations validated the

nonlinear model predictive controller for driving the module’s deployment to

a target location but not for controlling the system’s rotational state which

never converge to the reference rotational state. However, the simulations also

showed that the nonlinear model predictive controller could be used effectively

for a strategy focusing on stabilising the system’s initial rotational state. This

strategy trades off controllability for stability by combining the controller with

a stiffening of the system through an increase of the mass ratio which is shown
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to be the main stabilising parameter. The benefit of stability outweighs the risk

of divergence undergone when trying to converge to a reference rotational state

and in this case, the proposed self-reconfigurable robot is suited for objects

involving a mass ratio of at least 1000 or more. From an engineering standpoint

with a real system in mind, however, a mass ratio of 10000 or above is to be

preferred. This means that the proposed SR robot solution is more suited to

large objects. The asteroid sized in section 3.5.1.2 provides a good example.

With its mass of 2.30e + 10kg, it allows for the deployment a SR robotic

structure whose mass can be up to 2300T . For a small satellite with mass of

the order of a couple of tonnes, this solution is not realistic.

6.2 Limitations and Future Work

The limitations of the robotic solution proposed in this PhD study not only call

for further understanding and improvements of the proposed approach but also for

the further exploration of different control strategies. The two types of future work

is divided into two sections, respectively: further evaluation or further exploration.

6.2.1 Further Evaluations

Further evaluations and improvements of the proposed approach should:

1. Calculate the energy expenditure in real terms and size energy with respect

to the relative inertia of the system’s components to evaluate how realistic the

feasibility study results are.

2. Run a simulation of the model with no control command input and with

different initial conditions on the rotational state of a module moving on the

surface of the object. Evaluate the ”free” interactions between the object

and a passive mass moving on its surface in order to understand the energy

transfers between the object and the modules further.

3. Determine the mass ratios which optimise both controllability and stability.
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4. Perform a higher order analysis (2nd order and higher) into the nature of the

system’s equilibrium to refine the control law design further.

5. Explore further the impact of asymmetry on controllability by gauging whether

controllability increases or decreases with asymmetry of the ellipsoid’s shape

along with determining and parametrising a set of geometries for which it is

the case.

6. Vary the cost function weights in order to optimise the controller’s perfor-

mance.

7. Add a final penalty cost to the cost function to try to enforce the convergence

of the rotational state and eliminate the residual relative angular velocity as

well as the timescale issue. This final penalty cost take the form of further

constraints on energy expenditure.

8. Determine an explicit form of the control commands function.

9. Add a coverage constraint to compensate for the restrictive effect of the control

commands coupling. This could take the form of an explicit encoding of the

even distribution of the trajectory about the chosen rotation axis so that all

points of the object’s surface are optimally reachable within an optimal average

distance while minimising the energy expenditure.

10. Expand the timescale of the module deployment to match the timescale of the

rotational state and of the nonlinear control law so that the controller acts as

a regulator.

11. Run a full robot simulation in order to test the behaviour-based control algo-

rithm.

12. Include noise and perturbations in the simulations.

6.2.2 Further Explorations

The explorations of new control strategies should:
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1. Add a nutation damper to the self-reconfigurable robotic structure to allow en-

ergy dissipation and the possibility of despinning the object or of the system’s

convergence to any reference rotational state.

2. Determine a method for explicitly decoupling the control commands so that

the dimension of the control command space is 2.

3. Include the online identification of the moments of inertia of the object. Cur-

rently, in the model, these moments of inertia are assumed to be known. In

reality, they would have been estimated prior to the mission and may have to

be confirmed or re-evaluated online once the robot has landed on the object.

4. Include the moments arising from material stresses in the general model pre-

sented in chapter 3.

5. Devise a method for each module to accurately evaluate its odometry at the

surface of the object.

6. Refine the robot’s hardware design to work on a more realistic solution. In

particular, explore retractable and flexible material solutions.

7. Explore the use of grown appendages such as makeshift arms to actuate and

control the rotational state of the entire system.

This final section concludes this PhD study.
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Physical Model Derivation with

Consistent Vector Dimension

Convention

In this appendix is laid out the most significant part of the derivation of the model

presented in 3.2.4, the original of which is found in [66]. The focus is placed on a

programmatic perspective to ensure a consistent writing convention for vectors and

tensors used in the simulations’ code. The calculation occur mainly at the particle

level. When not stated otherwise, a simple application of the integral operator is

required to ensure validity over the continuum.

All calculations rules are based on the dyadic identities found in appendix A

of [28]. The convention followed is that left of the dyadic product ⊗, vectors are

column and right of the dyadic product ⊗ vectors are row. Drawing on the normal-

isation of the model parameters, there is also no explicit reference to mass.

The reader is referred to chapter 3 section 3.2.3 for the definitions of the frames

of reference involved and to section 3.2.4 for the definitions of all the notations.

The continuous model 3.23 found in section 3.2.4 is reproduced below for mem-
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ory:

[I] ·
−̇→
Ω +

−→
Ω ∧ [I] ·

−→
Ω = −

∫
m

2
[
(
−̇→
x′′0 ·
−→x )[1]−

−̇→
x′′0 ⊗

−→x
]
·
−→
Ω · dm

−
∫
m

[[
(−→x · −→x )[1]− (−→x ⊗−→x )

]
·
−̇→
Ψ

+
[
2(−→x · −̇→x )[1]− (−̇→x ⊗−→x )− (−→x ⊗ −̇→x )

]
·
−→
Ψ

]
· dm

−
∫
m

[
(−→x ⊗

−̇→
x′′0)− (

−̇→
x′′0 ⊗

−→x )
]
·
−→
Ψ · dm

−
∫
m

[
(−→x ⊗−→x ) ∧

−→
Ψ + ((−→x ⊗−→x ) ∧

−→
Ψ)T

]
·
−→
Ω · dm

−
∫
m

(−→x ∧
−̈→
x′′0) · dm

+
−→
MBody +

−→
MStresses +

−→
MPerturbations

(A.1)

In [66], the derivation starts from first principles using the kinematic relationships

between relatively moving frames of reference to express the field angular momentum

of the system as a function of the field angular velocity of the local particle and its

relative velocity and acceleration. It results in the following formulae over the entire

continuum:

−→
L (x, t)Total =

∫
m

−→x ∧
(
−̇→
Ω(x, t)∧−→x +2

−→
Ω(x, t)∧

−̇→
x′′0 +

−→
Ω(x, t)∧ (

−→
Ω(x, t)∧−→x )+

−̈→
x′′0

)
(A.2)

The focus of this appendix will be on the further expansion of the four terms

composing the angular momentum
−→
L (x, t)Total at the mass particle level. The ap-

plication of the integral operator gives immediately their value over the entire con-

tinuum.

A.1 First Term

The first term is −→x ∧ (
−̇→
Ω (x,t) ∧ −→x )
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Linearity gives:

−→x ∧ (
−̇→
Ω (x,t) ∧ −→x ) = −→x ∧ (

−̇→
Ω ∧ −→x ) +−→x ∧ (

−̇→
Ψ ∧ −→x ) (A.3)

−→x ∧ (
−̇→
Ω ∧ −→x ) leads to [I]

−̇→
Ω via the integral operator. For the other term:

(−→x T · −→x ) ·
−̇→
Ψ = (

−̇→
Ψ ⊗−→x ) · −→x (A.4)

(
−̇→
Ψ ⊗−→x ) · −→x =

d[(
−→
Ψ ⊗−→x ) · −→x ]

dt
− (
−→
Ψ ⊗ −̇→x ) · −→x − (

−→
Ψ ⊗−→x ) · −̇→x (A.5)

(
−̇→
Ψ ⊗−→x ) · −→x =

d[(
−→
Ψ ⊗−→x ) · −→x ]

dt
− 2(
−→
Ψ ⊗ −̇→x ) · −→x (A.6)

Since −̇→x =
−̇→
x′′0 +

−→
Ωt ∧ −→x =

−̇→
x′′0 + (

−→
Ω +

−→
Ψ) ∧ −→x

(
−→
Ψ ⊗ −̇→x ) · −→x = [

−→
Ψ ⊗ (

−̇→
x′′0 + (

−→
Ω +

−→
Ψ) ∧ −→x )] · −→x (A.7)

(
−→
Ψ ⊗ −̇→x ) · −→x = [

−→
Ψ ⊗

−̇→
x′′0] · −→x (A.8)

