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Abstract

This thesis presents new models for nowcasting and macro risk estimation using fron-

tier Bayesian methods that enable incorporating Big Data into policy relevant pre-

diction problems. We propose variable selection algorithms motivated from Bayesian

decision theory to make model outcomes interpretable to the policy maker.

In chapter 2, we propose a Bayesian Structural Time Series (BSTS) model for now-

casting GDP growth. This model jointly estimates latent time trends to capture

slow moving changes in economic conditions along-side a high dimensional mixed

frequency component that is extracted from higher frequency (monthly) cyclical in-

formation. We extend on previous implementations of the BSTS with priors and

variable selection methods which facilitate selection over latent time trends as well

as mixed-frequency information that remain tractable to the policy maker. Em-

pirically, we provide a novel nowcast application where we use a large dimensional

set of Internet search terms to gain advance information about supply and demand

sentiment for the US economy before more commonly considered macro information

are available to the nowcaster. We find that our proposed BSTS model offers large

improvements over competing models and that Internet search terms matter for

nowcasts before hard information about the macro economy have been published.

A simulation exercise confirms the good performance of the proposed model.

Chapter 3 presents the T-SV-t-BMIDAS (Bayesian Mixed Data Sampling) model

for nowcasting quarterly GDP growth. The model incorporates a long-run time-

varying trend (T) and t-distributed stochastic volatility accounting for outliers (SV-

t) into a Bayesian multivariate MIDAS. To address the high-dimensionality of the

model, to account for group-correlation in mixed frequency data, and to make the

model interpretable to the policy maker, we propose a new combination of group-

shrinkage prior with sparsification algorithm for variable selection. The prior flexibly

accommodates between-group sparsity and within-group correlation and allows to

communicate the joint importance of predictors over the data release cycle. We

evaluate the model for UK GDP growth nowcasts covering also the time-span of

the Covid-19 recession. The model is competitive prior to the pandemic relative to

various benchmark models, while yielding substantial nowcast improvements during

the pandemic. Contrary to many previous nowcasting approaches, the model reads

in sparse group signals from the data. Simulations show competitive performance

of the variable selection methodology, with particularly good performance to be

expected for highly correlated data as well as dense data-generating-processes.

Chapter 4 presents a new Bayesian Quantile Regression (BQR) model for high di-



mensional risk estimation. It extends the horseshoe prior to the BQR framework

and provides a fast sampling algorithm for computation that makes it efficient for

high-dimensional problems. A large scale simulation exercise reveals that compared

to alternative shrinkage priors, the proposed methods yield better performance in

coefficient bias and forecast error, especially in sparse data-generating processes

and in estimating extreme quantiles. In a high dimensional Growth-at-Risk fore-

casting application, we forecast tail risks as well as complete forecast densities using

a database covering over 200 variables related to the U.S. economy. Quantile spe-

cific and density calibration score functions show that the horseshoe prior provides

the best performance compared to competing Bayesian quantile regression priors,

especially at short and medium run horizons.

Bayesian quantile regression models with continuous shrinkage priors are known to

predict well but are hard to interpret due to lack of exact posterior sparsity. Chap-

ter 5 bridges this gap by extending the idea of decoupling shrinkage and sparsity.

The proposed procedure follows two steps: First, the quantile regression posterior is

shrunk via state of the art continuous shrinkage priors; then, the posterior is spar-

sified by taking the Bayes optimal solution to maximising a policy maker’s utility

function with joint preference for predictive accuracy as well as sparsity. For the

sparsification component, we propose a new variant of the signal adaptive variable

selection algorithm that automates the choice of penalization in the integrated utility

through a quantile specific loss-function that works well in high dimensions. Large

scale simulations show that, compared to the un-sparsified regression posterior, the

selection procedure decreases coefficient bias irrespective of the true underlying de-

gree of sparsity in the data, and goodness of variable selection is competitive with

traditional variable selection priors. A high dimensional Growth-at-Risk forecasting

application to the US shows that the method detects varying degrees of sparsity

across the conditional GDP distribution and that the sources to downside risk vary

substantially over time.

Inspired by the work of Giannone et al. (2021) on the “illusion of sparsity” from

sparse modelling techniques, this chapter (6) investigates whether the recently pop-

ularised global-local priors, firstly, are implicitly informative about sparsity and,

secondly, whether they are able to communicate the true degree of sparsity from

the data. We consider two methods of analysis: implicit model size distributions

and sparsification techniques which are tested on a host of economic data sets and

simulations. The findings motivate a new horseshoe type model to which we add a

prior that makes it a-priori agnostic about the degree of sparsity and is shown to be

competitive to the spike-and-slab of Giannone et al. (2021) for forecasting as well

as sparsity detection.

Chapter 7 concludes with summaries, limitations of the thesis, as well as directions

for future research.
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Chapter 1

Introduction

1.1 Overview

In recent decades, advances in technology and data collection have made it easier

than ever for economists to access large swathes of micro and macro-economic infor-

mation for which statistical agencies around the world supply easy to use tools for

interaction.1 This is also increasingly true for new unstructured data sources such as

internet search terms, satellite data, scanner data, etc. whose appeal stem from be-

ing available in near real time as well as offering much greater granularity (Bok et al.,

2018) than conventional economic data. The sheer size of the information set also

entail challenges for the econometrician, as commonly employed frequentist linear

regression models are inappropriate in high dimensions,2 both for estimation as well

as communication to the policy maker about which data are most important. Partic-

ularly in macroeconomic nowcasting and risk estimation, the time-series dimension

is usually very short compared to the size of potential covariates and interpretability

is made challenging, among other things, by latent time trends, complicated corre-

lation structures, severe economic shocks (such as the ongoing Covid-19 pandemic)

and heterogeneous variable impacts across the conditional distribution of the target

variable. These fields have policy relevance since key economic data such as GDP

have considerable publication lags, for which ‘early’ forecasts (nowcasts) provide up-

to-date estimates,3 and risk estimation is a pivotal part of macroprudential policy of

many central banks (Board et al., 2011), particularly in wake of the great financial

crisis, 2008, which exposed systemic vulnerabilities between financial markets and

the real economy (Adrian et al., 2019; Giglio et al., 2016).

1 See e.g. McCracken and Ng (2020, 2016); Croushore and Stark (2001) for data sources that
have majorly influenced macreconomic data processing and availability.

2 By high dimensions we are mostly concerned in this thesis with “fat”, i.e. large covariate
dimension, instead of “tall”, i.e. large number of observations, data following the denomina-
tions of Varian (2014). In fat data situations, ordinary least squares may, for one, not have a
unique solution without assumptions about sparsity in the regression vector Tibshirani (1996),
or may produce poor forecasts, due to large variance.

3 Also, nowcast estimates also inform structural economic models (Bańbura et al., 2013).
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This thesis contributes to Bayesian methods that allow flexibly addressing these

issues in high dimensional nowcast and risk estimation settings while remaining

computationally tractable, and, importantly, interpretable to the policymaker.

Although the model structures for the chapters on nowcasting and risk estima-

tion are different, a common contribution is the extension of the recently proposed

global-local (GL) priors (see e.g. Polson and Scott (2010); Bhadra et al. (2019)

for excellent reviews) for regularisation of large parameter spaces and derivation of

interpretable variable importance by taking a Bayesian decision theoretic approach.

This overcomes, for one, the problem that the posterior with global-local priors re-

main non-zero with probability one (Hahn and Carvalho, 2015), and hence can be

difficult to infer importance, but also allows to conduct variable selection from a

predictive perspective, unlike the more traditionally employed spike-and-slab priors

which derive variable importance from marginal likelihoods (Vehtari and Ojanen,

2012). These though can be sensitive to perturbations of the prior (Barbieri and

Berger, 2004; O’Hara and Sillanpää, 2009; Fava and Lopes, 2021) and may also not

answer the question the policymaker poses when wanting to communicate which

model components drive the posterior predictions of the models (Piironen et al.,

2020).

The use of shrinkage methods in nowcasting is by no means new. The seminal

paper by Schorfheide and Song (2015) introduces the mixed-frequency VAR (MF-

VAR) in which contemporaneous and lagged variables are shrunk via the Minnesota

prior. The Minnesota prior assumes that the data follow a random walk, with the

degree of shrinkage increasing across lags in a deterministic way (Litterman, 1980;

Doan et al., 1984). Recent MF-VARs use more flexible global-local priors such as

Koop et al. (2020); Gefang et al. (2020). Dynamic factor models (DFM), which

find wide use for nowcasting (Giannone et al., 2008; Bańbura et al., 2013), sum-

marise the co-movement of large amounts of macro data via low dimensional factors

and have recently (Antolin-Diaz et al., 2017) been extended to model latent time-

trends and outlier components (Antolin-Diaz et al., 2021), to address slow moving

changes in economic activity and the volatility introduced with the Covid-19 pan-

demic respectively. Multivariate models such as MF-VARs and DFMs can however

be bottlenecked by computational complexity in high-dimensions,4 and variable im-

portance can be hard to derive from these without further structural assumptions.

Additionally, the Covid-19 shock hit economic sectors in a strongly heterogeneous

way which further challenges models that rely on co-movement across many indica-

tors.

Mixed Data Sampling (MIDAS) regression on the other hand are parsimonious

4 This is on the one hand due to their multivariate nature, and the other, because they are
often estimated with state space methods, where intra low-frequency observations are treated
as unknown parameters that require computationally expensive filtering methods (Mariano
and Murasawa, 2003).
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single equation methods that change their specification depending on data availabil-

ity and empirically provide excellent performance (Carriero et al., 2019). Previous

Bayesian implementations of MIDAS (Carriero et al., 2015) consider standard sin-

gle equation Minnesota type priors and stochastic volatility, but have not been

considered for simultaneous modelling of latent-time trends, global-local priors to

regularise large parameter spaces and outlier components.

In chapter 2, we propose a Bayesian Structural Time Series (BSTS) model for

nowcasting GDP growth. This model jointly estimates latent time trends to capture

slow moving changes in economic conditions along-side a high dimensional MIDAS

component extracted from higher frequency cyclical information. We extend on

previous implementations of the BSTS with priors that facilitate selection over the

form of potential time-trends and extend a frontier global-local prior to the MIDAS

component. Empirically, we contribute to the nowcasting literature by including a

large dimensional set of Google Trends terms to gain advance information about

supply and demand sentiment for the US economy before more commonly consid-

ered macro information are available to the nowcaster. In chapter 3, we improve

upon this modelling framework, by extending it to fat-tailed stochastic volatility

that distinguishes between short-lived and longer-lived error clustering to deal flex-

ibly with differently volatile economic conditions. We propose a new combination

of group-prior and group-sparsification method that facilitates group selection and

addresses correlation clustering issues in that are present in MIDAS regressions. We

conduct a nowcasting exercise on UK data that compares our model to a host of

frontier nowcasting approaches. Both chapters provide simulations that investigate

finite sample properties in response to variety of mixed frequency data generating

processes (DGPs).

Risk estimation in macroeconomics has recently experienced a surge in popularity

within the macroeconomic literature with the seminal “Growth-at-Risk”” (GaR)

study of (Adrian et al., 2019). The premise of GaR is that worsening financial

conditions impact the lower tail of the GDP growth distribution more negatively

than the median or right tail which is captured via quantile regression (Koenker

and Bassett, 1978). Quantile regression allows the regression coefficient vector to

vary along the conditional GDP distribution. Quantifying this vulnerability is of

key interest to policymakers, as it is well-known that recessions caused by financial

crises are often more severe than ordinary recessions (Jurado et al., 2015).

However, the recent Covid-19 pandemic has highlighted that sources of risk can

be numerous, and potentially unknown to the modeller. In chapter 4 and 5 we
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extend Bayesian shrinkage and sparsification methods to improve risk estimation

and interpretability in high dimensions.

The statistical literature prior to publication of chapter 4 has mainly considered

lasso type priors for regularisation of high-dimensional Bayesian quantile regres-

sion problems (Chen et al., 2013; Wang, 2017; Alhamzawi et al., 2012; Alhamzawi

and Yu, 2013). It is, however, well known from the conditional mean literature

that exponential-Laplace (lasso) priors tend to over-regularise signals and under-

regularise noise (Carvalho et al., 2010). In chapter 4, we extend the global-local

shrinkage prior framework with the horseshoe as our focal point to the Bayesian

quantile regression. We develop an algorithm that scales well in high-dimensions

and contribute to the empirical macro literature by estimating a novel GaR exercise

for the US which showcases the performance of the horseshoe prior to the previously

proposed lasso priors. We conduct a large scale simulation exercise to investigate

how well the proposed algorithm behaves in a variety of DGPs. In chapter 5, we

extend the Bayesian decision theoretic variable selection paradigm to the Bayesian

quantile regression with continuous shrinkage priors. We derive novel analytical so-

lutions and propose a quantile specific parameter within the algorithm that is data

dependent and allows automatic adaptation to the quantile specific degree of spar-

sity. We use this methodology for a novel growth-at-risk application for the US in

which we investigate drivers of GDP risk across quantiles and across time.

The analyses based on global-local priors presented in chapters 2-5 lay out new

findings about the debate on the “illusion of sparsity” initiated by Giannone et al.

(2021). The authors find that the degree of sparsity found in models which are

not able to nest dense model solutions may falsely find evidence for sparsity. Since

this has an impact on how we interpret the data and may also influence subsequent

modelling in the larger Bayesian workflow (Gelman et al., 2020), this is a debate

closely followed also in policymaking. A drawback of the original and related studies

is that they consider spike-and-slab priors which may induce their own sparsity

artefacts due to discretisation of the model space and the strict assumption of a

normal slab distribution (Fava and Lopes, 2021). In chapter 6, we take a bird’s

eye view on the GL priors used in the previous chapters, as well as other popular

global-local priors, and analyse, on one the one hand, whether they have a-priori

tendencies about the degree of sparsity, and on the other, whether they are able

to communicate the true sparsity once they have seen the data. We consider two

methods of analysis: implicit model size distributions which are derived following

Piironen et al. (2017), and popular sparsification techniques which are tested on a

host of economic data sets and simulations. The findings motivate a new horseshoe

type model to which we add a prior that makes it a-priori agnostic about the degree

of sparsity.
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1.2 Chapter 2: Nowcasting Growth using Google

Trends Data: A Bayesian Structural Time Se-

ries Model

This chapter investigates the benefits of internet search data in the form of Google

Trends for nowcasting real U.S. GDP growth in real time through the lens of mixed

frequency Bayesian Structural Time Series (BSTS) models. We augment and en-

hance both model and methodology, originally proposed by Scott and Varian (2014),

to make these better amenable to nowcasting with large number of potential covari-

ates and heterogeneous time trends. Specifically, we allow shrinking state variances

towards zero to avoid overfitting latent trends, extend the SSVS (spike and slab

variable selection) prior to the more flexible normal-inverse-gamma prior (Ishwaran

et al., 2005) which stays agnostic about the underlying model size, as well as adapt

the horseshoe prior (Carvalho et al., 2010) to the BSTS. The application to now-

casting GDP growth as well as a simulation study demonstrate that the horseshoe

prior BSTS improves markedly upon the SSVS and the original BSTS model with

the largest gains in dense data-generating-processes. Our application also shows

that a large dimensional set of Internet search terms is able to improve nowcasts

early in a given quarter before other macroeconomic data become available. Search

terms with high inclusion probability have good economic interpretation, reflecting

leading signals of economic anxiety and wealth effects. Focusing on the months of

the recession induced by Covid-19, inclusion of Google Trends allows additionally for

better calibrated forecast densities. Here the BSTS models show a large asymmet-

ric dip in the lower quantiles of the nowcast distribution, anticipating the trough

of the recession. This is not captured when excluding the search terms from the

information set.

1.3 Chapter 3: A New Bayesian MIDAS Approach

for Flexible and Interpretable Nowcasting

In this chapter we build on the work of chapter 2 by proposing the T-SV-t-BMIDAS

model for nowcasting quarterly GDP growth. The model incorporates a long-run

time-varying trend (T) and t-distributed stochastic volatility accounting for outliers

(SV-t) into a Bayesian multivariate MIDAS. To address the high-dimensionality of

the model, to account for group-correlation in mixed frequency data, and to make

the model interpretable to the policy maker, we propose a new combination of

group-shrinkage prior and sparsification algorithm for variable selection in the MI-

DAS component. The prior offers three-tiered shrinkage in which the overall level of

sparsity, group-level sparsity and the degree of correlation between group members
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are controlled by individual hyper-parameters. This addresses, on the one-hand, the

grouping structure implied by MIDAS transformed mixed frequency lags, and the

other, distinguishes between situations where the impact of within group lags are

correlated or heterogeneous. This also helps avoiding mixing issues often faced by

shrinkage priors for highly correlated groups (Piironen et al., 2020). To communicate

variable impact on model predictions, we derive group-wise inclusion probabilities

following the Bayesian decision theoretic framework of Hahn and Carvalho (2015)

and Chakraborty et al. (2020). We evaluate the model for UK GDP growth now-

casts over the period 1999 to 2021. Our model is competitive prior to the Covid-19

pandemic relative to various benchmark models, while yielding substantial nowcast

improvements during the pandemic. First, accounting for a long-run trend and t-

distributed stochastic volatility substantially improves forecast performance relative

to a simple BMIDAS. Second, the shrinkage prior enhances nowcast performance

by inducing group-wise sparsity while enabling the model to flexibly shift between

signals. During the Covid-19 pandemic, the model reads stronger signals from in-

dicators for services, which reflected spending shifts related to lockdowns, and less

from production surveys. This helps to precisely nowcast the initial recovery af-

ter the shock, and to update the nowcast for the pandemic-related trough sooner.

Simulations show competitive performance of the shrinkage and variable selection

methodology, with particularly good performance to be expected for highly corre-

lated data as well as dense data-generating-processes compared to the horseshoe

prior and a frontier spike-and-slab based group-prior.

1.4 Chapter 4: Horseshoe Prior Bayesian Quan-

tile Regression

This chapter marries the burgeoning literature of high-dimensional global-local shrink-

age priors with the Bayesian quantile regression and provides an efficient sampling

algorithm for high-dimensional quantile regression problems. With the horseshoe

prior as the focal point, we provide a competitive prior that compares favourably to

a host of previously proposed lasso based shrinkage priors for the Bayesian quantile

regression. Empirically, this chapter highlights the performance of the proposed

method through a novel big-data Growth at Risk application to the US economy

in response to 230 potential variables. The premise of this application is that risks

to the macroeconomy may stem from many, potentially a-priori unknown, macro

sources which the prior can exploit for superior downside risk and general density

estimation. We show in our application that the proposed prior provides policy

relevant characterisations of downside risks over time.

Finally, we validate the good results from the empirical application in a large-

scale simulation exercise that compares the horseshoe’s performance to a host of
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competing shrinkage priors in various dense and sparse data generating processes.

1.5 Chapter 5: Shrink then Sparsify: Identifying

Drivers of Tail Risk

Bayesian quantile regression models with continuous shrinkage priors are known to

predict well but are hard to interpret due to lack of exact posterior sparsity. This

chapter bridges this gap by extending the idea of decoupling shrinkage and sparsity

in vain of Lindley (1968) and Hahn and Carvalho (2015). The proposed procedure

follows two steps: First, we shrink the quantile regression posterior through state

of the art continuous shrinkage priors; then, we sparsify the posterior by taking the

Bayes optimal solution to maximizing a policy maker’s utility function that considers

the predictive performance of the un-sparsified model as well as sparsity. To conduct

variable selection, we propose a new variant of the signal adaptive variable selection

algorithm (Ray and Bhattacharya, 2018) that automates the choice of penalization in

the integrated utility through quantile specific loss-functions that work well in high

dimensions. We show in large scale simulations that, compared to the un-sparsified

regression posterior, our selection procedure decreases coefficient bias irrespective of

the true underlying degree of sparsity in the data, and goodness of variable selection

is competitive with traditional variable selection priors. We apply our approach to

a high dimensional growth-at-risk exercise in which we identify and communicate to

the policy maker which variables drive tail risks to the macroeconomy.

1.6 Chapter 6: Global-Local Priors and the Illu-

sion of Sparsity

Inspired by the work of Giannone et al. (2021) on the illusion of sparsity from sparse

modelling techniques, we investigate in this chapter whether the recently popularised

global-local priors are able to uncover the true degree of sparsity in the data via an

implicit measure of sparsity derived from the model as well as sparsity implied from

post-estimation variable selection algorithms which are gaining popularity for com-

municating the posterior of continuous shrinkage priors (Ray and Bhattacharya,

2018; Huber et al., 2019; Piironen et al., 2020). The analysis motivates a new vari-

ant of the horseshoe prior of Carvalho et al. (2010) that a-priori stays agnostic about

model complexity. The simulations as well as empirical applications show that the

proposed prior not only compares favourably to the spike-and-slab prior of Giannone

et al. (2021) in terms of forecasting performance, but is also competitive in pinning

down the true degree of sparsity. The analysis also suggest that certain classes of

global-local priors are more robust at detecting the underlying degree of sparsity
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which we can relate to a prior’s implicit distributions on expected model sizes. We

find that sparsification methods cannot make up the prior’s a-priori sparsity ten-

dencies, but that incorporating out-of-sample predictive performance can somewhat

remedy variable selection particularly in dense data generating processes.

1.7 Chapter 7: Conclusion

This chapter summarises the thesis, highlights the contributions made in terms of

methodology as well as empirics. We end the thesis with the limitations of the

presented research and avenues for future research.
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Chapter 2

Nowcasting Growth using Google

Trends Data: A Bayesian

Structural Time Series Model

2.1 Introduction

The primary object of nowcasting models is to produce ‘early’ forecasts of tar-

get variables associated with long delays in data publication by exploiting the real

time data publication schedule of the explanatory data set. While prediction is

the primary goal here, the selected models can also sometimes provide structural

interpretations ex post. Nowcasting is particularly relevant to central banks and

other policymakers who are tasked with conducting forward looking policies on the

basis of key economic variables such as GDP or inflation. Inflation data are, how-

ever, published with a lag of up to 7 weeks with respect to their reference period,

and precise estimates of GDP can take years.1 Since even monthly macroeconomic

data arrive with considerable lag, it is now common to combine, next to traditional

macroeconomic data, ever more information from Big Data sources such as internet

search terms, satellite data, scanner data, etc. which have the advantage of being

available in near real time (Bok et al., 2018). The recent Covid-19 pandemic has

given further impetus to this trend, as faster indicators have proven especially useful

in modelling the unprecedentedly sharp movements in the economy that traditional

macroeconometric models fail to capture in a timely manner (Antolin-Diaz et al.,

2021; Woloszko, 2020).

In this chapter we add to the burgeoning literature on using Google search data

in the form of Google Trends (GT), which measure the relative search volume of

certain search terms entered into the Google search engine, to nowcast aggregate

1 The exact lag in publications of GDP and inflation depends as well on which vintage of data
the econometrician wishes to forecast. Since early vintages of aggregate quantities such as
GDP can display substantial variation between vintages, this is not a trivial issue.
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economic time-series. In particular, we investigate the benefits of using monthly

Google search information for nowcasting quarterly U.S. real GDP growth in real-

time compared to traditional macro data and survey information. We contribute

to this literature by being, to our best knowledge, the first paper to investigate the

benefit of search information above and beyond macroeconomic data for the U.S.

including performance during the Covid-19 pandemic period.

To deal with the specificities of the data, we propose robust nowcasting methods

that are amenable to situations in which the policymaker needs to combine tradi-

tional and non-traditional data sources while providing tractable variable selection

properties. For this purpose, we adapt current generation state space and regression

priors to the widely popular Bayesian Structural Time Series model (BSTS) (Scott

and Varian, 2014). Results from our nowcasting application show that Google’s

search information improves nowcasts of GDP growth, particularly early on in the

quarter before macroeconomic data are published. We show that our extensions

allow for accuracy gains of up to 40% during certain nowcast periods in point as

well as in density nowcasts compared to the original BSTS model of Scott and

Varian (2014) while retaining its interpretability. These results are confirmed in a

simulation study which checks robustness to a variety of data-generating processes.

In the following, we firstly discuss the state and regression priors as well as

posteriors for our extended BSTS models and provide efficient sampling algorithms.

In section 2.3, we elaborate further on the data used for nowcasting, including

dealing with mixed frequency, the data publication calendar and the specificities of

the Google Trends data set. In section 2.4, we present results based on our empirical

application of nowcasting U.S. GDP growth, which is followed in section 2.5 by the

results from our simulation study. Finally, Section 2.6 concludes with a discussion

and avenues for future research.

2.2 Bayesian Structural Time Series Model

2.2.1 The Original Model

The Bayesian Structural Time Series (BSTS) model, as proposed by Scott and

Varian (2014), provides a conceptually attractive model for nowcasting aggregate

economic time-series with heterogeneous data sources, as it flexibly estimates latent

time-trends, seasonality and deviations or ‘irregular’ dynamics through variable se-

lection using a high-dimensional shrinkage prior. Denote the target variable to

be nowcast by yt = (y1, · · · , yT )′ and the K-dimensional explanatory data set as

xt = (x1, · · · , xT )′ which for now are sampled at the common frequency, t. Then

our model is as follows:
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yt = τt + x′tβ + δt + ϵt, ϵt ∼ N(0, σ2
y)

τt = τt−1 + αt + ϵτt , ϵ
τ
t ∼ N(0, σ2

τ )

αt = αt−1 + ϵαt , ϵ
α
t ∼ N(0, σ2

α)

δt = −
S−1∑
s=1

δt−s + ϵδt , ϵ
δ
t ∼ N(0, σ2

δ ).

(2.1)

(2.1) is a linear state space model with Gaussian errors and states {τt, αt, δt}Tt=1

which capture long-run trends and S seasonal components δt. The deviation from τt

describes variation from a long-run trend which, when applied to the level of GDP

can be interpreted as the output gap (Watson, 1986; Grant and Chan, 2017). αt

allows for a drift term in the trend which is often observed in stock variables such as

in GDP, aggregate consumption and inflation (Grant and Chan, 2017; Chan, 2017b).

Variable selection on the possibly high-dimensional K × 1 response vector β in

the BSTS model of Scott and Varian (2014) is done via a two component conjugate

spike-and-slab prior. Estimation is standard (George and McCulloch, 1993), and

states τt, αt and δt are estimated jointly via the forward filtering backward sampling

(FFBS) algorithm of Durbin and Koopman (2002) based on the Kalman filter. This

implementation relies on Normal-Inverse Gamma (N-G−1) priors for the states and

state variances for conditional conjugacy. While the BSTS model is a natural model

for many time-series applications, we bring 3 important methodological innovations

which make it more robust to overfitting trend estimation and variable selection

with heterogeneous high dimensional data.

2.2.2 Model enhancements

Non-Centred Bayesian Structural Time Series

In line with previous nowcasting studies, this chapter focuses on nowcasting GDP

growth rather than levels. However, two problems arise when applying model (2.1)

directly to growth variables. As growth variables are often approximately stationary,

conceptually, the inclusion of αt implies that GDP growth follows a boundless drift

for which there is little structural justification or empirical evidence. A non-drifting

stochastic trend, on the other hand, has been shown to markedly improve nowcasts

of GDP growth as shown in Antolin-Diaz et al. (2017), especially when the state

variances are tightly controlled by priors such that the stochastic trend does not

wander too wildly. This suggests that modeling time-variation is preferred over

de-trending a-priori.2 The underlying rationale for this improvement is the well

2 Modelling an I(1) component in U.S. GDP growth is additionally consistent with Harvey’s
local-linear trend model (Harvey, 1985), the Hodrick and Prescott (1997) filter and Stock and
Watson (2012a).
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known empirical finding of changes in long-run GDP growth (Kim and Nelson,

1999; McConnell and Perez-Quiros, 2000; Jurado et al., 2015). Econometrically, the

additional problem is that the G−1 priors with no prior mass on zero, as implemented

for Bayesian linear state space methods, can bias posterior state variances away from

zero, thereby potential leading to false support for state dynamics which can hurt

forecast performance.

We extend model (2.1) to flexibly let the data shut down state dynamics, and

therefore broaden the applicability of model (2.1), by adopting the non-centred

parameterisation of the state space as suggested by Frühwirth-Schnatter and Wagner

(2010). The non-centred parameterisation models state variances directly in the

observation equation, which with normal priors, exerts much stronger shrinkage than

G−1 priors.3 This allows additionally for valid inference on testing for zero posterior

variance via Savage-Dickey density ratios, as will be further discussed in section

2.4. Testing for zero posterior variance would be very challenging in a frequentist

hypothesis testing approach because the null hypothesis of constant state in model

(2.1) lies on the boundary of the parameter space.

The non-centred model considered for the empirical application is equivalently

written as:

yt = τ0 + στ τ̃t + tα0 + σα

t∑
s=1

α̃t + x′tβ + ϵt, ϵt ∼ N(0, σ2) (2.2)

and

τ̃t = τ̃t−1 + ũτt , ũ
τ
t ∼ N(0, 1)

α̃t = α̃t−1 + ũαt , ũ
α
t ∼ N(0, 1)

(2.3)

with starting values τ̃0 = α̃0 = 0. Note that the seasonal component is left out

for estimation due to the small sample length of the Google Trends data set and

differing seasonal patterns between monthly and quarterly data.4 To see that (2.2)

and (2.3) is equivalent to (2.1), let:

αt = α0 + σαα̃t

τt = τ0 + στ τ̃t + tα0 + σα

t∑
s=1

αs
(2.4)

3 Formally, a normal prior on the state standard deviation can be shown to imply a Gamma
prior on the state variance.

4 For further discussion, please see section 2.3
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Hence, by setting yt = τt + x′tβ + ϵt, it is clear that

αt − αt−1 = σα(α̃t − α̃t−1)

= σα + ũαt

τt − τt−1 = α0 + σαα̃t + στ (τ̃t − τ̃t−1)

= α + στ + ũτt

(2.5)

which recovers (2.1). Since στ,α are allowed to have support on the real line, they are

not identified in multiplication with the states: the likelihood is invariant to signs

of σα and στ . Consequently, mixing of the posterior state standard deviations can

be poor and their distributions are likely to be bi-modal (Frühwirth-Schnatter and

Wagner, 2010). This issue is addressed by randomly permuting signs in the Gibbs

sampler as explained below. Similar to Frühwirth-Schnatter and Wagner (2010), we

assume normal priors centred at 0 for σi : σi ∼ N(0, Vi) ∀i ∈ {τ, α}.
Collecting all state space parameters in θ = (τ0, α0, στ , σα), we assume an inde-

pendent multivariate normal prior with diagonal covariance matrix:

θ ∼ N(θ0, Vθ). (2.6)

While the state processes {τ̃ , α̃}Tt=1 can be estimated by any state space algorithm,

we opt for the precision sampler method of Chan and Jeliazkov (2009) which is

outlined in Appendix (A.1.4) along with the state posteriors. In contrast to FFBS

type algorithms, it samples the states without recursive estimation which speeds up

computation significantly.

SSVS Prior

Our second enhancement concerns the SSVS prior. Variable selection in the BSTS

model of Scott and Varian (2014) is done via a two component conjugate spike-

and-slab prior which utilises a variant of Zellner’s g-prior and fixed expected model

size. While computationally fast due to conjugacy, many high-dimensional problems

benefit from prior independence (Moran et al., 2018) and a fully hierarchical formu-

lation to let the data decide on the most likely value of the parameters (Ishwaran

et al., 2005).

Therefore, we follow Ishwaran et al. (2005)’s extension to the SSVS prior, the

Normal-Inverse-Gamma prior:

βj|γj, δ2j ∼ γjN(0, δ2j ) + (1− γj)N(0, c× δ2j )

δ2j ∼ G(a1.a2)

γj ∼ Ber(π0)

π0 ∼ B(b1, b2)

(2.7)
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where j ∈ (1, · · · , K) and G, Ber and B denote the Gamma, Bernoulli and Beta

distribution respectively. The intuition remains the same as compared to the spike-

and-slab prior of Scott and Varian (2014) in that the covariate’s effect is modeled by

a mixture of normals where it is either shrunk close to zero via a narrow distribution

around zero (the spike component) or estimated freely though a relatively diffuse

normal distribution (the slab component). Sorting into each component is handled

through an indicator variable, γj, and the hyperparameter c is chosen to be a very

small number, thereby forcing shrinkage of noise variables to close to zero. While

in the original BSTS model, the indicator variable, γj, depends on a fixed prior π0

which governs the prior inclusion probability of a variable, (2.7) allows for it to be

estimated from the data through another level of hierarchy. We set b1 = b2 = 1,

which effectively assumes that any expected model size is a-priori possible and thus

allows for sparse but also dense model solutions as recommended by Giannone et al.

(2021). Finally, the prior variance δ2j is also allowed to be hierarchical. Posteriors

are standard and described in the Appendix (A.1.1). The posterior of γj is of special

interest to the analyst as it gives a data informed measure of importance of a vari-

able. Specifically, p(γ|y) can be interpreted as the posterior inclusion probability of

a variable.

Horseshoe Prior

Our third and final enhancement of the BSTS models extends the employed shrink-

age priors to the horseshoe prior. Like many recently popularised shrinkage priors,

the horseshoe prior belongs to the broader class of global-local priors which take the

following general form:

βj|φ2
j , ϑ

2, σ2 ∼ N(0, φ2
jϑ

2σ2), j ∈ (1, · · · , K)

φj ∼ π(φj), j ∈ (1, · · · , K)

ϑ ∼ π(ϑ)

σ2 ∼ π(σ2)

(2.8)

The idea of this family of priors is that the global scale ϑ controls the overall

shrinkage applied to the regression, while the local scale φj allows for the local

possibility of regressors to escape shrinkage if they have large effects on the response.

A variety of global-local shrinkage priors have been proposed (Polson and Scott,

2010), but here we focus on arguably the most popular, the horseshoe prior of

Carvalho et al. (2010) which employs two half Cauchy distributions for ϑ and φj:

φj ∼ C+(0, 1)

ϑ ∼ C+(0, 1)
(2.9)
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These two fat tailed scale distributions imply a shrinkage profile that has the spike-

and-slab prior in its limit and therefore offers a continuous approximation to the

SSVS (Piironen et al., 2017) (see section A.1.2 in the appendix for further discus-

sion). An additional attractive feature of the horseshoe prior is that it is completely

automatic with respect to its hyperparameters and has been shown to be excellent

at forecasting in several previous studies (Huber et al., 2019, 2020; Cross et al., 2020;

Follett and Yu, 2019). Due to its special connection to frequentist shrinkage pri-

ors (Polson and Scott, 2010), it offers not only good finite sample performance but

also favourable asymptotic behaviour compared to competing global priors (Bhadra

et al., 2019). Chakraborty et al. (2020) in particular show that the fractional pos-

terior mean as a point estimator is rate optimal in the minimax sense using (2.9).

Nevertheless, fitting the horseshoe prior can be challenging when the scale pa-

rameters are not strongly identified by the data, which is particularly critical in

cases where the likelihood is flat, for example, separable data in logistic regression

(Piironen et al., 2017).5 We provide in the appendix a (A.1.2) robustness check

based on Piironen et al. (2017) that are able to alleviate any identifiability concerns

for the empirical study below.

Posteriors are described in the appendix (A.1.1).

SAVS Algorithm

Although the horseshoe prior shrinks noise variables towards zero, the importance

of a variable for nowcasts may not be immediately clear from posterior summary

statistics of the coefficients, especially when the posterior is multi-modal. To aid

interpretability and simultaneously preserve predictive ability, we employ the signal

adaptive variable selection (SAVS) algorithm of Ray and Bhattacharya (2018) to the

posterior coefficients on a draw-by-draw basis. The algorithm uses a useful heuristic,

inspired by frequentist lasso estimation, to threshold posterior regression coefficients

to zero:

ψj = sign(β̂j)||Xj||−2max(|β̂j| ||Xj|| − ζj, 0), (2.10)

where Xj = (xj1, · · · , xjT )′ is the jth column of the regressor matrix X, sign(x)

returns the sign of x and β̂ represents a draw from the regression posterior. The

parameter ζj in (2.10) acts as a threshold for each coefficient akin to the penalty

parameter in lasso regression which can be selected via cross-validation. Ray and

Bhattacharya (2018) propose

ζj =
1

|βj|2
, (2.11)

which ranks the coefficients inverse-squared proportionally and provides good per-

formance compared to alternate penalty levels (Ray and Bhattacharya, 2018; Huber

et al., 2019). To see the similarity to lasso style regularisation, the solution to (2.10)

5 We thank an anonymous reviewer for having facilitated this discussion.
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can be obtained by the following minimisation problem which is closely related to

the adaptive lasso (Zou, 2006):

ψ = argmin
ψ

{
1

2
||Xβ̂ −Xψ||+

K∑
j=1

ζj|ψj|
}
. (2.12)

Here, ψ is the sparsified regression vector. Analogous to the SSVS posterior, the

relative frequency of non-zero entries in the posterior coefficient vector can be in-

terpreted as posterior inclusion probabilities. Integrating over the uncertainty of

the parameters, we obtain the predictive distribution p(ỹ|y), which is similar to a

Bayesian Model Averaged (BMA) posterior (Huber et al., 2019).

Sampling Algorithm

With the conditional posteriors for the regression and state components at hand

(see Appendix A.1.1), we sample states as well as regression parameters with the

following Gibbs sampler:

1. Sample (τ̃ , α̃|y, θ, β, σ2
y)

2. Sample (θ|y, β, τ̃ , α̃, σ2
y)

3. Randomly permute signs of (τ̃ , α̃) and (στ , σα)

4. Sample (β|y, θ, τ̃ , α̃, σ2
y)

5. Sample (σ2
y|y, τ̃ , α̃, σ2

y)

As mentioned in Section 2.2.2, states are sampled in a non-recursive fashion

which exploits sparse matrix computation and precision sampling. The exact sam-

pling algorithm is given in Appendix A.1.4. As discussed in Section 2.2.2, after

sampling θ in step 2, we randomly permute signs of (τ̃ , α̃), (στ , σα) to aid mixing.

Step 4 of the sampler will depend on the prior and its respective hyperpriors. While

the posterior sampling scheme for the SSVS is standard, we use the efficient pos-

terior sampler of Bhattacharya et al. (2016) to sample the regression coefficients of

the horseshoe prior. Compared to Cholesky based sampling as used for the SSVS,

computation speed is markedly improved; see Appendix A.1.1. Note that in step 4,

we perform SAVS sparsification via (2.10) on an iteration basis.

2.3 Data

2.3.1 Mixing Frequencies

In this chapter, we relate monthly macro data commonly used for nowcasting based

on Giannone et al. (2016) and internet search information via U-MIDAS skip-
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sampling to real quarterly U.S. GDP growth. The U-MIDAS approach to mixed

frequency belongs to the broader class of ‘partial system’ models (Bańbura et al.,

2013), which directly relate higher frequency information to the lower frequency tar-

get variable by vertically realigning the covariate vector. The benefit of this mixed

frequency method compared to restricted MIDAS and full system state space meth-

ods is its simplicity in that existing models and priors can directly be applied to

U-MIDAS sampled data as well as its competitive performance, especially when the

frequency mismatch between the target and the regressors is small (Foroni et al.,

2015; Foroni and Marcellino, 2014), as is the case in our application. Switching

notation from equation (2.1) to make it explicit that yt is quarterly while xt is sam-

pled at a higher, i.e., monthly frequency, denote xt,M = (x1,t,M , · · · , xK,t,M) and

βm = (β1,M , · · · , βK,M)′ where M = (1, 2, 3) denotes the monthly observation of

the covariate within quarter, t. By concatenating each monthly column, we obtain

a T × 3K regressor matrix X and a 3K × 1 regression coefficient vector β. This

vertical realignment is visualised for a single representative regressor below:
y1stquarter | xMar xFeb xJan

y2ndquarter | xJun xMay xApr

. | . . .

. | . . .

. | . . .

 (2.13)

2.3.2 Macroeconomic Data

The macro data set pertains to an updated version of the database of Giannone

et al. (2016) (henceforth, ‘macro data’) which contains 13 time series which are

closely watched by professional and institutional forecasters including real indicators

(industrial production, house starts, total construction expenditure etc.), price data

(CPI, PPI, PCE inflation), financial market data (BAA-AAA spread) and credit,

labour and economic uncertainty measures (volume of commercial loans, civilian

unemployment, economic uncertainty index etc.). We augment this data set with

the composite Purchasing Managers Index (PMI) and the University of Michigan

Consumer Confidence Index (UMCI). These are often used as leading indicators

for producer and consumer sentiment, respectively. The target variable for this

application is deseasonalised U.S. real GDP growth (GDP growth) data as reported

in the FRED data set.6,7

As early data vintages of macroeconomic data and GDP figures can exhibit sub-

6 Here, the deseasonalisation pertains to the X13-ARIMA method and was performed prior to
download from the FRED-MD website.

7 We thank an anonymous reviewer who brought to our attention that instead of mixing pre-
deseasonalisation techniques between macroeconomic data and Google Trends discussed be-
low, one could also deseasonalise with common techniques such as the Loess filter. In doing so,
the results in this chapter remain qualitatively identical. Details are available upon request.
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stantial variation compared to final vintages (Croushore, 2006; Sims, 2002), there is

no unambiguous choice of variable in evaluating nowcast models on historical data.

Further complications can arise through changing definitions or methods of mea-

surements (Carriero et al., 2015). In order to judge the expected performance of

the proposed models from a real-time perspective, we only make use of the latest

vintages of the series available at the point in time of the nowcast. 8 The stylised

release calendar (2.1) simulates the data availability within the months during which

nowcasts are conducted. For instance, at the 24th nowcast period, all data which

became available during periods 1-24 will be updated according to their latest avail-

able vintages dating prior to the release of PCE and PCEPI, which are published

typically during the last week of a given month. Real-time vintages are downloaded

from the FRED database using the ‘FredFetch’ Matlab package.9

2.3.3 Google Trends

Google Trends (GT) are indices produced by Google on the relative search volume

popularity of a given search term, search topic or pre-specified search category,

conditional on a given time frame and location. The difference between individual

search terms and topics/categories is that the latter measures the search popularity

for a basket of search terms which are content-wise related to the specified topic

or category. In particular, categories are further split into a 5-level hierarchy of

categories which are fixed a-priori,10 and topics can be assembled depending on the

term one is interested in. For example, the user can specify the topic ‘Recession’,

whose related search queries contain, among others, ‘recession’, ‘downturn’, and

‘economic depression’. Likewise, the category ‘Welfare & Unemployment’ relates

to search queries about ‘unemployment, ‘food stamps’ and ‘social security office’.

A large literature on using individual Google Trends search terms11 have shown

that these data can improve predictions for economic time-series which have a clear

connection to the specific search term used, such as using ‘unemployment benefits’

to predict unemployment (Smith, 2016). However, this approach has two potential

limitations.

First, using broad search terms to capture general macroeconomic activity bears

the risk of capturing spurious search behaviour. For example, the search term ‘jobs’

might contain search volume for ‘Steve Jobs’. Second, since many search terms

will be related to multiple topics, there may be lack of interpretability. To reduce

8 The only exception is real GDP growth, for which, following previous nowcast studies (Carriero
et al., 2015; Clark, 2011), we use the second vintage for nowcast evalutation.

9 The Matlab package is available from https://github.com/MattCocci/FredFetch. PMI
data were downloaded from quandl.com using Quandl code ‘ISM/MANPMI’.

10 For an overview of categories and sub-categories, please see https://github.com/pat310/

google-trends-api/wiki/Google-Trends-Categories
11 See, for example: Guzman (2011); McLaren and Shanbhogue (2011); Askitas and Zimmer-

mann (2009); Fondeur and Karamé (2013); Carrière-Swallow and Labbé (2013).

18

https://github.com/MattCocci/FredFetch
quandl.com
https://github.com/pat310/google-trends-api/wiki/Google-Trends-Categories
https://github.com/pat310/google-trends-api/wiki/Google-Trends-Categories


search term ambiguity and interpretability in relationship to real GDP growth, we

use Google topics and categories instead of individual search terms, and choose

these based on their relationship with various aspects of the economy. As forcefully

argued by Woloszko (2020) and Fetzer et al. (2020), these mostly alleviate spuriously

correlated search terms as the user can confine the search purpose. This is benefited

by the fact that Google refines this basket of search terms, by taking into account

where users click after the search has been conducted Woloszko (2020). Further,

categories and topics can be conceptualised as factors based on search terms with the

same meaning/purpose. Although the exact basket of search terms corresponding

to a topic/category is not a-priori accessible to the user, any topic or category with

little predictive power will ultimately be shrunk to zero via the shrinkage priors

employed in the proposed models.

Our sample comprises 37 Google Trends which were chosen based on capturing

activity in various parts of the economy ranging from crisis/recession, labour market,

personal finance, consumption to supply side activities.12 Our chosen list of topics

and categories is as follows:

• Crisis/Recession: topic - Economic crisis, topic - Crisis, topic - Recession

• Labour Market: topic - Unemployment benefits, topic - jobs, topic - Unem-

ployment, Welfare & unemployment

• Bankruptcy: topic - Bankruptcy, topic - foreclosure

• Credit, Loans & Personal Finance: topic - Investment, topic - Mortgage,

topic - Interest rate, Credit & lending, Investing

• Consumption Items & Services: Food & drink, Vehicle brands, Home &

garden, Sports, Autos & vehicles, Grocery & food retailers, Vehicle licensing

& registration, Hotels & accommodations

• News: Business news, Economy news

• Housing: topic - Affordable housing, topic - House price index

• Business & Industrial Activity: Construction, consulting & contracting,

Business services, Transportation & logistics, manufacturing

• Health: Health

The relatively large proportion of search items related to consumption of goods and

services reflects the large role of consumption in determining U.S. GDP. Vosen and

Schmidt (2011) and Woo and Owen (2019) have shown that similar search items

track and predict the UMCI index and private consumption very well, thereby

12 This list was inspired by previous research such as Woloszko (2020).
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capturing consumer sentiment. Labour topics and categories track the popular-

ity of search terms related to job search and benefits demand which Smith (2016),

D’Amuri and Marcucci (2017) and Fondeur and Karamé (2013) have shown to pre-

dict the unemployment rate in various countries. Topics related to personal finance

and investment may signal wealth effects (Woloszko, 2020), which tend to positively

correlate with the business cycle (see figure A.13 in appendix). Topics around hous-

ing have been shown to be indicative of housing prices (Wu and Brynjolfsson, 2015;

Askitas and Zimmermann, 2009). The recession, business news and bankruptcy

themed search items typically increase during economic downturns which therefore

act as signals of economic distress and recessions (Castelnuovo and Tran, 2017; Chen

et al., 2012).

While the selection of our search items is subjective, in general, there is no

consensus on how to optimally select search terms for final estimation. Methods

proposed in the previous literature can be summarised as: (i) pre-screening through

correlation with the target variable as found via Google Correlate (Scott and Varian,

2014; Niesert et al., 2020; Choi and Varian, 2012);13 (ii) cross-validation (Ferrara

and Simoni, 2019); (iii) use of prior economic intuition where search terms are

selected through backward induction (Smith, 2016; Ettredge et al., 2005; Askitas

and Zimmermann, 2009); and (iv) root terms, which similarly specify a list of search

terms through backward induction, but additionally download “suggested” search

terms from the Google interface. This serves to broaden the semantic variety of

search terms in a semi-automatic way. As methodologies based on pure correlation

do not preclude spurious relationships (Scott and Varian, 2014; Niesert et al., 2020;

Ferrara and Simoni, 2019), we opt for our (somewhat subjective) selection to best

guarantee economically relevant Google Trends.

Since search terms can display seasonality, we deseasonalise all Google Trends by

the Loess filter, as recommended by Scott and Varian (2014), which is implemented

with the “stl” command in R.14

Although one of the main benefits of Google Trends is their timely availability,

which can be as granular as displaying search popularity minutely for the past

hour, the purpose of the empirical application is to showcase the flexibility of the

proposed models in taking advantage of the heterogeneous information contained

in adding new data sources to traditional macroeconomic data, even with little

data processing efforts. Due to the simplicity of obtaining monthly Google Trends

information, we sample the Google Trends information at the monthly frequency.

Nevertheless, the proposed methodology can easily be extended to update monthly

13 Unfortunately, Google Correlate has suspended updating their databases past 2017.
14 To mitigate against inaccuracy stemming from sampling error, we downloaded the set of

Google Trends seven times between 1 August 2021 to 8 August 2021 and took the cross-
sectional average. Since we used the same IP address and google-mail account, there might
still be some unaccounted measurement errors. However, using topics and categories instead
of individual search terms, we observe much lower sampling variance.
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Google Trends with higher frequency search information via bridge methods as in

Ferrara and Simoni (2019) or could directly be included in the model via expansion

of the covariate matrix.15

The indicative real-time calendar can be found in Table 2.1 and has been con-

structed after the data’s real publication schedule. It comprises a total of 37 nowcast

periods which make for an equal number of information sets Ωv
t for v = 1, · · · , 37

which are used to construct nowcasts as explained in Section 2.4. Google Trends

are treated as released prior to any other macro information pertaining to a given

month, since as argued, Google Trends information can essentially be continuously

sampled.

2.3.4 Understanding Google Trends

To get a visual understanding of the Google search information, we plot in figure

(2.1) the first 3 principal components of the U-MIDAS transformed Google Trends

information. Figure (2.2) shows the factor loadings.

Figure 2.1: First 3 principal components of the GT data set and 2nd vintage real
GDP growth.

The first three principal components show very heterogeneous behaviour, but

the dynamics conform to the economic intuition suggested from the loadings. The

first component loads positively on supply side activity such as ‘Business services’,

‘Construction, consulting & contracting’, ‘Manufacturing’ as well as ‘Investing’ and

negatively on recessionary themes and ‘Jobs’ which spike during the crises and de-

crease during recoveries (see figure A.13 for indicative time-series plots of individual

15 Due to the already very high-dimensionality of the data set, we retain such extensions for
future investigation. Constraining the parameter space via MIDAS sampling might make
estimation more feasible.
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Releases Timing Release Variable Name Pub. lag Transformation FRED Code

1 First day of month 1 No information available - - - -
2 Last day of month 1 Google Trends m 4 -
3 4th Friday month 1 Consumer Sentiment cons m 3 UMCSENT
4 Last day of month 1 Fed. funds rate & credit spread fedfunds & baa m 3 FEDFUNDS & BAAY10
5 1st bus. day of month 2 Economic Policy Uncertainty Index uncertainty m-1 1 USEPUINDXM
6 1st bus. day of month 2 PMI pmi m-1 1 -
7 1st Friday of month 2 Employment situation hours & unrate m-1 2 AWHNONAG & UNRATE
8 Middle of month 2 CPI cpi m-1 2 CPI
9 15th-17th of month 2 Industrial Production indpro m-1 2 INDPRO
10 3rd week of month 2 Credit & M2 loans & m2 m-1 2 LOANS & M2
11 Later part of month 2 Housing starts housst m-1 1 HOUST
12 Last week of month 2 PCE & PCEPI pce & pce2 m-1 2 PCE & PCEPI
13 Last day of month 2 Google Trends m 4 -
14 4th Friday month 2 Consumer Sentiment cons m 3 UMCSENT
15 Last day of month 2 Fed. funds rate & credit spread fedfunds & baa m 3 FEDFUNDS & BAAY10
16 1st bus. day of month 3 Economic Policy Uncertainty Index uncertainty m-1 1 USEPUINDXM
17 1st bus. day of month 3 PMI pmi m-1 1 -
18 1st bus. day of month 3 Construction starts construction m-2 1 TTLCONS
19 1st Friday of month 3 Employment situation hours & unrate m-1 2 AWHNONAG & UNRATE
20 Middle of month 3 CPI cpi m-1 2 CPI
21 15th-17th of month 3 Industrial Production indpro m-1 2 INDPRO
22 3rd week of month 3 Credit & M2 loans & m2 m-1 2 LOANS & M2
23 Later part of month 3 Housing starts housst m-1 1 HOUST
24 Last week of month 3 PCE & PCEPI pce & pce2 m-1 2 PCE & PCEPI
25 Last day of month 3 Google Trends m 4 -
26 4th Friday month 3 Consumer Sentiment cons m 3 UMCSENT
27 Last day of month 3 Fed. funds rate & credit spread fedfunds & baa m 3 FEDFUNDS & BAAY10
28 1st bus. day of month 4 Economic Policy Uncertainty Index uncertainty m-1 1 USEPUINDXM
29 1st bus. day of month 4 PMI pmi m-1 1 -
30 1st bus. day of month 4 Construction starts construction m-2 1 TTLCONS
31 1st Friday of month 4 Employment situation hours & unrate m-1 2 AWHNONAG & UNRATE
32 Middle of month 4 CPI cpi m-1 2 CPI
33 15th-17th of month 4 Industrial Production indpro m-1 2 INDPRO
34 3rd week of month 4 Credit & M2 loans & m2 m-1 2 LOANS & M2
35 Later part of month 4 Housing starts housst m-1 1 HOUST
36 Last week of month 4 PCE & PCEPI pce & pce2 m-1 2 PCE & PCEPI
37 Later part of month 5 Housing starts housst m-2 1 HOUST

Table 2.1: Real time calendar based on actual publication dates. Transformation: 1
= monthly change, 2 = monthly growth rate, 3 = no change, 4 = LOESS decompo-
sition. Pub. lag: m = refers to data for the given month within the reference period,
m-1 = refers to data with a months’ lag to publication in the reference period, m-2
= refers to data with 2 months’ lag to publication in the reference period.
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Figure 2.2: Loadings for first 3 principal components of the GT data set.

Google search items). Accordingly, the first component decreases strongly during

the financial crisis (and to a smaller degree also during height of the Covid-19 re-

cession) and picks up the rapid increase in economic activity after Q2 2020 very

well.

The second component can be understood as a measure of consumer sentiment

and financial health as it loads mostly on consumption items and negatively on

topics such as ‘Bankruptcy’ and ‘Foreclosure’; both terms were very popular during

the financial crisis, but not so much the pandemic crisis.16 Accordingly, the second

principal component shows a large dip during the financial but only a minor dip

during the Covid-19 recession.

The third principal component loads very strongly on business news/recession/crisis

items which increase in popularity during periods characterised by economic anxi-

ety, thus spiking around the financial crisis and the pandemic period. Hence, it can

be interpreted as an indicator of economic distress.

2.3.5 Relationship Between Macroeconomic and Google Search

Data

Understanding further how the skip-sampled Google Trend series correlate with the

macro data set may help us anticipate which information will likely be picked up

in the model. Figure (2.3) shows a correlation heatmap between the macro data

set and the first three Google Trends principal components. Please note that an in-

crease in the UMCI and PMI indicate improved consumer and producer sentiments,

16 This may reflect the different nature of the Covid-19 pandemic induced recession and the
positive impact government policies had.
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respectively.

Figure 2.3: Heatmap of sample correlation matrix.

As expected, the first rather procyclical component correlates highly with the

fed-funds rate which tends to also rise with the business cycle. The second com-

ponent is strongly positively correlated with the UMCI index and negatively with

the BAA spread (which increases during deteriorating financial conditions), indi-

cating that it indeed captures something close to consumer sentiment and financial

health. Since the third component acts as a recession signal, which abruptly spikes

during crises, but is otherwise flat, it is not surprising that macroeconomic vari-

ables do not correlate very highly with it. This also indicates that search items in

this group might add information that is not well captured by the other included

macroeconomic information.

2.4 Nowcasting U.S. Real GDP Growth

The predictive model used to generate in-sample and out-of-sample predictions is

given in equations (2.2)-(2.3) where the first T = 45 observations are used as training

sample.17 We estimate three variants of the model based on priors (2.7, 2.9, and

2.10) and the original BSTS model of Scott and Varian (2014), as well as an AR(4)

model for comparison. In line with standard BSTS applications, we first compare

the in-sample cumulative absolute one-step-ahead forecast errors, generated from

the state space, as well as inclusion probabilities of the variables so as to shed

light on which variables produce better fit and explain the outcome. Out-of-sample

nowcasts are generated from the posterior predictive distribution p(yT+1|Ωv
T ) for

17 As a further alternative to the proposed BSTS models, we investigate in the appendix as well
whether past GDP growth dynamics are more appropriately (in terms of nowcasting) modelled
via ARMA components. The results show that the LLT components within the BSTS model
are clearly preferred over ARMA type dynamics. We thank an anonymous reviewer for making
this suggestion.
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growth observation yT+1, conditional on the real-time information set Ωv
T , where

(v = 1, · · · , 37) refers to nowcast periods within the real-time calendar (Table 2.1).

This results in 37 different nowcasts which are generated on a rolling basis until

the end of the forecast sample, Tend. As recommended by Carriero et al. (2015),

variables that have not yet been published until nowcast period v are zeroed out.

Point forecasts are computed as the mean of the posterior predictive distribu-

tion and are compared via real time root-mean-squared-forecast-error (RT-RMSFE)

which are calculated for each nowcast period as:

RT-RMSFE =

√√√√ 1

Tend

Tend∑
j=1

(yT+j − ŷvT+j|Ωv
T+j−1

)2, (2.14)

where ŷvT+j|Ωv
T+j−1

is the mean of the posterior prediction for nowcast period v using

information until T + j − 1.

Forecast density fit is measured by the mean real-time log-predictive density

score (RT-LPDS) and real-time continuous rank probability score (RT-CRPS):

RT-LPDS =
1

Tend

Tend∑
j=1

logp(yT+j|Ωv
T+j−1)

=
1

Tend

Tend∑
j=1

log

∫
p(yT+j|Ωv

T+j−1,Υ1:T+j−1)p(Υ1:T+j−1|Ωv
T+j−1)dΥ1:T+j−1

≈ 1

Tend

Tend∑
j=1

log

(
1

M

M∑
m=1

p(yT+j|Ωv
T+j−1,Υ

v
1:T+j−1)

)
,

(2.15)

RT-LPDS =
1

Tend

Tend∑
j=1

1

2

∣∣∣yT+j − yvT+j|Ωv
T+j−1

∣∣∣− 1

2

∣∣∣yv,AT+j|Ωv
T+j−1

− yv,BT+j|Ωv
T+j−1

∣∣∣ , (2.16)
where, for brevity of notation, Υ1:T+j−1 collects all model parameters as defined

for each model, which are estimated with expanding in-sample information until

T + j− 1 and M stands for iterations of the Gibbs sampler after burn-in. Note that

in (2.16), yv,A,BT+j|Ωv
T+j−1

are independently drawn from the posterior predictive density

p(yvT+1|Ωv
T+j−1

|yT ).
As shown by Frühwirth-Schnatter (1995), in a setting where time-varying and

fixed components for a structural state space model are chosen, the LPDS can be

interpreted as a log-marginal likelihood based on the in-sample information and

therefore provides a model founded scoring rule. The RT-CRPS can be thought of

as the probabilistic generalisation of the mean-absolute-forecast-error. Similar to the

log-score, it belongs to the broader class of strictly proper scoring rules (Gneiting

and Raftery, 2007) which allows for comparing density forecasts in a consistent
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manner.18,19 To facilitate discussion, our objective is to maximise the RT-LPDS

and minimise the RT-CRPS. For all forecast metrics, the predictive distribution

used for (2.14, 2.15, and 2.16) is traditionally generated in state space models via

the prediction equations of the Kalman filter (Harvey, 1990). Instead, we use the

simpler approximate method of Cogley et al. (2005), which we found to make no

practical difference in our sample.20 The method is described in Appendix A.1.4.

Finally, to test whether a state variance is equal to zero, we make use of the

Dickey-Savage density ratio evaluated at στ,α = 0:

DS =
p(στ,α = 0)

p(στ,α = 0|y)
(2.17)

It can be shown that for nested models, the DS statistic is equivalent to the Bayes

factor between the prior and the posterior distribution of the parameter of interest

at zero (Verdinelli and Wasserman, 1995). The intuition for the test is simple: if the

prior probability-density-function (PDF) allocates more mass at 0 than the posterior

at that point, there is evidence in favour of the unrestricted model, i.e., στ,α ̸= 0.

While the priors for the state variances have well known forms and thus can be

evaluated analytically, we estimate the denominator for all models through Monte

Carlo integration.

2.4.1 In-Sample Results

Figure 2.4 shows the in-sample cumulative-one-step ahead prediction errors using

the proposed priors where the information set pertains to the entire estimation sam-

ple without ragged edges. From Figure 2.4, it is clear that the horseshoe prior

BSTS (HS-BSTS) provides the best in-sample predictions at all time periods. The

HS-BSTS-SAVS and SSVS-BSTS initially provide similar fit, however diverge in per-

formance around the financial and Covid-19 crises, especially the HS-SAVS-BSTS.

It is striking that, compared to the former two, the HS-BSTS provides very stable

performance as indicated by a nearly linear increase in errors even during the finan-

cial crisis and the Covid pandemic. It is also apparent that the SAVS algorithm

is not able to retain the fit of the HS prior alone, which, as we show in the next

subsection, is in contrast to the out-of-sample results.

18 We do not report calibration tests, as there are too few out-of-sample observations to mean-
ingfully determine calibration.

19 Although the CRPS is a symmetric scoring rule, it penalises outliers less aggressively than
the log-score which is of advantage in small forecast samples such as ours.

20 The Kalman filter provides conditionally optimal forecast densities in terms of squared forecast
error. However, if there is misspecification or if the forecast horizon is very short, then
approximate methods can do just as well empirically. A similar logic holds when comparing
direct and iterative forecasting methods such as in Marcellino et al. (2006). We thank an
anonymous reviewer for bringing this to our attention.
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Figure 2.4: Cumulative one-step-ahead forecast errors in-sample from 3 different
models: (1) SSVS-BSTS, (2) HS-BSTS and (3) HS-BSTS-SAVS

Figure 2.5: Posterior inclusion probabilities of the SSVS-BSTS model.

