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Abstract

We study the three-dimensional incompressible Euler system subject to stochastic forc-

ing. We develop a concept of dissipative martingale solutions, where the nonlinear terms

are described by general Young measures. We construct these solutions as the vanishing

limit of solutions to the corresponding stochastic Navier-Stokes equations. This requires

a refined stochastic compactness method incorporating the generalised Young measures.

As a main novelty, our solutions satisfy a form of the energy inequality which gives rise

to the weak-strong uniqueness result (pathwise and in law). A dissipative solution coin-

cides (pathwise and in law) with a strong solution as soon as the later exists.

Furthermore, we extend our results to the compressible Euler system. Here we intro-

duce the concept of stochastic measure-valued solutions to the compressible Euler sys-

tem describing the motion of a temperature-dependent inviscid fluid subject to stochastic

forcing, where the nonlinear terms are described by defect measures. These solutions

are weak in the probabilistic sense (probability space is not given a ‘priori’, but part of

the solution) and analytical sense (derivatives only exists in the sense distributions). In

particular, we show that existence and weak-strong principle (i.e. a weak measure-valued

solution coincides with a strong solution provided the later exists), hold true provided

they satisfy some form of energy balance. Finally, we show the existence of Markov se-

lection to the associated martingale problem.
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Chapter 1

1.1 Introduction

In Fluid mechanics we study the motion of fluids (liquids, gases, and plasmas) and the

forces producing the motion. In general we classify these into two categories: fluid static

(i.e. the study of fluid at rest) and fluid dynamics ( the study of effect of forces on the fluid

motion). Fluid dynamics is fairly an active field of research partly due to its wide range of

applications, for instance, in aerodynamics, meteorology and biology. On the other hand,

the research interest is mathematically motivated as many problems in fluid dynamics are

partly solved or unsolved. The thesis seeks to address the later part of research interest.

The dynamics of liquids, gases and plasmas in general are modelled by a system of partial

differential equations (PDEs) describing the balance of mass, momentum and energy in

the fluid flow. The PDEs approach is purely deterministic, and normally used for laminar

flows. However, laminar flows are typically unstable, see [7] for more details. Further-

more, many fluid flows in general are turbulent in nature. In 1941, Kolmogorov [71]

proposed that small noise prevalent in nature is magnified by the instabilities in the flow

and one should consider the velocity in turbulent flow to be a stochastic process. Later on,

this led to an increase in the use of stochastic perturbed systems of PDEs to understand

turbulent phenomenon (numerical, empirical and physical uncertainties) of fluid flows at

high Reynolds number, we refer the reader to [46, 81, 88], and references therein. On this

account we study stochastic partial differential equations (SPDEs) in fluid dynamics. In

particular, we study the stochastic Euler system of partial differential equations, a clas-

sical method of modelling fluid motion. We achieve our goal by narrowing our focus to

classical Euler system, Navier-Stokes system and an approximate system of SPDEs that

converges to Euler system. We postpone rigorous study of these problems to subsequent

sections.
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Chapter 1.

1.1.1 Incompressible stochastic Euler system

We study the stochastic Euler equations describing the motion of an incompressible in-

viscid fluid in the three-dimensional physical domain T3 ⊂ R3. To circumvent problems

associated with the physical boundaries, we impose periodic boundary conditions, the

physical domain T3 can be identified with a flat torus

T3 = ([0,1]|0,1)3.

Let QT = (0,T )×T3 be a space-time periodic cylinder, the fluid flow is described by the

velocity field u : QT → R3, and the pressure p : QT → R and the system of equations

reads  du =−div(u⊗u) dt −∇pdt +φdW in QT ,

div u = 0 in QT ,
(1.1.1)

subject to periodic boundary conditions for u. The first line of equation (1.1.1) is driven

by a stochastic force, that is, the cylindrical Wiener process W while φ is a Hilbert-

Schmidt operator, we refer the reader to Section 3.1.1 for more details.

In a general context, the study of stochastically perturbed equations of motion is moti-

vated as follows, firstly, the reason is as indicated earlier on, that is, modelling perturba-

tions (numerical, empirical, and physical uncertainties) and thermodynamic fluctuations

present in fluid flows; in particular, turbulence. Secondly, to circumvent the issue of de-

terministically ill-posed problems, researchers adopted the use of stochastic perturbation

with hope it will provide a regularising effect to the underlying systems. And indeed,

recently, the results by Flandoli and Luo [53] showed that a noise of transport type im-

proves the vorticity blow-up control in the Navier-Stokes.

Based on the current research results of three-dimensional stochastic Euler system, smooth

solutions to (1.1.1) are only known to exist locally in time, we refer the reader to [69, 57,

78] and references therein for more details. The life span of these solutions is given an

2



Chapter 1.

a.s. positive stopping time. To begin with, we note that the well-posedness of the incom-

pressible stochastic Euler system in a two-dimensional setting is well understood, see

[6, 24, 28, 70] for more details. However, in the three-dimensional case, the existence

and uniqueness of global strong solutions is a major open problem. We further note that

in the deterministic incompressible Euler system a series of counter examples concerning

the uniqueness of solutions have been established. These solutions are called wild solu-

tions and they are constructed by using convex integration, a method introduced by De

Lellis and Székelyhidi [39, 38]. According to the results presented in [11], introducing

stochastic forcing does not seem to change the situation in the context of wild solutions.

In regards to our particular system (1.1.1) we refer the reader to recent results of Hof-

manová et al [62].

In the context of examples of wild solutions, one may expect to observe singularities in

the long-run and non-uniqueness. A natural approach to make sense of such scenarios is

the concept of measure-valued solutions as introduced by Di Perna and Majda [42, 43].

These solutions are constructed via compactness arguments and the nonlinearities are de-

scribed by generalised Young measures, see Section 2.1.5. A generalised Young measure

V = (νt,x,ν
∞
t,x,λ ) consists of an oscillation measure νt,x (parametrised probability mea-

sure), a concentration angle ν∞
t,x (parametrised probability measure), and a concentration

measure λ (a non-negative Radon measure). The convective term can be re-written as a

space time distribution using a generalised measure as follows

d⟨νt,x,ξ ⊗ξ ⟩dxdt +d⟨ν∞
t,xξ ⊗ξ ⟩dλ (t,x),

where ξ is a dummy variable and

⟨νt,x,ξ ⊗ξ ⟩ :=
∫
R3

ξ ⊗ξ dνt,x(ξ ), ⟨ν∞
t,x,ξ ⊗ξ ⟩ :=

∫
R3

ξ ⊗ξ dν
∞
t,x(ξ ).

In essence this is the only available framework that allows us to obtain (for any given

initial datum) the long-time existence of solutions to the system (1.1.1) while comply-

ing with the basic physical principles such as the dissipation of energy (the existence

of weak solutions for any initial datum, which violate the energy inequality, has been

shown in [89]). In view of the results in [21], the energy inequality implies a weak-strong

3



Chapter 1.

uniqueness principle for measured-valued solutions in a deterministic setting, that is, a

measure-valued solution to Euler system coincides with strong solution as soon as the

later exists.

The study of measure-valued solutions is further motivated by applications, firstly, due

to results of Brenier et al [21] we view measure-valued solutions as possibly the largest

class in which the family of smooth (classical) solutions is stable. Specifically, the weak

(measure-valued)-strong uniqueness principle holds, and solutions emanating from nu-

merical schemes can be shown to converge to a measure-valued solution while the con-

vergence to a weak solution is either not known or computational expensive, see Fjord-

holm et al [52] and references therein for more details.

The results on measure-valued solutions discussed so far apply to the deterministic case.

On the other hand there is a strong interest to study measure-valued solutions to the three-

dimensional stochastic Euler equations (1.1.1) in order to grasp its long-term dynamics.

The first results in this direction were established by Kim in [68]. He showed the exis-

tence of martingale solutions to (1.1.1) where the equations of motion are understood in

the measure-valued sense. These solutions are weak in the probabilistic sense (that is,

the underlying probability space as well as the driving Wiener process are not a priori

given but become an integral part of the solution) and analytical sense (derivatives are

understood in the sense of distributions). Such a concept is standard for stochastic evo-

lutionary systems when uniqueness is not available. This approach is representative for

finite dimensional systems and has also been applied to various stochastic partial differ-

ential equations, in particular in fluid mechanics, see [20, 23, 29, 36, 56] and reference

therein for more details. The main draw-back of the solutions constructed in [68] is that

they only satisfy a form of energy estimate in expectation with an unspecified constant C

on the right-hand side instead of an energy inequality as in the deterministic case. Such

energy estimate is not sufficient to conclude the weak–strong uniqueness principle holds,

a requirement one needs for any reasonable notion of generalised solution, cf [76].

Main results of the incompressible stochastic Euler system

The first phase of the thesis consists of three main results established and published in

[18] for an incompressible stochastic Euler system. We also draw the reader’s attention to
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Chapter 1.

results of [60, 62] that appeared after ours for more insights on properties of martingale

solutions to Euler equations. We proceed to give an overview of our results and postpone

their rigorous study to later sections.

(1) Existence of dissipative solutions to (1.1.1) on a torus T3.

The aim of these results is to close the gap in [68] and develop a concept of

measure-valued martingale solutions to (1.1.1) which satisfy a suitable energy in-

equality. A concise statement of these main results is given in Theorem 3.1.9.

These solutions are weak in the probabilistic sense (that is, the underlying proba-

bility space as well as the driving Wiener process are not a priori given but become

an integral part of the solution) and analytical sense (derivatives are understood in

the sense of distributions). In addition, these solutions are called dissipative and

our energy inequality can be described using the notion of generalised measures.

Let V = (νt,x,ν
∞
t,x,λ ) be a generalised Young measure associated with the solution,

then the kinetic energy (here L 1 denotes the one-dimensional Lebesgue measure)

Et =
1
2

∫
T3
⟨νt,x, |ξ |2⟩dx+

1
2

λt(T3), λ = λt ⊗L 1,

satisfies

Et+ ≤ Es− +
1
2

∫ t

s
∥φ∥2

L2
dτ +

∫ t

s
u ·φ dxdW, E0− =

1
2

∫
T3
|u(0)|dx,

P-a.s for any 0 ≤ s < t, we refer the reader to Definition 3.1.2 for more details. In

the deterministic case the energy is non-increasing and non-negative such that the

left- and right-sided limits Et− and Et+ exist for any t.

In the stochastic case one has instead that the difference between the energy and a

continuous function is nonincreasing and that both are pathwise bounded such that

the same conclusion holds, see Remark 3.1.3. Nevertheless, some care is required

to implement this idea within the stochastic compactness method, see Section 3.1.3.

The Euler equations are linked via a vanishing viscosity limit to the Navier-Stokes
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equations. The main idea of the proof is to approximate the system (1.1.1) by an

incompressible stochastic Navier-Stokes system (3.1.22) (see Section 3.1.2) in a pe-

riodic domain T3. We then establish uniform bounds for the random variables solv-

ing the incompressible stochastic Navier-Stokes system and then apply stochastic

compactness arguments to the underlying probability laws of these random vari-

ables instead of the random variables themselves. We face several difficulties due

to the fact that (1.1.1) is infinite-dimensional and, in particular, due to the non-

separability of the space of generalised Young measures. We overcome these diffi-

culties in our compactness arguments by using the general Jakubowski–Skorokhod

theorem 2.1.21 instead of the more familiar Skorokhod’s representation Theorem

for Polish spaces.

(2) Pathwise Weak-strong uniqueness.

In this case we use the energy inequality introduced above as a tool to establish

weak-strong uniqueness property of (1.1.1). The statement of the results is made

precise in Theorem 3.1.13. The idea is to assume strong and weak solutions live

on the same probability space. In particular, the pathwise approach proves that a

dissipative martingale solution agrees with the strong solution if both exist on the

same probability space. These results are reminiscent to the deterministic analysis

in [21]. At this stage it is crucial that the energy inequality discussed above holds

for any time t in order to work with stopping times.

(3) Weak-strong uniqueness in law.

The statement of the results is Theorem 3.1.14. In general a more realistic as-

sumption is that the probability spaces on which strong and weak solutions exists

are distinct. In this case we show that the probability laws of the weak and the

strong solution coincide. This is based on the classical Yamada–Watanabe argu-

ment, where a product probability space is constructed. The introduction of the

product probability space reduces the weak–strong uniqueness in law problem to

the pathwise weak-strong uniqueness already obtained.

6
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Outline of the incompressible stochastic Euler system

Phase one of the thesis is organised as follows: we start off with a general preliminary

Section 2.1 and move on mathematical tools used to study the incompressible fluids in

Section 3.1.1. In section 3.1.2, we prove existence of martingale solutions to the stochas-

tic incompressible Navier-Stokes. Later on, we dedicate Sections 3.1.3 and 3.1.4, to

showing the existence of measure-valued martingale solutions to the stochastic incom-

pressible Euler system using stochastic compactness arguments and proving the weak

(measure-valued)-strong uniqueness principle pathwise and in law, respectively.

1.1.2 Complete stochastic Euler system

The study of the compressible fluid models is motivated by the drawbacks encountered in

incompressible fluid models. To begin with, we note that the incompressible fluid model

provides a good approximation for a variety of engineering applications with slow flows.

However, the pressure for these models is not a thermodynamic state variable and as such

the fluctuations in density may be neglected. To counter these issues we study the com-

pressible fluid model, a model which incorporates the physical principles (that is, 2nd law

of thermodynamics).

To achieve a better representation of physical phenomena on the concept of stochastic

measure-valued solutions to the Euler systems we extend the scope to the study of com-

pressible fluids. In this thesis we consider the complete stochastic Euler System describ-

ing the motion of a temperature dependent compressible inviscid fluid flow driven by

stochastic forcing. The fluid model is described by means of three basic state variables:

the mass density ρ = ρ(t,x), the velocity field u = u(t,x), and the (absolute) temperature

ϑ = ϑ(t,x), where t is the time, x ∈ T3 is the space variable in periodic domain (Eulerian

coordinate system). The time evolution of the fluid flow is governed by a system of partial

differential equations (mathematical formulations of the physical principles) given by

dρ +div(ρu)dt = 0 inQ,

d(ρu)+div(ρu⊗u)dt +∇p(ρ,ϑ)dt = ρφ dW inQ, (1.1.2)

7



Chapter 1.

d
(

1
2

ρ|u|2+ρe(ρ,ϑ)

)
= −div

[(
1
2

ρ|u|2+ρe(ρ,ϑ)+ p(ρ,ϑ)

)
u
]

dt

+
1
2
∥
√

ρφ∥2
L2

dt +ρφ ·udW,

satisfying: the balance of mass, momentum, total energy, respectively. Here, p(ρ,ϑ)

denotes pressure, the driving force is represented by a cylindrical Wiener process W,

and φ is a Hilbert-Schmidt operator, see Section 4.1.3 for details. For completeness,

the system (4.1.1) is supplemented by a set of constitutive relations characterising the

physical principles of a compressible inviscid fluid. In particular, we assume that the

pressure p(ρ,ϑ) and the internal energy e = e(ρ,ϑ) satisfy the caloric equation of state

p = (γ −1)ρe, (1.1.3)

where γ > 1 is the adiabatic constant. In addition, we suppose that the absolute tempera-

ture ϑ satisfies the Boyle-Mariotte thermal equation of state:

p = ρϑ yielding e = cvϑ ,cv =
1

γ −1
. (1.1.4)

Finally, we suppose that the pressure p= p(ρ,ϑ), the specific internal energy e= e(ρ,ϑ),

and the specific entropy s = s(ρ,ϑ) are interrelated through Gibbs’ relation

ϑDs(ρ,ϑ) = De(ρ,ϑ)+ p(ρ,ϑ)D
(

1
ρ

)
. (1.1.5)

If p,e,s satisfy (1.1.5), in context of any smooth solutions to (4.1.1), the Second law of

thermodynamics is enforced through the entropy balance equation

d(ρs(ρ,ϑ))+divx(ρs(ρ,ϑ)u)dt = 0, (1.1.6)

where s(ρ,ϑ) denotes the (specific) entropy and is of the form

s(ρ,ϑ) = log(ϑ cv)− log(ρ). (1.1.7)

For weak solutions, the equality in (1.1.6) no longer holds, the entropy balance is given as

an inequality, for more details see [4]. In view of (1.1.4), the state variables ρ,ϑ trivially

imply the thermodynamics stability given as

8
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∂ρ p(ρ,ϑ)> 0, ∂ϑ p(ρ,ϑ)> 0 for allρ,ϑ > 0. (1.1.8)

Finally, the initial state of fluid emanates from random initial data

ρ(0, ·) = ρ0, ϑ(0, ·) = ϑ0, u(0, ·) = u0, (1.1.9)

subject to initial law Λ. For physical relevant solutions, the problem is augmented by the

total energy balance

d
∫
T3

[
1
2

ρ|u|2+ρe
]

dx =
∫
T3

ρφ ·udxdW +
1
2
∥
√

ρφ∥2
L2

dt. (1.1.10)

The strong solutions of the system (1.1.2) satisfy (1.1.10) as a consequence of (1.1.4), but

in weak solutions it has to be added in the definition.

In the deterministic case, the concept of measure-valued solutions was extended to com-

pressible fluid dynamics by Neustupa [80], Kröner and Zajackowski [73], and revisited

recently by Breit et al [10], Feireisl et. al. in [47, 48] and references therein, where they

developed the concept of dissipative measure-valued solutions. Moreover, the determin-

istic counterpart of the Cauchy problem (1.1.2) has been extensively studied, and it is

well-known that its solutions exist only for a finite time after which singularities may

develop no matter how smooth or small the initial data are. Consequently, the concept of

weak (distributional) solutions is sought to study global-in-time behavior of the system

(1.1.2). Furthermore, the weak solutions may not be uniquely determined by their ini-

tial data. Hence, an admissibility criteria condition must be imposed to select physically

relevant solutions. In addition, more recently, the results of DeLellis, Székelyhidi and

their collaborators [33, 32, 38] show the existence and non-uniqueness of weak solutions

to Euler system via the method of convex integration. In particular, non-uniqueness was

established for weak solutions satisfying the standard entropy admissibilty criteria, and

to be precise, the deterministic compressible Euler system is ill-posed, see Chiodaroli et

al [34] and references therein for more details.

In the stochastic context, existence of global-in-time weak solutions for (1.1.2) were

shown in [31] using convex integration, and they identified a large class of initial data for

9



Chapter 1.

which the complete Euler system is ill-posed; that is, there exist infinitely many global

in time solutions. Our goal in this part of the thesis is to show the existence of dissi-

pative measure-valued solutions to a stochastically driven complete Euler system (1.1.2)

and properties of solutions. In particular, these measure-valued solutions satisfy the ad-

missibility criterion; they conserve the total energy and satisfy an appropriate form of

the entropy (entropy admissibility criterion), and they exist global-in-time for any finite

initial data. The concept of measure-valued solutions to fluid model systems driven by

stochastic forcing is fairly a new subject area of research. To the best of our knowledge,

the study of stochastic measure-valued solutions to the complete Euler system govern-

ing the motion of an inviscid, temperature dependent, and compressible fluid subject to

stochastic forcing is still an open question. Hence, this is a first attempt to characterise

the concept of measure-valued solutions to the full stochastic Euler system. Recently,

Hofmanová et al [60] established existence results for compressible barotropic Euler sys-

tem. We expect that the baratropic system can be recovered as a singular limit of our

dissipative solutions to (2.2). This is, however, subject to future research.

Main results of the complete stochastic Euler system

(1) Existence of dissipative measure-valued solutions

Here we prove the existence of martingale measure-valued solutions to the com-

plete Euler system (1.1.2) following the strategy in [68, 18, 60]. The precise state-

ment of these results is Theorem 4.1.6. These solutions are weak, in the analytical

sense (derivatives only exists in the sense of distributions) and in the probabilistic

sense (the probability space is not a given priori, but an integral part of the solu-

tion). The proof outline is as follows. Similarly to the incompressible case, we start

off with an approximate system with high order diffusion, see Section 4.1.5, and

show existence of solutions to the original problem in the limit via stochastic com-

pactness arguments based on Jakubowski’s variant of the Skorokhod representation

theorem [64]. The latter is needed due to the complicated path space which arises

because of the presence of measures describing the oscillations and concentrations

in the nonlinearities of the Euler system.

(2) Weak-strong uniqueness pathwise

10



Chapter 1.

Here the statement of results is Theorem 4.1.7. The idea is to produce compressible

results analogous to the incompressible case (pathwise). In reminiscent of the re-

sults in [16], we deduce the relative entropy inequality (see Section 4.1.10); a tool

that allows us to establish the weak(measure-valued)-strong uniqueness principle,

that is, a dissipative measure-valued solution coincides with the strong solution as

soon as the later exists. The concept of stochastic weak-strong uniqueness path-

wise is analogous to the deterministic counterpart results, see Feiresl-Brezina [47]

for more details.

(3) Strong Markov selection

Although we do not expect solutions to be unique, there is some hope to select

solutions which are in a sense continuous with respect to the initial data. This is

the Markov property; the memoryless property of the stochastic process, the prob-

ability law of the future only depends on the current state of the process, but it

is independent from the past, see the monograph by Stroock and Varadhan [86]

for a thorough exposition. Our work shows the stochastic analog results of [10],

that is, the existence of Markov selection to the associated martingale problem fol-

lowing the presentations in [12, 54, 58]. At first sight, the overall proof outline is

rather similar, however, we encountered several challenges in this thesis. A ma-

jor challenge originates in the use of defect measures. The defect measures are an

equivalence class in time and not stochastic processes in the classical sense. There-

fore, it is not clear as to how one applies the Markov selection. To solve this issue

we introduce auxiliary continuous stochastic variables [S ,R] such that

S =
∫ ·

0
Sds, R =

∫ ·

0
(Rconv,Rpress,Vt,x)ds,

and this allows us to show Markov selection for [ρ,m,S ,R], see Section 4.1.11.

Here, S and R are the defect measures related to entropy balance and momen-

tum equation, respectively. Note, such an approach is reminiscent of [12], where

a similar idea was used for the velocity field. It is important to note that, different

to [12, 54, 58], we obtain a strong Markov selection. This is due to the energy

equality which is a feature of the system (1.1.2) and is not known to hold for the

problems studied in [12, 54, 58]. However, a first result on strong Markov selec-

tion has been obtained recently by Hofmanová-Zhu-Zhu [62]. In [62] they study

11
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the incompressible stochastic Euler equations and obtain the energy equality by

introducing a defect measure for the energy which is included in the Markov selec-

tion.

Outline of complete stochastic Euler system

Phase two of the thesis is organised as follows: we start off with mathematical framework

and main results in Section 4.1.2. In Section 4.1.8, we show existence of martingale so-

lutions for the approximate system. In Section 4.1.9, we prove the existence of measure-

valued martingale solutions using stochastic compactness arguments. Finally, Section

4.1.10 is dedicated to showing the weak (measure-valued)-strong uniqueness principle,

while Section 4.1.11 is dedicated to the Markov selection.

1.2 Notations

• Ω -sample space

• P -probability measure

• F -sigma algebra

• N -Null-set

• (Ft)t≥0-filtration

• c,C-generic constant that may differ line to line.

• ⟨·⟩T3-inner product in L2

• ⟨⟨·⟩⟩-quadratic variation

• ∼d coincide in distribution

• w.r.t - with respect to

• d -dimensional

• ∑k=1 = ∑
∞
k=1

• Cb(X)- the space of bounded continuous functions.

• τn ∧· - the minimum stopping time

12
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• T3 ⊂ R3- periodic domain

• QT = (0,T )×T3- space-time periodic cylinder, (In some cases we use Q = QT ).

• L∞
w∗(·)- weak* convergence in L∞

• ξ - dummy variable

• a ≲ b- a < cb for some arbitrary constant c > 0

13



Chapter 2

2.1 Preliminaries

In this chapter we start off by recalling standard definitions, lemmas and theorems which

will be needed in order to study deterministic partial differential equations (PDEs) and

stochastic partial differential equations (SPDEs) theory in an effort to make the content

of the thesis self contained. Firstly, we consider the general concepts in the study of

PDEs theory. In particular, Lebesgue spaces, Bochner spaces and Sobolev spaces includ-

ing some inequalities associated with the spaces, respectively. Finally, we move onto

probability theory, an essential component of studying SPDEs theory. To be specific, we

consider the concepts of stochastics in infinite dimensions and tools of compactness in

probabilistic settings.