Hence

(
−̇→
Ψ ⊗−→x ) · −→x =

d[(
−→
Ψ ⊗−→x ) · −→x ]

dt
− 2[
−→
Ψ ⊗

−̇→
x′′0] · −→x (A.9)

Now

(−→x ⊗−→x ) ·
−̇→
Ψ =

d[(−→x ⊗−→x ) ·
−→
Ψ]

dt
− (−̇→x ⊗−→x ) ·

−→
Ψ − (−→x ⊗ −̇→x ) ·

−→
Ψ (A.10)
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(−→x ⊗−→x ) ·
−̇→
Ψ =

d[(−→x ⊗−→x ) ·
−→
Ψ]

dt
− (
−̇→
x′′0 ⊗

−→x ) ·
−→
Ψ − (−→x ⊗

−̇→
x′′0) ·

−→
Ψ

−
(
[
−→
Ω ∧ −→x +

−→
Ψ ∧ −→x ]⊗−→x

)
·
−→
Ψ −

(−→x ⊗ [
−→
Ω ∧ −→x +

−→
Ψ ∧ −→x ]

)
·
−→
Ψ

(A.11)

Then

−
(
[
−→
Ψ∧−→x ]⊗−→x

)
·
−→
Ψ =

(
[−→x ∧

−→
Ψ]⊗−→x

)
·
−→
Ψ =

(−→x ⊗[−→x ∧
−→
Ψ]
)T ·−→Ψ =

(
[−→x ⊗−→x ]∧

−→
Ψ
)T ·−→Ψ

(A.12)

Similarly

−
(
[
−→
Ω ∧ −→x ]⊗−→x

)
·
−→
Ψ =

(
[−→x ⊗−→x ] ∧

−→
Ω
)T · −→Ψ (A.13)

−
(−→x ⊗ [

−→
Ω ∧ −→x ]

)
·
−→
Ψ =

(
[−→x ⊗−→x ] ∧

−→
Ω
)
·
−→
Ψ (A.14)

−
(−→x ⊗ [

−→
Ψ ∧ −→x ]

)
·
−→
Ψ = −−→x ⊗

(
[
−→
Ψ ∧ −→x ] ·

−→
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=
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0 (A.15)

Finally

(−→x ⊗−→x ) ·
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dt
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−̇→
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−→x ) ·
−→
Ψ − (−→x ⊗

−̇→
x′′0) ·

−→
Ψ

+
(
[−→x ⊗−→x ] ∧

−→
Ψ
)T · −→Ψ

+
(
[−→x ⊗−→x ] ∧

−→
Ω
)T · −→Ψ

+
(
[−→x ⊗−→x ] ∧

−→
Ω
)
·
−→
Ψ

(A.16)

A.2 Second Term

The second term is 2[−→x ∧ (
−→
Ωt ∧

−̇→
x′′0)]

2[−→x ∧(
−→
Ωt∧
−̇→
x′′0)] = 2[(

−̇→
x′′0 ·
−→x )[1]−(

−̇→
x′′0⊗
−→x )]·

−→
Ω +2[(

−̇→
x′′0 ·
−→x )[1]−(

−̇→
x′′0⊗
−→x )]·

−→
Ψ (A.17)
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With 2[(
−̇→
x′′0 ·
−→x )[1]− (

−̇→
x′′0 ⊗

−→x )] ·
−→
Ω leading to 2[J]

−→
Ω via the integral operator.

A.3 Third Term

The third term is −→x ∧ [
−→
Ωt ∧ (

−→
Ωt ∧ −→x )]

−→x ∧ [
−→
Ωt ∧ (

−→
Ωt ∧ −→x )] =

−→x ∧ [
−→
Ω ∧ (

−→
Ω ∧ −→x )]

+−→x ∧ [
−→
Ψ ∧ (

−→
Ω ∧ −→x )]

+−→x ∧ [
−→
Ω ∧ (

−→
Ψ ∧ −→x )]

+−→x ∧ [
−→
Ψ ∧ (

−→
Ψ ∧ −→x )]

(A.18)

With −→x ∧ [
−→
Ω ∧ (

−→
Ω ∧ −→x )] leading to

−→
Ω ∧ [I]

−→
Ω via the integral operator.

Since

−→x ∧ [−→a ∧ (
−→
b ∧ −→x )] = −→a · (−→x ⊗−→x ) ∧

−→
b = −

−→
b ∧ (−→x ⊗−→x ) · −→a (A.19)

Hence

−→x ∧ [
−→
Ψ ∧ (

−→
Ω ∧ −→x )] = −

−→
Ω ∧ (−→x ⊗−→x ) ·

−→
Ψ = [(−→x ⊗−→x ) ∧

−→
Ω ]T ·

−→
Ψ (A.20)

−→x ∧ [
−→
Ω ∧ (

−→
Ψ ∧ −→x )] = −

−→
Ψ ∧ (−→x ⊗−→x ) ·

−→
Ω = [(−→x ⊗−→x ) ∧

−→
Ψ]T ·

−→
Ω (A.21)

−→x ∧ [
−→
Ψ ∧ (

−→
Ψ ∧ −→x )] = −

−→
Ψ ∧ (−→x ⊗−→x ) ·

−→
Ψ = [(−→x ⊗−→x ) ∧

−→
Ψ]T ·

−→
Ψ (A.22)

From appendix A of [28]:

(C ∧A) ·B = C ∧A ·B = −(C ∧B) ·A (A.23)
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leads to

−[(−→x ⊗−→x ) ∧
−→
Ω ] ·
−→
Ψ =

[−(−→x ⊗−→x ) ∧
−→
Ω ] ·
−→
Ψ

= −[−(−→x ⊗−→x ) ∧
−→
Ψ] ·
−→
Ω

[(−→x ⊗−→x ) ∧
−→
Ψ] ·
−→
Ω

(A.24)

A.4 Fourth Term

The fourth term is immediately:

−→x ∧
−̈→
x′′0 (A.25)

A.5 Conclusion

The reader can verify that adding up all these terms and passing them through the

integral operator over the entire continuum leads to model A.1

328



Appendix B

Jacobian of the State Function

This appendix lists the constituting elements of the Jacobian of the state space

system 4.12 which is reproduced for reference in section B.1 as equation B.2. The

derivation of these elements is also presented.

The calculations occur at the particle level focusing on the Jacobian with respect

to the particles state variables. The discrete particles are identified by the index i

or j when two particles are considered at the same time. The construction of the

Jacobian follows a progressive bottom up approach, starting with the differentiation

of individual vectors, then continuing with the differentiation of the moments of the

state space system 4.12 and finally finishing by the aggregation of these into the

main components of the overall Jacobian.

The focus is placed on dimensional consistency to ensure a consistent code writing

convention for the simulations. Tensors in particular can be used with different

representations depending on the application. The convention followed in this study

is that all Jacobians are represented as two-dimensional matrices and not as multi-

dimensional tensors. Therefore, the Jacobian of a vectorial function a with respect

to the vectorial variable b is a matrix

[
∂a
∂b

]
. The entry

[
∂ai
∂bj

]
at row i and column j

represents the derivative of the ith component of a with respect to the jth component

of b.

All calculations rules are based on the dyadic identities found in appendix A

of [28]. The convention followed is that left of the dyadic product ⊗, vectors are

column and right of the dyadic product ⊗ vectors are row. Drawing on the normal-
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isation of the model parameters, there is also no explicit reference to mass.

The reader is referred to chapter 3 section 3.2.3 for the definitions of the frames

of reference involved and to section 3.2.4 for the definitions of all the notations.

B.1 Main Notations and Definitions

As per definition in section 4.2.1, the state vector is defined as
−→
X and contains

all the particles or robot modules state variables. The number of robot modules in

the rest of this appendix is nr. The dimensions of
−→
X is (3 + 4nr)× 1.