Figure 2.6: Posterior inclusion probabilities of the HS-SAVS-BSTS model.
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To understand the driving variables behind the posterior predictive distributions,

the posterior marginal inclusion probabilities for the SSVS and SAVS model are

plotted for the top ten most drawn variables in Figures 2.5 and 2.6 respectively.

The colors of the bars indicate the sign on a continuous scale of white (positive

relationship) to black (negative relationship) of the variable when included in the

model, and the prefix ‘GT’ indicates Google Trend variables. The number [0,1,2]

appended to a variable indicates the temporal position within a given quarter, with

0 being the latest month.

For all three models (for the BSTS model, see Figure A.11), the posterior in-

clusion probabilities show that the most drawn Google search information pertains

to the category ‘business news’ and topic ‘investing’ with clearly negative and pos-

itive impact respectively on GDP growth. The posteriors on these Google Trends

variables (Figure A.12) show that not only is the impact statistically significant but

also economically so. As search intensity for business news goes up (down), GDP

growth forecasts are adjusted downwards (upwards). Vice versa for the investing

topic. Since the ‘business news’ category spikes in recessions, but is otherwise flat,

this suggests that during periods of heightened recessionary probability and eco-

nomic fear, people engage and search more for business news which therefore acts

as an indicator of expected economic distress. Similar reasoning has led to a large

literature on using economic sentiment extracted from news media to model and

forecast economic activity (Kalamara and Kapetanios, 2019; Kalamara et al., 2020;

Baker et al., 2016; Aprigliano et al., 2022; Gentzkow et al., 2019; Alexopoulos and

Cohen, 2015; Manela and Moreira, 2017; Nyman et al., 2021; Shapiro et al., 2020).21

Conversely, ‘investing’ items are presumably searched more often when house-

holds and individuals are financially more stable which is when they engage in

looking for investment opportunities. As seen in Figure A.13, this series tends to

positively correlate with the business cycle. This interpretation of the investment

topic corroborates findings of Woloszko (2020) who show that the investment topic

has a positive impact in a panel data nowcasting exercise for GDP growth.

Figures 2.5 and 2.6 also reveal some interesting patterns about how macroeco-

nomic data are employed in the models. The SSVS prior tends to select only the

most dominant of the skip-sampled information, while the SAVS extended HS prior

allocates significant inclusion probability to all months within a quarter. For exam-

ple, while the SSVS prior selects the variable ‘unrate0’, i.e., the unemployment rate

for the last month in a given quarter, the HS-SAVS prior allocates nearly the same

inclusion probability to data for all months on construction starts and M2. This

result is likely driven by the fact that the SSVS prior discretises the model space

and therefore, with correlated data, will tend to include only the variable with the

21 It would be interesting for future research to investigate whether Google Trends and news sen-
timent extracted from articles substitute or complement each other in modelling recessionary
risks.
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highest marginal likelihood. Continuous shrinkage priors, on the other hand, make

use of all covariates since they are always included in the model.

Figure 2.7: Posterior Inclusion probability heatmaps for the SSVS-BSTS. Inclusion
probabilities to the left of the dashed line pertain to the macro data set, and to the
right, the Google search data.

In line with this discussion, the posterior inclusion probability heatmaps in Fig-

ures 2.7 and 2.8 show generally that the SSVS and HS prior also display very different

degrees of model uncertainty. Note that in the figures, inclusion probabilities to the

left of the dashed line pertain to the macroeconomic data set, and to the right,

the Google search data. The HS prior tends to display substantial uncertainty over

inclusion, particularly for the Google Trends data, which makes sense given the

similarity in signal within Google Trends categories and topics. By contrast, the

SSVS tends to load only on a few Google search items and not explore posteriors of

correlated GTs.

Nonetheless, the fact that the HS prior identifies individual macroeconomic series

such as ‘pce2’ as a clear signal indicates that mixed frequency information matter for

predictive purposes, which would otherwise be lost in averaging information across

quarters.

These results contribute to the recently popularised studies of sparsity within

economic prediction problems (Giannone et al., 2021; Cross et al., 2020) in at least

two ways. Firstly, they indicate that different sparsity patterns can emerge within

data sources (here, macroeconomic and Google Trends) and within mixed frequency

information. And secondly, different sparsity patterns can emerge depending on

the prior used. Section 2.5 further investigates robustness of the proposed priors to

different sparsity settings, and provide recommendations.

Finally, our in-sample results clearly demonstrate (Figure 2.9) that there is sup-

port in the data for a local trend, but not a local linear trend: the posterior for στ
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Figure 2.8: Posterior Inclusion probability heatmaps for the HS-SAVS-BSTS. Inclu-
sion probabilities to the left of the dashed line pertain to the macro data set, and
to the right, the Google search data.

is clearly bi-modal with less mass on zero than the prior, while the posterior for σα

has substantially more mass on zero than the prior. The Bayes factors are 28.69

and 0.42 for the state standard deviations respectively.

Figure 2.9: Distribution of the (left) trend state standard deviation and (right) slope
standard deviation for the HS-BSTS model.

2.4.2 Nowcast Evaluation: Pre-Pandemic period

We now turn to out-of-sample nowcasting performance, where nowcasts are produced

following the real time data publication calendar as explained in Section 2.3. Due

to the extraordinary economic circumstances of the Covid-19 pandemic, we split

the evaluation sample into: (a) pre-Covid (ending Q4 2019); and (b) during Covid

(ending Q2 2021). We first evaluate point- and then density fit for the pre-Covid

period.

RT-RMSFE are plotted in Figure 2.10 for the competing non-centred BSTS esti-
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mators, as well as the AR(4) benchmark and the original BSTS model. Note that in

all nowcast figures, we represent nowcast periods in which Google Trends are pub-

lished by grey vertical bars. The following points emerge from Figure 2.10. Firstly,

it is clear that all proposed BSTS models based on the non-centred state space offer

large performance gains (for certain nowcast periods up to 40%) over the original

BSTS model. Secondly, all models nearly monotonically increase in precision as

more data are released, where, as expected, the BSTS models outperform the AR

benchmark22 as soon as the first data becomes available. Thirdly, among non-centred

BSTS models, the HS-SAVS-BSTS does the best; however, it is closely followed by

the HS-BSTS. This indicates that the SAVS algorithm successfully shuts down con-

tributions of noise variables and thus gives further validity to the variable selection

results discussed above. With only a modest decrease of 2-5% in RT-MSFE relative

to the plain HS-BSTS model, it is evident, however, that the horseshoe prior already

provides aggressive shrinkage. Compared to the SSVS-BSTS, the horseshoe prior

based BSTS models offer 7-25% improvements in terms of point forecast accuracy,

especially so in the beginning nowcast periods.

Finally, we find that there is a large decrease in point-forecast error due to Google

Trends releases prior to macroeconomic data becoming available which is consistent

across all models considered. Improvements are in the range of 7-25% for the given

models compared to the first period nowcasts.23 The subsequent value of Google

Trends for point forecasts is a function of how much a given model loads on the

Google Trends search variables and how well the shrinkage prior can separate sig-

nal from noise. Hence, improvements for the HS-BSTS models are modest after

the first GT release and the SSVS-BSTS experiences a noticeable improvement of

15% in the final GT release, whereas the original BSTS model of Scott and Varian

(2014) becomes less precise with latter GT releases. The explanation is that the

original BSTS model generally struggles with the dimensionality of data set which

leads to ineffective variable selection and consequently poor nowcasting performance.

22 The HS-BSTS and HS-SAVS-BSTS outperform the AR model at all nowcast periods signifi-
cantly as measured by the Diebold et al. (1998) test at conventional significance levels. The
SSVS-BSTS model does so only with the second nowcast period.

23 Strictly speaking, these nowcasts are also forecasts due to the information set containing only
information from the previous quarter.
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Figure 2.10: Real-Time RMSFE of all competing models. The RT-RMSFE for the
BSTS are plotted on the right axis. Grey vertical bars indicate nowcast periods in
which GT are published.

Similar to the real-time point forecasts, we plot real-time LPDS (RT-LPDS)

and CRPS (RT-CRPS) in Figures 2.11 and 2.12, respectively. The RT-LPDS and

RT-CRPS mostly confirm the main findings from the point nowcasts. In contrast

to the point nowcasts, however, there is now a much more clear cut performance

improvement in density fit when the Google Trends information are released in

periods 15 and 27, especially so for the BSTS model of Scott and Varian (2014).

This divergence in performance hints at the fact that part of the value of including

Google Trends information is to better characterise forecast uncertainty which in

turn aids density calibration. Next, we explore this distinctive feature of Google

Trends releases for nowcasts during the pandemic.

Figure 2.11: Real-Time log-predictive density scores (RT-LPDS) for all competing
models. The RT-LPDS for the BSTS are plotted on the right axis. Grey vertical
bars indicate nowcast periods in which GT are published.
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Figure 2.12: Real-Time CRPS scores (RT-CRPS) for all competing models. The
RT-CRPS for the BSTS are plotted on the right axis. Grey vertical bars indicate
nowcast periods in which GT are published.

2.4.3 Nowcast Evaluation: During the Pandemic

The pre-Covid results highlighted that the value of Google Trends are largest before

any macroeconomic information are available for the given quarter. While the aim of

the nowcasting application for the proposed models is not to provide very granular

(weekly or higher) nowcasting models,24,25 we now illustrate briefly how, even at

the relatively coarse monthly level, Google search information improves predictions

during the pandemic.

Figure 2.13 plots mean forecasts with their credible 95% intervals for the HS-

BSTS model based on only macroeconomic data (left column) and the full data

set (right column) for the 15th (upper row) and 27th (lower row) nowcast periods

respectively. The nowcast periods were chosen to showcase the best possible now-

casts based on information from the end of the second and third month within a

quarter respectively. While neither model is able to capture the full extent of the

trough during the Covid-19 recession, the model including search term information

provides a clear sense of heightened downside risks through a large asymmetric dip

of the lower part of credible forecast interval. This is in line with the findings from

Woloszko (2020) that for many OECD countries, Google Trends information is able

to provide timely downside risk indications. Uniquely, our nowcast exercise high-

lights how Google Trends can indicate large downward swings in GDP growth over

and beyond contributions from macroeconomic data. The fact that Google search

24 Higher frequencies would expand the covariate set within the U-MIDAS sampling framework
even further. At higher frequencies, predictions could instead be based on single covariates and
combined, for example via Bayesian model averaging, or alternatively the frequency weights
could be constrained via lower parametric basis functions which is akin to conventional MIDAS
estimation.

25 See Woloszko (2020) for a panel data approach to a weekly GDP index based on Google
Trends.

33



Figure 2.13: Predictive distributions for the macro only data set (left column) and
the macro + Google Trends data set (right columns) for the 15th (upper row) and
27th (lower row) nowcast period.

information has a greater impact on forecast uncertainty rather than point forecasts

further indicates that future research should investigate the potential benefits of

using alternative data sources for modelling conditional heteroskedasticity such as

in GARCH or stochastic volatility type models.

2.4.4 An Extension to Student-t Errors

It is also clear that both models struggle to nowcast the equally large upswing

that follows the pandemic trough. Inspired by recent VAR forecasting literature

during the pandemic (Lenza and Primiceri, 2020; Carriero et al., 2021), we also

explore a new BSTS model based on fatter tailed t-distributed errors. The logic

behind models with fat tails (compared to those of the normal distribution) is to

acknowledge that the large macroeconomic fluctuations, for example during the

Covid pandemic, are hard to forecast and thus should be modelled through increased

forecast uncertainty such that, importantly, large outliers do not adversely affect

inference on model parameters.26 Statistically, this is achieved in the posterior by

26 This assumes that the outlier represents an ‘irregular’ observation due to a shock rather than
the co-evolution of macroeconomic variables.
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down-weighting outliers through the error covariances.

The estimated model uses the same regression and state components as model

(2.2)-(2.3). However, we assume ϵt ∼ N(0, σ2λt), where λt is distributed as G−1(ν/2, ν/2)

where G−1 denotes the inverse-Gamma distribution and ν the degree of freedom pa-

rameter of the t-distribution. Smaller degrees of freedom indicate fatter tails. To es-

timate the BSTS-t model, we leverage a mixture representation of the t-distribution

for which derivations and sampling steps are detailed in appendix (A.1.5). Treating

ν as a random variable, figure (A.9), based on the whole estimation sample shows

that there is clear evidence for fatter tails, which are mostly due to the large outliers

during the Covid pandemic.

Figure 2.14: Predictive distributions for the full HS-BSTS-t model.

The nowcasts from this model (Figure 2.14) show that, in line with the finding

of small posterior degrees of freedom for the error distribution, the forecast intervals

are much wider compared to the normal BSTS models. The lower forecast interval

now captures the trough during the pandemic already in the 15th nowcasting period.

Surprisingly, we find that the t-model’s mean prediction comes much closer to GDP

growth realisation at the height of the recession in period 27. In fact, the additional

nowcast period forecasts in Figure (A.10) show that already with the third publi-

cation of the Google search information within Q2 2020, we see a large downward

adjustment which had not materialised in period 24 before the GT release. The

posterior inclusion probabilities (A.8) in the appendix reveal that this is because

the model loads less heavily on PCE inflation of the first month (‘pce2’) which had

not reacted much until Q2 2020, as opposed to the Google Trends and construction

starts data. Yet, this new model still struggles with the upswing and presents the

trade-off that even pre-Covid the predictive uncertainty is very large compared to

the normal BSTS models. We believe that future research may investigate whether

and how different data and modelling techniques are able to accurately forecast not

only the trough, but also the peak after sharp downturns.
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2.5 Simulation Study

The empirical application above showed that the proposed BSTS models perform

better in point as well as density forecasts compared to the original model of Scott

and Varian (2014) and that both the SAVS augmented horseshoe prior as well as

the SSVS-BSTS exhibit a relatively sparse selection of macroeconomic data. This

finding is in contrast to previous studies using macroeconomic data such as Giannone

et al. (2021) and Cross et al. (2020) who find that priors yielding dense models

generally outperform sparsity favouring priors. Since an innovation in this chapter

is the estimation of a latent local-linear trend which might filter out co-movement

in the macroeconomic data, we compare the ability of the proposed priors to the

original BSTS model (Scott and Varian, 2014) in capturing both sparse and dense

environments. Further, to make the simulations closer to our empirical application,

we additionally test the priors’ ability to detect zero state variances.

Specifically, we simulate local-linear-trend models as (2.2)-(2.3) having either

the trend variance or the local trend variance set to zero, both equal to zero, or

neither equal to zero. Accordingly, we generate 20 simulated samples for (στ , σα) =

{(0.5, 0), (0, 0.5), (0, 0), (0.5, 0.5)} together with either a dense or a sparse DGP,

where the sparse coefficient vector is set to

βsparse = (1, 1/2, 1/3, 1/4, 1/5, 0K−5)
′ (2.18)

and the dense coefficient vector is

βdense =

{
1/3 with probability pd

0 with probability 1− pd
, (2.19)

where pd is set to 2/3. For both coefficient vectors, the dimensionality, K, is set

to 300 which is high dimensional compared to the number of observations T =

150. We account explicitly for mixed frequencies by first generating the covariate

matrix according to a multivariate normal distribution with mean 0 and a covariance

matrix with its (i, j)th element defined as 0.5|i−j| and then skip-sample each covariate

individually after the U-MIDAS methodology as in (2.13). In the simulations, the

true regression coefficient values as well as state variances are known; hence, we

compare the performance of the different priors via coefficient bias for the regression

coefficients and Dickey-Savage density ratios evaluated at zero state variances. Bias

is calculated as

Root Mean Coefficient Bias =

√
1

20
||β̂ − β||22, (2.20)

where β̂ refers to the mean of the posterior distribution. We estimate the original

BSTS model with the expected model size, π0, equal to the true number of non-zero
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coefficients.

Sparse Dense
(στ , σα) (0.5,0) (0.0.5) (0.5,0.5) (0,0) (0.5,0) (0,0.5) (0.5,0.5) (0,0)

Bias Bias
HS 0.034 0.036 0.036 0.034 0.293 0.289 0.289 0.281

HS-SAVS 0.035 0.035 0.035 0.035 0.33 0.327 0.32 0.321
SSVS 0.035 0.038 0.036 0.036 0.415 0.416 0.421 0.418
BSTS 0.02 0.02 0.021 0.021 0.795 0.567 0.582 0.579

DS(στ = 0) DS(στ = 0)
HS 516.78 0.81 4.267 0.891 1.959 0.701 3.521 1.493

SSVS 629.41 0.824 0.89 0.19 10.775 3.053 3.804 1.402
DS(σα = 0) DS(σα = 0)

HS 0.062 41.587 722.319 0.026 0.112 1772.907 96.015 0.068
SSVS 0.058 4.63E+10 1.05E+08 0.005 0.071 1.29E+10 7.56E+04 0.021

Table 2.2: Average Dickey-Savage Density ratio and bias results the simulations.
Since the SAVS algorithm is performed on an iteration basis after inference, the
posterior of στ,α remains unaffected, hence receives the same results as the HS-
BSTS model.

As can be seen from Table 2.2, both the non-centred BSTS models as well as the

original BSTS model of Scott and Varian (2014) do better in sparse than in dense

DGPs which is similar to the finding of Cross et al. (2020). The largest gains of the

proposed BSTS models over Scott and Varian (2014) can be found for dense DGPs

where the proposed estimators offer gains in estimation accuracy well in excess of

50% . In sparse designs, however, the latter slightly outperforms the former. This

is expected given that the spike-and-slab prior uses a point mass prior on zero and

that the true expected model size is used. At the same time, it is encouraging

that the differences in accuracy are very small. Among the proposed estimators in

dense designs, the HS prior BSTS versions are 30-40% more accurate compared to

the SSVS-BSTS which is in line with our findings from the empirical application.

Hence, these results offer the conclusion that continuous shrinkage priors are clearly

preferred over spike-and-slab models in dense DGPs with a latent local-linear trend

component.

The Dickey-Savage density ratio tests confirm that the non-centred state space

models are able to correctly identify which of the state variances are significant and

which are not, even in high dimensional regression settings. However, the test is

sensitive to correctly pinning down the regression coefficient vector: in dense de-

signs, where the SSVS prior does worse than the horseshoe prior, the DS tests in

cases (0,0.5) and (0,0) show false support for significant στ .27

27 Note that we do not report DS tests for the original BSTS model. This is due to the fact that
the prior on the state variance has no mass on zero and therefore is not testable.
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2.6 Conclusion

In this chapter, we investigated the added benefit of including a collection of Google

Trends (GT) topics and categories in nowcasts of U.S. real GDP growth through

the lens of current-generation Bayesian structural time series (BSTS) models. We

extended the BSTS of Scott and Varian (2014) to a non-centred formulation which

allows shrinkage of state variances to zero in order to avoid overfitting states and

therefore let the data speak about the latent structure. We further extended and

compared priors used for the regression part which are agnostic about the underlying

model dimensions to accommodate both sparse and dense solutions, as well as the

widely successful horseshoe prior of Carvalho et al. (2010). To make the posterior

of the horseshoe prior interpretable, we applied sparsifying algorithms borrowed

from the machine learning literature, which improve upon the excellent fit of the

horseshoe prior itself.

We find that Google Trends improve point as well as density nowcasts in real

time within the sample under investigation, where largest improvements appear

prior to publication of macroeconomic information. This finding is robust across all

considered models. The highest posterior inclusion probability for prediction of GDP

growth across all models is obtained with the Google topics/categories ‘business

news’ and ‘investing’. The time-series dynamics and model impact of these GTs

suggest that they provide timely signals of economic anxiety and wealth effects,

respectively. Structural implications of this finding may be investigated with larger

Google Trend samples and for other countries. The superior performance of the

proposed models over the original BSTS model is confirmed in a simulation study

which shows that among the proposed models, the horseshoe prior BSTS performs

best and the largest gains in estimation accuracy can be expected in dense DGPs. It

is further confirmed that the non-centred state priors are able to correctly identify

the latent structure, however they are sensitive to the efficacy of the regression prior

to detect signals from noise.

Finally, we applied our models to the Covid-19 pandemic period and find that

Google Trends information help characterise the uncertainty during the Covid reces-

sion and subsequent recovery period. An extension of the BSTS model to student-t

errors is also shown to benefit the timeliness of the forecast revisions to the changes

in the macroeconomic data.

Our work suggests some important avenues for future research. An aspect which

remained unexplored in this study is that Google Trends might have time varying

importance in relationship to the macroeconomic variable under investigation, as

highlighted by Koop and Onorante (2019). Search terms can be highly contextual

and might therefore be able to predict turning points in some periods but not in

others. While, given the limited quarterly observations of Google Trends, our current

investigation of this research question is somewhat limited, this will improve in
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significance over time. Also, nowcasting in contexts where the design is partly dense

and partly sparse is a challenging problem. Our work sheds some light on this

question, but it also motivates further research in this direction.
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Chapter 3

A New Bayesian MIDAS

Approach for Flexible and

Interpretable Nowcasting

3.1 Introduction

The Covid-19 pandemic has raised new challenges for nowcasting GDP. The large

size of the shock caused parameter instabilities in time series methods and has chal-

lenged the assumption of a constant variance or slow-moving stochastic volatility in

the conditional GDP growth distribution. Additionally, the Covid-19 shock hit eco-

nomic sectors in a strongly heterogeneous way such that standard survey indicators

typically employed for nowcasting provided only weak signals for economic activ-

ity, which further challenged models that rely on co-movement across many such

indicators. More generally, this episode has illustrated the need for more flexible

model features that allow for robust and interpretable nowcasts in presence of large

shocks, heterogeneous signals, and regime shifts. This remains relevant given the

continuing large economic distortions following the pandemic, Russia’s invasion of

Ukraine, and the high inflation rates observed across advanced economies.

Since the pandemic, nowcasters and forecasters have pursued different strate-

gies to improve model flexibility, such as down-weighting extreme observations via

outlier components in VARs (Lenza and Primiceri, 2022; Carriero et al., 2021) and

DFMs (Antolin-Diaz et al., 2021), dropping Covid-19 observations (Schorfheide and

Song, 2021), or employing non-parametric non-linear approaches to accommodate

extreme observations (Huber et al., 2020). New data sources at a daily or weekly fre-

quency within factor models (Ng, 2021; Baumeister et al., 2021) or in non-parametric

predictive regressions (Woloszko, 2020; Kapetanios et al., 2022) have also risen in

popularity to gain advance information about Covid related downturns to economic

activity.

On the other hand, Mixed-data sampling (MIDAS) regressions (Ghysels et al.,
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2007) have remained under-exploited in nowcasting GDP since the pandemic, despite

their competitive nowcast performance in the past (Clements and Galvão, 2009;

Foroni et al., 2015; Carriero et al., 2019) and their popularity in policy institutions

(Anesti et al., 2017). Unlike factor models, MIDAS models do not rely on co-

movement in data but instead include higher-frequency indicators and their lags

individually. This can be desirable to exploit heterogeneous signals from the data

flexibly during a large shock that affects economic sectors differently. However,

multivariate MIDAS models are also prone to various issues: First, such models are

highly parameterised, and therefore prone to overfitting without efficient shrinkage.

This also makes it challenging to extend such models to non-linear and flexible model

features. Second, the typically large group-correlation between high-frequency lags

can cause mixing problems for aggressive shrinkage priors (Piironen et al., 2020;

Ishwaran et al., 2005; Malsiner-Walli and Wagner, 2018) which can result in models

randomly loading onto certain lags within a group. This may hurt both nowcast

performance and interpretability of nowcast signals.

In this chapter, we propose the Trend-SV-t BMIDAS for flexibly nowcasting GDP

before and during the Covid-19 pandemic. We incorporate extreme observations

and shifts over time via a time-varying trend and flexible outlier components into

a multivariate MIDAS framework. The model comprises 1) a cyclical component

that captures the responses of GDP to a set of higher frequency indicators, 2) a

time varying trend component to capture low-frequency changes in GDP growth

and 3) stochastic volatility processes that account for fat tails in the conditional

GDP growth distribution. These model features make the model more flexible in

dealing with gradual shifts in long-run GDP growth that, if unaccounted for, could

blur signals from high-frequency indicators, as well as with large and sudden shifts

in the volatility in the data, as observed during the pandemic.

To address the issues prevalent in the multivariate MIDAS regression component,

we extend a flexible group-shrinkage prior, the GIGG prior (Group Inverse-Gamma

Gamma, Boss et al. (2021)) to the MIDAS setting. It belongs to the family of

global-local priors, but features a three-tiered hierarchy of shrinkage (overall, group-

wise, lag-wise), unlike conventional global-local priors which employ only global and

covariate level shrinkage. It adaptively detects group-wise sparsity, i.e. it takes

the grouping of lags within higher frequency indicators into account, as well as

correlation in the shrinkage between group-members, which is inherently high in

MIDAS. This avoids the above mixing issues of traditional shrinkage priors. For the

latent trend and stochastic volatility components, we employ normal-type priors on

the state variances using non-centred state space methods (Frühwirth-Schnatter and

Wagner, 2010).

In order to communicate variable importance for the nowcasts from the MIDAS

posterior, we propose to combine the GIGG prior with a new sparsification algo-
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rithm for group-wise variable selection motivated by Bayesian decision theory. The

algorithm finds those high-frequency lag groups that best summarise the predictions

of the model in the spirit of Hahn and Carvalho (2015) and Chakraborty et al. (2020)

and shrinks unimportant high-frequency indicators to exact zeros, thus allowing to

derive inclusion probabilities at each point in time. This allows us to communicate

signals drawn upon over time and across groups of predictors, thus enhancing the

interpretability of nowcasts.

In an empirical application of the Trend-SVt-BMIDAS model, we nowcast UK

quarter-on-quarter GDP growth using a set of monthly macroeconomic indicators.

We evaluate nowcasts over the data release cycle in a pseudo-real-time setting over

the sample period 1999 to 2021, distinguishing between a pre-pandemic sample and

the full sample including the Covid-19 shock.

We present three main empirical results. First, the posterior estimates of the

time-varying components from the Trend-SV-t BMIDAS model conform to eco-

nomic intuition. We document a gradual decline in the trend component in UK

GDP growth since the early 2000s. The Covid-19 shock is identified as a cyclical

phenomenon and a sharp increase in GDP growth volatility. The long-run trend

in GDP growth remains mostly stable during the pandemic, albeit estimated with

higher uncertainty.

Second, the proposed model provides nowcast gains against simpler specifications

without time-varying components and against frontier nowcasting models, where our

model performs noticeably better during the Covid-19 pandemic. The results show

that accounting either for a time-varying trend or for SV with t-errors substantially

improves the nowcasts, and that accounting for both provides further gains, par-

ticularly pre-pandemic. Intuitively, the inclusion of t-errors helps discount noisy

observations for each of the model components. We also find that the Trend-SV-t

BMIDAS model is competitive against frontier nowcasting benchmark models such

as Combined MIDAS (Mazzi et al., 2014) and a DFM (Antolin-Diaz et al., 2021),

outperforming the benchmarks in late nowcast periods once real activity indicators

for the nowcast quarter are released. The relative improvement is particularly pro-

nounced once the Covid-19 shock is included in the sample, where our model can

detect the initial trough in GDP earlier on and nowcasts the economic recovery more

precisely.

Third, we unpack intuition on the drivers of the nowcast performance via inclu-

sion probabilities of the indicators into the model over the data release cycle. Our

proposed combination of GIGG prior with sparsification is shown to read in a sparse

subset of indicators throughout the data release cycle. Early nowcasts are deter-

mined by signals from survey indicators during early nowcasts, which then shifts

towards signals from a few real activity indicators in later nowcasts, particularly

the index of services. When including the pandemic, the model concentrates more
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heavily on service-related surveys and activity indicators, as well as indicators from

the housing sector, both of which reflected disruption from lock-downs and con-

sumption shifts during the pandemic. Other models, on the other hand, continue

to read dense signals from a wide range of indicators. As such, our model is better

able to capture the heterogeneous nature of the Covid-19 shock.

We also provide sensitivity analyses which show that our model retains its com-

petitive performance under a different MIDAS transformation (Foroni et al., 2015).

We also check nowcast performance during the pandemic when holding MIDAS co-

efficients fixed at their pre-pandemic levels, as advocated by Schorfheide and Song

(2021). We find that this markedly decreases nowcast precision, which indicates

that the flexible features of our model help in nowcasting the large shock.

Our finding of a strong nowcasting performance of a group-sparse model con-

tributes to the general debate on the “illusion of sparsity” in macroeconomic fore-

casting (Giannone et al., 2021; Fava and Lopes, 2021; Kohns and Bhattacharjee,

2022). We find that grouping structure is important to account for in macro ap-

plications when analyzing sparsity patterns and that sparse models can outperform

dense specifications in the context of our model, particularly in presence of a het-

erogeneous shock.

Lastly, we provide a simulation study that investigates how well the proposed

combination of GIGG prior with sparsification generalise to a host of different MI-

DAS settings. We compare the prior to two frontier priors and show that our

approach yields competitive performance with particularly good performance to be

expected with highly correlated data as well as dense data-generating-processes.

The remainder of the chapter is structured as follows. Section 3.2 presents the

Trend-SV-t Bayesian MIDAS approach and the proposed flexible priors. Section 3.3

outlines the data set and setup of our nowcast application. Section 3.4 present the

results on the in-sample model features, nowcast performance and variable inclusion

probabilities. Section 3.5 investigates how well the proposed prior and sparsification

algorithm generalise to a host of sparse and dense data-generating processes. Section

3.6 concludes. More details on the methodology and additional results can be found

in Appendix B.1.

3.2 Trend-SV-t Bayesian MIDAS with flexible pri-

ors

In this section, we discuss our methodological contributions to the BMIDAS frame-

work. Firstly, we outline the three main features of the model: cyclical MIDAS,

trend and stochastic volatility components. Then, we present the group-shrinkage

prior which we argue is well suited to the MIDAS estimation due to its ability to

take the mixed-frequency grouping and correlation structure into account, alongside
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its aggressive shrinkage which facilitates variable selection. Lastly, we detail our de-

cision theory inspired variable selection approach that allows to communicate which

high-frequency variable groups have the highest impact for the nowcasts.

3.2.1 The Model

The proposed Trend-SV-t BMIDAS model for nowcasting quarterly GDP growth

is a flexible unobserved components model that includes three main features: (1)

a multivariate MIDAS regression component that captures cyclical macroeconomic

information from a range of higher-frequency (monthly) indicators, (2) a trend com-

ponent that captures latent slow-moving changes in GDP growth, and (3) fat-tailed

stochastic volatility processes to model error clustering in GDP growth and in the

trend, where leptokurtic tails discount potential outliers.

The model takes the following state-space form:

yt = τt + θ′Z
(m)
t−h +

√
λte

1
2
(h0+whh̃t)ϵ̃yt ,

ϵ̃yt ∼ N(0, 1), λt ∼ G−1(ν/2, ν/2)
(3.1)

τt = τt−1 + e
1
2
(g0+wg g̃t)ϵ̃τt , ϵ̃

τ
t ∼ N(0, 1) (3.2)

h̃t = h̃t−1 + ϵ̃ht , ϵ̃
h
t ∼ N(0, 1)

g̃t = g̃t−1 + ϵ̃gt , ϵ̃
g
t ∼ N(0, 1),

(3.3)

where (3.1) is the observation equation of quarterly GDP growth and (3.2)-(3.3)

describe the evolution of states, the latent trend and stochastic volatilities, respec-

tively.

The cyclical component Z
(m)
t = (z

(m)
1,t , · · · , z

(m)
K,t )

′ is observed for each of the

K high-frequency indicators at m, potentially non equidistant, intervals between

t − 1 and t. In our application, we consider macroeconomic indicators which are

observed at monthly frequency, so that m = 3. The parameters θ = (θ′1, · · · , θ′K)′

measure the response to changes in the K macroeconomic indicators, each with Lk

monthly lags1. θk features pk + 1 parameters that act as a linking function between

these higher frequency lags and lower frequency observations. The functional form

of these parameters further depend on the type of MIDAS employed (see for an

overview of MIDAS methods Ghysels and Marcellino (2018)). Due to its parsimony,

we use the linear Almon lag polynomial in spirit of Almon (1965) that has been

recently popularised for high dimensional mixed frequency forecasting applications

by Mogliani and Simoni (2021)2. Parsimony is induced in linear Almon-MIDAS by

assuming a pk << Lk polynomial process of the coefficients across high-frequency

1 Lags 0 to 2 correspond to leads, while 3-5, correspond to lags in relation to the quarterly
time-steps, t.

2 Foroni and Marcellino (2014) show that linear MIDAS methods are competitive with non-
linear MIDAS weighting schemes such as the non-linear Almon and beta functions Ghysels
et al. (2007), but have the advantage of being compatible with off the shelf shrinkage methods.
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lags, which can be further improved with economically relevant end-point restrictions

(Smith and Giles, 1976). For our application below, we assume 5 monthly lags (s.t

pk + 1 spans 6 months in total), a third degree polynomial (pk = 3) as proposed

by Mogliani and Simoni (2021) and two end-point restrictions to ensure that the

weight profile peters out smoothly to 0 (see Appendix B.1 for details). Although

Almon lags save degrees of freedom, the cyclical component can still suffer from

multicollinearity due to the high degree of serial correlation present in the mixed

frequency lags Z
(m)
t . This will be directly addressed with our shrinkage prior in

section 3.2.2.

The trend component in (3.2) dictates driftless random walk behaviour which

captures the low frequency changes in GDP growth. Driftless trends in GDP growth,

with state variances tightly controlled by priors to enforce slow-moving change,

have been shown to markedly improve nowcasts in applications to the US (Antolin-

Diaz et al., 2017, 2021). This reflects the empirical finding of changes in long-run

GDP growth (Kim and Nelson, 1999; McConnell and Perez-Quiros, 2000; Jurado

et al., 2015) that indicate slow moving shifts in general economic conditions that

are otherwise not well captured by high-frequency information.3

Finally, we allow for stochastic volatility processes h̃t, g̃t for GDP growth yt

and the latent trend τt, respectively. Volatility clustering is an empirical regularity

in aggregate macroeconomic time-series data (Stock and Watson, 2007), and has

been shown to significantly improve density and point forecasts in many forecasting

studies (Koop and Onorante, 2019; Huber et al., 2019) and mixed frequency models

(Carriero et al., 2015; Antolin-Diaz et al., 2017). The volatility processes follow

driftless random walks (3.3), and are non-centred after Frühwirth-Schnatter and

Wagner (2010). This exerts stronger shrinkage on the state standard deviations, wh

and wg so as to control the variability of the state process.4 The more commonly

employed centred SV process ht, can be exactly recovered by noticing that ht =

h0 + whh̃t (likewise for gt). Despite the stronger shrinkage of the state variation,

random walk behaviour might be inappropriate to capture the recent unprecedented

size and short-lividness of the Covid-19 shock. We therefore allow the observation

equation to have fat-tails via λt which enforces t-distributed errors with ν degrees

of freedom. This discounts large contemporaneous movements in yt and thus limits

the propagation of outliers to the posteriors of the model components.

While the role of long-run trend dynamics and stochastic volatilities with fat tails

for nowcasting and modelling GDP growth has recently been documented for VARs

3 A different non-stochastic approach to disciplining models to account for long-run growth
features is presented in Giannone et al. (2019). Here, the authors enforce iterative forecasts
to return to long-run cointegrating equilibria.

4 Since wg and wh, directly appear in the observation and state equation, which control the
overall state smoothness, one can apply conjugate normal priors which exert stronger shrink-
age than inverse-gamma priors. This approach has been used in many large time-varying
parameter models (Huber et al., 2019; Chan, 2017b; Koop and Onorante, 2019).
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and mixed-frequency dynamic factor models Lenza and Primiceri (2022); Antolin-

Diaz et al. (2017, 2021), to our knowledge we are the first to incorporate time-varying

trends and stochastic volatility processes into a MIDAS setting.

3.2.2 Bayesian Setup

To regularise parameter estimation variance, we make use of Bayesian priors. Reg-

ularisation is key since both the latent states as well as the multivariate MIDAS

structure are highly parameterised. We first present the general prior framework

that gives rise to the conditional posteriors, before detailing in 3.2.2 the form of the

proposed GIGG prior and give further intuition about its behaviour.

We consider priors of the form:

π(Υ) = π(θ)π(τ )π(h̃)π(g̃)π(ξ)π(λ|ν)π(ν), (3.4)

where Υ stacks all unknown parameters into one vector, bold-faced letters refer to

time ordered vectors ( e.g., τ = (τ1, · · · , τT )′) and ξ collects any remaining state pa-

rameters (τ0, h0, g0, wh, wg)
′. The priors, (except for those for λ, ν) are independent

which allows for convenient Gibbs sampling of the conditional posteriors.

Priors for the cyclical component

We consider normal priors for the MIDAS parameters θ:

π(θ) ∼ N(0∑K
k=1(pk+1),Λ∗), (3.5)

where a prior mean vector of zero implies shrinkage toward sparsity and the prior

variance parameters along the diagonal of Λ∗ control the amount of shrinkage toward

zero. These will be populated with parameters of the GIGG prior, as discussed in the

next sub-section. But the structure of the prior allows for any independent shrinkage

prior, see for example Polson and Scott (2010) for an overview of common shrinkage

priors. Conditional on the other model parameters, the posterior is normal:

θ|y, • ∼ N(θ,Λ
−1

∗ )

Λ∗ = (Z(m)′Λ−1
t Λ−1

h Z(m)+Λ−1
∗ ), θ = Λ

−1

∗ (Z(m)′Λ−1
t Λ−1

h ỹ),
(3.6)

where ỹ = y − τ , Λt = diag(λ1, · · · , λT ), Λh = diag(eh1 , · · · , ehT ), and Z(m) =

(Z
(m)
1 , · · · , Z(m)

T )′. 3.6 highlights the effects of the stochastic volatility and fat-tail

imposed in the model. Both h̃ and λ act to effectively discount variation in the

covariance matrix as well as the fit with ỹ. The scales in Λt move inversely with

irregular shocks in conditional GDP growth, while Λh account for slow moving error

variance.
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Due to the availability of known conditional distributions, we make use of Gibbs

sampling to draw inference on the parameters (see B.1.2), where we use 5000 draws

as burn-in and retain 5000 for inference. In situations where Λ∗ is very high-

dimensional, particularly when
∑K

k=1 pk+1 >> T , we make use of the fast sampling

algorithm of Bhattacharya et al. (2016) which reduces computational complexity

for the regression parameter sampling step from O((
∑K

k=1 pk+1)3) (Cholesky based

sampling algorithms) to O(T 2 × (
∑K

k=1 pk + 1)).5

Group-shrinkage prior (GIGG) on the multivariate MIDAS structure

The multivariate MIDAS framework is highly parameterised since it involves K in-

dicators, and for each indicator k, a group of Lk lower frequency (quarterly) vectors

are created corresponding to each available observation at higher (monthly) fre-

quency. This gives two potentially interdependent dimensions relevant for efficient

shrinkage. First, not all of the K groups are equally relevant for nowcasting which

calls for adaptive shrinkage across groups. Second, the fact that consecutive higher

frequency observations enter the model via the implied data transformations induces

correlation within the lag group. Such correlation can be high for time-series appli-

cations, even with U-MIDAS sampled data (Ghysels et al., 2007), and more so when

Almon lag polynomials impose a structure on the lags. This can cause mixing issues

with aggressive shrinkage priors which typically seek to shrink individual covariates

aggressively to zero or not at all (Piironen et al., 2020). Finally, the two dimensions

can be interdependent, since the degree of correlation across lags can matter for the

relative impact that the lag group as a whole has for the nowcast target.

We therefore use a three-tiered shrinkage prior that addresses these issues jointly,

as it adaptively shrinks groups to zero, and simultaneously accounts for the degree of

correlation within the group. The prior, named the group inverse-Gamma Gamma

(GIGG) prior (Boss et al., 2021), is specified as

θk,j ∼ N(0, ϑ2γ2kφ
2
k,j), ∀j ∈ {0, · · · , pk + 1}

ϑ ∼ C+(0, 1), γ2k|ak ∼ G(ak, 1), φ2
k,j ∼ G−1(bk, 1),

(3.7)

where G(•, •), G−1(•, •) and C+(•, •) refer to the Gamma, inverse-Gamma, and half

Cauchy distribution with positive support, respectively6.

The parameters ϑ,γk and φk,j govern the three-tiered shrinkage. While ϑ controls

the overall level of sparsity, γ2k acts as a shrinkage factor that enables pushing the

impact of group k jointly close to zero, and φ2
k,j controls how correlated group

member j is within k. The hyper-parameters ak and bk summarise our prior guess

5 Details of the sampling algorithm can be found in B.1.1
6 Boss et al. (2021) formulate the prior under the assumption of dependence with the error vari-

ance, whereas in this chapter, the prior is formulated under independence. This assumption
is needed to obtain the conditional posteriors analytically.

47



on the relative importance of group-level shrinkage relative to shrinkage of within-

group correlation (see Appendix B.1 for a visualisation of the a-priori behaviour).

The lower ak is set relative to bk, the stronger the group-level shrinkage, and the

larger the prior correlation among the group’s regression parameters. Such a choice

favors group-sparse posteriors, where groups are shrunk jointly to zero, but the

relevant groups feature a high degree of correlation among individual lags, instead

of a heterogeneous shrinkage within group. In this, setting small ak and relatively

large bk can be a good fit for models that use Almon transformed lags, and even

in unrestricted MIDAS applications where lags are highly correlated, as suggested

by Boss et al. (2021). In our application, we follow this intuition and we set ak =

1/T, bk = 0.5 ∀k.
One the other hand, in situations in which prior knowledge exists that only se-

lected lags are important, a relatively small bk may help the prior to shrink individual

lags within a group more idiosyncratically toward zero. As a robustness check, we

report in the appendix (B.2.3) nowcast cast results for different hyper-parameter

choices.

The GIGG prior belongs to the general global-local prior framework, in which

two heavy-tailed scale processes simultaneously shrink globally and on individual

covariate level (see Polson and Scott (2010) and Polson et al. (2014)). Among these,

the horseshoe prior of Carvalho et al. (2010) is particularly popular due to its ex-

cellent empirical and theoretical properties (Bhadra et al., 2019; Van Der Pas et al.,

2014). Conventional global-local shrinkage priors such as the horseshoe, however, do

not feature group shrinkage via γ2k and can suffer from random covariate selection

and bad mixing for highly correlated designs (Boss et al., 2021; Piironen et al., 2020),

which is typically the case in mixed-frequency regressions. Previous BMIDAS priors

such as in Carriero et al. (2015) apply shrinkage on individual level with implicit

grouping via a Minnesota type prior to address this, but the Minnesota prior does

not impose adaptive shrinkage across covariates k and imposes a deterministic level

of penalisation that increases with the lag-length. Closest to our prior setup for MI-

DAS regression is Kohns and Bhattacharjee (2022) who use simple horseshoe prior

regularisation. We will use this prior as a benchmark for the group-prior model.

A special trait of the GIGG prior is that it nests the exact group-horseshoe prior

when ak = bk = 0.5, for a group-size of 17 and for other combinations of the hyper-

parameters, follows a correlated normal beta prime distribution akin to Armagan

et al. (2013), γ2kφ
2
k,j ∼ β′(ak, bk). It therefore inherits the characteristics of the β′

distribution in that it can allow for aggressive shrinkage due to large prior mass on

zero, but also allows groups to be virtually unregulated when the effect on the target

is large due to it’s heavier than exponential tails, which makes the prior appropriate

7 This represents a departure from the group-horseshoe prior of Xu and Ghosh (2015), which
does not reduce to a simple horseshoe for a group size of 1.
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for group selection tasks (Piironen et al., 2017).8. The shrinkage properties of the

prior are further elucidated in Appendix (B.1.1).

In contrast to the proposed GIGG prior, other group-prior implementations such

as the group-lasso suggested in the literature (Casella et al., 2010; Xu and Ghosh,

2015), are known for over-regularising signals due to their exponential tails and

under-regularising noise due to less mass on zero compared to horseshoe type priors.

Xu and Ghosh (2015) remedy the latter behaviour of the group-lasso by including

group-spike-and-slab variable selection. However, these priors assume a uniform

level of shrinkage within group, hence, don’t allow for inference on the correlation

via a covariate level scale. Further, the spike-and-slab with point-mass on zero is

well known to mix poorly in high dimensions and with correlated groups (Ishwaran

et al., 2005; Barbieri et al., 2021; Piironen et al., 2020). For these reasons, we do not

consider lasso priors, but refer to Boss et al. (2021) for further prior comparisons to

the GIGG.

Priors for the latent states & fat-tails

The other priors we employ are standard. For the latent states (τ , h̃, g̃) we con-

sider a joint normal prior derived using methods proposed in Chan and Jeliazkov

(2009); McCausland et al. (2011) that allow representing the entire conditional state

posterior as a tractable normal distribution. This increases sampling efficiency com-

pared to Kalman filter based techniques such as Carter and Kohn (1994); Frühwirth-

Schnatter (1994), and allows use of computationally efficient sparse matrix opera-

tions (see B.1.1 for a more detailed exposition). To derive the posteriors of (h̃, g̃) we

use the approximate sampler of Kim et al. (1998). Since latent states are prone to

overfitting in heavily parameterised models Frühwirth-Schnatter and Wagner (2010)

we put normal priors on the state variances to control their variation. These exert

stronger shrinkage than commonly employed inverse-Gamma priors for variance pa-

rameters (see Frühwirth-Schnatter and Wagner (2010) for more discussion on state

variance priors). The conditional posteriors are further exposed in B.1.1. Lastly, for

the degrees of freedom hyperparameter ν of the Inverse-Gamma distribution of λt we

assume a relatively non-informative uniform prior which results in a non-standard

distribution detailed in appendix B.1.1. To draw from that posterior, we make use

of a Metropolis-within-Gibbs step.

3.2.3 Sparsification Step for the GIGG Prior

With continuous shrinkage priors such as the GIGG the posteriors of lag groups

remain non-zero with probability one (Hahn and Carvalho, 2015). This hampers

the understanding of which indicators impact the cyclical component and thus the

8 Unregulated groups with large effects on the target is a trait that is shared on an individual
covariate level with the horseshoe prior Carvalho et al. (2010)
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interpretability of the nowcasts. Thresholding those lag groups with little effect on

yt to exactly zero, i.e. essentially eliminating them from the model, makes it easier

to interpret and communicate model outcomes and allows to draw inference about

model uncertainty which can be pervasive in macroeconomic applications (Giannone

et al., 2021; Huber et al., 2019; Cross et al., 2020; Kohns and Bhattacharjee, 2022).

Recently, Mogliani and Simoni (2021) extend the adaptive group-lasso prior applied

to Almon-lag MIDAS regressions to spike-and-slab variable selection for that pur-

pose. Instead, we propose the use of a sparsification algorithm that is motivated

by the perspective of a Bayesian decision maker who seeks the smallest subset of

groups that best summarise the forecasts of the model (3.1)-(3.3), inspired by Hahn

and Carvalho (2015); Woo and Owen (2019).9 This can be achieved by minimising

a utility function over the Euclidean distance between a linear model that penalises

group-size akin to (Zou, 2006) and our model’s nowcasts:

L(Ỹ , ψ) =
1

2
||Z(m)ψ − Ỹ ||22 +

K∑
k=1

ζk||ψk||2, (3.8)

where Ỹ refers to a realisation from the posterior predictive distribution

p(Ỹ |y) =
∫
p(Ỹ |y,Z(m), θ, •)p(θ|y,Z(m), •)dθ, and || • ||p refers to the ℓp-norm.10

Similar to the logic of adaptive group-lasso (Wang and Leng, 2008), the penalisation

term induces non-differentiability at zero, which creates a soft-thresholding effect

between [−ζk, ζk], thereby forcing the coefficients on all group members to zero. The

Bayes optimal solution for ψ is obtained by integrating out the posterior uncertainty

from the predictive distribution, as well as in the parameters θ (Lindley, 1968) (see

Appendix B.1.3).

In the following, we first show the analytical solution we derive for (3.8), and

then discuss the assumptions needed to derive it. For a full derivation, see appendix

B.1.3. The sparsified estimate ψ
∗(s)
k for each Gibbs-sampling step s = 1, · · · , S, is

given by:

ψ
∗(s)
k =

(
||θ(s)k ||2 − ζ

(s)
k

)
+

θ
(s)
k

||θ(s)k ||2
, (3.9)

where (x)+ = max(x, 0). (3.9) implies that when θ
(s)
k are close to 0, then ψ

∗(s)
k = 0,

whereas, when θ
(s)
k are large, then ψ

∗(s)
k = (1 − ζ

(s)
k

||θ(s)k ||22
)θ

(s)
k , in which case the first

term will be very close to 1, thus imposing close to no further shrinkage.

Two assumptions are needed to derive (3.9). Firstly, it requires orthonormalisa-

tion of the data for each k such that T−1Z̃
(m)
k

′Z̃
(m)
k = I. This serves to simplify

9 Note that using the un-sparsified posterior estimates of θ for prediction is already optimal in
terms of empirical risk (Chakraborty et al., 2020), so that the main goal of sparsification is
communication.

10 Note that for simplicity we define the predictive distribution over in-sample values of Z(m),
but in principle any data can be used for the analysis.
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the solution, and as shown in (Simon and Tibshirani, 2012), not orthonormalising

groups ignores the cross-correlation of group members in k such that the algorithm

implicitly prefers to not threshold groups whose covariance is large, and also ignores

that Z
(m)
k might be on different scales.11 Secondly, we make use of the work by Ray

and Bhattacharya (2018); Chakraborty et al. (2020) who show that, when setting

ζ
(s)
k = 1

θ
(s)
k

, iterative solution methods such as the coordinate descent (Friedman

et al., 2010), converge already after the first cycle. This gives us the analytical

solution 3.9.

The relative frequency of high-frequency lag-group k selected in ψ∗(s) over all

Gibbs draws will be used to report inclusion probabilities that inform on the rela-

tive impact of an indicator for nowcasting. See Woody et al. (2021) and Chakraborty

et al. (2020) for formal justification of model selection uncertainty and the asymp-

totic risk properties for similar models, respectively.

3.3 Data Set and Nowcast Setup

For our application, we nowcast real quarter-on-quarter GDP growth of the UK

based on a set of monthly macroeconomic indicators following a stylised publication

calendar. In the following, we outline the data set, the stylised publication calendar

we follow, and the set-up of our nowcasting exercise and evaluation.

3.3.1 Data set

The set of monthly macroeconomic indicators has been compiled to reflect infor-

mation on the UK economy that policymakers actively monitor to gauge economic

activity in real time, and is comparable to data sets employed in previous now-

casting studies (Antolin-Diaz et al., 2017; Anesti et al., 2018). We include a range

of real activity and survey indicators, including indices of production and services,

exports and imports, a range of labour market series, as well as timely business

and consumer surveys (CBI survey, PMIs, GFK). In order to capture lending con-

ditions that can affect economic conditions via financial conditions we also include

mortgage lending approvals and VISA credit card consumer spending. These series

also tracked consumer spending during the pandemic, reflecting shut-downs of busi-

ness and housing activity. We do not add asset prices or other financial indicators

which have been found to contribute little to nowcast updates once information from

monthly survey and real activity data is accounted for (Bańbura et al., 2013; Anesti

et al., 2018). Also, during the Covid-19 period financial markets were detached

from real activity in the UK—asset prices initially collapsed, then stabilised early

on in the pandemic in response to monetary policy interventions, and subsequently

11 It can be further shown that orthonormalisation establishes connection to best subset selection
and uniformly most powerful invariant testing (Simon and Tibshirani, 2012)
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exhibited a boom that was not in line with the weakness of the real economy. The

series are transformed to be approximately stationary prior to estimation.12

We consider the sample period from 1999Q1 to 2021Q3. The start of the sample

is pinned down by data availability since many of the monthly indicators are not

available for earlier years.13 We use final vintages of the data, downloaded in De-

cember 2021. While revisions of UK monthly real activity indicators and quarterly

GDP can be substantial, accounting for them accurately in the nowcast set-up also

poses computational and methodological challenges.14 Since our focus here lies in

understanding the proposed model, we use pseudo real time data as outlined below,

and we leave an account for revisions for future research.

3.3.2 Nowcast Exercise

Macroeconomic data are published asynchronously at different points in time and

with delays ranging from various weeks (survey data) to up to various months (labour

market data) after the reference month. To simulate the information set available

to the nowcaster over the data release cycle, we follow a stylised pseudo real-time

data release calendar (see Table 3.1).

Table 3.1: Stylised pseudo real-time data release calendar.

Nowcast Quarter Days to GDP Month Timing within month Release Publication Lag

1 135 1 1st of month PMIs m-1
2 125 1 End of 2nd week IoP, IoS, Ex, Im m-2
3 120 1 3rd week Labour market data m-2
4 115 1 3rd Friday of month Mortgage & Visa m-1
5 110 1 End of 3rd week CBIs & GfK m
6 Reference 105 2 1st of month PMIs m-1
7 quarter 97 2 Mid of 2nd week Quarterly GDP q-1
8 (nowcast) 95 2 End of 2nd week IoP, IoS, Ex, Im m-2
9 90 2 3rd week Labour market data m-2
10 85 2 3rd Friday of month Mortgage & Visa m-1
11 80 2 End of 3rd week CBIs & GfK m
12 75 3 1st of month PMIs m-1
13 65 3 End of 2nd week IoP, IoS, Ex, Im m-2
14 60 3 3rd week Labour market data m-2
15 55 3 3rd Friday of month Mortgage & Visa m-1
16 50 3 End of 3rd week CBIs & GfK m
17 45 1 1st of month PMIs m-1
18 Subsequent 35 1 End of 2nd week IoP, IoS, Ex, Im m-2
19 quarter 30 1 3rd week Labour market data m-2
20 (backcast) 25 1 3rd Friday of month Mortgage & Visa m-1

Notes: “Timing” refers to typical data release times as of December 2021, abstaining from changes in the
publication calendar over the sample period. “Release” refers to the data series updated at a given nowcast,
see also Table B.1 in the appendix for a list of data series included. “Publication lag” represents the delay
relative to the reference quarter (i.e. publication at any point in the subsequent month considered to be one
month lag, m-1).

12 See Table B.1 in the appendix for an overview of the data and their respective transformations.
13 Some of the series have missing values at the beginning of the sample period. We interpolate

these based on a principal component (PCA) model that accounts for missing information via
the alternating least square algorithm. Alternatively, we also employed the commonly used
EM algorithm (Bańbura and Modugno, 2014) for interpolation, and we found that there is
little difference in the sample under investigation.

14 See Anesti et al. (2018) for and analysis of UK data on the forecastability of different vintages
and how to incorporate that information for nowcast updates.
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As is common in the MIDAS nowcasting literature, we start the nowcast exer-

cise for each quarter anew, where we start predicting with all available information

on the first of the month prior to the reference quarter (forecasts), and simulate

incoming data throughout the reference quarter (nowcasts), until GDP is finally ob-

served six weeks after the reference quarter (backcasts).15 For each new data release

over the data release cycle, we generate nowcasts from the predictive distribution

p(yt+1|Ωv
T ), where (v = 1, · · · , 20) refers to the nowcast periods within the stylised

data release calendar (Table 3.1) and Ωv
T represents the real-time information set

that expands with each data release. Since the MIDAS framework belongs to the

class of reduced system mixed frequency models (Bańbura et al., 2013), each infor-

mation set Ωv
T results in a different model (depending on which data are observable

to the nowcaster). 16 To draw samples from the predictive distribution, we inte-

grate over all parameter uncertainties which is easily implemented via Monte Carlo

integration (Cogley et al., 2005).

We start the nowcast exercise with an in-sample period of 1999Q1-2011Q1, and

iteratively expand it until the end of the forecast sample, Tend = 2021Q3. Since the

Covid-19 pandemic represents a historic shock to the macroeconomy, we separately

evaluate nowcasts over a sample that ends in 2019Q4 and one that cover the full

sample period including the Covid-19 shock.

Point nowcasts are computed as the mean of the posterior predictive distribution

and are compared via real time root-mean-squared-forecast-error (RMSFE) which

are calculated for each nowcast period as:

RMSFE =

√√√√ 1

Tend

Tend∑
t=1

(yT+t − ŷvT+t|Ωv
T+t−1

)2, (3.10)

where ŷvT+t|Ωv
T+t−1

is the mean of the posterior prediction for nowcast period v using

information until T + t − 1 and T is the initial in-sample length. Forecast density

fit is measured by the mean real-time continuous rank probability score (CRPS):

CRPS =
1

Tend

Tend∑
t=1

1

2

∣∣∣yT+t − yvT+t|Ωv
T+t−1

∣∣∣− 1

2

∣∣∣yv,AT+t|Ωv
T+t−1

− yv,BT+t|Ωv
T+t−1

∣∣∣ . (3.11)

Note that in (3.11), yv,A,BT+j|Ωv
T+j−1

are independently drawn from the posterior pre-

dictive density p(yvT+1|Ωv
T+j−1

|yT ). The CRPS belongs to the class of strictly proper

scoring rules (Gneiting and Raftery, 2007), and can be thought of as the probabilis-

tic generalisation of the mean-absolute-forecast-error. To facilitate the discussion

15 We refer to the first GDP publication, available about 40 days after the reference quarter.
We abstain from accounting for a less accurate preliminary GDP estimate that was available
25 days after the reference quarter prior to Sir Charles Bean’s 2018 review of UK economic
statistics (Scruton et al., 2018).

16 This is in contrast to full system mixed frequency methods (Bańbura et al., 2013) which
interpolate missing low- and high-frequency information via filtering methods.
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below, the objective in terms of nowcasting precision is to minimise both evaluation

metrics.

3.4 Empirical Results

In section 3.4.1, we first develop intuition on the trend and cyclical components in

UK GDP growth by focusing on posterior estimates of the various model compo-

nents (3.1)-(3.3). Section 3.4.2, evaluates nowcast performance of the Trend-SV-t-

BMIDAS model against a simpler BMIDAS without additional model features, and

then against commonly employed benchmark models. Section 3.4.3 then unpacks

the signals behind the nowcast estimates via inclusion probabilities derived by the

decision theoretic variable selection method.

3.4.1 Analysing UKGDP Growth via The Trend-SV-t-BMIDAS

Figure 3.1 shows the posterior estimates of the cyclical (blue) and trend (orange)

components (upper panels, separating the pre-pandemic period and the Covid-19

period) as well as the stochastic volatility components of GDP growth (lower left

panel) and the trend equation (lower right panel) from the Trend-SV-t-BMIDAS

model with GIGG prior. The cyclical component captures high frequency move-

ments in GDP growth. It tracks the quarter-to-quarter movements in GDP growth

(black dashed-dotted lines) well, including over the Covid-19 pandemic where the

cyclical component captures the bulk of the 20% drop in GDP growth and most

of the recovery. On the other hand, the trend captures low frequency changes in

GDP growth and can be interpreted as a time-varying long-run growth estimate.

We observe a gradual slowdown in UK GDP growth since the early 2000s, with

an additional temporary decrease in the trend during the Great Financial Crisis

(GFC). Throughout the Covid-19 pandemic, the trend remains largely unchanged,

hence the model interprets the extreme movements in GDP growth seen during the

pandemic as transitory in nature.

Further, the t-distributed volatility estimate of the observation equation (lower

left panel) shows a sharp and strong increase during the pandemic, by far exceeding

the increase observed during the GFC. The model attributes the bulk in the in-

crease in variance to be related to GDP growth itself and not to its long-run trend.

However, trend volatility does gradually increase during the pandemic, even though

credible intervals are wide, pointing to the possibility of a more persistent increase

in the variance of long-run GDP growth. Although it remains an open question

whether the Covid-19 pandemic has induced scarring in terms of repercussions to

the long-run UK GDP growth trend, initial findings from our model suggest that

the shock affected cyclical variation more than long-run trends.

The fat-tailedness of error distributions in the stochastic volatility process proves
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Figure 3.1: Posterior estimates for trend, cyclical component and stochastic
volatilities.
Notes: Results from the T-SV-t-BMIDAS model with GIGG prior. The components are
estimated over the full sample - pre-pandemic and pandemic cycle and trend are shown separately
for readability. Orange lines and areas show the posterior means for the trends in GDP growth.
Blue lines and areas show posterior medians of the cyclical components in GDP growth (upper
panel) and stochastic volatilities in GDP growth (lower panel, left) and trend (lower panel, right).
Shaded areas show 95% credible intervals.

to be an inherent model feature, as suggested by the posterior distribution of the

degrees of freedom parameter showing large mass around small values (see Figure B.2

in the appendix). But even prior to the pandemic, the inclusion of fat-tailed error

variance is important to separate the slow-moving trend from cyclical movement. To

elucidate this point, Figure 3.2 shows the posterior trend and cyclical component

over the period until 2019Q4, from the baseline model that includes SV and t-

distributed errors (blue lines and shaded areas), the model with SV but no t-distr.

errors (orange), as well as for constant variance only (green).17 The model with

SV shows the least intuitive results since it assigns most of the cyclical variation to

the trend component, whereas the cycle remains very stable throughout the sample

including during the GFC. Adding SV without t-distr. errors in a sample that

contains both quieter periods and larger shocks such as the GFC likely results in

overly discounting variation available to the cyclical component and instead over-

fitting the trend. On the other hand, the baseline model achieves a sensible trend-

cycle decomposition since it is able to separate large transitory shocks, that are

handled by the fat tails, from smaller but more pervasive ones that are captured by

17 The posterior estimates are based on the information set at the first nowcast period of 2019Q4.
As section 3.4.2 will show, early nowcasts over the data release cycle are those benefiting the
most from the inclusion of a time-varying trend with SV-t errors during the pre-pandemic
period.
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Figure 3.2: Posterior trend estimates from different BMIDAS specifications,
pre-pandemic.
Notes: Posterior means of the trend up until 2019Q4 from the Trend-SV-t BMIDAS model (blue),
the Trend-SV model (orange), and the Trend-Const.Var model (green). Estimation at the 1st
nowcast period. Black dashed line shows realisation of real UK GDP growth. Shaded areas
represent 95% credible intervals.

the SVs in GDP growth and its trend. Both the cyclical and trend components are

estimated with high precision in the baseline model. By contrast, in the constant

variance model credible intervals are much larger, since the uncertainty of shocks

permeates fully into the cyclical and trend components. While this model does

assign short-term fluctuations to the cyclical component, this goes at the expense

of an almost unresponsive trend.