2.1.1 Function spaces

In general the analysis of PDEs is concerned with the ill-posedness and well-posedness

properties of the solutions. In order to establish these properties we often face a lot of

difficulties especially when one is choosing a space where these solutions may exists. To

overcome these situations a lot of research has been done on the study of function spaces.

In this section we define several function spaces relevant to the study of PDEs theory,

however, we must stress out that the list of material covered here is not exhaustive. We

refer the reader to [1, 90] and references therein for further exposition of function spaces

and relevant inequalities in the theory of PDEs.

Definition 2.1.1. Let (X ,Σ,µ) be a measure space and p ∈ [1,∞). Let

Lp(X ,µ) := {u : X → R; u defined µ −a.e. with ∥u∥X< ∞}

14
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and

∥u∥Lp(X):=
(∫

X
|u|pdµ(x)

) 1
p

∈ [0,∞].

The space (Lp(X ; µ),∥.∥Lp(X)) is called Lebesgue space of functions on X which are

p-integrable w.r.t the measure µ .

Throughout the thesis we shall adopt Lp(X) as notation for Lebesgue spaces with Lebesgue

measure L .

Lemma 2.1.1 (Interpolation in Lebesgue spaces). Let 1 ≤ p,q ≤ ∞ and r ∈ (p,q). Define

θ by
1
r
=

θ

p
+

1−θ

q
.

Then Lp(X)∩Lq(X)⊂ Lr(X) and we have

∥ f∥Lr(X)≤ ∥ f∥θ

Lp(X)∥ f∥1−θ

Lq(X) ∀ f ∈ Lp(X)∩Lq(X).

Lemma 2.1.2 (Hölder’s inequality). Let (X ,Σ,µ) be a measure space. Assume 1≤ p,q≤

∞, and 1
p +

1
q = 1. If u ∈ LP(X) and v ∈ Lq(X). Then uv ∈ L1(X ,µ) and it holds

∫
X
|uv| dµ(x)≤ ∥u∥Lp(X)∥v∥Lq(X),

Bochner space

Let T > 0 and X be a real Banach space with norm ∥.∥X . We consider the mapping

u : [0,T ]→ X .

Definition 2.1.2. The mapping u : [0,T ]→ X is called simple if it has the form

u(t) =
N

∑
i=1

χEi(t)xi t ∈ [0,T ], N ∈ N,

where ∪iEi = [0,T ],Ei ∩E j = /0 for i ̸= j and xi ∈ X for i = 1...,N.

A function u : [0,T ]→ X is called Bochner measurable if and only if there is a sequence

un of simple functions such that

15
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un(t)→ u(t) in X , (2.1.1)

for a.e. t. The function u : [0,T ]→ X is called Bochner integrable if and only if there is

a sequence (un) of simple functions such that (2.1.1) holds and

∫ T

0
∥un(t)−u(t)∥X dt → 0, as n → ∞.

The Bochner integral (see [90]) is defined as

∫ T

0
u(t) dt = lim

n

∫ T

0
un(t) dt = lim

n

N(n)

∑
k=1

L 1(En
k )x

n
k .

Definition 2.1.3. For T > 0 and 1 ≤ p < ∞, the space Lp(0,T ;X) is the set of all Bochner

measurable functions u : [0,T ]→ X such that

∥u∥Lp(0,T ;X):=
(∫ T

0
∥u∥p

X dt
) 1

p

< ∞,

and the space L∞(0,T ;X) is the set of all Bochner measurable functions such that

∥u∥L∞(0,T ;X)= inf
L 1(A)=0

sup
(0,T )\A

∥u∥X .

Lemma 2.1.3. The space Lp(0,T ;X), p ∈ [1,∞], is a Banach space together with the

norm ∥.∥Lp(0,T ;X).

Lemma 2.1.4. Let X be Banach space and 1 ≤ p < ∞. Let G be dense in Lp(0,T ;R) and

X0 dense in X. Then the set

span{gx0;g ∈ G,x0 ∈ X0}

is dense in Lp(0,T ;X).

For u ∈ L1(0,T ;X) we consider the distribution

C∞
0 (0,T ) ∋ ϕ 7→

∫ T

0
u(t)ϕ ′(t) dt ∈ X .

16
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Let Y be a Banach space with X ↪→ Y continuously. If there is v ∈ L1(0,T ;Y ) such that

∫ T

0
u(t)ϕ ′(t) dt =−

∫ T

0
v(t)ϕ(t) dt for all ϕ ∈C∞

0 (0,T )

we say that v is the weak derivative of u in Y and write v = ∂tu. We proceed to state the

results that provide a compactness criterion for our PDEs system, that is, the Aubin-Lion

lemma, see [84, Sect 7.3] for more details.

Lemma 2.1.5 (Aubin-Lions). Let (X ,Y,Z) be a triple of Banach spaces such that the

embedding X ↪→Y is compact and the embedding Y ↪→ Z is continuous. Then the embed-

ding

{u ∈ Lp(0,T ;X) : ∂tu ∈ Lq(0,T ;Z)} ↪→ Lp(0,T ;Y )

is compact for 1 ≤ p,q ≤ ∞.

Sobolev space

In PDE theory, we require spaces containing less smooth functions to prove good an-

alytical estimates of solutions that belong to such spaces. In order to construct these

solutions we need to consider the concept of weak partial derivatives. Let C∞(T3) be the

space of infinitely differentiable functions φ : T3 → R. Suppose we are given a function

u ∈C1(T3), then for any φ ∈C∞(T3) integration by parts yields

∫
T3

uφxidx =−
∫
T3

uxiφdx for all φ ∈C∞(T3), (i = 1, ...,n), (2.1.2)

as consequence of the periodic boundary conditions. In general for a positive integer k,

u ∈Ck(T3) and α = (α1, ...,αn) a multiindex of order |α|= α1 + · · ·+αn = k, we have

∫
T3

uDα
φdx = (−1)|α|

∫
T3

Dαuφ dx for all φ ∈C∞(T3). (2.1.3)

This equality follows from

Dα
φ =

∂ α1

∂xα1
1

. . .
∂ αn

∂xαn
n

φ ,

and we can apply (2.1.2) |α| times. Next, assuming (2.1.3) is valid for u ∈ Ck(T3), we

examine whether a variant of it might still be true if u is not k times continuously differen-

tiable. Note that the left-hand side of (2.1.3) makes sense if u is locally summable: now

given that u is not Ck, the right-hand side form has no obvious meaning. This problem

17
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is resolved by seeking a locally summable function v for which (2.1.3) is valid, with v

replacing Dαu.

Definition 2.1.4 (Weak derivative). Let u,v ∈ L1(T3) and α a multi-index. Then, v is

called α th-weak partial derivative of u if

∫
T3

uDα
φ dx = (−1)|α|

∫
T3

vφ dx for all φ ∈C∞(T3). (2.1.4)

In this case, if we are given u and if there exist a function v such that (2.1.4) holds for all

φ , we say that Dαu = v in the weak sense. Now, given the definition of a weak derivative

we are now in a position to define a Sobolev space.

Definition 2.1.5. Let T3 ⊂ R3 , fix 1 ≤ p ≤ ∞ and let k be a non-negative integer. The

Sobolev space (W k,p(T3)) consists of functions u∈ Lp(T3) such that for each multi-index

α with |α|≤ k, the weak derivative Dαu exist and Dαu ∈ Lp(T3). Thus

W k,p = {u ∈ Lp(T3);Dαu ∈ Lp(T3) for all |α|≤ k}.

If u ∈W k,p(T3), its norm is defined by

∥u∥W k,p(T3)=

(
∑

|α|≤k

∫
T3
|Dαu|p dx

) 1
p

, 1 ≤ p < ∞.

and

∥u∥W k,∞(T3)= ∑
|α|≤k

ess sup|Dαu|.

In the following we consider special cases of Sobolev spaces, that is, fractional Sobolev

spaces. Let H be a separable Banach space with norm ∥·∥H . Assume p > 1, a ∈ (0,1),

let W a,p(0,T ;H) be a Sobolev space of all u ∈ Lp(0,T ;H) such that

∫ T

0

∫ T

0

|u(t)−u(s)|p

|t − s|1+ap dtds < ∞,

endowed with the norm

∥u∥p
W a,p(0,T ;H)

:=
∫ T

0
∥u∥p dt +

∫ T

0

∫ T

0

|u(t)−u(s)|p

|t − s|1+ap dtds.
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We proceed to recall the main embedding theorem we shall use in this thesis, we refer the

reader to [1, Theorem 5.4] for details.

Theorem 2.1.6 (Sobolev embedding). Let T3 ⊂ Rd,d = 3 , if k > l, p < d and 1 ≤ p <

q < ∞ are two real numbers such that

1
p
− k

d
=

1
q
− l

d

then the embeddings

W k,p(T3)⊂W l,q(T3)

are continuous. In the special case when k = 1 and l = 0 we have that the embeddings

W 1,p(T3) ↪→ L
d p

d−p (T3) if p < d,

W 1,p(T3) ↪→ C1− d
p (T3) if p > d,

are continuous.

We conclude this section by stating some standard inequalities used in PDEs theory.

Lemma 2.1.7 (Poincare inequality). Let T3 ⊂ R3 be torus domain and 1 ≤ p < ∞. Then

for all functions u ∈W 1,p(T3) we have

∥u− (u)T3∥Lp(T3)≤C∥∇u∥Lp(T3), (u)T3 =
1

L d(T3)

∫
T3

u dx,

where the constant C depends only on p,d and T3.

Theorem 2.1.8 (Gagliardo-Nirenberg-Sobolev inequality). Assuming 1≤ p< d = 3, then

there exists a constant c, depending only on p and d such that

∥u∥Lp∗(T3)≤ c∥Du∥Lp(T3), (2.1.5)

where p∗ is the conjugate of p defined by

p∗ :=
d p

d − p
, p∗ > p.
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2.1.2 Elements of Stochastic analysis

In this section we introduce the elementary stochastic framework used in this thesis. In

particular, we gather various definitions and fundamental theorems of stochastic analysis

we shall use in analysis of SPDEs in the subsequent sections. For a thorough background

on the elementary concepts and fundamental results in this section we refer the reader to

[15, 35, 66, 65].

Random variables

To begin with, let the triplet (Ω,F ,P) denote a probability space with σ -algebra F on

the underlying sample space Ω and a probability measure P. Let N denote a collection

of nullsets, and suppose that A ∈N such that P(A) = 0. The probability space (Ω,F ,P)

is complete if A ∈ N and B ⊂ A imply B ∈ F ( and hence B ∈ N ). A probability space

can be made complete or completed by suitably enlarging the σ -algebra F . Throughout

the thesis we shall use the triplet (Ω,F ,P) to denote a complete probability space with σ -

algebra F and a probability measure P. Furthermore, we denote by ([0,1],B[0,1],L) the

standard probability space where B denotes the completion of B, and L the Lebesgue

measure. A filtration on (Ω,F ,P) is a collection of non-decreasing family of sub-σ -

algebras of F such that Fs ⊆ Ft for all s < t. Here, t is understood as a time variable

and Ft contains the history of events until time t. A probability space (Ω,F ,P) endowed

with filtration (Ft)t≥0 is called a stochastic basis or filtered probability space, and we

denote the stochastic basis by (Ω,F ,(Ft)t≥0,P).

Definition 2.1.6. A filtration (Ft)t≥0 is called right-continuous, if

Ft =
⋂
ε>0

Ft+ε ∀t ≥ 0

and left-continuous, if

Ft =
⋃
s<t

Fs ∀t > 0.

In addition, in the analysis of subsequent section we will always require our filtration

(Ft)t≥0 to satisfy the “usual conditions ”, that is, complete and right-continuous, specif-

ically,
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{
N ∈ F ;P(N ) = 0

}
⊂ F0 Ft =

⋂
ε>0

Ft+ε ∀t ≥ 0.

We proceed to state definitions and properties related to random variables.

Definition 2.1.7. Let (X ,A ) be a measurable space. An X-valued random variable is

a measurable mapping V : (Ω,F ) → (X ,A ). We denote by σ(V) the smallest σ -field

with respect to which V is measurable. Specifically,

σ(V) =

{
{ω ∈ Ω;V(ω) ∈ A};A ∈ A

}
.

and σ(V)⊂ F .

Definition 2.1.8. The Law L of an X-valued random variable V, denoted by L [V], is a

probability measure defined by

L [V](B) = P{ω ∈ Ω : V(ω) ∈ B}, B ∈ B(X).

Definition 2.1.9. Let (X ,A ) be a measurable space. We say that two X-valued random

variables V and Ṽ are equal in law, if L [V] and L [Ṽ] coincide.

In our analysis we need to assert some topological assumptions on the state space X ,

though we should note they may vary depending on application. In that regard, we assume

X is a topological space equipped with a Borel σ -field. Moreover, it is essential that the

topology on X is completely determined by the family of continuous functions, and to

be precise we use Tikhonov spaces. We proceed to give a formal definition of Tikhonov

spaces.

Definition 2.1.10. A topological space (X ,τ) is a Tikhonov space provided it is both

completely regular and Hausdorff. To be precise, the following hold

• (X ,τ) is a topological space;

• for any points x1 ̸= x2 ∈ X , there are disjoint open sets containing the two points,

respectively;

• for any point x ∈ X and closed subsets W ⊂ X such that x ̸∈ W , there exists a

continuous function f : X → [0,1] such that f (x) = 0 and f (y) = 1 for all y ∈ W
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Remark 2.1.1. In this thesis we are concerned with the delicate structure of the incom-

pressible Navier–Stokes and Euler systems, and compressible Euler system, our naturally

spaces for analysis of these systems will be Banach spaces equipped with weak topology

or duals of Banach spaces with weak-∗ topology (i.e.measures)

We extend the concept of equality of laws to Tikhonov spaces.

Definition 2.1.11. Let X be a Tikhonov topological space equipped with the Borel σ -

field. Let V and Ṽ be X-valued random variables, then L [V] = L [Ṽ], if

E[ f (V)] = E[ f (Ṽ)],

holds true for all f ∈Cb(X).

In the analysis of our SPDEs we are interested in the asymptotic behaviour of our system.

Although we encounter function spaces in the thesis, we shall only limit ourselves to

convergences of sequences as opposed to nets. We proceed to state definitions related to

the convergences of sequences.

Definition 2.1.12. Let X be a Banach space endowed with the norm ∥·∥X and let p ∈

[1,∞). Then a family of X-valued random variables Vn,n ∈ N on the probability space

(Ω,F ,P) with values in the Banach space (X ,∥·∥X) converges in p-moment (converges

in Lp to V), that is, Vn → V in Lp(Ω;X) provided

lim
n→∞

E
[
∥Vn −V∥p

X

]
= 0.

Definition 2.1.13. Let X be a topological space equipped with the Borel σ -field and let

V and Vn,n ∈ N, be X-valued random valued variables on (Ω,F ,P). We say that a

sequence of random variables Vn converges to V almost surely, provided

P
(

ω ∈ Ω; lim
n→∞

Vn(ω) = V(ω)

)
= 1.

Here we note that Definition 2.1.13 is an analogy of almost everywhere results in measure

theory. Similarly, the probabilistic analogue of convergence in measure is given by the

following definition.

Definition 2.1.14. Let (X ,τ) be a locally convex topological space endowed with a family
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of semi-norms (dy)y∈Y , Y is an indexing set. A sequence of X-valued random variables

(Vn)n∈N defined on the probability space (Ω,F ,P) converges in probability to an X-

valued random variable V, denoted Vn →P V for all ε > 0 and y ∈ Y provided

lim
n→∞

P
{

ω ∈ Ω : dy(Vn(ω)−V(ω))> ε

}
= 0.

We conclude the discussion on convergence of random variables by stating the conver-

gence in law results.

Definition 2.1.15. Let X be a Tikhonov topological space equipped with the Borel σ -

field and let Vn,n ∈ N,V, be X-valued random variables defined on (Ωn,Fn,Pn),n ∈ N

and (Ω,F ,P), respectively. We say that the sequence of random variables Vn converges

to V in law, if the law L [Vn] converges to L [V] weakly-* in the sense of probability

measures on X , that is,

lim
n→∞

E[ f (Vn)] = E[ f (V)],

holds true for all f ∈Cb(X).

Stochastic processes

Let (X ,τ) be a topological space endowed with a Borel σ -field. An X-valued stochastic

process is a set of random variables V = (Vt)t≥0 on the measurable space (Ω,F ) with

values in (X ,B(X)), where B(X) is the Borel σ -algebra. A stochastic process V can

be understood as a function of t and ω ∈ Ω, and the mapping of t 7→ Vt(ω) is called the

path or trajectory of Vt . In the following we state definitions associated with stochastic

processes, and properties we shall use in subsequent sections.

Definition 2.1.16. A stochastic process V is called measurable, if the mapping

(t,ω) 7→ Vt(ω) : ([0,∞)×Ω,B([0,∞))⊗F )→ (X ,B(X))

is measurable.

Definition 2.1.17. Let (Ft)t≥0 be a filtration on (Ω,F ). An X-valued stochastic process

V = {V(t); t ∈ [0,∞)} is called (Ft)t≥0-adapted, provided that, the mapping

ω 7→ Vt(ω) : (Ω,Ft)→ (X ,B(X))
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is measurable for all t ≥ 0.

Remark 2.1.2. It follows immediately from Definition 2.1.7 that a stochastic process V is

always adapted to its P-augmented canonical filtration, given by

σt [V] :=
⋂
s>t

σ(σ(V(r);0 ≤ r ≤ s)∪{N ∈ F ;P(N ) = 0}), t ≥ 0.

Definition 2.1.18. Let (Ft)t≥0 be a filtration on (Ω,F ). An X-valued stochastic process

V = {V(t); t ∈ [0,∞)} is called (Ft) progressively measurable, if the mapping

(s,ω) 7→ Vs(ω) : ([0, t]×Ω,B([0,∞))⊗Ft)→ (X ,B(X))

is measurable for all t ≥ 0.

Consequently, it follows immediately that a (Ft)-progressively measurable stochastic

process is measurable and (Ft)-adapted. However, the converse is not always true.

Definition 2.1.19. Let M = (Mt)t≥0 be an (Ft)t≥0−adapted R-valued stochastic process

on a probability space (Ω,F ,P) with E[|Mt |] < ∞ ∀t ≥ 0. M is called a sub-martingale

if we have that P-a.s. E[Mt |Fs] ≥ Ms for all 0 ≤ s ≤ t < ∞, and super-martingale if we

have for all 0 ≤ s ≤ t < ∞ that P-a.s. E[Mt |Fs]≤ Ms. Then M is called a martingale if it

is a sub-martingale and a super-martingale i.e. E[Mt |Fs] = Ms.

Definition 2.1.20. Let A be an adapted real-valued stochastic process. A is called increas-

ing if we have for P-a.e. ω ∈ Ω

(i) A0 = 0;

(ii) t 7→ At(ω) is increasing and right-continuous;

(iii) E[At ]< ∞ for all t ∈ [0,∞).

An increasing R-valued stochastic process is called integrable if

E[A∞]< ∞, where A∞(ω) = lim
t→∞

At(ω) for ω ∈ Ω.

Theorem 2.1.9 (Doob-Meyer decomposition, [66], (Thm. 4.10, p.24)). Let Y be a non-

negative sub-martingale with a.s. continuous trajectories. There is a continuous tra-

jectories martingale M and a P-a.s. increasing continuous and adapted process A such
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that

Yt = Mt +At ,

where the decomposition is unique.

The following theorem is a consequence of Theorem 2.1.9, see [66, Section 1.4] for more

details.

Theorem 2.1.10. Let V be a continuous L2-integrable real-vauled (Ft)-martingale, that

is, E[V2
t ]< ∞, for all t ≥ 0. Then there exists a unique stochastic process ⟨⟨V⟩⟩ such that:

(a) ⟨⟨V⟩⟩ is (Ft)-adapted and has P-a.s. non-decreasing trajectories;

(b) ⟨⟨V⟩⟩(0) = 0 P-a.s.;

(c) V2 −⟨⟨V⟩⟩ is a continuous (Ft)-martingale.

Definition 2.1.21. The stochastic process ⟨⟨V⟩⟩ constructed in Theorem 2.1.10 is called

the quadratic variation of V.

Definition 2.1.22. Let V, Ṽ be stochastic process satisfying the assumptions of Theorem

2.1.10. The process

⟨⟨V, Ṽ⟩⟩ :=
1
4

(
⟨⟨V+ Ṽ⟩⟩−⟨⟨V− Ṽ⟩⟩

)
,

is called the cross variation of V, Ṽ.

To generalise the concept of martingales we need to introduce the notion of local martin-

gales. We first need to introduce the notion of stopping time.

Definition 2.1.23. Let (Ω,F ,P) be a measurable space endowed with a filtration (Ft)t≥0.

We say a random variable τ : Ω → [0,∞] is an (Ft) stopping time, if the event {τ ≤ t}

belongs to the σ -field Ft for any t ∈ [0,∞).

Definition 2.1.24. Let V be an X-valued (Ft)-adapted stochastic process. Then V is an

(Ft)-local martingale if there exists an increasing sequence of stopping times (τn)n∈N,

τn ↑ ∞ a.s., such that the stopped process Vτn = V(τn ∧ ·) is an (Ft)-martingale for all

n ∈ N.

In accordance with the aim of the thesis we define a Wiener process, an example that is

both a continuous-time stochastic process and a martingale, the process plays a key role

in our analysis.

25



Chapter 2.

Definition 2.1.25. An Rn-valued stochastic process W is called an (Ft)-Wiener process,

provided:

(1) W is (Ft)-adapted ;

(2) W (0) = 0 P-a.s.;

(3) W has continuous trajectories : t 7→W (t) is continuous P-a.s.;

(4) W has independent increments: W (t)−W (s) is independent of Fs for all 0 ≤ s ≤

t < ∞;

(5) W has Gaussian increments: W (t)−W (s) is normally distributed with mean 0 and

variance (t − s)I for all 0 ≤ s ≤ t < ∞, i.e N(0,(t − s)I).

For completeness we present an infinite-dimensional generalisation of Wiener process.

We accomplish this by introducing the notion of cylindrical Wiener process, and we note

that this will be the natural choice for the analysis of the driving force of the Euler and

Navier-Stokes systems.

Definition 2.1.26. Let U be a separable Hilbert space with a complete orthonormal sys-

tem (ek)k∈N and let (βk)k∈N be a sequence of mutually independent real-valued (Ft)-

Wiener processes. The stochastic process W given by the formal expansion

W (t) =
∞

∑
k=1

ekβk(t)

is called cylindrical (Ft)-Wiener process.

2.1.3 Random distributions

Throughout the thesis most random variables we encounter are of the form V : Ω →

L1(QT ,R3). However, such an object is not a stochastic process in the classical sense

as it is only defined a.e in time. To remedy such scenarios we use the notion of classi-

cal equivalence stochastic processes, that is, random distributions, as introduced in [15,

Chap. 2.2] to which we refer the reader for more details. The use of random distributions

is essential in handling time dependent variables such as the velocity field u and temper-

ature ϑ , since in general these quantities do not poses well defined instantaneous values

at any time t.
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Definition 2.1.27. Let (Ω,F ,P) be a complete probability space and N ∈N. A mapping

V : Ω → (C∞
c (QT ,R3))′

is called random distribution if ⟨V,ϕ⟩ : Ω → R is a measurable function for any ϕ ∈

C∞
c (QT ,R3).

The properties associated with random variables as stated above continue to hold in ran-

dom distributions. In particular, the concept of progressive measurability. Here we con-

sider the σ -field of all progressively measurable sets in Ω× [0,T ] associated to (Ft)t≥0.

To be precise, A ⊂ Ω× [0,T ] belongs to the progressively measurable σ -field provided

the stochastic process (ω, t) 7→ 1A(ω, t) is (Ft)t≥0-progressively measurable. We denote

by L1
prog(Ω× [0,T ]) the Lebesgue space of functions that are measurable with respect to

the σ -field of (Ft)t≥0-progressively measurable sets in Ω× [0,T ] and we denote by µprog

the measure P⊗L 1
[0,T ] restricted to the progressively measurable σ -field.

Definition 2.1.28. Let V be a random distribution in the sense of Definition 2.1.27.