−→
X =


−→
Ω

−→
Θ

−̇→
Θ

 (B.1)

As per the definition of the system 4.12, its state space model is:


−̇→
Ω

−̇→
Θ

−̈→
Θ

 = g(
−→
Ω ,
−→
Θ,
−̇→
Θ,−→u ) =


f(
−→
Ω ,
−→
Θ,
−̇→
Θ,
−̈→
Θ)

−̇→
Θ

−→u

 (B.2)

where:

f(
−→
Ω ,
−→
Θ,
−̇→
Θ,
−̈→
Θ) = −[In]−1 · (

−→
Ω ∧ [In] ·

−→
Ω)

− [In]−1 ·
nr∑
i=1

[
2
[
(
−̇→
x′′i0 ·
−→x i)[1]−

−̇→
x′′i0 ⊗

−→x i

]
·
−→
Ω

+

[[
(−→x i · −→x i)[1]− (−→x i ⊗−→x i)

]
·
−̇→
Ψi

+
[
2(−→x i · −̇→x i)[1]− (−̇→x i ⊗−→x i)− (−→x i ⊗ −̇→x i)

]
·
−→
Ψi

]
+
[
(−→x i ⊗

−̇→
x′′i0)− (

−̇→
x′′i0 ⊗

−→x i)
]
·
−→
Ψi

+
[
(−→x i ⊗−→x i) ∧

−→
Ψi + ((−→x i ⊗−→x i) ∧

−→
Ψi)

T
]
·
−→
Ω

+ (−→x i ∧
−̈→
x′′i0)

]

(B.3)

By definition, the Jacobian of g with respect to the main state variables is a
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matrix of dimension (4nr + 3)× (4nr + 3) which is written as follows:

[
∂g

∂
−→
X

]
=


∂f

∂
−→
Ω

∂f

∂
−→
Θ

∂f

∂
−̇→
Θ

∂
−̇→
Θ

∂
−→
Ω

∂
−̇→
Θ

∂
−→
Θ

∂
−̇→
Θ

∂
−̇→
Θ

∂
−̈→
Θ

∂
−→
Ω

∂
−̈→
Θ

∂
−→
Θ

∂
−̈→
Θ

∂
−̇→
Θ

 (B.4)

Similarly, the Jacobian of g with respect to the manipulated variables is a matrix

of dimension (4nr + 3)× 2nr which is written as follows:

[
∂g

∂−→u

]
=


∂f
∂−→u

∂
−̇→
Θ
∂−→u

∂
−̈→
Θ
∂−→u

 (B.5)

B.2 Jacobians of Position Vectors and Angular

Velocities

This section lays out the Jacobians of the position, linear and angular velocity

vectors on which the Jacobian of function g is based. All these vectors are expressed

in the object’s body frame of reference focusing on particle or robot module i. For

each particle i, its vectors’ Jacobians with respect to the state variables

of particle j are null matrices of dimension 3× 2, i.e. [0]3×2.

B.2.1 Jacobian of Basis Vectors

Starting with the basis vectors of the particles reference frame in spherical co-

ordinates, the 3 × 2 Jacobians with respect to particle or module i state variables

are:

[
∂−→eri

∂
−→
Θi

]
=


cos(θi) cos(φi) − sin(θi) sin(φi)

cos(θi) sin(φi) sin(θi) cos(φi)

− sin(θi) 0

 (B.6)
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[
∂−→eθi
∂
−→
Θi

]
=


− sin(θi) cos(φi) − cos(θi) sin(φi)

− sin(θi) sin(φi) cos(θi) cos(φi)

− cos(θi) 0

 (B.7)

[
∂ sin(θi)(

−→eφi)

∂
−→
Θi

]
=


− cos(θi) sin(φi) − sin(θi) cos(φi)

cos(θi) cos(φi) − sin(θi) sin(φi)

0 0

 (B.8)

B.2.2 Jacobian of r the Radius of the Particle’s Position

For each particle i, the Jacobian of its radius r with respect to the state

variables of particle j are null matrices of dimension 1× 2, i.e. [0]1×2.

Defining base as:

base(θi, φi) =
cos(φi)

2 sin(θi)
2

a2
+

sin(φi)
2 sin(θi)

2

b2
+

cos(θi)
2

c2
(B.9)

For prime:

prime(θi, φi) = ˙base(θi, φi) =

1

a2
[cos(φi)

2 sin(2θi)θ̇i − sin(2φi)φ̇i sin(θi)
2]

+
1

b2
[sin(φi)

2 sin(2θi)θ̇i + sin(2φi)φ̇i sin(θi)
2]

− 1

c2
[sin(2θi)θ̇i]

(B.10)

In spherical coordinates:

r(θi, φi) =

√
1

base(θi, φi)
(B.11)

The Jacobians

[
∂ri
∂
−→
Θi

]
,

[
∂ṙi
∂
−→
Θi

]
,

[
∂ri

∂
−̇→
Θi

]
and

[
∂ṙi

∂
−̇→
Θi

]
are 1× 2 matrices whose entries
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are derived below.

[
∂ri

∂θi

]
=
−r3i

2
·
[
∂base

∂θi

]
=
−r3i

2
sin(2θi)(

cos2(φi)

a2
+

sin2(φi)

b2
− 1

c2
) (B.12)

[
∂ri

∂φi

]
=
−r3i

2
·
[
∂base

∂φi

]
=
−r3i

2
sin2(θi) sin(2φi)(

1

b2
− 1

a2
) (B.13)

[
∂ri

∂θ̇i

]
= 0 (B.14)

[
∂ri

∂φ̇i

]
= 0 (B.15)

[
∂ṙi

∂θi

]
=

3r5i
4
· prime · ∂base

∂θi

− r3i
2
· ∂prime

∂θi

(B.16)

[
∂ṙi

∂φi

]
=

3r5i
4
· prime · ∂base

∂φi

− r3i
2
· ∂prime

∂φi

(B.17)

[
∂ṙi

∂θ̇i

]
= −r

3
i

2
· ∂prime

∂θ̇i

(B.18)

[
∂ṙi

∂φ̇i

]
= −r

3
i

2
· ∂prime

∂φ̇i

(B.19)

[
∂prime

∂θi

]
=

2 cos(2θi)θ̇i cos2(φi)− sin(2θi) sin(2φi)φ̇i
a2

+
2 cos(2θi)θ̇i sin

2(φi) + sin(2θi) sin(2φi)φ̇i
b2

− 2 cos(2θi)θ̇i
c2

(B.20)

[
∂prime

∂φi

]
= (sin(2θi)θ̇i sin(2φi) + 2 sin2(θi) cos(2φi)φ̇i)(

1

b2
− 1

a2
) (B.21)
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[
∂prime

∂θ̇i

]
= sin(2θi)(

cos2(φi)

a2
+

sin2(φi)

b2
− 1

c2
) (B.22)

[
∂prime

∂φ̇i

]
= sin2(θi) sin(2φi)(

1

b2
− 1

a2
) (B.23)

B.2.3 Jacobian of Relative Velocities

The Jacobian of the particles’ relative velocities with respect to all the state

variables has an overall dimension of 3nr × (2nr + 3).For each particle i, the

Jacobian of its relative velocity with respect to the state variables of

particle j are null matrices of dimension 3×2, i.e. [0]3×2 and the Jacobian of

its relative velocity with respect to its own state variables is also of dimension 3×2.

When calculated with respect to the angular velocity of the object, the Jacobian of

the relative velocity of particle i is of dimension 3× 3.

[
∂
−̇→
x′′i0

∂
−→
Θi

]
=

[
∂ṙi

∂
−→
Θi

]
⊗−→er i + ṙi ⊗

[
∂−→er i

∂
−→
Θi

]
(B.24)

[
∂
−̇→
x′′i0

∂
−̇→
Θi

]
=

[
∂ṙi

∂
−̇→
Θi

]
⊗−→er i (B.25)

[
∂−→x i

∂
−→
Θi

]
=

[
∂ri

∂
−→
Θi

]
⊗−→er i + ri ⊗

[
∂−→er i

∂
−→
Θi

]
(B.26)

[
∂−→x i

∂
−̇→
Θi

]
=


0 0

0 0

0 0

 (B.27)

[
∂−̇→x i

∂
−→
Ω

]
= [Id]3×3 ∧ ri

−→er i (B.28)
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[
∂−̇→x i

∂
−→
Θi

]
=

[
∂
−̇→
x′′i0

∂
−→
Θi

]
+ φ̇i

[
∂ri

∂
−→
Θi

]
⊗ sin(θi)

−→eφi

+ φ̇iri ⊗
[
∂ sin(θi)

−→eφi
∂
−→
Θi

]
+

[
∂ri

∂
−→
Θi

]
⊗ θ̇i−→eθi

+ riθ̇i ⊗
[
∂−→eθ i

∂
−→
Θi

]
+
−→
Ω ∧

[
∂−→x i

∂
−→
Θi

] (B.29)

[
∂−̇→x i

∂
−̇→
Θi

]
=

[
∂
−̇→
x′′i0

∂
−̇→
Θi

]
+

[
0 1

]
⊗ ri sin(θi)

−→eφi +

[
1 0

]
⊗ ri−→eθi (B.30)

B.2.4 Jacobian of Relative Angular Velocities

The Jacobian of the particles’ relative angular velocities with respect to all the

state variables has an overall dimension of 3nr × (2nr + 3).For each particle i,

the Jacobian of its relative angular velocity with respect to the state

variables of particle j is a null matrix of dimension 3 × 2, i.e. [0]3×2 and

the Jacobian of its relative angular velocity with respect to its own state variables is

also of dimension 3×2. When calculated with respect to the angular velocity of the

object, the Jacobian of the relative angular velocity of particle i is a null matrix of

dimension 3 × 3 (i.e. [0]3×3) and when calculated with respect to the manipulated

variables, the Jacobian of the relative velocity of particle i is of dimension 3× 2.