3.4.2 Nowcast Evaluation and The Role of Model Features

Having provided intuition for the posterior of the model components, we now evalu-

ate the nowcast performance of the Trend-SV-t-BMIDAS model. First, we focus on

the role of model features for nowcasting performance. Then, we evaluate the pre-

ferred Trend-SV-t model against a range of benchmarks, with a focus on nowcasting

performance during the pandemic.

Role of model features for nowcasting

Figure 3.3 assesses the role of model components by comparing the nowcast perfor-

mance of the baseline model with versions where the new features, i.e. the time-

varying trend, the stochastic volatilities, and their t-distributed errors, are shut off

one by one or jointly. The figure shows root mean square forecast errors (RMSFE,
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upper panel) and continuous rank probability scores (CRPS, lower panel) over the

data release cycle (days ahead of GDP release) on the x-axis.
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Figure 3.3: Nowcast performance for different BMIDAS model components.
Notes: Absolute root mean square forecast errors (RMSFE) and continuous rank probabil-
ity scores (CRPS) over nowcast periods (days before GDP release on x-axis), for different
specifications of BMIDAS with GIGG prior. Solid lines: models including a time-varying trend
(T-). Dashed lines: models without trend. Blue lines: models with stochastic volatility with
t-distr. errors (SV-t). Orange lines: models with stochastic volatility (SV). Yellow lines: models
with constant variance. Results for pre-pandemic period evaluate nowcasts over 2011Q2-2019Q4,
results including the pandemic evaluate nowcasts until 2021Q3.

Over the pre-pandemic period (left panel), the Trend-SV-t BMIDAS (blue solid

line) clearly outperforms the alternative model specifications in terms of point and

density nowcasts for most of the nowcast periods (135-35 days prior to GDP re-

lease). The model’s nowcast performance nearly continuously improves as new data

come in, whereas some of the other models exhibit ups and downs in the nowcast

performance. Sizeable improvements in nowcast performance are observed 105, 65

and 35 days prior to GDP release, which coincides with the releases of PMIs and

of the production and service indicators for the first and second month of the refer-

ence quarter, respectively. Adding the time-varying trend component to the model

(solid lines) provides benefits for point and density nowcasts prior the pandemic,

independently of the specification of volatilities, in line with existing evidence for

the United States by Antolin-Diaz et al. (2017). Also adding stochastic volatility

combined with t-distr. errors improves the nowcast performance further and sta-

bilises it over the data release cycle. As such, the nowcast performance of models

with a trend but no t-distr. errors (orange and yellow solid lines) temporarily dete-

riorates when survey data for the first month of the reference quarter get released

(110 days to GDP), whereas the performance of the baseline model improves with
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that release. The model with constant variance and no trend (yellow dashed lines)

clearly performs worst, which underlines the importance of incorporating at least

one of the proposed features into BMIDAS models—even over samples that exclude

the Covid-19 pandemic.

When including the Covid-19 pandemic (right panel), not surprisingly, nowcast

errors are much higher for all models, particularly early on in the data release cycle,

where the episode of the initial downturn generated by lockdowns and the health

crisis inflates nowcast errors. Differences across model variants are relatively small

over most nowcast periods. Nowcasts gradually improve in the early parts of the data

release cycle until the release of PMIs for the second month of the reference quarter

(75 days prior to GDP), followed by a strong improvement in performance with the

release of “hard” indicators pertaining to the first month (65 days prior to GDP).

The nowcast performance of all models strongly improves at this point, but more so

for models with stochastic volatility and t-distr. errors with and without trend (blue

lines). Whether the time-varying trend is added or not makes less of a difference

once the pandemic period is included, in line with the findings from Figure 3.2 that

models that do not account for outliers struggle to identify the Covid-19 pandemic

related downturn as temporary and instead over-fit the trend. Finally, the simple

model without trend and with constant variance fares comparatively well early on

in the data release cycle, but then loses out against the other models, particularly in

terms of density nowcasts. Such a model is not able to capture the large shift in the

data neither via increased uncertainty around nowcasts nor through trend shifts.

Overall, we find that adding a time-varying trend to the BMIDAS model helps

nowcast performance during the pre-pandemic period and does not detriment now-

cast performance once the Covid-19 shock is included. We also find that adding

stochastic volatilities is only useful when it is also combined with t-distributed

errors—otherwise, the model over-fits the trend and shows a weaker and more

volatile nowcast performance. Based on these results, for the rest of the chapter, we

choose the Trend-SV-t BMIDAS model as our preferred specification.

Nowcast evaluation against benchmark models

Next, we assess the nowcasting performance of the proposed Trend-SV-t-BMIDAS

model with GIGG prior against the following benchmark models.

• AR(2): represents a purely auto-regressive benchmark, does not include

trends, stochastic volatility or t-errors.

• Combination: Univariate MIDAS regressions for each of the K high fre-

quency macroeconomic indicators, estimated with a normal prior and com-

bined according to their discounted RMSFE and CRPS performance akin to

Stock and Watson (2004). We follow Carriero et al. (2019) by setting the

discount factor δ = 0.95. For comparability with our model, we estimate the

univariate MIDAS regressions with Trend-SV-t components.
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• MF-DFM: Similar to Antolin-Diaz et al. (2021), this dynamic factor model

also includes Trend-SV-t components, but it captures the cyclical informa-

tion via a dynamic factor that exploits co-movement across the K indicators

contemporaneously and at up to two lags. The priors on the latent state com-

ponents are similar to the ones outlined in section 3.2.2.

• Trend-SV-t-HS: model 3.1-3.3 with the horseshoe prior, thus another flexible

shrinkage prior, but without group-shrinkage. This represents a benchmark in

terms of the prior for the Trend-SV-t BMIDAS.18

Figure 3.4 plots RMSFE and CRPS over the data release cycle, and Table 3.2

shows the evaluation metrics of the proposed model and benchmarks relative to

the AR model, on average across all nowcast periods and for selected periods that

correspond to releases of PMIs and real activity indicators. Stars indicate signifi-

cantly different point and density nowcasts as per Diebold et al. (1998). Three main

findings emerge. First, similarly to many other nowcast studies (e.g. Foroni et al.

(2015); Carriero et al. (2015, 2019)), models that exploit monthly macroeconomic

indicators outperform the autoregressive model, with relative RMSFE and CRPS

against the AR(2) lying clearly and significantly below 1 for most models throughout

the nowcast cycle. The relative advantage against the AR(2) model becomes even

more pronounced when including the pandemic quarters into the evaluation, albeit

the differences become insignificant for individual nowcast quarters due to the large

uncertainty during that shock.

Table 3.2: Relative Evaluation Metrics

Nowcast Periods Average 6 13 18 Average 6 13 18

RMSFE Pre-Pandemic RMSFE Including Pandemic
AR 0.42 0.42 0.42 0.42 11.45 11.4 11.47 11.48
MF-DFM 0.67*** 0.75 0.67** 0.63** 0.32*** 0.33 0.32 0.34
Combination 0.68*** 0.68** 0.67** 0.67** 0.36*** 0.37 0.34 0.33
Trend-SV-t-HS 0.81*** 0.87 0.73 0.74 0.28*** 0.28 0.23 0.24
Trend-SV-t-GIGG 0.66*** 0.68** 0.60* 0.51** 0.21*** 0.27 0.11 0.10

CRPS Pre-Pandemic CRPS Including Pandemic
AR 0.23 0.23 0.22 0.22 2.76 2.83 2.72 2.73
MF-DFM 0.63*** 0.60** 0.64** 0.60** 0.36*** 0.36 0.36 0.36
Combination 0.68*** 0.66** 0.68* 0.66** 0.41*** 0.43 0.39 0.37
Trend-SV-t-HS 0.75*** 0.79 0.67* 0.70 0.32*** 0.31 0.26 0.26
Trend-SV-t-GIGG 0.73*** 0.76 0.68* 0.60* 0.26*** 0.36 0.16 0.13

Notes: The table shows the average RMSFE and CRPS values for the AR model in the first
row of each panel across all 20 nowcast periods (“Average”), and for selected nowcast periods
(6,13,18). RSMFE and CRPS values for the other models are in relative terms to the AR
model and stars indicate significance as per the Diebold-Mariano test Diebold et al. (1998)
(∗ = 10% significance,**=5% significance,***=1% significance)

Second, the proposed Trend-SV-t model with GIGG prior is among the strongest

models prior to the pandemic and outperforms all other models once pandemic quar-

18 We also compared nowcasting performance to BMIDAS models with other frontier prior
choices such as the adaptive group-lasso with spike and slab prior model for Almon lag trans-
formed data as proposed by Mogliani and Simoni (2021). We find that our models are again
competitive or outperform these benchmarks. These results are available on request.
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Figure 3.4: Nowcast performance of Trend-SV-t-BMIDAS with GIGG compared to
benchmarks.
Notes: Absolute RMSFE and CRPS over nowcast periods (days before GDP release on
x-axis) for Trend-SV-t-BMIDAS with GIGG prior (blue lines), Trend-SV-t-BMIDAS with HS
prior (orange), Combined U-BMIDAS (black dashed), MF-DFM (black dotted-dashed), and
AR(2) (yellow). Results for pre-pandemic period evaluate nowcasts over 2011Q2-2019Q4, results
including the pandemic evaluate nowcasts until 2021Q3.

ters are included in the evaluation. Prior to the pandemic, the MIDAS Combination

(dashed lines) and DFM (dashed-dotted lines) show the strongest performance in

terms of density nowcasts, but the Trend-SVt-BMIDAS with GIGG prior performs

similarly to these in terms of point forecasts. The Combination displays the least

variation over nowcast periods given that it averages out nowcast errors, but it is

outperformed by the DFM and Trend-SVt-BMIDAS with GIGG for later nowcast

periods. Whereas the nowcast performance of the other models stagnates during

later nowcast cycles when moving closer to GDP release, the proposed model shows

continuous improvements, indicating that it can exploit real activity data releases

particularly well. Indeed, once real activity indicators for the first month are pub-

lished 35 days prior to GDP release, the relative RMSE (CRPS) of the proposed

model significantly improves against the AR(2) by 50% (40%). The relative advan-

tage of the proposed Trend-SVt-BMIDAS is even stronger when including Covid-19

observations into the evaluation sample: it considerably outperforms the Combina-

tion and DFM approach throughout the data release cycle, but again the relative

gain is strongest for later nowcast periods.

Third, regarding the role of the shrinkage prior, exerting group-level shrinkage

and taking into account the high-frequency correlation structure via the GIGG prior

(blue line) has preferable performance compared to the horseshoe (HS) prior (yellow
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line). Prior to the pandemic, the model with GIGG prior has lower point nowcast

errors throughout and almost always better density fit. When including the pan-

demic quarters, it is strongest for the first nowcast periods and again starting from

75 days ahead of GDP publication. As we illustrate via variable inclusion probabil-

ities in section 3.4.3, this nowcast gain is achieved because the GIGG prior shrinks

the information set towards a more sparse selection of indicators, and because it

shifts its signal extractions towards indicators related to the service sector when the

pandemic hits.

Nowcasts during the Covid-19 pandemic

At which point during the pandemic and the data release cycle does the proposed

Trend-SV-t BMIDAS model with GIGG prior achieve its forecast gains? Figure

3.5 visualises the nowcasts over time for the proposed model compared to the sets

of models discussed in section 3.4.2, for selected nowcast periods. Pre-pandemic,

nowcasts are fairly close to each other. The Trend-SV-t BMIDAS nowcasts show

somewhat more volatility, which can explain their slightly weaker performance com-

pared to Combined MIDAS and DFM. For the Covid-19 pandemic quarters, unsur-

prisingly, all models miss the large unprecedented trough early in the data release

cycle. However, the Trend-SV-t BMIDAS with GIGG prior is the quickest to update

nowcasts to the trough and subsequent rebound in activity, and its nowcasts in later

nowcast periods are closest to the actual realisation. In early nowcast periods, it is

the only model to indicate the large rebound in activity for Q3-2020. And once the

real activity indicators for the first reference month have been published, it shows

the largest downward adjustment for Q2-2020. The other models are less responsive,

or belatedly nowcast a trough without capturing the recovery.19

For our proposed model, 95% credible intervals illustrate the role of the SV-t

feature for the uncertainty around nowcasts during the Covid-19 pandemic. The

initially wide credible intervals show the expected increase in nowcast uncertainty

around the trough and recovery of GDP growth, but also that uncertainty decreases

substantially after Q3-2020 for later nowcast periods. Hence, with more “hard”

macroeconomic information, the model indicates a return toward reduced uncer-

tainty after the Covid-19 shock.

19 A likely explanation for the weaker performance of the MIDAS Combination model is that
the combination weights are slow to adapt in the standard discounted weights approach, and
allocate the increased GDP growth variation to the outlier component. Similarly, the DFM
may struggle due to fixed loadings which in normal times load heavily on production surveys,
but these were less informative during the pandemic.
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Figure 3.5: Posterior mean and density nowcasts, selected nowcast periods.
Notes: Upper panel shows nowcasts over time for the period 2011Q1 to 2019Q4 (x-axis)
at different points in the data release cycle (columns), lower panel shows nowcasts over the
pandemic quarters on the x-axis. Models are the same as in Figure 3.4. Shaded areas refer to
Trend-SV-t-GIGG model and show 95% credible interval. Black solid lines show quarterly GDP
growth realisations.

3.4.3 Interpreting Nowcasts via Variable Inclusion Proba-

bilities

The group-variable selection achieved via the sparsification algorithm (3.9) equips us

with an intuitive way to communicate nowcast signals within a Bayesian, decision

theoretically based setting. Variable selection is communicated as the inclusion

probability of high-frequency lag group k, i.e. a macroeconomic indicator and its

lags, into the linear model (3.8) over posterior samples. The higher the inclusion

probability of lag group k, the larger its impact onto the predictions of the model.

Inclusion probabilities turn out rather stable over the sample period before the

Covid-19 pandemic, so that we focus on averages over sub-samples.

Figure 3.6 presents heatmaps for inclusion probabilities for each indicator (x-

axis) over nowcast periods (y-axis). The lower sub-plots in each panel shows corre-

sponding results using the horseshoe prior without group-shrinkage. Pre-pandemic

(panel a), the model with GIGG prior (upper sub-plot) selects a sparse specification,

as indicated by only a few indicators shaded in red. The model uses signals from

one to three indicators at a time, shifting to signals from other indicators as they

get released. Early in the nowcast cycle the model mostly exploits a few survey

variables: Manufacturing and Construction PMIs for very early nowcasts and then

GfK consumer confidence for the first month of the reference quarter, once it gets
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released in nowcast period 5. Labour market data also plays a role when released

in period 9. However, once the Once, however, “hard” real economic information

get published 65 days prior to GDP release (period 13), the model loads almost

exclusively on the index of services. This agrees with earlier nowcast studies who

find that survey indicators provide the main early signals for quarterly GDP, but

that incoming hard information becomes more important for nowcasts later in the

data release cycle (Bańbura et al., 2013; Carriero et al., 2015; Anesti et al., 2017).

When the pandemic is included into the sample (panel b), both prior specifica-

tions make the model read a wider range of signals as indicated by the overall darker

colours. Nonetheless, the model with GIGG prior remains much more sparse, with

a clear pattern of exploiting different signals over the data release cycle. It keeps ex-

ploiting survey indicators in the early part of the sample, but interestingly the most

informative indicator now becomes the Service PMI, followed by Construction PMI.

Over nowcast periods 5 to 12, signal from mortgage lending are relevant too. Little

focus is put on the GFK and labour market data. Once hard economic data become

available, very strong signals are read from the index of services, and additional sig-

nals ahead of GDP release come from the Service PMI and index of production. In

this, the model efficiently exploits that during the pandemic most of the disruption

to the economy was stemming from lockdowns affecting the service sector as well

as initially a shut-down of the housing and construction sectors, whereas consumer

confidence and manufacturing remained much less affected and labour market data

were distorted by the furlough scheme. This likely helps the model with GIGG prior

to capture the recovery from the Covid-19 induced trough early in the data release

cycle and to update its nowcast of the initial trough in GDP earlier compared to

other models, as discussed in section 3.4.2.

On the other hand, the model with horseshoe prior (lower sub-plots) shows dense

inclusion pattern both pre-pandemic and particularly once the pandemic is include.

It draws on signals from surveys, real, labour and personal finance indicators in

a diffused way over the data release cycle. The denser signal extraction with the

horseshoe prior could stem from increased cross-sectional correlation in the face of

large macroeconomic shocks, documented in studies such as Rockova and McAlinn

(2021); McAlinn et al. (2018); Frühwirth-Schnatter and Lopes (2018). However,

given that the Covid-19 shock affected specific sectors more than others, a dense

solution can represent a disadvantage. And the heavy reliance of the model with

horseshoe prior on surveys even when hard economic information is available can

explain the relatively weak performance of the model discussed in section 3.4.2.

Overall, this illustrates how group shrinkage helps exploiting signals from highly

correlated macroeconomic data. In this, our findings provide new impetus to the

debate on the “illusion of sparsity”, where models with a dense cyclical component

have been found to forecast better in applications with macroeconomic data than

63



a) Pre-Pandemic (2011Q1-2019Q4)

CBI-E
S

CBI-S
CBI-E

O
PMI-M

PMI-S
PMI-C GfK IoP IoS Exp Imp UR

EMP

Vacancies
Hours

Mortg
age

VISA

 
 
3
 
 
6
 
 
9
 
 

12
 
 

15
 
 

18
 
 

N
ow

ca
st

 P
er

io
ds

T-SV-t-GIGG

0

0.2

0.4

0.6

0.8

1

CBI-E
S

CBI-S
CBI-E

O
PMI-M

PMI-S
PMI-C GfK IoP IoS Exp Imp UR

EMP

Vacancies
Hours

Mortg
age

VISA

 
 
3
 
 
6
 
 
9
 
 

12
 
 

15
 
 

18
 
 

N
ow

ca
st

 P
er

io
ds

T-SV-t-HS

0

0.2

0.4

0.6

0.8

1

Average Inclusion Probability Pre-Pandemic

b) Including the Pandemic (2011Q1-2021Q2)

CBI-E
S

CBI-S
CBI-E

O
PMI-M

PMI-S
PMI-C GfK IoP IoS Exp Imp UR

EMP

Vacancies
Hours

Mortg
age

VISA

 
 
3
 
 
6
 
 
9
 
 

12
 
 

15
 
 

18
 
 

N
ow

ca
st

 P
er

io
ds

T-SV-t-GIGG

0

0.2

0.4

0.6

0.8

1

CBI-E
S

CBI-S
CBI-E

O
PMI-M

PMI-S
PMI-C GfK IoP IoS Exp Imp UR

EMP

Vacancies
Hours

Mortg
age

VISA

 
 
3
 
 
6
 
 
9
 
 

12
 
 

15
 
 

18
 
 

N
ow

ca
st

 P
er

io
ds

T-SV-t-HS

0

0.2

0.4

0.6

0.8

1

Average Inclusion Probability Including the Pandemic

Figure 3.6: Average posterior inclusion probabilities over high frequency lags for
each indicator.
Notes: Heatmaps show nowcast periods on the y-axis, darker colour indicates higher cu-
mulative posterior inclusion probabilities of all high frequency lags of an indicator. Upper panel a)
shows results for evaluation sample prior to the pandemic, lower panel b) including the pandemic.
Sub-plots show different prior specifications of the Trend-SV-t BMIDAS model: GIGG with
Almon lag restrictions (GIGG-AL), GIGG with U-MIDAS lags (GIGG-UM), and horseshoe prior
with Almon lag restrictions (HS-AL).

64



models that prefer sparse model solutions (Giannone et al., 2021; Fava and Lopes,

2021; Kohns and Bhattacharjee, 2022; Cross et al., 2021). We find, however, that

denser specifications, as the horseshoe prior model, or the MF-DFM, do not nec-

essarily forecast better than the group-sparse model with GIGG prior, particularly

in presence of the Covid-19 shock affecting the economy heterogeneously. Similar

results for forecasting applications have been found for comparable aggressive shrink-

age priors to the horseshoe in Fava and Lopes (2021) who show elevated variable

selection uncertainty with strongly correlated data (Piironen et al., 2020).

3.4.4 Sensitivity Analyses

We conduct two sensitivity analyses, one with respect to the stability of nowcast

performance of our preferred model when holding coefficient fixed over the Covid-

19 pandemic, and the other using an unrestricted MIDAS specification instead of

Almon lag polynomials. Nowcast evaluation results in comparison to the baseline

specification are presented in Figure (3.7).
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Days Until GDP Release

Figure 3.7: Nowcast performance of alternative specifications of the Trend-SV-t-
BMIDAS.
Notes: The Trend-SV-t-GIGG-UMIDAS uses U-MIDAS sampled data (Foroni et al., 2015)
instead of Almon restricted lags. The Trend-SV-t-GIGG pre-Cov.coeff nowcasts Q1-2020 onwards
with coefficients based on the sample that ends with Q4-2019, and nowcasts evaluated over four
quarters, Q3-2020 to Q2-2021.

Holding model coefficients fixed over the Covid-19 pandemic is motivated by

Schorfheide and Song (2021) who show that MF-VAR models without flexible error

components can achieve similar nowcast performance (after the trough) by simply

omitting the problematic first two quarters of 2020 in the estimation sample, which

is similar to using scale processes that inversely move with periods of large volatility,

thereby down-weighting their effect. We nowcast with our model starting Q1-2020
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with parameter coefficients based on the sample ending with Q4-2019. If the GDP

dynamics during the Covid-19 shock truly were only outliers in the UK, the nowcast

performance for Q3-2020 to Q2-2021 should be similar to those with the original

Trend-SV-t-GIGG model. However, we find that using pre-pandemic coefficients,

the model performs significantly worse both in point as well as density nowcasts

up until about 40 days until GDP release, and then shows similar performance.

As discussed in section 3.4.3, with onset of the pandemic, the baseline model with

GIGG prior shifts variable selection towards indicators reflecting sectors that were

hit strongly by the shock. These dynamics are not picked up when the Covid-19

period is omitted from the estimation.

In a second sensitivity exercise, we relax the assumption of a restricted MIDAS

structure via Almon-polynomial distributed lags. The Trend-SV-t-BMIDAS with

unrestricted MIDAS (U-MIDAS) structure has comparable performance, but does

somewhat worse during later nowcast periods. This indicates that the additional reg-

ularisation via Almon-polynomials helps nowcast performance when the dimension

of the information set increases, but also that the GIGG prior adapts well enough

to the U-MIDAS data to produce comparable performance to the baseline model.

Results for inclusion probabilities using a U-MIDAS structure are comparable to

the baseline (available upon request), indicating that the sparse specification stems

from imposing the GIGG group-shrinkage prior and not from Almon-polynomial

restrictions.

3.5 Simulation Study

In the nowcasting exercise using the GIGG prior, we find evidence for a sparse

set of groups that drive the cyclical component. Since this is in opposition to the

existing canon in the macro forecasting literature (Giannone et al., 2021; Cross

et al., 2020) which finds that dense components usually drive forecasts of aggregate

economic time-series, we investigate in this section parameter estimation, variable

selection and forecasting precision via a simulation study. In particular, we are in-

terested in how our model’s performance generalises to a variety of different MIDAS

data-generating-processes (DGPs) where we change correlation structures, degrees

of sparsity and MIDAS lag profiles. And to abstract from any estimation issues

stemming from time stochastic components, we consider in this section only DGPs

without Trend and SV-t components. This also serves to facilitate comparability to

similar simulation studies such as in Mogliani and Simoni (2021). We generate data

from the following model:
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yt = β0 +
K∑
k=1

βk

pk+1∑
j=0

θjz
(m)
j,k,t−h + ϵyt , ϵ

y
t ∼ N(0, σ2)

x
(m)
k,t−h = µ+ ρx

(m)
k,t−h−1 + ϵk,t, k = 1, · · · , K,

(3.12)

where x
(m)
k,t are the un-transformed high-frequency data (X

(m)
t = (x

(m)
1,t , · · · , x

(m)
K,t )),

and z
(m)
k,t are the MIDAS transformed high-frequency lags. This notation distin-

guishes between the MIDAS lag profile, modelled via normalised weights θj, and

the impact it has on yt, βk. By including zero entries in βk, we are able to control

the group-wise degree of sparsity. High-frequency data are considered in monthly

frequency, m = 3, and we consider Lk = 24 monthly lags, to make the simulation

study comparable to Mogliani and Simoni (2021)20. The correlation structure of

the high-frequency data, X
(m)
t , are determined by ϵKt = (ϵ1,t, · · · , ϵK,t) ∼ N(0,ΣK),

where ΣK has elements σ
|k−k′|
k .

We vary the DGP along 4 different dimensions: 1) the number of groups, K, 2)

the sparsity in β, 3) cross-sectional high-frequency correlation σk, and 4) the MIDAS

lag profile in θ. We consider relatively small to large dimensions, K = {30, 50, 100}.
For β, we generate from a sparse regime β = (0, b1, b2, 0, b3, b4, 0, 0, b5,0), and a dense

regime where we populate randomly 70% of the entries with non-zero coefficients.

For both sparsity regimes, we generate bk ∼ N(0, 1) such that both small and

large coefficients are present in the DGPs. To test the prior in both low and high

correlation data environments, we set σk ∈ {0.5, 0.9}. Finally, for the weight profiles
θ, we follow Andreou et al. (2010) and Mogliani and Simoni (2021) by considering

normalised weights which follow a steep, moderately steep and flat decay across the

24 high frequency lags, visualised in Figure 3.8.21 The profiles also serve to test how

well the prior adapts to varying degrees of within-group sparsity. The steep profile

sets coefficients for most lags to 0, while the flat profile’s coefficients are entirely

non-zero. We generate 100 simulated data sets for each DGP variant.

We specify the GIGG prior, as in the empirical application with the hyper-

parameters set to ak = 1/T, bk = 0.5, ∀k, and apply the sparsification algorithm in

3.9 at each Gibbs draw. To put the performance of the GIGG prior into perspec-

tive, we consider the non-grouped horseshoe prior with group-sparsification as in

the empirical application, as well as the recently proposed group prior of Mogliani

and Simoni (2021), the group-adaptive-lasso prior with spike-and-slab sparsifica-

tion (GAL-SS). The spike-and-slab paradigm used in the GAL-SS model is con-

sidered the canonical method for Bayesian variable selection and has been recently

re-popularised in the macroeconomic forecasting literature after Giannone et al.

20 We tested the simulations with Lk = 6 as in the empirical application. The results are
comparable and available upon request

21 The weights are generated from a non-linear Almon function. See for more details Andreou
et al. (2010).
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Figure 3.8: MIDAS lag profiles for a steeply, medium steeply, and flatly decaying
high-frequency lag profiles over 24 for lags. These are generated from a normalised
non-linear Almon function as in Andreou et al. (2010).

(2021) who have shown that the priors’ flexibility to nest dense and sparse model

posteriors, outperforms sparsity favouring modelling techniques for model selection

and forecasting in aggregate macroeconomic data. Mogliani and Simoni (2021) show

that the GAL-SS compares favourably to competing lasso and group spike-and-slab

shrinkage priors. The GAL-SS, similar to the GIGG prior, has an adaptive group-

level shrinkage scale, but, importantly, does not feature an individual covariate level

shrinkage scale to model the degree of correlation between the mixed frequency pa-

rameters (see Mogliani and Simoni (2021) for further details). Further, while the

GAL-SS conducts variable selection via group-spike-and-slab22, our approach does

variable selection via a decision theoretic approach. Priors on the error variance, σ,

for all models are assumed to be uninformative.

3.5.1 Evaluation

To evaluate the priors’ performance we measure the average root-mean-squared-error

(RMSE) of the MIDAS coefficients:

1

M

√
||θ̂ − θ||22, (3.13)

where M is the number of simulations, set to 100, and θ̂ is the posterior mean

based on the retained MCMC draws. To support the information about zero (i.e.

“inactive”) vis-a-vis non-zero (“active”) components of each DGP, we report RMSE

for each set also separately as RMSE(AC) and RMSE(A), respectively. To gauge

22 This can be shown to be linked to model marginal likelihoods, which, however, can be very
sensitive to the hyperparameters of the prior (Barbieri and Berger, 2004; O’Hara and Sillanpää,
2009).
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nowcasting performance, we generate predictions for the last observation of each

sample, and treat the information set as fully available. These are evaluated via the

RMSFE based on the the mean of the posterior predictive distribution, as as the

CRPS, following 3.11. Predictions are generated, as in the empirical application via

Monte Carlo integration.

Lastly, to measure the precision on variable selection, we compute Matthew’s

correlation coefficient (MCC) as well as the true positive rate (TPR) and false

positive rate (FPR). The the MCC gives an overall measure of goodness of variable

selection based on the true and false positives and negatives and the TPR and FPR

indicate how well the model selects the true set and avoids the false set, respectively.

These are calculated as:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.14)

TPR =
TP

TP + FN
(3.15)

FPR =
FP

FP + TN
(3.16)

where T stands for ”True”, F stands for ”False”, N stands for ”Negative”, and P

stands for ”Positive”. The MCC is between -1 (worst) and +1 (best), while the

TPR and FPR rate will range between 0 and 1. Higher TPR and lower FPR are

better, ceteris paribus.

3.5.2 Simulation Results

Tables 3.3, 3.4, and B.2 in the appendix give the average evaluation metrics over

the Monte Carlo simulations. 23 Table 3.3 focuses on the sparse and table 3.4

on the dense DGPs. We show the results of the horseshoe prior (bold) in levels

as the benchmark, to which the grouped priors are shown in relative terms. To

facilitate the discussion, values lower than 1 for RMSE (incl. active and inactive),

FPR, RMSFE and CRPS indicate out-performance of the group prior relative to the

horseshoe, while values higher than 1 for MCC and the TPR entail out-performance.

And to summarise the results, we plot in figure 3.9 the average relative evaluation

metrics which is pooled across all but the coefficient dimensions. We will first

review the general findings based on the horseshoe prior and then compare that to

the performance of the GIGG and GAL-SS.

23 We leave the medium steep results to the appendix as they are generally in between the steep
and flat DGP results.
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Figure 3.9: Average relative performance for a) the parameter estimation precision
(RMSE,RMSE(A), RMSE(AC)), b) variable selection (MCC,TPR,FPR) as well
as nowcasting (RMSFE,CRPS). Each of these metrics are relative to those of the
horseshoe prior benchmark. The horizontal axis of each panel is grouped into the
two group-priors and by the covariate dimension K = {30, 50, 100}.
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Table 3.3: Monte Carlo Simulations: Sparse Coefficient Vector

Prior K σk σ RMSFE RMSE(A) RMSE(AC) MCC TPR FPR RMSFE CRPS

DGP 1: Steep MIDAS Coefficients

HS 30 0.5 0.754 0.017 0.041 0.003 0.327 0.539 0.197 1.379 0.984
0.9 0.668 0.022 0.053 0.005 0.288 0.558 0.239 1.065 0.873

50 0.5 0.739 0.016 0.046 0.007 0.295 0.59 0.203 1.123 0.761
0.9 0.608 0.021 0.05 0.011 0.248 0.475 0.202 0.977 1.136

100 0.5 0.688 0.012 0.046 0.005 0.281 0.588 0.139 1.046 0.729
0.9 0.615 0.02 0.068 0.012 0.127 0.441 0.217 0.899 0.789

GAL-SS 30 0.5 0.754 0.7 0.72 0.36 1.71 1.33 0.62 0.82 0.64
0.9 0.668 0.78 0.78 0.48 1.85 1.14 0.41 1.02 0.59

50 0.5 0.739 0.57 0.63 0.1 2.03 1.29 0.39 0.63 0.57
0.9 0.608 0.82 0.99 0.46 1.82 1.14 0.35 0.71 0.34

100 0.5 0.688 0.53 0.6 0.12 2.14 1.25 0.29 0.82 0.62
0.9 0.615 0.53 0.68 0.09 4.2 1.31 0.14 0.73 0.44

GIGG 30 0.5 0.754 0.67 0.68 0.64 1.85 1.39 0.55 0.81 0.64
0.9 0.668 0.66 0.66 0.53 1.91 1.23 0.47 0.97 0.57

50 0.5 0.739 0.55 0.60 0.23 2.02 1.34 0.44 0.61 0.5
0.9 0.608 0.55 0.7 0.22 2.14 1.36 0.40 0.69 0.33

100 0.5 0.688 0.53 0.58 0.23 1.94 1.32 0.45 0.82 0.63
0.9 0.615 0.47 0.6 0.10 4.22 1.47 0.22 0.75 0.43

DGP 3: Flat MIDAS Coefficients

HS 30 0.5 0.388 0.011 0.025 0.002 0.246 0.349 0.122 0.853 0.246
0.9 0.428 0.015 0.028 0.007 0.164 0.381 0.220 0.651 0.812

50 0.5 0.361 0.011 0.028 0.005 0.150 0.290 0.142 0.674 0.801
0.9 0.371 0.017 0.03 0.012 0.105 0.3 0.195 1.004 0.919

100 0.5 0.35 0.009 0.03 0.005 0.087 0.27 0.134 0.821 0.691
0.9 0.373 0.016 0.032 0.014 0.057 0.322 0.235 1.058 0.749

GAL-SS 30 0.5 0.388 0.79 0.80 1.26 1.89 1.94 1.39 0.83 0.43
0.9 0.428 0.92 1 0.67 1.98 1.21 0.65 0.96 0.40

50 0.5 0.361 0.60 0.71 0.34 3.12 2.35 0.84 0.98 0.45
0.9 0.371 0.50 0.79 0.23 3.74 1.71 0.49 0.59 0.36

100 0.5 0.350 0.58 0.66 0.41 4.72 2.38 0.62 0.59 0.38
0.9 0.373 0.42 0.86 0.14 6.43 1.39 0.21 0.51 0.39

GIGG 30 0.5 0.388 0.76 0.76 1.22 2.27 1.96 0.89 0.77 0.41
0.9 0.428 0.80 0.87 0.70 2.37 1.40 0.63 0.89 0.38

50 0.5 0.361 0.57 0.68 0.33 3.61 2.31 0.56 0.94 0.41
0.9 0.371 0.49 0.72 0.24 4.48 1.82 0.39 0.6 0.36

100 0.5 0.35 0.54 0.64 0.30 5.52 2.36 0.43 0.62 0.39
0.9 0.373 0.37 0.79 0.12 7.29 1.57 0.22 0.52 0.4

Notes: The table shows in bold the level of each of the evaluation metrics, while those of the GAL-SS and
GIGG are in relative terms to the corresponding entry of the horseshoe model. σ is the Monte Carlo error of
the DGP. These results refer to sparse DGPs only.

Results of the Horseshoe Prior

In line with previous studies (e.g., Giannone et al. (2021); Huber et al. (2019);

Bitto and Frühwirth-Schnatter (2019)), we find an increase in parameter estimation

error and a decrease in variable selection accuracy as a function of in cross-sectional

correlation, denseness of the DGP as well as the covariate size for the horseshoe

benchmark.

The effect of larger correlation comes at no surprise, as it becomes increasingly

hard for shrinkage priors to distinguish between signals and noise, leading to in-

creases in false selection of inactive groups (see the FPR columns of both tables).

This causes a general decrease in the quality of variable selection (column MCC)

and an increase in RMSE, where RMSE for the inactive set (column RMSE(AC))

increases more than for the active set (column RMSE(A)). It should be noted,
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though, that the level of RMSE for the active set is always larger than that for the

inactive one, independent of the DGP. This is a common finding for shrinkage pri-

ors (Zhang et al., 2022; Cross et al., 2020; Kohns and Bhattacharjee, 2022), which

similar to frequentist lasso methods, retain larger non-zero bias in finite samples for

active coefficients than for inactive ones.

It is therefore unsurprising to find also that the horseshoe prior struggles more

with dense DGPs (first panel, table 3.4) than with sparse DGPs, showing higher

RMSE for active, but also inactive sets, along with much lower MCC. Lower MCC

is driven by larger FPR. And since the TPR is also higher with dense DGPs, this

suggests that the horseshoe prior over-selects groups into the model.

The response to increasing the dimension of the covariate set, K, has a differing

effect, most notably depending on the degree of sparsity. While table 3.3 shows

either stable RMSE (flat DGP, 4th panel) or a decrease in RMSE (steep DGP,

1st panel), the dense DGPs in table 3.4 show clear increases in overall estimation

error (flat and steep). Similar findings are reported Mogliani and Simoni (2021)

(and references therein) for sparse DGPs and is related to the fact that for those

simulations, the extra inactive covariate groups are less and less correlated with

increasing K by design, for which estimation error will be lower. Thus total RMSE

may even decrease in sparse settings with larger K 24.

In terms of nowcasting (columns RMSFE and CRPS), the worse parameter pre-

cision and variable selection in dense compared to sparse DGPs result in compara-

tively much larger RMSE and CRPS. And similar to Mogliani and Simoni (2021),

we find that correlation tends to not adversely affect nowcasting performance, while

the effect of larger K again depends on the degree of sparsity. This makes intuitive

sense as nowcaststs can still be accurate when selecting wrong groups, as long as

the signal for yt is highly correlated among the covariates.

Finally, when comparing flat to steep DGPs, we find that RMSE is generally

lower for the former, despite variable selection (see MCC) being worse. This is

likely due to the the flat coefficients already being closer to zero compared to steep

DGPs such that falsely eliminating active groups has relatively less effect on overall

RMSE. In line with this, the true positive rate is far lower for flat than for the

steep DGPs. A complicating factor for the flat DGP in general is that the end-point

restrictions falsely force the estimated profiles to end smoothly at zero, and hence,

lower TPR compared to steep DGPs, for which the tail restrictions are a good fit,

are somewhat expected25.

24 Similarly, variable selection suffers less in sparse than in dense DGPs as judged by the MCC.
25 Using U-MIDAS in these DGPs could allow the prior to find more suitable weights for these

DGPs, however at the cost of increased dimensionality.
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Results of the Group Priors

Compared to the horseshoe prior, the group priors improve general performance

considerably, with relative RMSE all below 1, MCC larger than 1 and nowcast

metrics below 1. In terms of parameter precision, errors for the inactive sets are

greatly reduced, while better variable selection is mostly driven by a better FPR,

particularly in higher dimensions. Hence, the horseshoe over-selects compared to

the grouped priors, which was indicative already from the nowcast application. It

is noteworthy that the better variable selection has greater impact on uncertainty

quantification than point forecasts with the CRPS being relatively lower than the

RMSE compared to the horseshoe.

Comparing the GIGG to the GAL-SS, figure 3.9 highlights that the GIGG almost

always outperforms the GAL-SS, with the differences remaining remarkably constant

across evaluation metrics and covariate sizes. The patterns that emerge are that 1)

the GIGG shows relatively better performance in the active coefficient sets than in

the inactive ones, 2) GIGG has overall better variable selection as gauged by MCC

in K = {30, 50}, and 3) slightly better nowcasting performance. With respect to

variable selection, we find that out-performance in MCC is driven by higher TPR,

albeit the GIGG incurring slightly larger FPR. Hence, the GAL-SS remains more

conservative on average in variable selection compared to the GIGG. These general

trends, though, mask some interesting dynamics across individual DGPs.

Table 3.3 shows that the GIGG prior tends to outperform the GAL-SS in terms

of parameter precision when correlation is high, such as the sparse, steep (3.3, third

panel) and sparse, flat DGPs (3.3, sixth panel), as well as in dense DGPs more

generally (3.4). For these sets of DGPs, the lower RMSE are driven by compara-

tively larger decreases in errors for the active coefficients than in the inactive sets26.

This is likely driven by two interrelated explanations. On the one hand, spike-and-

slab priors discretise the parameter space and thus can suffer from worse mixing

than continuous shrinkage priors with increases in correlation (Ishwaran et al., 2005;

Malsiner-Walli and Wagner, 2018; Piironen et al., 2020), and on the other, the GIGG

benefits from the extra covariate level scale which helps in adapting to within group

sparsity observed for the steep DGP in particular. For the dense DGPs in which

the active set is relatively more important for overall RMSE, we therefore see much

improved performance. As soon as correlation is low, though, the margins between

the GAL-SS and GIGG tend to decrease.

Variable selection is very much in line with this narrative. The GAL-SS shows

similar MCC for low correlation, sparse DGPs, but falls off compared to the GIGG

on all other settings, driven mostly by lower TPR, albeit an often also lower FPR,

particularly in high correlation DGPs.

26 For flat DGPs generally, GIGG tends to consistently outperform the GAL-SS, albeit with
smaller margins than for the steep DGPs.
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Forecasting, is often either very similar or slightly better for the GIGG, although

the differences are smaller than for parameter precision and variable selection. This

is particularly true in the higher correlation settings, where selecting the wrong

subgroup is less important. That being said, in large dimensions, larger differences

in forecasts appear in dense settings which is likely explained by the larger relative

importance of parameter errors in the active set, which is generally lower for the

GIGG.

All in all, the results from the simulation exercise confirm the intuition gathered

in the exposition of the GIGG prior and the nowcast application. For one, we find

the GIGG, aided by more flexible within-group shrinkage, provides smallest estima-

tion error when within-group sparsity is present and provides a large improvement

over the horseshoe and even improves on the GAL-SS group-shrinkage prior when

correlation is high. And for the other, the GIGG improves over both priors in dense

DGPs, for which the GIGG displays comparatively smaller estimation error for the

active set. This is also likely facilitated by better mixing offered from the contin-

uous nature of the shrinkage compared to the GAL-SS. The simulations have also

shown that the sparsification algorithm provides variable selection that is on par

with the GAL-SS or considerably outperforms in the dense and higher correlation

DGPs. Hence, these results give further credibility to the variable selection patterns

found in the empirical application.

3.6 Conclusion

In this chapter, we have proposed a new Bayesian MIDAS framework, the T-SV-

t-BMIDAS model, for nowcasting quarterly GDP growth, combined with a flexible

group prior and variable selection algorithm motivated by Bayesian decision theory.

In an application of the model to nowcasting UK GDP growth, we have shown

that our model is able to capture sharp changes in GDP growth as seen during the

Covid-19 pandemic in a relatively timely manner fashion, and works well also in

more tranquil times, particularly at a later stage of the data release cycle, when it

flexibly draws signals from “hard” indicators rather then survey data only.

Two important insights regarding the role of model features and prior choice

emerge. First, a long-run trend or t-distributed stochastic volatility, substantially

improve forecast performance relative to a simple BMIDAS. Second, the new shrink-

age prior enhances nowcast performance by inducing group-wise sparsity while en-

abling the model to flexibly shift between signals. This feature proves particularly

relevant once the Covid-19 pandemic is included into the analysis, since the hetero-

geneous nature of the shock calls for a nowcasting framework that can flexibly shift

across signals from sparse roups of indicators, rather than relying on dense signals

due to aggregate macroeconomic co-movement.
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Table 3.4: Monte Carlo Simulations: Dense Coefficient Vector

Prior K σk σ RMSFE RMSE(A) RMSE(AC) MCC TPR FPR RMSFE CRPS
DGP 1: Steep MIDAS Coefficients

HS 30 0.5 1.466 0.056 0.066 0.015 0.097 0.549 0.447 2.645 1.883
0.9 1.613 0.066 0.076 0.027 0.061 0.588 0.523 2.439 1.719

50 0.5 2.05 0.068 0.08 0.021 0.086 0.499 0.407 4.068 3.244
0.9 2.004 0.075 0.086 0.032 0.036 0.528 0.489 3.713 2.498

100 0.5 2.915 0.073 0.085 0.022 0.051 0.443 0.389 6.514 6.157
0.9 2.76 0.079 0.093 0.029 0.008 0.405 0.397 3.529 4.457

GAL-SS 30 0.5 1.466 0.82 0.83 0.53 2.75 0.98 0.57 0.85 0.72
0.9 1.613 1.04 1.03 0.94 2.06 0.56 0.40 0.84 0.64

50 0.5 2.05 0.94 0.95 0.70 2.09 0.74 0.47 1.08 0.74
0.9 2.004 0.99 0.99 0.96 2.06 0.45 0.35 0.95 0.74

100 0.5 2.915 1.04 1.05 0.69 2.03 0.38 0.23 1.04 0.67
0.9 2.76 1.07 1.07 0.81 9.76 0.36 0.22 0.91 0.41

GIGG 30 0.5 1.466 0.63 0.63 0.51 3.60 1.18 0.61 0.84 0.66
0.9 1.613 0.80 0.82 0.57 2.50 0.85 0.64 0.84 0.64

50 0.5 2.05 0.70 0.70 0.73 2.47 1.12 0.81 0.85 0.59
0.9 2.004 0.81 0.82 0.71 2.62 0.84 0.70 0.91 0.67

100 0.5 2.915 0.87 0.87 0.88 2.07 1.00 0.86 0.77 0.47
0.9 2.76 0.91 0.92 0.81 5.93 0.96 0.85 0.92 0.42

DGP 3: Flat MIDAS Coefficients
HS 30 0.5 0.824 0.030 0.035 0.011 0.070 0.419 0.346 1.499 0.909

0.9 0.731 0.036 0.040 0.018 0.049 0.443 0.394 1.460 0.975
50 0.5 1.034 0.034 0.039 0.017 0.040 0.394 0.352 2.129 1.333

0.9 0.969 0.045 0.049 0.03 0.011 0.454 0.442 1.360 1.037
100 0.5 1.434 0.034 0.039 0.016 0.028 0.332 0.304 2.841 1.644

0.9 1.347 0.041 0.046 0.025 0.010 0.354 0.343 3.370 1.876
GAL-SS 30 0.5 0.824 0.93 0.93 0.86 2.80 1.22 0.88 0.79 0.80

0.9 0.731 0.97 0.98 0.82 1.71 0.70 0.59 1.08 0.84
50 0.5 1.034 0.97 0.98 0.87 2.87 0.98 0.76 0.82 0.70

0.9 0.969 0.87 0.89 0.66 6.00 0.56 0.44 0.90 0.66
100 0.5 1.434 1.10 1.09 1.14 2.19 0.70 0.59 0.79 0.76

0.9 1.347 1.03 1.02 1.01 2.85 0.41 0.36 0.84 0.80
GIGG 30 0.5 0.824 0.84 0.84 0.78 3.34 1.25 0.79 0.77 0.77

0.9 0.731 0.85 0.85 0.85 2.04 0.89 0.74 1.01 0.76
50 0.5 1.034 0.89 0.90 0.80 2.67 1.08 0.89 0.83 0.73

0.9 0.969 0.76 0.79 0.54 6.47 0.79 0.65 0.95 0.70
100 0.5 1.434 0.99 1.00 0.89 2.18 1.01 0.90 0.77 0.74

0.9 1.347 0.90 0.91 0.76 2.67 0.81 0.76 0.74 0.71

Notes: The table shows in bold the level of each of the evaluation metrics, while those of the GAL-SS and
GIGG are in relative terms to the corresponding entry of the horseshoe model. σ is the Monte Carlo error of
the DGP. These results refer to dense DGPs only.

A simulation exercise to investigate how well the proposed combination of the

GIGG prior with sparsification generalise to a host of MIDAS settings reveals that

the GIGG provides substantial improvement in parameter estimation, variable se-

lection and nowcasting accuracy compared to the horseshoe prior and even improves

on frontier group shrinkage priors in high correlated as well as dense DGPs. The

covariate level shrinkage scale allows to adapt flexibly also to within-group sparsity

situations. The good variable selection results, particularly for dense DGPs, which

is commonly found for aggregate macroeconomic data, show that the GIGG is a

competitive default prior for MIDAS modelling problems.
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Chapter 4

Horseshoe Prior Bayesian Quatile

Regression

4.1 Introduction

Quantile regression has been an important tool in the econometricians’ toolkit when

estimating heterogeneous effects across the conditional response distribution since

the seminal work of Koenker and Bassett (1978). In contrast to least squares meth-

ods, it estimates quantiles of the dependent variables’ conditional distribution di-

rectly, which allows for richer inference than solely focusing on the conditional mean.

While highly influential in the risk-management and finance literature in calculating

risk measures such as VaR (the loss a portfolios value incurs at a specified proba-

bility level), it has experienced a recent surge in the macroeconomic literature to

quantify downside risks of the aggreagate economy to financial conditions (Adrian

et al., 2019; Figueres and Jarociński, 2020; Adams et al., 2020; Hasenzagl et al.,

2020; Prasad et al., 2019; Hasenzagl et al., 2020; Carriero et al., 2020b; Korobilis,

2017; Mazzi and Mitchell, 2019).

A challenge for these purposes is that sources of risk can be numerous such that

simple quantile regression is often rendered imprecise or infeasible in high dimen-

sions. While a variety of regularization and dimension reduction techniques have

been proposed for macroeconomic forecasting, (Stock and Watson, 2002, 2012b; Kim

and Swanson, 2014; Bai and Ng, 2008; De Mol et al., 2008), extensions of high di-

mensional methods, in particular Bayesian methods, applied to quantile regression,

remain relatively scant.

The Bayesian quantile regression approach, as popularized by Yu and Moyeed

(2001), is based on the asymmetric Laplace likelihood (ALL), which has a spe-

cial connection to the frequentist quantile regression solution, in that its maximum

likelihood estimates are asymptotically equivalent (under certain regularity condi-

tions, see Sriram et al. (2013)) to traditional quantile regression with a check-loss

function (Koenker, 2005). A hurdle in the Bayesian literature has been that ALL
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based methods result in improper posteriors with any but non-informative or ex-

ponential Laplace priors, where the latter results in the popular Bayesian Lasso

quantile regression (Li et al., 2010; Alhamzawi and Yu, 2013; Alhamzawi et al.,

2012; Chen et al., 2013). The broader Bayesian shrinkage literature has shown,

however, that global-local shrinkage priors such as the horseshoe (Carvalho et al.,

2010) and Dirichlet-Laplace prior (Bhattacharya et al., 2016) offer asymptotic as

well as computational advantages over the former methods (Bhadra et al., 2019).

These methods have not yet been considered for the Bayesian quantile regression.

The aim of this chapter is to bridge this gap and extend the global local prior to

quantile regression.

This chapter’s primary contribution is twofold. First, we adapt the horseshoe

prior of Carvalho et al. (2010) for the Bayesian quantile regression framework (BQR)

of Yu and Moyeed (2001). Second, we develop an efficient posterior sampler for the

quantile specific regression coefficients based on data augmentation akin to Bhat-

tacharya et al. (2016) which speeds up computation significantly for high dimensional

quantile problems.

To showcase the performance of the horseshoe BQR (HS-BQR) we provide a

large scale Monte Carlo study as well as a high dimensional VaR application to

U.S. GDP (often called GaR in the literature). In the Monte Carlo study we show

that the proposed estimator provides more stable and at worst, similar performance

compared to a variety of Bayesian lasso quantile regression methods in terms of

coefficient bias and forecast accuracy. We find that, particularly, tails of the dis-

tributions are consistently better estimated by the HS-BQR which echos findings

from the Bayesian VaR literature (Chen et al., 2012). In the GaR application we

show that the HS-BQR produces better calibrated forecast densities compared to

the Bayesian alternatives and importantly provides the best performance for lower

and upper tails which makes it a powerful tool for recession probability monitor-

ing. The framework provided in this chapter has the additional advantage that the

derived algorithms can be directly applied to other global-local priors that can be

expressed as scale mixture of normals.1

In what follows, we firstly present the methodological framework of the proposed

model and sampling algorithm. Following this, we will provide evidence from Monte

Carlo simulations and an empirical application of the favorable performance of the

HS-BQR compared to alternative methods. We conclude with further generaliza-

tions of the algorithms provided and a discussion of our results.

1 For an overview of global-local priors see Polson and Scott (2010).
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4.2 Methodology

4.2.1 Bayesian Quantile Regression

Assuming a linear model such as

yt = x′tβ + ϵt, t = 1, 2, · · · , T, (4.1)

where {yt}Tt=1 is a scalar response variable and {xt}Tt=1 a K × 1 known covariate

vector, the objective function of quantile regression can be expressed as the min-

imised sum of weighted residuals which are zero in expectation for the given quantile

p ∈ (0, 1):

β̂p = min
β

n∑
t=1

ρp(yt − x′tβ), (4.2)

whose solution β̂p, is a K × 1 quantile specific coefficient vector. Note that the

expected quantile Q̂p(Y |X) = Xβ̂p is a consistent estimator of Qp(Y |X), inde-

pendent of any parametric assumption about residuals {ϵ}Tt=1 (Koenker, 2005).

We will maintain the assumption throughout that chapter that the design X is

known. The loss function ρp(.) is often expressed as a tick loss function of the form

ρp(y) = [p − I(y < 0)]y where I(.) is an indicator function taking on a value of 0

or 1 depending on whether the condition is satisfied. As noted by Koenker et al.

(2017), this loss function is proportional to the negative log density of the asymmet-

ric Laplace distribution. This connection has been used to recast quantile regression

as a maximum likelihood solution of model (4.1) with an Asymmetric-Laplace distri-

bution, denoted as ALD(p, 0, σ), where σ denotes the scale of the ALD. Assuming

an ALD error distribution, the working likelihood f(Y |X, βp, σ) becomes:

f(Y |β, σ) = pT (1− p)T

σT

T∏
t=1

[
e−ρp(yt−x

′
tβp)/σ

]
. (4.3)

4.3 remains a working likelihood since the quantile estimator is non-parametric about

the error generating process (Wang, 2012). As posterior moments with conventional

priors are not analytically available with an ALD working likelihood, it has become

standard practice in the literature to use a mixture representation, proposed by

Kozumi and Kobayashi (2011), in which the ALD error process can be recovered as

a mixture between an exponentially distributed variable zt with mean σ, zt ∼ exp(σ),

and a standard normal variable, ut, ut ∼ N(0, 1):
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ϵt = ξzt + τ
√
σztut

ξ =
1− 2p

p(1− p)

τ 2 =
2

p(1− p)

(4.4)

where ξ and τ are deterministic quantile specific parameters. The conditional like-

lihood stacked over all observations thus becomes:

f(Y |X, βp, Z, σ) ∝ det(Σ)
1
2 exp

{
− 1

2

[
(y −Xβp − ξZ)′Σ(y −Xβp − ξZ)

]}
, (4.5)

where Y = (y1, · · · , yT )′, X = (x′1, · · · , x′T )′, Z = (z1, · · · , zT )′ and
Σ = diag(1/(τ 2z1σ), · · · , 1/(τ 2zTσ)). Hence, the mixture representation results in

a normal kernel for the likelihood which enables analytical solutions for conditional

posteriors as shown below.

Throughout the chapter, we consider priors on βp that take the following form:

βp ∼ N(0K ,Λ∗), (4.6)

where a prior mean of zero implies shrinkage toward sparsity and the prior variance

parameters, Λ∗ control the amount of shrinkage toward zero.

By applying independent priors p(βp, σ, Z) = p(βp)p(σ)p(Z|σ), the conditional

posterior for βp is normal:

p(βp|·) ∼ N(βp,Λ
−1

∗ )

βp = Λ
−1

∗ (X ′Σ(Y − ξZ))

Λ∗ = (X ′ΣX + Λ−1
∗ ).

(4.7)

The conditional posterior of the scale parameter is:

p(σ|·) ∼ G−1(a, b)

a = a+
3T

2

b = b+
T∑
t=1

(yt − x′tβp − ξzt)
2

2ztτ 2
+

T∑
t=1

zt,

(4.8)

where G−1 stands for the inverse-Gamma distribution. Finally, the conditional pos-

terior for zt is:
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p(zt|·) ∼ 1/iG(ct, dt)

ct =

√
ξ2 + 2τ 2

|yt − x′tβp|

dt =
ξ2 + 2τ 2

στ 2
,

(4.9)

where iG stands for the inverse Gaussian density with location (ct) and shape (dt)

parameter.

The conditionally conjugate posteriors (4.7,4.8,4.9) allow for efficient Gibbs sam-

pling algorithms which for the independent prior setup have been shown to be geo-

metrically ergodic by Khare and Hobert (2012), independent of any assumptions on

X. Hence, X could include more variables than observations.

4.2.2 Shrinkage Priors

In order to efficiently estimate the posterior of a large dimensional coefficient vector

in small samples, informative priors are needed. Ideally, these priors are able to

separate noise variables from signals such that the noise is shrunk towards zero and

signals attain their unrestricted parameter values. The global-local prior framework,

initially formalized in Polson and Scott (2010), follows a particularly suitable hier-

archy for such estimation problems, in which global scales dictate the overall level

of sparsity, while local scales, specific to each covariate, allow to reduce or tighten

the pull toward zero depending on the signal:

βj,p|φ2
j , ϑ

2 ∼ N(0, φ2
jϑ

2), j ∈ (1, · · · , K)

φj ∼ π(φj), j ∈ (1, · · · , K)

ϑ ∼ π(ϑ).

(4.10)

Figure 4.1: Distribution of κj, the shrinkage coefficient implied by the horseshoe
prior and the Lasso prior.
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The horseshoe prior of Carriero et al. (2020b), in particular, employs two half

Cauchy distributions for φ and ϑ:

φj ∼ C+(0, 1)

ϑ ∼ C+(0, 1),
(4.11)

such that Λ∗ = ϑ2diag(φ2
1, · · · , φ2

K). Notice that in our extension of the horseshoe

prior to the Bayesian quantile regression, we have formulated the prior hierarchy

independent of σ, while the global-local literature often uses a dependent prior.

It is easily verified that the assumption of prior independence is needed so that

the conditional posterior distributions are analytically available as derived above.

Additionally Moran et al. (2018) have shown that in high-dimensional settings, the

independence assumption aids inference of the error variance. This is due to the fact

that conjugate priors act mathematically as additional observations which artificially

bias the error variances downwards when K>>T.

Due to that fact that half Cauchy distributions have high mass on 0 with fat

tails, they are well suited for variable shrinkage tasks as they encapsulate the idea

that only a few covariates are of importance. This behavior can be made explicit

by slightly re-writing the posterior. Under certain conditions (see Piironen et al.

(2017)), the conditional posterior for generalized linear models under any global-

local prior can be reduced to the following form:

βj = (1− κj)β̂j, (4.12)

where κj = 1/(1 + Tσ−2ϑ2s2jφ
2
j), sj refers to the columnwise variance of X and β̂

refers to the maximum likelihood estimate.2 Since κj ∈ [0, 1], the ideal behavior

of the implied distribution on κj, which can be found by the change of variable

theorem, should approximate a bi-modal with most mass on 0 or 1 depending on

whether the covariate is a signal or noise. As can be visually confirmed in panel a

of figure (4.1), the horseshoe prior exhibits such favorable limiting behavior, while

double exponential based priors such as the lasso prior of Park and Casella (2008)

do not (right panel). The lasso prior, when cast into global-local form is defined as:

βj,p|φj ∼ N(0, φj),

φj|ϕ ∼ exp
(ϕ
2

)
ϕ ∼ G(a1, b1),

(4.13)

where Λ∗ = diag(φ1, · · · , φK) and G denotes the Gamma distribution. The

2 For non-Gaussian models, this quantity will not exactly be equal to the maximum likelihood
solution, but that of a Gaussian approximation (Piironen et al., 2017)

81



implied distribution on κj under the lasso prior has the unfortunate trait that large

signals can escape shrinkage, but noise variable are not shrunk aggressively enough.

Hence, this will result in too little shrinkage in large dimensional problem with many

noise variables.

4.2.3 Gibbs Sampler

With the conditional posteriors at hand, we utilize a standard Gibbs sampler.

The dynamics of the Markov chain {(βm, σm, φ2
m, ϑ

2
m, zm)}∞m=0 are implicitly defined

through the following steps

1. Draw Z ∼ π(.|β, σ, φ2, ϑ2, θ, τ,X, Y ) from 1/iG(ct,dt) for all t and call the T x

1 vector zn+1

2. Draw σn+1 ∼ π(.|β, φ2, ϑ2, θ, τ,X, Y, zn+1) from G−1(a, b)

3. Draw βn+1 ∼ π(.|σn+1, φ
2, ϑ2, θ, τ,X, Y, zn+1) from N(β, V )

4. Simulate φ2
n+1 and ϑ2

n+1 through slice sampling given in the appendix.

5. Iterate (1-4) until convergence is achieved

In step 4., we make use of the fact that due to the assumption of independence on

the scales (φ, ϑ), the posteriors also follow independent Cauchy distributions. Since

the Cauchy has no defined moments which would enable sampling, the literature has

proposed Gibbs samplers which rely either on slice sampling (Polson et al., 2014) or

mixture representations (Makalic and Schmidt, 2015). Because slice sampling does

not involve rejections and or extra mixing variables, we follow Polson et al. (2014)

by formulating a block slice sampling algorithm for for φ = (φ1, · · · , φK)′ given in

the appendix.

Khare and Hobert (2012) show that the Markov chain of this sampler is geomet-

rically ergodic and also valid in K>>T settings which gives theoretical justification

to apply this sampler to high dimensional settings. However, a computational bot-

tleneck is present in very high dimensions in evaluating the K × K dimensional

inverse for the conditional posterior of β. Cholesky decomposition based methods

will generally be of order O(K3). Taking into consideration that in quantile set-

tings, one is usually interested in obtaining more than one expected quantile, this

can result in prohibitively long computation times. We therefore provide a more

efficient sampling algorithm for β which leverages data augmentation similar to the

algorithm developed by Bhattacharya et al. (2016) which is of order O(T 2K) and

especially beneficial in high dimensional settings.