• We say that V is adapted to (Ft) if ⟨V,ϕ⟩ is (Ft)t≥0-measurable for any ϕ ∈

C∞
c (QT ,R3).

• We say that V is (Ft)t≥0-progressively measurable if ⟨V,ϕ⟩ ∈ L1
prog(Ω× [0,T ]) for

any ϕ ∈C∞
c (QT ,R3).

Remark 2.1.3. The property of progressive measurability in both random variables and

random distributions coincides as long as the distribution defines a stochastic process,

see [15, Chp 2, Lemma 2.2.18] for more details.

Finally, a family of σ -fields (σt [V])t≥0 given as

σt [V] :=
⋂
s>t

σ

 ⋃
ϕ∈C∞

c (Qs;RN)

{⟨V,ϕ⟩< 1}∪{N ∈ F ,P(N ) = 0}

 (2.1.6)

is called the history of V. In fact, any random distribution is adapted to its history.

2.1.4 Stochastic Itô integral

In line with the aim of producing a self contained material we proceed to present a stan-

dard interpretation of the stochastic Itô integral with respect to the cylindrical Wiener
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process. We refer the reader to [35, 83] for a detailed study of this material. Let (Wt)t≥0

be a cylindrical Wiener process (3.1.1) defined on a separable Hilbert space U . Let φ =

{φ(t); t ∈ [0,∞)} be a stochastic process taking its values in the space of bounded Hilbert-

Schmidt linear operators from U to a separable space L2(T3), denoted by L2(U ,L2(T3)).

The aim is to make sense of the functional

∫ t

0
φ(s) dWs.

The functional above defines an L2(T3)-valued martingale, see Definition 2.1.19. Recall-

ing Definition (2.1.26), we construct the integral as the sum of stochastic integrals with

respect to the real-valued Wiener processes

∫ t

0
φ(s) dWs =

∞

∑
k=1

∫ t

0
φ(s)ek dβk(s). (2.1.7)

Since φ takes values in the space of Hilbert-Smith operators, the right hand side of (2.1.7)

converges in a suitable sense in L2(T3) which implies it is an L2(T3)-valued martingale.

To be precise, the following theorem holds, see [35, Section 4.2].

Theorem 2.1.11. Let φ be an (Ft)-progressively measurable stochastic process such that

E
∫ t

0
∥φ(s)∥2

L2(U ,L2(T3)) dt < ∞. (2.1.8)

Then the stochastic Itô integral (2.1.7) is well-defined continuous L2(T3)-valued square

integrable (Ft)-martingale.

We proceed to state more results related to the Itô integral.

Proposition 2.1.12 (Itô Isometry). Let φ be an elementary (Ft)-adapted stochastic pro-

cess. Then the stochastic integral (2.1.7) defines a continuous L2(T3)-valued square

integrable (Ft)-martingale and the following holds true:

E
∥∥∥∥∫ t

0
φ(s) dWs

∥∥∥∥2

L2(T3)

= E
∫ t

0
∥φ(s)∥2

L2(U ,L2(T3)) ds, (2.1.9)

for all t ≥ 0, provided (2.1.8) is satisfied.

In fact, the Itô isometry remains valid for more general integrands satisfying (2.1.8). As
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the next step, we recall the so-called Burgholder-Davis-Gundy inequality, a generalisa-

tion of 2.1.9.

Lemma 2.1.13 (Burkholder-Davis-Gundy inequality). Let X be a separable Hilbert space.

Then for any p∈ (0,∞), there exists a constant Cp > 0 such that for any (Ft)-progressively

measurable stochastic process φ(s) satisfying (2.1.8), the following inequality

E sup
t∈(0,T )

∥∥∥∥∫ t

0
φ(s)dW (s)

∥∥∥∥p

≤CpE
(∫ T

0
∥φ(s)∥2

L2(U ,L2(T3))

) p
2

holds.

In the following we collect elementary results for computing bounds and taking limits in

the stochastic terms. To begin with, we consider limits, see [36, Lemma 2.1].

Lemma 2.1.14. Let (W n)n∈N be a sequence of cylindrical Wiener processes over U

with respect to the filtration (F n
t )t≥0. Assume that (Ψn) is a sequence of progressively

(F n
t )t≥0-measurable processes such that

Ψ
n ∈ L2(0,T ;L2(U ,L2(T3))).

Suppose there is a cylindrical (Ft)t≥0- Wiener process W and

Ψ ∈ L2(0,T ;L2(U ,L2(T3))),

progressively (Ft)t≥0-measurable, such that

W n →W in C0([0,T ],U0),

Ψ
n → Ψ in L2(0,T ;L2(U ,L2(T3))),

in probability. Then we have

∫ .

0
Ψ

n dWn →
∫ .

0
Ψ dW in L2(0,T ;L2(T3)),

in probability.

Note the results of Theorem 2.1.8 are an immediate application of Lemma 2.1.14. To
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conclude limits results we recall the following theorem.

Theorem 2.1.15 (Vitali’s Convergence theorem). Let (Xn)n∈N,X ∈ (Ω,F ,P) be a se-

quence of integrable random variables and an integrable random variable, respectively.

Assume supnE|Xn|p< ∞, for some p ∈ (1,∞) and Xn → X a.s.. Then Xn → X in L1 P-a.s

such that

E|Xn −X |→ 0,

E(Xn)→ E(X).

In computing stochastic bounds, we recall results in [56, Lemma 2.1] given below.

Lemma 2.1.16. Let φ ∈ LP(Ω,F ,P;Lp(0,T ;L2(U ,L2(T3)))) (p ≥ 2) be progressively

(Ft)t≥0- measurable and W a cylindrical (Ft)t≥0- Wiener process as in (3.1.1). Then

the following holds for any α ∈ (0,1/2)

E

[∥∥∥∥∫ .

0
φ dWs

∥∥∥∥p

W α,p(0,T ;L2(T3))

dt

]
≤ c(α, p)E

[∫ T

0
∥φ∥p

L2(U ,L2(T3))
dt
]
.

Stochastic analysis in finite dimensions

For N ∈N, we consider an RN-valued process (Xt)t∈[0,T ] on a probability space (Ω,F ,P)

with filtration (Ft)t≥0 such that

dXt = µ(t,X) dt +Σ(t,X) dWt ,

X(0) = X0.

(2.1.10)

In this case, W is a standard (RM,M ∈ N)-valued Wiener process with respect to the

(Ft)t≥0, and subject to some initial datum X0 ∈ L2(Ω,F0,P). Furthermore, the functions

µ : [0,T ]×RN → RN ,

Σ : [0,T ]×RN → RN×M,

are continuous in X ∈ RN for every t ∈ [0,T ],ω ∈ Ω. In the classical literature µ and Σ

are both assumed to be Lipschitz continuous which is too strong for our application later.

Hence, we consider the case with weaker assumptions in [83, Thm. 3.1.1]:
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1. We assume that the following integrability condition on µ holds for all R < ∞,

∫ T

0
sup
|X|≤R

|µ(t,X)|2 dt < ∞.

2. µ is weakly coercive, i.e. for all (t,X) ∈ [0,T ]×RN we have that

µ(t,X) ·X ≤ c, for some c ≥ 0.

3. µ is locally weakly monotone, i.e. for all t ∈ [0,T ] and all X,Y∈RN with |X|, |Y|≤

R the following holds

(µ(t,X))− (µ(t,Y)) : (X−Y)≤ c(R)|X−Y|2.

4. Σ is Lipschitz continuous, i.e. for all t ∈ [0,T ] and all X,Y ∈ RN the following

holds

|Σ(t,X)−Σ(t,Y)|≤ c|X−Y|2.

Theorem 2.1.17. Let µ and Σ satisfy assumptions (1-4). Assume we have a given proba-

bility space (Ω,F ,P) with filtration (Ft)t≥0, an initial datum X0 ∈ L2(Ω,F0,P) and an

(Ft)t≥0-Wiener process W. Then there is a unique (Ft)t≥0-adapted process X satisfying

X(t) = X+
∫ t

0
µ(s,X(s)) ds+

∫ t

0
Σ(s,X(s)) dWs, P-a.s.,

for every t ∈ [0,T ]. The trajectories of X are P-a.s. continuous and we have

E

[
sup

t∈(0,T )
|Xt |2

]
< ∞.

Itô Formula

Lastly, we state auxiliary results; a tool we shall use in the compressible fluids, that is, an

infinitesimal variant of Itô’s lemma, see [15, Theorem A.4.1].

Lemma 2.1.18. Let q be a stochastic process on (Ω,F ,(Ft)t≥0,P) such that for some
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α ∈ R,

q ∈Cweak([0,T ];W−α,p(T3))∩L∞(0,∞;L1(T3)) P-a.s,

E

[
sup

t∈[0,T ]
∥q∥p

L1(T3)

]
< ∞ for all 1 ≤ p < ∞, (2.1.11)

dq = Dd
t qdt +Ds

t qdW, (2.1.12)

where Dd
t , Dd

t are progressively measurable with

Dd
t q ∈ Lp(Ω;L2(0,T ;W−α,k(T3))), Dtq ∈ Lp(Ω;L2(0,T ;L2(U ;W−m,2(T3)))),

∑
k≥1

∫ T

0
∥Ds

t q(ek)∥2
1 dt ∈ Lp(Ω) 1 ≤ p < ∞,

(2.1.13)

for some k > 1 and some m ∈ N.

Let w be a stochastic process on (Ω,F ,(Ft)t≥0,P) satisfying

w ∈C([0,T ];W α,k′ ∩C(T3) P-a.s.,

E

[
sup

t∈[0,T ]
∥w∥p

W α,k′∩C(T3)

]
< ∞, 1 ≤ p < ∞, (2.1.14)

dw = Dd
t w+Ds

t wdW (2.1.15)

where Dd
t , Dd

t are progressively measurable with

Dd
t w ∈ Lp(Ω;L2(0,T ;W α,k′ ∩C(T3)), Dtw ∈ Lp(Ω;L2(0,T ;L2(U ;W m,2(T3)))),

∑
k≥1

∫ T

0
∥Ds

t q(ek)∥2
W α,k′∩C(T3)

dt ∈ Lp(Ω) 1 ≤ p < ∞.

(2.1.16)

Let Q be [α +2]-continuously differentiable function satisfying

E

[
sup

t∈[0,T ]
∥Q( j)(w)∥p

W α,k′∩C(T3)

]
< ∞ j = 0,1,2, 1 ≤ p < ∞. (2.1.17)

Then

d
(∫

T3
qQ(w)dx

)
=

(∫
T3

[
q
(

Q′(w)Dd
t w+

1
2 ∑

k≥1
Q′′(w)|Ds

t (ek)|2
)]

dx
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+

〈
Q(w),Dd

s q
〉)

dt

+

(
∑
≥1

∫
T3
Ds

t q(ek)D
q
t w(ek)dx

)
dt +dM, (2.1.18)

where

M= ∑
k≥1

∫ t

0

∫
T3
[qQ′(w)Ds

t w(ek)+Q(r)Ds
t q(ek)]dxdWk. (2.1.19)

Tools for compactness

The general approach to prove existence in PDEs is as follows: heuristically, one nor-

mally constructs a sequence of approximations with the aim of showing that they con-

verge, and to show convergence it is necessary to first establish bounds and take lim-

its. However, in our case we have nonlinear terms in our systems. In such situations

bounds alone are not sufficient to pass to the limits, and a standard approach to overcome

this issue is the use of compactness arguments. We should note that when dealing with

randomness extra care is essential. To be precise, for a probability space (Ω,F ,P) no

topological structure is assumed on Ω and therefore the usual tools based on compact

embedding can only be applied to the time and space variable. A general approach used

by analysts to account for these problems is the adoption of Prokhorov’s and Skorokhod’s

theorems, we refer the reader to see Billingsley [5, Thm 5.1, 5.2] and Dudley [44, Thm

11.7.2], respectively.

In the context of the problems considered in this thesis we shall summarise the com-

pactness framework material as follows. Let (X ,τ) be a topological space, we denote

by B(X) the smallest σ -field on (X ,τ) which contains all open sets, that is, topological

σ -field. Let V be an X-valued random variable, see Definition 2.1.7. Then the probability

law µ of V on (X ,τ) is given by µ = P◦V−1 i.e. (µ(A) = P(V ∈ A) for A ∈ B(V)). In

the following we collect the tools of compactness.

Definition 2.1.29 (Tightness). A family (µα)α∈I of probability laws on topologically

space (V,B(V )) is called tight if for every ε > 0 there is a compact subset K ⊂ V such

that

µα(K)≥ 1− ε

for every α ∈ I .
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Lemma 2.1.19 (Prokhorov; [63], Thm 2.6). Let (µα)α∈I be a family of probability laws

on a Polish space (V,ρ). The family (µα)α∈I is tight if and only if it is relatively weakly

compact.

Theorem 2.1.20 (Skorokhod representation; [63], Thm 2.7). Let (µn)n∈N be a sequence

of probability laws on a complete separable metric space (X ,τ) such that µn → µ weakly

in the sense of measures as n → ∞. Then there is a probability space (Ω̃,F̃ , P̃) and

random variables (Ṽn)n∈N, Ṽ : (Ω̃,F̃ , P̃)→ (X ,B(X)) such that

• The laws of Ṽn and Ṽ under P̃ coincide with µn and µ respectively, n ∈ N.

• we have P̃ a.s. that Ṽn → Ṽ as n → ∞.

We note Theorem 2.1.20 is only applicable to metric spaces. Consequently, Theorem

2.1.20 is not sufficient to account for our preferred choice of space, that is, Banach spaces

with the weak topology. We solve this problem by using a generalisation of Theorem

2.1.20. Firstly we need the following definition.

Definition 2.1.30 (Quasi-Polish space). Let (X ,τ) be a topological space such that there

exists a countable family

{ fn : X → [−1,1];n ∈ N}

of continuous functions that separates points of X . Then (X ,τ,( fn)n∈N) is called a

quasi-Polish space.

We are now ready to state the generalisation of Theorem 2.1.20, a result we shall use for

our compactness arguments.

Theorem 2.1.21 (Jakubowski-Skorokhod representation theorem). Let (X ,τ) be quasi-

Polish space (sub-Polish) and let G be the σ -field generated by { fn;n ∈ N}. If (µn)n∈N

is a tight sequence of probability measures on (V,G ), then there exists a subsequence

(µnk) and X-valued Borel measurable random variables (Vk)k∈N and V defined on the

standard space ([0,1],B[0,1],L), such that µnk is the law of Vk and Vk(ω) converges to

V(ω) in X for every ω ∈ [0,1]. Moreover, the law of V is a Radon measure.

Lemma 2.1.22. Let (Ω,F ,P) be a probability space and X ,Y be two random variables

with values in a Polish space (S,ds). Assume that E(h(Y )X) = 0 for all continuous and

bounded functions h : S → R then, E(X |σ(Y )) = 0

Proof. Let B be a measurable subset of S. Then there is a sequence of smooth function
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(hn) such that

hn(s)→ IB(s) ∀s ∈ S.

Where IB(s) is the indicator function of B. We get by monotone convergence that E(hn(s))→

E(IB(s)) and then by (choosing hn appropriately) we have that,

E(IB(Y )X) = lim
n→∞

E(hn(Y )X) = 0

i.e. E(IB(Y )X) = 0 ∀B ∈ B(s).

Let U ∈ σ(Y ), that is, there exist B ∈ B(s) such that U = Y−1(B). This implies that

E(IU X) = E(IY−1(B)X) = E(IB(Y )X) = 0.

Therefore it follows that E(IU X) = 0, ∀ U ∈ σ(Y ). Then the conditional expectation is

given by

E(X |σ(Y )) = 0.

2.1.5 Generalised Young Measures

The premise of this thesis is set on understanding solutions of the Euler system with

oscillations and concentrations phenomena. Central to our approach is the concept of

a generalised Young measure, a measure that measures both oscillations and concentra-

tions. We adopt a formulation of a generalised Young measure as introduced in [2], see

[72, 79] for more details on Young measures in general. Let M denote the set of Radon

measures, we denote by M+ the set of non-negative Radon measures and by P the set

of probability measures. Let QT = (0,T )×T3 be a space-time cylinder. We introduce

the following definition of a generalised measure.

Definition 2.1.31. A quantity V = (νt,x,ν
∞
t,x,λ ) is called a generalised Young measure

provided

(a) νt,x ∈ L∞
w∗(QT ;P(R3)) is a parametrised probability measure on R3;

(b) λ ∈ M+(QT ) is a non-negative measure;
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(c) ν∞
t,x ∈ L∞

w∗(QT ,λ ;P(S2)) is a parametrised probability measure on S2;

(d) We have
∫

QT
⟨νt,x, |ξ |2⟩dxdt < ∞.

We denote by Y2(QT ) the space of all generalised Young measures.

We note, any Radon measure µ ∈ M (QT ) can be represented by a generalised Young

measure by setting V =(δµa(t,x),
dµs

d|µs| , |µ
s|), where µ = µadLn+µs is the Radon-Nikodým

decomposition of µ . In the present work we consider the Carathéodory functions f :

QT ×R3 → R such that the recession function

f ∞(t,x,ξ ) := lim
s→∞

f (t,x,sξ )

s2

is well-defined and continuous on QT ×S2(which implies that f grows at most quadrati-

cally in ξ ), and we denote the space of all such functions by G2(QT ). In the following, let

ξ denote a corresponding dummy-variable. We say a sequence {V n}= {(νn
t,x,ν

∞,n
t,x ,λ n)}

converges weakly* in Y2(QT ) to some V = (νt,x,ν
∞
t,x,λ ) ∈ Y2(QT ) provided

⟨νn
t,x, f (ξ )⟩dxdt + ⟨ν∞,n

t,x , f ∞(ξ )⟩dλ
n ⇀∗ ⟨νt,x, f (ξ )⟩dxdt + ⟨ν∞

t,x, f ∞(ξ )⟩dλ in M (QT )

for all f ∈ G2(QT ), that is

∫
QT

ϕ⟨νn
t,x, f (ξ )⟩dxdt +

∫
QT

ϕ⟨ν∞,n
t,x , f ∞(ξ )⟩dλ

n

→
∫

QT

ϕ⟨νt,x, f (ξ )⟩dxdt +
∫

QT

ϕ⟨ν∞
t,x, f ∞(ξ )⟩dλ

for all ϕ ∈ C(QT ). The space of G2(QT ) is a separable Banach space together with the

norm

∥ f∥G2(QT ):= sup
(t,x)∈QT ,ξ∈B1(0)

(1−|ξ |)
∣∣∣∣ f (t,x,

ξ

1−|ξ |

)∣∣∣∣
and Y2(QT ,Rn) is a subspace of its dual. Consequently, Y2(QT ,Rn) together with the

weak* convergence introduced above is a quasi-Polish space, see Definition 2.1.30. Specif-

ically, separable Banach spaces endowed with the weak topology and dual spaces of

separable Banach spaces are quasi-Polish spaces. In applications, we are interested in
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long-time behaviour of systems, as such we define

Y loc
2 (Q∞) = {V : V ∈ Y2(QT )∀T > 0}.

Noting that the topology of Y loc
2 (Q∞) is generated by the topologies on Y2(QT ) in the

sense that

V n ⇀∗ V in Y loc
2 (Q∞)⇐⇒ V n ⇀∗ V in Y2(QT ) ∀T > 0,

it follows that Y loc
2 (Q∞) is a quasi-Polish space. We embed L2(QT ) into Y2(QT ) via the

inclusion

L2(QT ) ∋ u 7→ (δu(t,x),0,0) ∈ Y2(QT ).

By the Alaoglu-Bourbaki theorem, for any M > 0 there is a compact subset KM of

G2(QT ) such that

{(δu(t,x),0,0) ∈ Y2(QT ) : ∥u∥L2(QT )
≤ M} ⊂ KM. (2.1.20)

Since Y2(QT ) is weak* closed in G2(QT ) we conclude that KM ∩Y2(QT ) is compact,

where clearly

{(δu(t,x),0,0) ∈ Y2(QT ) : ∥u∥L2(QT )
≤ M} ⊂ KM ∩Y2(QT ).

Finally, it is also important to identify a generalised Young measure with a space-time

distribution, that is, for V = (νt,x,ν
∞
t,x,λ ) ∈ Y2(QT ) we define

C∞
c (QT ×R3)2 ∋ (ψ,ϕ) 7→

∫
QT

∫
R3

ψ(t,x,ξ )dνt,x(ξ )dxdt (2.1.21)

+
∫

QT

∫
R3

ϕ(t,x,ξ )dν
∞
t,x(ξ )dλ (t,x).

In the following sections we shall study the probability laws on Y2(QT ), and we need to

make sense of the required σ -field. A suitable candidate is the σ -algebra generated by

the functions { fn} in Definition 2.1.30, that is, we set

BY := σ

(
∞⋃

n=1

σ( fn)

)
. (2.1.22)
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3.1 Dissipative solutions to the incompressible stochastic Euler equations

Our goal in this section and its subsequent sections is to formalise the concept of dis-

sipative measure-valued solutions to the incompressible stochastic Euler equations and

show their existence. These solutions are weak in the analytical and probabilistic sense.

The key idea of the proof hinges on the link between the Euler system and the Navier-

Stokes system (in fact, Euler equations are linked via a vanishing viscosity limit to the

Navier–Stokes equations). We shall proceed as follows. Firstly, we show the existence

of martingale solutions to the incompressible Navier-Stokes system. Finally, we show

that martingale solutions to the incompressible Navier-Stokes system converge to dis-

sipative measure-valued martingale solutions of the Euler system as viscosity vanishes.

Our strategy is reminiscent to that used in the analogous results of the deterministic case,

see [42].

3.1.1 Stochastic Analysis

Here we collect the mathematical framework relevant to the incompressible case. Firstly,

we present a thorough outline of the stochastic force (i.e. the noise term) used in our

incompressible fluids models. We refer the reader to Section 2.1.4 for brief discussion,

and to [35] for more details on the elements of stochastic calculus in infinite dimensions.

Let (Ω,F ,(Ft)t≥0,P) be a complete stochastic basis with a probability measure P on

(Ω,F ) and right-continuous filtration (Ft)t≥0. Let U be a separable Hilbert space with

orthonormal basis (ek)k∈N. We denote by L2(U ,L2(T3)) the set of Hilbert-Schmidt op-

erators from U to L2(T3). The stochastic process W is a cylindrical Wiener process

W = (Wt)t≥0 in U , and is of the form

W (s) = ∑
k∈N

ekβk(s), (3.1.1)
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where (βk)k∈N is a sequence of independent real-valued Wiener processes relative to

(Ft)t≥0. We select the most natural space U = L2(T3), and we identify a precise defi-

nition of the diffusion coefficient by asserting the following assumptions on φ : for every

x ∈ L2(T3) the mapping φ : U → L2(T3) is defined by

φ(ek) = φk.

Since φk is a Hilbert-Schmidt operator, it follows that

∑
k≥1

∥φ(ek)∥2
L2(T3)< ∞. (3.1.2)

For φ ∈ L2(Ω,F ,P;L2(0,T ;L2(U ,L2(T3))), the stochastic integral

∫ t

0
φ dW = ∑

k≥1

∫ t

0
φ(ek)dβk,

where φ is progressively measurable, defines a P-almost surely continuous L2(T3) valued

(Ft)t≥0-martingale. Furthermore, we can multiply with test functions since

∫
T3

(∫
τ

0
φ dW ·ϕ

)
dx = ∑

k≥1

∫
τ

0

(∫
T3

φk ·ϕ dx
)

dβk, ϕ ∈ L2(T3), (3.1.3)

is well defined in L2(Ω,F ,P;C[0,T ]).

We define the auxiliary space U0 with U ⊂ U0 as

U0 : =

{
u = ∑

k
αkek : ∑

k

α2
k

k2 < ∞

}
,

∥u∥2
U0

: =
∞

∑
k

α2
k

k2 , u = ∑
k

αkek, (3.1.4)

thus the embedding U ↪→ U0 is Hilbert-Schmidt and the trajectories of W belong P-a.s.

to the class C([0,T ];U0) (see [35]).

We proceed to introduce the following variant of infinite dimensional Itô-formula [16,

Lemma 3.1].