[
∂
−→
Ψi

∂
−→
Θi

]
=


0 − cos(φi)θ̇i

0 − sin(φi)θ̇i

0 0

 (B.31)

[
∂
−→
Ψi

∂
−̇→
Θi

]
=


− sin(φi) 0

cos(φi) 0

0 1

 (B.32)

[
∂
−̇→
Ψi

∂
−→
Θi

]
=


0 − cos(φi)θ̈i + sin(φi)φ̇iθ̇i

0 − sin(φi)θ̈i − cos(φi)φ̇iθ̇i

0 0

 (B.33)
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[
∂
−̇→
Ψi

∂
−̇→
Θi

]
=


− cos(φi)φ̇i − cos(φi)θ̇i

− sin(φi)φ̇i − sin(φi)θ̇i

0 0

 (B.34)

[
∂
−̇→
Ψi

∂−→u i

]
=


− sin(φi) 0

cos(φi) 0

0 1

 (B.35)

B.3 Jacobian of g with Respect to the State Vari-

ables

Again, in this section, nr stands for the number of robot modules or discrete

particles.

B.3.1 Jacobian of the Particles State Variables

The Jacobian of g particles’ state variables with respect to all state variables has

an overall dimension of 4nr × (4nr + 3).

B.3.1.1 ~̇Θ with respect to ~Ω:[
∂
−̇→
Θ

∂
−→
Ω

]
= [0]2nr×3 (B.36)

B.3.1.2 ~̇Θ with respect to ~Θ:[
∂
−̇→
Θ

∂
−→
Θ

]
= [0]2nr×2nr (B.37)

B.3.1.3 ~̇Θ with respect to ~̇Θ:[
∂
−̇→
Θ

∂
−̇→
Θ

]
= [Id]2nr×2nr (B.38)

At particle i level: [
∂
−̇→
Θi

∂
−̇→
Θi

]
=

1 0

0 1

 (B.39)
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Particle i with respect to j:

[
∂
−̇→
Θi

∂
−̇→
Θj

]
=

0 0

0 0

 (B.40)

B.3.1.4 ~̈Θ with respect to ~Ω:[
∂
−̈→
Θ

∂
−→
Ω

]
= [0]2nr×3 (B.41)

B.3.1.5 ~̈Θ with respect to ~Θ:[
∂
−̈→
Θ

∂
−→
Θ

]
= [0]2nr×2nr (B.42)

B.3.1.6 ~̈Θ with respect to ~̇Θ:[
∂
−̈→
Θ

∂
−̇→
Θ

]
= [0]2nr×2nr (B.43)

B.3.2 Jacobian of f With Respect to the Rigid Angular Ve-

locity

The Jacobian

[
∂f

∂
−→
Ω

]
has dimension 3× 3.

[
∂f

∂
−→
Ω

]
= −[In]−1 ·

[
([Id]3×3 ∧ [In] ·

−→
Ω) + (

−→
Ω ∧ [In])

+
nr∑
i=1

[
2
[
(
−̇→
x′′i0 ·
−→x i)[1]−

−̇→
x′′i0 ⊗

−→x i

]
+
[
(−→x i ⊗−→x i) ∧

−→
Ψi + ((−→x i ⊗−→x i) ∧

−→
Ψi)

T
]]]

(B.44)

B.3.3 Jacobian of f With Respect to the Angular Positions

of the Particles[
∂f

∂
−→
Θ

]
has a dimension of 3×2nr. In this section,

[
∂f

∂
−→
Θ

]
is split into two components

for readability: [
∂f

∂
−→
Θ

]
=

[
∂f

∂
−→
Θ

]
MoI

+

[
∂f

∂
−→
Θ

]
Moments

(B.45)
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B.3.3.1

[
∂f

∂ ~Θ

]
MoI[

∂[In]−1

∂
−→
Θ

]
is of dimension 3× 6nr, hence:

[
∂f

∂
−→
Θ

]
MoI

= −
[
∂[In]−1

∂
−→
Θ

]
·

(
[Id]2nr×2nr ⊗

[
(
−→
Ω ∧ [In] ·

−→
Ω)

+
nr∑
i=1

[
2
[
(
−̇→
x′′i0 ·
−→x i)[1]−

−̇→
x′′i0 ⊗

−→x i

]
·
−→
Ω

+
[
(−→x i · −→x i)[1]− (−→x i ⊗−→x i)

]
·
−̇→
Ψi

+
[
2(−→x i · −̇→x i)[1]− (−̇→x i ⊗−→x i)− (−→x i ⊗ −̇→x i)

]
·
−→
Ψi

+
[
(−→x i ⊗

−̇→
x′′i0)− (

−̇→
x′′i0 ⊗

−→x i)
]
·
−→
Ψi

+
[
(−→x i ⊗−→x i) ∧

−→
Ψi + ((−→x i ⊗−→x i) ∧

−→
Ψi)

T
]
·
−→
Ω

+ (−→x i ∧
−̈→
x′′i0)

]])

(B.46)

B.3.3.2

[
∂f

∂ ~Θ

]
Moments[

∂f

∂
−→
Θ

]
Moments

is of dimension 3 × 2nr. Defining

[
∂f

∂
−→
Θ

]
Moments

=

[[
∂f

∂
−→
Θi

]
M

]
with

i ∈ [1, nr] and

[
∂f

∂
−→
Θi

]
M

of dimension 3× 2.
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∀ i ∈ [1, nr]:

[[
∂f

∂
−→
Θi

]
M

]
= −[In]−1 ·

[
−→
Ω ∧

[(
2(−→x T

i ) ·
[
∂−→x i

∂
−→
Θi

])
⊗
−→
Ω −

[
∂−→x i

∂
−→
Θi

]
⊗ (−→x i ·

−→
Ω)−−→x i ⊗

(
−→
ΩT ·

[
∂−→x i

∂
−→
Θi

])]

+ 2

(
−→x T

i ·
[
∂
−̇→
x′′i0

∂
−→
Θi

])
⊗
−→
Ω + 2

(
(
−̇→
x′′i0)T ·

[
∂−→x i

∂
−→
Θi

])
⊗
−→
Ω

− 2

[
∂
−̇→
x′′i0

∂
−→
Θi

]
⊗ (−→x i ·

−→
Ω)− 2

−̇→
x′′i0 ⊗ (

−→
ΩT ·

[
∂−→x i

∂
−→
Θi

]
)

+

[
∂−→x i

∂
−→
Θi

]
⊗ ((−→x i ∧

−→
Ψi) ·

−→
Ω) +−→x i ⊗

[
−→
ΩT ·

([
∂−→x i

∂
−→
Θi

]
∧
−→
Ψi +−→x i ∧

[
∂
−→
Ψi

∂
−→
Θi

])]
+

([
∂−→x i

∂
−→
Θi

]
∧
−→
Ψi +−→x i ∧

[
∂
−→
Ψi

∂
−→
Θi

])
⊗ (−→x i ·

−→
Ω) + (−→x i ∧

−→
Ψi)⊗ (

−→
ΩT ·

[
∂−→x i

∂
−→
Θi

]
)

+

(
2−→x T

i ·
[
∂−→x i

∂
−→
Θi

])
⊗
−̇→
Ψi −

[
∂−→x i

∂
−→
Θi

]
⊗ (−→x i ·

−̇→
Ψi)−−→x i ⊗

(
−̇→
Ψ

T

i ·
[
∂−→x i

∂
−→
Θi

])

+
[
(−→x i · −→x i)[1]− (−→x i ⊗−→x i)