Suppose, we want to sample from NK(µ,Θ), where

Θ = (Φ′Φ +D−1)−1, µ = ΘΦ′(α− ξZ). (4.14)
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Assume D ∈ RK×K is a positive definitive matrix and diagonal for simplicity, ϕ ∈
RT×K , and α ∈ RT×1. Then (4.7) is is recovered when setting Φ = U1/2X, D = Λ∗

and α = U1/2y. An exact algorithm to sample from (4.7) is thus given by:

Algorithm 1. Fast HS-BQR sampler

1. Sample independently u ∼ N(0, D) and δ ∼ N(0, IT )

2. Set υ = Φu+ δ

3. Solve (ΦDΦ′ + IT )w = (α− υ − ξZ)

4. Set ς = u+DΦ′w

Suppose ς is obtained through algorithm 1. Then ς ∼ N(µ,Θ).

Proof. Using the Sherman-Morrison-Woodbury identity and some further algebra,

µ = DΦ′(ΦDΦ′ + IT )
−1(α − ξZ). Plugging in 2. into 3., we obtain ς = u +

DΦ′(ΦDΦ′+ IT )
−1(α−υ− ξZ). Since by definition υ ∼ N(0,ΦDΦ′+ IK), ς follows

a normal distribution with mean DΦ′(ΦDΦ′+IK)(α−ξZ) = µ. As cov(u, υ) = DΦ′,

it follows that cov(ς) = D−DΦ′(ΦDΦ′+IK)
−1ΦD which by the Sherman-Morrison-

Woodbury identity is equal to Θ. More details are provided in the appendix. The

provided algorithm is not specific to the horseshoe prior and follows through for any

prior of the form in (4.10). The computational advantage provided in algorithm 1

compared to Cholesky based decompositions is that we can cheaply sample from

(u, υ)′ which via data augmentation yields samples from the desired distributions.

4.3 Simulation Setup

In order to verify the theoretical advantages of the HS-BQR over the Laplacian based

quantile regression priors laid out above, we conduct a variety of high dimensional

Monte Carlo simulations that test the priors’ ability to adapt to different degree’s

of sparsity and error distributions in the data generating processes. We consider 3

variants of the original lasso prior which have been adapted to the Bayesian Quantile

regression:

1. Bayesian Lasso QR (LBQR): The lasso prior is derived by noticing that the

ℓ1-norm penalized check loss function

min
β

T∑
t=1

ρp(yt − x′iβp) + λ
K∑
j=1

|βj,p| (4.15)
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can be obtained as the MAP (Maximum a Posteriori) estimate of the ALL

with a Laplace prior on the regression coefficients,

π(βp|σ, λ) = (σλ/2)Kexp{−σλ
∑K

j=1 |βj,p|}. The posterior takes the following

form:

βp|y,X, σ, λ ∝ exp(−σ
T∑
t=1

ρp(yt − x′tβp)− σλ

K∑
j=1

|βj,p|) (4.16)

To estimate estimate (4.16), we utilize the Gibbs sampler of Li et al. (2010)

with their recommended hyperpriors. Due to the shrinkage coefficient profile

discussed above, we expect the LBQR to do well in sparse designs with well

identified signal and noise.

2. Bayesian Elastic Net QR (BQRENET): The elastic net estimator quantile

regression differs from the lasso in that it adds a ℓ2-norm of the regression

coefficients to the minimization problem. This is the ridge component which

allows to shrink coefficients in a less aggressive manner than the ℓ1-norm. This

makes it useful when dealing with correlated or dense designs. Assuming the

elastic net estimator for the quantile regression, as

min
βp

T∑
t=1

ρp(yt − x′iβp) + λ1

K∑
j=1

|βj,p|+ λ2

K∑
k=1

β2
j,p (4.17)

the prior can, similarly to above, be formulated as an exponential prior,

π(βk,p|λ1, λ2, σ) ∝ σλ1
2
exp(−σλ1|βj,p| − σλ2β

2
j,p). The posterior is then:

βp|y,X, σ, λ ∝ exp(−σ
T∑
t=1

ρp(yt−x′tβp)−σλ1
K∑
j=1

|βj,p|−σλ2
K∑
j=1

β2
j,p)) (4.18)

We use the same hyperpriors as recommended by Li et al. (2010)

3. Bayesian Adaptive Lasso QR (BALQR): The adaptive lasso as proposed by

Alhamzawi et al. (2012) uses the same setup as the LBQR, but allows for the

shrinkage coefficient to vary with each covariate. The prior can then be for-

mulated as follows: π(βp|σ, λj) = (σλj/2)
Kexp({−σ

∑K
j=1 λj|βj,p|}). Since this

estimator allows for coefficient specific shrinkage we expect it to outperform

the LBQR.

Three sample sizes are considered: Ti ∈ {200, 500}.3 In total 100 Monte Carlo

3 For the HS-BQR we also consider a third sample size of T3 = 1000. This was done to get a
better understanding whether the estimator can identify quantile varying parameters in the
block design.
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data sets were generated4 for which the last 100 observations are constructed to be

the same for each Ti in order to make forecast errors comparable. The remainder

of the observations are used as training samples to retrieve the mean posterior β̂p

vector to calculate bias5.

We consider 12 designs in total which vary along two different dimensions: the

degree of sparsity and the error generating process. We test the following sparsity

patterns:

• Sparse with β = (1, 1, 1
2
, 1
3
, 1
4
, 1
5
, 01×2T1),

• Dense with β = (1, 0.851×T1),

• Block structure with β = (1, 0.851×T1 , 01×T1 , 0.851×T1).

Notice that for T1 there are always more coefficients than observations.

Consider a linear model as in (4.1). To retrieve the true quantile regression

coefficients, βp, we make use of Koenker (2005)’s alternative representation of the

quantile regression:

yt = x′tβ + (x′tϱ)ut (4.19)

where ut is assumed to be i.i.d. having some CDF, F . The dimensionality of ϱ is

K×1 and determines which covariates have non constant quantile functions. This

can be seen from the solution for βp to equation (4.19):

βp = β + ϱF−1(p) (4.20)

Hence, the true βp profile of a quantile regression model has a random coefficient

model interpretation, where the vector of coefficients can be decomposed into a fixed

plus a random component. In particular, the random component depends on the

inverse CDF of the error, F−1(p). One can therefore think of ϱ as determining which

variable is correlated with the error, where by default the first entry, ϱ0, is set to 1.

This entails that location effects will always be present.6

From a frequentist’ perspective Equation (4.20) is our oracle estimator for βp

for a given quantile p, which, given that the ALL approximation in equation (4.5)

holds, can be compared to the mean of the posterior of equation (4.7) (Kozumi and

Kobayashi, 2011). With this in mind, it is trivial to calculate the true βp’s for the

error generating processes considered.

4 Except for T = 500 block case where only 20 Monte Carlo experiments were done due to the
time it takes to run the estimator on such large dimensions.

5 Alternatively, one could also use the MAP estimate of the regression posterior as the point
estimate. This might seem more natural when comparing Bayesian quantile regression meth-
ods to frequentist quantile estimators due to their equivalence as discussed in Kozumi and
Kobayashi (2011). We found that since the conditional posteriors are normal, there is no
practical difference between the posterior mean and MAP.

6 While it is possible for ϱ to take on any value, for simplicity we assume that the elements of
ϱ only to take on the values {0, 1}.
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Table 4.1: Summary of simulation setups

DGP Error distributions Quantile functions
y1 = Xβ + ϵ ϵ ∼ N(0, 1) β0,p = β0 + F−1

N(0,1)(p)

y2 = Xβ + ϵ ϵ ∼ T (3) β0,p = β0 + F−1
T (3)(p)

y3 = Xβ + (1 +X2)ϵ ϵ ∼ N(0, 1) β0,p = β0 + F−1
N(0,1)(p)

β1,p = β1 + F−1
N(0,1)(p)

y4 = Xβ + ϵ1 +X2ϵ2 ϵ1 ∼ N(0, 1) β0,p = β0 + F−1
N(0,1)(p)

ϵ2 ∼ U(0, 2) β1,p = β1 + F−1
U(0,2)(p)

The second dimension along which the DGPs differ is in their error process.

The proposed DGPs can be grouped into two broad cases: (1) i.i.d. errors (y1 and

y2); and (2) heteroskedastic errors (y3 and y4). In y1 we assume that the error dis-

tribution follows a standard normal distribution and in y2 the error has student-t

distributed errors with 3 degrees of freedom. For the other cases, we assume simple

heteroskedasticity caused by correlation between the second covariate (whose coeffi-

cient we denote as β1,p) and ϵ. Lastly, y4 can be thought of as containing a mixture

between a uniform and a standard normal error distribution. In all simulations, the

design matrix is simulated using a multivariate normal distribution with mean 0 and

a covariance matrix with its (i, j)th element defined as 0.5|i−j|.

Relating the assumed error processes to the random coefficient representation

(4.20), it is clear that, under i.i.d. errors, only the constant has a non-constant

quantile function caused by F−1 (hereinafter called location shifters). Under the

heteroskedastic designs, apart from the constant, β1,p will have a non-constant quan-

tile function as well. Hence, β1,p in y3 is determined by F−1
N(0,1) across p, and β1,p

in y4 follows F−1
U(0,2), i.e., increases linearly with p. The simulation designs (and the

true quantile functions) are summarized in table (4.1).

We evaluate the performance of the estimators in terms of bias in the coefficients

and forecast error. Using the true quantile profile in βp in (4.20), we calculate root

mean coefficient bias (RMCB) and root mean squared forecast error (RMSFE) as:

1. Root Mean Coefficient Bias =
√

1
iter

||β̂p − βp||22

2. Root Mean Squared Forecast Error =
√

1
iter

||Xβ̂p −Xβp||22

where iter is the number of Monte Carlo experiments. For most cases iter = 100,

except for Block T2, where it is set to 20.7

7 The only estimator where there is a deviation from this is the BALQR where the variance
covariance matrix of the posterior coefficients was not invertible for some of the cases. This
is indicative that the BALQR prior did not shrink enough
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4.3.1 I.i.d. Distributed Random Error Simulation Results

The bias results for the three designs (sparse, dense, block) across a selection of

quantiles are presented in table (4.2) and the results of the forecast performance are

presented in table (4.3). To shed light on whether the estimators capture the vari-

able’s quantile function appropriately, we additionally show plots for variables with

non constant quantile curves for each quantile. The HS-BQR’s plots are presented

in figure (4.4). The line in the plots shows the average, while the shaded region

highlights the 95% coverage of βp values across the Monte Carlo runs.

Table (4.2) shows that the HS-BQR performs competitively compared to the

considered estimators in all i.i.d designs regardless of what type of sparsity structure

is considered. In particular, for the sparse case the HS-BQR provides the lowest

coefficient bias for both y1 and y2 for all quantiles. The forecast results from table

(4.3) corroborate these findings with the HS-BQR providing the lowest root mean

squared forecast errors among the estimators considered.

The HS-BQR’s performance is competitive for the dense and block cases as well,

as can be seen in table (4.2), however falls slightly short for the central quantiles

to the BQRENET in the dense and to the BALQR in the block cases for T1. Fore-

cast errors in table (4.3) confirm these results. This coheres with the theoretical

properties of the priors. The ridge component in the BQRENET provides better

inference for dense designs, while the BALQR benefits in block structures from

adaptive shrinkage without having to identify a global shrinkage parameter.

Figures (4.2) and (4.3) show the performance of the estimators at different parts

of the block design for T1 and T2 respectively. It reveals how the HS-BQR does

extremely well in the sparse regions of the data for y1 and y2 while not being able

to replicate this performance in the dense regions of the data for T1. This is not to

say that it performs poorly: while the HS-BQR yields higher average bias than the

competing estimators, this is not statistically different from the bias of the other

estimators. When more data are introduced in T2, the difference in bias for the

dense parts become even smaller among the different priors, while the sparse parts

are estimated with considerably more accuracy for the HS-BQR.

Generally, as more data are introduced, the performance across the estimators

converge to similar bias and forecast results, which confirms asymptotic validity of

the priors and their samplers. An exception is presented by the BALQR which

seems to fare worse with more data for the block design.

Both the normally distributed y1 and t-distributed y2 showcase a situation where

the extreme quantiles (0.1 and 0.9) have higher bias than the central quantile (0.5)

for all the estimators considered. This is a common finding in quantile regressions

which is on account of more extreme quantiles being “data sparse” as a few observa-

tions get large weights. While it is expected that there is a U-shape in the coefficient

bias as we move across the quantiles, the slope of this shape is not uniform across
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the estimators. In particular, it can be seen in table (4.2) that the HS-BQR’s bias

does not increase as much as the other estimators.8 Similarly, extreme quantiles

generally tend to have higher forecast errors for all estimators, but the HS-BQR’s

extreme quantiles don’t suffer as much as it’s competition as shown in table (4.3).

This property cannot be overstated, as quantile regression is often employed for ex-

treme quantiles. The only case where the HS-BQR’s extreme quantiles performance

are less accurate is for the dense design of T2, where the BQRENET’s performance

does not suffer as much as the HS-BQR’s when considering the extreme quantiles.

Figure (4.4) underpins the findings of the tables: the HS-BQR captures the

normal inverse CDF shape for y1 and inverse t-distribution for y2 very well in the

sparse design for all Ti, however in the dense design, it only identifies location shift’s

for the more extreme quantiles for T1. Nevertheless, this property is fixed when

more data is available. The figure also highlights how the HS-BQR struggles the

most with block designs: It only captures the quantile profiles correctly for T3. This

finding underpins, that in designs with unmodeled block structures and, hence, badly

identified global shrinkage, quantile effects might be shrunk away. Implementation

of group-level shrinkage along with prior information about the sparsity pattern in

the data might be able to alleviate this problem, which we leave for future research.

8 Apart from the HS-BQR in the block design of T1, where the estimators have lower coefficient
bias and forecast error for its extreme low quantiles than its central quantiles.
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4.3.2 Heteroskedastic Error Simulation Results

As with the homoskedastic DGPs, we see that for all estimators, the error rate

increases when moving away from the central quantiles and that coefficient bias as

well as forecast accuracy worsens for dense and block designs compared to the sparse

design. Further, the bias and forecast results in tables (4.2) and (4.3) show that the

HS-BQR provides competitive performance to the alternative estimators, where it

consistently outperforms the other priors for y4 in sparse designs.9 Similar to the

previous discussion, the HS-BQR stands out in that it provides consistently more

stable inference of extreme quantiles independent of the sparsity structure, with the

exception of T2 dense.

In dense designs, as for the homoskedastic simulation results, the BQRENET

aided by the ridge component in the prior, provides lower coefficient bias and forecast

error, than the HS-BQR, whereas in block DGPs, the BALQR outperforms the HS-

BQR for y3 in T1 but not in T2. A different picture emerges for y4. Here, the

HS-BQR’s performance in coefficient bias is only rivaled by the BQRENET for both

T1 and T2 for both dense and block cases.

Consulting figures (4.2) and (4.3) for y3 and y4 shows how the HS-BQR performs

particularly well in the sparse regions of the data, as was the case for y1 and y2.

Just like in the homoskedastic designs, the HS-BQR is not able to replicate its

performance in the dense regions of the data for T1, but it does not do much worse

than the competing estimators. Similarly, the HS-BQR’s bias for sparse parts of

the block DGP’s are far smaller while for the dense parts, it’s on par with the other

estimators.

The plots in figure (4.6) provide another explanation as to why the HS-BQR’s

forecast performance is much better for the block case of y4, which is that it captures

some aspects of the quantile function for β0,p, even for the smallest data setting T1.

The plots in figure (4.5) and (4.6) also highlight why the estimators have lackluster

performance for y3 and y4 for T1 even for the sparse designs: The estimators have

difficulties identifying the quantile profiles of β0,p and β1,p simultaneously. This

deficiency is amended with more data as shown by the plots for T2 and T3: The HS-

BQR captures the quantile profiles for both the sparse and dense DGPs, however,

its performance on the block design only gets better for T3. This shows the scale

at which the methods require data to identify the correct quantile profiles of the

variables when the DGP contains mixed sparsity structures. This shows the scale

at which the methods require data to identify the correct quantile profiles of the

variables when the DGP contains mixed sparsity structures.

The simulations have shown that the HS-BQR provides competitive results but

also that all quantile methods under consideration have difficulty simultaneously

9 The LBQR does surprisingly poorly in the sparse T1 heteroskedastic cases. This is on account
of the estimator completely missing the quantile profiles for both y3 and y4 (see respective
figures in the appendix).
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Figure 4.2: β0,p profiles for y1 across quantiles for the different sparsity settings

Figure 4.3: β0,p profiles for y2 across quantiles for the different sparsity settings
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Figure 4.4: β0 profiles for y1 and y2 across quantiles for the different sparsity settings

identifying the true regressors and partialling out the location (β0,p) and scale (β1,p)

effects in high dimensional setting especially when data are not abundant.

4.4 Growth at Risk Application

We now compare the HS-BQR to the same set of competing estimators as above in

estimating forecast densities of US quarterly GDP growth as well as its down- and

upside risks, commonly referred to as GaR. The need for GaR was highlighted by

the global financial crisis which showed how downside risks, so the lower quantiles

of the density of GDP growth, evolve with the state of credit and financial market

(Adrian et al., 2019; Prasad et al., 2019). Quantifying this vulnerability is of key

interest of policymakers, as it is a well-known that recessions caused by financial

crises are often more severe than ordinary recessions (Jordà et al., 2015).

Unlike much of the previous GaR literature which focuses on GDP growth density

forecasts based on only one indicator of financial distress, we apply the HS-BQR

to forecasting the entire conditional GDP density using the McCracken database,

a large macro economic data set. The ability to produce well calibrated density

forecasts in the face of large data contexts is important for nowcasting applications,

in which the information flow is necessarily high-dimensional, or variable selection

of large amount of competing uncertainty indexes. The latter purpose has been

suggested by Adams et al. (2020) and Figueres and Jarociński (2020) who have

argued that is not a-priori clear which index of market frictions impacts GDP growth

the most.
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Figure 4.5: β0 and β1 profiles for y3 across quantiles for the different sparsity settings

Figure 4.6: β0 and β1 profiles for y4 across quantiles for the different sparsity settings
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The McCracken and Ng (2020) database10 consists of 248 variables (including

GDP) from 1959 Q1 at a quarterly frequency and is updated monthly. We take the

quarter-on-quarter growth rate of annualized real GDP as our dependent variable

and all others as independent covariates. These variables include a wide variety

of macroeconomic effects which cover real, financial as well as national accounts

data. Since not all variables start at 1959 Q1, for the growth at risk application,

only variables that are available from 1970 Q1 were considered which gives 229

explanatory variables.

To obtain the forecasts, we use the general linear model:

yt+h = x′tβp + ϵt+h (4.21)

for t = 1, · · · , T − h, where h refers to the forecast horizon. We consider one- to

four-quarter ahead forecast horizons (h = 1, · · · , 4). Using the quantile setup, fore-

casts from each quantile are denoted as ypT+h|T . Note, that these h-step-ahead fore-

casts are equivalent to the h-step-ahead pth Value-at-Risk. Forecasts are computed

on a rolling basis where the initial in-sample period uses the first 50 observations of

the sample, which makes for 149-h rolling forecast windows. We estimate a grid of

19 equidistant quantiles to construct the predictive density p(ŷT+h|T ) via a normal

kernel 11.

Forecast densities are evaluated along Kolmogorov-Smirnov (KS) statistics based

on (unsorted) Probability Integral Transforms (PIT) and average log-scores.12 The

PIT is often used when evaluating density forecasts and provides a measure of cal-

ibration which is independent of the econometricians loss function. In particular,

the PIT is the corresponding CDF of the density function evaluated at the actual

observation of the out-of-sample periods, yt+h:

gt+h =

∫ yt+h

−∞
p(u | yt+h)du = P (yt+h | yt) (4.22)

The estimated predictive density is consistent with the true density when the CDF

of gt+h form a 45 degree line (Diebold et al., 1998), i.e forms the CDF of a uniform

distribution. Deviation from uniformity is tested via the Kolmogorov-Smirnov test.

The unsorted PIT-based test is very close to what is referred to as hit-rate

test in the Value-at-Risk literature. An additional advantage of this test is that it

allows one to gauge, whether quantile-crossing is a serious problem of the estimator.

Ideally, we want the forecasted quantiles to be monotonically increasing. When

10 https://research.stlouisfed.org/econ/mccracken/fred-databases/
11 Alternatively, one could follow the popular density construction approach by Adrian et al.

(2019) who fit their quantiles to a skewed t-distribution. We argue when discussing the
results that this approach is less flexible than the proposed approach.

12 There are a plethora of tests to evaluate distributions based on QQ-plot of the PIT. The choice
of the KS was based solely on its simplicity to compute and any other test would suffice for
evaluation.
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this monotonicity is violated, our estimated density is invalid. Any violation of this

monotonocity in our QQ-plot is a clear indication that the estimator yields quantiles

that frequently cross.

Secondly we compare density fit via average log-scores. Log-scores provide a

strictly proper scoring rule in the sense of Gneiting and Raftery (2007) and take

into account location, skewness and kurtosis of the forecast distribution (Gelman

et al., 2013). Since quantile crossing may lead to nonsensical density forecasts,

before calculating the log-scores we sort the estimated quantiles and perform kernel

smoothing to obtain p(yt+h). Average log-scores are then calculated as follows:

logSh =
1

T − h− 1

T−h−1∑
t=1

logp(yt+h|yt) (4.23)

We break from the forecast density literature a bit, by not exclusively focusing

on testing the whole density, but also evaluating specific quantiles’ performance as

well. To appraise the HS-BQR compared to the alternative estimators, the pseudo

R2 for the quantiles is computed13, following Koenker and Machado (1999). The

pseudo R2 of the following regression is obtained from:

Qyt+h
(p|Vt+h,p) = β0 + β1Vt+h,p (4.24)

where Vt+h,p is the fitted value of of the estimator for the pth quantile. Running

the regression in equation (4.24) for the pth quantile gives an intuitive test for the

ability of the estimated fitted value to capture the dynamics we are interested in.

In particular the pseudo R2 is calculated the following way:

R2 = 1− RASW

TASW
(4.25)

where RASW is the residual absolute sum of weighted differences, so the residuals

of equation (4.24) and TASW is the total absolute sum of weighted differences, so

the residuals of equation (4.24), where β1 is constrained to 0. In essence, the pseudo

R2 shows how much information Vt,p adds to the regression compared to a Quantile

regression with only a constant.

To gain a visual understanding of how the forecast densities perform over time,

figure (4.7) plots in its left panel the one-step-ahead forecast densities of the HS-BQR

and the right panel shows all other competing estimators. The figure highlights that

the HS-BQR provides better calibration especially in the beginning period of the

forecast evaluation during which upper, lower and middle quantiles span a reasonable

13 Since Growth-at-Risk is meant to be a VaR of growth, utilizing tests designed to test the
adequacy of VaR models is a natural extension for evaluation. Two popular tests to verify the
performance of a specific quantile are the DQ test of Engle and Manganelli (2004) and the
VQR test of Gaglianone et al. (2011). These tests provide a principled way of testing the null
hypothesis of the selected quantile being correct. However, they do not offer a comparative
measure as to how much better the proposed method provides better fit for a specific quantile.

96



Figure 4.7: One-step-ahead forecast distributions for the L1QR, BQR, BALQR and
HS-BQR. Shaded areas correspond to plots of all 19 quantiles.

range of values despite the relative scarcity of observations to number of covariates.

It is clear from the right panel that precisely in the early forecast periods, the lasso

based priors offer too little regularization, yielding far too extreme upper and lower

quantile growth forecasts. As more data comes in, the right panel shows that the

extreme variability of the lasso based estimators decreases somewhat over time, but

the HS-BQR provides good fit throughout the entire evaluation period. Forecast

densities for two-three- and four- quarter ahead forecast densities are presented in

supplementary material and confirm these findings.

The visual inspection is corroborated by the more formal PIT based KS statis-

tics and average forecast log-scores in table (4.4): the KS statistics show that the

HS-BQR is the only estimator to provide forecasts densities whose PIT are statisti-

cally indistinguishable from a uniform CDF at the 10% significance level, and whose

log-scores are highest for all but the 2-quarter ahead horizon. As expected, the test

statistics as well as the QQ-plots of the PITs plotted in supplementary material,

indicate that as the forecast horizon increases to 2- and 3- quarters, density calibra-

tion deteriorates somewhat for all estimators. Contrary to Carriero et al. (2020b)

and Mazzi and Mitchell (2019), however, we find that density fit increases again at

the 4th horizon, which suggests that the HS-BQR is useful not only for short-term

density forecasts, but also for medium-term forecasts.

An additional feature of the HS-BQR forecasts is that they exhibit limited quan-

tile crossing problem. The HS-BQR’s forecasted quantiles exhibit very little quantile

crossing, especially when comparing it to the alternative estimators. In fact, in the

one-step-ahead case, the HS-BQR is the only estimator that yields non-crossing

quantiles.

To quantify the relative performance of the estimators in capturing tail risks,

we show in the third panel of table (4.4) estimates of the pseudo R2 which are

calculated as in equation (4.24) for the extreme and middle quantiles. It is apparent

that not only does the HS-BQR provide better quantile fit at all shown quantiles,

but that the largest margin (compared to the other estimators) is at the lowest and
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Table 4.4: Performance of the different estimators for h-step-ahead quantile fore-
casts.

KS Pseudo-R2 KS Pseudo-R2

0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

1-step ahead 2-step ahead
HS-BQR 0.195 0.256 0.13 0.102 0.15 0.234 0.217 0.247 0.142 0.204 0.176 0.18
LBQR 0.382*** 0.049 0.083 0.028 0.031 0.067 0.364** 0.056 0.017 0.046 0.023 0.015

BQRENET 0.396*** 0.048 0.11 0.063 0.041 0.001 0.426*** 0.054 0.052 0.12 0.026 0.01
BALQR 0.443*** 0.11 0.025 0 0.001 0.039 0.433*** 0.001 0 0.033 0.019 0.078

3-step ahead 4-step ahead
HS-BQR 0.247 0.158 0.117 0.147 0.101 0.188 0.193 0.296 0.13 0.132 0.111 0.071
LBQR 0.333** 0.003 0.006 0.019 0.024 0.064 0.398** 0.015 0.014 0.051 0.008 0.01

BQRENET 0.402*** 0.043 0.058 0.103 0.067 0.011 0.370** 0.023 0.01 0.063 0.008 0.001
BALQR 0.491*** 0.007 0.002 0.008 0.058 0.076 0.446*** 0.052 0 0.017 0.035 0.088

Note: The first column, KS, reports the Kolmogorov-Smirnov test for equality to a
uniform CDF with critical values of 0.374. 0.312 and 0.28 for the 1%, 5% and 10%
critical values respectively (indicated by ***,** and *). Pseudo-R2 are shown for a
set of 5 chosen quantiles.

Table 4.5: Average log scores and MSFE on the median of the different estimators
for h-step-ahead quantile forecasts.

Average Log-Scores Median RMSFE
h=1 h=2 h=3 h=4 h=1 h=2 h=3 h=4

HS-BQR 3.432 3.282 3.472 3.534 0.006 0.004 0.004 0.004
LBQR 3.235 3.294 3.396 3.431 0.010*** 0.012*** 0.008*** 0.008***

BQRENET 2.999 3.369 3.426 3.430 0.009*** 0.007*** 0.007*** 0.008***
BALQR 1.839 2.069 2.154 2.133 0.015*** 0.012*** 0.010*** 0.007***

SPF 3.083 3.276 3.285 3.185 0.005 0.004 0.004 0.004
Note: Density is approximated by a normal kernel of the 19 forecasted quantiles.
For the MSFE stars indicate statistical difference to the HS-BQR median fore-
casts based on the Diebold-Mariano test (1998) at 10%, 5% and 1% significance
respectively.
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highest quantiles at all horizons which echos the results from the simulations. This

is corroborated by the PIT graphs, which show that the HS-BQR’s tail quantiles

are consistently the closest to the ideal 45-degree line.

The proposed estimator also provides competitive point forecasts which are

shown in the right panel of table (4.5) for the 50th quantile. As shown by He et al.

(1990), median quantile forecasts are more robust to outliers than conditional mean

forecasts. Table (4.5) clearly shows that the HS-BQR offers sizable improvements in

root-mean-squared-forecast-error over the competing quantile models of 25%-66%,

which are all statistically significant as per the Diebold and Mariano (2002) test.

To showcase how these improvements translate to actual events of importance

to policymakers, we plotted density forecasts at all horizons right before NBER

marked recession or trough dates. We concentrate on the quarters before the height

of each individual crisis, as the recent growth-at-risk literature highlights the use-

fulness of quantile methods to detect vulnerabilities to parts of the economy before

these vulnerabilities materialize (Adrian et al., 2019). Representative for all other

pre-crisis period shown in supplementary material, figure (4.8) shows forecast den-

sities for Q2 2008. The actual realization is marked by a vertical grey line. Two

points emerge from this graph: the HS-BQR provides the largest mass at the actual

realization of growth (which translates to the highest density fit for this realization

as measured by the log-score) and it provides a bi-modal distribution which yields

a policy relevant characterisation of forecasted risk. The second mode hovers over

negative growth outcomes, thereby giving a clear indication of risks of a recession.

Compared to the HS-BQR, the competing quantile methods do provide mass on

negative growth outcomes which is corroborated by (Carriero et al., 2020b; Mazzi

and Mitchell, 2019) however, provide little, or close to no mass on the actual re-

alization. In fact, consulting figure (4.7), one can see that the lasso based BQR

methods throughout the entire forecast evaluation period provide mass on negative

growth outcomes, in other words forecast positive probability of recessions. This is

less confidence inspiring than the forecast densities of the HS-BQR which are more

conservative with mass on negative growth outcomes. To argue that this is not an

artifact of the kernel smoothing, we provide forecast densities for relatively ’tranquil’

economic times, namely 2005Q1, in supplementary material. For these forecast den-

sities, the HS-BQR combines to a unimodal, non-skewed, normal looking forecast

density with high mass on the realization. This highlights an advantage of quantile

smoothing compared to Adrian et al. (2019) approach of fitting the quantiles to a

t-distribution. By smoothing the 19 forecasted quantiles via a kernel we impose no

restrictions on the number of modes of degree of skewness of the combined density.

Finally, to compare the utility of the HS-BQR approach to a widely used forecast

density constructed by survey expectations, we plotted the Survey of Professional
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Figure 4.8: Q2 2008: Smoothed forecast densities of all competing estimators and
the SPF. Densities are estimated via a Gaussian kernel of 19 equidistant forecasted
quantiles. The growth realization is marked by a vertical grey line.

Forecasters distribution (SPF) into the same density graphs 14. From figure (4.8),

one can see that the HS-BQR not only outperforms the SPF but provides a bet-

ter indication of the looming recession indicated by larger mass on negative growth

outcomes.

The ability to produce well calibrated density forecasts and, especially accurate

downside risk measures in the face of large data contexts makes the HS-BQR a

powerful tool for nowcasting applications or variable selection of large amount of

competing uncertainty indexes.

4.5 Conclusion

In this chapter, we have extended the widely popular horseshoe prior of Carvalho

et al. (2010) to the Bayesian quantile regression and provided a new algorithm to

sample the shrinkage coefficients via slice sampling for the independent prior and a

fast sampling algorithm that speeds up computation significantly in high dimensions.

In our simulations, we considered a variety of sparse, dense and block designs

with different error distributions which revealed three points about the HS-BQR.

First, the HS-BQR provides better or comparable performance in terms of both

coefficient bias and forecast risk where best performance can be expected for sparse

designs. Second, the aggressive shrinkage profile of the HS-BQR leads to especially

good performance in tail estimation (0.1 and 0.9). Finally, an issue that all BQR

14 Smooth densities have been estimated based on a normal kernel over 19 equidistant quantiles
of the survey.
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methods share is simultaneously identifying the correct location and scale effects in

high-dimensional setting.

Our empirical application shows that the HS-BQR provides considerable gains

in calibration, density fit and even point estimates compared to double exponential

based priors at all horizons, especially so at short, h=1. and medium term, h=4,

horizons. Local measures of fit confirmed that HS-BQR’s fitted quantiles provide

the best goodness of fit. The HS-BQR proved especially useful right before NBER

marked recession and trough dates, providing forecast densities foreshadowing crises.

This shows that the HS-BQR is an adequate method to give credible Value-at-Risk

estimates. We expect therefore that the HSBQR performs well in nowcating settings

such as (Carriero et al., 2020b; Mazzi and Mitchell, 2019) which we leave for future

research.

The results show that the HS-BQR is a competitive estimator for which especially

good behaviour can be expected in sparse designs with few observations. However,

there are multiple fronts on which the proposed HS-BQR can be improved upon.

For instance, the simulations highlighted that in dense and block designs, the HS

prior tends to shrink the constant too aggressively. Hence, extensions which allow

for differing shrinkage terms for subsets of the regressors might be able to alleviate

this problem. Extensions to the HS-BQR should also address the problems of si-

multaneously estimation location and scale effects as this is needed to attain oracle

properties in quantile regression.
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Chapter 5

Shrink then Sparsify: Identifying

Drivers of Tail Risk

5.1 Introduction

While modern day economics, and broadly social science research, is often faced

with high dimensional estimation problems in which the number of potential ex-

planatory variables is large compared to the number of observations, the extant

literature for such estimation problems has focused developments to a large degree

on models that characterize the conditional mean. Moving beyond the conditional

mean to conditional quantiles on the other hand, has the benefit of allowing to

gauge potentially heterogeneous effects of variables directly across the conditional

response distribution. To this end, quantile regression has been highly influential

in the risk-management and finance literature in calculating risk measures such as

VaR (i.e., the loss a portfolio’s value incurs at a specific probability level). Recently,

the method has also experienced a surge in popularity within the macroeconomic

literature to quantify risks and vulnerabilities of output growth in response to sum-

mary measures of financial health, aptly named growth-at-risk (GaR) (Adrian et al.,

2019; Figueres and Jarociński, 2020; Adams et al., 2020). Quantifying this vulner-

ability is of key interest to policymakers, as it is well-known that recessions caused

by financial crises are often more severe than ordinary recessions (Jordà et al., 2015)

and thus present a welcome addition to the toolkit of policymakers.1

Recent contributions on GaR applications such as Ferrara et al. (2020),Carriero

et al. (2020b),Mitchell et al. (2022), Kohns and Szendrei (2020) (among many more),

extend on the notion of estimating tail risks by considering not only financial condi-

tions but a host of other data about the macro economy. The underlying assumption

1 It should be mentioned that GaR should be treated distinctly from the literature on forecasting
crisis periods directly through Markov-switching models (Hubrich and Tetlow, 2015; Guérin
and Marcellino, 2013) or probit models (McCracken et al., 2021), as the latter predicts the
probability of an event occurring, while quantile regression is typically used to model the
conditional distribution of a continuous variable.

102



in these studies is that risks stem from many different sources which might be a-

priori unknown. A common finding is that using larger data sources allows for better

calibration of downside risk.

With the use of larger data sources and the limited amount of observations

available for most macro time-series, Bayesian shrinkage priors such as (Li et al.,

2010; Alhamzawi et al., 2012; Alhamzawi and Yu, 2013; Kohns and Szendrei, 2020;

Hasenzagl et al., 2020; Korobilis, 2017) are becoming ever more pertinent to policy

makers and practitioners alike. A common problem faced in these and related studies

is that, while these priors often predict well, they are less apt at communicating to

the policy maker which variables best characterize predictions. This stems from the

a natural problem that such priors produce posteriors which are non-sparse with

probability 1 (Park and Casella, 2008; Polson and Scott, 2010).

In this chapter, we propose methods to simultaneously deal with high dimen-

sional quantile estimation and variable selection from a Bayesian decision-theoretic

perspective which allows to decouple shrinkage from variable selection in the spirit

of Hahn and Carvalho (2015). The goal, compared to previous implementations

of variable selection in Bayesian quantile regression2 is to summarize variable im-

portance in the posterior that best describes the predictions of the un-sparsified

model3. This is formulated as a decision task. We propose easy to implement adap-

tive sparsification procedures of frontier Bayesian quantile regression priors such as

the horseshoe prior (Li et al., 2010; Kohns and Szendrei, 2020) that adapt in a data

driven manner to the given quantile. Evidence from simulations as well as a high

dimensional GaR application to the US shows that our procedure either preserves

fit of the un-sparsified posterior or even improves both point- as well as - density fit,

especially in the left tail which characterizes downside risks. Contributing further to

investigating variable importance for a novel large growth-at-risk application to the

US, we find evidence that there is considerable quantile specific sparsity across the

conditional distribution which is distinct from the sparsity pattern found in compa-

rable conditional mean models. In particular, we find that for the one-year ahead

horizon, variables about “Interest Rates” and “Consumer Sentiment” are important

for downside risk, while the right tail has higher inclusion probability for “Money

and Credit” and “Non-Household Balance Sheets” information. Interestingly our

method also reveals evidence for variation across time and not just across quantiles.

These are in line with our understanding of the sources of recession and macro risks

faced by the US economy since the 1970’s.

Communicating policy goals with stakeholders is a key component of policymak-

ing. As such, methods that allow for clear identification of what drives downside

2 Such as via spike-and-slab priors (Korobilis, 2017) who’s variable selection is driven by the
marginal likelihood of discrete models

3 This in fact represents an optimal Bayesian decision task akin to the Bayesian decision theory
literature going back to the seminal contribution of Lindley (1968)
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(and upside) risk has the potential to be just as important for the policymaker as

GaR itself. Once identified, the variables can be tracked over time, and referred

to when motivating policy decisions. In this manner, the methods proposed in this

chapter could help in communicating such risks.

The Literature. Before detailing the outline of the chapter, we first give a

brief overview of the literature on Bayesian variable selection and shrinkage priors

and how this links to valid Bayesian variable selection via a two-step approach. The

canonical way for Bayesian variable selection is through Bayesian model averaging

priors (Raftery et al., 1997; Clyde and George, 2004) in which the model space

is discretised and posterior model probabilities allow for probabilistic statements

about which is the most likely model, or to provide weights for model averaging.

See Alhamzawi and Yu (2013) for an adaptation of the related g-prior approach to

quantile regression. Due to combinatorial bottlenecks, much of Bayesian research

in variable selection in the past decades have proposed a variety of methods (see

Polson and Scott (2010) and Ishwaran et al. (2005) for excellent reviews), of which

the search stochastic variable selection (SSVS) prior, dating back to George and

McCulloch (1993) and George and McCulloch (1997), and adapted to the quantile

regression by Korobilis (2017), has been notably influential. The SSVS prior is a

discrete mixture of normals prior which stays computationally efficient by stochas-

tically searching only among models with highest posterior probability. Despite

approximating the model space, it offers good empirical performance in prediction

tasks as low probability models are often ignored in the Markov chain.

Instead of approximating the discretised model space, continuous shrinkage pri-

ors on the other hand seek to include all variables at all times and instead shrink

noise variables’ weights toward zero so as to minimise their predictive influence. The

class of global-local shrinkage priors (Polson and Scott, 2010) which include the lasso

(Park and Casella, 2008), horseshoe (Carvalho et al., 2010) and Dirichlet-Laplace

(DL) prior (Bhattacharya et al., 2015) increasingly supplant discrete mixture priors

due to their excellent theoretical as well as empirical performance (Bhadra et al.,

2019). For adaptation to the Bayesian quantile regression, see Li et al. (2010) for

lasso type priors and Kohns and Szendrei (2020); Mitchell et al. (2022) for global-

local priors. The continuous nature of global-local priors allows additionally for

fast and efficient computational methods (Bhattacharya et al., 2016; Kohns and

Szendrei, 2020).

Instead of conducting estimation and variable selection in 1 step, Hahn and Car-

valho (2015) on the other hand propose a 2 step procedure in which the posterior

is sparsified in an inferentially coherent way, as per Lindley (1968), via integration

over squared error distance to a possible sparse and linear model which adds model

size penalties. This presents an important shift away from typical SSVS type priors

in that the integrated loss will often seek to minimize the distance between the pos-
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terior predictions of the un-sparsified model and the simpler surrogate model. Hahn

and Carvalho (2015); Ray and Bhattacharya (2018) propose the use adaptive lasso

type penalisation, akin to Zou (2006) for sparsification. Piironen et al. (2020) extend

this approach to Kullback-Leibler and Kowal (2021) to more general loss-functions.

These approaches have been applied in numerous macroeconomic forecasting arti-

cles (see Huber et al. (2019); Kohns and Bhattacharjee (2020) among others) which

show good forecasting and variable selection properties.

In section 5.2, we firstly provide a review of the BQR and shrinkage priors

considered, followed by a derivation of our proposed decision theoretically motivated

sparsification, and details on its implementation. In section 5.6, we conduct a large

scale Monte Carlo experiment that tests the proposed methodology’s robustness to

a variety of high dimensional settings. This is followed in section 5.7 by a high

dimensional GaR application and lastly we conclude.

5.2 Methodology

5.2.1 Bayesian Quantile Regression

Assuming a linear model such as

yt = x′tβ + ϵt, t = 1, 2, · · · , T, (5.1)

where {yt}Tt=1 is a scalar response variable and {xt}Tt=1 a K × 1 known covariate

vector, the objective function of quantile regression can be expressed as the min-

imised sum of weighted residuals which are zero in expectation for the given quantile

p ∈ (0, 1):

β̂p = min
β

n∑
t=1

ρp(yt − x′tβ), (5.2)

whose solution β̂p, is a K × 1 quantile specific coefficient vector. Note that

the expected quantile Q̂p(Y |X) = Xβ̂(p) is a consistent estimator of Qp(Y |X),

independent of any parametric assumption about residuals {ϵ}Tt=1 (Koenker, 2005).

We will maintain the assumption throughout that chapter that the design X is

known. The loss function ρp(.) is often expressed as a tick loss function of the

form ρp(y) = [p − I(y < 0)]y where I(.) is an indicator function taking on a value

of 0 or 1 depending on whether the condition is satisfied. As noted by Koenker

et al. (2017), this loss function is proportional to the negative log density of the

asymmetric Laplace distribution. This connection has been used to recast quantile

regression as a maximum likelihood solution of model (5.1) with an Asymmetric-

Laplace distribution, denoted as ALD(p, 0, σ), where σ denotes the scale of the

ALD. Assuming an ALD error distribution, the working likelihood f(Y |X, βp, σ)
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becomes:

f(Y |β, σ) = pT (1− p)T

σT

T∏
t=1

[
e−ρp(yt−x

′
tβp)/σ

]
. (5.3)

As posterior moments with conventional priors are not analytically available with

an ALD working likelihood, it has become standard practice in the literature to use

a mixture representation, proposed by Kozumi and Kobayashi (2011), in which

the ALD error process can be recovered as a mixture between an exponentially

distributed variable zt, zt ∼ exp(σ), and a standard normal variable, ut, ut ∼
N(0, 1):

ϵt = ξzt + τ
√
σztut

ξ =
1− 2p

p(1− p)

τ 2 =
2

p(1− p)

(5.4)

where ξ and τ are deterministic quantile specific parameters. The conditional like-

lihood stacked over all observations thus becomes:

f(Y |X, βp, Z, σ) ∝ det(Σ)−
1
2 exp

{
− 1

2
[(y −Xβp − ξZ)′Σ(y −Xβp − ξZ)]

}
, (5.5)

where Y = (y1, · · · , yT )′, X = (x1, · · · , xT )′, Z = (z1, · · · , zT )′ and
Σ = diag(1/(τ 2z1σ), · · · , 1/(τ 2zTσ)). Hence, the mixture representation results in

a normal kernel for the likelihood which enables analytical solutions for conditional

posteriors as shown below.

Throughout the chapter, we consider priors on βp that take the following form:

βp ∼ N(0K ,Λ∗), (5.6)

where a prior mean of zero implies shrinkage toward sparsity and the prior vari-

ance parameters, Λ∗ control the amount of shrinkage toward zero.

By applying independent priors p(βp, σ, Z) = p(βp)p(σ)p(Z), the conditional

posterior for βp is normal:

p(βp|·) ∼ N(βp,Λ∗)

βp = Λ∗(X
′Σ(Y − ξZ))

Λ∗ = (X ′ΣX + Λ−1
∗ )−1.

(5.7)
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The conditional posterior of the scale parameter is:

p(σ|·) ∼ G−1(a, b)

a = a+
3T

2

b = b+
T∑
t=1

(yt − x′tβp − ξzt)
2

2ztτ 2
+

T∑
t=1

zt,

(5.8)

where G−1 stands for the inverse-Gamma distribution. Finally, the conditional pos-

terior for zt is:

p(zt|·) ∼ 1/iG(ct, dt)

ct =

√
ξ2 + 2τ 2

|yt − x′tβp|

dt =
ξ2 + 2τ 2

στ 2
,

(5.9)

where iG stands for the inverse Gaussian density with location (ct) and rate (dt)

parameter.

The conditionally conjugate posteriors (5.7,5.8,5.9) allow for efficient Gibbs sam-

pling algorithms which for the independent prior setup have been shown to be ge-

ometrically ergodic by Khare and Hobert (2012), independent of any assumptions

on X. Hence, X could include more variables than observations, dependent or deter-

ministic variables.

Since taking the inverse of the posterior covariance of the regression coefficients

Λ∗ can be computationally demanding in high dimensions, we make use of the fast

BQR sampler proposed by Kohns and Szendrei (2020) that reduces the computa-

tional complexity involved in obtaining a draw from βp from O(K3) to O(T 2K).

This algorithm is particularly suitable for macroeconomic data sets in which K is

typically much larger than T. Details of the exact sampling steps for all priors con-

sidered are given in the appendix.

5.3 Shrinkage Priors

Shrinkage priors, both for conditional mean and quantile models, can be under-

stood as a Bayesian generalisation to frequentist penalised regression, where the

penalisation is a function of the number of active coefficients:

β = argmin
∑
t

h(yt, xt, β̃) + δQ(β̃). (5.10)
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h and Q are two positive functions, and δ controls the amount of penalisation.

Choosing h(•) to be the negative log-likelihood of the data and Q(β̃) to be the

ℓ1-norm, ||β̃||1, (5.10) yields sparse optimal solutions for β which are maximum

likelihood equivalents to the popular lasso estimator of Tibshirani (1996) when the

likelihood is Gaussian. Likewise, using ℓ1-norm penalisation and setting h(•) to the

negative log of the ALD likelihood, (5.10) recovers the maximum likelihood equiva-

lent of the quantile lasso of Chernozhukov et al. (2010). From a Bayesian perspective,

Q(β) instead can be understood as the negative log prior distribution imposed on

β, which renders (5.10) the negative log-posterior. The Bayesian paradigm has the

added advantage of being able to set a prior also for the amount of penalisation p(δ)

which gives a probabilistic way to conduct shrinkage. Different prior forms of p(δ)

will result in different shrinkage properties.

Lasso Prior. Firstly introduced by Park and Casella (2008), the lasso prior gen-

eralises the frequentist lasso by placing a mixture exponential prior on δ. Adapted

to the BQR by Li et al. (2010), the prior takes the following form:

βj|φj ∼ N(0, φj),

φj|ϕ ∼ exp(
ϕ

2
)

ϕ ∼ G(a1, b1)

(5.11)

where Λ∗ = diag(φ1, · · · , φK) and G denotes the Gamma distribution. The condi-

tional posteriors for the hyperparameters are standard:

p(φ−1
j |•) ∼ iG(

√
ϕ

β2
j,p

, ϕ)

p(ϕ|•) ∼ G(K + a1,
1

2

K∑
j=1

φj + b1).

(5.12)

If instead ϕ is allowed to vary with the same distribution as in (5.11) for each j, this

prior will become the adaptive lasso prior of Alhamzawi et al. (2012)4.

Horseshoe Prior. Similar to the standard result as to why the ℓ1-norm penalty

in a frequentist approach to solving (5.10) tends to over shrink signals in lasso

regression (Zou, 2006), the Bayesian lasso over shrinks large coefficients as well5.

4 Since in simulations and the application we found there to be no substantial difference in
terms of performance between the Bayesian lasso and adaptive lasso BQR, we report only
results for the Bayesian lasso. See Kohns and Szendrei (2020) for a thorough investigation of
the differences in performance between these priors.

5 Carvalho et al. (2010) and Piironen et al. (2017) formalise this argument through implied
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The general class of global-local priors seek to solve this problem by adding another

shrinkage scale hierarchy, which, with suitably chosen priors, approximate the ideal

behaviour of shrinking noise variables aggressively toward zero, while leaving signal

variables untouched. Global-local priors take the following form:

βj|φ2
j , ϑ

2 ∼ N(0, φ2
jϑ

2), j ∈ (1, · · · , K)

φ2
j ∼ π(φ2

j), j ∈ (1, · · · , K)

ϑ2 ∼ π(ϑ2).

(5.13)

The horseshoe prior of Carvalho et al. (2010) employes two independently dis-

tributed half Cauchy distributions on the positive support for both the global and

local scales:

φj ∼ C+(0, 1) (5.14)

ϑ ∼ C+(0, 1), (5.15)

where Λ∗ = ϑ2diag(φ2
1, · · · , φK). Due to the assumption of independence on the

scales (φ, ϑ), it is straightforward to show that their posteriors follow independent

Cauchy distributions. To sample from their posteriors, we make use of the slice

sampler used for the Horseshoe-BQR in Kohns and Szendrei (2020).

SSVS Prior. While the lasso and horseshoe prior are continuous shrinkage pri-

ors, the SSVS prior, dating back to Mitchell and Beauchamp (1988) and George and

McCulloch (1993, 1997), discretises the model space akin to Bayesian model aver-

aging priors (Raftery et al., 1997; Clyde and George, 2004). Since evaluating each

model to compare marginal likelihoods becomes quickly infeasible in high dimen-

sions, the SSVS saves computation time by exploring models through its Markov

chain with highest posterior probability. This is achieved by modeling β by a mix-

ture prior, where coefficients are sorted into two groups, the “spike” and the “slab”.

When sorted into the first group, the value of the coefficient is shrunk heavily to-

ward zero, while in the second it is modelled through a disperse normal prior. We

follow George et al. (2008)’s implementation, which has been adapted to the BQR

by Korobilis (2017):

βj,p|γj, φj ∼ (1− γj)N(0, cφ2
j) + γjN(0, φ2

j)∀j ∈ {1, · · · , K}

φ2
j ∼ G(a2, b2)

γj|π0 ∼ Bern(π0)

π0 ∼ B(a3, b3),

(5.16)

where Bern(•) stands for the Bernoulli distribution, B(•) for the Beta distribution

and c = 10−5, which effectively shrinks the spike group of coefficients to 0. π0

shrinkage distributions for the normal means and normal regression model respectively.
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controls the probability of inclusion into the slab group. Λ∗ for the SSVS priors

becomes diag(φ2
1, · · · , φ2

K) for all j if γj = 1 and diag(cφ2
1, · · · , cφ2

K) if γj = 0.

Under prior (5.16), the conditional posteriors are:

φ2
j |• ∼ G(a2 +

1

2
,
β2
j,p

2
+ b2)

γj|• ∼ Bern(
π0N(βj,p, φ

2
j)

π0N(βj,p, φ2
j + (1− π0)N(βj,p, cφ2

j)
)

π0|• ∼ B(1 + a3, k − 1 + b3),

(5.17)

where k denotes the size of the slab group. Due to the very strong shrinkage implied

by the scalar c, we treat 1′γsj |• as a posterior estimate of the model size on an

iteration basis. Further, throughout all simulation and the empirical application,

we set a3 = b3 = 1, which embeds the assumption that a-priori all model sizes are

equally likely, and thus allows for dense as well as sparse models as recommended

by Giannone et al. (2021).

5.4 Decoupling Shrinkage and Sparsity

While continuous shrinkage priors such as global-local priors in (5.13) yield good

forecasting performance (Cross et al., 2020; Huber et al., 2019; Kohns and Bhat-

tacharjee, 2022), interpretation of forecasts based on the posterior are impeded by

the fact that the marginal posterior p(βp|Y ) is continuous on RK . To aid inter-

pretability, the assumption of sparsity is often employed, which forces small coeffi-

cients to zero when they have small enough effects on the target, Y . The Bayesian

approach to enforcing sparsity can be seen as an optimal action that minimises an

expected loss function that embeds the preference of sparsity as:

L(Ỹ , ψ) = ζ||ψ||0 + T−1||Xψ − Ỹ ||22, (5.18)

which was proposed by Hahn and Carvalho (2015), and || • ||0 refers to the ℓ0-norm.

This loss function also offers the interpretation of a policy maker’s utility function for

the best possible linear surrogate model whose predictions resemble those from the

un-sparsified model (measured in ℓ2-distance) with a preference for interpretability,

which is encoded as exact sparsity inducing penalization. Ỹ refers to a realisation

of the predictive distribution with density:

p(Ỹ |Y ) =

∫
p(Y |X̃,Υ)p(Υ|Y, X̃)dΥ. (5.19)

In (5.19), we have collected all unknown parameters into Υ for the sake of brevity.

For simplicity, we focus here on in-sample predictions which renders X̃ known and
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equal to X.6 Note that in the following discussion, we omit the condition on X̃

for readability. Since Ỹ is a latent quantity, the expectation of (5.18) requires

integration both with the respect to Ỹ and Υ:

L(ψ) =
∫ ∫

ζ||ψ||0 + T−1||Xψ − Ỹ ||22 p(Ỹ |Υ)dỸ p(Υ|Ỹ )dΥ. (5.20)

Theorem 1: Assume the observation likelihood is the ALD, given by (5.3), and

that the posterior for Υ, p(Υ|Y ), given by (5.7), (5.8), and (5.9), has been obtained

through posterior sampling, then the expected loss (5.20) is given by:

L(ψ) ∝ ζ||ψ||0 + T−1||Xψ −Xβp||22 + tr(X ′XΣβp)− T−1ψ′X ′ξZp, (5.21)

where β and Σβp refer to the posterior mean and covariance of p(βp|Y ), and Zp is

defined as Zp =
(

|y1−x′1βp|√
ξ2+2τ2

+ στ2

ξ2+2τ2
, · · · , |yT−x′T βp|√

ξ2+2τ2
+ στ2

ξ2+2τ2

)′
. The proof is provided

in the appendix.

Remark on Theorem 1: the integrated loss function (5.21) is remarkably similar

to the normal likelihood case derived in Hahn and Carvalho (2015), with the differ-

ence being a term involving the posterior means of Z, Zp, which appear due to the

mixture representation of the ALD. Since we are interested in sparsifying the vector

βp|•, so as to minimise the Euclidean distance to the expected quantile Q̂p = Xβp|•,

instead of the expected location of the ALD directly, we proceed from this analysis

by neglecting the term involving Zp. While this may seem a strong simplification,

notice that 1) the contributions to this term become very small with increasing T

as the entries of Zp are multiplied one covariate at a time, which will become clear

from the coordinate descent algorithm employed below; and 2) for p = 0.5, the term

vanishes completely due to ξ = 0. Thus central quantiles are virtually unaffected.

Lastly, ignoring the terms involving Zp can also be understood from the perspective

that the ALD in the BQR is often only treated as a working likelihood rather than

the true data generating process of Y in order to retrieve posterior estimates of the

quantile regression coefficients (Yang et al., 2016). To convince on the negligible

effect of dropping the last term in (5.21), we provide simulation evidence below.

Proceeding by dropping all constant terms, the objective function becomes:

ψ∗
p = argmin

ψ
ζ||ψ||0 + T−1||Xψ −Xβp||22. (5.22)

At this point, it is interesting to note the difference in the objective function to

frequentist penalised quantile regression such as the quantile lasso of Chernozhukov

et al. (2010). While Chernozhukov et al. (2010) compute the expected quantiles

6 Note that in general, this need not be the case and X might contain an entirely different
subset to X. See Hahn and Carvalho (2015) and Piironen et al. (2020) for more discussion on
that.
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from observations Y , (5.22) finds a sparsified vector ψ∗
p by minimising the squared

differences to the expected quantile directly. Hence, due to the availability of the

posterior for βp|•, βp, the quantile can be treated as observed. To verify that indeed

squared error loss applied in (5.22) results in recovering the desired quantile coeffi-

cients, we provide Lemma 1 below:

Lemma 1: Let β∗
p ∈ RK be the true quantile regression parameter vector, and

X be of full column rank. Then, the following minimisation problem recovers the

true quantile coefficients:

β̂p = argmin
β̃

||Xβ∗
p −Xβ̃||22/T. (5.23)

Proof : Expanding (5.23) and solving the first order conditions yields:

β̂p = (X ′X)−1X ′Xβ∗
p = β∗

p .

5.5 Signal Adaptive Variable Selection for the BQR

Following Hahn and Carvalho (2015) and Ray and Bhattacharya (2018), we make

three modifications to the objective function (5.22). Firstly, we make use of the ℓ1-

norm instead of ℓ0-norm penalisation to obtain a convex objective function whose

solution is computable with standard techniques such as the coordinate descent

algorithm of Friedman et al. (2010). Secondly, it is well known that the ℓ1-norm

penalisation as an approximation to the ℓ0 norm overshrinks signals which might

hurt predictive performance. To tackle this we make use of adaptive penalisation

akin to Zou (2006):

ψ∗
p = argmin

ψ

1

2
||Xβp −Xψ||22 +

K∑
j=1

ζj|ψ|j. (5.24)

Lastly, Ray and Bhattacharya (2018) have observed that starting the coordinate

descent algorithm with the posterior means of ψ|• results in convergence after the

first iteration by setting ζj =
1

|βj |κ
and fixing κ = 2. Hence, the solution to (5.24)

with one iteration of the coordinate descent algorithm simplifies to:

ψ̂∗
p,j = sign(βp,j)||Xj||−2(|βp,j| · ||Xj||2 − ζj)+, (5.25)

where sign(y) = 1 if y ≥ 0 and -1 otherwise, and let y+ = max{y, 0}. See the

appendix for a full derivation of the coordinate descent algorithm.

While the original SAVS procedure proposed by Ray and Bhattacharya (2018)

provides good sparsification properties by fixing κj = 2 across all coefficients for

conditional mean models, a uniform value of κ across quantiles can be inappropriate

if the degree of sparsity varies across the conditional distribution. Quantile specific
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sparsity can arise when the coefficients βp have a quantile profile which crosses the

zero line for any p ∈ (0, 1). Hence, to accommodate this, we make two contributions

to the SAVS algorithm which we call the BQRSAV S algorithm. Firstly, we treat κj

as a parameter to be estimated from the data. And secondly, since standard score

functions such as the log-score employed in projective variable selection (Piironen

et al., 2020) or other functionals (Kowal, 2021) would entail variable selection con-

sistent with conditional mean models, we use quantile specific score functions. In

particular, we make use of the quantile BIC (qBIC) of Lee et al. (2014) and choose

κ̂p such that it minimises the qBIC criterion:

κ̂p = argmin
κ

qBIC(κ)

= argmin
κ

log(
T∑
t=1

ρp(yt − x′tψ
∗
p(κ))) + |Ŝκ|

log(T )

2T
CK ,

(5.26)

where |Ŝκ| is the cardinality of sparsified ψ∗
p(κ) conditional on parameter κ̂p, and

CK , is a positive constant which diverges to infinity with K. We follow Lee et al.

(2014) by setting CK = log(p). Lee et al. (2014) show that estimating the level of

penalisation in ℓ1 penalised quantile regression through the qBIC, results in model

selection consistency under expanding K and T.7 While model selection consistency

is hard to prove in the Bayesian paradigm and is an active field of investigation, it

stands to reason that we get close to model selection consistency in the frequentist

sense when βp is consistently estimated. We leave this proof for future research.

Alternatively to finding κ̂p through minimisation of (5.26), one can embed a

decision rule that incorporates uncertainty in κ̂p, such as choosing the smallest κ̂p

(and therefore the smallest model size), that is no worse as measured by the qBIC, to

the un-sparsified posterior with probability ς. Obtaining a standard error estimate

for the difference between the qBICs of the sparsified and un-sparsified posteriors

are readily available from the the output of the Markov chain. We found, however,

throughout simulations as well as the application that either method gave similar

results, such that we use the minimum qBIC procedure as in (5.26). We will denote

the BQRSAV S using κ̂p that minimises the qBIC as BQRBIC .

The importance of selecting κ̂p in a data informed manner, even for simple data

generating processes without quantile varying sparsity, can be gauged from the con-

vergence path of the coordinate descent algorithms, shown in figure (5.1).

Taking average solution paths over 50 simulations based on a simple high dimen-

sional block and sparse DGP, which are further elaborated in section 5.6, figure (5.1)

shows clearly that convergence is reached for the qBIC penalised SAVS objective

7 Model selection consistency is also dependent on specifying an upper bound, s, for S when
K >> T . Not specifying s still leads to model selection consistency, however, with mild extra
assumptions on the rate of K.
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Figure 5.1: Coordinate Descent paths for objective function (5.24) for a block-
sparsity and sparse DGP taken from the Monte Carlo simulations below. The con-
vergence paths are an average over 50 simulations with 100 in-sample observations
with 100 covariates, not including the constant.

function after only one iteration, while the plain SAVS takes usually more than 10

iterations on DGPs which are non-sparse. The level of the objective function is ad-

ditionally much lower for qBIC compared to SAVS. Hence, stopping the coordinate

descent algorithm with the plain SAVS bears the risk of inefficient penalisation.