Lemma 3.1.1. Let (Ω,F ,(Ft)t≥0,P) be a stochastic basis and W a cylindrical (Ft)-
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Wiener process and p ∈ [1,∞]. Let w1,w2 be (Ft)-progressively measurable processes

with w1 ∈ Cw([0,T ];L2
div(T

3)), w2 ∈ C([0,T ];L2
div(T

3)) and w2 ∈ L1(0,T ;C1(T3)) a.s.

such that

w1,w2 ∈ L2
w(Ω,L∞(0,T ;L2(T3))).

Suppose that

λt ∈ L1
w∗(Ω;L∞

w∗(0,T ;M+(T3))), H1 ∈ L1
w∗(Ω;L∞(0,T ;L1(T3))),

G1 ∈ L1
w∗(Ω;L∞(QT ,λt ⊗L 1))), Φ

1 ∈ L2(Ω;L2(U ;L2(T3)))),

are all Ft-progressively measurable, such that

∫
T3

w1(t) ·ϕ dx =
∫
T3

w1(0) ·ϕ dx+
∫ t

0

∫
T3

H1 : ∇ϕ dxds

+
∫
(0,T )×T3

G1 : ∇ϕ dλ +
∫
T3

ϕ ·
∫ t

0
Φ

1 dW dx
(3.1.5)

for all ϕ ∈C∞
div(T

3).

Suppose further that

h2 ∈ L1
w∗(Ω;L∞(QT )), Φ

2 ∈ L2(Ω;L2(U ;L2(T3))),

are Ft-progressively measurable, such that

∫
T3

w2(t) ·ϕ dx =
∫
T3

w2(0) ·ϕ dx+
∫ t

0

∫
T3

h2 ·ϕ dxds+
∫
T3

ϕ ·
∫ t

0
Φ

2 dW dx (3.1.6)

for all ϕ ∈C∞
div(T

3). Then for all t ≥ 0 P-a.s we have

∫
T3

w1(t) ·w2(t)dx =
∫
T3

w1(0) ·w2(0)dx+
∫ t

0

∫
T3

H1 : ∇w2 dxds
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+
∫
(0,T )×T3

G1 : ∇w2 dλ +
∫
T3

w2 ·
∫ t

0
Φ

1 dW dx

+
∫ t

0

∫
T3

h2 ·w1 dxds+
∫
T3

w1 ·
∫ t

0
Φ

2 dW dx

+ ∑
k≥1

∫ t

0

∫
T3

Φ
1ek Φ

2ek dxdt (3.1.7)

Proof. In order to justify the application of Itô’s formula to the process t 7→
∫
T3 w1(t) ·

w2(t)dx we have to perform some regularisation in equation (3.1.5) using mollification

in space with parameter m > 0. For ϕ ∈ L2
div(T

3) we have ϕm ∈C∞
div(T

3) and

∥ϕm∥W k,p
x

≤ c(m)∥ϕ∥L2
x

∀k ∈ N0, p ∈ [1,∞],

∥ϕm∥W k,p
x

≤ ∥ϕ∥W k,2
x

∀k ∈ N0, p ∈ [1,∞],
(3.1.8)

provided ϕ ∈ Lp(T3) or ϕ ∈W k,p(T3), respectively. Moreover,

ϕm → ϕ in W k,p(T3) ∀k ∈ N0, p ∈ [1,∞), (3.1.9)

ϕm → ϕ in Ck(T3) ∀k ∈ N0, (3.1.10)

as m → 0 provided ϕ ∈ W k,p(T3) or Ck(T3), respectively. Finally, the operator (·)m

commutes with derivatives. Inserting (ϕ)m in (3.1.5) yields

∫
T3

w1
m(t) ·ϕ dx =

∫
T3

w1
m(0) ·ϕ dx+

∫ t

0

∫
T3

H1 : ∇(ϕ)m dxds

+
∫
(0,t)×T3

G1 : ∇(ϕ)m dλσ dσ +
∫
T3

ϕ ·
∫ t

0
Φ

1
m dW dx

where Φ1
m is given by Φ1

mek = (Φ1ek)m for k ∈ N. Let m > 0 be fixed, using (3.1.8) we

obtain ∣∣∣∣∫ T

0

∫
T3

H1 : ∇(ϕ)m dxds
∣∣∣∣≤ sup

0≤t≤T

∫
T3
|H1|dx

∫ T

0
∥∇(ϕ)m∥L∞

x dσ

≤ c(m) sup
0≤t≤T

∫
T3
|H1|dx

∫ T

0
∥ϕ∥L2

x
dσ

P-a.s. as well as∣∣∣∣∫
(0,T )×T3

G1 : ∇(ϕ)m dλ

∣∣∣∣≤ sup
QT

|G1|
∫ T

0

∫
T3
|∇(ϕ)m|dλt dt
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≤ sup
QT

|G1| sup
0≤t≤T

λt(T3)
∫ T

0
∥∇(ϕ)m∥L∞

x dt

≤ c(m) sup
QT

|G1| sup
0≤t≤T

λt(T3)
∫ T

0
∥ϕ∥L2

x
dt.

Therefore, the deterministic parts in the equation for w1
m are functionals on L2. Conse-

quently, we can apply Itô’s formula on the Hilbert space L2
div(T

3) (see [37, Prop. A.1]

and [17, Prop. C.0.1]) to the process t 7→
∫
T3 w1

m(t) ·w2(t)dx to obtain

∫
T3

w1
m(t) ·w2(t)dx =

∫
T3

w1
m(0) ·w2(0)dx+

∫ t

0

∫
T3

H1 : (∇w2)m dxds

+
∫
(0,t)×T3

G1 : (∇w2)m dλσ dσ +
∫
T3

∫ t

0
w2 ·Φ1

m dW dx

+
∫ t

0

∫
T3

h2 ·w1
m dxds+

∫
T3

∫ t

0
w1

m ·Φ2 dW dx

+ ∑
k≥1

∫ t

0

∫
T3

Φ
1
mek Φ

2ek dxdt.

The desired formulation (3.1.7) follows from taking the limit m → 0. finally, we show

how individual terms converge to their limits:

lim
m→0

∫
T3

w1
m(0) ·w2(0)dx →

∫
T3

w1(0) ·w2(0)dx, (3.1.11)

the convergence above follows from the following observation:∣∣∣∣∫T3
w1

m(0) ·w2(0)dx−
∫
T3

w1(0) ·w2(0)dx
∣∣∣∣

≤
∫
T3
|w2(0)||w1

m(0)−w1(0)|dx

≤ ∥w2(0)∥2∥w1
m(0)−w1(0)∥2︸ ︷︷ ︸

Im

by Hölder inequality.

thus Im → 0 as m → 0 by assumptions on w1 so that (3.1.11) holds. To show that

lim
m→0

∫ t

0

∫
T3

H1 : (∇w2)m dx →
∫ t

0

∫
T3

H1 : ∇w2 dx, (3.1.12)

we consider, ∣∣∣∣∫ t

0

∫
T3

H1 : (∇w2)m dx−
∫ t

0

∫
T3

H1 : ∇w2 dx
∣∣∣∣
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≤
∫ t

0

∫
T3
|H1||(∇w2)m −∇w2|dx

≤ sup
0≤t≤T

∫
T3
|H1|

∫ T

0
∥(∇w2)m −∇w2∥L∞

x︸ ︷︷ ︸
IIm

dt,

the last line above follows from Hölder’s inequality. We also note that IIm → 0 for a.e t

as m → 0 by assumptions on w2, and ∥∇w2
m∥L∞

x ≤ ∥∇w2∥L∞
x . Therefore, IIm ≤ 2∥∇w2∥L∞

x .

Then by dominated convergence we deduce that

∫ T

0
∥(∇w2)m −∇w2∥L∞

x dt → 0, as m → 0,

so that (3.1.12) holds. To show the limit

lim
m→0

∫
(0,t)×T3

G1 : (∇w2)m dλσ dσ →
∫
(0,t)×T3

G1 : (∇w2)dλσ dσ , (3.1.13)

holds we proceed as follows,∣∣∣∣∫Q
G1 : (∇w2)m dλσ dσ −

∫
Q

G1 : (∇w2)dλσ dσ

∣∣∣∣
≤
∫

QT

|G1||(∇w2)m − (∇w2)|dλσ dσ

≤ sup
QT

|G1|
∫ T

0

∫
T3
|(∇w2)m − (∇w2)|dλσ dσ

≤ sup
QT

|G1| sup
0≤t≤T

λt(T3)
∫ T

0
∥(∇w2)m − (∇w2)∥L∞

x︸ ︷︷ ︸
IIIm

dσ ,

then results of (3.1.13) follows by similar closing arguments shown for (3.1.12). To show

the limit

lim
m→0

∫
T3

∫ t

0
w2 ·Φ1

m dW dx →
∫
T3

∫ t

0
w2 ·Φ1 dW dx, (3.1.14)

we use Burkholder-Davis-Gundy inequality to obtain

E
(∣∣∣∣∫ t

0

∫
T3

w2 · (Φ1
m −Φ

1) dxdW
∣∣∣∣)

≤ E
(

sup
t

∣∣∣∣∫ t

0

∫
T3

w2 · (Φ1
m −Φ

1) dxdW
∣∣∣∣)

≤ cE
(〈〈∫ .

0

∫
T3

w2 · (Φ1
m −Φ

1) dxdW
〉〉)1/2
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= cE

(
∑
k≥1

〈〈∫ .

0

∫
T3

w2 · (Φ1
m −Φ

1)ek dxdWk(t)
〉〉)1/2

= cE

(
∑
k≥1

∫ T

0

[∫
T3

w2 · (Φ1
m −Φ

1)ek

]2

dt

)1/2

≤ cE

(
∑
k≥1

∫ T

0
∥w2∥2

2∥(Φ1
m −Φ

1)ek∥2
2dt

)1/2

by Hölder inequality

≤ cE

(
sup

0≤t≤T
∥w2∥2

2 ∑
k≥1

∥(Φ1
m −Φ

1)ek∥2
2

)1/2

.

= c ∥Φ
1
m −Φ

1∥L2(U ,L2)︸ ︷︷ ︸
IVm

Esup∥w2∥L2

The limit is satisfied when IVm → 0 as m → 0. To show this, we prove that

limsup
m→0

∥Φ
1
m −Φ

1∥L2(U ,L2)= limsup
m→0

∑
k≥1

∥(Φ1ek)m − (Φ1ek)∥2
L2 < ε.

for some arbitrary ε > 0. Since Φ1 is a Hilbert-Schmidt operator, it follows that

limsup
m→0

∑
k≥1

∥Φ
1
m∥2

L2≤ ∑
k≥1

∥Φ
1ek∥2

L2< ∞.

Therefore, there exists an N = Nε ∈ N such that

∑
k≥Nε

∥Φ
1ek∥2

L2 < ε/2.

Thus, for a fixed ε ,

limsup
m→0

∑
k≥1

∥(Φ1ek)m − (Φ1ek)∥2
L2 ≤ limsup

m→0

Nε−1

∑
k=1

∥(Φ1ek)m − (Φ1ek)∥2
L2︸ ︷︷ ︸

0 as m→0

+ limsup
m→0

∑
k≥Nε

∥(Φ1ek)m − (Φ1ek)∥2
L2 .

And now using (3.1.8)-(3.1.9) we deduce that

limsup
m→0

∑
k≥Nε

∥(Φ1ek)m − (Φ1ek)∥2
L2≤ 2 ∑

k≥Nε

∥Φ
1ek∥2

L2< ε.

Since ε was arbitrary chosen, then IVm → 0 when ε → 0. Hence convergence in L1(Ω, ·),
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therefore, taking a subsequence we obtain a.s convergence in the stochastic integral so

that (3.1.14) holds. To show the limit

lim
m→0

∫ t

0

∫
T3

h2 : w1
m dxds →

∫ t

0

∫
T3

h2 : w1dxds. (3.1.15)

we observe that∣∣∣∣∫ t

0

∫
T3

h2 : (w1
m −w1)dxds

∣∣∣∣ ≤
∫ t

0

∫
T3
|h2||(w1

m −w1)|dxds

≤
∫ t

0
∥h2∥2∥w1

m −w1∥2 ds.

In view of assumptions on w1, we use dominated convergence to pass to the limit m → 0,

hence (3.1.15) holds. The limit

lim
m→0

∫
T3

∫ t

0
w1 ·Φ2

m dW dx →
∫
T3

∫ t

0
w1 ·Φ2 dW dx, (3.1.16)

follows from using Burgholder-Davis-Gundy inequality to obtain

E
(∣∣∣∣∫ t

0

∫
T3

Φ
2 · (w1

m −w1) dxdW
∣∣∣∣)

≤ cE
(

sup
t

∣∣∣∣∫ t

0

∫
T3

Φ
2 · (w1

m −w1) dxdW
∣∣∣∣)

≤ cE
(〈〈∫ .

0

∫
T3

Φ
2 · (w1

m −w1) dxdW
〉〉)1/2

= cE

(
∑
k≥1

〈〈∫ .

0

∫
T3

Φ
2ek · (w1

m −w1) dxdWk(t)
〉〉)1/2

= cE

(
∑
k≥1

∫ T

0

[∫
T3

Φ
2ek · (w1

m −w1)

]2

dt

)1/2

≤ cE

∑
k≥1

∫ T

0
∥Φ

2ek∥2
2∥w1

m −w1∥2
2︸ ︷︷ ︸

Vm

dt

1/2

by Hölder inequality

since w1 ∈ L2
w(Ω,L∞(0,T ;L2(T3))) by assumption, then Vm ≤ 2∥w1∥. Therefore using

dominated convergence we deduce that

E
[∫ T

0
∥w1

m −w1∥L2 dt
]
→ 0, asm → 0

45



Chapter 3.

such that (3.1.16) follows. Finally, to show that

lim
m→0

∑
k≥1

∫ t

0

∫
T3

Φ
1
mek Φ

2ek dxdt → ∑
k≥1

∫ t

0

∫
T3

Φ
1ek Φ

2ek dxdt (3.1.17)

we consider the following,∣∣∣∣∣∑k≥1

∫ t

0

∫
T3

Φ
2ek · (Φ1

mek −Φ
1ek)dxdt

∣∣∣∣∣ ≤ sup
0≤t≤T

∑
k≥1

∥Φ
2ek∥2∥(Φ1

mek −Φ
1ek)∥2︸ ︷︷ ︸

V Im

now using the arguments in (3.1.14) for Φ1, we deduce that (3.1.17) holds. Hence com-

bining (3.1.11)-(3.1.17), and using (3.1.9) together with the assumptions on w1 and w2 we

see that all terms converge to their corresponding counterparts and (3.1.7) follows.

In the following we present a finite dimensional version of [15, Chapter 2; Theorem 2.9.1]

Proposition 3.1.2. Let U be a random distribution such that U ∈ L1
loc([0,∞)) P-a.s. Sup-

pose that there is a bounded continuous function b and a collection of random distribu-

tions G= (Gk)k∈N such that P-a.s.

∞

∑
k=1

|Gk|2∈ L1
loc([0,∞)).

Let U0 be an F0-measurable random variable, and W = (Wk)
∞
k=1 be a collection of real-

valued independent Brownian motions. Suppose that the filtration

Ft = σ

(
σ(U0,rtU,rtW,rtG)

)
, t ≥ 0,

is non-anticipative with respect to W. Let Ũ0 be another random distribution and W̃ =

(W̃k)
∞
k=1 another stochastic process and random distributions G̃ = (G̃k)k∈N, such their

joint laws coincide, namely,

L [U0,U,W,G] = L [Ũ0,Ũ ,W̃ ,G̃] or [U0,U,W,G]
d∼ [Ũ0,Ũ ,W̃ ,G̃].

Then W̃ is a collection of real-valued independent Wiener processes, the filtration

F̃t = σ

(
σ(Ũ0,rtŨ ,rtW̃ ,rtG̃)

)
, t ≥ 0,
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is non-anticipative with respect to W̃ , Ũ0 is F̃0-measurable, and

L

[∫
∞

0
[∂tψU +b(U)ψ] dt +

∫
∞

0

∞

∑
k=1

ψGkdWk +ψ(0)U0

]

= L

[∫
∞

0

[
∂tψŨ +b(Ũ)ψ

]
dt +

∫
∞

0

∞

∑
k=1

ψG̃kdW̃k +ψ(0)Ũ0

] (3.1.18)

for any deterministic ψ ∈C∞
c ([0,∞)).

Proof. We first regularise the problem, and then take limits in different stages to obtain

the desired form. Fix the test function ψ in (3.1.18), and consider the convolution kernels

[U]t,m = θ
t
m(·−m)∗U, [Ũ]t,m = θ

t
m(·−m)∗ Ũ m > 0.

In addition, we define U as U0 for t < 0 such that

[U]t,m = [U0]m, [Ũ]t,m = [Ũ0]m for t ≤ 0.

Furthermore, we note that [U]t,m is adapted to

Ft = σ

(
σ(rtU,rtW,rtGk)

)
, t ≥ 0,

similarly [Ũ]t,m is adapted to

F̃t = σ

(
σ(rtŨ ,rtW̃ ,rtG̃k)

)
, t ≥ 0.

Finally, we replace Gk by a convolution kernel Gk,m such that

Gk,ρ = θ
t
m(·−m)∗Gk

that is, a regularisation in time.

Let ∆J =
T
J and set

t0 = 0, t j+1 = t j +∆ j, j = 0, . . . ,J−1

Step 1:
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We begin by re-writing the stochastic term of (3.1.18) using the Reimann-Stieltjes

integration form

L

[∫
∞

0
[∂tψ[U ]t,m +b([U ]t,m)ψ] dt

+
K

∑
k=1

(
J−1

∑
j=1

ψ(t j)Gk,m(t j)(Wk(t j+1)−Wk(t j))

)
+ψ(0)U0

]
(3.1.19)

= L

[∫
∞

0

[
∂tψ[Ũ ]t,m +b([Ũ ]t,m)ψ

]
dt

+
K

∑
k=1

(
J−1

∑
j=1

ψ(t j)G̃k,m(t j)(W̃k(t j+1)−W̃k(t j))

)
+ψ(0)U0

]

Here, we observe that the terms in (3.1.19) are continuous on

Cloc([0,∞)×Cloc([0,∞),Rk)×Cloc([0,∞),Rk).

Since the Riemann sums in the stochastic integral converge in probability to their limits,

we let J → ∞ so that

L

[∫
∞

0
[∂tψ[U ]t,m +b([U ]t,m)ψ] dt +

K

∑
k=1

∫
∞

0
ψGk,mdWk +ψ(0)U0

]

= L

[∫
∞

0

[
∂tψ[Ũ ]t,m +b([Ũ ]t,m)ψ

]
dt +

K

∑
k=1

∫
∞

0
ψG̃k,mdWk +ψ(0)U0

]
.

(3.1.20)

Step 2:

At this stage we want m → 0 in (3.1.20). Since U ∈ L1([0,∞))P-a.s we have

[U]t,m → U in L1
loc([0,∞))asm → 0 P-a.s.

consequently, the following holds

[Ũ]t,m → Ũ in L1
loc([0,∞))asm → 0 P-a.s.,

Finally, we have

Gk,m → Gk in L1
loc([0,∞))

48



Chapter 3.

by definition of convolution kernels. Since b(·) is a bounded and continuous function,

then in view of lemma 2.1.14 we take the limit m → 0 in (3.1.20) to obtain

L

[∫
∞

0
[∂tψU +b(U)ψ] dt +

K

∑
k=1

∫
∞

0
ψGkdWk +ψ(0)U0

]

= L

[∫
∞

0

[
∂tψŨ +b(Ũ)ψ

]
dt +

K

∑
k=1

∫
∞

0
ψG̃kdWk +ψ(0)U0

]
.

(3.1.21)

Step 3:

Finally, in view of lemma 2.1.14 we take the limit k → ∞ in (3.1.21) to obtain (3.1.18)

as required.

3.1.2 Stochastic Navier-Stokes equations

In this section we prove the existence of martingale solutions to the system of incom-

pressible Navier-Stokes. Let T3 be a three-dimensional torus, let T > 0, and set Q =

(0,T )×T3. The incompressible stochastic Navier-Stokes system with viscosity ε > 0

governing the time evolution of velocity field u and pressure p of fluids reads

du = ε∆u dt −div(u⊗u) dt −∇p dt +φ dW in Q,

div u = 0 in Q.

(3.1.22)

Here the system models the conservation of momentum and and balance of mass for fluid

flows with high Reynolds number (1/ε). In (3.1.22), we assume that the density is con-

stant and set it to ρ = 1. Finally, the driving stochastic force W is the cylindrical Wiener

process defined on a probability space (Ω,F ,P) and the noise coefficient term φ is a

Hilbert-Schmidt operator, see Section 3.1.1.

Our solution will be weak in the analytical sense (derivatives are understood as distribu-

tions) and stochastic sense (underlying probability space is not a priori given but becomes

an integral part of the solution). We consider martingale solutions beginning with an ini-

tial law defined on

L2
div(T3) :=C∞

div(T3)
L2(T3)

.
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Accordingly, the weak formulation of (3.1.22) yields the desired format that is neces-

sary for weak solutions in the analytical sense. Testing (3.1.22) by ϕ ∈ C ∞
div(T

3,Rd) we

obtain

〈∫ t

0
du,ϕ

〉
T3

=

〈∫ t

0
ε∆uds,ϕ

〉
T3

+

〈∫ t

0
−div(u⊗u)ds,ϕ

〉
T3

+

〈∫ t

0
−∇pds,ϕ

〉
T3

+

〈∫ t

0
φ dWs,ϕ

〉
T3
, (3.1.23)

where ⟨., .⟩T3 denotes the L2(T3) inner product. Using Green’s identity we obtain

〈∫ t

0
ε∆uds,ϕ

〉
T3

= ε

∫ t

0

∫
T3

∆u ·ϕ dxds

= −ε

∫ t

0

∫
T3

∇u : ∇ϕ dxds.

Now on the account of div(pϕ) = pdivϕ +∇p ·ϕ = ∇p ·ϕ and Divergence Theorem,

one obtains 〈∫ t

0
−∇p ds,ϕ

〉
T3

=−
∫
T3

∫ t

0
div(pϕ) dxds = 0,

therefore, the pressure term vanishes. Using similar arguments we simplify the convective

term to 〈∫ t

0
−div(u⊗u)ds,ϕ

〉
T3

=
∫ t

0

∫
T3

u⊗u : ∇ϕ dxds.

Finally, combining these terms yields the weak formulation of (3.1.22) and it reads

∫
T3

u ·ϕ dx =
∫
T3

u0 ·ϕ dx+
∫ t

0

∫
T3

u⊗u : ∇ϕ dxds

+ε

∫ t

0

∫
T3

∇u : ∇ϕ dxds+
∫
T3

∫ t

0
φ dWs dx ·ϕ, (3.1.24)

for all ϕ ∈ C ∞
div(T

3). In the following we give a rigorous definition of a solution to

(3.1.22).

Definition 3.1.1 (Solution). Let Λ0 be a Borel probability measure on L2
div(T

3). Then

((Ω,F ,(Ft)t≥0,P),u,W )

is a weak martingale solution to (3.1.22) with initial datum Λ0 provided that:
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(a) ((Ω,F ,(Ft)t≥0,P) is a stochastic basis with a complete right-continuous filtration,

(b) W is a (Ft)t≥0-cylindrical Wiener process,

(c) The velocity field u is Ft-adapted and satisfies P-a.s

u ∈Cloc([0,∞),W−2,2
div (T3))∩Cw,loc([0,∞);L2

div(T
3))∩L2

loc(0,∞;W 1,2
div (T

3))

(d) Λ0 = P◦u(0)−1 ( that is P(u ∈ B) = Λ0(B) for all B ∈ B(L2
div(T

3))),

(e) For all ϕ ∈C∞
div(T

3) and all t ∈ [0,T ] we have

∫
T3

u ·ϕ dx =
∫
T3

u0 ·ϕ dx+
∫ t

0

∫
T3

u⊗u : ∇ϕ dxds

−ε

∫ t

0

∫
T3

∇u : ∇ϕ dxds+
∫
T3

∫ t

0
φ dWs ·ϕ dx,

P-a.s.

(f) The following energy inequality holds true:

Et + ε

∫ t

s

∫
T3
|∇u|2 dxdt ≤ Es +

1
2

∫ t

s
∥φ∥2

L2(U ,L2(T3))dt +
∫ t

s

∫
T3

u ·φ dx dW,

(3.1.25)

P-a.s for a.a s ≥ 0 (including s = 0) and all t ≥ s, where Et =
1
2
∫
T3|u|2 dx.