]
·
[
∂
−̇→
Ψi

∂
−→
Θi

]
+ [2(−̇→x i · −→x i)[1]− (−̇→x i ⊗−→x i)− (−→x i ⊗ −̇→x i)] ·

[
∂
−→
Ψi

∂
−→
Θi

]
+ 2

[(
−→x T

i ·
[
∂−̇→x i

∂
−→
Θi

])
+

(
−̇→x

T

i ·
[
∂−→x i

∂
−→
Θi

])]
⊗
−→
Ψi

−
[
∂−̇→x i

∂
−→
Θi

]
⊗ (−→x i ·

−→
Ψi)− −̇→x i ⊗

(
−→
ΨT

i ·
[
∂−→x i

∂
−→
Θi

])
−
[
∂−→x i

∂
−→
Θi

]
⊗ (−̇→x i ·

−→
Ψi)−−→x i ⊗

(
−→
ΨT

i ·
[
∂−̇→x i

∂
−→
Θi

])]
(B.47)

B.3.4 Jacobian of f With Respect to the Angular Velocities

of the Particles[
∂f

∂
−̇→
Θ

]
is of dimension 3×2nr. Defining

[
∂f

∂
−̇→
Θ

]
=

[[
∂f

∂
−̇→
Θi

]]
with i ∈ [1, nr] and

[
∂f

∂
−̇→
Θi

]
of dimension 3× 2.
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∀ i ∈ [1, nr]:

[
∂f

∂
−̇→
Θi

]
= −[In]−1 ·

[
2

(
−→x T

i ·
[
∂
−̇→
x′′i0

∂
−̇→
Θi

])
⊗
−→
Ω − 2

[
∂
−̇→
x′′i0

∂
−̇→
Θi

]
⊗ (−→x i ·

−→
Ω)

+−→x i ⊗
(

(
−→
Ω)T ·

(
−→x i ∧

[
∂
−→
Ψi

∂
−̇→
Θi

]))
+

(
−→x i ∧

[
∂
−→
Ψi

∂
−̇→
Θi

])
⊗ (−→x i ·

−→
Ω)

+ [(−→x i · −→x i)[1]− (−→x i ⊗−→x i)] ·
[
∂
−̇→
Ψi

∂
−̇→
Θi

]

+ [2(−̇→x i · −→x i)[1]− (−̇→x i ⊗−→x i)− (−→x i ⊗ −̇→x i)] ·
[
∂
−→
Ψi

∂
−̇→
Θi

]

+ 2

(
−→x T

i ·
[
∂−̇→x i

∂
−̇→
Θi

])
⊗
−→
Ψi

−
[
∂−̇→x i

∂
−̇→
Θi

]
⊗ (−→x i ·

−→
Ψi)−−→x i ⊗

(
(
−→
Ψi)

T ·
[
∂−̇→x i

∂
−̇→
Θi

])]

(B.48)

B.4 Jacobian of g with Respect to the Manipu-

lated Variables[
∂f
∂−→u

]
is of dimension 3×2nr. Defining

[
∂f
∂−→u

]
=

[[
∂f
∂−→u i

]]
with i ∈ [1, nr] and

[
∂f
∂−→u i

]
of dimension 3× 2.

∀ i ∈ [1, nr]:

[
∂f

∂−→u i

]
= −[In]−1 ·

[
[(−→x i · −→x i)[1]− (−→x i ⊗−→x i)] ·

[
∂
−̇→
Ψi

∂−→u i

]]
(B.49)

Moreover:

[
∂
−̇→
Θ

∂−→u

]
= [0]2nr×2nr (B.50)

[
∂
−̈→
Θ

∂−→u

]
=

[
∂−→u
∂−→u

]
= [Id]2nr×2nr (B.51)
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B.5 Jacobian of the Moment of Inertia Matrices

B.5.1 Jacobian of the Moment of Inertia [In]

The moment of inertia [In] is only dependent on the state variable
−→
Θ and has to

be derived only once for equation B.45. As per section 3.2.6, Ix, Iy and Iz represent

the moment of inertia of the object about its principal axes. At any given instant of

time t, the moment of inertia [In] of the object-robot system with nr robot modules

is equal to:

[In] =


Ix 0 0

0 Iy 0

0 0 Iz

+
nr∑
j=1

[(−→x j · −→x j)[1]− (−→x j ⊗−→x j)] (B.52)

[
∂[In]

∂
−→
Θ

]
is of dimension 3× 6nr and:

[
∂[In]

∂
−→
Θ

]
=

[
∂
[
[(−→x i · −→x i)[1]− (−→x i ⊗−→x i)]

]
∂
−→
Θi

]
i∈[1,nr]

(B.53)

∀ i ∈ [1, nr],

[
∂[In]

∂
−→
Θi

]
is a 3× 6 matrix and:

[
∂[In]

∂
−→
Θi

]
=

(
2(−→x T

i ) ·
[
∂−→x i

∂
−→
Θi

])
⊗ [1]3×3 −

[
∂−→x i

∂
−→
Θi

]
⊗−→x i −−→x i ⊗

[
∂−→x i

∂
−→
Θi

]
(B.54)

Hence

[
∂[In]

−→
Ω

∂
−→
Θi

]
=

(
2(−→x T

i ) ·
[
∂−→x i

∂
−→
Θi

])
⊗
−→
Ω −

[
∂−→x i

∂
−→
Θi

]
⊗ (−→x i ·

−→
Ω)−−→x i ⊗

(
−→
ΩT ·

[
∂−→x i

∂
−→
Θi

])
(B.55)

[
∂[In]

∂
−→
Ω

]
= [0]3×9 (B.56)

[
∂[In]

∂
−̇→
Θ

]
= [0]3×6nr (B.57)
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B.5.2 Jacobian of the Inverse of the Moment of Inertia [In]−1

The moment of inertia matrix [In] is always invertible and by definition of the

matrix inverse:

[In]−1 · [In] = [Id]3×3 (B.58)

Since

[
∂[In]−1

∂
−→
Θ

]
is a 3× 6nr matrix:

[
∂[In]−1

∂
−→
Θ

]
·
(

[Id]2nr×2nr ⊗ [In]

)
+ [In]−1

[
∂[In]

∂
−→
Θ

]
= [0]3×6nr (B.59)

Therefore

[
∂[In]−1

∂
−→
Θ

]
= −[In]−1 ·

[[
∂[In]

∂
−→
Θ

]
·
[
[Id]2nr×2nr ⊗ [In]−1

]]
(B.60)

B.6 Jacobian of h at the Origin (0, 0)

The Jacobians of the linearised model h at the origin (0, 0) are the Jacobians of

g at (
−→
Xref ,

−→u ref ) a general reference trajectory with ∀ t ≥ 0
−→
Xref =


−→
Ωref

−→
Θref

−̇→
Θref

:

In this study, the reference trajectory is such that
−→
Ωref is a rigid body torque-

free angular velocity where [In] is the time-invariant normalised moment of inertia

matrix of the whole object-robot system.
−→
Ωref follows Euler equation:

[In] ·
−̇→
Ωref + (

−→
Ωref ∧ [In] ·

−→
Ωref ) =

−→
0 (B.61)

As per section 4.2.4,
−→
Θref represents all the target anchoring location for each
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of the robot’s module which are immobile:

−→
Θref =



π
2(nr−1)

π
nr−1

...

π
2

π


2nr×1

(B.62)

Hence

−̇→
Θref =

−→
0 2nr×1 (B.63)

−→u ref =
−→
0 2nr×1 (B.64)

The Jacobian matrices at the reference trajectory will use the subscript notation

ref , i.e.