Finally, since with correlated designs, the mean of the posterior distribution of

β, can perform badly in terms of forecasting due to multimodality, we implement

sparsification (5.25) as well as penalisation parameter choice (5.26) on an iteration

basis. This bears the added advantage of being able to quantify variable selection

uncertainty through the frequency of how often a coefficient is selected into model

Ms, where Ms denotes a quantile regression model indexed by a vector of binary

indicators of dimension K per iteration s. The percentage of times coefficient j

appears in Ms, can thus be interpreted akin to posterior variable inclusion prob-

abilities such as Eγ(γj|•) . Alongside posterior credible intervals for ψp, this gives

an interpretable, Bayesian decision theoretically motivated way to conduct variable

selection for any continuous prior for the BQR framework.
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5.6 Monte Carlo Experiment

5.6.1 Monte Carlo Setup

Simulated experiments are conducted in order to investigate the potential benefits of

sparsification for the BQR in terms of its variable selection properties, coefficient bias

and robustness to different data generating processes (DGPs). Another purpose of

this simulation experiment is to compare variable selection of the proposed methods

to the standard way of conducting Bayesian variable selection, namely via the SSVS

prior. In particular, we are interested in the BQRSAV S’ and BQRBIC ’s ability to

adapt to different degrees of sparsity and error distributions. We generate data from

the following model:

yt = β0 + x′t,cβc + x′t,qβq + (x′tϱ)ut, t = 1, · · · , T, (5.27)

where {ut}Tt=1 are assumed to follow some otherwise unspecified cumulative density

function (CDF), F, and the subscripts c and q refer to covariate groups whose

regression coefficients don’t vary and vary across quantiles respectively. From (5.27),

one can see that the quantile profile of the quantile varying coefficients is in turn

dictated by the correlation between the covariate and error process ut which is

enforced through ϱ being a K-dimensional binary vector which is non-zero if xt,i ∈
xt,q (as well as for the constant coefficient). Assuming a tick-loss function and solving

for quantile regression coefficients β(p) for any p, Koenker (2005) has shown that

quantile regression coefficients have a random coefficient interpretation, where the

quantile profile is proportional to the quantiles of the error process, with its centre

on βc and βq respectively:

β0(p) = β0 + ϱ0F
−1(p)

βq(p) = βq + ϱqF
−1(p)

βc(p) = βc

(5.28)

The constant coefficient β0 by default always has a quantile profile so as to

enforce location effects. Solution (5.28) to model (5.27) therefore motivates the

investigation of sparsity detection for both the βc and βq vectors, and also whether

the assumption of the error distribution effects this.

In particular, consider a homoskedastic design in which ϱ is populated by zeros

such that β(p) = β ∀p where β = (β′
c, β

′
q)

′. These offer baseline DGPs in which, as

per (5.28), only the constant has a non-constant quantile function. Sparsity patterns

considered are:

• βsparse = (1, 1.5, 1, 0.5, 0.33, 0.25, 01×(K−4))
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• βblock = (1, 0.51×K
5
, 01×2K

5
, 0.51×K

5
)

To investigate how well the BQRSAV S and BQRBIC detect sparsity specific to a

given quantile, we consider additionally a heteroskedastic set of DGPs where βq

is zero only for some p. In particular, we let the constant coefficient be zero at

the median and an additional covariate be zero only for 0.15 < p < 0.85.8 This

is equivalent to making the ϱ be quantile varying as well. In particular ϱq for the

quantile specific sparsity is defined as:

ϱ∗q = ϱq[I(ut ≤ F−1(0.15)) + I(ut ≥ F−1(0.85))] (5.29)

Sparsity patterns that are considered for the quantile specific sparse Monte Carlo

designs are:

• βsparse,c = (0, 0.5, 0.33, 0.25, 01×(K−4)), βq = 0 and β0 = 0

• βblock,c = (0, 0.51×K
5
, 01×2K

5
, 0.51×K

5
), βq = 0 and β0 = 0

For the homoskedastic DGPs, we consider standard normal and student-t-distributed

errors with 3 degrees of freedom. For heteroskedastic DGPs, we also consider stan-

dard normal error and one further variant. Since it may also be plausible to find

that there is sparsity across p, but with constant non-zero coefficients for non-sparse

quantiles, we consider as a final heteroskedastic design the quantile varying coeffi-

cient to be -0.5 for p ∈ (0, 0.15] and 0.5 for p ∈ [0.85, 1). For clarity, the quantile

8 Centering the quantile function of β0 on 0 helps identifying quantile profiles on other covariates
on account of tails of coefficients being ’aligned’

Figure 5.2: Quantile specific sparsity profiles
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profiles for the quantile specific sparse coefficient are presented in figure (5.2). The

quantile profile of the quantile varying beta coefficients for the 4 designs are sum-

marised in table (5.1).

For all DGPs, we generate 50 synthetic data sets and set K = 100 (constant not

included). The design matrix, X, is simulated using a multivariate Gaussian with

zero mean and Toeplitz covariance structure, Ω, where Ωi,j = ρ|i−j| and ρ = 0.5.

There are two sample sizes considered Ti ∈ {100, 500}.
Performance of the priors are gauged in terms of coefficient bias and measures of

correct variable selection. Coefficient bias is calculated as the average (over Monte

Carlo iterations) root mean deviation to the true quantile regression coefficients:

1

iter

√
||β̂(p)− β(p)||22 (5.30)

where iter is the number of Monte Carlo iterations, and β̂(p) is the mean posterior

vector of the estimator.

Variable selection will be evaluated with Matthew’s correlation coefficient (MCC)

and the hit rate. While the MCC gives an overall measure of goodness of variable

selection based on the true and false positives and negatives, the hit rate tells us

how well we identify the true positives. The MCC and the hit rate can be calculated

from the confusion matrix with the following formulas:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5.31)

Hit rate =
TP

TP + FN
(5.32)

where T stands for ”True”, F stands for ”False”, N stands for ”Negative”, and

P stands for ”Positive”. The MCC and hit rate are commonly used for binary

classification problems but high-dimensional problems can be easily amended to fit

the framework: non-zero coefficients have a value of 1 and zero coefficients have

a value of 0. The same way coefficients shrunk to 0 receive a value of 0, while

coefficients that are not 0 get a value of 1. This way a confusion matrix can be

constructed from which the measures can be calculated. The MCC is between -1

(worst) and +1 (best), while the hit rate will range between 0 (worst) and 1 (best).

5.6.2 Monte Carlo Results

The coefficient bias results of the designs for a selection of quantiles are presented in

table (5.2), the results for the MCC are shown in table (5.3), and the results of for the

hit rates can be seen in table (5.4) 9. The tables tell a very clear story: sparsification

9 Note that the results presented in tables (5.2)-(5.4) do not include the ALD adjustment term
Zp.
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Design β profiles
y1 β0(p) = β0 + F−1

N(0,1)(p)

y2 β0(p) = β0 + F−1
T (3)(p)

y3
β0(p) = β0 + F−1

N(0,1)(p)

β1(p) = β1 + [I(ut ≤ F−1
N(0,1)(0.15)) + I(ut ≥ F−1

N(0,1)(0.85))]F
−1
N(0,1)(p)

y4
β0(p) = β0 + F−1

N(0,1)(p)

β1(p) = β1 + [−1
2
I(ut ≤ F−1

N(0,1)(0.15)) +
1
2
I(ut ≥ F−1

N(0,1)(0.85))]

Table 5.1: Summary of simulation setups

via the BQRSAV S and BQRBIC improves or yields similar coefficient bias compared

to the un-sparsified posteriors, while yielding more often than not better variable

selection accuracy than the SSV SBQR, independent of sparsity, in-sample length

and error-distribution. The BQRBIC procedure stands out particularly in the sparse

DGPs in which this sparsification procedure can reduce bias close to half for some

quantiles in the larger sample setting compared to the un-sparsified posterior and

offers further bias reduction compared to the BQRSAV S. Results including the

adjustment term Zp, presented in the appendix shows that the results are largely

unaffected as expected.

Baseline DGPs

Focusing first on bias for the un-sparsified posterior, one can see from the first two

columns of table (5.2), that the HSBQR and LBQR do similarly well in the sparse

DGPs, while clearly outperforming the SSV SBQR. Although, all priors reduce bias

with more data, the overall tendency doesn’t change in the larger T=500 DGP. The

largest difference among the SSVS, Lasso and horseshoe priors manifests itself in

the block DGP’s where the HSBQR does consistently better, especially in the tails

and in the smaller sample size of T=100. These findings corroborate the findings

of Kohns and Szendrei (2020) that the adaptive shrinkage from global local priors

are able to capture different sparsity blocks among the covariates and adapt to low

data settings.
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With sparsification, one sees generally that the BQRSAV S and BQRBIC reduce

bias nearly uniformly across DGPs. However, while the LBQR and HSBQR had

similar bias in sparse DGPs, the HSBQRBIC has the lowest bias among all models,

while trading blows with the HSBQRSAV S in the block DGPs. The HSBQR

coming ahead with sparsification indicates that signals are better identified through

the horseshoe than the lasso prior.

The variable selection results in the first two columns of (5.3) and (5.4), mirror

the bias results, while highlighting that the reason for the better performance from

the BQRBIC models comes from lower false positive rates. This can be deduced

from the fact that while the hit rates in table (5.4) are higher for the other models,

the MCC are lower. This also holds for the SSVS prior. Hence, both the SSV SBQR

and BQRSAV S models tend to select too many noise variables.

Quantile specific Sparse DGPs

Similar to the baseline DGPs, the bias tendencies carry mostly also over to the quan-

tile specific simulations, with the difference that theHSBQR does exceptionally well

in the tails of the block DGPs. This can be understood from the fact that adaptive

shrinkage plays an even larger role with quantile specific sparsity, particularly in the

more extreme tails which are data sparse (Koenker, 2005).

Adding sparsification, the BQRBIC does better than BQRSAV S in sparse DGPs,

however, similarly to the baseline results, does not offer a systematic improvement

over the BQRSAV S in the block DGPs. This makes sense in the high-dimensional

settings considered where capturing the quantile profile of the single covariate has

a larger impact on fit in the sparse DGP than the block DGP, where many more

covariates have non-zero coefficients.

In terms of variable selection, we find that the continuous priors considered

outperform the SSV SBQR in sparse DGPs and the HSBQRBIC does especially

well in the tails, consistently having the highest MCC. The results in the block design

deviate from the baseline results: here we see that the SSV SBQR and BQRSAV S

models tend to do better than the HSBQRBIC in terms of the MCC, yet have

similar or higher bias. Considering the hit rates, this difference indicates that the

BQRBIC now offers lower penalisation in order to capture the quantile effect from

the quantile specific variable which the tick-loss function heavily tilts the predicted

quantile towards. Allowing for proper ALD correction by including Zp as in (5.21)

for these DGPs, however, allows the HSBQRBIC to again outperform in the tails

or come close to the best performer in terms of variable selection. Looking at the

hit rates, it is suggestive that the Zp correction implies some additional penalisation

particularly in the tails which increases sparsity and decreases the amount of false

positives from the sparse parts. Nevertheless, in terms of bias, the correction induces

very small differences and vanishes with more data.
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All in all, the simulations have shown that sparsification often lowers bias notica-

bly, or at worst holds bias stable, while improving variable selection compared to the

SSVS. The BQRBIC outperforms the BQRSAV S, especially in sparse designs and in

the tails where the extra flexibility of determining the penalisation from the data

allows to capture the quantile profile. The results have also shown that although

sparsification often helps the priors’ performance, care should be taken in selecting

the shrinkage prior a-priori.

5.7 Growth at Risk application

The initial motivation for growth-at-risk, as introduced by Adrian et al. (2019), is

to measure the downside risks, or vulnerabilities, to real GDP growth, which are

captured as the response of forecasted conditional quantiles to changes in summary

measures of financial conditions. Such models provide useful information for poli-

cymakers, as it has been empirically and theoretically shown that crises stemming

from the financial sector carry the risk of creating negative feedback loops between

the real economy and the financial system (Jordà et al., 2015). However, as seen

from recent macroeconomic developments, vulnerabilities to GDP growth may stem

from various, possibly a priori unknown parts of the economy which entails that a

larger information set is needed. Recent contributions to the GaR literature indeed

conduct real time nowcasting exercises (Carriero et al., 2020b; Ferrara et al., 2020)

and forecast density combination (Kohns and Szendrei, 2020; Korobilis, 2017) using

larger macro data sets in combination with shrinkage priors in order to deal with

parameter proliferation.

However, shrinkage priors, such as the very popular global-local priors, are con-

tinuous and are therefore hard to interpret in higher dimensions. For this applica-

tion, similar to Kohns and Szendrei (2020), we are interested in creating quantile

and combined density forecasts for real GDP growth based on the entire McCracken

and Ng (2020) data base. The logic of combining forecasts of multiple quantiles

is to allow for the full heterogeneity of the data’s effects to permeate to the con-

ditional forecast distribution, which has been shown in the previous literature to

often outperform models focused on only location effects (Korobilis, 2017) 10. How-

ever, unlike previous contributions, we apply the introduced sparsification methods

to understand which variables drive the forecasting results in an effort to better

communicate which subsets of the data set explain particular parts of the forecast

distribution.

The McCracken and Ng (2020) database11, including real GDP, consists of 248

10 This step should also be natural from the standpoint that conditional quantiles characterise
empirical CDFs which in turn provide direct links to the latent forecasted probability density
function.

11 https://research.stlouisfed.org/econ/mccracken/fred-databases/
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macroeconomic time series, starting from 1959Q1 at a quarterly frequency and is

updated monthly. We take the quarter-on-quarter growth rate of annualized real

GDP as our dependent variable and all others as independent covariates. These

variables include a wide variety of macroeconomic effects which cover real, financial

as well as national accounts data. Since not all series start at 1959Q1, for the

growth at risk application, only variables that are available from 1970Q1 on wards

were considered which gives 229 explanatory variables.

Predictions for our quantile methodology are generated from a direct forecasting

model:

yt+h = x′tβ + ϵt+h (5.33)

for t = 1, · · · , T − h, where h refers to the forecast horizon. We consider one-

to four-quarter ahead forecast horizons (h = 1, · · · , 4). Following Yu and Moyeed

(2001), the quantile specific predictive distribution can be obtained by marginalising

out the uncertainty of the quantile regression parameter posterior p(βp|•):

p(yt+h,p|y1:t) =
∫
p(y1:t|βp)p(βp|y1:t)dβp, (5.34)

where in (5.34) y1:t refers to in-sample observations for (y1, · · · , yt). (5.34) is con-

veniently approximated through Monte Carlo integration, as posterior draws βsp are

available from MCMC algorithms detailed in the appendix:

p(yt+h,p|y1:t) ≈
1

S

S∑
s=1

p(y1:t|βsp). (5.35)

Note that for each MCMC iteration p(βp|•), βsp, we obtain a sparsified vec-

tor through the BQRSAV S and BQRBIC procedure respectively, which are used

again in (5.35) to generate separate predictive distributions. Predictive distribu-

tions are estimated for plain, BQRSAV S sparsified and BQRBIC sparsified posteri-

ors of the HSBQR and LBQR as described in section (5.5) and the SSV SBQR

serves as a benchmark for the large data models. To further contrast our results

to the well established ’vulnerable growth’ model of Adrian et al. (2019), we esti-

mate a Bayesian quantile regression with a fairly uninformative standard normal

prior on the regression coefficients of only lagged real GDP and the NFCI index.

This model is abbreviated in the tables below as ABGBQR. Finally, to obtain a

combined predictive density, we follow Gaglianone and Lima (2012) and Korobilis

(2017) by estimating quantile predictive distributions for 19 equidistant quantiles,

p ∈ [0.05, 0.10, · · · , 0.90, 0.95], sort the stacked vec(S × 19) vector, and smooth this

stacked vector via a Gaussian kernel12. Although stacking quantile predictive dis-

tributions will inevitably create some quantile crossing, the combination of multiple

neighbouring quantiles helps in providing probability density in tail regions, which,

12 This can be implemented for example via the ”kdensity” function in Matlab
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due to the tick-loss function in the likelihood, are statistically data sparse relative

to the median (Koenker, 2005).

To provide direct reference also to the original work of Adrian et al. (2019), we

construct quantile and density forecasts based on their two-step estimation proce-

dure where conditional quantiles are smoothed via the skew-t-distribution (Azzalini

and Capitanio, 2003).13 Forecasts for all models are computed on an expanding

window basis where the initial in-sample period uses the first 50 observations of the

sample, which makes for 149-h forecast windows.14

To evaluate forecasts, we employ both measures of overall density accuracy and

quantile specific fit. For the overall density, we consider two strictly proper scoring

rules in the sense of Gneiting and Raftery (2007), the average log-predictive density

score (LPDS) and average cumulative rank probability score (CRPS). Define T0

as the initial in-sample period, taken to be (1970Q1-1982Q2), and T as the final

forecast period (Q42019), then the LPDS and CRPS are calculated as follows:

LPDS =
1

T − T0 − h+ 1

T−T0−h+1∑
t=1

log
( 1
S

S∑
t=1

p(yT0+t+h−1|y1:T0+t)
)

CRPS =
1

T − T0 − h+ 1

T−T0−h+1∑
t=1

|yT0+t+h−1 − ŷAT0+t+h−1| −
1

2
|ŷAT0+t+h−1 − ŷBT0+t+h−1|,

(5.36)

where ŷAT0+t+h−1 and ŷBT0+t+h−1 are two independent draws from the forecast distri-

bution. To facilitate the discussion, the objective is to maximise the LPDS and

minimise the CRPS. Since the LPDS and CRPS do not elucidate forecast cali-

bration across different parts of the overall forecast distribution, we further make

use of Rossi and Sekhposyan (2019)’s calibration test. If a model is well cal-

ibrated, then the forecasted CDF of the probability integral transforms (PITs),

gt+h =
∫ yt+h

0
= p(u|yt+h)du, should be statistically indistinguishable from a 45 de-

gree line (Diebold et al., 1998). Following Rossi and Sekhposyan (2019), we report

confidence bands around the 45 degree line to account for sampling uncertainty 15.

Lastly, as a measure of local fit, we make use of the quantile weighted CRPS

(qwCRPS) to asses tail forecast performance. This metric is based on the quantile

score (QS), as proposed by Gneiting and Ranjan (2011) and is calculated as follows:

let ŷt+h,p denote the expected quantile for real GDP growth h steps ahead, then the

13 Results for the skew-t big data models are reported in the appendix
14 The ABG model contains 135-h rolling forecasts due to the availability of the NFCI index.
15 The confidence bands of Rossi and Sekhposyan (2019) should be taken as general guidance,

as strictly speaking, they are derived using a rolling window of estimation, while we use an
expanding window. As recommended by Rossi and Sekhposyan (2019), uncertainty intervals
for higher order forecasts (h > 1), are computed using bootstrapping.
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QS is computed as:

QSt+h,p = (yt+h − ŷt+h,p)× (p− I(yt+h − ŷt+h,p)). (5.37)

The qwCRPS is thus given by:

qwCRPSt+h =

∫ 1

0

wpQSt+h,pdp, (5.38)

where wp denotes a weighting scheme to evaluate specific parts of the forecast density.

Since quantile regression is often used to capture downside risks, we use wp = (1−p)2,
as suggested by Gneiting and Ranjan (2011) for left tail evaluation.

5.7.1 Forecast Density Evaluation Results

Point and density scoring results for all forecast horizons are reported in table (5.5),

where stars indicate statistical significance as per the Diebold et al. (1998) test and

calibration results are graphed in figure (5.4). The density scores show generally

that there is a clear benefit to big data, as average LPDS are often several order

of magnitudes higher, and CRPS significantly lower, especially for the HSBQR

compared to either of the ABG models. The cumulative log-scores over time in graph

(5.3) highlight that the vulnerable growth models underperform particularly during

the financial crisis where the realisations of GDP growth seem to fall far into the

tails of their forecast distributions, thereby being heavily penalised 16 17. In line with

the simulation results, we find that the HSBQR outperforms both the SSV SBQR

and LBQR, and that the BQRBIC is clearly preferred for sparsification compared

to the BQRSAV S, where BQRBIC sparsification often increases performance, as

gauged by the CRPS, or only slightly worsens it as per the LPDS. Also similar to

the simulations, the quality of sparsification is again dependent on the quality of

shrinkage. This can be seen from the generally worse density scores of the LBQR

models. Interestingly, for all models considered, forecast accuracy increases with

the forecast horizon. This may stem the fact that changes in parts of the economy

only affect aggregate output with a lag. Similar to much of the previous macro

forecasting literature (Stock and Watson, 1998; Banerjee and Marcellino, 2006; Edge

et al., 2010) we also find that simpler autoregressive models such as the ABG remain

16 The large performance discrepancy compared to the CRPS, therefore makes sense given that
the LPDS penalises low mass event very heavily.

17 Fitting the skew-t distribution to the ABG model, markedly improves overall density scoring
results and calibration at the one-quarter-ahead forecast horizon, where gains are largest for
the middle to left parts of the density, as seen in figure (5.4). This gives an indication that
the low-dimensional information set cannot provide enough information between quantiles,
for which the skew-t provides extra spread. This in particular aids log-score penalisation.
We find that applying the skew-t to the big-data models, doesn’t not change performance
qualitatively vis-a-vis ABG models. The table with the skew-t results are provided in the
appendix.
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MSFE LPDS CRPS qwCRPS MSFE LPDS CRPS qwCRPS

h=1 h=2
ABGBQR 0.504 -11.607 0.313 1.049 0.404 -7.870 0.254 0.891

ABGBQR−Skt 0.519 -1.727 0.301 1.026 0.426 -4.102 0.277 0.970
SSV SBQR 0.660*** -0.955*** 0.337*** 1.492 0.433*** -0.622** 0.235*** 1.106
HSBQR 0.533* -0.858*** 0.296*** 0.988* 0.411*** -0.558** 0.222*** 0.804*

HSBQRBIC 0.519 -0.895*** 0.291*** 0.948** 0.422*** -1.064** 0.227*** 0.794*
HSBQRSAV S 0.536 -0.976*** 0.296*** 0.968 0.468** -2.856* 0.254*** 0.855

LBQR 0.551* -4.603** 0.305*** 1.091 0.441*** -2.522* 0.238*** 0.863
LBQRBIC 0.552 -4.628** 0.305*** 1.088 0.441*** -2.517* 0.238*** 0.863
LBQRSAV S 0.572 -4.832*** 0.316*** 1.085 0.467*** -3.006* 0.250*** 0.859

h=3 h=4
ABGBQR 0.378 -6.825 0.237 0.847 0.351 -4.387 0.235 0.844

ABGBQR−Skt 0.397 -1.006 0.249 0.857 0.367 -1.252 0.251 0.875
SSV SBQR 0.391*** -0.797 0.219*** 1.027 0.394*** -0.796 0.221*** 1.038
HSBQR 0.390*** -0.649 0.215*** 0.833 0.376** -0.657 0.213*** 0.773

HSBQRBIC 0.397*** -1.589 0.219*** 0.817 0.374** -0.933 0.213*** 0.761
HSBQRSAV S 0.435* -2.913 0.237*** 0.830 0.391 -3.605 0.216*** 0.757

LBQR 0.422*** -2.820 0.230*** 0.872 0.382*** -3.498 0.216*** 0.809
LBQRBIC 0.423*** -2.920 0.230*** 0.870 0.383*** -3.603 0.216*** 0.809
LBQRSAV S 0.442** -4.323 0.239*** 0.860 0.409** -4.949 0.230*** 0.823

Table 5.5: Forecast Evaluation Results

competitive in point forecasts, but fair far worse in density forecasts.

In terms of capturing downside risks, the qwCRPS results show that theHSBQRBIC

consistently produces the best left tail performance, and significantly outperforms

the ABG models at one-quarter and two-quarters ahead. The BQRBIC sparsifica-

tion procedure in fact increases tail performance both for the HSBQR and LBQR.

Calibration based on PITs are able to shed more light on the differing perfor-

mances. Figure (5.4) shows the models’ PIT CDFs with confidence intervals com-

puted as suggested by Rossi and Sekhposyan (2019). Corroborating the good density

scores of the HSBQR variants and the SSV SBQR, figure (5.4) shows that these

models are also well calibrated, especially in the left tail at all horizons. The ABG

Figure 5.3: Cumulative log-scores.
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models in turn tend to underestimate the lower tail which helps explain the bad

log-score performance during the financial crisis in figure (5.3). Among the big-data

models, the general tendency from the calibration results is that the SSV SBQR

slightly overpredicts the left tail and underpredicts the right tail, while the LBQR

tends to underpredict both tails. The HSBQR in turn falls somewhere in the mid-

dle. In line with the density scores, sparsification via the BQRBIC is able to preserve

calibration, while the BQRSAV S tends to overshrink. This is especially prevalent

in the left to middle quantiles of the HSBQRSAV S at one-year ahead predictions,

where more observations fall below those quantiles.

Figure 5.4: Rossi and Sekhposyan (2019) calibration test.

5.7.2 Quantile Specific Variable Inclusion

The results from the density and calibration tests have shown that the BQRBIC

variable selection procedure is able to preserve the fit of the un-sparsified forecast

distributions, and even improve left tail accuracy, which gives credibility to the fact

that most salient features of the models have been captured despite sparsification.

In order to analyse variable importance both over time and across quantiles, we pro-

vide in figures (5.5), (5.6), (5.7), and (5.9) heatmaps of variable inclusion probability

for each prior and sparsification variant. Since there are over 200 variables, showing

all variables on the axis in one figure is impossible. As such, we will only show the

highest inclusion probability among variables in the a given data group. Since there

are 14 groups, this makes the figures much easier to parse and interpret. The choice
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of using the maximum inclusion probability instead of the average inclusion proba-

bility, is that certain variables are selected very frequently in the group, while other

variables are rarely chosen. As such, using the average inclusion probability per

group, would hide how frequently these key variables are selected. Nevertheless, for

completeness, the full heatmaps are shown in the appendix. While figure (5.5), (5.6),

and (5.7) give a general static picture of variable selection across quantiles18, figure

(5.9) shows variable inclusion probabilities for left tail (maximum inclusion proba-

bility of the average of 5th-15th quantiles), right tail (maximum inclusion probability

of the average of 85th to 95th quantiles) as well as the middle regions (maximum

inclusion probability of the average of 45th-55th quantiles) across time to showcase

time variation in variable selection. Since it is of interest to understand differences

in variable selection compared to widely used conditional mean models, we present

at the bottom of figures (5.5) and (5.7) variable inclusion probabilities with each

of the priors considered for the Bayesian quantile regression, however applied to a

normal observational likelihood19. To make the graphs more easily interpretable, we

present the covariates on the horizontal axis in terms of general variable groupings

given by the FRED-QD data base. For example, series in the NIPA group refer to

”National Income and Product Account” information that spans information such

as aggregate consumption, investment and government expenditures. Exact vari-

able definitions for each group can be found in the appendix of McCracken and Ng

(2020).

Variable Inclusion Across Quantiles

For all quantile models under consideration, figures (5.5) - (5.7) clearly show that

there is substantial quantile varying sparsity. For instance, one can see for the

HSBQRBIC model in figure (5.5) at one-quarter ahead, that ”Employment and

Unemployment” data and ”Household Balance Sheets” information are more im-

portant for the right tail, while playing only a marginal role in the left tail. At

one-year ahead forecasts, variable importance shifts in the left tail toward ”Interest

Rates” and ”Consumer Sentiment”, while the right tail has higher inclusion prob-

ability for ”Money and Credit” and ”Non-Household Balance Sheets”. The former

information can be interpreted as important sectors that predict both the 2001 as

well as great financial crisis. As expected, middle quantiles draw information from

either tails, displaying variable inclusion patterns which overlap both with the left

and right tail.20

A commonality among, especially, the one-quarter ahead forecasts is the high

18 inclusion probabilities are first average over time per quantile, and then the max inclusion
probability is used per data group

19 Details on the conditional mean models for the different priors is provided in the appendix.
20 Note that variable groups overlapping need not signify that the fitted quantiles contain the

same information since coefficients may vary across quantiles.
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inclusion probability of NIPA variables at all quantiles. Since the NIPA variable

group contains national account information which gets aggregated via the national

account identity to GDP, it is natural to interpret this variable category as capturing

information inherent in lagged GDP. In fact taking the first principal component of

the four most included NIPA variables by the HSBQRBIC yields a series that is

highly correlated with GDP growth. The fact that these series are included for

the majority of the quantiles presents a departure from the previous literature such

as Adrian et al. (2019) who find that current economic conditions, as captured by

lagged GDP only forecast the median of the conditional distribution.

Contrasting these results to conditional mean models, we find that these tend to

select variable groups which have high inclusion probability not only in the median,

but also the tails. To underscore this, figure (5.8) plots the correlation coefficient

between left, right and middle quantiles of the HSBQRBIC in a rolling 30 quarter

window with point forecasts of the conditional mean horseshoe prior model with

SAVS sparsification. While this figure is not a conclusive test of which quantiles

influence the mean the most, it does highlight that correlation is highest with the

median and right tail during tranquil times, while in recession periods, as indicated

by grey bars, correlation with the lower quantiles increases, hence signifying that

information spills over from the left tail to the mean. This figure, also highlights

that there are larger differences in correlation between the upper, middle and lower

quantiles in the one-year ahead forecasts after the 2001 crisis compared to the one-

quarter ahead forecasts. This may reflect the fact that interest rate and credit

information propagate only with a lag to aggregated economic activity (Romer, 2018)

and therefore are increasingly picked up in higher order forecasts after periods in

which monetary policy had changed a lot to counteract the recession. Lastly, in line

with the recent macroeconomic forecasting literature such as Giannone et al. (2021),

we also find that there is evidence for model uncertainty which can be deduced from

the amount of yellow shaded areas at all forecasting horizons.

Comparing variable selection among priors and sparsification techniques, some

further interesting patterns emerge. First, the BQRSAV S algorithm with fixed pe-

nalisation induces much sparser models than under the more adaptive BQRBIC

penalisation for both continuous shrinkage priors, and in doing so, eliminates near

all model uncertainty, as seen by the large white spaces in figure (5.6). Notably

though, variables which are identified as strong signals by the HSBQRBIC , tend

to also appear with higher inclusion probability in the HSBQRSAV S. As seen in

the previous section, this heavy sparsification, however, comes at a large penalty

on density scores and calibration, hurting particularly tail forecasting performance,

as underscored in figure (5.3) around the financial crisis. Second, in line with the

simulation results, we see also in the empirical application that the LBQR tends in

general to exert stronger shrinkage than theHSBQR, resulting in far sparser models
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Figure 5.5: Maxmimum (per data group) of average inclusion probability for each
quantile of the HSBQRBIC for h=1(top) and h=4 (bottom). HS with SAVS for
mean model included for reference
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Figure 5.6: Maxmimum (per data group) of average inclusion probability for each
quantile of the HSBQRSAV S (top) and the LBQRSAV S (bottom) for h=1
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Figure 5.7: Maxmimum (per data group) of average inclusion probability for each
quantile of the LBQRBIC (top) and the SSV SBQR (bottom) for h=1
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Figure 5.8: Correlation coefficients computed on a rolling 30 quarter window
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than under the horseshoe prior, while the SSV SBQR tends to select larger models

(lower panel of figure 5.7). This is corroborated by table (5.6) which shows average

model sizes of selected estimators. Lastly, the SSV SBQR prior also induces far

greater variable inclusion uncertainty, as the heatmap shows denser yellow regions

compared to the HSBQRBIC . Nevertheless, variables with the highest inclusion

probabilities tend to overlap with those selected by the HSBQRBIC .

The fact that the SSV SBQR prior increases model uncertainty without out-

performing the HSBQR and HSBQRBIC might indicate that the discretisation

of the model-space along with the less flexible slab distribution employed by the

SSV SBQR prior induces higher uncertainty over variable inclusion, especially with

correlated data. This, in fact, corroborates recent work by Fava and Lopes (2021)

who find that when allowing for slab distributions with fatter tails than the normal,

posterior variable inclusion uncertainty can be greatly reduced. Using global-local

priors, and bringing our sparsification approach to the quantile setting, we give new

impetus to the debate on the “illusion of sparsity”.

Variable Inclusion Across Time

While variable inclusion averaged across time revealed that there is support for

quantile varying sparsity in the high dimensional GaR, figures (5.9) and (5.10) clearly

show that variable selection has substantial time variation as well. Taking the

HSBQRBIC as the benchmark, we can see in figure (5.9) that the time variation in

variable selection is in line with what one would expect given the economic history

of the US. There are two periods that stand out at one-quarter ahead forecast:

the financial crisis of 2008 and the mid to late 80’s. Around the financial crisis

the left tail increasingly includes employment and financial data such as interest

rates and non-household balance sheet information. During the mid-to late 80’s,

a period which is often referred to as the Volcker period in the macro literature21,

price variables have high inclusion probability. The middle and right tail share many

common variable inclusion patterns over time, where employment and housing data

impact the selected models during the 2000’s and the financial crisis.

21 When Paul Volcker became chairman of the Federal Reserve Board in 1979, the annual average
inflation rate in the United States was 9%. The Federal Reserves was able to bring inflation
down to 4% by the end of 1983. However, this disinflation came at a cost as during this
period, the US experienced two recessions that are attributed to disinflationary monetary
policy (Goodfriend and King, 2005).

Left Mid Right Left Mid Right

h=1 h=4
SSV SBQR 13.023 19.195 14.668 9.063 13.024 8.505
HSBQRBIC 9.003 9.640 8.202 7.474 7.314 7.148
LBQRBIC 1.541 3.055 1.107 1.439 2.748 1.119

Table 5.6: Average Model sizes of the different models

135



Figure 5.9: Maxmimum (per data group) of average inclusion probability each year
for the HSBQRBIC for its 3 left quantiles (top), 3 central quantiles (middle), and
3 right quantiles (bottom) for h=1 (left) and h=4 (right)
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Figure 5.10: Maxmimum (per data group) of average inclusion probability each year
for the LBQRBIC (left) and SSV SBQR (right) for their 3 left quantiles (top), 3
central quantiles (middle), and 3 right quantiles (bottom) for h=1
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Comparing to the LBQR and SSV SBQR in figure (5.10), the contrasts in vari-

able selection over time are even starker. The LBQRBIC produces very sparse and

the SSV SBQR models produce denser models, and the inclusion probabilities for

both models are very erratic. Seldom is a variable included with high probability

for either priors for more than a quarter which can be seen from the very dotted

heatmaps. The HSBQR models on the other hand produce far smoother inclusion

patterns which indicates that variables with high inclusion probability impact fore-

casts for longer periods. While in figure (5.10) we present LBQRBIC , the same is

true for LBQRSAV S.

The general finding that there is time variation in the importance of variables

for aggregate macroeconomic time-series has already been extensively studied for

conditional mean models such as in Koop and Korobilis (2012), Billio et al. (2013)

and McAlinn and West (2019). Our findings motivate that similar methods be also

considered for the Bayesian quantile regression moving forward. It is however not

surprising that quantile regression models are more sensitive to varying variable

importance, even with static parameters. Namely, as the time-series accumulates,

crisis periods identify new information for the tails which the tick-loss function

will heavily tilt the fitted quantiles toward. This explains the large increase in

the importance of variable groups which help predict the 2000 and financial crisis,

especially for the left tail and the median.

5.8 Conclusion

This chapter has, in the spirit of Hahn and Carvalho (2015) and Ray and Bhat-

tacharya (2018), proposed to conduct variable selection for continuous shrinkage

priors within the Bayesian Quantile Regression by decoupling shrinkage from spar-

sity as derived from a Bayesian decision theoretic perspective. The resultant easy to

implement SAVS procedure for the BQR selects variables on a quantile specific basis

where the degree of sparsity is estimated from the data via the quantile BIC in order

to allow for heterogeneous levels of penalisation across the conditional distribution.

Applying the proposed method to both simulated experiments and an empirical

application, we have found that the qBIC augmented version, the BQRBIC , retains

or even improves the fit of the un-sparsified posterior, while giving easy to interpret

variable selection results.

Simulated experiments have tested a variety of sparsity patterns and error dis-

tributions, both for quantile constant and quantile varying coefficient vectors and

have found that sparsification often lowers bias, or at worst holds bias stable, while

improving variable selection compared to the traditional Bayesian variable selection

priors such as the SSVS. The proposed selection procedure via the qBIC outperforms

the BQRSAV S especially in sparse DGPs and more generally in the tails where the
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extra flexibility of determining the penalisation from the data allows to capture the

quantile profile.

The high dimensional growth-at-risk application to the US verifies the findings

of the Monte Carlo exercise, namely that the BQRBIC retains density forecast per-

formance and even improves downside risk estimation. Compared to the benchmark

‘vulnerable growth’ model of Adrian et al. (2019), the big data models provide signif-

icant gains in density forecasts. In particular, the proposed sparsification techniques

applied to the HSBQR provide well calibrated densities with much improved left

tail performance. Variable selection results of the proposed methods revealed that

there is substantial quantile varying sparsity for US macroeconomic data. As intu-

ition would suggest variable groups which predict crises periods well, such as interest

rate and housing data appear with higher inclusion probability in the left tail while

right and middle quantiles tend to be affected by many overlapping variable groups.

Contrasting these results to variable selection of more commonly used conditional

mean models, we find that mean models tend to select variable groups which have

high inclusion probability not only in the median, but also the tails. This highlights

the importance of quantile models as it allows us to decompose which variables

impact different parts of the distribution. The general finding that there is time

variation in the importance of variables for aggregate macroeconomic time-series

seems to hold true for quantile models as well. We feel that it is a worthy endeavour

to further research methods that allow for quantile as well as time variation for

variable selection, to gain a better understanding of which variables are important

for the different quantiles across time.

139



Chapter 6

Global Local Priors and The

Illusion of Sparsity

6.1 Introduction

Recent decades within social and economic research have experienced unprecedented

increases in data availability which resulted in an equal amount of demand in the

development of statistical and econometric methods that can deal with vast amounts

of information; often dubbed machine learning (ML) or Big Data methods. Their

necessity is prompted by the fact that OLS methods are not adequate or even pos-

sible to estimate in situations where there are more covariates than observations

(Tibshirani, 1996). To make estimation feasible, ML and Big Data methods per-

form regularisation which forces the effects of some variables to zero; thereby freeing

up degrees of freedom. While a great variety of regularisation methods have been

proposed, both linear and non-linear (see for an overview Hastie et al. (2009)), for

predictive purposes, the economic literature still places great importance on exten-

sions to linear regression methods due to their often found competitive performance

compared to more complicated non-linear methods (e.g. neural nets, support vec-

tor machines, random forests) (Coulombe et al., 2020), and more importantly their

interpretability, in that the partial effects from a regression model can more easily

communicated to policy makers.

Following Ng (2013), Chernozhukov et al. (2017) and Giannone et al. (2021), linear

prediction methods that deal with high dimensions can be categorised into either

sparse or dense modeling approaches. Sparse models such as lasso (Tibshirani,

1996), adaptive lasso (Zou, 2006), SCAD (Fan and Li, 2001) embed the assumption

of sparsity through a penalisation term in the minimisation process or the prior

which forces most of the entries in the regression vector to zero, while dense models

such as ridge regression (Hoerl and Kennard, 1970) and PCA methods (Stock and

Watson, 2002) assume that most of the variables included have small non-zero ef-

fects. This is often modeled via a rotation of the original variable space into their
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first r principal components.

The specific modeling choice often adheres to literature specific conventions. In the

macroeconomic literature, dense approaches that summarise common movement in

large sets of macro indicators such as factor and dynamic factor models (DFM) are

considered workhorse models due to a deep structural relationship between business

cycle dynamics and the co-movement of aggregate macroeconomic data (Stock and

Watson, 2002). DFMs are also popular for nowcasting where predictions of such

models are often used as inputs into more structural models such as DSGE models

(Giannone et al., 2016). In the microeconomic literature on the other hand, many

studies use the lasso or variants of the lasso (Belloni et al., 2012) in order to identify

policy relevant intervention effects. This in particular highlights that the model

choice and the assumption about the degree of sparsity not only has implications

for the quality of predictions, but also on how we interpret the data.

An open question in the literature is whether the data can be informative about

which modeling technique is preferred. As such, recent contributions such as Gian-

none et al. (2021) and Fava and Lopes (2021) investigate through Bayesian spike

and slab priors whether the data are informative about the degree of sparsity. The

spike and slab prior assumes a discrete mixture of normals prior on the regression

coefficients which is augmented by the above authors through B(•, •) priors on the

probability of inclusion parameter, q, and a separate prior on a shrinkage scale, γ, so

as to stay agnostic a-priori about the degree of sparsity and the amount of shrinkage.

The advantage of the Bayesian approach over frequentist lasso style estimators, is

that one obtains statistically coherent uncertainty measures on q and γ. Fava and

Lopes (2021) extend this model further by allowing for a fat-tailed t-distributed slab

distribution so as to relax the amount of shrinkage on potentially large coefficients.

By applying their prior to a host of economic data sets, they find that there is sub-

stantial uncertainty in the degree of sparsity for most data sets which is hidden in

methods that take a stand on the degree of sparsity a-priori.

Drawbacks of these studies are firstly that spike and slab priors rely on strict

parametric assumptions about the shrinkage distribution (normal in the case of Gi-

annone et al. (2021) and t-distribution in the case of Fava and Lopes (2021)). Sec-

ondly, due to combinatorial bottlenecks, discrete mixture priors such as the spike and

slab rely on approximations to the model space which can cause mixing problems,

particularly in high dimensional (Barbieri et al., 2021) settings and with correlated

data (Ishwaran et al., 2005; Malsiner-Walli and Wagner, 2018; Piironen et al., 2020).

It is additionally well known that the spike and slab prior is sensitive to the parama-

terisation of the slab distribution and selection of the hyper-parameters (Barbieri

and Berger, 2004; O’Hara and Sillanpää, 2009; Fava and Lopes, 2021). This can

result in false certainty about the posterior degree of sparsity. It may also be argued
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that measures of the degree of sparsity based on marginal likelihoods, as is the case

for spike-and-slab priors, are inappropriate when the policymaker maximises the

joint goal of out-of-sample predictive performance (Piironen et al., 2020).

Instead, the broader Bayesian literature has recently popularised continuous shrink-

age priors such as the horseshoe Carvalho et al. (2010), regularised horseshoe Piiro-

nen et al. (2017), R2D2 Zhang et al. (2020), Dirichlet-Laplace Bhattacharya et al.

(2015) and Normal-Gamma Griffin et al. (2010) prior which offer computational

advantages due to their continuous formulation as well favourable asymptotic prop-

erties (Van Der Pas et al., 2014; Zhang et al., 2020). Cross et al. (2020) and Kohns

and Bhattacharjee (2022) show that global-local priors offer competitive forecasting

performance in macroeconomic applications. However, using continuous global-local

priors for sparsity detection in economic applications has previously been hampered

by the fact that also the posterior of the regression parameters remain non-sparse

(Hahn and Carvalho, 2015). In this chapter, we investigate whether global-local

priors are able to uncover the degree of sparsity in data informed fashion and fur-

ther compare their forecasting performance in large scale Monte Carlo simulations

as well as a host of economic data sets.

In order to infer on the degree of sparsity of global-local priors, we make use of

two methods: (1) an effective model size measure based on a shrinkage coefficient

distribution representation of the posteriors (2) search algorithms that sparsify the

posterior of the GL priors. The effective model size measure has been introduced

by Piironen et al. (2017) in the context of the regularised horseshoe prior, which

measures the count of active regressors in the posterior and is used by the authors to

construct an informative hyperparameter on the global shrinkage distribution. To

the best of our knowledge we are the first to apply this measure to other global-local

priors and to use it to investigate the degree of sparsity. Sparsification of the re-

gression posterior on the other hand is based on the idea that regression coefficients

can be thresholded to zero, when the impact on the response is small. Recently

proposed methods for the latter purpose are the SAVS algorithm of Ray and Bhat-

tacharya (2018) which uses lasso style heuristics under squared error loss and the

predictive projective inference approach by Piironen et al. (2020) which gives fully

Bayesian sparsification under Kullback-Leibler loss and uses Bayesian leave-one-out

cross-validation for subset selection based on out-of-sample performance. While the

SAVS algorithm is becoming increasingly popular (e.g.Huber et al. (2019); Kohns

and Bhattacharjee (2022); Chakraborty et al. (2020); Hauzenberger et al. (2020)),

the forecasting and sparsification properties of predictive projective inference are

largely unexplored for economic data.

Motivated by the findings of our analysis, we propose the agnostic regularised
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horseshoe (A-RHS) prior, which adds a prior over the expected ratio of non-zero

coefficients to the total covariate dimension that allows the data to speak about

the preferred degree of sparsity. With this, we provide an alternative to the spike-

and-slab variable selection approach with uninformative priors on variable inclusion.

The theoretical analysis shows that most global-local priors are in fact infor-

mative about the implied degree of sparsity. We show via simulations and real

data applications that less flexible global-local priors tend to carry over their spar-

sity preference also to their posterior distributions. By controlling our prior beliefs

about expected model sizes via an ‘agnostic’ Beta prior extension on the expected

ratio of non-zero to total coefficients to the regularised horseshoe prior, we are able

to remedy this behaviour. Our simulations show that the the agnostic RHS as well

as regularised horseshoe prior with correct guesses on sparsity provide competitive

inference on sparsity compared to spike-and-slab priors while being able to offer sim-

ilar or slightly better forecasting performance. The good forecasting performance

is confirmed in a host of economic data sets and contributes to the findings Fava

and Lopes (2021) that the spike-and-slab prior with a normal slab distribution gives

far larger uncertainty about the degree of sparsity than our A-RHS and competing

global-local priors.

Sparsification approaches confirm our analysis based on implicit model size dis-

tributions and highlight that the quality of shrinkage will heavily influence the ability

of either sparsification approach to detect signal from noise. The empirical evidence

suggests that the extra flexibility of projective inference to use out-of-sample predic-

tive performance for variable selection is often preferable over the SAVS algorithm

which tends to over-sparsify, particularly in dense DGPs.

In the following, we firstly review the theory behind effective model sizes as well

as SAVS and projective predictive inference. Then, we conduct simulations and

present results from the empirical applications. Finally, we conclude.

6.2 Theory of Model Sizes

6.2.1 A General Framework for Implicit Model Sizes

Global-local priors are continuous shrinkage priors which share the trait that their

marginal prior distribution on the regression coefficients provide large mass on zero

(typically far more than the normal distribution) and fat tails which allow for signals

with large coefficients to escape shrinkage (Polson and Scott, 2010). The general
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class of global-local priors take the following form:

βj|φ2
j , ϑ

2, σ2 ∼ N(0, φ2
jϑ

2σ2), j ∈ (1, · · · , K)

φj ∼ π(φj), j ∈ (1, · · · , K)

ϑ ∼ π(ϑ)

(6.1)

The idea of this family of priors is that the global scale ϑ controls the overall shrink-

age applied to the regression, while the local scale φj allows for the local possibility

of regressors to escape shrinkage if they have large effects on the response. Unlike

discrete mixture spike and slab priors such as (Giannone et al., 2021; Mitchell and

Beauchamp, 1988), (6.1) does not provide a direct measure of sparsity, as the prior

does not provide positive probability on 0. Instead, we leverage an implied posterior

model size formulation of Piironen et al. (2017) which defines the implied model

distribution directly over the conditional posterior of the regression coefficients.

Consider a linear Gaussian regression with T observations:

yt = x′tβ + ϵt, ϵt ∼ N(0, σ2), ∀t = 1, · · ·T (6.2)

with fixed covariate matrix X, of dimension (T × K) and a K dimensional static

regression vector, β. Assuming a scale mixture of normal global-local prior for

(β, σ), the conditional posterior β can be expressed as1:

p(β|Λ, ϑ, σ2, y) = N(β,Σ)

β = ϑ2Λ(ϑ2Λ + σ2(X ′X)−1)−1β̂

Σ = (ϑ2Λ−1 +
1

σ2
X ′X)−1,

(6.3)

where Λ = diag(φ2
1, · · · , φ2

K) and β̂ is the maximum likelihood solution to (6.2),

assuming that X is full column rank. Assuming for simplicity that the covariates

are zero mean and uncorrelated with columnwise standard deviation, sj, (6.3) can

be shown to reduce to:

βj = (1− κj)β̂j (6.4)

where

κj =
1

1 + Tσ−2ϑ2s2jφ
2
j

. (6.5)

κj can be regarded as a shrinkage coefficient as it’s defined over the unit interval and

therefore dictates how much shrinkage is applied to the maximum likelihood solution.

It is easy to verify that when φjϑ → ∞, then κj → 0 and when φjϑ → 0, then

κj → 1. The distribution of the shrinkage coefficient p(κj|Λ, ϑ, σ2, y) is implicitly

defined through the priors for the hyperparameters (Λ, ϑ). Piironen et al. (2017)

1 Note, that we are assuming dependence in the conditional prior of β and σ. Similar derivations
can be conducted under the assumption of independence.
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propose a joint measure of the effective model size (meff ) which can be derived using

the fact that the posterior of κj is independent given the hyperparemeters:

meff =
K∑
j=1

(1− κj). (6.6)

Hence, when the shrinkage coefficients are distributed with most mass on 0 or 1, as

is the case for most global-local priors, then the distribution of this quantity over

all MCMC draws gives an indication as to how many coefficients remain unshrunk

and therefore the implied level of sparsity. While Piironen et al. (2017) use this

formulation to derive a scaling factor for the regularised horseshoe prior, further

discussed below, we will use this formulation to quantify the degree of sparsity

global-local priors prefer.

A word of caution is in order at this point. This chapter abstracts from purely

frequentist properties of global local priors considered in papers such as Van Der Pas

et al. (2014), Bhattacharya et al. (2015) or Zhang et al. (2020) who derive the asymp-

totic behaviour and contraction rates of the posteriors under various assumptions

about the growth of non-zero coefficients in the true parameter vector β0. This

chapter, in contrast, is concerned with the finite sample performance of the priors

in detecting signals from noise for sparsity detection as well as prediction problems

and how these compare to established discrete mixture of normals priors. We now

investigate the shrinkage coefficient distribution for the GL priors under considera-

tion and provide prior predictive distribution according to (6.6) to establish how the

properties of the global-local priors influence the effective model size distribution

a-priori.

6.2.2 Deriving Implicit Model Size Distributions

For this section and the rest of the chapter, we restrict our analysis to a selection

of global-local priors which have garnered much attention in the statistics as well as

economic literature, namely the horseshoe prior (HS) of Carvalho et al. (2010), reg-

ularised horseshoe prior (RHS) Piironen et al. (2017), Dirichlet-Laplace prior (DL)

(Bhattacharya et al., 2015), Normal-Gamma prior (NG) and R2D2 prior (R2D2)

of Zhang et al. (2020). The popularity of these and related priors2 stem from their

favourable theoretical properties and good empirical performance compared to other

global-local prior classes3.

The widely poplar horseshoe prior by Carvalho et al. (2010) employs two half Cauchy

2 See for example Bhadra et al. (2019) and Bhadra et al. (2017) for an overview of competing
priors.

3 See Zhang et al. (2020) for an extensive discussion.
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distributions on the positive support for the global and local scales:

βj|φ2
j , ϑ

2 ∼ N(0, φ2
jϑ

2)

φj ∼ C+(0, 1), j ∈ (1, · · · , K)

ϑ ∼ C+(0, 1),

(6.7)

where C+(0, 1) denotes the density π(y|σ) = 2
πσ(1+ y

σ
)2
.

The regularised horseshoe prior of Piironen et al. (2017) extends on the horseshoe

by addressing two problems related to the Cauchy tails and the scale of the global

shrinkage distribution. Since the Cauchy distribution has undefined moments which

can lead to vanishing posterior means (Ghosh et al., 2018), Piironen et al. (2017) add

a hierarchical scale, c, to the local shrinkage distribution of φj which effectively acts

to soft truncate the implied distribution of κj from zero to κ̃j = 1/(1 + Tσ−2s2jc
2):

βj|φ2
j , ϑ

2, c ∼ N(0, ϑ2, φ̃2
j), φ̃2

j =
c2φj

σ2

Ts2j
+ c2 + ϑ2φ2

j

φj ∼ C+(0, 1) j ∈ (1, · · · , K)

ϑ ∼ C+(0, ϑ0)

c ∼ G−1(η1, η2), η1 = νc/2, η2 = νcs
2
c/2,

(6.8)

where iG refers to the Inverse-Gamma distribution with density π(y) = βα

Γ(α)
y−α−1exp(−β

y
).

The addition of c retains the form of the shrinkage coefficient distribution in that it

is unbounded with singularity at κj = 1, however regularises the amount to which

βj can be estimated freely. Piironen et al. (2017) further extend on the scale ϑ0,

which they show has a substantial impact on the effective model size distribution

(6.6). In particular, through the change of variables theorem, it can be shown that

the horseshoe prior (6.7) implies the following distribution on κj:

p(κj|ϑ, σ) =
1

π

aj
(a2j − 1)κj + 1

1
√
κj
√

1− κj
, (6.9)

where aj = ϑσ−1
√
Tsj. When aj = 1, (6.9) reduces to a Beta(0.5,0.5) distribu-

tion which results in the name giving horseshoe shape in figure (6.2) . Piironen

et al. (2017) derive analytical expressions for E(κj|ϑ, σ) and V ar(κj|ϑ, σ), which,
combined with equation (6.6), results in the expected model size and its variance:

E(meff |ϑ, σ) =
K∑
j=1

aj
1 + aj

(6.10)

V ar(meff |ϑ, σ) =
aj

2(1 + aj)2
(6.11)
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Plugging back in aj = ϑσ−1
√
Tsj, and assuming a prior model size guess, κ0, the

effect of the global local scale, ϑ0, can be intuitively understood as the fraction of

active predictors scaled by the level of noise, σ, and the number of observations:

ϑ0 =
κ0

K − κ0

σ√
T
. (6.12)

For all subsequent analysis, we follow the recommendations by the Stan community

Carpenter et al. (2017) and set νc = 4, sc = 1 .

Since this chapter is concerned with letting the data speak about the effective model

size, we extend on the regularised horseshoe prior by adding a B(α2, β2) distribution

to the fraction of active coefficients, κ0, to total covariate dimension K, which we

define as ρ = κ0
K
. By slightly reformulating (6.12) in terms of ρ, the prior has the

following hierarchy:

βj|φ2
j , ϑ

2, c ∼ N(0, ϑ2, φ̃2
j), φ̃2

j =
c2φj

σ2

Ts2j
+ c2 + ϑ2φ2

j

φj ∼ C+(0, 1)

ϑ ∼ C+(0, ϑ0), ϑ0 =
ρ

1− ρ

σ√
T

c ∼ G−1(η1, η2), η1 = νc/2, η2 = νcs
2
c/2

ρ ∼ B(α2, β2)

(6.13)

Throughout simulations and applications, we set α2 = β2 = 1 to allow any fraction

of active regressors to be a-priori equally likely.

Theorem 1. Let ρ ∼ B(α2, β2), then ϑ0 ∝ β′(α2, β2), where β
′(α2, β2) refers to the

beta prime distribution, whose probability density function is defined as xα2−1(1+x)−α2−β2

B(α2,β2)
,

and B(α2, β2) denotes the beta function.

The proof for the theorem follows immediately from application of the change of

variable theorem which implies that if X ∼ B(a, b), then X
1−X ∼ β′(a, b) (Johnson

et al., 1995). We name this prior the agnostic horseshoe prior (A-RHS). The rest of

the hyperparameters for the A-RHS are set similarly to the RHS.

The Dirichlet-Laplace prior of Bhattacharya et al. (2015), belongs to a class of

priors that instead of having a single global shrinkage prior, allow the global scale to

vary with each coefficient, with the restriction that the global scale process follows

a simplex structure. This is enforced through a Dirichlet prior which is shown

by (Bhattacharya et al., 2015) to imply shrinkage on the cumulative effects of the

regressors . Next to achieving optimal near-minimax rates of posterior contraction

(Bhattacharya et al., 2015), the simplex structure induces dependence in shrinkage
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across βj. In particular, the DL prior assume:

βj|σ, ψj, ϕ, ω ∼ N(0, ψjϕ
2
jω

2σ
2

2
) (6.14)

ψj ∼ exp(1/2), ϕ ∼ Dir(aϕ, · · · , aϕ), ω ∼ G(Kaϕ, 1/2)4,

where exp() and Dir() refer to the exponential and Dirichlet distribution respec-

tively. We set the hyperparameter aϕ = 0.5 for all subsequent analysis which is

recommended by Bhattacharya et al. (2015) to be a good default choice.

The recently proposed R2D2 prior by Zhang et al. (2020) belongs to the class

of priors motivated by a prior on the coefficients of determination, R2, rather than

on the regression coefficients directly. The authors show that a B(•, •) prior on R2,

implies a regularising prior on the squared formulation β′X ′Xβ, which, paired with

a local scale shrinkage prior induces the following prior hierarchy after marginalising

out the design:

βj|σ2, ψj, ϕ, ω ∼ N(0, ψjϕjω
σ

2
) (6.15)

ψj ∼ exp(1/2), ϕ ∼ Dir(aϕ, · · · , aϕ), ω|ξ ∼ G(Kaϕ, ξ), ξ ∼ G(bϕ, 1).

Similar to the DL prior, global shrinkage is adaptive across j and adds an additional

hierarchy to the global scale, ω, whose rate follows a gamma distribution. This

prior, too, converges at the optimal near-minimax rate. As recommended by Zhang

et al. (2020), we set bϕ = 0.5 and aϕ = 1/(Kb/2T b/2log(T )) which by theorem 6 in

Zhang et al. (2020) is required for posterior consistency.

Finally,the popular Normal-Gamma prior of Griffin et al. (2010) assumes the

following prior setup:

βj|φj, ϑ ∼ N(0,
2

ϑ2
φj) (6.16)

φj ∼ G(θ, θ), θ ∼ exp(1), ϑ ∼ G(c0, c1).

This prior generalises the lasso prior of Park and Casella (2008) which is recovered

be fixing θ = 15.

6.2.3 Shrinkage Coefficient Distributions

With priors (6.7)-(6.16) at hand, we provide in table (6.1) the implied shrinkage co-

efficient distributions. To the best of our knowledge these have not yet been derived

4 Notice that we are switching notation slightly to what is commonly used for the exposition of
those priors (Zhang et al., 2020)

5 All priors discussed above have marginal prior distributions for βj which are unbounded with
a singularity at zero and different concentration rates as well as tail decay rates. Zhang et al.
(2020) show that the R2D2 has the fastest concentration rate at 0 (of polynomial order in
comparison to the logarithmic order of the horseshoe prior variants) as well as the heaviest
tail with the slowest tail decay (again of polynomial order compared to the horseshoe’s β2).
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Figure 6.1: Shrinkage Distributions for the HS, DL, R2D2, RHS and NG prior
respectively. For the RHS prior, we set κ0 = 1. aj is set to 0.1 which corresponds to
strong global shrinkage, thereby favouring sparse solutions. aj is computed for each
prior according to table (6.1).

for the DL and R2D2 prior. Since p(κj|ϑ, σ) is derived conditional on the global

shrinkage parameters and the error variance, we therefore present the shrinkage dis-

tributions for instances for which the global scale is set such that aj solves for 0.1,

1 and 10. This represents the global shrinkage term indicating sparsity, moderate

sparsity and moderate density respectively.

For aj = 0.1 in figure (6.1), which represents strong global shrinkage, one can see

that all global-local priors considered, have most mass κj = 1 which favours complete

shrinkage. Noticeably, the horseshoe based priors provide not only singularity at 1,

but also retain some mass around κj = 0, albeit with very quick convergence to

the boundary. Hence, while most predictors will be shrunk to zero, the HS can

still accommodate large coefficient values given strong signals. The other priors,

on the other hand still tend to shrink large signals. By decreasing the degree of

sparsity in figures (6.2) and (6.3), the DL, R2D2 and NG prior converge to shrinkage

distributions which follow a Cauchy like U-shape, therefore accommodating more

mass on no shrinkage, with however considerable mass on κj = 1, thereby still

exerting some shrinkage. The horseshoe priors reverse the shape compared to aj =

0.1 with most mass on no shrinkage, thereby favouring most regression coefficients

be completely unshrunk. In line with these shrinkage coefficient properties, Zhang

et al. (2020) find that the horseshoe has the lowest bias for large coefficients, while

the DL and R2D2 perform better for small coefficients.
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Figure 6.2: Shrinkage Distributions for the HS, DL, R2D2, RHS and NG prior
respectively. For the RHS prior, we set κ0 = 1. aj is set to 1 which corresponds to
medium strong global shrinkage, thereby enabling both sparse and dense solutions.
aj is computed for each prior according to table (6.1).

Figure 6.3: Shrinkage Distributions for the HS, DL, R2D2, RHS and NG prior
respectively. For the RHS prior, we set κ0 = 1. aj is set to 10 which corresponds to
weak global shrinkage, thereby favouring dense solutions. aj is computed for each
prior according to table (6.1).
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6.2.4 Prior Predictive Model Size Distributions

While the implied shrinkage coefficient distributions have been derived conditional

on the global shrinkage parameter, further information can be gleaned from in-

tegrating out the uncertainty over the global shrinkage parameter through prior

predictive distributions of the effective model sizes. To do so, we generate global

and local scales according to their respective distributions and transform them to

κj, using to table (6.1), setting σ = 1 and T = 100. To investigate the impact of

the size of the covariate vector, we generate these for K ∈ {10, 100, 1000}. We set

the prior guess for the regularised horseshoe prior to κ0 =
K
2
.

The prior predictive distributions in figures (6.4)-(6.6) show clearly that all but

the regularised horseshoe prior with ϑ0 = K/2 and the A-RHS prior are very infor-

mative about the preferred prior effective model size. As expected, by applying a

flat Beta prior on the expected ratio of active coefficients, we obtain a uniform prior

implicit model size distribution. The R2D2, on the other hand, favours small model

sizes compared to the dimensionality of β and the NG tends to form symmetrically

around moderately sparse model sizes as the dimensionality increases. The DL along

with the HS prior favour very large model sizes. The latter in fact replicates the

results from Piironen et al. (2017): the default HS prior is a dubious choice when

the interpretation about the degree of sparsity is a priority.