Definition 3.1.1 is standard in the theory of stochastic Navier-Stokes equations and can be

found in a similar form, for instance in [56, 54]. The energy inequality in (f) is reminis-

cent of the recent results for compressible fluids in [15]. We note, the energy inequality

(f) must be included in the definition as it is an open problem if weak solutions satisfy

the energy inequality. The formal computation of the energy inequality is a simple appli-

cation of Itô formula to the functional t 7→ 1
2
∫
T3|u|2 dx as follows.

We apply Itô’s formula to the functional

f (u) =
1
2

∫
T3
|u|2 dx,
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with the following observations

∂u f (u) = ⟨u, ·⟩T3, ∂
2
u f (u) = ⟨·, ·⟩T3,

d f (u) = ∂u f (u) ·du+
1
2

∂
2
u ·d⟨⟨u⟩⟩t .

On the account of the balance of momentum equation in (3.1.22) we deduce

d
∫
T3

1
2
|u|2 dx =ε

∫
T3

u ·∆udxdt −
∫
T3

u ·div(u⊗u)dxdt −
∫
T3

∇p ·udxdt

1
2 ∑

k≥1

∫
T3
|φ |2 dxdt +

∫
T3

u ·φ dxdWs.

Consequently, using Green’s identity and the divergence free property we observe that

the convective and pressure terms vanish yielding

d
∫
T3

1
2
|u|2 dx =ε

∫
T3
|∇u|2 dxdt +

1
2 ∑

k≥1

∫
T3
|φ |2 dxdt +

∫
T3

u ·φ dxdWs.

Finally, integrating in time we deduce the energy inequality

∫
T3

1
2
|u|2 dx+ ε

∫ t

0

∫
T3
|∇u|2 dxdt ≤

∫
T3

1
2
|u0|2 dx+

1
2 ∑

k≥1

∫ t

0

∫
T3
|φk|2 dxdt

+
∫
T3

∫ t

0
u ·φ dxdWs.

Accordingly, we proceed to state the existence of martingale solutions to the system

(3.1.22).

Theorem 3.1.3 (Existence). Assume that (3.1.2) holds and we have

∫
L2

div(T3)
∥v∥β

L2(T3)
dΛ0(v)< ∞, (3.1.26)

for some β > 2. Then there is a weak martingale solution to (3.1.22) in the sense of

Definition 3.1.1.

In order to prove Theorem 3.1.3, we adopt key ideas outlined by Flandoli and Gatarek

[56]. However, in contrast to results of [56] we use an elementary approach from [27] to

identify the stochastic integral after the limit procedure. The proof follows a presentation
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by [17].

Approximated system

The main idea is comprised of seeking a solution by separating space and time via

Galerkin approximation. We approximate the space W l,2
div(T

3) by a finite dimensional

subspace. Then, the approximated equations are solved by standard arguments from the

theory of stochastic differential equations. We obtain a sequence of approximated solu-

tions uN ,N ∈ N. Then we show that uN converges in some sense to a limit function u, a

solution to the weak formulation.

Theorem 3.1.4 (The Approximated System [77]). Let l ∈N and T3 be a three-dimensional

periodic domain. Then, there is a sequence (λk) ⊂ R and a sequence of functions

(wk)⊂W l,2
div(T

3) such that

1. wk is an eigenvector to the eigenvalue λk of the Stokes operator in the sense that:

⟨wk,ϕ⟩W l,2 = λk

∫
T3

wkϕ dx for all ϕ ∈W l,2
div(T

3),

2. ∫
T3

wkwm dx = δkm for all k,m ∈ N,

3.

1 ≤ λ1 ≤ λ2 . . . and λk → ∞,

4. 〈
wk

λk
,
wm

λm

〉
W l,2

= δkm for all k,m ∈ N,

5.

(wk) is a basis of W l,2
div(T

3).

We choose l > 1+d/2 such that W l,2
div(T

3) ↪→W 1,∞(T3) by Sobolev embedding Theorem

2.1.6. Letting u0 to be an F0-measurable random variable with values in L2
div(T3) subject

to the law Λ0 (the existence of u0 follows from Skorokhod theorem 2.1.20), we seek an

approximated solution uN of the form
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uN =
N

∑
k=1

cN
k wk = CN ·ωN , ωN = (w1, . . . ,wk), (3.1.27)

where CN = cN
k : Ω× (0,T ) → RN . Thus for k = 1, . . . ,N we seek a solution for the

system

∫
T3

duN ·wk dx = −ε

∫
T3

∇uN : ∇wk dxdt +
∫
T3

uN ⊗uN : ∇wk dxdt

+
∫
T3

φ dW N
s ·wk dx,

uN(0) = PNu0, (3.1.28)

where PN is the orthogonal projection PN : L2
div(T3) → HN := span{w1, . . . ,wk}, that

is,

PNv =
N

∑
k=1

⟨v,wk⟩T3wk,

and (3.1.28) holds P-a.s for all t ∈ [0,T ]. Furthermore, we rewrite the Wiener process as

follows

W N(s) =
N

∑
k=1

ekβk(s) = EN ·β N(s), EN = (e1, . . . ,eN).

Now we re-formulate (3.1.28) using (3.1.27), orthogonality property in Theorem 3.1.4 to

deduce

∫
T3

duN

dt
·wk dx = −ε

∫
T3

∇uN : ∇wk dx+
∫
T3

uN ⊗uN : ∇wk dx

+
∫
T3

φ
dW N

s
dt

·wk dx,

N

∑
k=1

dcN
k

dt

∫
T3

wk ·wk dx = −ε

N

∑
k=1

cN
k

∫
T3

∇wk : ∇wk dx+
N

∑
k,l=l

cN
k cN

l

∫
T3

wk ⊗wl : ∇wk dx

+
∫
T3

φ
dW N

s
dt

·wk dx,

N

∑
k=1

dcN
k

dt
= −ε

N

∑
k=1

cN
k

∫
T3

∇wk : ∇wk dx+
N

∑
k,l=1

cN
k cN

l

∫
T3

wk ⊗wl : ∇wk dx

+
∫
T3

φ
dW N

s
dt

·wk dx.

Solving (3.1.28) is equivalent to solving the system

dCN = [µ(CN)] dt +Σ dβ N
t ,

CN(0) = C0,

(3.1.29)
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where

µ(CN) =

(
−
∫
T3

CN · ε∇ωN : ∇wk dx+
∫
T3
(CN ·ωN)⊗ (CN ·ωN) : ∇wk dx

)N

k=1
,

Σ =

(∫
T3

φl ·wkdx
)N

k,l=1
,

C0 =
(
⟨u0,wk⟩L2(T3)

)N

k=1
.

Finally, noting that (3.1.29) is indeed a system of stochastic differential equations (SDEs)

we show that it has a unique solution by checking that the assumptions of Theorem 2.1.17

are satisfied. We observe

(µ(CN)−µ(C̃N)) · (CN − C̃N)

=−ε

N

∑
k=1

∫
T3
(cN

k ∇wk − c̃N
k ∇wk) : ∇wk(cN

k − c̃N
k ) dx

+
N

∑
k,l=1

∫
T3
(cN

k wk ⊗ cN
l wk − c̃N

k wk ⊗ c̃N
k wk) : ∇wk(cN

k − c̃N
k ) dx.

By using (3.1.27), the right term of the system simplifies to

−ε

∫
T3
|∇uN −∇ũN |2 dx+

∫
T3
(uN ⊗uN − ũN ⊗ ũN) : (∇uN −∇ũN) dx

≤
∫
T3
(uN ⊗uN − ũN ⊗ ũN) : (∇uN −∇ũN) dx

≤C(R,N)|CN − C̃N |2.

In the last line above, we assume that |CN |≤ R and |C̃N |≤ R for some arbitrary R, and

use the boundedness of |wk|≤ c and |∇wk|≤ c to deduce the weak monotonicity property

(µ(CN)−µ(C̃N)) · (CN − C̃N)≤C(R,N)|CN − C̃N |2.

The Lipschitz continuity property of Σ follows from (3.1.2). In particular, for fixed N ∈N

our Σ does not depend on the solution, it is simply a constant matrix. The weak coercivity

assumption follows from observing that the term
∫
T3 uN ⊗uN : ∇uN dx = 0 so that

µ(t,CN) ·CN =−ε

∫
T3
|∇uN |2 dx ≤ 0.
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Thus, the system (3.1.29) satisfies the properties of Theorem 2.1.17. Therefore, (3.1.29)

can be solved using standard SDEs theory. Applying the theory of SDEs to (3.1.29) we

obtain a unique strong solution CN with P-a.s. continuous trajectories. To pass to the

limit N → ∞ we derive the following estimates.

Theorem 3.1.5 (A Priori Estimate). Assume (3.1.2) holds and

∫
L2

div(T3)
∥v∥2

L2(T3)dΛ0(v)< ∞.

Then the following holds uniformly in N,

E

[
sup

t∈(0,T )

∫
T3
|uN |2dx+ ε

∫
Q
|∇uN |2dxdt

]
≤ c
(

1+
∫

L2
div(T3)

∥v∥2
L2(T3)dΛ0(v)

)
. (3.1.30)

Proof. Let C be the Itô process given by

dC = µ(C)dt +ΣdWt ,

with the abbreviations

µ(C) =−ε

∫
T3

C ·∇ωN : ∇wk dx+
∫
T3

uN ⊗uN : ∇wk dx,

Σ =
N

∑
k=1

∫
T3

φk ·wk dx.

Define a function g(C) ∈C2([0,∞)×R) such that g(C) is still an Itô process. We set the

function g(C) := 1
2 |C|2 so that dg(C) = d1

2 |C|2. Then applying Ito’s formula, one obtains

d
1
2
|C|2 = CT dC+

1
2

D2g(C)d⟨⟨C⟩⟩t

= CT
µ(C)dt +CT

ΣdWt +
1
2

D2g(C)d⟨⟨C⟩⟩t . (3.1.31)

Integrating (3.1.31) with respect to time

1
2
|C(t)|2= 1

2
|C(0)|2+

∫ t

0
CT

µ(C)dt +
∫ t

0
CT

ΣdWt +
1
2

∫ t

0
D2g(C)d⟨⟨C⟩⟩t . (3.1.32)

Using the approximation

uN =
N

∑
k=1

ck
N(t)wk,
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and property (2) from Theorem 3.1.4 we observe that

|CN(t)|2 =
N

∑
k=1

|cN
k (t)|

2

=
N

∑
k,l=1

cN
k (t)c

N
l (t)⟨wk,wl⟩T3

=

〈
N

∑
k=1

cN
k (t)wk,

N

∑
l=1

cN
l (t)wk

〉
T3

=
∫
T3

∣∣∣∣∣ N

∑
k=1

cN
k (t)wk

∣∣∣∣∣
2

dx

= ∥uN(t)∥2
L2(T3).

Finally, we note the following

duN =
N

∑
k=1

dck
N(t)wk,

and for D2g(C) = I ∈ RN×N

∫ t

0
D2g(C)d⟨⟨C⟩⟩t =

∫ t

0

N

∑
k=1

(∫
T3

φk,wk

)2

ds,

Since
∫
T3 uN ⊗uN : ∇uNdx = 0 we deduce

1
2
∥uN(t)∥2

L2(T3) =
1
2
∥PNu0∥2

L2(T3)−ε

∫
T3

∫ t

0
|∇uN |2 dx dt +

∫
T3

∫ t

0
uN ·φ dW N

s dx

+
1
2

∫ t

0

N

∑
k=1

(∫
T3

φkwk dx
)2

ds. (3.1.33)

The estimate follows from taking the supremum in time and building expectations i.e.,

E

[
sup

t∈(0,T )

∫
T3
|uN |2dx+ ε

∫
Q
|∇uN |2dxdt

]

≤ c

(
E
[
∥u0∥2

L2(0)

]
+E

[
sup

t∈(0,T )
Y1(t)

]
+E [Y2(T )]

)
,

where

Y1(t) :=
∫
T3

∫ t

0
uN ·φ dW N

s dx,
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Y2(T ) : =
∫ t

0

N

∑
l=1

∥φl∥2
L2(T3) ds.

In view of (3.1.2), we see that

E[Y2(t)] = E

[
N

∑
l=1

∫ t

0

∫
T3
|φl|2 dxds

]

≤ E

[
∞

∑
l=1

∫ t

0

∫
T3
|φl|2 dxds

]
by truncation

= E
[∫ t

0
∥φ∥2

L2(U ,L2(T3)) ds
]
< ∞.

Furthermore, as consequence of Burkholder-Davis-Gundy inequality Lemma 2.1.13 and

(3.1.2) we deduce the estimate

E

[
sup

t∈(0,T )
|Y1(t)|

]
= E

[
sup

t∈(0,T )

∣∣∣∣∫ t

0

∫
T3

uN ·φ dx dW N
s

∣∣∣∣
]

= E

[
sup

t∈(0,T )

∣∣∣∣∣ N

∑
k=1

∫ t

0

∫
T3

uN ·φk dx dβk(s)

∣∣∣∣∣
]

≤ c E

[∫ T

0

N

∑
k=1

(∫
T3

uN ·φk dx
)2

dt

]1/2

≤ c E

[∫ T

0

(
N

∑
k=1

∫
T3
|uN |2 dx

∫
T3
|φk|2 dx

)
dt

]1/2

≤ cE
[∫ T

0

∫
T3
|uN |2dx dt

]1/2

≤ δE

[
sup

t∈(0,T )

∫
T3
|uN |2 dx

]
+ c(δ ,T ).

Here, we used (3.1.2), Hölder’s inequality, and Young’s inequality. Now combining the

bounds above we infer

E

[
sup

t∈(0,T )

∫
T3
|uN |2dx+ ε

∫
Q
|∇uN |2dxdt

]
≤ c E

[∫
T3
|u0|2 dx+

∫ t

0
∥φ∥2

L2(U ,L2(T3)) ds
]

+δE

[
sup

t∈(0,T )

∫
T3
|uN |2 dx

]
+ c(δ ,T ).

The claim follows from choosing a sufficiently small δ and using the initial law Λ0 =

P◦u−1
0 .
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In general for some β > 2, we have the following:

Corollary 3.1.6. Let the assumptions of Theorem 3.1.30 be satisfied and in addition

∫
L2

div(T3)
∥v∥β

L2(T3)
dΛ0(v)< ∞.

Then, the following holds

E

[
sup

t∈(0,T )

∫
T3
|uN |2dx+ ε

∫
Q
|∇uN |2dxdt

]β/2

≤ cβ

(
1+E

[∫
L2

div(T3)
∥v∥2

L2(T3)dΛ0(v)
]β/2

)
.

A similar proof to one in Theorem 3.1.30 yields the estimate, but for such case one should

use β/2 power to (3.1.33) before taking expectations.

Remark 3.1.1. Some remarks are in order, the formulation (3.1.33) is the energy equality

in the Galerkin approximation.

Compactness

To gain compactness we need to pass to the limit in the nonlinear convective term. Ac-

cordingly, in view of (3.1.28) the balance of momentum reads

∫
uN(t) ·ϕdx =

∫
T3

uN(t) ·P l
Nϕ dx

=
∫
T3

u0 ·P l
Nϕ +

∫ t

0

∫
T3

HN : ∇P l
Nϕ dxds

+
∫ t

0

∫
T3

φ dW N
s dx,

HN = −ε∇uN +uN ⊗uN ,

for all ϕ ∈ C∞
div(T

3), where P l
N is the projection into the space XN with respect to

W l,2
div(T

3) inner product. Given the a ‘priori estimates’ in Theorem 3.1.30 and Corollary

3.1.6 for β > 2, we deduce that

HN ∈ L1(Ω,Lp0(0,T ;L1(T3))), (3.1.34)

for some p0 > 1 uniformly in N (provided β > 2), a claim we make precise in Section

3.1.3.
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We derive bounds of the system by computing the deterministic and stochastic part

bounds separately. For deterministic part we consider the functional

HN(t,ϕ) :=
∫ t

0

∫
T3

HN : ∇P l
Nϕ dxds, ϕ ∈ C ∞

div(T3).

By (3.1.34) and the Sobolev embedding for W l̃,p0(T3) ↪→W l,2
0 (T3) for l̃ ≥ l +d( 1

p0
− 1

2)

we have the estimate

E
[
∥HN∥W 1,p0((0,T );W−l,2

div (T3))

]
≤C,

where C is a constant. This follows from observing that HN ∈ Lp0(0,T ;W−l,2
div (T3)) and

∂ tHN ∈ Lp0(0,T ;W−l,2
div (T3)) uniformly in N, then H ∈W 1,p0(0,T ;W−l,2

div (T3)).

Proof. We have that,

∂ tHN(t,ϕ) =
∫
T3

HN : ∇P l
Nϕ dx ϕ ∈W l,2

div(T
3).

Then applying Holder’s inequality yields,

∥∂ tH ∥W−l,2
div (T3)

= sup
∥ϕ∥

Wl,2
div

=1

∫
T3

HN : ∇P l
Nϕ dx

≤ sup
∥ϕ∥

Wl,2
div

=1
∥HN∥1∥∇P l

Nϕ∥∞,

Now using the Sobolev inequality with respect to the embedding W l,2 ↪→W 1,∞ and noting

that P l
N is continuous in W l,2(T3) we infer

∥∂ tH ∥
W

−l,p0
div (T3)

≤ sup
∥ϕ∥

Wl,2
div

=1
∥HN∥1∥P l

Nϕ∥W 1,∞

≤ c sup
∥ϕ∥

Wl,2
div

=1
∥HN∥1∥P l

Nϕ∥W l,2

≤ c sup
∥ϕ∥

Wl,2
div

=1
∥HN∥1∥ϕ∥W l,2

= c sup
∥ϕ∥

Wl,2
div

=1
∥HN∥1.
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Integrating in time and taking expectations yields

E
[∫ T

0
∥∂tH ∥p0

W−l,2
div

dt
]

≤ E
[∫ T

0
∥HN∥p0

1 dt
]
≤ C,

as a consequence of (3.1.34). Finally, the claim follows from applying Poincaré’s in-

equality 2.1.7.

To establish bounds associated with the stochastic part we apply Lemma 2.1.16, a result

derived in [56] to estimate the noise term for all α ∈ (0,1). Using Lemma 2.1.16 and

(3.1.2), and for any α < 1/2 and p = 2 we deduce the estimate

E

[∥∥∥∥∫ .

0
φ dWs

∥∥∥∥2

W α,2(0,T ;L2(T3))

dt

]
≤ cE

[∫ .

0
∥φ∥2

L2(U ,L2(T3)) dt
]

≤ c(p,φ ,T ).

Finally, combining the stochastic and deterministic bounds yields

E
[
∥uN∥W α,p0(0,T ;W

−l,p0
div (T3))

]
≤C. (3.1.35)

Now noting that

W α,p0((0,T );W−l,p0
div (T3))∩L2(0,T ;W 1,2

div (T
3))∩L∞(0,T ;L2

div(T
3))

↪→↪→ Lr(0,T ;Lr
div(T

3)),
(3.1.36)

compactly for all r < 10/3. The compactness of uN follows from applying results estab-

lished in [56] as stated in following theorem.

Theorem 3.1.7. Let (X ,Y,Z) be a triple of separable and reflexive Banach spaces such

that the embedding X ↪→ Y is compact and the embedding Y ↪→ Z is continuous. Then

the embedding

Lp(0,T ;X)∩W α,p(0,T ;Z) ↪→ Lp(0,T ;Y ),

is compact for 1 < p < ∞ and 0 < α < 1.
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Let X :=W 1,2
div (T

3)),Y := L2
div(T3)) and Z :=W−l,2

div (T3)). We are interested in compact-

ness on the space Lr(0,T ;Lr
divT

3). This can be shown through interpolation arguments.

That is, let YαP0 := (3.1.36) and consider the space

Xα p0 :=W α,p0((0,T );W−l,p0
div (T3))∩Lp0(0,T ;W 1,2

div (T
3)) ↪→↪→ Lp0(0,T ;L2

div(T
3)).

Now, suppose (um)m∈N ⊂ Yα p0 is a bounded sequence. Then (um)m∈N is a bounded

sequence in Xα p0 . Therefore, there exists a sub-sequence umk such that

umk → u in Lp0(0,T ;L2
div(T3)).

In the periodic domain T3 ⊂ R3, we have

L2(0,T ;W 1,2(T3))∩L∞(0,T ;L2
div(T3)) ↪→ L

10
3 (0,T ;L

10
3

div(T
3))≈ L

10
3 (Q).

For p0 ≤ 2 we have

umk → u in Lp0(0,T ;Lp0(T3))≈ Lp0(Q).

In view of Lemma 2.1.1 we see that

∥umk −u∥Lr(Q) ≤ ∥umk −u∥θ

Lp0(Q)︸ ︷︷ ︸
→0

∥umk −u∥1−θ

L
10
3 (Q)

≤ 0.

Given the compact embedding above, we consider the path space

V := Lr(0,T ;Lr(T3))⊗C([0,T ],U0)⊗L2
div(T3),

with the following laws:
µuN is the law of uN on Lr(0,T ;Lr(T3)),

µW is the law of W on C([0,T ],U0), where U0 is defined in (3.1.4),

µN is the joint law of uN ,W,u0 on V.
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Considering a ball BR in the space

W α,p0(0,T ;W−l,2
div (T3))∩L2(0,T ;W 1,2

0,div(T
3))∩L∞(0,T ;L2

div(T
3)),

we seek its complement BC
R such that applying Theorem 3.1.30, (3.1.35), and Markov’s

inequality yields

µuN (B
C
R) = P

(
∥uN∥W α,p0(W−l,2

div )
+∥uN∥L2(W 1,2)+∥uN∥L∞(L2)≥ R

)
≤ E

R

[
∥uN∥W α,p0(W−l,2

div )
+∥uN∥L2(W 1,2)+∥uN∥L∞(L2)

]
≤ c

R
.

Therefore, for any γ > 0 there is R = R(γ) such that

µuN (BR)≥ 1− γ

3
,

that is, the family of probability laws µuN is tight by Definition 2.1.29. The law of µW

is a Radon measure on the Polish space C([0,T ],U0), and therefore it is tight. This

implies that there exists a compact set Cγ ⊂ C([0,T ],U0) so that µW (Cγ) ≥ 1 − γ/3.

Furthermore, arguing similarly we note there exists a compact subset of L2
div(T3) such

that its measure Λ0 is smaller than 1− γ/3. Consequently, there exists a compact subset

Vγ ⊂V such that µN(Vγ)≥ 1−γ . Thus, (µN)N∈N is tight by Definition 2.1.29 in the same

space. On the account of Lemma 2.1.19, (µN)N∈N is relatively weakly compact, and as

a result we have a weakly convergent sub-sequence with limit µ . Applying Skorokhod’s

representation theorem 2.1.20 we infer that there exists a probability space (Ω̃,F̃ , P̃), a

sequence (ũN ,W̃ N , ũ0,N) and (ũ,W̃ , ũ0) on (Ω̃,F̃ , P̃) both with values in V such that

• The laws of (ũN ,W̃ N , ũ0,N) and (ũ,W̃ , ũ0) under P̃ coincide with µN and µ respec-

tively.

• We have the convergences
ũN → ũ in Lr(0,T ;Lr(T3)),

W̃ N → W̃ in C([0,T ],U0),

ũ0,N → ũ0 in L2(T3),

(3.1.37)
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P̃-a.s.

Note, before passing to the limit in the new probability space, it is essential to establish

accurate measurability of the new random variables. For this, we adapt a filtration to

the new probability space. Let zt be a restriction operator to the interval [0, t] acting

on various path spaces. For instance, suppose A is a path space of Lr(0,T ;Lr(T3)) or

C([0,T ],U0) and t ∈ [0,T ], we define

zt : A → A|[0,t], f → f |[0,t], (3.1.38)

where zt is a continuous mapping. Now let (F̃ N
t )t≥0 and (F̃t)t≥0 denote the P̃-augmented

canonical filtration of the process (ũN ,W̃ N) and (ũ,W̃ ) respectively, i.e.

F̃t = σ
(
σ(zt ũ,ztW̃ )∪{N ∈ F̃ ; P̃(N ) = 0}

)
, t ∈ [0,T ].

F̃ N
t = σ

(
σ(zt ũN ,ztW̃ N)∪{N ∈ F̃ ; P̃(N ) = 0}

)
, t ∈ [0,T ].