[
∂g

∂
−→
X

]
(
−→
Xref ,

−→u ref ) =

[
∂g

∂
−→
X

]
ref

and

[
∂g
∂−→u

]
(
−→
Xref ,

−→u ref ) =

[
∂g
∂−→u

]
ref

The entries of g which are depend on the reference trajectory are the following:

[
∂f

∂
−→
Ω

]
ref

= −[In]−1
ref ·

[
[Id]3×3 ∧ [In]ref ·

−→
Ωref +

−→
Ωref ∧ [In]ref

]
(B.65)

∀ i ∈ [1, nr]:

[
∂f

∂
−→
Θi

]
ref

= −
[
∂[In]−1

∂
−→
Θi

]
ref

·

(
[Id]2×2 ⊗

[
(
−→
Ωref ∧ [In]ref ·

−→
Ωref )

])

− [In]−1
ref ·

[
−→
Ωref ∧

[(
2(−→x T

i )ref ·
[
∂−→x i

∂
−→
Θi

]
ref

)
⊗
−→
Ωref

−
[
∂−→x i

∂
−→
Θi

]
ref

⊗ ((−→x i)ref ·
−→
Ωref )

− (−→x i)ref ⊗
(
−→
ΩT
ref ·

[
∂−→x i

∂
−→
Θi

]
ref

)]]
(B.66)
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∀ i ∈ [1, nr]:

[
∂f

∂
−̇→
Θi

]
ref

= −[In]−1
ref ·

[
2

(
(−→x i)

T
ref ·

[
∂
−̇→
x′′i0

∂
−̇→
Θi

]
ref

)
⊗
−→
Ωref − 2

[
∂
−̇→
x′′i0

∂
−̇→
Θi

]
ref

⊗ ((−→x i)ref ·
−→
Ωref )

+ (−→x i)ref ⊗
(

(
−→
Ωref )T ·

(
(−→x i)ref ∧

[
∂
−→
Ψi

∂
−̇→
Θi

]
ref

))

+

(
(−→x i)ref ∧

[
∂
−→
Ψi

∂
−̇→
Θi

]
ref

)
⊗ ((−→x i)ref ·

−→
Ωref )

+ [2((−̇→x i)ref · (−→x i)ref )[1]− ((−̇→x i)ref ⊗ (−→x i)ref )− ((−→x i)ref ⊗ (−̇→x i)ref )] ·
[
∂
−→
Ψi

∂
−̇→
Θi

]
ref

]
(B.67)

∀ i ∈ [1, nr]:

[
∂f

∂−→u i

]
ref

= −[In]−1
ref ·

[
[((−→x i)ref · (−→x i)ref )[1]− ((−→x i)ref ⊗ (−→x i)ref )] ·

[
∂
−̇→
Ψi

∂−→u i

]
ref

]
(B.68)
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Yo-yo de-spin mechanism model

verification

In this appendix the discrete model presented in 3.2.5 is used to derive the model

of the yo-yo de-spin mechanism presented in 3.1.2 as a sanity check of its correctness

and relevance. For memory, model 3.24 is reproduced below:

[In] ·
−̇→
Ω +

−→
Ω ∧ [In] ·

−→
Ω =

nr∑
i=1

(
− 2
[
(
−̇→
x′′0 ·
−→x )[1]−

−̇→
x′′0 ⊗

−→x
]
·
−→
Ω

−
[[

(−→x · −→x )[1]− (−→x ⊗−→x )
]
·
−̇→
Ψ

+
[
2(−→x · −̇→x )[1]− (−̇→x ⊗−→x )− (−→x ⊗ −̇→x )

]
·
−→
Ψ

]
−
[
(−→x ⊗

−̇→
x′′0)− (

−̇→
x′′0 ⊗

−→x )
]
·
−→
Ψ

−
[
(−→x ⊗−→x ) ∧

−→
Ψ + ((−→x ⊗−→x ) ∧

−→
Ψ)T

]
·
−→
Ω

− (−→x ∧
−̈→
x′′0)

)

(C.1)

Figure 3.1 is reproduced below to illustrate the various parameters which are

going to be defined.

The three frames of reference are:

� [O] ≡ (O,−→x ,−→y ) the inertial frame centred on O the centre of mass of the
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cylinder.

� [O′] ≡ (O,
−→
i ,
−→
j ) the body frame attached rigidly to the cylinder.

� [O′′] ≡ (O,−→er ,
−→eθ) a polar coordinate frame attached to the mass but centred

on O as per the hypotheses of the model.

Figure C.1: Yo-Yo De-spin Mechanism Diagram.

Let’s define the unit vector of the rotating axis OZ as:

−→
k = −→x ∧ −→y =

−→
i ∧
−→
j = −→er ∧ −→eθ (C.2)

The rigid body angular velocity is given by:

−→
Ω = θ̇1

−→
k = ω

−→
k (C.3)

The absolute angular velocity of the mass is given by:

−→
Ω t =

−→
Ω +

−→
Ψ = θ̇

−→
k (C.4)
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θ̇ = ω + Ψ (C.5)

Hence

−→
Ψ = (θ̇ − θ̇1)

−→
k = Ψ

−→
k (C.6)

As shown in section 3.2.4.2, the model can be expressed in any vector basis and

from now on, for all instant in time, all vectors will be expressed in the extended

frame of reference (O,−→er ,
−→eθ ,
−→
k ). Therefore:

−→x = −→r = r−→er

−̇→x = −̇→r = ṙ−→er + rθ̇−→eθ
−̇→
x′′0 = ṙ−→er

−̈→
x′′0 = r̈−→er

(C.7)

Given the rotational symmetry of the cylinder about the OZ axis, the total

normalised moment of inertia is:

[In] =


Ir 0 0

0 Iθ 0

0 0 Ik

− [(−→r · −→r )[1]− (−→r ⊗−→r )
]

(C.8)

[In] =


Ier 0 0

0 Iθ 0

0 0 Ik

+


r2 0 0

0 r2 0

0 0 r2

−

r

0

0

⊗
[
r 0 0

]
(C.9)

[In] =


Ier 0 0

0 Iθ + r2 0

0 0 Ik + r2

 (C.10)

[In] ·
−̇→
Ω =


Ier 0 0

0 Iθ + r2 0

0 0 Ik + r2

 ·


0

0

ω̇

 (C.11)
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−→
Ω ∧ [In] ·

−→
Ω =


0

0

ω

 ∧

Ier 0 0

0 Iθ + r2 0

0 0 Ik + r2

 ·


0

0

ω

 =
−→
0 (C.12)

[
(
−̇→
x′′0 ·
−→x )[1]−

−̇→
x′′0 ⊗

−→x
]
·
−→
Ω =

[
(ṙ−→er · r−→er)[1]− ṙ−→er ⊗ r−→er

]
·
−→
Ω (C.13)

[
(
−̇→
x′′0 ·
−→x )[1]−

−̇→
x′′0 ⊗

−→x
]

=


ṙr 0 0

0 ṙr 0

0 0 ṙr

−

ṙr 0 0

0 0 0

0 0 0

 (C.14)

[
(
−̇→
x′′0 ·
−→x )[1]−

−̇→
x′′0 ⊗

−→x
]
·
−→
Ω =


0

0

ṙrω

 (C.15)

The same kind of calculations lead to:

[
(−→x · −→x )[1]− (−→x ⊗−→x )

]
·
−̇→
Ψ = r2


0 0 0

0 1 0

0 0 1

 ·


0

0

Ψ̇

 =


0

0

r2Ψ̇

 (C.16)

[
2(−→x · −̇→x )[1]− (−̇→x ⊗−→x )− (−→x ⊗ −̇→x )

]
·
−→
Ψ =


0

0

2rṙΨ

 (C.17)

[
(−→x ⊗

−̇→
x′′0)− (

−̇→
x′′0 ⊗

−→x )
]
·
−→
Ψ =

[
rṙ(−→er ⊗−→er)− ṙr(−→er ⊗−→er)

]
·
−→
Ψ =

−→
0 (C.18)

By property of the dyadic product (see appendix A of [28]):
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(−→x ⊗−→x ) ∧
−→
Ψ = −→x ⊗ (−→x ∧

−→
Ψ) =


r

0

0

⊗
(

r

0

0

 ∧


0

0

Ψ


)

=


r

0

0

⊗
[
0 −rΨ 0

]

(−→x ⊗−→x ) ∧
−→
Ψ = −→x ⊗ (−→x ∧

−→
Ψ) =


0 −r2Ψ 0

0 0 0

0 0 0


Which leads to:

[
(−→x ⊗−→x ) ∧

−→
Ψ + ((−→x ⊗−→x ) ∧

−→
Ψ)T

]
·
−→
Ω =


0 −r2Ψ 0

−r2Ψ 0 0

0 0 0

 ·


0

0

ω

 =
−→
0 (C.19)

−→x ∧
−̈→
x′′0 = r̈r−→er ∧ −→er =

−→
0 (C.20)

Adding up C.11 C.12, C.15 C.16 C.17 C.18 C.19 and C.20 leads to the following

differential equation in the k coordinate:

(Ik + r2)ω̇ + 2ṙrω + r2Ψ̇ + 2ṙrΨ = 0 (C.21)

Remembering equation C.5 and that equation C.21 is normalised per unit mass

of the yo-yo’s mass m, C.21 can be rewritten as:

(Ik +mr2)ω̇ + 2mṙrω +mr2Ψ̇ + 2mṙrΨ = 0 (C.22)

Then:

(Ik +mr2)ω̇ + 2mṙrω +mr2(θ̈ − ω̇) + 2mṙr(θ̇ − ω) = 0 (C.23)
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Finally:

Ikω̇ +mr2θ̈ + 2mṙrθ̇ = 0 (C.24)

which is the derivative of the total angular momentum of the yo-yo de-spin

mechanism described by equation 3.4 in chapter 3. Therefore, from the model C.1

the yo-yo de-spin mechanism’s model can be derived.