6.2.5 Sparsification Methods

While the presented GL priors typically entail aggressive shrinkage toward zero for

noise variables, they do not provide truly sparse posteriors with positive probabil-

ity, unlike two component mixture priors such as spike-and-slab priors (George and

McCulloch, 1993). To conduct model selection which may also be used to draw

inference on the degree of sparsity, the literature has proposed many different so-

lutions based on the the coverage rate of the marginal posterior distribution (see

Gelman et al. (2013)), point-fit heuristics (Ray and Bhattacharya, 2018; Hahn and

Carvalho, 2015; Huber et al., 2019) or fully Bayesian decision analysis (Piironen

et al., 2020; Woody et al., 2020)6. While relying on coverage rates of the marginal

posteriors has appeal from a frequentist perspective, their reliability in detecting

signals from noise is largely determined by the degree of collinearity in the data.

If groups, or all of the covariates are highly correlated, GL priors tend to shrink

subsets of these covariates toward zero in some iterations, but leave them un-shrunk

in other iterations. Hence, marginalising over the uncertainty of shrinkage induced

6 The methods proposed in Hahn and Carvalho (2015) and related studies use methods from
Bayesian decision analysis, however, in comparison to Piironen et al. (2020) can be seen as
projecting only the first moment of the predictive distribution of the reference model, while
the latter project the entire predictive distribution.
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Prior κj p(κj|ϑ, σ2)

horseshoe 1
1+Ts2jσ

−2ϑ2φ2
j

1
π

aj
(a2j−1)κj

1√
κj

√
1− κj

regularised horseshoe 1
1+Ts2jσ

−2ϑ2φ̃2 , φ̃
2
j =

c2

σ2

Ts2
j

+c2+ϑ2φ2
− b− 1

2a (κj − b)2
√

1−κj
aκj−ab

(
1−κj
aκj−ab + 1

)
agnostic horseshoe 1

1+Ts2jσ
−2ϑ2φ̃2 , φ̃

2
j =

c2

σ2

Ts2
j

+c2+ϑ2φ2
− b− 1

2a (κj − b)2
√

1−κj
aκj−ab

(
1−κj
aκj−ab + 1

)
dirichlet-laplace 1

1+Tσ−2s2jψjϕ2jϑ
2 , aj = σ−1sj

√
Tϑ 1/2d+1

Γ(d)
a−dj

1
κ2j
(
√

1−κj
κj

)d−2exp(−
√

1−κj
√
κj

1
2aj

)

r2d2 1
1+Tσ−2s2jψjϕjϑ/2

, aj = Tσ−2sjψj
ξd

Γ(d)
a−dj

1
κ2j
(
1−κj
κj

)d−1exp(−ξ 1−κj
κj

1
aj
)

normal-gamma 1
1+Tσ−2s2jϑ

−2φj
, aj = Tσ−2ϑ−2s2j

θθ

Γ(θ)
1
κ2
(
1−κj
κj

)θ−1exp(−θ 1−κj
κj

1
aj
)

Table 6.1: Shrinkage coefficient distributions implied by the HS, RHS,A-
RHS,DL,R2D2 and NG prior respectively. For the regularised horseshoe, we force
b = 1

1+Tσ−2s2jc
2 which entails a Gaussian slab. φ̃j and aj can vary according to the

exact prior formulation and are therefore supplied seperately in the table. For the
R2D2 prior, we follow the recommendations of Zhang et al. (2020), where d is set
to 1/(K(0.5/2) · T (0.5/2) · log(T )). We set K = 100.

(a)

(b)

Figure 6.4: Prior predictive model size distributions for K = 10.
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(a)

(b)

Figure 6.5: Prior predictive model size distributions for K = 100.

(a)

(b)

Figure 6.6: Prior predictive model size distributions for K = 1000.
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by correlation causes their credible intervals overlapping with zero (Piironen et al.,

2020), and can further induce bad mixing due to multimodality7. Interpretation on

the significance of a single covariate based on the marginal posterior and therefore

the posterior model size can therefore be misleading.

Instead, Hahn and Carvalho (2015) and Ray and Bhattacharya (2018) have pro-

posed to threshold variables’ posterior coefficient estimates to zero based on heuris-

tics inspired by penalised regression. The SAVS algorithm by Ray and Bhattacharya

(2018) is particularly elegant in that it thresholds posterior regression coefficients

to zero by:

ψj = sign(βj)||Xj||−2max(|βj| ||Xj|| − ζj, 0), ∀j ∈ {1, · · · , K}, (6.17)

where Xj = (xj1, · · · , xjT )′ is the jth column of the regressor matrix X, sign(x)

returns the sign of x and β represents a draw from the regression posterior. The

parameter ζj in (6.17) acts as a threshold for each coefficient akin to the penalty

parameter in lasso regression which can be selected via cross-validation. Ray and

Bhattacharya (2018) propose a simpler solution,

ζj =
1

|βj|2
, (6.18)

which ranks the given coefficient inverse-squared proportionally and provides good

performance compared to alternative penalty levels (Ray and Bhattacharya, 2018;

Huber et al., 2019). To see the similarity to lasso style regularisation, the solution

to (6.17) can be obtained by the following minimisation problem which reminds of

Zou (2006):

ψ = argmin
ψ

{
1

2
||Xβ̂ −Xψ||+

K∑
j=1

ζj|ψj|
}

(6.19)

ψ is the sparsified regression vector. The relative frequency of non-zero entries

in the posterior coefficient vector can analogously to the spike-and-slab posterior be

interpreted as posterior inclusion probabilities. And integrating over the uncertainty

of the parameters to obtain the predictive distribution p(ỹ|y), we receive something

similar to a Bayesian Model Averaged (BMA) posterior (Huber et al., 2019; Woody

et al., 2020).

Piironen et al. (2020), based on the seminal contributions of Goutis and Robert

(1998) and Dupuis and Robert (2003), propose instead to select variables based

on the performance of the entire predictive density which minimises the Kullback-

7 This of course depends on the flexibility of the sampling algorithm to detect multiple modes
in the posterior, which Gibbs and Hamiltonian Monte Carlo methods are known to struggle
with (Piironen et al., 2020)
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Leibler distance to a reference model containing the full information set of the an-

alyst. In our setting, the reference model will pertain to the posterior predictive

distribution using continuous global-local priors. Piironen et al. (2020) name their

approach projective predictive inference (projpred) which they show can outper-

form state of the art frequentist and Bayesian priors for forecasting (Piironen and

Vehtari, 2017), but also offers good asymptotic as well as finite sample performance

in uncovering the degree of sparsity in the data (Pavone et al., 2020; Afrabandpey

et al., 2019). Letting D stand for the training data, ỹ stand for latent future mea-

surements of y and θ∗ be our parameter vector of our reference model, the general

idea of posterior projection is to replace the posterior p(θ∗|D) of the reference model

with a simpler posterior q⊥(θ). q⊥(θ) might contain user specified preferences such

as sparsity, possibly on a different feature space. The domain therefore of θ ∈ Θ

might be entirely different to that of the reference model θ∗ ∈ Θ∗. This prompts not

to project via the discrepancy in p(θ∗|D) to q⊥(θ), but to project via the predictive

distribution which reverts the order of integration:

KL(p(ỹ|D)||q(ỹ)) = Eỹ(log p(ỹ|D)− log q(ỹ))

= −Eỹ(log q(ỹ)) + const.

= −Eỹ(log Eθ(p(ỹ|θ))) + const.

= −Eθ∗(Eỹ|θ∗(log Eθ(p(ỹ|θ)))) + const.

(6.20)

Where Eθ∗(.), Eỹ|θ and Eθ(.) denote expectations over p(θ∗|D), p(ỹ|θ∗) and q⊥(θ)

respectively. KL stands for the Kullback-Leibler distance. Optimal projection of

p(θ∗|D) from Θ∗ to Θ is the distribution q⊥(θ) that minimises the functional (6.20).

While minimising the functional in equation (6.20) is often impossible due to the

multiple integration steps needed, Piironen et al. (2020) propose a simple and effi-

cient way of conducting projection based on the simulated parameters of p(θ∗|y). In
this approach the Monte Carlo sample {θ∗}Mm=1 of the reference model is split into

C clusters {θm∗ : m ∈ Ic} for c = 1, · · · , C which are then mapped through point

estimates for each c into corresponding θ⊥, {θ⊥,c}Cc=1 according to:

θ⊥ = argmax
θ∈Θ

1

T

T∑
i=1

Eỹi|Ic(log(p(ỹi|θ))), (6.21)

where the expectation in equation (6.21) is with respect to the cth cluster. The

predictive density can thus be computed by

q(ỹ) =
C∑
c=1

wcp(ỹ|θ⊥,c), (6.22)

where the weights are computed proportional to the number of draws in each clus-

ter. Naturally, the more clusters, the higher the accuracy in projecting the reference
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posterior but the more computationally intensive the procedure becomes with the

amount of Monte Carlo draws; which is usually large for Bayesian models. Conduct-

ing posterior projection instead on C clusters provides a good compromise between a

variety of simpler and more complicated projection methods (Piironen et al., 2020).

For generalised linear models such as in (6.2), whose observation model is in the

exponential family, the projection solution θ⊥,c = (β⊥,c, σ⊥,c) can be derived analyt-

ically for each cluster:

β⊥,c = (XTX)−1XTµc∗, (6.23)

where µc∗ =
1
Ic

∑
m∈Ic Zβ

m
∗ refers to the prediction of the cth cluster based on feature

set Z of the prediction model which, as mentioned, can be different to the features

used for the submodels, X. The noise variance for each submodel is similarly derived

as:

σ2
⊥,c =

1

T

T∑
i=1

V c
i +

1

T
||Xβ⊥,c − µc∗||2, (6.24)

where V c
i is the predictive variance of ỹi from the reference model, for cluster c.

This can be derived from the law of iterated expectations:

V c
i = V ar(ỹi|Ic) = E(V ar(ỹi|β∗, σ2

∗)|Ic) + V ar(E(ỹi|β∗, σ∗)|Ic)

=
1

|Ic|
∑
s∈Ic

σ2
∗,m + Vs∈Ic [z

T
i β

m
∗ ].

(6.25)

Note the intuition in equation (6.24): the projected variance parameter is a linear

combination between the variance of the reference model and the difference between

the reference model predictions and the sub-model predictions. This entails that

the predictive variance of the projected model has the predictive variance of the

reference model as a lower bound. Similarly, projection onto the reference model

acts a safeguard to overfitting: instead of potentially overfitting noise in the actual

data, overfitting to the reference model might still produce good out-of-sample per-

formance on the actual data.

Finally, although projection offers a safeguard to overfitting, here we are interested

in inferring about the degree of sparsity in the data. This motivates, as in Piironen

et al. (2020), to use a search heuristic to find the optimal, possibly sparse combi-

nation of covariates, that come as close as possible or even improve the predictive

performance of the reference model 8. Similar to the SAVS approach, Piironen et al.

(2020) propose L1-penalisation akin to adaptive lasso:

min
β

{− 1

T

∑
Eỹi(Li(β, ỹi)) + ϑ

K∑
j=1

φj(
1

2
|βj|)} (6.26)

8 Piironen et al. (2020) lay out the conditions under which Projective predictive inference can
improve on the predictions of the reference model.
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We follow Piironen et al. (2020) by validating ϑ through Pareto-smoothed impor-

tance sampling leave-one-out (PSIS-LOO). The PSIS-LOO method provides an ap-

proximation to the true LOO performance based on an importance sampling pro-

cedure which accounts for possible degeneracy in the importance weights (Vehtari

et al., 2017). PSIS-LOO has the advantage that the Bayesian reference model need

only be computed once instead of T times for true LOO predictive checking. Ve-

htari et al. (2017) have established that PSIS-LOO not only has asymptotic validity

but performs better in finite samples than other popular information criteria based

on predictive performance such as the WAIC, AIC and DIC. To automate decision

making about the model sizes implied by choosing the value of ϑ, we follow Piironen

et al. (2020) by selecting the smallest model size k that has a PSIS-LOO expected

log-predictive density score (elpd) no more than one standard error away from that

of the reference model (see section 5.2 in Piironen et al. (2020)).

Note that compared to SAVS, projpred is not only based on out-of-sample pre-

dictive performance approximated by Bayesian LOO, but also offers a fully Bayesian

approach to variable selection in the sense that the entire reference posterior predic-

tive distribution is projected onto sub-set models, whereas the SAVS approach only

projects the first moment of the in-sample predictive distribution. Another differ-

ence is that projpred’s projection is optimal in the sense of a Kullback-Leibler loss,

whereas SAVS is optimal under squared loss. It is interesting to note that for the

Gaussian linear regression, the projection of the regression parameters are identical.

One of the main contributions of this chapter is to investigate whether the sparsi-

fication through SAVS or projective predictive inference is able to uncover the degree

of sparsity similarly to spike-and-slab prior as well as whether these sparsification

techniques improve on forecasting performance.

6.3 Simulation

In this section, we investigate the methods in capturing the degree of sparsity in

the data as well as how well they forecast on simulated data sets. We generate 100

fictitious data sets according to the linear regression model (6.2), where β either

follows a sparse or dense representation. In particular, we generate T = 150 obser-

vations for model (6.2), with K = 100, and X drawn from a multivariate Gaussian

with zero mean and Toeplitz covariance matrix, Σ, where Σi,j = ϱ|i−j| and ϱ = 0.5.

The true coefficient vectors represent a sparse and dense setting, where βsparse has

5 non-zero entries and βdense has 80. The non-zero coefficients are drawn from a

normal distribution:

βsj ∼ N(0, 0.52), j ∈ {1, · · · , K}, s ∈ {sparse, dense}. (6.27)
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The coefficient vectors are additionally populated randomly. For all simulations

throughout, we define ϵ ∼ N(0, σ2) with σ = 1.

For each prior in table (6.1)9, we sample the implicit posterior model size distribu-

tion according to equation (6.6), based on the prior specific transformation as in

the second column of table (6.1). As a benchmark for the proposed A-RHS model,

we set ϑ0 for the RHS prior to the best guess possible, equal to the correct amount

of active coefficients (ϑ0 = 5, or ϑ0 = 80). We would expect that if the data are

informative about the degree of sparsity, then the agnostic RHS can only do as well

as the RHS with the correct guess. Model size distributions are computed for the

SAVS algorithm as the number of non-zero coefficients of the sparsified posterior

regression draws for each prior respectively, and for the projpred approach, we use

the suggested model size methodology as described in section 6.2.5. And finally, to

provide a benchmark on the effect of generalising the slab distribution of the SSVS

prior, we also estimate the t-distributed SSVS prior of Fava and Lopes (2021) with

3 degrees of freedom1011.

For each method, we report in table (6.2) the average of the model size distri-

butions (model point estimates in case of projpred) across all 100 data sets.

Forecasts are generated from the predictive distribution

p(ỹ|y) =
M∑
m=1

p(y|Υ)p(Υ|y), (6.28)

where Υ contains samples of (β, βSAV S, ϕ⊥, σ
2, σ2

⊥), depending on the method used
12 13.

Forecasts are evaluated according to root-mean-squared forecast errors (RMSFE)

based on the last 50 observations which are not used to compute the posteriors. For

point-forecasts ˆ̃y, we use the squared loss optimal mean of the predictive distribution:

RSMFE =

√
1

50
||ˆ̃y − ỹ||22 (6.29)

9 The NG prior tended to fair worse than the other priors in our simulations and was left out
for parsimony. Results available upon request.

10 The results were not sensitive to the degrees of freedom below the threshold of 20, after which
the t-distributions becomes very close to the normal.

11 Code for this model was provided by the authors.
12 For the SAVS sampling approach, we sample βSAV S and do not resample σ2 after sparsifica-

tion. We found that there is no practical difference in the SAVS’ performance regardless of
resampling.

13 For projpred, we stick to the recommendations of the R package and use 5 clusters for fore-
casting.
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Forecast density fit is measured by the continuous rank probability score (CRPS):

CRPS =
1

50

50∑
t=1

1

2

∣∣∣y100+t − ˆ̃y100+t

∣∣∣− 1

2

∣∣ỹA100+t − ỹB100+t
∣∣ , (6.30)

where ỹA,B100+t are independently drawn from the posterior predictive density p(ỹ|y).
The CRPS belongs to the class of strictly proper scoring rules (Gneiting and Raftery,

2007), and can be thought of as the probabilistic generalisation of the mean-absolute-

forecast-error14.

Table 6.2: Simulation Evaluation Metrics

Priors (I)MS SAVS Proj. Unspars. SAVS Proj. Unspars. SAVS Proj.

Sparse DGP

Model Sizes RMSFE CRPS
HS 11.51 2.86 5.4 1.09 1.09 1.10 0.22 0.22 0.22
RHS 7.17 2.82 5.45 1.09 1.09 1.1 0.23 0.22 0.23
A-RHS 9.41 3.02 5.55 1.09 1.09 1.1 0.22 0.21 0.23
DL 55.69 12.22 1.2 1.24 1.12 1.11 0.25 0.23 0.23
R2D2 11.56 3.22 2 1.09 1.09 1.1 0.22 0.21 0.22
SSVS 13.51 1.1 0.23
SSVS-t 4.62 1.19 0.24

Dense DGP

Model Sizes RMSFE CRPS
HS 62.52 43.47 70.85 2.25 2.38 2.37 0.45 0.48 0.46
RHS 80.83 45.69 71.05 2.21 2.21 2.26 0.45 0.47 0.46
A-RHS 76.14 48.56 75.9 2.24 2.24 2.27 0.47 0.45 0.47
DL 55.8 42.67 79.85 2.22 2.32 2.27 0.48 0.47 0.45
R2D2 18.3 24.79 74.9 2.9 2.82 2.71 0.67 0.59 0.57
SSVS 75.33 2.24 0.47
SSVS-t 68.38 2.32 0.49

The first vertical panels (Model Sizes) show the average over simulations for implicit model
sizes from the global-local priors as well as those from the SSVS priors (column IMS), from
the SAVS algorithm (column SAVS), and the projective approach (Proj.). RMSFe and CRPS
are computed for un-sparsified, SAVS and projective inference sparsified approaches in column
pertaining to RMSFE and CRPS respectively. The upper panel shows the results from the
sparse DGP, while the lower one shows those from the dense DGPs. The RHS prior is estimated
with the correct ratio of active to inactive coefficients.

14 Results using the log-score (Gneiting and Raftery, 2007) were very similar and available upon
request.
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The results indicate, as expected, that on average the implied model sizes centre

on sparse and dense models for priors that accommodate sparsity and density natu-

rally such as the horseshoe prior variants and offer competitive performance to the

spike-and-slab priors. In fact, the average implicit model sizes based on the RHS

and A-RHS are closer to the truth than the spike-and-slab priors for the dense DGP,

and are also slightly closer to the true model size in the sparse DGPs compared to

the SSVS prior. In line with our discussion, the RHS prior with the correct active

coefficients guess, shows the overall best IMS point estimates among the continu-

ous shrinkage priors. However, the agnostic-RHS already comes very close to that

performance despite remaining relatively uninformative about implicit model sizes

a-priori. Both the RHS and A-RHS beat out the HS models in terms of implied

model sizes, as expected.

The implied model sizes for the remaining GL priors showcase behaviour that

mimics the behavior found in the prior predictive distributions. The R2D2 prior

over-shrinks, likely due to the default prior hyperparameter choice which results in

particularly poor performance in the dense setting. The DL prior seems to favour a

medium level of sparsity, independent of the true sparsity in the DGP. Using further

hyper-priors on the sparsity controlling parameters of these priors might be able to

make change this behaviour which we suggest as a fruitful avenue for future research.

The sparsification approaches broadly confirm the findings of the implicit model

size estimates, although the general pattern that emerges is that the SAVS over-

sparsifies and that projective inference can remedy some of the short-comings of the

priors in terms of pinning down the correct model sizes. How accurate the model

sizes are, however, is determined by the quality of shrinkage of the priors. As such,

the SAVS shows too large model sizes for the DL prior in the sparse DGP which

the IMS point estimates indicate already under-shrinks, and too small model sizes

for the R2D2 in the dense DGP, also in line with its IMS estimate. Looking at the

projpred approach, the picture changes. Here we find that it can vastly improve

the sparsity estimates even for the DL and R2D2 prior, particularly in the dense

DGPs. This is likely explained by projpred taking into account out-of-sample pre-

dictive performance as measured through the approximate PSIS-LOO which is more

heavily influenced in the dense DGP by inclusion of the active covariates.

Forecasting performance is proportional to the priors’ as well as sparsification

technique’s ability to pin down the degree of sparsity. Priors with poor prior im-

plicit model size and sparsification performance, such as the DL (sparse and dense)

and R2D2 (dense), produce the worst forecasting results. As expected, the fore-

casting performance of SAVS and projpred is mostly preserved compared to the

un-sparsified posteriors, where projpred produces the largest gains in forecasting per-
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formance, when the prior either under shrinks (DL, sparse) or over shrinks (R2D2,

dense). While the selection of the global-local priors produces competitive per-

formance compared to the spike-and-slab priors, the RHS prior tends to slightly

outperform. Finally, it is interesting to note, that although model size identification

(with the caveats above) tend to do similarly well in sparse and dense settings, fore-

casting performance is markedly worse for all priors the dense simulations. This is

in line with previous research such as Cross et al. (2020); Kohns and Bhattacharjee

(2022).

The simulations therefore offer evidence that the global-local prior’s ability to

detect the degree of sparsity in the data is sensitive to the choice of the specific

global-local prior and their hyperparameters. Using the R2D2 prior with it’s de-

fault settings for example results in overshrinkage, especially in dense DGPs, which

might give a false indication through IMS, SAVS or Projpred, of sparsity (”illusion

of sparsity”). However, with appropriately chosen priors such as the RHS and A-

RHS, one can expect not only good forecasting performance but also good sparsity

detection which is competitive with the spike-and-slab. Of the sparsification ap-

proaches, projective inference tends to produce the most reliable estimates about

sparsity without harming predictive performance too much. The simulations also

underscore that pinning down the degree of sparsity is not only important from

an interpretability standpoint but also determines how well the model is predicting

out-of-sample.
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6.4 Application to Economic Data Sets

For empirical validation of the simulation results in section (6.3), we now set out

to compare the same set of priors in terms of predictive accuracy (sparsified and

non-sparsified) and sparsity detection by applying them to a variety of popular

‘Big Data’ sets which have received much attention in the economic literature. To

increase comparability to Giannone et al. (2021), we use the same data sets. These

comprise:

• Macro 1: investigates predictive fit of a large macro data base, originally

employed by Stock and Watson (2002) for forecasting monthly US industrial

production. This data set contains 130 possible predictors and the sample

spans 659 monthly observations from February 1960 to December 2014

• Macro 2: investigates cross-country determinants of growth, based on Barro

(1991). Comprises 60 economic variables to predict average growth rate of

GDP over the sample 1960-1985 with in total 90 observations

• Finance 1: investigates predictive ability of 16 lagged macro indicators in

forecasting annual S&P 500 returns. Contains 68 annual observations between

1948 and 2015. Based on Welch and Goyal (2008)

• Micro 1: investigates the effects of a abortions on crime rates in the US,

controlling for 284 covariates. Contains 576 panel observations for US states

between 1986 and 1997. Based on Donohue III and Levitt (2001)

• Micro 2: Estimates the determinants of eminent domain. The dependent vari-

able is pro-plaintiff eminent domain decisions which is regressed on 138 char-

acteristics and interactions of judicial panels. Includes 312 panel observations

between 1979-2004. Based on Belloni et al. (2012)

More information on the economic settings and purpose of these studies can be

found in Giannone et al. (2021) and references therein.

Similar to the simulation study above, we investigate the degree of sparsity from

our selection of global local priors through (1) implicit model sizes (IMS), (2) SAVS

sparsification, (3) projective predictive inference for which we report average model

sizes as point estimates in table (6.3), histograms of posterior model sizes in figures

(E.1-E.10) and coefficient inclusion heatmaps in figures (E.11-E.20) as in Giannone

et al. (2021). For all of the displayed results, we split the data sets in half 15,

where the first tranche is used for model size computations and the latter tranche is

used for forecast evaluation. Again, we compare forecasts via RMSFE and generate

15 Except for Micro1, as the SSVS priors were not able to converge with exactly splitting the
sample in half. Instead, we hold out a sample of the latter 250 observations for forecast
evaluation.
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the point forecasts from the respective predictive distributions using the hold-out

sample16. The priors are implemented as outlined in section 6.2.2. The RHS is

implemented with the default setting recommended by the Stan community when

no information about the number of active coefficients is available, (Carpenter et al.,

2017), κ0/(K − κ0) = 1.

Posterior Model Sizes
Macro 1 Macro 2 Finance 1 Micro 1 Micro 2

Priors IMS SAVS Proj IMS SAVS Proj IMS SAVS Proj IMS SAVS Proj IMS SAVS Proj
HS 18.14 2.83 6 7.6 1.17 3 9.14 3.13 1 0 0 2 52.5 10.17 7

RHS 19.24 3.23 2 5.54 0.84 3 8.88 2.77 2 3.91 0.06 14 65.89 17.84 138
A-RHS 17.06 3 6 3.18 0.41 3 6.85 2.1 2 3.22 0.05 14 22.55 4.01 7

DL 74.17 19.66 6 36.63 13.07 3 9.42 3.27 2 197.97 53.38 14 105.034 39.7 138
R2D2 14.94 3.04 6 6.91 1.13 3 5.487 1.98 2 17.49 0.09 14 17.41 2.51 7
SSVS 29.68 24.55 11.34 11.06 88.4421

SSVS-t 5.59 4.43 7.45 2.88 30.06

Table 6.3: Expected posterior model sizes based on implicit model sizes, the SAVS
algorithm and projective inference. Posterior model sizes for the SSVS and SSVS-t
are based on posterior inclusion.

RSMFE
Macro 1 Macro 2 Finance 1 Micro 1 Micro 2

Priors IMS SAVS Proj IMS SAVS Proj IMS SAVS Proj IMS SAVS Proj IMS SAVS Proj
HS 0.75 0.74 0.75 1.02 1.04 1.02 1.33 0.99 1.01 1.25 1.25 1.22 1.12 1.1 1.03

RHS 0.75 0.74 0.78 1.01 1.04 1.03 1.17 0.96 0.95 1.21 1.22 1.21 1.21 1.14 1.18
A-RHS 0.75 0.74 0.76 1.02 1.04 1.03 1.07 0.94 0.94 1.21 1.22 1.21 1.12 1.11 1.11

DL 0.8 0.76 0.77 0.96 0.95 1.03 1.21 1.01 0.95 1.31 1.26 1.24 1.36 1.27 1.31
R2D2 0.75 0.74 0.77 1.01 1.03 1.03 1.02 0.94 0.93 1.21 1.22 1.21 1.11 1.11 1.11
SSVS 0.76 1.04 1.12 1.21 1.16

SSVS-t 0.86 1.01 1.3 1.21 2.46

Table 6.4: Root-mean-sqaured forecast error (RMSFE) for the plain priors, SAVS
and projected posteriors. RMSFE’s are computed by generating the predictive pos-
terior distribution p(ỹ|y) based on the out-of-sample observations.

The first point to notice from table (6.3) is that the average degree of sparsity,

compared to the dimensionality of the data, across most GL priors 17 is similar to

the SSVS for all data sets but Micro 2 and Macro 2 as measured by the posterior

implicit model sizes. These averages, however, hide the vastly different model size

uncertainty between the GL and SSVS priors. Plotting the distributions of IMS next

to the SSVS in figures (E.1-E.5), reveals that even for the data sets where the average

posterior model size is similar, the SSVS displays far greater model size uncertainty

and disagrees starkly in terms of the modes for Finance 1 and Micro 2. These

results agree with findings of Fava and Lopes (2021) who show that the parametric

assumption about the normality of the slab distribution of the SSVS, may impose too

strong shrinkage, therefore inflating model size uncertainty. In fact, by increasing the

flexibility of the slab distribution by allowing for a t-distribution (SSVS-t) with three

degrees of freedom, model-size distributions become more similar to those of the GL

16 Density evaluation results mirror the performance of RMSFE, so are left out for parsimony.
Available upon request.

17 Similar to the simulations, the DL prior favours dense implicit models.
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priors, particularly horseshoe priors. That said, Finance 1 and Micro 2 appear to be

challenging data sets for all priors, as can be seen from the heterogeneous forecasting

results and obvious convergence problems, particularly for the HS and RHS; for

which implicit model size distributions are bi-modal. This is also confirmed by more

divergences in the Hamiltonian Monte Carlo implementation of the RHS compared

to the A-RHS. While the RHS produces more than 30 divergences per chain for the

Micro 2 data set, the A-RHS produces none. However, those GL priors that offer

good convergence as gauged by the IMS distributions, such as the A-RHS and R2D2,

far outperform the other GL and SSVS priors in terms of forecasting. In fact, the

A-RHS and R2D2 are the only priors that consistently outperform the SSVS prior in

terms of forecasting. Taking the findings from model size distributions and forecast

accuracy together, it may be concluded that the SSVS’ parametric assumptions are

too strict for challenging data sets such as Finance 1 and Micro 2. Forecasting results

for the remaining Macro 1, Macro 2 and Micro 1 data sets confirm the similarity

between all priors with nearly identical RMSFE.

Similar to the simulation results, applying SAVS to the GL regression posteriors

acts to strongly sparsify, with model sizes consistently lower than IMS, while keeping

forecasting performance either stable or increasing it. Performance increases are es-

pecially noticeable for Finance 1 and Micro 2. The reason is simple: comparing the

covariate inclusion heatmaps between GL priors and the SSVS, SAVS dramatically

reduces model uncertainty by identifying the covariates driving fit, which is espe-

cially evident for Finance 1 (E.13). Heatmaps for the other data sets show that only

in Macro 1, is the SAVS procedure able to identify dominant covariates. For Macro

2 (E.12) and Micro 1 (E.14), in contrast, virtually all coefficients are shrunk to zero

with no dominant regressor, despite nearly identical forecasting performance to the

non-sparsified priors. This shows that predictability is very low for these data sets;

which is information that the plain priors are not able to communicate without post-

estimation sparsification. While these results are encouraging for the SAVS, benefits

of its application are limited by the quality of shrinkage and convergence of the prior:

convergence issues for the RHS carry over to the SAVS model size distribution in

Micro 2 which also results in worse forecasting performance compared to the other

priors, and, in coherence with the simulations, SAVS model sizes for the DL prior

are consistently larger than the other GL priors, indicating less aggressive shrinkage.

Projective predictive inference, similar to the SAVS procedure, is able to either

retain forecasting performance or even marginally outperform both the plain prior

and SAVS. Clear examples of the latter can be found for the DL prior in Finance

1 and the HS prior in Micro 2. A common feature in these situations is that the

priors do not perform adequate sparsification, even with the SAVS algorithm, which

projective predictive inference can partly remedy due to variable selection based on
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out-of-sample performance. However, in situations where the priors themselves do

not identify signals from noise, such as for the DL prior in Micro 2, projpred fails

to improve forecasting performance or indicate a realistic model size. The lacklus-

tre shrinkage induces huge uncertainty in the elpd scores, as can be seen in figures

(E.21)-(E.22), which leads to obscure suggested model sizes by the decision rule

used (3.5). In general, as for SAVS sparsification, Projpred usually helps predictive

performance, however can be limited by the quality of the prior’s shrinkage.

The empirical applications have confirmed the intuition gleaned from the Monte

Carlo simulations. Not all global local priors are alike. Flexible priors such as the

RHS and A-RHS are competitive at forecasting with the gold-standard of Bayesian

variable selection priors and can produce similar measures of sparsity through im-

plicit model sizes. These can be more robust in challenging data sets due to less

restrictive parametric assumptions as well as the availability of theoretically sound

convergence diagnostics such as Hamiltonian divergences18. Sparsification based on

out-of-sample predictive performance, is reliable at identifying the best subset of

signal variables which either retains predictive accuracy, or increases predictive per-

formance whenever the prior has correctly identified signals and noise. It is the last

point that makes projective predictive inference a particularly valuable tool for the

types of regressions considered in this chapter, namely to investigate the degree of

sparsity with the joint goal of good predictive accuracy. Nevertheless, the presented

measures of sparsity may be best used in conjunction to communicate on the one

hand a model-internal perspective on sparsity as well as a forecasting perspective

that finds the best subset for prediction via projection.

However, care should be taken in interpreting the output of sparsity measuring

approaches for global-local priors which embed strong prior beliefs about sparsity

such as the R2D2 and DL priors with their default settings.

6.5 Conclusion

In this chapter we have set out to investigate whether a host of global-local priors

are able to inform on the degree of sparsity in economic data sets and whether fore-

cast performance is competitive with default prior for these tasks, the spike-and-slab

prior. This endeavor to consider GL priors is motivated by two observations. Firstly,

spike-and-slab priors due to their discrete mixture formulation can be sensitive to

choices in hyper-parameters and parametric assumptions about the slab distribu-

tion have a non-trivial impact on variable selection and prediction (Fava and Lopes,

2021). Secondly, global-local priors tend to have excellent forecasting and theoret-

18 Discrete mixture priors are hard to implement with the Hamiltonian Monte Carlo method, as
the transition probabilities are derived under the assumption of continuous parameter spaces
(Carpenter et al., 2017).
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ical properties (Bhadra et al., 2019; Zhang et al., 2020), but lack interpretability

in terms of communicating the inferred degree of sparsity due to their continuous

nature. For this, we analysed the implied degree of sparsity via implied model size

distributions, proposed a new horseshoe prior variant which a-priori stays agnostic

about the implied degree of sparsity and additionally investigate sparsity from post-

estimation sparsification approaches as a comparison. The latter are motivated from

Bayesian decision theory, where SAVS finds the optimal posterior subset of covari-

ates via squared error loss, while projective inference finds that subset by projecting

the entire posterior that minimises Kullback-Leibler loss. Projective inference ad-

ditionally takes out-of-sample performance into account via Bayesian leave-one-out

cross-validation.

Prior predictive distributions for the implied model sizes show novel results in

that all but the agnostic regularised horseshoe prior are informative about the de-

gree of sparsity. Particularly the DL and R2D2 priors are shown to carry over to

their tendencies from their prior implied degree of sparsity also to their posterior

estimates in simulation and real-economic data sets, irrespective of the true sparsity

in the DGP. Priors such as the RHS with correct guesses on sparsity as well as the

agnostic RHS provide competitive implicit model sizes compared to spike-and-slab

priors while being able to offer similar or slightly better forecasting performance.

The agnostic RHS supports findings from Fava and Lopes (2021) that the default

SSVS implementation may inflate model size uncertainty likely related to the strict

parametric assumptions of the slab distribution.

Sparsification approaches confirm the findings from implicit model size distri-

butions. The quality of shrinkage will heavily influence the ability of either spar-

sification approach to detect signal from noise. Both simulation and empirical ev-

idence suggest, however, that the extra flexibility of projective inference to use

out-of-sample predictive performance for variable selection can improve on the pop-

ular SAVS algorithm which tends to over-sparsify, particularly in dense DGPs. For

horseshoe based priors, variable selection with projective inference yields competi-

tive estimates of the degree of sparsity compared to the spike-and-slab.

This chapter, therefore gives new impetus to the recent debate on the “illusion

of sparsity” in economic data sets. We have shown that flexible priors such as the

RHS with adequate sparsity guesses can often outperform the standard SSVS prior

for both prediction and estimates of the degree of sparsity, and that our proposed

agnostic-RHS prior can automate that guess in a robust data-driven way.

A caveat for this and related studies is that the assumption of a fixed degree

of sparsity might be inappropriate for many macroeconomic time-series predic-

tion problems in which changes in the correlation structure are an empirical reg-

ularity (McAlinn et al., 2018; Frühwirth-Schnatter and Lopes, 2018; Rockova and

McAlinn, 2021) with recessions and large shocks such as the recent Covid-19 pan-
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demic (Antolin-Diaz et al., 2021). The recently proposed dynamic horseshoe prior

(Kowal et al., 2019) could provide a promising avenue for the study about spar-

sity over time and is amenable to the methods presented in this chapter. Likewise

unexplored in this chapter is the role of grouping induced by large cross-sectional

correlation between groups of covariates. Grouping is a natural phenomenon in

macro time-series and mixed frequency applications where high-frequency lags and

thematically close macro indicators have high correlation. Chapter 2 gives new

insights using the GIGG prior, but a more rigorous investigation across grouped

shrinkage priors in vain of this chapter would similarly help solidify the impact of

grouping on our interpretation of the degree of sparsity.
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Chapter 7

Conclusion

Unprecedented availability of commonly employed, but also new data sources, such

as Internet search terms, credit card spending or satellite data, for macroeconomic

nowcasting and risk estimation necessitate methods that, on the one hand, cope with

the high-dimensionality of the estimation problem, but also remain interpretable so

as to be communicable to the policymaker. Interpretability, however, is complicated

in these fields, among other things, by latent-time trends, complicated correlation

structures, severe economic shocks such as the Covid-19 pandemic and heterogeneous

variable impact across the conditional distribution of the target variable.

This thesis contributes to the methodology for nowcasting and risk estimation by

extending frontier Bayesian priors and computational algorithms to address these

problems, while giving interpretability to the respective model predictions using

Bayesian decision theory.

In chapter 2, we propose a Bayesian Structural Time Series model for nowcast-

ing quarterly GDP growth. We model slow moving changes in general economic

conditions, akin to the frontier of the DFM nowcasting literature (Antolin-Diaz

et al., 2017) with latent trends, and extract high-frequency information with a high-

dimensional Bayesian MIDAS component. To regularise the highly parameterised

model, we use non-centred state space methods (Frühwirth-Schnatter and Wagner,

2010) that facilitate selection of trends and extend the horseshoe prior (Carvalho

et al., 2010) for MIDAS. To communicate variable importance for the nowcasts,

we apply the SAVS algorithm (Ray and Bhattacharya, 2018) which finds the best

subset of mixed frequency variables that summarise model predictions. A novel

nowcasting application in which we merge traditional macroeocnomic data with a

high dimensional Internet search term set, as well as a simulation exercise, show

the adaptability of the proposed methods in response to challenging time-series and

sparsity structures. We show that the prior and selection algorithm outperform

traditionally employed spike-and-slab priors within our model.

In chapter 3, we generalise the BSTS model further with fat-tailed stochastic

volatility and a new combination of group-prior and sparsification algorithm. The
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former allows the proposed model to flexibly adapt to vastly different time-series

dynamics such as those experienced pre- and during the Covid-19 pandemic, and

the latter directly addresses correlation clustering issues that arise due to mixed-

frequency data transformations. A variable selection algorithm is proposed which

follows the decision theoretic paradigm and enables the policymaker to interpret the

joint effect of groups of mixed-frequency lags on nowcasts. Accounting for the group-

structure helps to avoid mixing issues and random within-group variable selection

which may occur with highly correlated mixed frequency data using non-grouped

shrinkage priors (Piironen et al., 2020). An application to the UK economy allow

to conclude that the proposed methodology vastly improves on competing frontier

nowcasting methods, particularly in response to the pandemic. A simulation exercise

confirms the favourable performance of prior and variable selection compared to

competing methods, especially for dense and highly correlated DGPs.

In chapter 4, we contribute to the growth-at-risk (GaR) literature by extending

the global-local shrinkage prior framework, with the horseshoe as our focal point,

to the Bayesian quantile regression and provide a new computational algorithm

that vastly speeds up estimation in high-dimensional risk estimation problems. The

methods are applied to a novel high-dimensional GaR application to the US in which

we allow a large set of macro indicators to heterogeneously impact quantiles of the

combined conditional GDP distribution. This generalises previous GaR approaches

(Adrian et al., 2019) which had a-priori restricted quantiles to only respond to finan-

cial conditions. The horseshoe prior BQR is shown to vastly outperform quantile

specific and density forecasts from previously proposed continuous shrinkage priors.

The good performance of the HS-BQR is further confirmed in a large simulation

exercise.

In chapter 5, we derive the Bayesian decision theoretic variable selection ap-

proach for the Bayesian quantile regression to harness the forecasting capabilities of

continuous shrinkage priors while remaining interpretable to the policy maker. We

derive novel analytical solutions and propose a quantile specific parameter for the the

algorithm that is data dependent and allows automatic adaptation to the quantile

specific degree of sparsity. We use this methodology to extend our high-dimensional

growth-at-risk application to the US for which we are now able to communicate

drivers of GDP risk across quantiles and across time. Our methods reveal that risks

to the US economy vary starkly over time, in line with our understanding of the

evolution of macro risks to the US economy. We show that our sparsification can

even improve downside risk estimation while not compromising the calibration of

the quantiles. The good performance is confirmed in a range of simulations, in which

it compares favourably to the spike-and-slab variable selection prior.

In the context of our models, the proposed Bayesian decision theoretically mo-

tivated variable selection methods in chapter 2-5 have shown that selection and
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prediction can be superior to spike-and-slab priors. Previous work by Giannone

et al. (2021) caution that the model informed notion of sparsity can be misleading

if the prior (or sparsification method) is a priori informative about sparsity. In this

chapter, we analyse the general properties of global-local priors to detect the degree

of sparsity in the data. We consider two methods of analysis: implicit model size

distributions which are derived following Piironen et al. (2017), and sparsification

techniques that are tested on a host of economic data sets and simulations. The

findings motivate a new horseshoe type prior where we explicitly model the prior

on the degree of sparsity to be uniform over any sparsity outcome. The empirical

findings from simulations and economic data sets support the theoretical analysis

that the proposed prior provides competitive forecasts while the sparsity estimates

are often more robust than that of the spike and slab prior.

Admittedly, there are several limitations to the presented work which also serve

as fruitful avenues for future research. Methodologically, the priors considered for

the presented nowcasting and risk estimation models, have focused on horseshoe or

horseshoe like (group-)priors due to their flexibility in allowing for both dense and

sparse model representations. The literature on global-local priors, however has been

moving fast, and there are now certainly more and perhaps more flexible priors to

consider, e.g. those mentioned in Cadonna et al. (2020), which are able to nest many

of the priors studied in chapter 6, but also priors that integrate insights from the ma-

chine learning literature into their computation and functional representation (Shin

and Liu, 2021). Further, for the proposed large dimensional growth-at-risk models,

extensions to group-priors would be able to address correlation clustering that is

often observed for macro indices pertaining to similar economic sectors (McCracken

and Ng, 2016) and has been overlooked so far for the BQR modelling framework.

Extending the GIGG prior and group-shrinkage algorithm to the BQR would make

for a compelling contribution for macro risk applications.

A commonality faced by both nowcasting and risk estimation models is that

predictions can be influenced by different variables over time. This is particularly

true in using Big Data sources such as Internet search terms which can display large

cyclicality in relevance for predictions, but also risk estimation, where chapter 5

has shown that drivers of risk vary substantially over time. Likewise, chapter 4 has

shown that macro indices selected into the cyclical component are different pre- vs.

during the pandemic. Hence, a valuable contribution to the literature would be to

extend the proposed methods to time-varying shrinkage and sparsity. For this, one

might consider the dynamic horseshoe prior (Kowal et al., 2019) for modelling time-

varying MIDAS and Bayesian quantile coefficients. A cost associated with using

dynamic shrinkage priors, on the other hand, is that the already large parameter

spaces such as for the applications chapters 2, 4, 5 and 6 are expanded even further
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which poses problems for accurate inference. To induce parsimony in the processes

that govern time-variation, a promising alternative approach could be to restrict the

joint time-processes to a lower dimensional factor representation such suggested for

VARs in Chan et al. (2020). Since it is likely that the parameter processes will co-

move for highly correlated data, this approach also aids interpretability in analysing

the time-trends.

This thesis has focused on making extensions to priors and variable selection tools

for linear or semi-parametric methods that are shown to improve forecast accu-

racy, but crucially, offer a simplicity that eases communication of the results to the

policymaker. Non-parametric methods such as Gaussian processes (Williams and

Rasmussen, 2006) and Bayesian artificial regression tress (Chipman et al., 2010), on

the other hand, are becoming increasingly popular in social science (Prüser, 2019;

Huber et al., 2020; Gramacy, 2020) and offer a new flexibility in modelling com-

plicated non-linearities in time-series methods (Roberts et al., 2013). Within the

context of the presented models, non-parametric methods could allow the latent

trend and stochastic volatility components to potentially adapt even more flexi-

bly to fast moving non-linearities and uncover co-dependencies in the unobserved

components during times of large economic distress, such as the Covid-19 pandemic.

Further, something this thesis stayed largely silent on, are the large sample prop-

erties of combining shrinkage priors with sparsification algorithms for variable selec-

tion. While Chakraborty et al. (2020), Ray and Bhattacharya (2018) and Woody

et al. (2021) provide results on posterior consistency and prediction risk for normal

linear regression models with the horseshoe prior in combination with the SAVS (Ray

and Bhattacharya, 2018), large sample properties for the algorithms applied to the

GIGG prior as well as the Bayesian quantile regression have been left unexplored.

It would therefore be a valuable contribution to the literature to investigate the

asymptotics for the proposed approaches, particularly in comparison to spike-and-

slab priors, so as to give the precise conditions under which the decision theoretically

motivated way to obtain sub-set selection is preferable (if at all).

Similar to future avenues for methodological research, there are also plenty of

opportunities to extend the empirical analyses presented in this thesis. For one, it

would be critical to understand the performance of the presented nowcasting models

also for other countries to assess the generalisability of the results. Likewise, the GaR

applications have focused only on the US economy. It is well known, however, that

risks to economic activity are increasingly shared across boarders as our economies

have become ever more interconnected (see e.g. Carriero et al. (2020a)). Hence, it

would be interesting to extend the analysis to panel or hierarchical settings with the

use of appropriate prior extensions to deal with issues of inter-connectedness as well

as grouping.
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Appendix A

Appendix of chapter 1

A.1 Model Details

A.1.1 Posteriors

In this section of the appendix, we provide the conditional posterior distributions for

the regression parameters which complete the sampling steps for the Gibbs sampler

detailed in (2.2.2).

Horseshoe Prior

Starting from model 2.2 and assuming that the states and state variances have

already been drawn in steps 1.-3. in 2.2.2 which is further described in (A.1.4)

below. We subtract off τ such that y − τ = y∗ = Xβ + ϵ, N(0, σ2IT ). Printing the

prior here again for convenience:

βj|φj, ϑ, σ ∼ N(0, φ2
jϑ

2σ2), j ∈ 1, · · · , K

φj ∼ C+(0, 1)

ϑ ∼ C+(0, 1)

σ2 ∝ σ−2dσ2.

(A.1)

Then, by standard calculations (see Bhattacharya et al. (2016)):

β|y∗, φ, ϑ, σ ∼ N(A−1X ′y∗, σ2A−1)

A = (X ′X + Λ−1
∗ )

Λ∗ = ϑ2diag(φ2
1, . . . , φ

2
K)

(A.2)

Instead of computing the large dimensional inverse A−1, we rely on a data aug-

mentation technique introduced by Bhattacharya et al. (2016). This reduces the

computational complexity from O(K3) to O(T 2K). Suppose the posterior is nor-
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mal NK(µ,Σ) with

Σ = (ϕ′ϕ+D−1)−1, µ = Σϕ′α, (A.3)

where α ∈ RT×1, ϕ ∈ RT×K and D ∈ RK×K is symmetric positive definite. Bhat-

tacharya et al. (2016) show that an exact sampling algorithm is given by:

Algorithm 1 Fast Horseshoe Sampler

1: Sample independently u ∼ N(0, D) and δ ∼ N(0, IT )
2: Set ξ = Φu+ δ
3: Solve (ΦDΦ′ + IT )w = (α− ξ)
4: Set ς = u+DΦ′w

ς represents a direct draw from N(µ,Σ). Notice that ϕ = X/σ, D = σ2Λ∗ and

α = y∗/σ.

The conditional posterior for the error variance is standard (Makalic and Schmidt,

2015):

σ2|y∗, β, φ, ϑ ∼ G−1((T −K)/2, (y∗ −Xβ)′(y∗ −Xβ)/2 + β′Λ−1
∗ β/2), (A.4)

where G−1 denotes the inverse gamma distribution.

The posteriors of the scales (ϑ, φ) are non-standard and need different treatment.

We follow Polson et al. (2014) who propose an efficient slice sampler. In particular,

define ηj = 1/φ2
j and µj = βj/(σϑ). Then, the conditional posterior distribution for

ηj takes the following form:

p(ηj|ϑ, σ, µj) ∝ exp(−
µ2
j

2
ηj)

1

1 + ηj
. (A.5)

The slice sampler is then implemented as follows:

1. Sample uj|ηj uniformly in the interval (0, 1/(1 + ηj))

2. Sample ηj|µj, uj ∼ exp(2/µ2
j), truncated to have zero probability outside

(0, (1− uj)/uj).

Now, transforming back to φj yields a direct draw from its posterior distribution

and by setting η = 1/ϑ2 and replacing µ2
j =

∑
β2
j /2 yields an equivalent draw

from the conditional posterior of ϑ. The advantages of the slice sampling algorithm

include: its simplicity; that it involves no rejections; and that it requires no external

parameters to be set.
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SSVS Prior

Conditioning on the states as in A.1.1, we apply the prior:

βj|γj, δ2j ∼ γjN(0, δ2j ) + (1− γj)N(0, c× δ2j )

δ2j ∼ G−1(a1.a2)

γj ∼ Bern(π0)

π0 ∼ B(b1, b2),

(A.6)

where B stands for the beta distribution. The conditional posteriors are standard

and derived for example in George and McCulloch (1993) and Ishwaran et al. (2005).

The difference to the prior of George and McCulloch (1993) lies in the additional

prior for δ2j which is assumed to be inverse gamma. It can be shown that this implies

a mixture of student-t distributions for βj marginally (Konrath et al., 2008). We

sample from the conditional posteriors in the following way:

Algorithm 2 SSVS Sampler

1: For j ∈ {1, · · · , K}, sample each γj|βj, δ2j , π0, y ∼ (1 − π)N(βj|0, c × δ2j )Iγj=0

+π0N(βj|βj|0, δ2j )Iγ=1

2: Sample π0 ∼ B(b1 + n1, b2 +K − n1), where n1 =
∑

j Iγj=1

3: Sample β|γ, δ2, σ2, y ∼ N(A−1X ′y∗/σ2, A), where A−1 = X ′X/σ2 +D−1, D =
diag(δ2jγj)

4: Sample σ2 ∼ G−1(c, C), where c = c+ T
2
, C = C + 1

2
((y∗ −Xβ)′(y∗ −Xβ)) and

p(σ2) ∼ G(c, C)

A.1.2 Robustness Check for the Horseshoe Prior

The Cauchy distribution can be a challenging distribution to fit. Due to no ana-

lytically available moments, a posterior distribution in which the prior information

dominates the likelihood, Cauchy priors might induce vanishing posterior moments

(Ghosh et al., 2018; Piironen et al., 2017). Piironen et al. (2017) provide a way

in which potential problems due to weak identification can be diagnosed, which is

based on the prior induced effective model size distribution.

Assuming a scale mixture of normal prior such as (2.2.2), the conditional poste-

rior p(β|Λ∗, τ, σ
2, y) within a normal linear regression can be written as:

βj = (1− κj)β̂j (A.7)

where

κj =
1

1 + Tσ−2ϑ2s2jφ
2
j

, (A.8)

and βj and β̂j refer to the mean of the posterior for βj|• and the maximum likelihood
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solution respectively. κj can be regarded as a shrinkage coefficient as it is defined

over the unit interval and therefore dictates how much shrinkage is applied to the

maximum likelihood solution. It is easy to verify that when φjϑ→ ∞, then κj → 0

and when φjϑ → 0, then κj → 1. The distribution of the shrinkage coefficient

p(κj|Λ∗, ϑ, σ
2, y) is implicitly defined through the priors for the hyperparameters

(Λ, ϑ). By applying the change of variable theorem, it can be shown that for the

horseshoe prior, this distribution is proportional to B(0.5, 0.5). In fact, by plotting

this distribution alongside the distribution implied by a spike-and-slab prior with

zero point-mass spike and slab with infinite scale, the horseshoe prior provides a

continuous approximation to the SSVS.

Figure A.1: κ|• distributions for the horseshoe prior (blue lines) and the spike-and-
slab prior (dashed grey lines) with zero point mass and infinite slab scale.

Now, by summing over the shrinkage coefficients in (A.8), the authors provide

a measure of “active regressors”: meff =
∑

(1 − κj), i.e. large slopes, which are

used to illicit a prior for the global shrinkage scale. Due to the aggressive shrinkage

profile of the horseshoe prior, the distribution over meff can be thought of as an

effective model size distribution.

Piironen et al. (2017) show that, drawing from the prior predictive distribution

with the standard horseshoe hierarchy, the prior effective model size distribution

diverges to the largest possible number of slopes. This is confirmed in Figure (A.2).

Since, as discussed above, the prior predictive distribution of meff diverges to

K, weak identification of either the local or global scale parameters would lead to a

divergent posterior meff distribution, which we use as a diagnostic tool.

However, some caveats must be highlighted: (1) the number of active coeffi-

cients formulation is derived from the conditional posterior, and hence does not
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Figure A.2: meff generated by setting T = K = 100 and σ = 1. Distribution based
on 5000 samples according to the prior in (F.2.2).

account for uncertainty in (ϑ, σ2); and (2) it makes further two strong assumptions:

the covariates are uncorrelated and the maximum likelihood solution to β exists.

Hence, caution should be exercised in taking this approach at face value with high-

dimensional macro data, which have typically large cross-sectional correlation.

Figure A.3: Posterior model size distribution for the HS-SAVS-BSTS (left) and the
posterior of meff for the HS-BSTS (right)

Nevertheless, we provide in Figure A.3 the posterior effective model size distri-

butions for the HS-BSTS model based on the entire sample without ragged edges.

As the figure clearly shows, the effective model size is not divergent to K and is very

similarly distributed to the SAVS model size distribution. Hence, for the HS-BSTS

model, there is no indication of weakly identified posterior scale processes.
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A.1.3 ARMA vs LLT Estimation

While the nowcasting exercise has demonstrated the statistical support for a local-

linear-trend model, and hence support for shifts in the long-run rate of GDP growth,

it is an important question as to whether GDP dynamics within a high-dimensional

regressor setting is better modelled via ARMA components.

Hence, we also estimate the regression as in the chapter, but with ARMA com-

ponents instead of a LLT. The model considered is:

yt = β0 + x′tβ +

p∑
j=1

ρjyt−j + ϵt

ϵt = ut +

q∑
m=1

ψmut−q,

(A.9)

where |ψm| < 1 for identification purposes and {ut}T0 ∼ N(0, σ2).

The posterior for the AR coefficients is modelled via the horseshoe prior. We

further assume a uniform prior on the interval (-1,1) for ψm ∼ U(−1, 1). To estimate

the ARMA components, we follow Chan (2017a) by using a band and sparse matrix

representation which allows for very fast computation by avoiding recursive algo-

rithms. The order of the ARMA components are chosen via the best out-of-sample

performance.

Figure A.4: Real-Time-RMSFE with HS-ARMA.
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Figure A.5: Real-Time-LPDS with HS-ARMA.

Figure A.6: Real-Time-CRPS with HS-ARMA.

As can be clearly seen from Figures A.4-A.6, the point as well as density nowcasts

are clearly worse for the ARMA compared to the LLT horseshoe prior models.

This superior performance is related to the argument made above: the LLTmodel

captures the slow-moving long-run growth component which gives the BSTS models

the flexibility to capture deviations from this trend gathered from the explanatory

information. This is underlined in figure (A.7): the LLT component captures smooth

transitions in GDP growth, while the large data set captures large troughs and

peaks, such as during the financial crisis. By contrast, the ARMA component is

of very small magnitude and displays erratic short-run movements. This suggests

that short run dynamics are indeed better captured by the macro and Google Trend

information.
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Figure A.7: Trend and regression decomposition for the HS-BSTS model and the
best performing HS-ARMA model (ARMA(1,1)).

A.1.4 State Space Estimation and Forecasting

Estimation

Assume analogously to A.1.1 and A.1.1 that all regression parameters have been

sampled such that conditionally on β, we estimate y−Xβ = ŷt = τ0 + στ τ̃t + tα0 +

σα
∑t

s=1 α̃t+ϵ, ϵt ∼ N(0, σy) and τ̃t = τ̃t−1+u
τ
t , u

τ
t ∼ N(0, 1), α̃t = α̃t−1+u

α
t , u

α
t ∼

N(0, 1). Since the state processes {τ̃ , α̃}Tt=1 are independent of the other parameters

in the non-centred fomrulation, we proceed by first estimating the states and then

θ = {τ̃0, α̃, στ , σα}.
States {τ̃ , α̃}Tt=1 can be sampled by any state space algorithm, e.g. Durbin and Koop-

man (2002), Carter and Kohn (1994) or Frühwirth-Schnatter (1994). We instead

opt for the precision sampler by Chan (2017a) which exploits the joint distribution

of the states which paired with sparse matrix operations yields significant increases

in statistical as well as computational efficiency (Grant and Chan, 2017). Since α̃s

enters in the observation equation as a sum, we define Ãt =
∑t

s=1 α̃s. Notice that

equation (2.3) implies that Hα̃ = ũα, where H is the first difference matrix and

ũα ∼ N(0, IT ). Notice that Ãt = α̃1 which implies that Ãt− Ãt−1 = α̃t. Hence, this

gives us back the desired HÃ = α̃. Solving Ã = H−1ũα = H−2ũα. Therefore

Ã ∼ N(0, (H2 ′H2)−1) (A.10)

To sample the states jointly, define ξ = (τ̃ ′, Ã′)′. Then ŷ can be re-written as:

ŷ = τ01T + α011:T +Xξξ + ϵ, (A.11)

where 11:T is defined as (1, 2, · · · , T )′ and Xξ = (στIT , σαIT ). Since Xξ is a sparse

matrix, manipulations in programs which utilise sparse matrix operations will be
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very fast.

Similar calculations result in the implicit prior τ̃ ∼ N(0, (H ′H)−1). Now, since by

assumption τ and Ã are independent, the combined for ξ is:

ξ ∼ N(0,P−1
ξ ), (A.12)

where Pξ = diag(H ′H ,H2′H2). The posterior is thus standard:

p(ξ|y, σ2
y) ∼ N(ξ, A−1

ξ ) (A.13)

where Kξ = Pξ +
1
σ2
y
X ′

ξXξ and ξ = K−1
ξ ( 1

σ2
y
X ′

ξ(y − τ01T − α011:T )).

Conditionally on ξ, θ are drawn by simple linear regression results, where we specify

a generic prior covariance as Vθ = diag(1, 1, 0.1, 0.1) and prior mean θ0 = (0, 0, 0, 0).

In particular, define Xθ = (1T ,11:T , τ̃ , Ã). Then:

θ|y, σ2
y ∼ N(θ, A−1

θ )

Aθ = (V −1
θ +

1

σ2
y

X ′
θXθ)

θ = A−1
θ (V −1

θ θ0 +
1

σ2
y

X ′
θŷ).

(A.14)

Forecasting

Taking equation (2.1) as our starting point, it is well known that the predictive

density p(yt|yt−1, β, θ, σ2
y), where yt−1 = (y1, · · · , yt−1), can be generated by the

Kalman filter. Since the state space is instead estimated by precision sampling, and

hence, without Kalman recursions, the literature has proposed (1) conditionally op-

timal Kalman mixture approximations (Bitto and Frühwirth-Schnatter, 2019), (2)

pure simulation based methods to approximate (1) (Belmonte et al., 2014), and (3)

what Bitto and Frühwirth-Schnatter (2019) call naive Gaussian mixture approxima-

tion (see A.1.2.2 of Bitto and Frühwirth-Schnatter (2019)). In simulations as well

as the empirical example we found that results are very similar independent of the

sampling technique. For computationally simplicity we present here method (2).

The predictive on-step-ahead distribution p(yt|yt−1) can be generated by first draw-

ing from the non-centred states which with the draws of the other model parameters

yield draws from the predictive. More specifically, for posterior draw m = 1, · · · ,M :

1. Draw (τ̃
(m)
t , α̃

(m)
t ) from N(τ̃

(m)
t−1 , 1) and N(α̃

(m)
t−1, 1) respectively

2. Generate αt = α
(m)
0 +σ

(m)
α α̃

(m)
t and τ (m) = τ

(m)
0 +σ

(m)
τ τ̃

(m)
t +tα

(m)
0 +σ

(m)
α

∑t
s=1 α

m
s

3. Generate x′tβ
(m) + τ (m) + σ

(m)
y u, where u ∼ N(0, 1)
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To obtain an approximation to the continuous approximation to p(yt|yt−1), one can

then use a kernel density smoother such as ”kdensity” in Matlab.

A.1.5 BSTS-t Model

The model to be estimated is:

yt = τ0+στ τ̃t+tα0+σα

t∑
s=1

α̃t+x
′
tβ+ϵt, ϵt ∼ N(0, σ2

yλt), λt ∼ G−1(ν/2, ν/2) (A.15)

and

τ̃t = τ̃t−1 + ũτt , ũ
τ
t ∼ N(0, 1)

α̃t = α̃t−1 + ũαt , ũ
α
t ∼ N(0, 1)

(A.16)

Compared to the normal BSTS models,, λ = (λ1, · · · , λT )′ ans ν are additional

unknown parameters.

For exposition, we treat ν for now as known. The Gibbs sampler to draw infer-

ence on this model needs the conditional posteriors: p(β|y, θ, τ̃ , α̃, σ2
y ,λ), p(τ̃ , α̃|y, β, θ, σ2

y,λ),

p(θ|y, τ̃ , α̃, σ2
y,λ) and p(σ

2
y|y, θ, τ̃ , α̃,λ).

To derive p(β|•), rewrite again y∗ = y− τ = Xβ+ ϵ. Then ϵ ∼ (0T , σ
2
yΘ), where

Θ = diag(λ1, · · · , λT ). Defining Σ = σ2
yΘ:

β|• ∼ N(β̂1, D1)

D1 = (Λ−1
∗ +X ′Σ−1X)−1

β̂1 = D1X
′Σ−1y∗,

(A.17)

where the diagonal of Λ∗ is populated by the shrinkage scales of either the horseshoe

prior or the SSVS. 1

To sample from p(θ|•), rewrite again ŷ = yt−x′tβ = τ0+στ τ̃t+tα0+σα
∑t

s=1 α̃t+

ϵt, ϵt ∼ N(0, σ2
yλt) and λt ∼ G−1(ν/2, ν/2). Again, define Xθ = (1T ,11:T , τ̃ , Ã).