Here, σ is the smallest σ -algebra of the space. Using (3.1.38) in the new probability

space ensures that the stochastic processes are adapted so that we can define stochastic

integrals.

The system on the new probability space

In view of Theorem 2.1.20, distribution laws of new probability space coincide with those

of old probability space. Consequently, noting that the approximated system holds on the

old probability space, it follows that the same is true on the new probability space. To

show this, we use the elementary method covered in [27] which has been generalised for

various purposes. The underlying aim is to identify corresponding martingale quadratic

variation and cross variation.

To begin with, we observe that W̃ N and W have the same law. As a result, we have a

collection of mutually independent real-valued (F̃ N
t )t≥0- Wiener processes (β̃ N

k )k=1,...,N

such that W̃ N = ∑k=1 β̃ N
k ek. To be precise, we have a collection of mutually independent

real-valued (F̃t)t≥0- Wiener processes (β̃k)k=1,...,N so that W̃ = ∑k=1 β̃kek. We consider

continuous functionals to compute quadratic and cross variations. The idea lies in fol-

lowing observation;
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Lemma 3.1.8. Let (Ω,F ,P) be a probability space and V a Polish space with Borelian

σ - algebra B(V ). Let X ,Y be two random variables on (Ω,F ,P) with values in V such

that

X : (Ω,F )→ (V,B(V )) and Y : (Ω,F )→ (V,B(V ))

are measurable. Let f : V → S be measurable function with S a Polish space, and we

claim that if X and Y have the same distribution laws then

X ∼d Y =⇒ f (X)∼d f (Y ).

Proof. Note that X ∼d Y means

P(X ∈ A) = P(Y ∈ A) ∀A ∈ B(V ).

And, P( f (X) ∈ η) = P(X ∈ f−1(η)) for η ∈ B(V ), where f−1 is the pre-image.

= P(Y ∈ f−1(η)) since f−1(η) ∈ B(V )

= P( f (Y ) ∈ η).

Therefore, this implies f (X)∼d f (Y ) as required.

We proceed to define for all t ∈ [0, t] and ϕ ∈C∞
c,div(T3) the functionals

Φ(v,v0)t =
∫
T3

v(t) ·ϕ dx−
∫
T3

v0 ·ϕ dx+
∫
T3

∫ t

0
v⊗v : ∇P l

Nϕ dxds︸ ︷︷ ︸
I(v)

+ ε

∫
T3

∫ t

0
∇v : ∇P l

Nϕ dxds,

Ψt =
N

∑
k=1

∫ t

0

(∫
T3

φk ·P l
Nϕ dx

)2

ds,

(Ψk)t =
∫ t

0

∫
T3

φk ·P l
Nϕ dxds.

Remark 3.1.2. The functionals

(ũN , ũ0)→ Φ(ũN , ũ0)t , Ψt , (Ψk)t ,
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are measurable on the the subspace of pathspace where the joint law of (uN ,u0) is sup-

ported.

We denote by Φ(uN ,u0)s,t the increment Φ(uN ,u0)t −Φ(uN ,u0)s and similarly for (Ψ)s,t

and (Ψk)s,t . Completeness of proof follows from showing that the process Φ(ũN) is an

F̃ N
t -martingale such that its corresponding quadratic and cross variations satisfy

⟨⟨Φ(ũN , ũ0)⟩⟩= Ψ, ⟨⟨Φ(ũN , ũ0), β̃k⟩⟩= Ψk, (3.1.39)

respectively. In particular, in view of (3.1.39) we see that

〈〈
Φ(ũN , ũ0)−

∫ .

0

∫
T3

φ dW̃ N ·P l
Nϕ dx

〉〉
(3.1.40)

= ⟨⟨Φ(ũN , ũ0)⟩⟩

+

〈〈∫ .

0

∫
T3

φ ·P l
Nϕ dxdW̃ N

〉〉
−2

N

∑
k=1

〈〈
Φ(ũN , ũ0),

∫ .

0

∫
T3

φ ·P l
Nϕ dxdβ̃k

〉〉
= Ψ+Ψ

−2
N

∑
k=1

∫ .

0

∫
T3

φ ·P l
Nϕ dx d⟨⟨Φ(ũN , ũ0), β̃k⟩⟩s

= 0, (3.1.41)

which implies the desired equation on the new probability space. Next we proceed to

verify (3.1.39). On the account of uniform estimates above (3.1.30) the mapping

(ũN , ũ0) 7→ Φ(ũN , ũ0),

is well defined and measurable on the subspace of pathspace where the joint law (ũN , ũ0)

is supported. Accordingly, we show continuity for less obvious terms I(v) and note that

other terms can be handled similarly. For the convective term, we assume that vN → v in

Lr(0,T ;Lr(T3)) and Pl
N is continuous on W l,2 with norm ∥Pl

Nϕ∥≤ 1 so that

|I(vN)− I(v)|=
∣∣∣∣∫T3

∫ t

0
vN ⊗vN : ∇P l

Nϕ dxds−
∫
T3

∫ t

0
v⊗v : ∇P l

Nϕ dxds
∣∣∣∣

≤
∫ t

0

∫
T3

∣∣∣∣(vN ⊗vN −v⊗v)︸ ︷︷ ︸
a→0

: ∇P l
Nϕ

∣∣∣∣dxds.
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This follows from rewriting

∥vN ⊗vN −v⊗v∥L1(Q),

as follows

∥vN ⊗vN −v⊗v∥1 = ∥vN ⊗vN −v⊗vN +v⊗vN −v⊗v∥L1(Q)

= ∥(vN −v)⊗vN −v⊗ (v−vN)∥L1(Q)

≤ ∥vN −v∥2∥vN∥2+∥v∥2∥v−vN∥2

→ 0, by assumption.

Thus, the functionals are well defined Φ(vN) → Φ(v) and the mapping Φ : v → R is

continuous. Consequently, the following random variables have the same law

Φ(uN ,u0)∼d
Φ(ũN , ũ0).

Now we fix times s, t ∈ [0,T ], where s < t and define a continuous function h such that

h : V |[0,s]→ [0,1].

The process

Φ(uN ,u0) =
∫ t

0

∫
T3

φ dW N
s ·P l

Nϕ dx =
N

∑
k=1

∫ t

0

∫
T3

φk ·P l
Nϕ dx dβk,

is a square integrable (Ft)t≥0-martingale. Using Theorem 2.1.9 we deduce that

[Φ(uN ,u0)]
2 −Ψ, Φ(uN ,u0)βk −Ψk,

are (Ft)t≥0-martingales. Next let zs be a restriction of a function to the interval [0,s],

then in view of Lemma 2.1.22 and equality of laws we see that

Ẽ
[

h(zsũN ,zsW̃ N)Φ(ũN , ũ0)s,t

]
= E[h(zsuN ,zsW N)Φ(uN ,u0)s,t

]
= 0,

Ẽ
[

h(zsũN ,zsW̃ N)[Φ(ũN , ũ0)]
2
s,t −(Ψ)s,t

]
=E

[
h(zsuN ,zsW N)[Φ(uN ,u0)]

2
s,t −(Ψ)s,t

]
= 0,
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Ẽ
[

h(zsũN ,zsW̃ N)[Φ(ũN , ũ0)β̃
N
k ]s,t − (Ψk)s,t

]

= E
[

h(zsuN ,zsW N)[Φ(uN ,u0)β
N
k ]s,t − (Ψk)s,t

]
= 0.

Hence (3.1.39) holds and (3.1.41) follows as a consequence. Moreover, on the new prob-

ability space (Ω̃,F̃ , P̃) for (k = 1, . . . ,N) we have the equations

∫
T3

dũN ·wk dx = −
∫
T3

ν∇ũN : ∇wk dxdt +
∫
T3

ũN ⊗ ũN : ∇wk dxdt

+
∫
T3

φ dW̃ N
s ·wk dx,

ũN(0) = P l
N ũ0. (3.1.42)

Accordingly, we proceed to passage of the limit in new probability space. In view of

Theorem 3.1.30 and (3.1.37), we have the convergences
ũN ⇀ ũ in L2(Ω̃,F̃ , P̃;L2(0,T ;W 1,2

0,div(T
3))),

ũN ⊗ ũN → ũN ⊗ ũN in Lr/2(Ω̃,F̃ , P̃;Lr/2(Q)),

W̃ N → W̃ inC([0,T ],U0)

(3.1.43)

Furthermore, on the account of Theorem 3.1.30 we note that for u ∈ L∞(0,T ;L2(T3)) it

holds

Ẽ

[
sup

t∈(0,T )

∫
T3
|ũ(t)|2dx

]
< ∞, a.s.

Now we consider θ ∈ L2(Ω̃× (0,T )) and ϕ ∈W 1,2
div (T

3) such that

Ẽ
[∫ T

0

∫
T3

ũ(t) θ(t) ϕ dxdt
]

= lim
N→∞

Ẽ
[∫ T

0

∫
T3

ũN(t) θ(t) ϕ dxdt
]

= lim
N→∞

Ẽ
[∫ T

0

∫
T3

ũN(t) θ(t) P l
Nϕ dxdt

]

= lim
N→∞

Ẽ

[∫ T

0

(∫
T3

P l
N ũ0 θ(t) P l

Nϕ dx−
∫ t

0

∫
T3

ε∇ũNθ(t) : ∇ P l
Nϕ dxds

+
∫ t

0

∫
T3

(ũN ⊗ ũN)θ(t) : ∇ P l
Nϕ dxds+

∫
T3

∫ t

0
φ dW̃ N

s · θ(t) P l
Nϕ dx

)
dt

]
.

Since P l
N is continuous in L2(T3) we infer that P l

Nϕ → ϕ (by truncation). The conver-
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gences of second and third term follow from (3.1.43). For the stochastic limit term, we

have the convergences

W̃ N → W̃ in C([0,T ],U0),

in probability. Therefore, passing to the limit yields

Ẽ
[∫ T

0

∫
T3

ũ(t) θ(t) ϕ dxdt
]
=Ẽ

[∫ T

0

(∫
T3

ũ0 θ(t) ϕ dx

−
∫ t

0

∫
T3

ε∇ũθ(t) : ∇ ϕ dxds

+
∫ t

0

∫
T3

(ũ⊗ ũ)θ(t) : ∇ ϕ dxds

+
∫
T3

∫ t

0
φ dW̃s · θ(t) ϕ dx

)
dt

]
.

Upon taking the difference between left and right hand side of the terms above, factoring

θ(t) and applying fundamental lemma of calculus of variations we obtain

∫
T3

ũ ·ϕ dx =
∫
T3

ũ0 ·ϕ dx−
∫ t

0

∫
T3

ν∇ũ : ∇ϕ dxds+
∫ t

0

∫
T3

ũ⊗ ũ : ∇ϕ dxds

+
∫ t

0

∫
T3

φ ·ϕ dxdW,

P̃-a.s. We conclude discussions on the Navier-Stokes system by showing that the energy

inequality in the sense of (3.1.25) continues to hold in the new probability space. To

begin with, we consider the energy equality in the approximated system of Navier-Stokes

which reads

1
2
∥uN(t)∥2

L2(T3) =
1
2
∥PNu0∥2

L2(T3)−ε

∫ t

0

∫
T3
|∇uN |2 dx ds+

∫ t

0

∫
T3

uN ·φ dxdW N
s

+
1
2

∫ t

0

N

∑
k=1

(∫
T3

φkwk dx
)2

ds. (3.1.44)

Fixing s we re-write the equality (3.1.44) in the form

−
∫

∞

s
∂tϕEN

t dt −ϕ(s)EN
s

= ε

∫
∞

s

∫
T3
|∇uN |2 dx dt +

1
2

∫
∞

s
ϕ∥φ∥L2(U ,L2(T3)) dt +

∫
∞

s
ϕ

∫
T3

uN ·φ dx dW N
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P-a.s. for all ϕ ∈C∞
c ([s,∞); [0,∞)), where EN

t = 1
2
∫
T3|uN(t)|2 dx. Applying convergences

in (3.1.43), Lemma 2.1.14 and Proposition 3.1.2 yields existence of (3.1.25) on the new

probability space (Ω̃,F̃ , P̃).

3.1.3 Dissipative solutions to Stochastic Euler equation

In this section we aim to show that Navier-Stokes system converges to the measure-

valued solutions (dissipative) of the stochastic Euler system in the vanishing viscosity.

The stochastic Euler system read as

 du =−(∇u)udt −∇pdt +φdW in Q,

div u = 0 in Q,
(3.1.45)

Here W is a cylindrical Wiener process as introduced in Sect. 3.1.1. In the following

we give a rigorous definition of a dissipative measure-valued solutions to Euler system

(3.1.45).

Definition 3.1.2 (Solution). Let Λ be a Borel probability measure on L2
div(T

3). Then

((Ω,F ,(Ft),P),u,V ,W )

is called a dissipative (measure-valued) martingale solution to (3.1.45) with the initial

data Λ provided

1. (Ω,F ,(Ft),P) is a stochastic basis with a complete right-continuous filtration,

2. W is an (Ft)-cylindrical Wiener process,

3. the velocity u is (Ft)-adapted and satisfies P-a.s.

u ∈C([0,T ],W−4,2
div (T3))∩L∞(0,T ;L2

div(T
3));

4. V = (νt,x,ν
∞
t,x,λ ) is (Ft)-adapted and V ∈ Y2(Q,R3) P-a.s.

5. Λ = P◦ (v(0))−1.
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6. for all ϕ ∈C∞
div(T

3) and all t ∈ [0,T ] there holds P-a.s.

∫
T3

u(t) ·ϕ dx =
∫
T3

u(0) ·ϕ dx+
∫ t

0

∫
T3
⟨νt,x,ξ ⊗ξ ⟩ : ∇ϕ dxds (3.1.46)

+
∫
(0,t)×T3

⟨ν∞
t,x,ξ ⊗ξ ⟩ : ∇ϕ dλ +

∫
T3

∫ t

0
ϕ ·φ dW dx.

7. The energy inequality holds in the sense that

Et+ ≤ Es− +
1
2

∫ t

s
∥φ∥2

L2(U ,L2(T3)) dσ +
∫ t

s

∫
T3

u ·φ dxdW, (3.1.47)

P-a.s. for all 0 ≤ s < t, where Et =
1
2
∫
T3 ⟨νt,x, |ξ |2⟩dx+ 1

2λt(T3) for t ≥ 0 with

λ = λt ⊗L 1 and E0− = 1
2
∫
T3 |u(0)|2 dx.

Remark 3.1.3. We augment the energy inequality with the following observations. At

first sight, it is not clear why the left- and right-sided limits

Et− = lim
τ↗t

Eτ , Et+ = lim
τ↘t

Eτ

exists in any time-point. To begin with, we only show that

Et ≤ Es− +
1
2

∫ t

s
∥φ∥2

L2(U ,L2(T3)) dt +
∫ t

s

∫
T3

u ·φ dxdW,

P-a.s. for a.a. 0 < s < t, see (3.1.68). Accordingly, this implies that the mapping

t 7→ Et −
1
2

∫ t

s
∥φ∥2

L2(U ,L2(T3)) dσ −
∫ t

s

∫
T3

u ·φ dxdW,

is non-increasing. We note that the left- and right-sided limits exist in all points since the

mapping is also pathwise bounded. In addition,
∫ ·

0∥φ∥L2(U ,L2(T3)) dt and
∫ ·

0
∫
T3 u ·φ dxdW

are continuous such that the left-and right-sided limits also exist for Et . Finally, we obtain

Et+ ≤ Et− , such that there could be energetic sinks but no positive jumps in the energy.

The following theorem is the main result of Section 3.1.3 and it states the existence of

dissipative measure-valued martingale solution to (3.1.45) in the sense of Definition 3.1.2.

Theorem 3.1.9 (Existence). Assuming that (3.1.2) holds and we have
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∫
L2

div(T3)
∥v∥β

L2(T3)
dΛ0(v)< ∞, (3.1.48)

for some β > 2. Then there is a dissipative measure-valued solution to (3.1.45) in the

sense of Definition 3.1.2.

Heuristically, for the proof of Theorem 3.1.9 we approximate (3.1.45) by a sequence of

solutions to (3.1.22) with vanishing viscosity. Consequently, as a by product of our proof

we obtain the following result

Corollary 3.1.10. Let Λ be a given Borel probability measure on L2
div(T

3) such that

∫
L2

div(T3)
∥v∥β

L2
x
dΛ(v)< ∞,

for some β > 2. If ((Ωε ,F ε ,(F ε
t ),Pε),uε ,W ε) is finite energy weak martingale solution

to (3.1.22) in the sense of Definition 3.1.1 with initial law Λ, then there is a subsequence

such that

uε → u in law on Cw,loc([0,∞);L2
div(T

3))

where u is a dissipative solution to (3.1.45) in the sense of Definition 3.1.2.

Remark 3.1.4. For any ε > 0 Theorem 3.1.3 yields the existence of a martingale solution

((Ωε ,F ε ,(F ε
t ),Pε),uε ,W ε)

to (3.1.22). Note without loss of generality we can assume that the probability space as

well as the Wiener process W ε do not depend on ε , that is the solution is given by

((Ω,F ,(Ft),P),uε ,W ).

The assertion above follows from noting that for a martingale solution constructed by

compactness method based on Skorokhod’s theorem we may consider

(Ωε ,F ε ,Pε) = ([0,1],B[0,1],L1),

we refer the reader to [64] for more details.

We proceed to the proof of the Theorem 3.1.3 which we split in several parts.
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A priori estimates

Proposition 3.1.11 (A Priori Estimate). Assume (3.1.2) holds and

∫
L2

div(T3)
∥v∥2

L2(T3)dΛ(v)< ∞.

Then the following holds uniformly in ε ,

E

[
sup

t∈(0,T )

∫
T3
|uε |2dx+ ε

∫
Q
|∇uε |2dxdt

]p

≤C(Λ,φ , p,T ), (3.1.49)

for some p = β > 2, where β comes from Theorem 3.1.9.

Proof of Proposition 3.1.11. The estimate follows from taking the supremum in time and

building expectations of the energy inequality (3.1.25) as shown below:

E

[
1
2

sup
t∈(0,T )

∫
T3
|uε |2 dx+ ε

∫ T

0

∫
T3
|∇uε |2 dxdt

]p

(3.1.50)

≤ E
[

1
2

∫
T3
|u0|2 dx

]p

+E
[∫ t

0

∫
T3

uεφ dx dWs

]p

︸ ︷︷ ︸
I(uε )

+E
[

1
2 ∑

k≥1

∫ T

0

∫
T3
|φk|2 dxdt

]p

Applying Bukholder-Davis-Gundy inequality 2.1.13 to I(uε), and using the notation φk =

φek yields:

E
[

sup
t∈(0,T )

∣∣∣∣∫ t

0

∫
T3

uεφ dWs

∣∣∣∣]p

= E

[
sup

t∈(0,T )

∣∣∣∣∣
∫ t

0
∑
k≥1

∫
T3

uε ·φkdxdβk(s)

∣∣∣∣∣
]p

≤ cE

[〈〈∫ ·

0
∑
k≥1

∫
T3

uε ·φkdx dβk(s)

〉〉
T

]p/2

≤ cE

[
∑
k≥1

∫ T

0

(∫
T3

uε ·φkdx
)2

ds

]p/2

≤ cE

[∫ T

0

(∫
T3
|uε |2dx

)
∑
k≥1

(∫
T3
|φk|2dx︸ ︷︷ ︸

=∥φ∥L2(U ,L2)

)
ds

]p/2

≤ cφE
[∫ T

0

∫
T3
|uε |2 dxds

]p/2

.
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On the account of Young’s inequality, for every δ > 0 we infer

E
[

sup
t∈(0,T )

∣∣∣∣∫ t

0

∫
T3

uεφ dWs

∣∣∣∣]p

≤ δE
[

sup
t∈(0,T )

∫
T3
|uε |2 dxds

]p

+ c(δ ,T ).

Finally, we obtain

E

[
1
2

sup
t∈(0,T )

∫
T3
|uε |2 dx+ ε

∫ T

0

∫
T3
|∇uε |2 dxdt

]p

(3.1.51)

≤ E
[

1
2

∫
T3
|u0|2 dx

]p

+δE
[

sup
t∈(0,T )

∫
T3
|uε |2 dx

]p

+ c(δ ,T )+E
[

1
2 ∑

k≥1

∫ T

0

∫
T3
|φk|2 dxdt

]p

.

The claim follows from using (3.1.2), assumptions on initial data and taking δ small

enough.

In infinite dimensional space, the best we can get is uε ⇀ u (weakly) as ε → 0, but weak

convergence is not sufficient to guarantee convergence of non-linear terms.

Compactness

To gain compactness we need to pass to the limit in the convective term. We consider

ϕ ∈ C ∞
div(T3) and by Definition 3.1.1 we obtain

∫
T3

uε ·ϕ dx =
∫
T3

u0 ·ϕ dx+
∫
T3

∫ t

0
Hε : ∇ϕ dxds

+
∫ t

0

∫
T3

φ ·ϕ dx dWs, (3.1.52)

P-a.s, where Hε := uε ⊗uε + ε∇uε . Using the a ‘priori estimates’ in Theorem 3.1.30 we

deduce

Hε ∈ L1(Ω,L2(0,T ;L1(T3))), (3.1.53)

uniformly in ε . In following arguments we use the short-hand notations (L∞
t ,L

1
x) :=

L∞(0,T ;L1(T3)), for convenience. The claim follows from using Proposition 3.1.11 and
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interpreting |uε ⊗uε | as |uε |2 so that

E

[
sup

t∈(0,T )

∫
T3
|uε ⊗uε |dx

]
≤ c,

which implies that uε ⊗uε is bounded in L1
ω∈Ω

(L∞
t ,L

1
x). Similarly for ε∇uε , we consider

the functional:

E
∫ t

0

∫
T3
|
√

ε∇uε |2 dxds = εE
∫ t

0

∫
T3
|∇uε |2 dxds ≤ c,

so that ε∇vε is bounded in L2
ω∈Ω

(L2
t (L

2
x)), and we obtain the claim in (3.1.53) by taking

the intersection of L2
ω∈Ω

(L2
t (L

2
x)) and L1

ω∈Ω
(L∞

t ,L
1
x) spaces. In addition, as a result of

(3.1.53) the following bound holds

E
[∫ T

0
∥Hε∥L1

x
dt
]
≤ c.

To bound the system in (3.1.52), we split it into two parts: the deterministic and stochastic

part separately. For the deterministic part, we consider the functional

Hε(t,ϕ) :=
∫ t

0

∫
T3

Hε : ∇ϕ dxds, ϕ ∈ C ∞
div(T3).

We observe that

∂tHε(t,ϕ) ∈ L1(Ω;L2(0,T ;W−3,2
div (T3)),

uniformly in ε . By setting H (0) = 0 at t = 0, and using Proposition 3.1.11 we deduce

the estimate:

E
[
∥Hε∥W 1,2([0,T ];W−3,2

div (T3))

]
≤ c.

By the embedding of W 1,2(0,T ) ↪→Cα(0,T ) for α := 1−1/2 we obtain the estimate

E
[
∥Hε∥Cα ([0,T ];W−3,2

div (T3))

]
≤ c,

where c > 0 is a constant. For the stochastic functional we apply Lemma 2.1.16 and

relation (3.1.2) to deduce the estimate

E
∥∥∥∥∫ .

0
φdW

∥∥∥∥p

Cβ (L2(T3))

≤ c E
∫ T

0
∥φ∥p

L2(U ,L2(T3))
dt ≤ c. (3.1.54)
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Remark 3.1.5. The space W a,p(0,T ;L2(T3)) is continuously embedded into Cβ (0,T ;L2(T3)),

for any β ∈ (0,a−1/p) and every p > 2.

Finally, combining the stochastic and deterministic terms above and upon taking the in-

tersection of Cα and Cβ for all 0 < β < α < 1 we infer that

E
[
∥uε∥Cβ ([0,T ];W−3,2

div (T3))

]
≤ c. (3.1.55)

uniformly for all ε .