350



Appendix D

Holonomic Constraint for

Ellipsoidal Objects with

Consistent Vector Dimension

Convention

The moving part of the system be it a mass or robot module is subject to an

holonomic constraint by virtue of the fact that it remains in contact to the surface

of the object at all times.

The choice of spherical coordinates to describe the motion of a moving point mass

relative to an ellipsoidal object can be exploited to eliminate the radial variables r,

ṙ and r̈ by expressing them as a function of the spherical angles and their respective

velocities and accelerations namely φ, φ̇, φ̈ and θ, θ̇, θ̈.

In this appendix, the full derivation of these radial quantities is performed and

shown form a programmatic perspective i.e. as they were implemented in the simu-

lation. The adopted vector convention is that all vectors are represented as column

vectors. All data length are normalised.
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The position of moving part relative to the object is in spherical coordinates:

−→r = r−→er =


x

y

z

 = r


cos(φ) sin(θ)

sin(φ) sin(θ)

cos(θ)

 (D.1)

The Cartesian equation for an ellipsoid is:

x2

a2
+
y2

b2
+
z2

c2
= 1 (D.2)

where the strictly positive parameters a, b and c are the half lengths of the principal

axes.

In spherical coordinates:

r2
(cos(φ)2 sin(θ)2

a2
+

sin(φ)2 sin(θ)2

b2
+

cos(θ)2

c2

)
= 1 (D.3)

Defining base as:

base =
cos(φ)2 sin(θ)2

a2
+

sin(φ)2 sin(θ)2

b2
+

cos(θ)2

c2
(D.4)

then:

r2 =
1

base
(D.5)

r =

√
1

base
(D.6)

Deriving D.5 with respect to time gives:

2rṙ = −
˙base

base2
(D.7)

Defining prime as:

prime =
dbase

dt
= ˙base (D.8)
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Finally

ṙ = −1

2
r3prime (D.9)

Deriving D.9 with respect to time gives:

r̈ = −1

2
[3r2ṙprime+ r3 ˙prime] (D.10)

Using D.9 and defining:

second =
dprime

dt
= ˙prime (D.11)

Finally

r̈ =
3

4
r5prime2 − 1

2
r3second (D.12)

The derivation of prime and second relies on using the following trigonometric

identities:

sin(2α) = 2sin(α)cos(α) (D.13)

cos(2α) = 2cos2(α)− 1 (D.14)

For prime:

prime =

1

a2
[cos(φ)2 sin(2θ)θ̇ − sin(2φ)φ̇ sin(θ)2]

+
1

b2
[sin(φ)2 sin(2θ)θ̇ + sin(2φ)φ̇ sin(θ)2]

− 1

c2
[sin(2θ)θ̇]

(D.15)

For second, in order to make its derivation more readable, prime can be broken

in 3 parts corresponding to each axis of the ellipsoid

second = ˙primea + ˙primeb + ˙primec (D.16)
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With

˙primea =

1

a2
[cos(φ)2 cos(2θ)2θ̇2 + cos(φ)2 sin(2θ)θ̈

− 2 sin(2φ)φ̇ sin(2θ)θ̇ − 2 cos(2φ)φ̇2 sin(θ)2

− sin(2φ)φ̈ sin(θ)2]

(D.17)

˙primeb =

1

b2
[sin(φ)22 cos(2θ)θ̇2 + sin(φ)2 sin(2θ)θ̈

+ 2 sin(2φ)φ̇ sin(2θ)θ̇ + 2 cos(2φ)φ̇2 sin(θ)2

+ sin(2φ)φ̈ sin(θ)2]

(D.18)

˙primec = − 1

c2
[2 cos(2θ)θ̇2 + sin(2θ)θ̈] (D.19)
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Appendix E

Explicit Solution of the Euler

equation for Asymetric Body with

Zero External Moment

As explained in [64], page 126-130, h2

2T
is a constant parameter characterising the

rotational state of the asymmetric object. The existence of a solution to the Eu-

ler equations for an asymmetric body with unequal principal moments of inertia

(Imin, Imid, Imax) requires that the ratio h2

2T
∈ [Imin, Imax] where the moment of in-

ertia Imin < Imid < Imax are interchangeably and without loss of generality taken

along the respective X, Y , and Z axes of the body. The derivation of a solution of

the Euler equation for asymmetric bodies proposed in the literature is outlined and

restricted to the agreeable case where h2

2T
< Imid. Each component of the angular

velocity can be explicitly expressed with Jacobi’s elliptic integral functions and in

particular the sinus amplitudinis function defined below:

u = F (φ,m) =

∫ φ

0

dθ√
1−m sin(θ)2

(E.1)

The restriction mentioned above corresponds to the case where the integral is well

defined ∀φ ∈ R when m ∈ [0, 1]. In other words for all instants in time [29].

In this appendix, a full and explicit re-derivation is proposed and extended to

the cases where m > 1 to cover all possible solution over the allowed range h2

2T
∈
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[Imin, Imax].

E.1 General solution of the Euler equations for

asymmetric bodies

For a body with unequal principal moments of inertia Imin < Imid < Imax (hypothesis

(H.1)) taken along the principal axes designated as min, mid, and max respectively

and with angular velocity

−→
Ω =


ωmax

ωmid

ωmin

 the torque free Euler equations are:

Imaxω̇max + (Imin − Imid)ωmidωmin = 0 (E.2)

Imidω̇mid + (Imax − Imin)ωmaxωmin = 0 (E.3)

Iminω̇min + (Imid − Imax)ωmaxωmid = 0 (E.4)

In a torque free rotational motion, the angular momentum
−→
h is constant about

the centre of mass:

−→
h =

−−−−−−→
constant (E.5)

Hence its norm is constant as well:

h2 = ‖
−→
h ‖

2
= I2maxω

2
max + I2midω

2
mid + I2minω

2
min = constant (E.6)

The rotational kinetic energy T in the absence of external work done to the

object is also constant:

T = constant (E.7)

with

2T =
−→
h ·
−→
Ω = Imaxω

2
max + Imidω

2
mid + Iminω

2
min (E.8)
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From the Euler equations (E.2), (E.3) and (E.4), the following equations can be

derived:

h2 − 2TImax = Imid(Imid − Imax)ω2
mid + Imin(Imin − Imax)ω2

min (E.9)

h2 − 2TImid = Imax(Imax − Imid)ω2
max + Imin(Imin − Imid)ω2

min (E.10)

h2 − 2TImin = Imax(Imax − Imin)ω2
max + Imid(Imid − Imin)ω2

mid (E.11)

As per our above hypothesis (H.1), the equation (E.9) is always negative and

(E.11) always positive. (E.10) can either be positive or negative.

For the limit cases h2 = 2TImax or h2 = 2TImin the solutions are straightfor-

wardly ωmax = ( 2T
Imax

)
1
2 and ωmin = ( 2T

Imin
)
1
2 respectively while the other two angular

velocities are nil.

For the cases h2 ∈]2TImin, 2TImax[, the derivation is as follows: ωmax and ωmin

can be conveniently expressed as function of ωmid:

In (E.11):

ω2
max =

h2 − 2TImin
Imax(Imax − Imin)

(
1− Imid(Imid − Imin)

h2 − 2TImin
ω2
mid

)
(E.12)

In (E.9):

ω2
min =

2TImax − h2

Imin(Imax − Imin)
×(

1−
(Imax − Imid
Imid − Imin

)(h2 − 2TImin
2TImax − h2

)(Imid(Imid − Imin)

h2 − 2TImin

)
ω2
mid

) (E.13)

Then changing variable by defining

v =

√
Imid(Imid − Imin)

h2 − 2TImin
ωmid (E.14)

leads to

ωmid =

√
h2 − 2TImin

Imid(Imid − Imin)
v (E.15)
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and

ω̇mid =

√
h2 − 2TImin

Imid(Imid − Imin)
v̇ (E.16)

while by defining ∀h2 ∈]2TImin, 2TImax[ :

k =

√(Imax − Imid
Imid − Imin

)(h2 − 2TImin
2TImax − h2

)
(E.17)

(E.12) and (E.13) become

ω2
max =

h2 − 2TImin
Imax(Imax − Imin)

(
1− v2

)
(E.18)

ω2
min =

2TImax − h2

Imin(Imax − Imin)

(
1− k2v2

)
(E.19)

(E.18) and (E.19) require 1−v2 ≥ 0 and 1−k2v2 ≥ 0 to be physically meaningful.