Then the posterior is:

θ|• ∼ N(β̂2, D2)

D2 = (V −1
θ +X ′

θΣ
−1Xθ)

−1

β̂2 = D2(V
−1
θ θ0 +X ′

θΣ
−1ŷ)

(A.18)

To sample from (τ̃ , α̃|•), take equation A.11 with ϵt ∼ N(0, σ2
yλt) and λt ∼

G−1(ν/2, ν/2). Then the posterior with the same steps as above is:

1 Since the horseshoe uses a conjugate formulation, the posterior moments for the horseshoe
are D1 = σ2(X ′Σ−1X + Λ−1) and β̂1 = D−1

1 X ′Σ−1y∗.
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ξ|ŷ, σ2
y ∼ N(β̂3, D3)

D3 = (Pξ +
1

σ2
y

X ′
ξΣ

−1Xξ)
−1

β̂3 = K−1
ξ (

1

σ2
y

X ′
ξΣ

−1(y − τ01T − α011:T )).

(A.19)

To derive the posterior p(λ|•), notice that each λt is univariate and independently

distributed. Hence:

p(λ|•) ∝
T∏
t=1

λ
− ν+1

2
+1

t e
− 1

2λt
(ν+

(yt−τ−x′tβ)
2

σ2
y

)
. (A.20)

Notice that these are kernels of the inverse-Gamma distribution:

λt ∼ G−1(
ν + 1

2
,
1

2

(yt − τ − x′tβ)
2

σ2
y

) (A.21)

Finally, regarding the unknown ν, we specify a uniform prior ν ∼ U [2, 50]. The

lower limit ensures that the variance σ2
y exists, and 50 is chosen to be reasonably

large such that the upper limit generates an error variance close to a normal. The

conditional posterior boils down to:

p(ν|•) ∝ p(λ)p(ν))

∝
T∏
t=1

(ν/2)
ν
2

Γ(ν/2)
λ
−( ν

2
+1)

t e
− ν

2λt

=
(ν/2)

T
2

Γ(ν/2)T
(
T∏
t=1

)−( ν
2
+1)e

ν
2

∑T
t=1 λ

−1
t

(A.22)

where the first definition follow from the fact that the priors are independent. This

distribution is non-standard. To sample from this distribution, we make use of an

independent Metrolpolis-Hastings within Gibbs sampling step.

By slight abuse of notation, define the target density as f, the current state of

the Markov chain as X and the proposal state as Y, then the proposal Y is accepted

with probability

α(X, Y ) = min

{
f(Y )g(X)

f(X)g(Y )
, 1

}
, (A.23)

where g(.) is the proposal density. In order for the Metropolis-Hastings sampler to

quickly explore the typical set of ν|•, g should be close to f. To ensure this, we define

g as a normal with mean equal to the mode of f and covariance equal to the negative

Hessian evaluated at the mode. To find the mode, we use the Newton-Raphson

method. The Hessian is analytically available (Chan, 2017a).
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The sampling algorithm follows the same sequence as in main text of the chapter,

however with steps p(λ|•) and p(ν|•) added before sampling σ2
y|• is sampled.

A.2 Graphs

A.2.1 HS-BSTS-t Model Results

Figure A.8: Posterior inclusion probabilities for the HS-SAVS-BSTS-t model.

Figure A.9: Posterior of the degree of freedom parameter, ν.
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Figure A.10: Predictive distributions for full HS-BSTS-t model for nowcast periods
12,13,24 and 25. Periods 12 and 24 are prior to Google Trends releases.

A.2.2 In-Sample Results

Figure A.11: Posterior inclusion probabilities for the original BSTS model of Scott
and Varian (2014).
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Figure A.12: Posterior of the Google category ’Business news 2’ (left) and topic
’Investing 0’ for HS-SAVS-BSTS.
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A.2.3 Google Topic/Category Plots

Figure A.13: U-MIDAS transformed Google search data plots.
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Appendix B

Appendix of Chapter 2

B.1 Model Details

B.1.1 Posteriors

Further Insight into the GIGG Posterior

In order to highlight the effect of of different choices on ak and bk, we re-write the

posterior in (3.6) in terms of its shrinkage coefficient representation:

θk,j = Λ∗((X
′Λ−1
t,hz

(m)
k )−1 + Λ)θ̂k,j

= (1− κk,j)θ̂k,j,
(B.1)

where we define zk = (z′k,1, · · · , z′k,T )′, Λt,h = diag(λ21e
h1 , · · · , λ2T ehT ) and

θ̂k,j = (z
(m)
k

′Λ−1
t,hz

(m)
k )−1)z

(m)
k

′Λ−1
t,hỹ can be viewed as a conditional maximum like-

lihood estimate for θk,j. We suppress the indication of monthly frequency (m) for

convenience here. Note that for this representation, we have assumed that the max-

imum likelihood estimate for group k exists and that the pk +1 lags within zk have

been orthogonalised. Since the group-size is likely to be much smaller than the sam-

ple size, and given that we will group-orthogonalise the the data anyway (see section

3.2.3), these only represent very mild assumptions. Under these assumptions, it is

easy to verify that the shrinkage coefficient κk,j|• =
1

1+s̃2k,jϑ
2γ2kφ

2
k,j

is bounded between

0 and 1 and thus dictates how far away the prior shrinks the coefficients from the

maximum likelihood solution. It is easy to see that ϑ2γ2kφ
2
k,j → ∞, θk,j → θ̂k,j. The

distribution π(κk,j) which is implicitly defined via the priors on γ2k and φ
2
k,j determine

the a-priori shrinkage behaviour we can expect. By assuming γ2kφ
2
k,j ∼ β′(ak, bk),

the joint distribution for κk can be factored as:
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π(κk|•) =
Γ(ak + (pk + 1)bk)

Γ(ak)Γ(bk)k+1

pk∏
j=1

s̃bkk,j

(
1 +

pk∑
j=1

s̃k,j
κk,j

(1− κk,j)

)−(ak+(1+pk)bk)

×

( pk∏
j=1

κbk−1
k,j (1− κk,j)

−(bk+1)

)
,

(B.2)

where s̃k,j = sk,j
∑T

t=1
1
λt
e−ht and sk,j is the jth lag’s variance. This joint distribution

factors into a dependent part, influenced by ak, and an independent part, determined

by bk. Plot (B.1) further elucidates this behaviour, which shoes the joint-shrinkage

distribution for a group-size of 2.

Figure B.1: Bi-variate shrinkage coefficient plots for various hyper-parameter values.
ak controls group-level sparsitym while bk controls the degree of correlation with the
overall sparsity level.

As expected, when bk is relatively small compared to ak, then the sparsity level

enforced by ak dominates: lower left hand panel showcases a situation in which rel-

atively little shrinkage is exerted because ak is relatively large compared to bk, while

the upper right hand panel’s joint distribution is characterised by a independently

distributed, very extreme horseshoe behaviour (the U shape is much narrower than

that implied by the standard horseshoe). When bk instead is relatively large com-

pared to ak, then the shrinkage behaviour will tend to be symmetric. The exact

group-horseshoe case (ak = bk), for example, resembles a joint U-shape. Hence, for

the exact group-horseshoe, a-priori either the entire group will be shrunk to zero, or
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all coefficients are left relatively un-perturbed. This exposition will help understand

which behaviour to expect given the choice of the hyper-parameters for the nowcast

application in the empirical application.

Posteriors of Hyper-parameters

The deviations of the conditional posteriors for ϑ, γ2k, φkj for k = 1, · · · , K and

j = 1, · · · , pk + 1 immediately follow from the presentation in Boss et al. (2021).

Following Boss et al. (2021), we employ a mixture representation of the β′ prior

via an inverse-gamma distributed auxiliary variable ξβ. The conditional posteriors

ϑ, γ2k, φ
2
kj, ξβ are thus proportional to:

(ϑ|y, •) ∼ G−1(

∑K
k=1(pk + 1) + 1

2
, θ′Λ−1

p θ/2 +
1

ξβ
) (B.3)

(γ−2
k |y, •) ∼ GiG(pk + 1

2
− ak,

1

ϑ2

pk+1∑
j=1

θ2kj
φ2
kj

) (B.4)

(φkj|y, •) ∼ G−1(bk +
1

2
, 1 +

θ2kj
2ϑ2γ2k

) (B.5)

(ξβ|y, •) ∼ G−1(1,
1

ϑ
), (B.6)

where GiG refers to the generalised inverse Gaussian distribution (Hörmann and

Leydold, 2014) which we generate from using the efficient algorithm of (Devroye,

2014).

Posteriors of the State Space

In this section, we will detail the conditional posteriors of each of the remaining

parameters of model which will be used to construct the Gibbs sampler in. For

convenience, we reproduce the main Trend-SV-t model of section 3.2 here again:

yt = τt + θ′Z
(m)
t−h +

√
λte

1
2
(h0+whh̃t)ϵ̃yt ,

ϵ̃yt ∼ N(0, 1), λt ∼ G−1(ν/2, ν/2)
(B.7)

τt = τt−1 + e
1
2
(g0+wg g̃t), ϵ̃gt ∼ N(0, 1)

h̃t = h̃t−1 + ϵ̃ht , ϵ̃
h
t ∼ N(0, 1), h̃0 = 0

g̃t = g̃t−1 + ϵ̃gt , ϵ̃
g
t ∼ N(0, 1), g̃0 = 0

(B.8)
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wg ∼ N(0, Vwg), wh ∼ N(0, Vwh
)

h0 ∼ N(a0,h, b0,h), g0 ∼ N(a0,g, b0,g)

τ0 ∼ N(a0,τ , b0,τ )

(B.9)

As mentioned in the main body of the text, the state space components (h, g)

are written in their non-centred form. The non-centred form of a state space allows

to dissect the latent processes into a time-varying part (whh̃, wgg̃) and a constant

part (h0, g0), and this apply different amounts of shrinkage to each part. In doing

so, one is also able to model the state standard deviations (wh, wg) as part of the

conditional mean of the state equations. This allows to exert more shrinkage than

with tranditional variance priors such as the inverse-gamma Frühwirth-Schnatter

and Wagner (2010); Chan (2017a). The centred state space can be recovered by

replacing:

ht = h0 + whh̃t

gt = g0 + wgg̃t
(B.10)

Posterior of τ

To derive the joint posterior of τ , we make use of the methods proposed by

Chan and Jeliazkov (2009); McCausland et al. (2011) as they enable sampling of all

states (τ1, · · · , τT ) simultaneously. Compared to more traditional forward-sampling-

backwards-smoothing algorithms of Carter and Kohn (1994); Durbin and Koopman

(2002) which sample states one time-step at a time, this represents an improvement

in statistical efficiency as well as computational efficiency. The computational ef-

ficiency comes from the special band-matrix form of the resultant state posterior

which allows for the use of very efficient sparse matrix operations (Chan and Jeli-

azkov, 2009).

Since we only need the conditional posterior π(τ |τ0, wτ , •), we proceed similar

to the exposition in 3.6, by defining the relevant conditional likelihood based on

y∗ = y − θZ(m), hence the observations of the target, accounted for the cyclical

component. It follows from B.7 that then:

y|τ , • ∼ N(τ ,ΛhΛ
1/2
t ). (B.11)

To derive the implicit prior on τ , start by vectorising the state process τ in B.8:

Hτ = α̃τ + ητ , (B.12)

where τ = (τ1, · · · , τT )′, α̃τ = (τ0, 0, · · · , 0)′, ητ ∼ N(0,Λk), Λk = diag(eg1 , · · · , egT )
and H is the first difference matrix. From B.12, one can write the joint prior of τ

as:
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τ |τ0, • ∼ N(τ1T , (H
′Λ−1
k H)−1), (B.13)

where 1T is a column of ones with dimension T ×1. Since the all priors in the model

are a-priori independent, the conditional posterior is found by standard calculations:

τ |y, τ0, • ∼ N(τ̂ , K−1
τ ), (B.14)

where Kτ = H ′Λ−1
k H + Λ−1

h Λ
−1/2
t , τ̂ = K−1

τ (HΛ−1
k Hτ01T + Λ−1

h Λ
−1/2
t y∗). Due to

the special band matrix structure on the posterior, we can significantly speed up

computation time by using sparse matrix computations.

To sample τ0, recall that it only appears in τ1 = τ0 + e
1
2
(g0+wg∗g̃1)ϵ̃τ1. Hence,

assuming with the independent prior in B.9, the posterior is:

τ0|y, • ∼ N(τ̂0, K
−1
τ0

), (B.15)

Kτ0 =
1
b0,τ

+ 1
eg1

, τ̂0 = K−1
τ0

(a0,τ
b0,τ

+ τ1
eg1

).

Posterior of h

To derive the posterior of h, we use the commonly employed approximate discrete

mixture sampler of Kim et al. (1998). Define y+t = log((yt − τt − θ′Z
(m)
t−h)/

√
λt)

2,

ϵ̃yt = log(ϵ̃yt )
2, then the relevant conditional likelihood for h reduces to:

y+ = h01T + whh̃+ ϵ̃y
+

. (B.16)

Since the error distribution ϵ̃y
+

now lives on the log-scale, the standard normal

regression results cannot be directly applied to this conditional likelihood. The dis-

tribution now follows a logχ2
1 distribution. Instead, we follow Kim et al. (1998) by

introducing component indicators s = (s1, · · · , sT ) such that given these, (ϵ̃y
+|s) ∼

N(ds,Ωs) where ds and Ωs are obtained from a 7-point Gaussian mixture approxi-

mation to the logχ2
1. See Kim et al. (1998) for definitions of ds and Ωs. Conditional

on ds and Ωs, the likelihood and prior for h̃ become normal again, so that the logic

for deriving the posterior of τ from above can be re-applied. The prior for h̃ becomes

N(0, (H ′H)−1), so that the posterior is rendered:

h̃|y, • ∼ N(ˆ̃h, K−1

h̃
), (B.17)

Kh̃ = H ′H + w2
hΩ

−1
s , ˆ̃h = K−1

h̃
(whΩ

−1
s (y+ − h01T − ds)).

The remaining conditional posteriors associated with h are those of h0 and wh.

Notice from B.16, conditional on h̃, ds and Ωs, the joint posterior of h0 and wh

can be found using simple regression results. Define Xh = (1′T , h̃
′)′, ζh = (h0, wh),

a0,ζh = (a0,h, 0), b0,ζh = diag(b0,h, Vwh
), then ζh ∼ N(a0,ζh , b0,ζh). The joint posterior

is:
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ζh|y, • ∼ N(ζ̂h, K
−1
ζ,h), (B.18)

Kζh = (b−1
0,ζh

+ X ′
hΩ

−1
s Xh) and ζh = K−1

ζh
(b−1

0,ζh
a0,ζh + X ′

hΩ
−1
s (y+ − ds)). We set the

rather uninformative hyper-priors a0,h = 0, b0,h = 10, Vwh
= 0.1.

Posterior of g

The posterior of g is similarly derived to that of h by replacing: y+ = log(Hτ )2,

ϵ̃y
+
= log(ϵ̃τ ), a0,h = a0,g, b0,h = b0,g, Vwh

= Vwg . We set a0,g = 0, b0,g = 10, Vwg = 0.1.

Posterior of λ and ν

To derive the posterior p(λ|•), notice that each λt is univariate and independently

distributed. Hence:

p(λ|•) ∝
T∏
t=1

λ
− ν+1

2
+1

t e
− 1

2λt
(ν+

(yt−τt−θ′Z(m)
t−h

)2

exp(ht)
)
. (B.19)

Notice that these are kernels of the inverse-Gamma distribution:

λt ∼ G−1(
ν + 1

2
,
1

2

(yt − τt − θ′Z
(m)
t−h)

2

exp(ht)
) (B.20)

Finally, regarding the unknown ν, we specify a uniform prior ν ∼ U [2, 50]. The

lower limit ensures that the variance σ2
y exists, and 50 is chosen to be reasonably

large such that the upper limit generates an error variance close to a normal. The

conditional posterior boils down to:

p(ν|•) ∝ p(λ)p(ν)

∝
T∏
t=1

(ν/2)
ν
2

Γ(ν/2)
λ
−( ν

2
+1)

t e
− ν

2λt

=
(ν/2)

T
2

Γ(ν/2)T
(
T∏
t=1

)−( ν
2
+1)e

ν
2

∑T
t=1 λ

−1
t

(B.21)

where the first definition follow from the fact that the priors are independent. This

distribution is non-standard. To sample from this distribution, we make use of an

independent Metrolpolis-Hastings within Gibbs sampling step.

By slight abuse of notation, define the target density as f, the current state of

the Markov chain as X and the proposal state as Y, then the proposal Y is accepted

with probability

α(X, Y ) = min

{
f(Y )g(X)

f(X)g(Y )
, 1

}
, (B.22)

where g(.) is the proposal density. In order for the Metropolis-Hastings sampler to
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quickly explore the typical set of ν|•, g should be close to f. To ensure this, we define

g as a normal with mean equal to the mode of f and covariance equal to the negative

Hessian evaluated at the mode. To find the mode, we use the Newton-Raphson

method. The Hessian is analytically available (Chan, 2017a).

B.1.2 Sampling Algorithm

In order to estimate the Trend-SV-t-BMIDAS model with GIGG prior, we make use

of a Metropolis-within-Gibbs sampler. With the posterior distributions described in

sections B.1.1,B.1.1,3.6, in hand, we sequentially sample from the following posterior

distributions:

1. Sample θ|• ∼ p(θ|y, •)

2. Sample hyper-parameters ϑ, γ2k, φ
2
kj, ξβ in one block

(a) ϑ2 ∼ p(ϑ2|y, •)

(b) γ2k ∼ 1/p(γ−2
k |y, •)

(c) φ2
kj ∼ p(φ2

kj|y, •)

(d) ξβ ∼ p(ξβ|y, •)

3. sample τ̃ ∼ p(τ̃ |y, •) and τ0 ∼ p(τ0|y, •)

4. sample h̃ ∼ p(h̃|y, •), h0 ∼ p(h0|y, •) and wh ∼ p(wh|y, •)

5. sample g̃ ∼ p(g̃|y, •), g0 ∼ p(h0|y, •) and ∼ p(wg|y, •)

6. Sample {λt}Tt=1 ∼ p(λt|y, •)

7. Sample ξβ ∼ p(ξβ|y, •) with a Metropolis step as described after equation B.21

We iterate sampling steps 1.-7. initially for 5000 times for burnin and retain further

5000 samples for our analysis. To speed up the computations, we make use of the

state sampling techniques of Chan and Jeliazkov (2009) and Bhattacharya et al.

(2016). The former allows drawing steps 3.-5. in a non-recursive fashion which

increases efficiency and can be sped up substantially using sparse-matrix operations.

The latter speeds up computation and aids mixing when
∑K

k=1(pk+1) >> T , which

is the case when using U-MIDAS samples data for the empirical application. For a

discussion of this algorithm, see Bhattacharya et al. (2016).

B.1.3 Group-Selection Algorithm

This section gives further details on the derivation of group-variable selection al-

gorithm in 3.8. For convenience, we replicate the objective function here again,

omitting notation involving m for clarity:
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L(Ỹ , ψ) =
1

2
||Zψ − Ỹ ||22 +

K∑
k=1

ζk||ψk||2, (B.23)

For simplicity, assume that the predictions Ỹ can be decomposed as Ỹ = Zθ + ϵ̃y,

ϵ̃y ∼ N(0,Σ). Intuitively, objective function 3.8 pushes those ψk to zero which have

little influence on the predictions of our model, Ỹ .

We take the expectation with respect to 1) the expected risk and 2) θ|y to

account for all sources of uncertainty of the model1:

L(Ỹ , ψ) = EỸ |•[Ỹ , ψ|•]

=
K∑
k=1

ζk||ψk||2 +
1

2
||Zψ −Zθ||22 +

1

2
tr(Σ)

(B.24)

Then, taking the expectation with respect to θ|y:

L(θ, ψ) = Eθ|y[L(Ỹ , ψ)]

=
1

2
||Zψ −Zθ||22 +

1

2
tr(Z ′ZΣθ) +

K∑
k=1

ζk||ψk||2,
(B.25)

where Σθ = cov(θ) and θ = E(θ). Dropping all constant terms, the objective

function reduces to:

L(θ, ψ) = 1

2
||Zψ −Zθ||+

K∑
k=1

ζk||ψk||2. (B.26)

Notice, that we follow Chakraborty et al. (2020); Huber et al. (2019) by solving B.25

on a Gibbs iteration bases (instead over the average of the posterior). Traditional

solution methods such as the coordinate descent (Friedman et al., 2010) iteratively

solve the sub-gradients L times for each group k until convergence:

ψlk = (||r(l−1)
k ||22 − ζk)+

r
(l−1)
k

||r(l−1)
k ||22

, l = 1, · · · , L, (B.27)

where rk is the partial residual based on the previous iteration, r(l) = Z ′
k(y −

Z−kψ
(l−1)
−k ) and −k refers to all but the kth group. Orthonormalising Zk via its SVD

decomposition (which can conveniently be adapted as in (Breheny and Huang, 2015)

when pk + 1 >> T ), and stopping the coordinate descent after one iteration as per

Ray and Bhattacharya (2018); Chakraborty et al. (2020) such that ||rk|| = ||θk||22
results immediately in 3.9.

1 Since ψ is independent of Σ, the integration of posterior uncertainty of Σ results in a constant
and thus does not further influence the optimisation problem
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B.1.4 Almon-Lags Restricted MIDAS

This section gives further details on the restrictioned entailed by the restrictions

proposed in Almon (1965) and Smith and Giles (1976).

Define Xk,t, for k ∈ {1, · · · , K} as the (L + 1 × 1) vector of high frequency

lags which span the months of the reference quarter and any further lags. In the

empirical application we consider months 0 to 5, such that L+ 1 = 6.

Assume for simplicity that yt =
∑K

k=1 β
′
kXk,t + ϵt, ϵtN(0, σ2)2. Now, any linear

restrictions on the βk processes can equivalently be represented as linear transfor-

mations on the Xk,t, via a (pk + 1 × L) weighting matrix, Ξk. The notation in the

main text can therefore be recovered as: zk,t = ΞkXk,t. When the weights are left

unrestricted, as in U-MIDAS (Foroni et al., 2015) estimation, Ξk = ILk
. In this case

θk = βk.

Almon lag polynomial restrictions, proposed for economic prediction models by

Almon (1965), confine the regression problem to βk,l = θk,il
i for lags l = (1, · · · , Lk)

and parameters of the polynomial i = (0, · · · , pk). For a third degree polynomial and

Lk + 1 = 6, βk = (θ0,
∑pk

i=0 θi,
∑pk

i=0 θi2
i,
∑pk

i=0 θi3
i,
∑pk

i=0 θi4
i,
∑pk

i=0 θi5
i)′. With this,

the free parameters are reduced from Lk to pk for each k, which when pk << Lk

induces parsimony. This, however, comes a the cost of bias, that may be non-

vanishing with increasing sample size Andreou et al. (2010). These restrictions

imply the (i+ 1)th row of Ξk equal to [0i, · · · , Lik].
For many time-series forecasting applications, it makes intuitive economic sense

to assume that the effect of far lags on the target are 0, and that the weights peter

out to 0 on a smooth fashion across lags. Dubbed “end-point” restrictions, these are

again linear restrictions and, thus, lead to straightforward manipulations of Ξk, see

Smith and Giles (1976). Say, there are ω restrictions (in the empirical application

ω = 2) then this reduces the free parameters to 1 + pk − ω for each k.

2 Notice that we suppress the notation indicating that the covariate set is in monthly frequency
for readability
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B.2 Supplementary Material on the Empirical Ap-

plication

B.2.1 Further Detail on Data

Table B.1: Further Details on Macro Data

Name Acronym Frequency Transformation Source

CBI: Volume of exp. Trades CBI-ES m 0 FAME
CBI: Volume of rep. Sales CBI-S m 0 FAME
CBI: Volume of exp. Output CBI-EO m 0 FAME
PMI: Manufacturing PMI-M m 0 FAME
PMI: Services PMI-S m 0 FAME
PMI: Construction PMI-C m 0 FAME
GfK Cons. Confidence GfK m 0 FAME
Index of Production IoP m 3 FAME
Index of Services IoS m 3 FAME
Exports Exp m 3 FAME
Imports Imp m 3 FAME
Unemployment Rate UR m 0 FAME
Employment Emp m 3 FAME
Job Vacancies Vacancies m 3 FAME
Hours Worked Hours m 3 FAME
Mortgage Approvals Mortgage m 3 FAME
VISA consumer spending VISA m 3 FAME
Real quarterly GDP growth (qoq) GDP q 3 FAME

Notes: The table shows the data used for the empirical application along with respective sampling frequencies
(m = monthly, q = quarterly), tranformation applied (0 = no transformation, 1 = logs , 2 = first difference, 3
= growth rates) and data source. All data are downloaded from the UK data provider FAME. Please see the
FAME website for further details on the data.

B.2.2 In-Sample Description
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Figure B.2: Posterior Degrees of Freedom of the t-distribution, based on the entire
in-sample and last nowcast period.
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Figure B.2 has large mass over small posterior degrees of freedom for the t-distribution

assumed for the errors of the observation equation of model [reference of equation 1].

The smaller the degrees of freedom, the more leptokurtic the tails of the observation

equation’s error distribution. Figure B.2 shows strong identification of fat-tails.

B.2.3 Nowcast Performance GIGG Models
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Figure B.3: RSMFE and CRPS pre-pandemic and including pandemic for the Trend-
SV-t-GIGG model with different hyper-parameter combinations. 1/T is adjusted to
the in-sample length at each quarter the nowcasts are conducted. The GIGG prior
implemented in the empirical application has ak = 1/T, bk = 0.5.
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B.2.4 Inclusion Probabilities
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Figure B.4: Combination weights of the Combination model of high-frequency vari-
ables. Weights pre-pandemic don’t change much quarter to quarter, so are averages
across quarters until Q4-2019. Each subsequent panel shows the weights for each
quarter separately. Vertical axis in each panel represents a nowcast period, accord-
ing to the pseudo-publication table.
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B.2.5 Further Simulation Results

Table B.2: Monte Carlo Simulations: DGP 2

Prior K σk σ RMSFE RMSE(A) RMSE(AC) MCC TPR FPR RMSFE CRPS

Sparse

HS 30 0.5 0.551 0.012 0.027 0.001 0.394 0.456 0.096 0.776 0.955
0.9 0.480 0.012 0.027 0.002 0.312 0.417 0.127 0.640 0.805

50 0.5 0.548 0.011 0.030 0.004 0.292 0.439 0.129 1.027 0.910
0.9 0.468 0.019 0.040 0.012 0.231 0.445 0.213 0.885 0.908

100 0.5 0.531 0.009 0.031 0.004 0.212 0.425 0.116 0.773 0.633
0.9 0.434 0.015 0.036 0.012 0.102 0.375 0.214 0.978 0.775

GAL-SS 30 0.5 0.551 0.36 0.36 0.57 1.51 1.73 1.38 0.76 0.32
0.9 0.48 0.69 0.70 0.70 1.61 1.49 0.86 0.76 0.29

50 0.5 0.548 0.31 0.34 0.16 2.15 1.88 0.67 0.61 0.36
0.9 0.468 0.35 0.49 0.15 2.25 1.44 0.37 0.37 0.22

100 0.5 0.531 0.29 0.34 0.12 2.93 1.86 0.37 0.73 0.49
0.9 0.434 0.27 0.50 0.05 5.27 1.55 0.14 0.43 0.29

GIGG 30 0.5 0.551 0.35 0.36 0.52 1.88 1.71 0.51 0.78 0.33
0.9 0.480 0.60 0.62 0.44 1.95 1.49 0.43 0.76 0.29

50 0.5 0.548 0.33 0.36 0.19 2.49 1.82 0.32 0.62 0.36
0.9 0.468 0.30 0.44 0.08 2.78 1.48 0.17 0.36 0.21

100 0.5 0.531 0.29 0.34 0.12 3.32 1.86 0.22 0.71 0.48
0.9 0.434 0.23 0.42 0.04 6.28 1.60 0.07 0.42 0.29

Dense

HS 30 0.5 1.131 0.028 0.032 0.008 0.127 0.516 0.381 1.870 1.127
0.9 1.151 0.035 0.040 0.017 0.084 0.511 0.422 2.347 1.429

50 0.5 1.417 0.031 0.036 0.011 0.122 0.498 0.367 1.701 1.178
0.9 1.406 0.042 0.047 0.022 0.073 0.468 0.390 1.976 1.170

HS 100 0.5 2.050 0.038 0.043 0.015 0.071 0.443 0.367 3.280 2.009
0.9 2.033 0.044 0.051 0.019 0.045 0.402 0.355 3.028 1.995

GAL-SS 30 0.5 1.131 0.69 0.70 0.49 2.65 1.26 0.77 0.75 0.68
0.9 1.151 1.05 1.06 0.87 1.92 0.80 0.59 0.74 0.65

50 0.5 1.417 0.87 0.88 0.53 2.14 1.04 0.65 0.88 0.73
0.9 1.406 0.99 1.01 0.69 1.86 0.69 0.50 0.89 0.81

100 0.5 2.050 1.17 1.15 1.25 1.95 0.71 0.49 1.03 0.94
0.9 2.033 1.16 1.18 0.75 2.33 0.49 0.31 0.81 0.69

GIGG 30 0.5 1.131 0.71 0.72 0.57 2.86 1.17 0.56 0.75 0.70
0.9 1.151 0.89 0.91 0.74 2.08 0.89 0.65 0.73 0.63

50 0.5 1.417 0.88 0.88 0.70 1.98 1.03 0.69 0.95 0.78
0.9 1.406 0.89 0.92 0.60 1.62 0.84 0.70 0.82 0.75

100 0.5 2.050 1.09 1.09 1.08 1.49 0.92 0.81 0.94 0.84
0.9 2.033 1.02 1.04 0.80 1.56 0.81 0.72 0.80 0.68

The table shows in bold the level of each of the evaluation metrics, while those of the GAL-SS and GIGG are
in relative terms to the corresponding entry of the horseshoe model. σ is the Monte Carlo error of the DGP.
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Appendix C

Appendix of Chapter 3

C.1 Derivations and Implementation Details

C.1.1 Derivation Algorithm 1

We now give further details on the derivation of Algorithm 1. The goal of the

algorithm is to circumvent having to compute large K ×K matrices by redefining

auxiliary variables which under certain linear combination result in draws of the

desired distribution N(βp,Λ
−1

∗ ). As above, by the Sherman-Morrison-Woodbury

theorem (see e.g. Hager 1989), Θ and µ can be expanded as:

Θ = (Φ′Φ +D−1)−1 = D −DΦ′(ΦDΦ′ + IT )
−1ΦD

µ = DΦ′(ΦDΦ′ + IT )
−1α,

Where the second equality follows from applying the push-through identify after

some re-arranging of terms. This expansion per-se won’t help in sampling from

N(0,Θ). Letting υ and u being defined as in chapter 4, w = (υ′, u′)′ ∈ RT+K follows

a multivariate normal distribution centred on 0 with covariance

Ω =

(
P S

S ′ D

)

where it is easily verified that P = (ΦDΦ′ + IT ) and S
′ can be derived as:

Cov(υ, u) = Cov(D1/2ϵ,Φu)

= E(D1/2ϵu′X ′U1/2)

= E(D1/2ϵϵ′D1/2X ′U1/2)

= DX ′U1/2

= DΦ′
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where ϵ ∼ N(0, IK). The second equality follows from the fact that both quantities

are independently centred on 0. Rewriting Ω into its LDU decomposition (see e.g.

Hamilton, 1994) as:(
P S

S ′ D

)
=

(
IT 0

S ′P−1 IK

)
︸ ︷︷ ︸

L

(
P 0

0 D − S ′P−1S

)
︸ ︷︷ ︸

Γ

(
IT P−1S

0 IK

)
︸ ︷︷ ︸

L’

Where the lower K × K block in Γ is equal to Θ using the Sherman-Morrison-

Woodbury identity. To retrieve the lower part, we isolate Γ which is easily obtained

because L is lower triangular and thus the inverse is readily available as:

L−1 =

(
IT 0

−S ′P−1 IK

)

Since w has already been sampled from N(0,Ω) in steps 2 and 3 of the algorithm,

the transformation w∗ = L−1w is distributed N(0,Γ). Collecting the lower block of

w∗ yields a sample from N(0,Θ). Finally, by adding the α term in step 3 of the

algorithm, we center the combined distribution on µ which completes the algorithm.

C.1.2 Slice Sampling

Slice sampling generates pseudo-random numbers from any distribution function

f(y) by sampling uniformly from horizontal slices through the PDF. Advantages

of the algorithm include its simplicity, that it involves no rejections, and that it

requires no external parameters to be set. Define ηj = 1/φ2
j and µj = βj/ϑ. The

conditional posterior distribution of ηj, given all other parameters is given by

p(ηj|ϑ,Θ, µj, θ, τ,X, Y, Z) ∝ exp

{
−
µ2
j

2
ηj

}
1

1 + ηj

Slice sampling can now be implemented to draw from (14):

1. Sample (uj|ηj) uniformly in the interval (0, 1/(1 + ηj)).

2. Sample ηj|µj, uj ∼ Ex(2/µ2
j) from an exponential density truncated to have

zero probability outside (0, (1− uj)/uj)).

Taking the inverse square root of the sample of 2., one receives back the estimate

for φj. By replacing η = 1/ϑ and µ2
j by

∑K
j=1(βj/φj)

2/2, ϑ can be sampled in a

similar manner.
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C.2 Supplementary Material on Empirical Appli-

cation

Figure C.1: LBQR’s β0 and β1 profiles for y3 across quantiles for the different sparsity
settings

Figure C.2: LBQR’s β0 and β1 profiles for y4 across quantiles for the different sparsity
settings
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Figure C.3: Two-step-ahead forecast distributions for the L1QR, BQR, BALQR and
HS-BQR. Shaded areas correspond to plots of all 19 quantiles.

Figure C.4: Three-step-ahead forecast distributions for the L1QR, BQR, BALQR
and HS-BQR. Shaded areas correspond to plots of all 19 quantiles.

Figure C.5: Four-step-ahead forecast distributions for the L1QR, BQR, BALQR
and HS-BQR. Shaded areas correspond to plots of all 19 quantiles.
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Figure C.6: One-step-ahead QQ plots of PITs for the L1QR, BQR, BALQR and
HS-BQR. Theoretically optimally calibrated density has a linearly increasing QQ
plot (black line).

Figure C.7: Two-step-ahead QQ plots of PITs for the L1QR, BQR, BALQR and
HS-BQR. Theoretically optimally calibrated density has a linearly increasing QQ
plot (black line).
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Figure C.8: Three-step-ahead QQ plots of PITs for the L1QR, BQR, BALQR and
HS-BQR. Theoretically optimally calibrated density has a linearly increasing QQ
plot (black line).

Figure C.9: Fourth-step-ahead QQ plots of PITs for the L1QR, BQR, BALQR and
HS-BQR. Theoretically optimally calibrated density has a linearly increasing QQ
plot (black line).
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Figure C.10: One-step-ahead QQ plots of PITs for the L1QR, BQR, BALQR and
HS-BQR based only on the first 50 observations. Theoretically optimally calibrated
density has a linearly increasing QQ plot (black line).

Figure C.11: Smoothed forecast densities of all competing estimators and the SPF.
Densities are estimated via a Gaussian kernel of 19 equidistant forecasted quantiles.
The growth realisation is marked by a vertical grey line.
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Figure C.12: Smoothed forecast densities of all competing estimators and the SPF.
Densities are estimated via a Gaussian kernel of 19 equidistant forecasted quantiles.
The growth realisation is marked by a vertical grey line.

Figure C.13: Smoothed forecast densities of all competing estimators and the SPF.
Densities are estimated via a Gaussian kernel of 19 equidistant forecasted quantiles.
The growth realisation is marked by a vertical grey line.
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Figure C.14: Smoothed forecast densities of all competing estimators and the SPF.
Densities are estimated via a Gaussian kernel of 19 equidistant forecasted quantiles.
The growth realisation is marked by a vertical grey line.

Figure C.15: Smoothed forecast densities of all competing estimators and the SPF.
Densities are estimated via a Gaussian kernel of 19 equidistant forecasted quantiles.
The growth realisation is marked by a vertical grey line.
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Figure C.16: Smoothed forecast densities of all competing estimators and the SPF.
Densities are estimated via a Gaussian kernel of 19 equidistant forecasted quantiles.
The growth realisation is marked by a vertical grey line.

Figure C.17: Smoothed forecast densities of all competing estimators and the SPF.
Densities are estimated via a Gaussian kernel of 19 equidistant forecasted quantiles.
The growth realisation is marked by a vertical grey line.
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Figure C.18: Smoothed forecast densities of all competing estimators and the SPF.
Densities are estimated via a Gaussian kernel of 19 equidistant forecasted quantiles.
The growth realisation is marked by a vertical grey line.

Figure C.19: Smoothed forecast densities of all competing estimators and the SPF.
Densities are estimated via a Gaussian kernel of 19 equidistant forecasted quantiles.
The growth realisation is marked by a vertical grey line.
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Figure C.20: Smoothed forecast densities of all competing estimators and the SPF.
Densities are estimated via a Gaussian kernel of 19 equidistant forecasted quantiles.
The growth realisation is marked by a vertical grey line.

Figure C.21: Smoothed forecast densities of all competing estimators and the SPF.
Densities are estimated via a Gaussian kernel of 19 equidistant forecasted quantiles.
The growth realisation is marked by a vertical grey line.

211



Figure C.22: Smoothed forecast densities of all competing estimators and the SPF.
Densities are estimated via a Gaussian kernel of 19 equidistant forecasted quantiles.
The growth realisation is marked by a vertical grey line.

Figure C.23: Smoothed forecast densities of all competing estimators and the SPF.
Densities are estimated via a Gaussian kernel of 19 equidistant forecasted quantiles.
The growth realisation is marked by a vertical grey line.
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Figure C.24: Smoothed forecast densities of all competing estimators and the SPF.
Densities are estimated via a Gaussian kernel of 19 equidistant forecasted quantiles.
The growth realisation is marked by a vertical grey line.

Figure C.25: Smoothed forecast densities of all competing estimators and the SPF.
Densities are estimated via a Gaussian kernel of 19 equidistant forecasted quantiles.
The growth realisation is marked by a vertical grey line.
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Appendix D

Appendix of Chapter 4

D.1 Derivations and Further Implimentation De-

tails

D.1.1 Expected Loss function for the BQR

In order to decouple shrinkage from sparsity, loss function (5.18) necessitates integra-

tion over the uncertainty in the latent predictions Ỹ . This involves two integration

steps: 1) over Ỹ conditional on Υ, and 2) over Υ, conditional on Ỹ . The conditional

predictive likelihood, based on in-sample values of X, is:

yt|β, Z, σ ∼ N(x′tβ + ξzt, τ
2ztσ) (D.1)

Note that for the sake of readability, the dependence on a given quantile is sup-

pressed.

Integration over Ỹ |Υ

L(Ỹ , ψ) = EỸ |•[Ỹ , ψ|β, σ, Z]

= ζ||ψ||0 +
∫
T−1||Xψ − Ỹ ||22 p(Ỹ |β, σ, Z)dỸ

= ζ||ψ||0 + T−1ψ′X ′Xψ − T−12ψ′X ′
∫
Ỹ p(Ỹ |β, σ, Z)dỸ

+ T−1

∫
Ỹ ′Ỹ p(Ỹ |β, σ, Z)dỸ

= ζ||ψ||0 + T−1[ψ′X ′Xψ − 2ψX ′(Xβ + ξZ) + ΣỸ + ||Xβ + ξZ||22]

= ζ||ψ||0 + T−1[||Xψ −Xβ||22 − 2ψX ′(Xβ + ξZ) + ΣỸ + A]

(D.2)

Where A is defined as ξ2Z ′Z + 2β′X ′ξZ, and the integral of Ỹ ′Ỹ follows from:

∫
Ỹ ′Ỹ p(Ỹ |β, σ, Z) =

T∑
t=1

σ2
ỹt +

T∑
t=1

(x′tβ + ξzt)
2, (D.3)
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where σ2
ỹt =

∫
(ỹt − µ̃)2p(ỹt|β, σ, Z).

Integration over β, σ, Z|•

L(ψ) = Eβ,σ,Z|•[L(β, σ,Z, ψ)]

ζ||ψ||0 + T−1

∫
||Xψ −Xβ||22 p(β.σ, Z|Ỹ )d(β, σ, Z)

+ T−1

∫
Σỹ p(β.σ, Z|Ỹ )d(β, σ, Z)

+ T−1A p(β.σ, Z|Ỹ )d(β, σ, Z) + T−1

∫
ψ′X ′ξZ p(β.σ, Z|Ỹ )d(β, σ, Z)

(D.4)

Since all the terms involving Σỹ and A don’t involve ψ, they do not affect the

minimisation of the loss function and can therefore be dropped.

= ζ||ψ||0 + T−1[||Xψ −Xβ||22 − 2ψ′X ′Xβ + β
′
X ′Xβ + tr(X ′XΣβ)]

− T−1ψX ′ξ

∫
Z p(β, σ, Z|Ỹ )d(β, σ, Z)

= ζ||ψ||0 + T−1||Xψ −Xβ||22 + T−1tr(X ′XΣβ)− T−1ψ′X ′ξZ.

(D.5)

where Zp =
(

|y1−x′1βp|√
ξ2+2τ2

+ στ2

ξ2+2τ2
, · · · , |yT−x′T βp|√

ξ2+2τ2
+ στ2

ξ2+2τ2

)′
. Entries of Zp follow from

the definition of the expectation of the inverse Gaussian with location µt and scale

ϑt: since 1/zt ∼ iG(µt, ϑt), then zt ∼ iG( 1
µt+

1
ϑt
, 1
ϑtµt

+ 1
ϑ2t
) (see for example Khare

and Hobert (2012)).

D.1.2 Derivation of SAVS-BQR

As described in section 5.4, instead of directly minimising (5.21), we use ℓ1-norm as

well as adaptive penalisation akin to Zou (2006):

L(ψ) = argmin
ψ

{1
2
||Xβ −Xψ||22 +

K∑
j=1

ζj|ψj| − ψ′X ′ξZ}. (D.6)

Notice that for the first term, we use the simple fact that ||Xa−Xb|| = ||Xb−
Xa||, and have introduced another factor 1

2
as well as dropped T−1 for notational

convenience. We suppressed dependence of the latent quantities on quantile p for

the same reason.

While the LARS algorithm (see Friedman et al. (2001)) can be applied to (D.6),

we follow Ray and Bhattacharya (2018) in making use of the efficient coordinate

descent algorithm introduced by Friedman et al. (2007). The coordinate descent

algorithm reduces computational complexity by updating the entry in solution vector

ψj, conditional on all other ψ, which is iterated until convergence.

For a given state of the algorithm, ψ̃, the objective function is recast as a function
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of the jth variable:

L̃(ψj) = {1
2
||Xβ −X−jψ̃−j −Xjψj||22 +

∑
k ̸=j

ζk|ψ| − ψ̃′
−jX

′
−jξZ − ψ′

jX
′
jξZ}, (D.7)

where, likewise, X−j denotes columns in X which are not the jth column. Since the

optimisation problem is thus broken down to a single covariate basis, the objective

function (D.7) is the classical thresholding problem. Taking first order conditions

for any j:

∂L̃j(ψj)

∂ψj
= X ′

jXj +X ′
j(X−jψ̃−j −Xβ) + ζjsj + dj = 0

ψj =
1

X ′
jXj

sign(X ′
jR̃j − dj − ζjsj)

=
1

X ′
jXj

sign(X ′
jR̃j − dj)(|X ′

jR̃j − dj| − ζj)+,

(D.8)

where R̃j is the partial residual vector between Xβ and X−jψ̃j at a given state and

sj is defined as the subgradient, sj ∈ ∂|ψj|. Notice that we collect −X−jξZ into dj.

Now, since the coordinate descnet algorithm is stopped after the first iteration,

as suggested in Ray and Bhattacharya (2018), Rj = βjXj, and therefore XjRj =

βj||X||22. Hence, by neglecting dj as suggested in section (5.3.2), the solution to

theorem 1 is achieved.

D.1.3 Sampling Algorithms

With conditional posteriors presented in section 5.2 at hand, we utilise standard

Gibbs samplers to obtain draws from the posterior distributions. Collecting posterior

hyperparameters for β, which will differ for each prior under investigation, in Λ∗,

the dynamics of the of the Markov chain {βm, σm,Λm∗ , Zm}∞m=0 are implicitly defined

through the following steps

1. Draw zt ∼ π(.|β, σ,Λ∗, θ, τ, Y ) from 1/iG(ct, dt) for all t and stack to a T x 1

vector Zn+1

2. Draw σn+1 ∼ π(.|β,Λ∗, θ, τ, Y, Zn+1) from G−1(a, b)

3. Draw βn+1 ∼ π(.|σn+1,Λ∗, θ, τ, Y, Zn+1) from N(β,Λ∗)

4. Draw Λn+1 according to each prior in section 5.2

5. Iterate (1-4) until convergence is achieved

Note that for the horseshoe prior, we use a slice sampler to sample the elements of

Λ∗, as suggested in Kohns and Szendrei (2020).
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Fast BQR Sampler

The most costly operation in the Gibbs sampler in (D.1.3), is the inversion of the

possibly large dimensional posterior covariance of the regression coefficients, step 4.

To speed up computation, we make use of the fast BQR sampler proposed in Kohns

and Szendrei (2020):

As derived section (5.7), using the scale mixture representation in, the conditional

posterior of β given all other parameters can be written as:

β|• ∼ N(A−1X ′Σy, A−1), A = (X ′ΣX + Λ−1
∗ ) (D.9)

Suppose, we want to sample from NK(µ,Θ), where

Θ = (Φ′Φ +D−1)−1, µ = ΘΦ′(α− ξZ). (D.10)

Assume D ∈ RK×K is a positive definitive matrix and diagonal for simplicity, ϕ ∈
RT×K , and α ∈ RT×1. Then (5.7) is recovered when setting Φ = U1/2X, D = Λ∗

and α = U1/2y. An exact algorithm to sample from (5.7) is thus given by:

Algorithm 2. Fast HS-BQR sampler

1. Sample independently u ∼ N(0, D) and δ ∼ N(0, IT )

2. Set υ = Φu+ δ

3. Solve (ΦDΦ′ + IT )w = (α− υ − ξZ)

4. Set ς = u+DΦ′w

Suppose ς is obtained through algorithm 1. Then ς ∼ N(µ,Θ). For a proof, we

refer to Kohns and Szendrei (2020).

Conditional Mean Models

Assuming a Gaussian likelihood for linear model y = Xβ + ϵ, ϵ ∼ N(0, σ2IT ), the

prior for regression coefficients, β, is assumed to be multivariate norman, and the

error variance, σ2, inverse-Gamma:

p(β|V ) ∼ N(0, V ))

p(V ) ∼ f

p(σ2) ∼ G−1(a, b).

(D.11)

The horseshoe, SSVS and lasso priors differ in how the hierarchical prior variance

on β, p(V ), is specified. For all priors, we set a = b = 0.1.
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The conditional posteriors due to conditional conjugacy are:

β|• ∼ N(β, V )

σ2|• ∼ G−1(a/2, b/2)

V |• ∼ g,

(D.12)

where a = a + T and b = b + (y−Xβ)′(y−Xβ)
T−K + β

′
[V + (X ′X)−1]−1β. The posterior

of the variance hyperparameters and of the regression parameters are prior specific

and detailed below. These conditional posteriors are sampled in a standard Gibbs

sampler with 5000 burnin draws and 5000 retained MCMC samples.

Horseshoe

For the horseshoe prior, set V = σ2ϑ2diag(φ2
1, · · · , φ2

K), where

ϑ ∼ C+(0, 1)

φj ∼ C+(0, 1)∀j.
(D.13)

Then, by standard calculations (see Bhattacharya et al. (2016))):

β = V
−1
X ′y,

V = σ2(X ′X + V −1)
(D.14)

Instead of computing the large dimensional inverse A−1, we rely on a data augmen-

tation technique introduced by Bhattacharya et al. (2016).

SSVS

For the SSVS prior, we use the same hierarchy as presented in (5.16), which is

printed below for convenience:

βj,p|γj, φj ∼ (1− γj)N(0, cφ2
j) + γjN(0, φ2

j)∀j ∈ {1, · · · , K}

φ2
j ∼ G−1(a2, b2)

γj|π0 ∼ Bern(π0)

π0 ∼ B(a3, b3),

(D.15)

where V = diag(φ2
1, · · · , φ2

K) for all j if γj = 1, and diag(cφ2
1, · · · , cφ2

k) otherwise.

The conditional posteriors are standard and derived for example in George and

McCulloch (1993) and Ishwaran et al. (2005). The difference to the prior of George

and McCulloch (1993) lies in the additional prior on δ2j which is assumed to be inverse

gamma. It can be shown that this implies a mixture of student-t distributions for
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βj marginally (Konrath et al., 2008):

β = V
−1
X ′y/σ2

V = (X ′X/σ2 + V −1)−1, V = diag(φjγj)

γj|• ∼ N(1− π0)N(βj|0, c× φ2
j)Iγj=0 + π0N(βj|0, φ2

j)Iγj=0

π0|• ∼ B(a3 + n1, b3 +K − n1),where n1 =
∑
j

Iγj=1

(D.16)

To be agnostic about the degree of sparsity, we set a3 = b3 = 0 as for the quantile

SSVS model.

Lasso

Similar to the SSVS, the lasso prior is the same as in (5.11):

βj|φ ∼ N(0, φj),

φj|ϕ ∼ exp(
ϕ

2
)

ϕ ∼ G(a1, b1)

(D.17)

where Λ∗ = diag(ϑ1, · · · , ϑK). The conditional posteriors for the hyperparameters

are standard:

p(ϑ−1
j |•) ∼ iG(

√
ϕ

β2
j,p

, ϕ)

p(ϕ|•) ∼ G(K + a1,
1

2

K∑
j=1

ϑj + b1)

β = V
−1
X ′y/σ2

V = (X ′X/σ2 + V −1)−1, V = diag(ϑ1, · · · , ϑK)

(D.18)
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D.2 Supplementary Material on the Empirical Ap-

plication

MSFE LPDS CRPS qwCRPS MSFE LPDS CRPS qwCRPS

h=1 h=2
ABGBQR 0.504 -11.607 0.313 1.049 0.404 -7.870 0.254 0.891
ABGBQR−Skt 0.519 -1.727 0.301 1.026 0.426 -4.102 0.277 0.970
SSV SBQR 0.539* -0.889** 0.320*** 1.061 0.435** -0.607 0.221*** 0.746**
HSBQR 0.542** -3.695 0.313*** 0.952* 0.473** -5.101 0.236*** 0.776**
HSBQRBIC 0.522 -3.020 0.300*** 0.918** 0.428** -5.775* 0.239*** 0.779***
HSBQRSAV S 0.537 -2.838 0.304*** 0.925* 0.416 -3.959 0.259*** 0.847
LBQR 0.570 -1.313 0.289*** 0.949 0.480 -0.760* 0.229*** 0.748***
LBQRBIC 0.544 -1.316 0.289*** 0.949 0.450 -0.776* 0.230*** 0.750***
LBQRSAV S 0.544 -2.021 0.301** 0.999 0.449 -1.219* 0.245*** 0.808

h=3 h=4
ABGBQR 0.378 -6.825 0.237 0.847 0.351 -4.387 0.235 0.844
ABGBQR−Skt 0.397 -1.006 0.249 0.857 0.367 -1.252 0.251 0.875
SSV SBQR 0.431** -0.542 0.211*** 0.723 0.392* -0.657* 0.214*** 0.710
HSBQR 0.437** -5.224 0.231*** 0.777 0.392** -5.258* 0.224*** 0.731
HSBQRBIC 0.400* -5.958** 0.230*** 0.775 0.377* -4.815** 0.220*** 0.723
HSBQRSAV S 0.395 -4.714 0.240*** 0.810 0.380 -3.568 0.216*** 0.729
LBQR 0.431* -0.620 0.222*** 0.743** 0.413* -0.667 0.213*** 0.716**
LBQRBIC 0.422* -0.630 0.223*** 0.745** 0.387* -0.675 0.214*** 0.718**
LBQRSAV S 0.421* -0.964 0.233*** 0.797 0.386* -1.557 0.234*** 0.804

Table D.1: Forecast Evaluation Results (Skewed-t distribution)
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0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

y1 y2 y3 y4
Coefficient Bias

T=100
Sparse
HSBQRZ 0.121 0.092 0.086 0.098 0.126 0.172 0.099 0.088 0.097 0.176 0.156 0.098 0.077 0.094 0.148 0.128 0.095 0.079 0.094 0.127
HSBQRZSAV S 0.110 0.072 0.064 0.081 0.116 0.165 0.081 0.066 0.080 0.169 0.146 0.089 0.062 0.086 0.138 0.119 0.085 0.063 0.085 0.119
HSBQRZBIC 0.103 0.062 0.058 0.072 0.107 0.159 0.067 0.056 0.072 0.163 0.141 0.087 0.060 0.085 0.132 0.117 0.084 0.061 0.084 0.116

Block
HSBQRZ 0.250 0.247 0.252 0.254 0.244 0.260 0.240 0.244 0.250 0.272 0.289 0.293 0.291 0.285 0.277 0.257 0.266 0.268 0.263 0.256
HSBQRZSAV S 0.252 0.242 0.246 0.248 0.243 0.262 0.236 0.239 0.245 0.272 0.290 0.287 0.283 0.279 0.276 0.260 0.262 0.262 0.258 0.256
HSBQRZBIC 0.259 0.246 0.247 0.247 0.247 0.271 0.241 0.244 0.248 0.276 0.292 0.286 0.283 0.278 0.277 0.262 0.262 0.262 0.258 0.258

T=500
Sparse
HSBQRZ 0.099 0.073 0.062 0.073 0.103 0.152 0.074 0.061 0.075 0.152 0.140 0.066 0.048 0.067 0.135 0.113 0.065 0.047 0.066 0.111
HSBQRZSAV S 0.086 0.053 0.038 0.054 0.089 0.145 0.057 0.037 0.059 0.144 0.127 0.058 0.026 0.058 0.123 0.100 0.056 0.026 0.057 0.098
HSBQRZBIC 0.076 0.045 0.029 0.047 0.077 0.140 0.050 0.030 0.054 0.137 0.106 0.061 0.025 0.062 0.106 0.084 0.058 0.024 0.059 0.085

Block
HSBQRZ 0.143 0.101 0.094 0.103 0.144 0.174 0.104 0.091 0.103 0.176 0.187 0.098 0.082 0.096 0.184 0.156 0.101 0.085 0.099 0.154
HSBQRZSAV S 0.139 0.089 0.081 0.092 0.138 0.173 0.093 0.077 0.092 0.171 0.185 0.091 0.072 0.087 0.181 0.152 0.092 0.074 0.091 0.150
HSBQRZBIC 0.146 0.096 0.085 0.099 0.151 0.180 0.099 0.080 0.097 0.183 0.190 0.091 0.072 0.088 0.186 0.156 0.092 0.074 0.091 0.154

MCC
T=100
Sparse
HSBQRZSAV S 0.392 0.535 0.555 0.548 0.509 0.383 0.516 0.552 0.556 0.504 0.338 0.446 0.446 0.430 0.324 0.382 0.453 0.433 0.424 0.365
HSBQRZBIC 0.555 0.725 0.780 0.772 0.713 0.561 0.722 0.793 0.791 0.707 0.423 0.496 0.540 0.464 0.405 0.446 0.485 0.523 0.448 0.426

Block
HSBQRZSAV S 0.386 0.412 0.420 0.411 0.393 0.405 0.429 0.439 0.421 0.398 0.336 0.342 0.344 0.351 0.345 0.384 0.392 0.386 0.394 0.382
HSBQRZBIC 0.420 0.445 0.457 0.452 0.435 0.435 0.457 0.471 0.462 0.441 0.372 0.371 0.350 0.376 0.383 0.413 0.405 0.372 0.405 0.411

T=500
Sparse
HSBQRZSAV S 0.397 0.540 0.567 0.543 0.462 0.389 0.568 0.576 0.574 0.471 0.362 0.679 0.641 0.653 0.408 0.398 0.668 0.648 0.654 0.434
HSBQRZBIC 0.681 0.898 0.904 0.898 0.840 0.702 0.905 0.906 0.903 0.850 0.659 0.783 0.836 0.792 0.665 0.709 0.785 0.827 0.785 0.697

Block
HSBQRZSAV S 0.691 0.804 0.810 0.807 0.691 0.707 0.809 0.820 0.815 0.710 0.613 0.837 0.865 0.850 0.617 0.676 0.821 0.855 0.844 0.677
HSBQRZBIC 0.779 0.946 0.947 0.943 0.828 0.781 0.946 0.951 0.952 0.839 0.714 0.889 0.907 0.899 0.717 0.767 0.861 0.883 0.875 0.765

Hit rate
T=100
Sparse
HSBQRZSAV S 0.578 0.817 0.842 0.835 0.768 0.567 0.790 0.828 0.822 0.762 0.538 0.608 0.612 0.565 0.511 0.540 0.618 0.608 0.571 0.518
HSBQRZBIC 0.481 0.640 0.707 0.703 0.690 0.495 0.642 0.728 0.724 0.684 0.479 0.546 0.484 0.507 0.460 0.501 0.586 0.509 0.536 0.481

Block
HSBQRZSAV S 0.554 0.652 0.685 0.671 0.583 0.570 0.665 0.691 0.672 0.583 0.549 0.631 0.650 0.639 0.556 0.566 0.649 0.667 0.655 0.567
HSBQRZBIC 0.358 0.414 0.443 0.439 0.388 0.368 0.423 0.444 0.436 0.388 0.454 0.570 0.632 0.581 0.461 0.499 0.624 0.686 0.632 0.498

T=500
Sparse
HSBQRZSAV S 0.769 0.956 0.966 0.951 0.924 0.745 0.950 0.957 0.963 0.916 0.818 0.935 0.949 0.920 0.830 0.834 0.940 0.956 0.927 0.845
HSBQRZBIC 0.651 0.831 0.853 0.843 0.763 0.632 0.846 0.862 0.848 0.786 0.656 0.889 0.887 0.868 0.653 0.658 0.905 0.926 0.891 0.655

Block
HSBQRZSAV S 0.963 0.999 0.998 0.998 0.969 0.966 0.998 1.000 0.998 0.972 0.932 0.986 0.995 0.989 0.929 0.954 0.988 0.995 0.990 0.953
HSBQRZBIC 0.905 0.982 0.989 0.980 0.875 0.918 0.983 0.994 0.985 0.876 0.852 0.982 0.993 0.985 0.854 0.915 0.986 0.994 0.988 0.913

Table D.2: Nuisance Parameter correction results for the HSBQR
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Appendix E

Appendix of Chapter 5

E.1 Supplementary Material on the Empirical Ap-

plications

E.1.1 Implicit Model Sizes

Figure E.1: Macro 1: Implicit model sizes for the HS, RHS, A-RHS, DL, R2D2
priors and the posterior model size distributions for the SSVS and SSVS-t model.
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Figure E.2: Macro 2: Implicit model sizes for the HS, RHS, A-RHS, DL, R2D2
priors and the posterior model size distributions for the SSVS and SSVS-t model.

Figure E.3: Finance 1: Implicit model sizes for the HS, RHS, A-RHS, DL, R2D2
priors and the posterior model size distributions for the SSVS and SSVS-t model.
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Figure E.4: Micro 1: Implicit model sizes for the HS, RHS, A-RHS, DL, R2D2 priors
and the posterior model size distributions for the SSVS and SSVS-t model.

Figure E.5: Micro 2: Implicit model sizes for the HS, RHS, A-RHS, DL, R2D2 priors
and the posterior model size distributions for the SSVS and SSVS-t model.
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E.1.2 SAVS Model Sizes

Figure E.6: Macro 1: SAVS posterior model sizes for the HS, RHS, A-RHS, DL,
R2D2 priors and the posterior model size distributions for the SSVS and SSVS-t
model. The red-dashed line indicated the model size chosen by Projpred

Figure E.7: Macro 2: SAVS posterior model sizes for the HS, RHS, A-RHS, DL,
R2D2 priors and the posterior model size distributions for the SSVS and SSVS-t
model. The red-dashed line indicated the model size chosen by Projpred
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Figure E.8: Finance 1: SAVS posterior model sizes for the HS, RHS, A-RHS, DL,
R2D2 priors and the posterior model size distributions for the SSVS and SSVS-t
model. The red-dashed line indicated the model size chosen by Projpred

Figure E.9: Micro 1: SAVS posterior model sizes for the HS, RHS, A-RHS, DL,
R2D2 priors and the posterior model size distributions for the SSVS and SSVS-t
model. The red-dashed line indicated the model size chosen by Projpred
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Figure E.10: Micro 2: SAVS posterior model sizes for the HS, RHS, A-RHS, DL,
R2D2 priors and the posterior model size distributions for the SSVS and SSVS-t
model. The red-dashed line indicated the model size chosen by Projpred

E.1.3 Posterior Inclusion Probabilities SAVS

Figure E.11: Macro 1: Posterior inclusion probabilities model for the HS, RHS, A-
RHS, DL, R2D2 priors based on SAVS and SSVS and SSVSt based on their posterior
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Figure E.12: Macro 2: Posterior inclusion probabilities model for the HS, RHS, A-
RHS, DL, R2D2 priors based on SAVS and SSVS and SSVSt based on their posterior

Figure E.13: Finance 1: Posterior inclusion probabilities model for the HS, RHS, A-
RHS, DL, R2D2 priors based on SAVS and SSVS and SSVSt based on their posterior

Figure E.14: Micro 1: Posterior inclusion probabilities model for the HS, RHS, A-
RHS, DL, R2D2 priors based on SAVS and SSVS and SSVSt based on their posterior
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Figure E.15: Micro 2: Posterior inclusion probabilities model for the HS, RHS, A-
RHS, DL, R2D2 priors based on SAVS and SSVS and SSVSt based on their posterior

Figure E.16: Macro 1: The black line indicates the variables chosen by Projpred

Figure E.17: Macro 2: The black line indicates the variables chosen by Projpred
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Figure E.18: Finance 1: The black line indicates the variables chosen by Projpred

Figure E.19: Micro 1: The black line indicates the variables chosen by Projpred

Figure E.20: Micro 2: The black line indicates the variables chosen by Projpred
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E.1.4 ELPD Graphs

Figure E.21: ELPD scores for model sizes, RHS, Micro 2.