We seek to show tightness of the sequence of approximate solutions using the compact

embeddings

Cβ ([0,T ];W−3,2
div (T3)) ↪→↪→C([0,T ];W−4,2

div (T3))

Cβ ([0,T ];W−3,2
div (T3))∩L∞(0,T ;L2

div(T
3)) ↪→↪→Cw([0,T ];L2

div(T
3))

Accordingly, for T > 0 we consider the path space

XT = L2
div(T

3)⊗C([0,T ];W−3,2
div (T3))∩Cw([0,T ];L2

div(T
3))⊗Y2(Q;Rd)⊗C([0,T ];U0),

and introduce a restriction operator which we denote by rt for some t ∈ (0,T ]. Here

rt restricts measurable functions (or space-time distributions) defined on (0,∞) to (0,T )

with the following laws:
µrtuε

is the law of uε on C([0,T ];W−3,2
0,div (T

3)),

µrtW is the law of W on C([0,T ],U0), where U0 is defined in (3.1.4),

µ(δrt uε ,0,0)∈Y2(Q;Rd) is the law on Y2(Q,Rd),

where (δuε
,0,0) is a generalised Young measure and is the same as Vε . To be precise

(δuε
,0,0) = (δuε

,νε
t,x,0) = (δuε

,0,λ ).

Denoting by L [u0,rtuε ,rtVε ,rtW ] the law on XT , we observe that tightness on XT

implies tightness of L [u0,uε ,Vε ,W ] on X . Fixing T > 0, we consider a ball BR in the
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space

Cβ (0,T ;W−3,2
div (T3))∩L∞(0,T ;L2

div(T
3)),

and denote by BC
R its complement. Applying the bounds in Proposition 3.1.11 and (3.1.55),

and using Markov’s inequality we deduce

µrtuε
(BC

R) = P
(
∥rtuε∥Cβ (W−3,2

div )
+∥rtuε∥L∞(L2)≥ R

)
≤ E

R

[
∥rtuε∥Cβ (W−l,2

div )
+∥rtuε∥L∞(L2)

]
≤ C

R
.

For any γ > 0 there is R = R(γ) such that

µrtuε
(BR)≥ 1− γ

3
,

that is, the family of probability laws µrtuε
is tight by Definition 2.1.29. The law of

µW is a Radon measure on the Polish space C([0,T ],U0), and therefore it is tight. This

implies that there exists a compact set Cγ ⊂C([0,T ],U0) so that µW (Cγ)> 1− γ/3. We

set Vε = (δuε
,0,0) ∈ Y2(Q,Rd) to be the generalised Young measure associated with uε .

Arguing similarly as above we have that for a ball BR ∈ L∞((0,T );L2(T3)) we obtain

µrtuε
(BR(γ))≥ 1− γ

3
,

for some R = R(γ). Now recalling (2.1.20) and we observe

L2(QT ) ∋ uε 7→ (δuε
,0,0) ∈ Y2(QT ).

Consequently, the law µrtVε
= µrt(δvε ,0,0) is tight by Definition 2.1.29 in the same space.

Furthermore, the law µu0 is a Radon measure on the Polish space L2
div(T

3) and as such

µu0 is tight . Accordingly, L [u0,rtuε ,rtVε ,rtW ] is tight on XT . Noting that T was ar-

bitrary chosen we infer that L [u0,uε ,Vε ,W ] is tight on X . Finally, we apply Lemma

2.1.19 and Jakubowski’s version of the representation Theorem 2.1.21, see [64], to de-

duce the following proposition (we refer to [82],Theorem A.1, for results that combine

Prokhorov’s and Skorokhod’s theorem for quasi-Polish spaces). In particular, one first

has to replace the family of random variables indexed by ε by a countable sub-family.
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We note that the law of (ũεm
0 , ũεm, Ṽεm ,W̃εm),m ∈ N is a sequence of tight measures on

(X ,BX ). Consequently, its weak* limit is tight as well and hence Radon.

Proposition 3.1.12. There exists a nullsequence (εm)m∈N, a complete probability space

(Ω̃,F̃ , P̃) with (X ,BX )-valued random variables

(ũεm
0 , ũεm, Ṽεm ,W̃εm),m ∈ N, and (ũ0, ũ, Ṽ ,W̃ )

such that

(a) For all m∈N the law of (ũεm
0 , ũεm , Ṽεm,W̃εm) on X is given by L [uεm

0 ,uεm,Vεm ,Wεm];

(b) The law of (ũ0, ũ, Ṽ ,W̃ ) is a Radon measure on X ,BX ;

(c) (ũεm
0 , ũεm , Ṽεm,W̃εm) converges P̃-almost surely to (ũ0, ũ, Ṽ ,W̃ ) in the topology of

X , i.e.

ũεm
0 → ũ0 in L2(T3) P̃-a.s.;

ũεm → ũ in Cloc([0,∞);W−4,2
div (T3)) P̃-a.s.;

ũεm → ũ in Cw,loc([0,∞);L2
div(T

3)); (3.1.56)

Ṽεm ⇀ Ṽ in Yloc
2 (Q∞) P̃-a.s.

W̃εm → W̃ in C([0,∞);U0) P̃-a.s.

Some remarks are in order, we henceforth adopt the analogy

ũεm(t,x) = ⟨Ṽ εm
t,x ,ξ ⟩, ũ(t,x) = ⟨Ṽt,x,ξ ⟩P-a.s., (3.1.57)

where Ṽε = (ν̃εm
t,x , ν̃

∞,εm
t,x , λ̃εm) and Ṽ = (ν̃t,x, ν̃

∞
t,x, λ̃ ). The first part of the assertion in

(3.1.57) follows from the observation: for T > 0 and ψ ∈C∞
c (QT ) we consider a contin-

uous mapping on the path space given by

(w,V ) 7→
∫

QT

(w−⟨ν(t,x),ξ ⟩) ·ψ dxdt.

In view of Proposition 3.1.12 we deduce

∫
QT

(ũεm −⟨ν̃εm
t,x ,ξ ⟩) ·ψ dxdt ∼d

∫
QT

(uεm −⟨νεm
t,x ,ξ ⟩) ·ψ dxdt = 0,

78



Chapter 3.

for arbitrary ψ and T . Note the second part in the assertion (3.1.57) follows applying

Proposition 3.1.12 and passing to the limit m → ∞. Similarly, for any T > 0 we can chose

f ∈ G2(QT ) and ϕ ∈C(QT ) arbitrary the mappings

(w,V ) 7→
∫

QT

ϕ⟨νt,x −δw(t,x), f (ξ )⟩dxdt +
∫

QT

ϕ⟨ν∞
t,x, f ∞(ξ )⟩dλ ,

to show that

Ṽε = (ν̃εm
t,x , ν̃

∞,εm
t,x , λ̃εm) = (δũεm(t,x),0,0) for a.a. (t,x) ∈ Q∞.

Accordingly, to ensure accurate measurability of the new random variables we adapt a

filtration to the new probability space. Now, let (F̃ ε
t )t≥0 and (F̃t)t≥0 denote the P̃-

augmented canonical filtration of the process (ũεm
0 , ũε , ṼεmW̃εm) and (ũ0, ũ, Ṽ ,W̃ ), respec-

tively, i.e.

F̃ ε
t = σ

(
σ(ũεm

0 ,rt ũεm,rtṼεm,rtW̃εm)∪{N ∈ F̃ ; P̃(N ) = 0}
)
, t ≥ 0.

F̃t = σ
(
σ(ũ0,rt ũ,rtṼ ,rtW̃ )∪{N ∈ F̃ ; P̃(N ) = 0}

)
, t ≥ 0,

where σt denotes the history of a random distribution as defined in (2.1.6), and note here

we identify generalised Young measures as random distribution in the sense of (2.1.21).

The setup above guarantees that the stochastic processes are adapted enabling us to define

stochastic integrals.

New Probability Space

Using the elementary method covered in [27], and arguing as in Section 3.1.2 we proceed

to show that the approximated equations

∫
T3

u(t) ·ϕ dx =
∫
T3

u(0) ·ϕ dx+
∫ t

0

∫
T3
⟨νt,x,ξ ⊗ξ ⟩ : ∇ϕ dxds

+
∫
(0,t)×T3

⟨ν∞
t,x,ξ ⊗ξ ⟩ : ∇ϕ dλ − εm

∫ t

0

∫
T3

u(t) ·∆ϕdxds

+
∫
T3

∫ t

0
ϕ ·φ dW dx,
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continue to hold on the new probability space. In order to do this for all t ∈ [0,T ] and

ϕ ∈C∞
div(T

3) we consider the following functionals:

M εm(u0,u,V )t =
∫
T3
(u(t)−u0) ·ϕ dx+ εm

∫ t

0

∫
T3

u(t) ·∆ϕdxds

−
∫ t

0

∫
T3
⟨νt,x,ξ ⊗ξ ⟩ : ∇ϕ dxds−

∫
(0,t)×T3

⟨ν∞
t,x,ξ ⊗ξ ⟩ : ∇ϕ dλ

Ψt = ∑
k=1

∫ t

0

(∫
T3

φk ·ϕ dx
)2

ds, (Ψk)t =
∫ t

0

∫
T3

φk ·ϕ dxds.

Next, we proceed to show that the functional M εm(u0,u,V )t is well defined. Accord-

ingly, it suffices to that show that the linear functional is continuous. For terms with

Banach spaces it suffices to show that the terms are bounded. Note Proposition 3.1.11

yields the boundedness of first two terms on M εm(u,u0,V )t in W−4,2
div (T3), for instance∣∣∣∣εm

∫ t

0

∫
T3

u ·∆ϕ dxds
∣∣∣∣≤ εm

∫ t

0

∫
T3
|u∆ϕ| dxds

≤ ε

∫ t

0
∥u∥W−4,2(T3)∥∆ϕ∥W 4,2(T3) ds

≤ c(εm,ϕ,T )sup
t
∥u(t)∥W−4,2(T3).

Accordingly, for terms with measures, we refer the reader to the discussion of general

Young measures in Y2(Q); Section 2.1.5. Indeed, M εm(u,u0,V )t is continuous on

the path space. Now let M (ũεm
0 , ũεm , Ṽεm)s,t denote the increment M (ũεm

0 , ũεm, Ṽε)t −

M (ũεm
0 , ũεm , Ṽεm)s and similarly for Ψs,t and (Ψk)s,t . In the new probability space, com-

pleteness of proof follows from showing that deterministic part is equivalent to the stochas-

tic part, that is,

M (ũ0, ũεm, Ṽεm) =
∫ t

0

∫
T3

φ ·ϕ dxdW̃ εm
s , (3.1.58)

and passage to the limit m → ∞. To show (3.1.58) holds, it suffices to identify the cor-

responding quadratic and cross variations of the F̃ ε
t -martingale process M (ũ0, ũεm, Ṽεm)

as follows:

⟨⟨M (ũ0, ũεm, Ṽεm)⟩⟩= Ψt , ⟨⟨M (ũ0, ũεm, Ṽεm), β̃k⟩⟩= (Ψk)t , (3.1.59)
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respectively. In particular, (3.1.59) yields the assertion

〈〈
M (ũ0, ũεm, Ṽεm)−

∫ t

0

∫
T3

φ ·ϕ dxdW̃ εm
s

〉〉
= 0, (3.1.60)

which implies the desired equation holds on the new probability space provided (3.1.59)

holds. Now we proceed to justify that indeed (3.1.59) holds true. To begin with, on the

account of proposition 3.1.8, the mapping

(u0,u,V ) 7→ M (u0,u,V ),

is well-defined and continuous on the path space. Consequently, in view of Lemma 3.1.8

we obtain

M (uεm
0 ,uεm ,Vεm)∼d M (ũεm

0 , ũεm, Ṽε).

Next, we fix times s, t ∈ [0,T ], where s < t and define a continuous function h such that

h : V |[0,s]→ [0,1].

The process

M (u0,uεm ,Vεm) =
∫ t

0

∫
T3

φ ·ϕ dxdW εm
s = ∑

k≥1

∫ t

0

∫
T3

φk ·ϕ dx dβ
εm
k ,

is a square integrable (Ft)t≥0-martingale, using Theorem 2.1.9 we deduce that

[M (u0,uεm,Vεm)]
2 −Ψt , M (u0,uεm,Vεm)βk − (Ψk)t ,

are (Ft)t≥0-martingales. Now let zs be a restriction of a function to the interval [0,s].

Accordingly, in view of equality laws in Proposition 3.1.12 we infer

Ẽ[h(uεm
0 ,zsũεm,zsṼεm ,zsW̃εm)M (uεm

0 , ũεm, Ṽεm)s,t ] (3.1.61)

= E[h(uεm
0 ,zsuεm ,zsVεm,zsWεm)M (uεm

0 ,uεm ,Vεm)s,t ] = 0,

Ẽ[h(uεm
0 ,zsũεm ,zsṼεm,zsW̃εm)([M (uεm

0 , ũεm, Ṽεm)]
2 −Ψ)s,t ] (3.1.62)
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= E[h(uεm
0 ,zsuεm,zsVεm,zsWεm)([M (uεm

0 ,uεm,Vεm)]
2 −Ψ)s,t ])] = 0,

Ẽ[h(uεm
0 ,zsũεm,zsṼεm,zsW̃εm)(M (uεm

0 , ũεm, Ṽεm)βk − (Ψk))s,t)] (3.1.63)

= E[h(uεm
0 ,zsuεm,zsVεm ,zsWεm)(M (uεm

0 ,uεm,Vεm)βk − (Ψk))s,t ] = 0.

Therefore, (3.1.59) holds and (3.1.60) follows as a consequence. To identify the equation

of momentum in the sense of (3.1.46) in the new probability space we use the conver-

gences from Proposition 3.1.12 and the higher moments from (3.1.11) to pass to the limit

in (3.1.61)–(3.1.63). To be precise, we apply Vitali’s convergence Theorem 2.1.15 in

(3.1.61)–(3.1.63) and proceed as follows. To begin with, the uniform integrability of the

(Ft)t≥0-martingale follows from noting that

E|(M (uεm
0 , ũεm , Ṽεm)

2 −Ψ)s,t |p ≤ c EM (uεm
0 , ũεm, Ṽεm)

2p
s + c EΨ

p
s

+c EM (uεm
0 , ũεm, Ṽεm)

2p
t + c EΨ

p
t ,

for some p > 1. Applying Lemma 2.1.16 and 3.1.58 we deduce

E|M (uεm
0 ,uεm,Vεm)|2p = E

∣∣∣∣∫T3
ϕ

∫ t

0
φdW dx

∣∣∣∣2p

= E
∣∣∣∣〈ϕ,

∫ t

0
φdW

〉
L2

∣∣∣∣2p

≤ ∥ϕ∥2p
2 E

∥∥∥∥∫ t

0
φdW

∥∥∥∥2p

2

≤ c E
∫ T

0
∥φ∥2p

L2(U ,L2(T3))
ds.

Accordingly, we obtain E|M (uεm
0 ,uεm,Vεm)|2p< c, by equality of laws in Proposition

3.1.12 we have Ẽ|M (ũεm
0 , ũεm , Ṽεm)|2p< c such that

Ẽ
∣∣[h(uεm

0 ,zsũεm ,zsṼεm,zsW̃εm)([M (uεm
0 , ũεm, Ṽεm)]

2 −Ψ)s,t ]
∣∣2p ≤C.

Using Theorem 2.1.15 and Proposition 3.1.12 together with continuity of M (uεm
0 , ũεm, Ṽεm)

to pass to the limit m → ∞ we infer

Ẽ[h(uεm
0 ,zsũεm ,zsṼεm,zsW̃εm)([M (uεm

0 , ũεm, Ṽεm)]
2 −Ψ)s,t ]→ 0.
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We note upon taking the limit m → ∞ the term εm
∫ t

0
∫
T3 ũεm ·∆ϕ dxds vanishes. To show

this, we consider the following:

E
[

εm

∫ t

0

∫
T3

ũε ·∆ϕ dxds
]

≤ εmc(ϕ)E
(
∥ũε∥L2(Q)

)
,︸ ︷︷ ︸

≤c

since εm → 0 as m → ∞, taking the limit yields

∫
T3

ũ(t) ·ϕ dx =
∫
T3

ũ(0) ·ϕ dx+
∫ t

0

∫
T3
⟨ν̃t,x,ξ ⊗ξ ⟩ : ∇ϕ dxds

+
∫
(0,t)×T3

⟨ν̃∞
t,x,ξ ⊗ξ ⟩ : ∇ϕ dλ̃ +

∫
T3

∫ t

0
ϕ ·φ dW̃ dx (3.1.64)

P-a.s, as desired.

Finally, we aim to show the energy inequality in the sense of (3.1.47) continues to hold

in the new probability space. We begin by introducing the abbreviations

Mεm
t =

∫ t

0
u ·φ dxdW εm M̃εm

t =
∫ t

0
ũ ·φ dxdW̃ εm,

for the stochastic integrals. Accordingly, in the Navier-Stokes system (3.1.22) (i.e. the

original probability space) for Eεm
t = 1

2
∫
T3 |uεm|2 dx we infer

Eεm
t ≤ Eεm

s +
1
2

∫ t

s
∥φ∥2

L2(U ,L2(T3)) dσ +Mεm
t −Mεm

s

for a.a. s (including s = 0) and all t ≥ s. Fixing s we re-write the formulation above in

the form

−
∫

∞

s
∂tϕEt dt −ϕ(s)Eεm

s

≤ 1
2

∫
∞

s
ϕ∥φ∥L2(U ,L2(T3)) dt +

∫
∞

s
ϕ

∫
T3

uεm ·φ dx dWεm

P-a.s. for all ϕ ∈ C∞
c ([s,∞); [0,∞)). On the account of Proposition 3.1.2 and 3.1.12 the

energy inequality continues to hold in the new probability space and we obtain

Ẽεm
t ≤ Ẽεm

s +
1
2

∫ t

s
∥φ∥2

L2(U ,L2(T3)) dσ +M̃εm
t −M̃εm

s
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for a.a. s (including s = 0) and all t ≥ s. We note averaging in t and s yields

1
r

∫ t

t−r
Ẽεm

k dk ≤ 1
r

∫ t

t−r
Ẽεm

τ dτ +
1
r

∫ s

s−r

∫ t

t−r

(
1
2

∫ t

τ

∥φ∥2
L2(U ,L2(T3)) dσ

)
dk dτ

+
1
r

∫ s

s−r

∫ t

t−r
(M̃εm

t −M̃εm
τ )dk dτ (3.1.65)

provided s > 0 and r < min{s, t − s}. The setup above allows us to show our aim. We

proceed to show the energy inequality holds by considering two scenarios: the case when

s > 0 and the case s = 0. In the case of s > 0, we first pass the limit in m and then in

r. We note the additional integrals in (3.1.65) guarantee that our energy is continuous

on the path space. Consequently, applying Proposition 3.1.12 yields the P-a.s. expected

convergences of energy terms. For instance in the noise term to show that as m → ∞ we

obtain

M̃εm
t → M̃t :=

∫ t

0
ũ ·φ dxdW̃ in L2

loc([0,∞)), (3.1.66)

in probability the convergence follows from applying Lemma 2.1.14. In order to apply

Lemma 2.1.14 we use (3.1.56)5 for convergence of Wiener process, and in addition we

seek ∫
T3

uεm ·φ dx →
∫
T3

u ·φ dx in L2
loc([0,∞);L2(U ,T3)) (3.1.67)

in probability. Indeed, (3.1.67) holds P-a.s. on the account of (3.1.56)3, that is,

∫
T3

uεm ·φ dx →
∫
T3

u ·φ dx in L2(U ,T3))

for all t ≥ 0. Consequently, using Proposition (3.1.11) yields convergence in

L2(Ω̃;L2(U ;T3))

using higher moments. Therefore, applying Proposition (3.1.11) yields (3.1.67) (to be

precise, we have an L2(Ω̃)-convergence). Finally, passing to the limit in (3.1.65) (first in

m and then in r) yields

Ẽt ≤ Ẽs +
1
2

∫ t

s
∥φ∥2

L2(U ,L2(T3)) dt +M̃t −M̃s (3.1.68)

provided t,s are Lebesgue points of Ẽt =
1
2⟨νt,x, |ξ |2⟩dx+ 1

2 λ̃t(T3). Note the conclusion
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in (3.1.68) uses the fact that 1
r Ẽλ̃ ((t − r, t)×T3) stays bounded in r by (3.1.65). Accord-

ingly, this shows that λ̃ = λ̃t ⊗L1 with λt ∈ L∞
w∗(0,T ;M+(T3)) P̃-a.s. On the account of

(3.1.68) the functional

t 7→ Ẽt −
1
2

∫ t

s
∥φ∥2

L2(U ,L2(T3)) dσ −M̃t

is non-increasing. Upon recalling Proposition 3.1.11 the above functional is pathwise

bounded, consequently, left- and right-sided limits exist for all points. In addition,

∫ t

s
∥φ∥2

L2(U ,L2(T3)) dσ

and M̃t are continuous, which implies that left- and right-sided limits also exists for Ẽt .

Finally, we approximate arbitrary t and s by Lebesgue points and use (3.1.68) to deduce

Ẽt+ ≤ Ẽs− +
1
2

∫ T

s
∥φ∥2

L2(U ,L2(T3)) dt +M̃t −M̃s (3.1.69)

P̃-a.s. for all t > s > 0. In the case s = 0 we argue similarly as shown above for (3.1.65),

but we exclude averaging in s. Accordingly, we deduce

1
r

∫ t

t−r
Ẽεm

k dk ≤ Ẽεm
0 +

1
2r

∫ t

t−r

∫ r

0
∥φ∥2

L2(U ,L2(T3)) dσ dk+
1
r

∫ t

t−r
M̃εm

k dk

P̃-a.s. provided r < t. Applying Proposition 3.1.12, and using Eεm
0 = 1

2
∫
T3|uεm

0 |2 dx and

(3.1.66) we infer

Ẽt+ ≤ Ẽs− +
1
2

∫ t

0
∥φ∥2

L2(U ,L2(T3)) dk+M̃t (3.1.70)

P̃-a.s for all t > 0. In conclusion, combining (3.1.69) and (3.1.70) guarantees the exis-

tence of energy inequality in the new probability space. Accordingly, this completes the

proof of Theorem 3.1.9.

3.1.4 Weak-Strong Uniqueness

One of the fundamental concepts (i.e weak-strong principle) we seek to address in this

thesis is the relation between the dissipative solution in the sense of Definition 3.1.2

and a strong solution to (3.1.45). This concept is reminiscent to the results of [16] on

the stochastic compressible Navier-Stokes system. In general a strong solution to the

stochastic Euler system is known to exist at least for a short time. To begin with, we state
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the definition of a strong solution.

Definition 3.1.3. Let (Ω,F ,(Ft),P) be a stochastic basis with a complete right-continuous

filtration, let W be an (Ft)-cylindrical Wiener process. A random variable u and a stop-

ping time τ is called a (local) strong solution system to (3.1.45) provided

(a) the process t 7→ u(t ∧ τ, ·) ∈ L2(T3) is (Ft)-adapted,

u(t ∧ τ, ·),∇u(t ∧ τ, ·) ∈Cloc([0,∞)×T3)

a.s. and

E
[

sup
0≤t≤T

∥u(·∧ τ)∥2
L2

x
+
∫ T∧τ

0
∥∇u∥L∞

x

]p

< ∞ for all 1 ≤ p < ∞;

(b) for all ϕ ∈C∞
div(T

3) and all t ≥ 0 there holds P-a.s.

∫
T3

u(t ∧ τ) ·ϕ dx =
∫
T3

u(0) ·ϕ dx−
∫ t∧τ

0

∫
T3
(∇u)u ·ϕ dxds+

∫
T3

∫ t∧τ

0
ϕ ·φ dW dx.

(c) we have divu(t ∧ τ, ·) = 0 P-a.s.

Remark 3.1.6. The energy inequality of strong solutions to the system (3.1.45) follows

from applying Itô’s formula to f (u)= 1
2
∫
T3|u|2 dx (in the Hilbert space version for L2

div(T
3))

and satisfies

1
2

∫
T3
|u|2dx =

1
2

∫
|u0|2 dx+

∫ t

0
φ ·u dxdWs +

1
2

∫ t

0
∥φ∥2

L2(U ,L2(T3))ds (3.1.71)

for all t ∈ [0,τ] P-a.s.

The results on the existence of local-in-time strong solutions to (3.1.45) system (under

slip boundary conditions and not periodic setting) were established in [57, Theorem 4.3]

under certain assumptions imposed on the noise coefficient φ .