Assuming so, (E.4) can be transformed into

Imid

√
h2 − 2TImin

Imid(Imid − Imin)
v̇ = (Imin − Imax)×√√√√ h2 − 2TImin

Imax(Imax − Imin)

(
1− v2

)√√√√ 2TImax − h2
Imin(Imax − Imin)

(
1− k2v2

) (E.20)

and

v̇√
(1− v2)(1− k2v2)

= −

√
(Imid − Imin)(2TImax − h2)

ImaxImidImin
(E.21)

Now defining the constant N as:

N =

√
(Imid − Imin)(2TImax − h2)

ImaxImidImin
(E.22)

And using the function G defined as:

G(α) =

∫ α

0

dv√
(1− v2)(1− k2v2)

(E.23)
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whose time derivative is:

G(α)

dt
=
G(α)

dα

dα

dt
=

α̇√
(1− α2)(1− k2α2)

(E.24)

Integrating (E.21) with respect to time gives:

∫ t

0

v̇ · dt√
(1− v2)(1− k2v2)

= −Nt (E.25)

and

G(α) =

∫ α

0

dv√
(1− v2)(1− k2v2)

= −Nt (E.26)

Changing variable again by defining:

v = sin(θ) (E.27)

With v ∈ [0, α] and θ ∈ [0, sin−1(α)], dv = cos(θ)dθ and by defining φ = sin−1(α),

(E.26) becomes:

∫ φ

0

cos(θ)dθ√
(1− sin(θ)2)(1− k2 sin(θ)2)

=

∫ φ

0

dθ√
(1− k2 sin(θ)2)

= −Nt (E.28)

which is the sinus amplitudinis function:

F (φ, k2) = −Nt (E.29)

E.2 Mapping k with the values of h2

2T

In [64] the derivation of the Euler equation is restricted to the case where h2

2T
< Imid.

In this section it will proven that h2

2T
< Imid is equivalent to 0 < k ≤ 1 which is

in turn equivalent to the assertion h2

2T
> Imid is equivalent to k > 1. Solving the

Euler equation for all possible values of h2

2T
can then be split into 2 cases: 0 < k ≤ 1

where the sinus amplitudinis function can be used directly and k > 1 where the
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sinus amplitudinis function requires a transformation which will be the subject of

the next section.

Since k is positive, one can reason by equivalence between the following equa-

tions:

k2 ≤ 1 (E.30)

Imax − Imid
Imid − Imin

h2 − 2TImin
2TImax − h2

≤ 1 (E.31)

h2 − 2TImin
2TImax − h2

≤ Imid − Imin
Imax − Imid

(E.32)

h2 − 2TImid + 2TImid − 2TImin
2TImax − 2TImid + 2TImid − h2

≤ Imid − Imin
Imax − Imid

(E.33)

h2 − 2TImid + 2T (Imid − Imin) ≤

(Imid − Imin)
(
2T (Imax − Imid)− (h2 − 2TImid)

)
Imax − Imid

(E.34)

since Imax − Imid ≥ 0

(Imax − Imid)(h2 − 2TImid) + 2T (Imax − Imid)(Imid − Imin)

≤ 2T (Imax − Imid)(Imid − Imin)− (h2 − 2TImid)(Imid − Imin)

(E.35)

leading to

(Imax − Imin)(h2 − 2TImid) ≤ 0 (E.36)

Finally since Imax − Imin ≥ 0, we have directly

h2

2T
≤ Imid (E.37)

360



Appendix E. Explicit Solution of the Euler equation for Asymetric Body with Zero
External Moment

E.3 Euler equation solution

1st CASE 0 < k ≤ 1: Under this condition, (E.29) is well defined ∀φ ∈ R.

Noting that the sine amplitude elliptic function is the inverse of the incomplete

integral of the first kind i.e. of the function G:

G[sn(−Nt, k2)] = −Nt (E.38)

finally leads to

v = sn(−Nt, k2) (E.39)

The sine amplitude elliptic function sn(x,m) is an odd function with respect to

x. Therefore:

v = −sn(Nt, k2) (E.40)

Consequently:

ωmid = −

√
h2 − 2TImin

Imid(Imid − Imin)
sn(Nt, k2) (E.41)

The cosine amplitude elliptic function cn(x,m) and the delta amplitude elliptic

function dn(x,m) are an even functions with respect to x. Moreover, ∀(x,m) ∈

C× [0, 1], sn2(x,m) + cn2(x,m) = 1 and m · sn2(x,m) + dn2(x,m) = 1. Therefore

(E.18) and (E.19) finally become:

ωmax =

√
h2 − 2TImin

Imax(Ixmax − Imin)
cn(Nt, k2) (E.42)

ωmin =

√
2TImax − h2

Imin(Imax − Imin)
dn(Nt, k2) (E.43)

(E.41), (E.42) and (E.43) are the solutions found in the literature ∀(t, k2) ∈

R× [0, 1].

2nd CASE k > 1 : Changing variable by defining x = kv, giving with dv = dx
k
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and v̇ = ẋ
k
, (E.21) changes to:

ẋ√
(1− x2

k2
)(1− x2)

= −kN (E.44)

Changing (E.23) into:

G(α) =

∫ α

0

dx√
(1− x2

k2
)(1− x2)

= −kNt (E.45)

In this case, since 1
k2
< 1, the first case result can be used:

G[sn(−kNt, 1

k2
)] = −kNt (E.46)

Leading to:

x = −sn(kNt,
1

k2
) (E.47)

Hence

v = −1

k
sn(kNt,

1

k2
) (E.48)

As per Abramowitz-Stegun [3]:

1

k
sn(kNt,

1

k2
) = sn(Nt,

1

k2
) (E.49)

The solution of the Euler equations is then straightforwardly the same as for

the first case and valid ∀(t, k2) ∈ R × [1,+∞[. Combining the two cases the final

solution is ∀(t, k2) ∈ R× [0,+∞[:

ωmid = −

√
h2 − 2TImin

Imid(Imid − Imin)
sn(Nt, k2) (E.50)

ωmax =

√
h2 − 2TImin

Imax(Ixmax − Imin)
cn(Nt, k2) (E.51)

ωmin =

√
2TImax − h2

Imin(Imax − Imin)
dn(Nt, k2) (E.52)
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E.4 Proof of the Abramowitz-Stegun formulae

The proof of the formulae is based on a change of variable found in [29] page 47-

48 and developed in Arkadiusz Jadczyk’s blog [30] (accessed January 2020). The

following proof is a variation of the above and clarifies the final step of the derivation

of the Euler equations.

Going back to (E.1), ∀k > 1,∃ φc ∈ [0, 2π[ such that k · sin(φc) = 1 or φc =

sin−1( 1
k
).

It was already seen in the first case that for v ∈ [0, sin(φ)] with φ ≤ φc:

u = F (φ, k2) =

∫ sin(φ)

0

dv√
(1− v2)(1− k2v2)

(E.53)

Since sin(φ) = sn(u, k2), (E.53) can be rewritten as:

u =

∫ sn(u,k2)

0

dv√
(1− v2)(1− k2v2)

(E.54)

Multiplying by k

k · u =

∫ sn(u,k2)

0

kdv√
(1− v2)(1− k2v2)

(E.55)

Then using the change of variable ψ = kv under the constraint ψ ∈ [0, k sin(φ)]

with φ ≤ φc, (E.55) becomes:

k · u =

∫ ksn(u,k2)

0

dψ√
(1− ψ2

k2
)(1− ψ2)

(E.56)

As per the definition of φc, ∀φ ≤ φc, ∃ β(φ) such that the change of variable

sin(β(φ)) = k sin(φ) is possible. (E.56) becomes:

k · u =

∫ sin(β)

0

dψ√
(1− ψ2

k2
)(1− ψ2)

= F (β,
1

k2
) (E.57)

By definition, sin(β) = sn(ku, 1
k2

) hence we have finally:

sn(u, k2) =
1

k
sn(ku,

1

k2
) (E.58)
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