Figure E.22: ELPD scores for model sizes, DL, Micro 2.
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Appendix F

Published Version of Chapter 2

F.1 Introduction

The primary object of nowcasting models is to produce ‘early’ forecasts of tar-

get variables associated with long delays in data publication by exploiting the real

time data publication schedule of the explanatory data set. While prediction is

the primary goal here, the selected models can also sometimes provide structural

interpretations ex post. Nowcasting is particularly relevant to central banks and

other policymakers who are tasked with conducting forward looking policies on the

basis of key economic variables such as GDP or inflation. Inflation data are, how-

ever, published with a lag of up to 7 weeks with respect to their reference period,

and precise estimates of GDP can take years.1 Since even monthly macroeconomic

data arrive with considerable lag, it is now common to combine, next to traditional

macroeconomic data, ever more information from Big Data sources such as internet

search terms, satellite data, scanner data, etc. which have the advantage of being

available in near real time (Bok et al., 2018). The recent Covid-19 pandemic has

given further impetus to this trend, as faster indicators have proven especially useful

in modelling the unprecedentedly sharp movements in the economy that traditional

macroeconometric models fail to capture in a timely manner (Antolin-Diaz et al.,

2021; Woloszko, 2020).

In this chapter we add to the burgeoning literature on using Google search data

in the form of Google Trends (GT), which measure the relative search volume of

certain search terms entered into the Google search engine, to nowcast aggregate

economic time-series. In particular, we investigate the benefits of using monthly

Google search information for nowcasting quarterly U.S. real GDP growth in real-

time compared to traditional macro data and survey information. We contribute

to this literature by being, to our best knowledge, the first paper to investigate the

benefit of search information above and beyond macroeconomic data for the U.S.

1 The exact lag in publications of GDP and inflation depends as well on which vintage of data
the econometrician wishes to forecast. Since early vintages of aggregate quantities such as
GDP can display substantial variation between vintages, this is not a trivial issue.
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including performance during the Covid-19 pandemic period.

To deal with the specificities of the data, we propose robust nowcasting methods

that are amenable to situations in which the policymaker needs to combine tradi-

tional and non-traditional data sources while providing tractable variable selection

properties. For this purpose, we adapt current generation state space and regression

priors to the widely popular Bayesian Structural Time Series model (BSTS) (Scott

and Varian, 2014). Results from our nowcasting application show that Google’s

search information improves nowcasts of GDP growth, particularly early on in the

quarter before macroeconomic data are published. We show that our extensions

allow for accuracy gains of up to 40% during certain nowcast periods in point as

well as in density nowcasts compared to the original BSTS model of Scott and

Varian (2014) while retaining its interpretability. These results are confirmed in a

simulation study which checks robustness to a variety of data-generating processes.

In the following, we firstly discuss the state and regression priors as well as

posteriors for our extended BSTS models and provide efficient sampling algorithms.

In section 2.3, we elaborate further on the data used for nowcasting, including

dealing with mixed frequency, the data publication calendar and the specificities of

the Google Trends data set. In section 2.4, we present results based on our empirical

application of nowcasting U.S. GDP growth, which is followed in section 2.5 by the

results from our simulation study. Finally, Section 2.6 concludes with a discussion

and avenues for future research.

F.2 Bayesian Structural Time Series Model

F.2.1 The Original Model

The Bayesian Structural Time Series (BSTS) model, as proposed by Scott and

Varian (2014), provides a conceptually attractive model for nowcasting aggregate

economic time-series with heterogeneous data sources, as it flexibly estimates latent

time-trends, seasonality and deviations or ‘irregular’ dynamics through variable se-

lection using a high-dimensional shrinkage prior. Denote the target variable to

be nowcast by yt = (y1, · · · , yT )′ and the K-dimensional explanatory data set as

xt = (x′1, · · · , x′T )′ which for now are sampled at the common frequency, t. Then

our model is as follows:

yt = τt + x′tβ + δt + ϵt, ϵt ∼ N(0, σ2
y)

τt = τt−1 + αt + ϵτt , ϵ
τ
t ∼ N(0, σ2

τ )

αt = αt−1 + ϵαt , ϵ
α
t ∼ N(0, σ2

α)

δt = −
S−1∑
s=1

δt−s + ϵδt , ϵ
δ
t ∼ N(0, σ2

δ ).

(F.1)
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(F.1) is a linear state space model with Gaussian errors and states {τt, αt, δt}Tt=1

which capture long-run trends and S seasonal components δt. The deviation from τt

describes variation from a long-run trend which, when applied to the level of GDP

can be interpreted as the output gap (Watson, 1986; Grant and Chan, 2017). αt

allows for a drift term in the trend which is often observed in stock variables such as

in GDP, aggregate consumption and inflation (Grant and Chan, 2017; Chan, 2017b).

Variable selection on the possibly high-dimensional K × 1 response vector β in

the BSTS model of Scott and Varian (2014) is done via a two component conjugate

spike-and-slab prior. Estimation is standard (George and McCulloch, 1993), and

states τt, αt and δt are estimated jointly via the forward filtering backward sampling

(FFBS) algorithm of Durbin and Koopman (2002) based on the Kalman filter. This

implementation relies on Normal-Inverse Gamma (N-G−1) priors for the states and

state variances for conditional conjugacy. While the BSTS model is a natural model

for many time-series applications, we bring 3 important methodological innovations

which make it more robust to overfitting trend estimation and variable selection

with heterogeneous high dimensional data.

F.2.2 Model enhancements

Non-Centred Bayesian Structural Time Series

In line with previous nowcasting studies, this chapter focuses on nowcasting GDP

growth rather than levels. However, two problems arise when applying model (F.1)

directly to growth variables. As growth variables are often approximately stationary,

conceptually, the inclusion of αt implies that GDP growth follows a boundless drift

for which there is little structural justification or empirical evidence. A non-drifting

stochastic trend, on the other hand, has been shown to markedly improve nowcasts

of GDP growth as shown in Antolin-Diaz et al. (2017), especially when the state

variances are tightly controlled by priors such that the stochastic trend does not

wander too wildly. This suggests that modeling time-variation is preferred over

de-trending a priori.2 The underlying rationale for this improvement is the well

known empirical finding of changes in long-run GDP growth (Kim and Nelson,

1999; McConnell and Perez-Quiros, 2000; Jurado et al., 2015). Econometrically, the

additional problem is that the G−1 priors with no prior mass on zero, as implemented

for Bayesian linear state space methods, can bias posterior state variances away from

zero, thereby potential leading to false support for state dynamics which can hurt

forecast performance.

We extend model (F.1) to flexibly let the data shut down state dynamics, and

therefore broaden the applicability of model (F.1), by adopting the non-centred

2 Modelling an I(1) component in U.S. GDP growth is additionally consistent with Harvey’s
local-linear trend model (Harvey, 1985), the Hodrick and Prescott (1997) filter and Stock and
Watson (2012a).
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parameterisation of the state space as suggested by Frühwirth-Schnatter and Wagner

(2010). The non-centred parameterisation models state variances directly in the

observation equation, which with normal priors, exerts much stronger shrinkage than

IG priors.3 This allows additionally for valid inference on testing for zero posterior

variance via Savage-Dickey density ratios, as will be further discussed in section

F.4. Testing for zero posterior variance would be very challenging in a frequentist

hypothesis testing approach because the null hypothesis of constant state in model

(F.1) lies on the boundary of the parameter space.

The non-centred model considered for the empirical application is equivalently

written as:

yt = τ0 + στ τ̃t + tα0 + σα

t∑
s=1

α̃t + x′tβ + ϵt, ϵt ∼ N(0, σ2) (F.2)

and

τ̃t = τ̃t−1 + ũτt , ũ
τ
t ∼ N(0, 1)

α̃t = α̃t−1 + ũαt , ũ
α
t ∼ N(0, 1)

(F.3)

with starting values τ̃0 = α̃0 = 0. Note that the seasonal component is left out

for estimation due to the small sample length of the Google Trends data set and

differing seasonal patterns between monthly and quarterly data.4 To see that (F.2)

and (F.3) is equivalent to (F.1), let:

αt = α0 + σαα̃t

τt = τ0 + στ τ̃t + tα0 + σα

t∑
s=1

αs
(F.4)

Hence, by setting yt = τt + x′tβ + ϵt, it is clear that

αt − αt−1 = σα(α̃t − α̃t−1)

= σα + ũαt

τt − τt−1 = α0 + σαα̃t + στ (τ̃t − τ̃t−1)

= α + στ + ũτt

(F.5)

which recovers (F.1). Since στ,α are allowed to have support on the real line, they are

not identified in multiplication with the states: the likelihood is invariant to signs

of σα and στ . Consequently, mixing of the posterior state standard deviations can

be poor and their distributions are likely to be bi-modal (Frühwirth-Schnatter and

Wagner, 2010). This issue is addressed by randomly permuting signs in the Gibbs

3 Formally, a normal prior on the state standard deviation can be shown to imply a Gamma
prior on the state variance.

4 For further discussion, please see section F.3
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sampler as explained below. Similar to Frühwirth-Schnatter and Wagner (2010), we

assume normal priors centred at 0 for σi : σi ∼ N(0, Vi) ∀i ∈ {τ, α}.
Collecting all state space parameters in θ = (τ0, α0, στ , σα), we assume an inde-

pendent multivariate normal prior with diagonal covariance matrix:

θ ∼ N(θ0, Vθ). (F.6)

While the state processes {τ̃ , α̃}Tt=1 can be estimated by any state space algorithm,

we opt for the precision sampler method of Chan and Jeliazkov (2009) which is

outlined in Appendix (A.1.4) along with the state posteriors. In contrast to FFBS

type algorithms, it samples the states without recursive estimation which speeds up

computation significantly.

SSVS Prior

Our second enhancement concerns the SSVS prior. Variable selection in the BSTS

model of Scott and Varian (2014) is done via a two component conjugate spike-

and-slab prior which utilises a variant of Zellner’s g-prior and fixed expected model

size. While computationally fast due to conjugacy, many high-dimensional problems

benefit from prior independence (Moran et al., 2018) and a fully hierarchical formu-

lation to let the data decide on the most likely value of the parameters (Ishwaran

et al., 2005).

Therefore, we follow Ishwaran et al. (2005)’s extension to the SSVS prior, the

Normal-Inverse-Gamma prior:

βj|γj, δ2j ∼ γjN(0, δ2j ) + (1− γj)N(0, c× δ2j )

δ2j ∼ G(a1.a2)

γj ∼ Ber(π0)

π0 ∼ B(b1, b2)

(F.7)

where j ∈ (1, · · · , K) and G, Ber and B denote the Gamma, Bernoulli and Beta

distribution respectively. The intuition remains the same as compared to the spike-

and-slab prior of Scott and Varian (2014) in that the covariate’s effect is modeled by

a mixture of normals where it is either shrunk close to zero via a narrow distribution

around zero (the spike component) or estimated freely though a relatively diffuse

normal distribution (the slab component). Sorting into each component is handled

through an indicator variable, γj, and the hyperparameter c is chosen to be a very

small number, thereby forcing shrinkage of noise variables to close to zero. While

in the original BSTS model, the indicator variable, γj, depends on a fixed prior π0

which governs the prior inclusion probability of a variable, (F.7) allows for it to be

estimated from the data through another level of hierarchy. We set b1 = b2 = 1,

which effectively assumes that any expected model size is a priori possible and thus
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allows for sparse but also dense model solutions as recommended by Giannone et al.

(2021). Finally, the prior variance δ2j is also allowed to be hierarchical. Posteriors

are standard and described in the Appendix (A.1.1). The posterior of γj is of special

interest to the analyst as it gives a data informed measure of importance of a vari-

able. Specifically, p(γ|y) can be interpreted as the posterior inclusion probability of

a variable.

Horseshoe Prior

Our third and final enhancement of the BSTS models extends the employed shrink-

age priors to the horseshoe prior. Like many recently popularised shrinkage priors,

the horseshoe prior belongs to the broader class of global-local priors which take the

following general form:

βj|φ2
j , ϑ

2, σ2 ∼ N(0, φ2
jϑ

2σ2), j ∈ (1, · · · , K)

φj ∼ π(φj), j ∈ (1, · · · , K)

ϑ ∼ π(ϑ)

σ2 ∼ π(σ2)dσ2

(F.8)

The idea of this family of priors is that the global scale ϑ controls the overall

shrinkage applied to the regression, while the local scale φj allows for the local

possibility of regressors to escape shrinkage if they have large effects on the response.

A variety of global-local shrinkage priors have been proposed (Polson and Scott,

2010), but here we focus on arguably the most popular, the horseshoe prior of

Carvalho et al. (2010) which employs two half Cauchy distributions for ϑ and φj:

φj ∼ C+(0, 1)

ϑ ∼ C+(0, 1)
(F.9)

These two fat tailed scale distributions imply a shrinkage profile that has the spike-

and-slab prior in its limit and therefore offers a continuous approximation to the

SSVS (Piironen et al., 2017) (see section A.1.2 in the appendix for further discus-

sion). An additional attractive feature of the horseshoe prior is that it is completely

automatic with respect to its hyperparameters and has been shown to be excellent

at forecasting in several previous studies (Huber et al., 2019, 2020; Cross et al., 2020;

Follett and Yu, 2019). Due to its special connection to frequentist shrinkage pri-

ors (Polson and Scott, 2010), it offers not only good finite sample performance but

also favourable asymptotic behaviour compared to competing global priors (Bhadra

et al., 2019). Chakraborty et al. (2020) in particular show that the fractional pos-

terior mean as a point estimator is rate optimal in the minimax sense using (??).

Nevertheless, fitting the horseshoe prior can be challenging when the scale pa-
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rameters are not strongly identified by the data, which is particularly critical in

cases where the likelihood is flat, for example, separable data in logistic regression

(Piironen et al., 2017).5 We provide in the appendix a (A.1.2) robustness check

based on Piironen et al. (2017) that are able to alleviate any identifiability concerns

for the empirical study below.

Posteriors are described in the appendix (A.1.1).

SAVS Algorithm

Although the horseshoe prior shrinks noise variables towards zero, the importance

of a variable for nowcasts may not be immediately clear from posterior summary

statistics of the coefficients, especially when the posterior is multi-modal. To aid

interpretability and simultaneously preserve predictive ability, we employ the signal

adaptive variable selection (SAVS) algorithm of Ray and Bhattacharya (2018) to the

posterior coefficients on a draw-by-draw basis. The algorithm uses a useful heuristic,

inspired by frequentist lasso estimation, to threshold posterior regression coefficients

to zero:

ψj = sign(β̂j)||Xj||−2max(|β̂j| ||Xj|| − ζj, 0), (F.10)

where Xj = (xj1, · · · , xjT )′ is the jth column of the regressor matrix X, sign(x)

returns the sign of x and β̂ represents a draw from the regression posterior. The

parameter ζj in (6.17) acts as a threshold for each coefficient akin to the penalty

parameter in lasso regression which can be selected via cross-validation. Ray and

Bhattacharya (2018) propose

ζj =
1

|βj|2
, (F.11)

which ranks the coefficients inverse-squared proportionally and provides good per-

formance compared to alternate penalty levels (Ray and Bhattacharya, 2018; Huber

et al., 2019). To see the similarity to lasso style regularisation, the solution to (6.17)

can be obtained by the following minimisation problem which is closely related to

the adaptive lasso (Zou, 2006):

ψ = argmin
ψ

{
1

2
||Xβ̂ −Xψ||+

K∑
j=1

ζj|ψj|
}
. (F.12)

Here, ψ is the sparsified regression vector. Analogous to the SSVS posterior, the

relative frequency of non-zero entries in the posterior coefficient vector can be in-

terpreted as posterior inclusion probabilities. Integrating over the uncertainty of

the parameters, we obtain the predictive distribution p(ỹ|y), which is similar to a

Bayesian Model Averaged (BMA) posterior (Huber et al., 2019).

5 We thank an anonymous reviewer for having facilitated this discussion.
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Sampling Algorithm

With the conditional posteriors for the regression and state components at hand

(see Appendix A.1.1), we sample states as well as regression parameters with the

following Gibbs sampler:

1. Sample (τ̃ , α̃|y, θ, β, σ2
y)

2. Sample (θ|y, β, τ̃ , α̃, σ2
y)

3. Randomly permute signs of (τ̃ , α̃) and (στ , σα)

4. Sample (β|y, θ, τ̃ , α̃, σ2
y)

5. Sample (σ2
y|y, τ̃ , α̃, σ2

y)

As mentioned in Section F.2.2, states are sampled in a non-recursive fashion

which exploits sparse matrix computation and precision sampling. The exact sam-

pling algorithm is given in Appendix A.1.4. As discussed in Section F.2.2, after

sampling θ in step 2, we randomly permute signs of (τ̃ , α̃), (στ , σα) to aid mixing.

Step 4 of the sampler will depend on the prior and its respective hyperpriors. While

the posterior sampling scheme for the SSVS is standard, we use the efficient pos-

terior sampler of Bhattacharya et al. (2016) to sample the regression coefficients of

the horseshoe prior. Compared to Cholesky based sampling as used for the SSVS,

computation speed is markedly improved; see Appendix A.1.1. Note that in step 4,

we perform SAVS sparsification via (F.10) on an iteration basis.

F.3 Data

F.3.1 Mixing Frequencies

In this chapter, we relate monthly macro data commonly used for nowcasting based

on Giannone et al. (2016) and internet search information via U-MIDAS skip-

sampling to real quarterly U.S. GDP growth. The U-MIDAS approach to mixed

frequency belongs to the broader class of ‘partial system’ models (Bańbura et al.,

2013), which directly relate higher frequency information to the lower frequency tar-

get variable by vertically realigning the covariate vector. The benefit of this mixed

frequency method compared to restricted MIDAS and full system state space meth-

ods is its simplicity in that existing models and priors can directly be applied to

U-MIDAS sampled data as well as its competitive performance, especially when the

frequency mismatch between the target and the regressors is small (Foroni et al.,

2015; Foroni and Marcellino, 2014), as is the case in our application. Switching

notation from equation (F.1) to make it explicit that yt is quarterly while xt is

sampled at a higher, i.e., monthly frequency, denote xt,M = (x1,t,M , · · · , xK,t,M) and
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βm = (β1,M , · · · , βK,M)′ where M = (1, 2, 3) denotes the monthly observation of

the covariate within quarter, t. By concatenating each monthly column, we obtain

a T × 3K regressor matrix X and a 3K × 1 regression coefficient vector β. This

vertical realignment is visualised for a single representative regressor below:
y1stquarter | xMar xFeb xJan

y2ndquarter | xJun xMay xApr

. | . . .

. | . . .

. | . . .

 (F.13)

F.3.2 Macroeconomic Data

The macro data set pertains to an updated version of the database of Giannone

et al. (2016) (henceforth, ‘macro data’) which contains 13 time series which are

closely watched by professional and institutional forecasters including real indicators

(industrial production, house starts, total construction expenditure etc.), price data

(CPI, PPI, PCE inflation), financial market data (BAA-AAA spread) and credit,

labour and economic uncertainty measures (volume of commercial loans, civilian

unemployment, economic uncertainty index etc.). We augment this data set with

the composite Purchasing Managers Index (PMI) and the University of Michigan

Consumer Confidence Index (UMCI). These are often used as leading indicators

for producer and consumer sentiment, respectively. The target variable for this

application is deseasonalised U.S. real GDP growth (GDP growth) data as reported

in the FRED dataset.6,7

As early data vintages of macroeconomic data and GDP figures can exhibit sub-

stantial variation compared to final vintages (Croushore, 2006; Sims, 2002), there is

no unambiguous choice of variable in evaluating nowcast models on historical data.

Further complications can arise through changing definitions or methods of mea-

surements (Carriero et al., 2015). In order to judge the expected performance of

the proposed models from a real-time perspective, we only make use of the latest

vintages of the series available at the point in time of the nowcast. 8 The stylised

release calendar (3.1) simulates the data availability within the months during which

nowcasts are conducted. For instance, at the 24th nowcast period, all data which

became available during periods 1-24 will be updated according to their latest avail-

able vintages dating prior to the release of PCE and PCEPI, which are published

6 Here, the deseasonalisation pertains to the X13-ARIMA method and was performed prior to
download from the FRED-MD website.

7 We thank an anonymous reviewer who brought to our attention that instead of mixing pre-
deseasonalisation techniques between macroeconomic data and Google Trends discussed be-
low, one could also deseasonalise with common techniques such as the Loess filter. In doing so,
the results in this chapter remain qualitatively identical. Details are available upon request.

8 The only exception is real GDP growth, for which, following previous nowcast studies (Carriero
et al., 2015; Clark, 2011), we use the second vintage for nowcast evalutation.
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typically during the last week of a given month. Real-time vintages are downloaded

from the FRED database using the ‘FredFetch’ Matlab package.9

F.3.3 Google Trends

Google Trends (GT) are indices produced by Google on the relative search volume

popularity of a given search term, search topic or pre-specified search category,

conditional on a given time frame and location. The difference between individual

search terms and topics/categories is that the latter measures the search popularity

for a basket of search terms which are content-wise related to the specified topic

or category. In particular, categories are further split into a 5-level hierarchy of

categories which are fixed a priori,10 and topics can be assembled depending on the

term one is interested in. For example, the user can specify the topic ‘Recession’,

whose related search queries contain, among others, ‘recession’, ‘downturn’, and

‘economic depression’. Likewise, the category ‘Welfare & Unemployment’ relates

to search queries about ‘unemployment, ‘food stamps’ and ‘social security office’.

A large literature on using individual Google Trends search terms11 have shown

that these data can improve predictions for economic time-series which have a clear

connection to the specific search term used, such as using ‘unemployment benefits’

to predict unemployment (Smith, 2016). However, this approach has two potential

limitations.

First, using broad search terms to capture general macroeconomic activity bears

the risk of capturing spurious search behaviour. For example, the search term ‘jobs’

might contain search volume for ‘Steve Jobs’. Second, since many search terms

will be related to multiple topics, there may be lack of interpretability. To reduce

search term ambiguity and interpretability in relationship to real GDP growth, we

use Google topics and categories instead of individual search terms, and choose

these based on their relationship with various aspects of the economy. As forcefully

argued by Woloszko (2020) and Fetzer et al. (2020), these mostly alleviate spuriously

correlated search terms as the user can confine the search purpose. This is benefited

by the fact that Google refines this basket of search terms, by taking into account

where users click after the search has been conducted Woloszko (2020). Further,

categories and topics can be conceptualised as factors based on search terms with the

same meaning/purpose. Although the exact basket of search terms corresponding

to a topic/category is not a priori accessible to the user, any topic or category with

little predictive power will ultimately be shrunk to zero via the shrinkage priors

9 The Matlab package is available from https://github.com/MattCocci/FredFetch. PMI
data were downloaded from quandl.com using Quandl code ‘ISM/MANPMI’.

10 For an overview of categories and sub-categories, please see https://github.com/pat310/

google-trends-api/wiki/Google-Trends-Categories
11 See, for example: Guzman (2011); McLaren and Shanbhogue (2011); Askitas and Zimmer-

mann (2009); Fondeur and Karamé (2013); Carrière-Swallow and Labbé (2013).
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employed in the proposed models.

Our sample comprises 37 Google Trends which were chosen based on capturing

activity in various parts of the economy ranging from crisis/recession, labour market,

personal finance, consumption to supply side activities.12 Our chosen list of topics

and categories is as follows:

• Crisis/Recession: topic - Economic crisis, topic - Crisis, topic - Recession

• Labour Market: topic - Unemployment benefits, topic - jobs, topic - Unem-

ployment, Welfare & unemployment

• Bankruptcy: topic - Bankruptcy, topic - foreclosure

• Credit, Loans & Personal Finance: topic - Investment, topic - Mortgage,

topic - Interest rate, Credit & lending, Investing

• Consumption Items & Services: Food & drink, Vehicle brands, Home &

garden, Sports, Autos & vehicles, Grocery & food retailers, Vehicle licensing

& registration, Hotels & accommodations

• News: Business news, Economy news

• Housing: topic - Affordable housing, topic - House price index

• Business & Industrial Activity: Construction, consulting & contracting,

Business services, Transportation & logistics, manufacturing

• Health: Health

The relatively large proportion of search items related to consumption of goods and

services reflects the large role of consumption in determining U.S. GDP. Vosen and

Schmidt (2011) and Woo and Owen (2019) have shown that similar search items

track and predict the UMCI index and private consumption very well, thereby

capturing consumer sentiment. Labour topics and categories track the popular-

ity of search terms related to job search and benefits demand which Smith (2016),

D’Amuri and Marcucci (2017) and Fondeur and Karamé (2013) have shown to pre-

dict the unemployment rate in various countries. Topics related to personal finance

and investment may signal wealth effects (Woloszko, 2020), which tend to positively

correlate with the business cycle (see figure A.13 in appendix). Topics around hous-

ing have been shown to be indicative of housing prices (Wu and Brynjolfsson, 2015;

Askitas and Zimmermann, 2009). The recession, business news and bankruptcy

themed search items typically increase during economic downturns which therefore

act as signals of economic distress and recessions (Castelnuovo and Tran, 2017; Chen

et al., 2012).

12 This list was inspired by previous research such as Woloszko (2020).
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While the selection of our search items is subjective, in general, there is no

consensus on how to optimally select search terms for final estimation. Methods

proposed in the previous literature can be summarised as: (i) pre-screening through

correlation with the target variable as found via Google Correlate (Scott and Varian,

2014; Niesert et al., 2020; Choi and Varian, 2012);13 (ii) cross-validation (Ferrara

and Simoni, 2019); (iii) use of prior economic intuition where search terms are

selected through backward induction (Smith, 2016; Ettredge et al., 2005; Askitas

and Zimmermann, 2009); and (iv) root terms, which similarly specify a list of search

terms through backward induction, but additionally download “suggested” search

terms from the Google interface. This serves to broaden the semantic variety of

search terms in a semi-automatic way. As methodologies based on pure correlation

do not preclude spurious relationships (Scott and Varian, 2014; Niesert et al., 2020;

Ferrara and Simoni, 2019), we opt for our (somewhat subjective) selection to best

guarantee economically relevant Google Trends.

Since search terms can display seasonality, we deseasonalise all Google Trends by

the Loess filter, as recommended by Scott and Varian (2014), which is implemented

with the “stl” command in R.14

Although one of the main benefits of Google Trends is their timely availability,

which can be as granular as displaying search popularity minutely for the past

hour, the purpose of the empirical application is to showcase the flexibility of the

proposed models in taking advantage of the heterogeneous information contained

in adding new data sources to traditional macroeconomic data, even with little

data processing efforts. Due to the simplicity of obtaining monthly Google Trends

information, we sample the Google Trends information at the monthly frequency.

Nevertheless, the proposed methodology can easily be extended to update monthly

Google Trends with higher frequency search information via bridge methods as in

Ferrara and Simoni (2019) or could directly be included in the model via expansion

of the covariate matrix.15

The indicative real-time calendar can be found in Table 1 and has been con-

structed after the data’s real publication schedule. It comprises a total of 37 nowcast

periods which make for an equal number of information sets Ωv
t for v = 1, · · · , 37

which are used to construct nowcasts as explained in Section F.4. Google Trends

are treated as released prior to any other macro information pertaining to a given

month, since as argued, Google Trends information can essentially be continuously

13 Unfortunately, Google Correlate has suspended updating their databases past 2017.
14 To mitigate against inaccuracy stemming from sampling error, we downloaded the set of

Google Trends seven times between 1 August 2021 to 8 August 2021 and took the cross-
sectional average. Since we used the same IP address and google-mail account, there might
still be some unaccounted measurement errors. However, using topics and categories instead
of individual search terms, we observe much lower sampling variance.

15 Due to the already very high-dimensionality of the data set, we retain such extensions for
future investigation. Constraining the parameter space via MIDAS sampling might make
estimation more feasible.
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sampled.

F.3.4 Understanding Google Trends

To get a visual understanding of the Google search information, we plot in figure

(F.1) the first 3 principal components of the U-MIDAS transformed Google Trends

information. Figure (F.2) shows the factor loadings.

Figure F.1: First 3 principal components of the GT data set and 2nd vintage real
GDP growth.

Figure F.2: Loadings for first 3 principal components of the GT data set.

The first three principal components show very heterogeneous behaviour, but

the dynamics conform to the economic intuition suggested from the loadings. The

244



Releases Timing Release Variable Name Pub. lag Transformation FRED Code

1 First day of month 1 No information available - - - -
2 Last day of month 1 Google Trends m 4 -
3 4th Friday month 1 Consumer Sentiment cons m 3 UMCSENT
4 Last day of month 1 Fed. funds rate & credit spread fedfunds & baa m 3 FEDFUNDS & BAAY10
5 1st bus. day of month 2 Economic Policy Uncertainty Index uncertainty m-1 1 USEPUINDXM
6 1st bus. day of month 2 PMI pmi m-1 1 -
7 1st Friday of month 2 Employment situation hours & unrate m-1 2 AWHNONAG & UNRATE
8 Middle of month 2 CPI cpi m-1 2 CPI
9 15th-17th of month 2 Industrial Production indpro m-1 2 INDPRO
10 3rd week of month 2 Credit & M2 loans & m2 m-1 2 LOANS & M2
11 Later part of month 2 Housing starts housst m-1 1 HOUST
12 Last week of month 2 PCE & PCEPI pce & pce2 m-1 2 PCE & PCEPI
13 Last day of month 2 Google Trends m 4 -
14 4th Friday month 2 Consumer Sentiment cons m 3 UMCSENT
15 Last day of month 2 Fed. funds rate & credit spread fedfunds & baa m 3 FEDFUNDS & BAAY10
16 1st bus. day of month 3 Economic Policy Uncertainty Index uncertainty m-1 1 USEPUINDXM
17 1st bus. day of month 3 PMI pmi m-1 1 -
18 1st bus. day of month 3 Construction starts construction m-2 1 TTLCONS
19 1st Friday of month 3 Employment situation hours & unrate m-1 2 AWHNONAG & UNRATE
20 Middle of month 3 CPI cpi m-1 2 CPI
21 15th-17th of month 3 Industrial Production indpro m-1 2 INDPRO
22 3rd week of month 3 Credit & M2 loans & m2 m-1 2 LOANS & M2
23 Later part of month 3 Housing starts housst m-1 1 HOUST
24 Last week of month 3 PCE & PCEPI pce & pce2 m-1 2 PCE & PCEPI
25 Last day of month 3 Google Trends m 4 -
26 4th Friday month 3 Consumer Sentiment cons m 3 UMCSENT
27 Last day of month 3 Fed. funds rate & credit spread fedfunds & baa m 3 FEDFUNDS & BAAY10
28 1st bus. day of month 4 Economic Policy Uncertainty Index uncertainty m-1 1 USEPUINDXM
29 1st bus. day of month 4 PMI pmi m-1 1 -
30 1st bus. day of month 4 Construction starts construction m-2 1 TTLCONS
31 1st Friday of month 4 Employment situation hours & unrate m-1 2 AWHNONAG & UNRATE
32 Middle of month 4 CPI cpi m-1 2 CPI
33 15th-17th of month 4 Industrial Production indpro m-1 2 INDPRO
34 3rd week of month 4 Credit & M2 loans & m2 m-1 2 LOANS & M2
35 Later part of month 4 Housing starts housst m-1 1 HOUST
36 Last week of month 4 PCE & PCEPI pce & pce2 m-1 2 PCE & PCEPI
37 Later part of month 5 Housing starts housst m-2 1 HOUST

Table F.1: Real time calendar based on actual publication dates. Transformation: 1
= monthly change, 2 = monthly growth rate, 3 = no change, 4 = LOESS decompo-
sition. Pub. lag: m = refers to data for the given month within the reference period,
m-1 = refers to data with a months’ lag to publication in the reference period, m-2
= refers to data with 2 months’ lag to publication in the reference period.
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first component loads positively on supply side activity such as ‘Business services’,

‘Construction, consulting & contracting’, ‘Manufacturing’ as well as ‘Investing’ and

negatively on recessionary themes and ‘Jobs’ which spike during the crises and de-

crease during recoveries (see figure A.13 for indicative time-series plots of individual

Google search items). Accordingly, the first component decreases strongly during

the financial crisis (and to a smaller degree also during height of the Covid-19 re-

cession) and picks up the rapid increase in economic activity after Q2 2020 very

well.

The second component can be understood as a measure of consumer sentiment

and financial health as it loads mostly on consumption items and negatively on

topics such as ‘Bankruptcy’ and ‘Foreclosure’; both terms were very popular during

the financial crisis, but not so much the pandemic crisis.16 Accordingly, the second

principal component shows a large dip during the financial but only a minor dip

during the Covid-19 recession.

The third principal component loads very strongly on business news/recession/crisis

items which increase in popularity during periods characterised by economic anxi-

ety, thus spiking around the financial crisis and the pandemic period. Hence, it can

be interpreted as an indicator of economic distress.

F.3.5 Relationship Between Macroeconomic and Google Search

Data

Understanding further how the skip-sampled Google Trend series correlate with the

macro data set may help us anticipate which information will likely be picked up

in the model. Figure (F.3) shows a correlation heatmap between the macro data

set and the first three Google Trends principal components. Please note that an in-

crease in the UMCI and PMI indicate improved consumer and producer sentiments,

respectively.

As expected, the first rather procyclical component correlates highly with the

fed-funds rate which tends to also rise with the business cycle. The second com-

ponent is strongly positively correlated with the UMCI index and negatively with

the BAA spread (which increases during deteriorating financial conditions), indi-

cating that it indeed captures something close to consumer sentiment and financial

health. Since the third component acts as a recession signal, which abruptly spikes

during crises, but is otherwise flat, it is not surprising that macroeconomic vari-

ables do not correlate very highly with it. This also indicates that search items in

this group might add information that is not well captured by the other included

macroeconomic information.

16 This may reflect the different nature of the Covid-19 pandemic induced recession and the
positive impact government policies had.
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Figure F.3: Heatmap of sample correlation matrix.

F.4 Nowcasting U.S. Real GDP Growth

The predictive model used to generate in-sample and out-of-sample predictions is

given in equations (F.2)-(F.3) where the first T = 45 observations are used as

training sample.17 We estimate three variants of the model based on priors (F.7,

F.9, and F.10) and the original BSTS model of Scott and Varian (2014), as well as

an AR(4) model for comparison. In line with standard BSTS applications, we first

compare the in-sample cumulative absolute one-step-ahead forecast errors, generated

from the state space, as well as inclusion probabilities of the variables so as to shed

light on which variables produce better fit and explain the outcome. Out-of-sample

nowcasts are generated from the posterior predictive distribution p(yT+1|Ωv
T ) for

growth observation yT+1, conditional on the real-time information set Ωv
T , where

(v = 1, · · · , 37) refers to nowcast periods within the real-time calendar (Table F.1).

This results in 37 different nowcasts which are generated on a rolling basis until

the end of the forecast sample, Tend. As recommended by Carriero et al. (2015),

variables that have not yet been published until nowcast period v are zeroed out.

Point forecasts are computed as the mean of the posterior predictive distribu-

tion and are compared via real time root-mean-squared-forecast-error (RT-RMSFE)

which are calculated for each nowcast period as:

RT-RMSFE =

√√√√ 1

Tend

Tend∑
j=1

(yT+j − ŷvT+j|Ωv
T+j−1

)2, (F.14)

where ŷvT+j|Ωv
T+j−1

is the mean of the posterior prediction for nowcast period v using

17 As a further alternative to the proposed BSTS models, we investigate in the appendix as well
whether past GDP growth dynamics are more appropriately (in terms of nowcasting) modelled
via ARMA components. The results show that the LLT components within the BSTS model
are clearly preferred over ARMA type dynamics. We thank an anonymous reviewer for making
this suggestion.
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information until T + j − 1.

Forecast density fit is measured by the mean real-time log-predictive density

score (RT-LPDS) and real-time continuous rank probability score (RT-CRPS):

RT-LPDS =
1

Tend

Tend∑
j=1

logp(yT+j|Ωv
T+j−1)

=
1

Tend

Tend∑
j=1

log

∫
p(yT+j|Ωv

T+j−1,Υ1:T+j−1)p(Υ1:T+j−1|Ωv
T+j−1)dΥ1:T+j−1

≈ 1

Tend

Tend∑
j=1

log

(
1

M

M∑
m=1

p(yT+j|Ωv
T+j−1,Υ

v
1:T+j−1)

)
,

(F.15)

RT-LPDS =
1

Tend

Tend∑
j=1

1

2

∣∣∣yT+j − yvT+j|Ωv
T+j−1

∣∣∣−1

2

∣∣∣yv,AT+j|Ωv
T+j−1

− yv,BT+j|Ωv
T+j−1

∣∣∣ , (F.16)
where, for brevity of notation, Υ1:T+j−1 collects all model parameters as defined

for each model, which are estimated with expanding in-sample information until

T + j− 1 and M stands for iterations of the Gibbs sampler after burn-in. Note that

in (3.11), yv,A,BT+j|Ωv
T+j−1

are independently drawn from the posterior predictive density

p(yvT+1|Ωv
T+j−1

|yT ).
As shown by Frühwirth-Schnatter (1995), in a setting where time-varying and

fixed components for a structural state space model are chosen, the LPDS can be

interpreted as a log-marginal likelihood based on the in-sample information and

therefore provides a model founded scoring rule. The RT-CRPS can be thought of

as the probabilistic generalisation of the mean-absolute-forecast-error. Similar to the

log-score, it belongs to the broader class of strictly proper scoring rules (Gneiting

and Raftery, 2007) which allows for comparing density forecasts in a consistent

manner.18,19 To facilitate discussion, our objective is to maximise the RT-LPDS and

minimise the RT-CRPS. For all forecast metrics, the predictive distribution used

for (F.14, F.15, and F.16) is traditionally generated in state space models via the

prediction equations of the Kalman filter (Harvey, 1990). Instead, we use the simpler

approximate method of Cogley et al. (2005), which we found to make no practical

difference in our sample.20 The method is described in Appendix A.1.4.

18 We do not report calibration tests, as there are too few out-of-sample observations to mean-
ingfully determine calibration.

19 Although the CRPS is a symmetric scoring rule, it penalises outliers less aggressively than
the log-score which is of advantage in small forecast samples such as ours.

20 The Kalman filter provides conditionally optimal forecast densities in terms of squared forecast
error. However, if there is misspecification or if the forecast horizon is very short, then
approximate methods can do just as well empirically. A similar logic holds when comparing
direct and iterative forecasting methods such as in Marcellino et al. (2006). We thank an
anonymous reviewer for bringing this to our attention.
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Finally, to test whether a state variance is equal to zero, we make use of the

Dickey-Savage density ratio evaluated at στ,α = 0:

DS =
p(στ,α = 0)

p(στ,α = 0|y)
(F.17)

It can be shown that for nested models, the DS statistic is equivalent to the Bayes

factor between the prior and the posterior distribution of the parameter of interest

at zero (Verdinelli and Wasserman, 1995). The intuition for the test is simple: if the

prior probability-density-function (PDF) allocates more mass at 0 than the posterior

at that point, there is evidence in favour of the unrestricted model, i.e., στ,α ̸= 0.

While the priors for the state variances have well known forms and thus can be

evaluated analytically, we estimate the denominator for all models through Monte

Carlo integration.

F.4.1 In-Sample Results

Figure F.4 shows the in-sample cumulative-one-step ahead prediction errors using

the proposed priors where the information set pertains to the entire estimation sam-

ple without ragged edges. From Figure F.4, it is clear that the horseshoe prior

BSTS (HS-BSTS) provides the best in-sample predictions at all time periods. The

HS-BSTS-SAVS and SSVS-BSTS initially provide similar fit, however diverge in per-

formance around the financial and Covid-19 crises, especially the HS-SAVS-BSTS.

It is striking that, compared to the former two, the HS-BSTS provides very stable

performance as indicated by a nearly linear increase in errors even during the finan-

cial crisis and the Covid pandemic. It is also apparent that the SAVS algorithm

is not able to retain the fit of the HS prior alone, which, as we show in the next

subsection, is in contrast to the out-of-sample results.
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Figure F.4: Cumulative one-step-ahead forecast errors in-sample from 3 different
models: (1) SSVS-BSTS, (2) HS-BSTS and (3) HS-BSTS-SAVS

Figure F.5: Posterior inclusion probabilities of the SSVS-BSTS model.

Figure F.6: Posterior inclusion probabilities of the HS-SAVS-BSTS model.
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To understand the driving variables behind the posterior predictive distributions,

the posterior marginal inclusion probabilities for the SSVS and SAVS model are

plotted for the top ten most drawn variables in Figures F.5 and F.6 respectively.

The colors of the bars indicate the sign on a continuous scale of white (positive

relationship) to black (negative relationship) of the variable when included in the

model, and the prefix ‘GT’ indicates Google Trend variables. The number [0,1,2]

appended to a variable indicates the temporal position within a given quarter, with

0 being the latest month.

For all three models (for the BSTS model, see Figure A.11), the posterior in-

clusion probabilities show that the most drawn Google search information pertains

to the category ‘business news’ and topic ‘investing’ with clearly negative and pos-

itive impact respectively on GDP growth. The posteriors on these Google Trends

variables (Figure A.12) show that not only is the impact statistically significant but

also economically so. As search intensity for business news goes up (down), GDP

growth forecasts are adjusted downwards (upwards). Vice versa for the investing

topic. Since the ‘business news’ category spikes in recessions, but is otherwise flat,

this suggests that during periods of heightened recessionary probability and eco-

nomic fear, people engage and search more for business news which therefore acts

as an indicator of expected economic distress. Similar reasoning has led to a large

literature on using economic sentiment extracted from news media to model and

forecast economic activity (Kalamara and Kapetanios, 2019; Kalamara et al., 2020;

Baker et al., 2016; Aprigliano et al., 2022; Gentzkow et al., 2019; Alexopoulos and

Cohen, 2015; Manela and Moreira, 2017; Nyman et al., 2021; Shapiro et al., 2020).21

Conversely, ‘investing’ items are presumably searched more often when house-

holds and individuals are financially more stable which is when they engage in

looking for investment opportunities. As seen in Figure A.13, this series tends to

positively correlate with the business cycle. This interpretation of the investment

topic corroborates findings of Woloszko (2020) who show that the investment topic

has a positive impact in a panel data nowcasting exercise for GDP growth.

Figures F.5 and F.6 also reveal some interesting patterns about how macroeco-

nomic data are employed in the models. The SSVS prior tends to select only the

most dominant of the skip-sampled information, while the SAVS extended HS prior

allocates significant inclusion probability to all months within a quarter. For exam-

ple, while the SSVS prior selects the variable ‘unrate0’, i.e., the unemployment rate

for the last month in a given quarter, the HS-SAVS prior allocates nearly the same

inclusion probability to data for all months on construction starts and M2. This

result is likely driven by the fact that the SSVS prior discretises the model space

and therefore, with correlated data, will tend to include only the variable with the

21 It would be interesting for future research to investigate whether Google Trends and news sen-
timent extracted from articles substitute or complement each other in modelling recessionary
risks.
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highest marginal likelihood. Continuous shrinkage priors, on the other hand, make

use of all covariates since they are always included in the model.

Figure F.7: Posterior Inclusion probability heatmaps for the SSVS-BSTS. Inclusion
probabilities to the left of the dashed line pertain to the macro data set, and to the
right, the Google search data.

In line with this discussion, the posterior inclusion probability heatmaps in Fig-

ures F.7 and F.8 show generally that the SSVS and HS prior also display very

different degrees of model uncertainty. Note that in the figures, inclusion probabili-

ties to the left of the dashed line pertain to the macroeconomic data set, and to the

right, the Google search data. The HS prior tends to display substantial uncertainty

over inclusion, particularly for the Google Trends data, which makes sense given the

similarity in signal within Google Trends categories and topics. By contrast, the

SSVS tends to load only on a few Google search items and not explore posteriors of

correlated GTs.

Nonetheless, the fact that the HS prior identifies individual macroeconomic series

such as ‘pce2’ as a clear signal indicates that mixed frequency information matter for

predictive purposes, which would otherwise be lost in averaging information across

quarters.

These results contribute to the recently popularised studies of sparsity within

economic prediction problems (Giannone et al., 2021; Cross et al., 2020) in at least

two ways. Firstly, they indicate that different sparsity patterns can emerge within

data sources (here, macroeconomic and Google Trends) and within mixed frequency

information. And secondly, different sparsity patterns can emerge depending on the

prior used. Section F.5 further investigates robustness of the proposed priors to

different sparsity settings, and provide recommendations.

Finally, our in-sample results clearly demonstrate (Figure F.9) that there is sup-

port in the data for a local trend, but not a local linear trend: the posterior for στ
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Figure F.8: Posterior Inclusion probability heatmaps for the HS-SAVS-BSTS. In-
clusion probabilities to the left of the dashed line pertain to the macro data set, and
to the right, the Google search data.

is clearly bi-modal with less mass on zero than the prior, while the posterior for σα

has substantially more mass on zero than the prior. The Bayes factors are 28.69

and 0.42 for the state standard deviations respectively.

Figure F.9: Distribution of the (left) trend state standard deviation and (right)
slope standard deviation for the HS-BSTS model.

F.4.2 Nowcast Evaluation: Pre-Pandemic period

We now turn to out-of-sample nowcasting performance, where nowcasts are produced

following the real time data publication calendar as explained in Section F.3. Due

to the extraordinary economic circumstances of the Covid-19 pandemic, we split

the evaluation sample into: (a) pre-Covid (ending Q4 2019); and (b) during Covid

(ending Q2 2021). We first evaluate point- and then density fit for the pre-Covid

period.

RT-RMSFE are plotted in Figure F.10 for the competing non-centred BSTS
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estimators, as well as the AR(4) benchmark and the original BSTS model. Note

that in all nowcast figures, we represent nowcast periods in which Google Trends

are published by grey vertical bars. The following points emerge from Figure F.10.

Firstly, it is clear that all proposed BSTS models based on the non-centred state

space offer large performance gains (for certain nowcast periods up to 40%) over

the original BSTS model. Secondly, all models nearly monotonically increase in

precision as more data are released, where, as expected, the BSTS models outper-

form the AR benchmark22 as soon as the first data becomes available. Thirdly,

among non-centred BSTS models, the HS-SAVS-BSTS does the best; however, it

is closely followed by the HS-BSTS. This indicates that the SAVS algorithm suc-

cessfully shuts down contributions of noise variables and thus gives further validity

to the variable selection results discussed above. With only a modest decrease of

2-5% in RT-MSFE relative to the plain HS-BSTS model, it is evident, however,

that the horseshoe prior already provides aggressive shrinkage. Compared to the

SSVS-BSTS, the horseshoe prior based BSTS models offer 7-25% improvements in

terms of point forecast accuracy, especially so in the beginning nowcast periods.

Finally, we find that there is a large decrease in point-forecast error due to Google

Trends releases prior to macroeconomic data becoming available which is consistent

across all models considered. Improvements are in the range of 7-25% for the given

models compared to the first period nowcasts.23 The subsequent value of Google

Trends for point forecasts is a function of how much a given model loads on the

Google Trends search variables and how well the shrinkage prior can separate sig-

nal from noise. Hence, improvements for the HS-BSTS models are modest after

the first GT release and the SSVS-BSTS experiences a noticeable improvement of

15% in the final GT release, whereas the original BSTS model of Scott and Varian

(2014) becomes less precise with latter GT releases. The explanation is that the

original BSTS model generally struggles with the dimensionality of data set which

leads to ineffective variable selection and consequently poor nowcasting performance.

22 The HS-BSTS and HS-SAVS-BSTS outperform the AR model at all nowcast periods signifi-
cantly as measured by the Diebold et al. (1998) test at conventional significance levels. The
SSVS-BSTS model does so only with the second nowcast period.

23 Strictly speaking, these nowcasts are also forecasts due to the information set containing only
information from the previous quarter.
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Figure F.10: Real-Time RMSFE of all competing models. The RT-RMSFE for the
BSTS are plotted on the right axis. Grey vertical bars indicate nowcast periods in
which GT are published.

Similar to the real-time point forecasts, we plot real-time LPDS (RT-LPDS)

and CRPS (RT-CRPS) in Figures F.11 and F.12, respectively. The RT-LPDS and

RT-CRPS mostly confirm the main findings from the point nowcasts. In contrast

to the point nowcasts, however, there is now a much more clear cut performance

improvement in density fit when the Google Trends information are released in

periods 15 and 27, especially so for the BSTS model of Scott and Varian (2014).

This divergence in performance hints at the fact that part of the value of including

Google Trends information is to better characterise forecast uncertainty which in

turn aids density calibration. Next, we explore this distinctive feature of Google

Trends releases for nowcasts during the pandemic.

Figure F.11: Real-Time log-predictive density scores (RT-LPDS) for all competing
models. The RT-LPDS for the BSTS are plotted on the right axis. Grey vertical
bars indicate nowcast periods in which GT are published.
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Figure F.12: Real-Time CRPS scores (RT-CRPS) for all competing models. The
RT-CRPS for the BSTS are plotted on the right axis. Grey vertical bars indicate
nowcast periods in which GT are published.

F.4.3 Nowcast Evaluation: During the Pandemic

The pre-Covid results highlighted that the value of Google Trends are largest before

any macroeconomic information are available for the given quarter. While the aim of

the nowcasting application for the proposed models is not to provide very granular

(weekly or higher) nowcasting models,24,25 we now illustrate briefly how, even at

the relatively coarse monthly level, Google search information improves predictions

during the pandemic.

Figure F.13 plots mean forecasts with their credible 95% intervals for the HS-

BSTS model based on only macroeconomic data (left column) and the full data

set (right column) for the 15th (upper row) and 27th (lower row) nowcast periods

respectively. The nowcast periods were chosen to showcase the best possible now-

casts based on information from the end of the second and third month within a

quarter respectively. While neither model is able to capture the full extent of the

trough during the Covid-19 recession, the model including search term information

provides a clear sense of heightened downside risks through a large asymmetric dip

of the lower part of credible forecast interval. This is in line with the findings from

Woloszko (2020) that for many OECD countries, Google Trends information is able

to provide timely downside risk indications. Uniquely, our nowcast exercise high-

lights how Google Trends can indicate large downward swings in GDP growth over

and beyond contributions from macroeconomic data. The fact that Google search

24 Higher frequencies would expand the covariate set within the U-MIDAS sampling framework
even further. At higher frequencies, predictions could instead be based on single covariates and
combined, for example via Bayesian model averaging, or alternatively the frequency weights
could be constrained via lower parametric basis functions which is akin to conventional MIDAS
estimation.

25 See Woloszko (2020) for a panel data approach to a weekly GDP index based on Google
Trends.
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Figure F.13: Predictive distributions for the macro only data set (left column) and
the macro + Google Trends data set (right columns) for the 15th (upper row) and
27th (lower row) nowcast period.

information has a greater impact on forecast uncertainty rather than point forecasts

further indicates that future research should investigate the potential benefits of

using alternative data sources for modelling conditional heteroskedasticity such as

in GARCH or stochastic volatility type models.

F.4.4 An Extension to Student-t Errors

It is also clear that both models struggle to nowcast the equally large upswing

that follows the pandemic trough. Inspired by recent VAR forecasting literature

during the pandemic (Lenza and Primiceri, 2020; Carriero et al., 2021), we also

explore a new BSTS model based on fatter tailed t-distributed errors. The logic

behind models with fat tails (compared to those of the normal distribution) is to

acknowledge that the large macroeconomic fluctuations, for example during the

Covid pandemic, are hard to forecast and thus should be modelled through increased

forecast uncertainty such that, importantly, large outliers do not adversely affect

inference on model parameters.26 Statistically, this is achieved in the posterior by

26 This assumes that the outlier represents an ‘irregular’ observation due to a shock rather than
the co-evolution of macroeconomic variables.
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down-weighting outliers through the error covariances.

The estimated model uses the same regression and state components as model

(F.2)-(F.3). However, we assume ϵt ∼ N(0, σ2λt), where λt is distributed as G−1(ν/2, ν/2)

where G−1 denotes the inverse-Gamma distribution and ν the degree of freedom pa-

rameter of the t-distribution. Smaller degrees of freedom indicate fatter tails. To es-

timate the BSTS-t model, we leverage a mixture representation of the t-distribution

for which derivations and sampling steps are detailed in appendix (A.1.5). Treating

ν as a random variable, figure (A.9), based on the whole estimation sample shows

that there is clear evidence for fatter tails, which are mostly due to the large outliers

during the Covid pandemic.

Figure F.14: Predictive distributions for the full HS-BSTS-t model.

The nowcasts from this model (Figure F.14) show that, in line with the finding

of small posterior degrees of freedom for the error distribution, the forecast intervals

are much wider compared to the normal BSTS models. The lower forecast interval

now captures the trough during the pandemic already in the 15th nowcasting period.

Surprisingly, we find that the t-model’s mean prediction comes much closer to GDP

growth realisation at the height of the recession in period 27. In fact, the additional

nowcast period forecasts in Figure (A.10) show that already with the third publi-

cation of the Google search information within Q2 2020, we see a large downward

adjustment which had not materialised in period 24 before the GT release. The

posterior inclusion probabilities (A.8) in the appendix reveal that this is because

the model loads less heavily on PCE inflation of the first month (‘pce2’) which had

not reacted much until Q2 2020, as opposed to the Google Trends and construction

starts data. Yet, this new model still struggles with the upswing and presents the

trade-off that even pre-Covid the predictive uncertainty is very large compared to

the normal BSTS models. We believe that future research may investigate whether

and how different data and modelling techniques are able to accurately forecast not

only the trough, but also the peak after sharp downturns.
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F.5 Simulation Study

The empirical application above showed that the proposed BSTS models perform

better in point as well as density forecasts compared to the original model of Scott

and Varian (2014) and that both the SAVS augmented horseshoe prior as well as

the SSVS-BSTS exhibit a relatively sparse selection of macroeconomic data. This

finding is in contrast to previous studies using macroeconomic data such as Giannone

et al. (2021) and Cross et al. (2020) who find that priors yielding dense models

generally outperform sparsity favouring priors. Since an innovation in this chapter

is the estimation of a latent local-linear trend which might filter out co-movement

in the macroeconomic data, we compare the ability of the proposed priors to the

original BSTS model (Scott and Varian, 2014) in capturing both sparse and dense

environments. Further, to make the simulations closer to our empirical application,

we additionally test the priors’ ability to detect zero state variances.

Specifically, we simulate local-linear-trend models as (F.2)-(F.3) having either

the trend variance or the local trend variance set to zero, both equal to zero, or

neither equal to zero. Accordingly, we generate 20 simulated samples for (στ , σα) =

{(0.5, 0), (0, 0.5), (0, 0), (0.5, 0.5)} together with either a dense or a sparse DGP,

where the sparse coefficient vector is set to

βsparse = (1, 1/2, 1/3, 1/4, 1/5, 0K−5)
′ (F.18)

and the dense coefficient vector is

βdense =

{
1/3 with probability pd

0 with probability 1− pd
, (F.19)

where pd is set to 2/3. For both coefficient vectors, the dimensionality, K, is set

to 300 which is high dimensional compared to the number of observations T =

150. We account explicitly for mixed frequencies by first generating the covariate

matrix according to a multivariate normal distribution with mean 0 and a covariance

matrix with its (i, j)th element defined as 0.5|i−j| and then skip-sample each covariate

individually after the U-MIDAS methodology as in (F.13). In the simulations, the

true regression coefficient values as well as state variances are known; hence, we

compare the performance of the different priors via coefficient bias for the regression

coefficients and Dickey-Savage density ratios evaluated at zero state variances. Bias

is calculated as

Root Mean Coefficient Bias =

√
1

20
||β̂ − β||22, (F.20)

where β̂ refers to the mean of the posterior distribution. We estimate the original

BSTS model with the expected model size, π0, equal to the true number of non-zero
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coefficients.

Sparse Dense
(στ , σα) (0.5,0) (0.0.5) (0.5,0.5) (0,0) (0.5,0) (0,0.5) (0.5,0.5) (0,0)

Bias Bias
HS 0.034 0.036 0.036 0.034 0.293 0.289 0.289 0.281

HS-SAVS 0.035 0.035 0.035 0.035 0.33 0.327 0.32 0.321
SSVS 0.035 0.038 0.036 0.036 0.415 0.416 0.421 0.418
BSTS 0.02 0.02 0.021 0.021 0.795 0.567 0.582 0.579

DS(στ = 0) DS(στ = 0)
HS 516.78 0.81 4.267 0.891 1.959 0.701 3.521 1.493

SSVS 629.41 0.824 0.89 0.19 10.775 3.053 3.804 1.402
DS(σα = 0) DS(σα = 0)

HS 0.062 41.587 722.319 0.026 0.112 1772.907 96.015 0.068
SSVS 0.058 4.63E+10 1.05E+08 0.005 0.071 1.29E+10 7.56E+04 0.021

Table F.2: Average Dickey-Savage Density ratio and bias results the simulations.
Since the SAVS algorithm is performed on an iteration basis after inference, the
posterior of στ,α remains unaffected, hence receives the same results as the HS-
BSTS model.

As can be seen from Table F.2, both the non-centred BSTS models as well as the

original BSTS model of Scott and Varian (2014) do better in sparse than in dense

DGPs which is similar to the finding of Cross et al. (2020). The largest gains of the

proposed BSTS models over Scott and Varian (2014) can be found for dense DGPs

where the proposed estimators offer gains in estimation accuracy well in excess of

50% . In sparse designs, however, the latter slightly outperforms the former. This

is expected given that the spike-and-slab prior uses a point mass prior on zero and

that the true expected model size is used. At the same time, it is encouraging

that the differences in accuracy are very small. Among the proposed estimators in

dense designs, the HS prior BSTS versions are 30-40% more accurate compared to

the SSVS-BSTS which is in line with our findings from the empirical application.

Hence, these results offer the conclusion that continuous shrinkage priors are clearly

preferred over spike-and-slab models in dense DGPs with a latent local-linear trend

component.

The Dickey-Savage density ratio tests confirm that the non-centred state space

models are able to correctly identify which of the state variances are significant and

which are not, even in high dimensional regression settings. However, the test is

sensitive to correctly pinning down the regression coefficient vector: in dense de-

signs, where the SSVS prior does worse than the horseshoe prior, the DS tests in

cases (0,0.5) and (0,0) show false support for significant στ .27

27 Note that we do not report DS tests for the original BSTS model. This is due to the fact that
the prior on the state variance has no mass on zero and therefore is not testable.
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F.6 Conclusion

In this chapter, we investigated the added benefit of including a collection of Google

Trends (GT) topics and categories in nowcasts of U.S. real GDP growth through

the lens of current-generation Bayesian structural time series (BSTS) models. We

extended the BSTS of Scott and Varian (2014) to a non-centred formulation which

allows shrinkage of state variances to zero in order to avoid overfitting states and

therefore let the data speak about the latent structure. We further extended and

compared priors used for the regression part which are agnostic about the underlying

model dimensions to accommodate both sparse and dense solutions, as well as the

widely successful horseshoe prior of Carvalho et al. (2010). To make the posterior

of the horseshoe prior interpretable, we applied sparsifying algorithms borrowed

from the machine learning literature, which improve upon the excellent fit of the

horseshoe prior itself.

We find that Google Trends improve point as well as density nowcasts in real

time within the sample under investigation, where largest improvements appear

prior to publication of macroeconomic information. This finding is robust across all

considered models. The highest posterior inclusion probability for prediction of GDP

growth across all models is obtained with the Google topics/categories ‘business

news’ and ‘investing’. The time-series dynamics and model impact of these GTs

suggest that they provide timely signals of economic anxiety and wealth effects,

respectively. Structural implications of this finding may be investigated with larger

Google Trend samples and for other countries. The superior performance of the

proposed models over the original BSTS model is confirmed in a simulation study

which shows that among the proposed models, the horseshoe prior BSTS performs

best and the largest gains in estimation accuracy can be expected in dense DGPs. It

is further confirmed that the non-centred state priors are able to correctly identify

the latent structure, however they are sensitive to the efficacy of the regression prior

to detect signals from noise.

Finally, we applied our models to the Covid-19 pandemic period and find that

Google Trends information help characterise the uncertainty during the Covid reces-

sion and subsequent recovery period. An extension of the BSTS model to student-t

errors is also shown to benefit the timeliness of the forecast revisions to the changes

in the macroeconomic data.

Our work suggests some important avenues for future research. An aspect which

remained unexplored in this study is that Google Trends might have time varying

importance in relationship to the macroeconomic variable under investigation, as

highlighted by Koop and Onorante (2019). Search terms can be highly contextual

and might therefore be able to predict turning points in some periods but not in

others. While, given the limited quarterly observations of Google Trends, our current

investigation of this research question is somewhat limited, this will improve in
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significance over time. Also, nowcasting in contexts where the design is partly dense

and partly sparse is a challenging problem. Our work sheds some light on this

question, but it also motivates further research in this direction.
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