Pathwise Weak-strong Uniqueness

To begin with, we consider the case when a dissipative solution and the strong solution

are defined on the same probability space. The weak-strong uniqueness principle is given

by the following theorem.
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Theorem 3.1.13 (Pathwise Weak-Strong Uniqueness). The pathwise weak-strong unique-

ness holds true for the stochastic Euler equations (3.1.45) in the following sense: let

((Ω,F ,(Ft),P),u,V ,W )

be a dissipative martingale solution to (3.1.45) in the sense of Definition 3.1.2 and let v

and a stopping time τ be a strong solution of the same problem in the sense of Definition

3.1.3 defined on the same stochastic basis with the same Wiener process and with the same

initial data (that is, v(0, ·) = u(0, ·) P-a.s.). Then we have for a.a (t,x) that u(t ∧ τ,x) =

v(t ∧ τ,x) and

(νt∧τ,x,ν
∞
t∧τ,x,λ ) = (δu(t∧τ,x),0,0)

a.s.

We proceed to prove Theorem 3.1.13.

Proof. To begin with, we introduce the stopping time

τM = inf
{

t ∈ (0,τ)| ∥∇v(t, ·)∥L∞
x > M

}
,M > 0,

and define τM = τ if {· · ·}= /0. On the account of Definition 3.1.3 we note that

E[ sup
t∈[0,τ]

∥v(t, ·)∥L∞
x ]< ∞,

consequently we have

P[τM < τ]≤ P

[
sup

t∈[0,τ]
∥∇v(t, ·)∥L∞

x ≥ M

]
≤ 1

M
E

[
sup

t∈[0,τ]
∥∇v(t, ·)∥L∞

x

]
→ 0

as M → ∞ by Tschebyscheff’s inequality. Accordingly, we have

τM → τ in probability.

Therefore, it suffices to show the claim in (0,τM) for a fixed M. Assuming the existence

of strong solutions to (3.1.45) in the sense of Definition 3.1.3 we consider the functional

F(t) =
1
2

∫
T3
⟨νt,x, |ξ −v|2⟩dx+

1
2

λt(T3), (3.1.72)
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defined for a.a. t < τ where ⟨νt,x, |ξ − v|2⟩ = ⟨νt,x, |ξ |2⟩ − 2v⟨νt,x,ξ ⟩+ |v|2. F(t)-

functional acts as tool that allows us to compare two solutions. Now noting that u =

⟨νt,x,ξ ⟩, for convenience we re-write (3.1.72) as follows

F(t) =
1
2

(∫
T3
⟨νt,x, |ξ |2⟩+λt(T3)−2

∫
T3

vu+
∫
T3
|v|2 dx

)
= E(t)+

1
2

∫
T3
|v|2 dx−

∫
T3

vu dx.

In addition, the notion of (3.1.72) can be extended to any t < τ by setting

F(t) = E(t+)+
1
2

∫
T3
|v|2 dx−

∫
T3

vu dx,

by observing that u and v(·∧τ) belong to Cw([0,T ];L2(T3)). Computing the expectation

of F(t ∧ τ), and using (3.1.47) and (3.1.71) yields

E[F(t ∧ τM)] (3.1.73)

= E[E(t ∧ τM)]+
1
2
E
∫
T3
|v(t ∧ τM)|2dx−E

∫
T3

u(t ∧ τM)v(t ∧ τM)dx

≤ E
(∫

T3
|v(0)|2 dx+

∫ t∧τM

0
∥φ∥2

L2(U ,L2(T3)) ds
)
−E

∫
T3

u(t ∧ τM)v(t ∧ τM)dx︸ ︷︷ ︸
A

,

where u(0) = v(0). Now using Lemma 3.1.1 the above term A is re-written in the form

A :=
∫
T3

u(t ∧ τM)v(t ∧ τM)dx

=
∫
T3

u(0)v(0)dx+
∫ t∧τM

0

∫
T3
⟨νt,x,ξ ⊗ξ ⟩ : ∇vdxds︸ ︷︷ ︸

AI

+
∫ t∧τm

0

∫
T3
⟨ν∞

t,x,θ ⊗θ⟩ : ∇vdλ︸ ︷︷ ︸
AII

+
∫
T3

v
∫ t∧τM

0
φ

1dWdx+
∫ t∧τM

0

∫
T3

div(v⊗v) : udxds︸ ︷︷ ︸
AIII

+
∫
T3

u
∫ t∧τM

0
φ

2dWdx+ ∑
k≥1

∫ t

0

∫
T3

φ
1ekφ

2ek dxds +Mt∧τM ,
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where

Mt∧τM = ∑
k≥1

∫ t∧τM

0

∫
T3

[
uφ

2ek +vφ
1ek

]
dxdWk.

We note the stochastic terms of A vanish upon computing E[A]. By assumption φ 1 =

φ 2 = φ (since our solutions lie in same path with same noise), consequently,

∑
k≥1

∫ t∧τM

0

∫
T3

φ
1ekφ

2ek dxds =
∫ t∧τM

0
∥φ∥2

L2(U ,L2(T3)) ds.

Since u(0)v(0) = |v(0)|2 by assumption, replacing A in (3.1.73) by the new formulation

above yields

E[F(t ∧ τM)] ≤ −E(AI +AII +AIII)

≤ E(|AI +AII +AIII|). (3.1.74)

Using standard identities for the nonlinear term together with the properties: divv = 0

and divu = 0 we infer

AI +AIII =
∫ t∧τM

0

∫
T3
⟨νt,x,(ξ −v)⊗ (ξ −v)⟩ : ∇vdxds. (3.1.75)

To verify (3.1.75) we consider following expansion

AI +AIII =
∫ t∧τM

0

∫
T3
⟨νt,x,(ξ −v)⊗ (ξ −v)⟩ : ∇vdxds

=
∫ t∧τM

0

∫
T3
⟨νt,x,ξ ⊗ξ ⟩ : ∇vdxds−

∫ t∧τM

0

∫
T3
⟨νt,x,ξ ⊗v⟩ : ∇vdxds

−
∫ t∧τM

0

∫
T3
⟨νt,x,v⊗ξ ⟩ : ∇vdxds+

∫ t∧τM

0

∫
T3

v⊗v : ∇vdxds

=
∫ t∧τM

0

∫
T3
⟨νt,x,ξ ⊗ξ ⟩ : ∇vdxds−

∫ t∧τM

0

∫
T3

u⊗v : ∇vdxds

−
∫ t∧τM

0

∫
T3

v⊗u : ∇vdxds+
∫ t∧τM

0

∫
T3

v⊗v : ∇vdxds.

Using integration by parts, the integrals
∫ t∧τM

0
∫
T3 v⊗ v : ∇vdxds and

∫ t∧τM
0

∫
T3 v⊗ u :

∇vdxds vanish to yield the desired form of AI +AIII . Next, we compute estimates for

AI,AII,AIII and take expectations.

AI +AII +AIII =
∫ t∧τM

0

∫
T3
⟨νt,x,(ξ −v)⊗ (ξ −v)⟩ : ∇vdxds
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+
∫
(0,t∧τM)×T3

⟨ν∞,θ ⊗θ⟩ : ∇vλs(dx)ds

≤
∫ t∧τM

0

∫
T3
⟨νt,x, |ξ −v|2⟩ : ∇vdxds

+
∫
(0,t)×T3

⟨ν∞,θ ⊗θ⟩ : ∇vλs(dx)ds

≤ c
∫ t∧τM

0
F(s)∥∇v∥∞ds. (3.1.76)

Therefore, in view of (3.1.74) taking the expectation of (3.1.76) yields

E[F(t ∧ τM)]≤ c E
∫ t∧τM

0
F(s)∥∇v∥∞ds, (3.1.77)

for some constant c > 0. Finally, by using Gronwall’s lemma, the inequality in (3.1.77)

implies that E[F(t ∧ τM)] = 0 for a.e. t as required. This completes the claim of Theorem

3.1.13 by definition of the functional F .

Remark 3.1.7. Setting τM = T to be deterministic in the proof of Theorem 3.1.13 yields

u = v and V = (δu,0,0) P-a.s., that is

P
({

u(t,x) = v(t,x) for a.a. (t,x) ∈ QT

})
= 1,

P
({

(νt,x,ν
∞
t,x,λ ) = (δu(t,x),0,0)

})
= 1.

Weak-Strong Uniqueness in Law

Finally we consider the case when a dissipative solution and a strong solution are defined

on distinct probability spaces. Accordingly, we give a precise notion for this case in the

following theorem.

Theorem 3.1.14. The weak-strong uniqueness in law holds true for the stochastic Euler

system (3.1.45) in the following sense: Let

[
(Ω1,F 1,(F 1

t )t≥0,P1),u1,V 1,W 1]
be a dissipative measure-valued martingale solution to (3.1.45) in the sense of Definition

3.1.2 and [
(Ω2,F 2,(F 2

t )t≥0,P2),u2,V 2,W 2]
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be a strong solution of the same problem in the sense of Definition 3.1.3(with τM = T

deterministic) such that

Λ = P1 ◦ (u1(0))−1 = P2 ◦ (u2(0))−1,

then

P1 ◦ (V 1,u1)−1 = P2 ◦ (V 2,u2)−1. (3.1.78)

The results in Theorem 3.1.14 are reminiscent to the classical work of Yamada-Watanabe

on stochastic differential equations as presented in [66]. However, the application of

these results to (3.1.45) is not a straight forward process due to difficulties caused by

working with infinite-dimensional spaces and the non-separability of the space of gener-

alised Young measures. We prove Theorem 3.1.14 as follows.

Proof. We set

v j(t) = u j(t)−u j(0), j = {1,2}, 0 ≤ t < ∞,

and we consider the topological space

Θ = L2
div(T

3)×C((0,T );W−4,2
div (T3))∩Cw(L2

div(T
3))×Y(Q;Rd)×C([0,T ],U0),

and we denote by B(Θ) the σ -field generated by Θ, that is,

B(Θ) =B(L2
div(T

3))×B(C((0,T );W−4,2
div (T3))∩Cw(L2

div(T
3)))

×B(Y(Q;Rd))×B(C([0,T ],U0)).

Given the j-solution consists of [u j
0,v

j,V j,W j], the probability law of L [u j
0,v

j,V j,W j]

on (Θ,B(Θ)) is denoted by µ j (recall that V 2 = (δu2,0,0) for strong solution) such that

the jth-joint law is of the form

µ
j(A) = P j([u j

0,v
j,V j,W j] ∈ A) A ∈ B(Θ), j = 1,2, (3.1.79)

where P j is a probability measure on the space (Θ,B(Θ)). Let θ = (ũ0, ṽ, Ṽ ,W̃ ) denote

the generic element of Θ. The marginal of each P j on ũ0-coordinate is the measure Λ, the

marginal on the W̃ -coordinate is Wiener measure P∗ on the space C([0,T ],U0). There-

fore, the distribution law of the pair (ũ0,W̃ ) is the product measure Λ×P∗ since (u j
0) is
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F
( j)
0 -measurable and W̃ ( j) is independent of F

( j)
0 . In addition, under P j the initial law

value of v-coordinate is zero a.s.

Assuming that the two solutions exist possibly in two distinct probability spaces we con-

struct a product probability space. In the new probability space we use the same canonical

elements [u j
0,v

j,V j,W j], j = {1,2} and we preserve the joint distributions of solutions.

The construction of the product probability space relies on the concept of regular con-

ditional probabilities. In the following we outline the approach to our particular case.

Accordingly, let (Ω,Y ,P) be a probability space, Where Ω is a Hausdorff topological

space and Y is countable generated σ -field. Then P is called regular if for all A we have

P(A) = sup{P(K) : K ⊂ A is compact,K ∈ Y },∀A ∈ Y ,

Moreover, (Ω,Y ,P) is a radon space (see [Thm 2.1, [75]]). The given assumptions on

(Ω,Y ,P) guarantee existence of a regular conditional probability for P, see e.g. [59,

Introduction]. We proceed to show similar results hold in our case. Since C([0,T ],U0)×

C((0,T );W−4,2
div (T3))×Cw(L2

div(T
3)) and L2(T3) spaces are quasi-Polish and Banach re-

spectively; we infer that they are Hausdorff. In addition, as both B(C([0,T ],U0)) and

B(C((0,T );W−4,2
div (T3)) are Polish spaces they are countably generated. And as for the

space B(Cw(L2
div(T

3))), we refer the reader to [26, Section 4] and references therein.

Finally, B(Y(Q;Rd)) is countably generated for each n ∈N because the function fn from

Definition 2.1.30 range in Polish space [−1,1] and are continuous. Therefore, (Θ,B(Θ))

is a radon space, consequently, there exists a regular conditional probability

Q j(ũ0,W̃ ,A) : L2(T3)×C([0,T ],U0)×Bu ⊗BY → [0,1]

such that

(i) For each (ũ0,W̃ ) ∈ L2(T3)×C([0,T ],U0) we have

Q j(w,B, ·) : B(C((0,T );W−4,2
div (T3))∩Cw(L2

div(T
3))×Y2(QT );Bu×BY)→ [0,1]

is a probability measure;

(ii) The mapping (ũ0,W̃ ) 7→ Q j(ũ0,W̃ ,A) is B(L2(T3))×B(C([0,T ],U0)) measur-

able for A ∈ Bu ⊗BY ;
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(iii) We have that

µ
j(G×A) =

∫
G

Q j(u0,w;A)Λ(d(ũ0))P∗(dW̃ ), A ∈ Bu ×BY,

for all G ∈ B(L2
div(T

3))×B(C([0,T ],U0))).

Finally, we proceed to construct a product probability space. Let (Ω̃,F̃ ) be a measurable

space, where

Ω̃ = Θ×Y2(Q;Rd)×C((0,T );W−4,2
div (T3))∩Cw(L2

div(T
3)),

and F̃ is the completion σ -field on Ω̃

B(Θ)×B(Y(Q;Rd))×B(C((0,T );W−4,2
div (T3))∩Cw(L2

div(T
3))),

under the probability measure

P̃(dω) = Q1(ũ0,W̃ ;d(Ṽ 1, ṽ1))Q2(ũ0,W̃ ;d(Ṽ 2, ṽ2))Λ(d(ũ0))P̃∗(dW̃ ). (3.1.80)

On the account (3.1.79), property (iii) and (3.1.80) we infer

P̃(G×A1 ×A2) =
∫

G×A1×A2

Q1(ũ0,W̃ ;d(Ṽ 1, ṽ1))Q2(ũ0,W̃ ;d(Ṽ 2, ṽ2))Λ(d(ũ0))P̃∗(dW̃ )

=
∫

G
Q1(ũ0,W̃ ;A1)Q2(ũ0,W̃ ;A2)Λ(d(ũ0))P̃∗(dW̃ ).

=
∫

G
Q j(ũ0,W̃ ;A)Λ(d(v0))P̃∗(dw)

= µ j(G×A), (3.1.81)

for A1,A2 ∈ Bu ⊗BY and G ∈ B(L2(T3))⊗B(C([0,T ],U0)). Consequently, in the

space (Ω̃,F̃ , P̃) for j = 1,2 we obtain

P̃({ω̃ = [ũ0,W̃ , ṽ1, Ṽ 1, ṽ2, Ṽ 2] ∈ Ω̃ : (ũ0,W̃ , ṽ j, Ṽ j) ∈ A}) = µ j(A),A ∈ B(Θ).

Similarly we let ω = (ũ0, ṽ1, Ṽ 1, ṽ2, Ṽ 2,W̃ ) denote a generic element of Ω̃. Accordingly,

the law of [ũ0, ṽ1, Ṽ 1, ṽ2, Ṽ 2,W̃ ] under P̃ coincides with the law of [u j
0,v

j,V j,W j] under

P j in the original space. Consequently, the law of (ũ0 + ṽ j, Ṽ j,W̃ ) under P̃ coincides
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with the law of (v j,V j,W j) under P j. In conclusion, we infer that (ũ0 + ṽ j, Ṽ j,W̃ )

solves (3.1.45) for j = 1,2, that is,

[
(Ω̃,F̃ ,(F̃t)t≥0, P̃), ũ0 + ṽ j, Ṽ j,W̃

]

is a dissipative martingale solution to (3.1.45) in the sense of Definition 3.1.2 for j = 1,

while j = 2 is the strong solution v2 +u0. Arguing as in (3.1.57), the assertion

ṽ j(t,x)+ ũ0(x) = ⟨ν̃t,x,ξ ⟩ for a.a. (t,x) ∈ QT

holds P-a.s., where Ṽ j = (ν̃
j

t,x, ν̃
j,∞

t,x , λ̃ ). Next we aim to verify the concluding statement

above and we argue as in Section 3.1.2. To begin with, we ensure correct measurabilities

in the new probability space (Ω̃,F̃ , P̃) by endowing it with a filtration that satisfies usual

conditions i.e.,

F̃ j
t = σ

(
σ(ũ0,rtW̃ ,rt ṽ j,rtṼ

j)∪σt [Ṽ
j]∪{N ∈ F̃ ; P̃(N ) = 0}

)
, j = 1,2,

F̃t = σ

(
σ(ũ0,rtW̃ ,rt ṽ1,rt ṽ2)∪σt [Ṽ

1]∪σt [Ṽ
2]∪{N ∈ F̃ ; P̃(N ) = 0}

)
,

where σt denotes the history of a random distribution, and the generalised Young mea-

sures are viewed in the sense of random distributions as in Definition 2.1.27. Accordingly,

for all t ∈ [0,T ] and ϕ ∈C∞
div(T

3) we consider the following functionals:

M (w,V )t =
∫
T3

w(t) ·ϕ dx−
∫ t

0

∫
T3
⟨νt,x,ξ ⊗ξ ⟩ : ∇ϕ dxds

−
∫
(0,t)×T3

⟨ν∞
t,x,ξ ⊗ξ ⟩ : ∇ϕ dλ

Ψt = ∑
k=1

∫ t

0

(∫
T3

φk ·ϕ dx
)2

ds,

(Ψk)t =
∫ t

0

∫
T3

φk ·ϕ dxds.

Arguing similarly as in (3.1.3), the functional M (w,V )t is well-defined. Now let M (ṽ j+

ũ0, Ṽ
j)s,t denote the increment M (ṽ j + ũ0,V

j)t −M (ṽ j + ũ0, Ṽ
j)s and similarly for

Ψs,t and (Ψk)s,t . To show that (3.1.45) continues to hold in the new probability space it

suffices to show

M (ṽ j + ũ0, Ṽ
j) =

∫ t

0

∫
T3

φ ·ϕ dxdW̃ j
s , (3.1.82)
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that is, the deterministic part is equivalent to the stochastic part. We verify (3.1.82) by

computing its corresponding quadratic and cross variations of the F j
t -martingale process

M (ṽ j + ũ0, Ṽ
j) as follows:

⟨⟨M (ṽ j + ũ0, Ṽ
j)⟩⟩= Ψt , ⟨⟨M (ṽ j + ũ0, Ṽ

j),β
j

k ⟩⟩= (Ψk)t , (3.1.83)

respectively. Indeed, in case of (3.1.83) we have

〈〈
M (ṽ j + ũ0, Ṽ

j)−
∫ t

0

∫
T3

φ ·ϕ dxdW̃ j
s

〉〉
= 0. (3.1.84)

Therefore, (ṽ j + ũ0, Ṽ
j,W̃ ) solves the system (3.1.45) on the new probability space pro-

vided (3.1.83) holds. We proceed to show that M (ṽ j + ũ0, Ṽ
j) is indeed a martingale.

Since the mapping

(v j,V j) 7→ M (v j,V j)

is well-defined and continuous we infer

M (v j,V j)∼d M (ṽ j + ũ0, Ṽ
j)

Next we we fix s, t ∈ [0,T ], with s < t and consider a continuous function h such that

h : V |[0,s]→ [0,1].

Since the process

M (v j,V j) =
∫ t

0

∫
T3

φ ·ϕ dxdW j
s

is a square integrable (G j
t )≥0-martingale, we deduce that

[M (v j,V j)]2 −Ψt , M (v j,V j)β
j

k − (Ψk)t ,

are (F j
t )t≥0-martingales. Let rt be a restriction function to the interval [0, t], then in view

of Proposition 3.1.12 we infer

Eµ j [h(rtv j,rtV
j,rtW j)M (v j,V j)s,t ] =

EP̃[h(rt [ṽ j + ũ0],rtṼ
j,rtW̃ j)M (ṽ j + ũ0, Ṽ

j))s,t ] = 0,
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Eµ j [h(rtv j,rtW j,rtV
j)([M (v j,V j)]2 −Ψ)s,t ]

= EP̃[h(rt [ṽ j + ũ0],rtṼ
j,rtW̃ j)([M (ṽ j + ũ0, Ṽ

j)]2 −Ψ)s,t ])] = 0,

Eµ j [h(rtv j,rtW j,rtV
j)(M (v j,V j)β

j
k − (Ψk))s,t)]

= EP̃[h(rt [ṽ j + ũ0],rtṼ
j,rtW̃ j)(M (ṽ j + ũ0, Ṽ

j)β
j

k − (Ψk))s,t ] = 0.

Accordingly, we have shown (3.1.83) and (3.1.84) hold. Consequently, both solutions

satisfy the momentum equation in the sense of Definition 3.1.2 driven by the stochastic

Wiener process W̃ . Furthermore, using Proposition 3.1.12 and arguing as in Section 3.1.3

(the energy arguments) we infer that the energy inequality continues to hold on the prod-

uct probability space.

Finally, to show that pathwise uniqueness implies uniqueness in the sense of probability

law we apply results in Theorem 3.1.13. We note this holds provided that ũ2 = ṽ2 + ũ0

is strong solution. We assign ũ2 a strong solution based on following argument. We

recall that on the original space (Ω2,F 2,P2) the strong solution u2 is supported on

C([0,T ];C1(T3)) and we have the assertion V 2 = (δu2(t,x),0,0) P2-a.s. Moreover, the

embedding

C([0,T ];C1(T3)) ↪→C([0,T ];W−4,2(T3))

is continuous and dense such that

C([0,T ];C1(T3)) ∈ B(C([0,T ];W−4,2(T3)))⊂ Bu,

we refer the reader to [82, Corrollary A.2] for more details. Therefore, we infer that

µ2(C([0,T ];C1(T3))) = P2(v ∈C([0,T ];C1(T3))) = 1,

and ũ2 is a strong solution to the system (3.1.45) in the sense of Definition 3.1.3 (with

τM = T ) on (Ω̃,F̃ , P̃). On the account of Theorem 3.1.13 we infer

P̃
({

(ũ1, Ṽ 1) = (ṽ2 + ũ0, Ṽ
2) = (ṽ2 + ũ0,(δũ,0,0))

})
= 1.
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Consequently, we conclude

µ1[(ũ1
0, ṽ

1, Ṽ 1,W̃ ) ∈ A] = P̃(ω ∈ Ω;(ũ1
0, ṽ

1, Ṽ 1,W̃ ) ∈ A)

= P̃(ω̃ ∈ Ω̃;(ũ0, ṽ2,W̃ , Ṽ 2) ∈ A)

= µ2[(ũ0, ṽ2,W̃ , Ṽ 2) ∈ A] A ∈ B(Θ).

The proof is complete.
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4.1 Compressible Fluids

4.1.1 Introduction

In this section we consider the complete stochastic Euler System. The system models an

ideal fluid which is temperature dependent, compressible, inviscid and driven by stochas-

tic forcing. In particular, the fluid model is described by means of three basic state vari-

ables: the mass density ρ = ρ(t,x), the velocity field u = u(t,x), and the (absolute) tem-

perature ϑ = ϑ(t,x), where t is the time, x ∈ T3 is a space variable in periodic domain

(Eulerian coordinate system). We study the global-in-time evolution of the fluid model

flow governed by a system of partial differential equations (mathematical formulations of

the physical principles) given by

dρ +div(ρu)dt = 0 inQ,

d(ρu)+div(ρu⊗u)dt +∇p(ρ,ϑ)dt = ρφ dW inQ, (4.1.1)

d
(

1
2

ρ|u|2+ρe(ρ,ϑ)

)
= −div

[(
1
2

ρ|u|2+ρe(ρ,ϑ)+ p(ρ,ϑ)

)
u
]

dt

+
1
2
∥
√

ρφ∥2
L2

dt +ρφ ·udW,

satisfying: the balance of mass, momentum and total energy, respectively. In (4.1.1),

p(ρ,ϑ) denotes pressure, W denotes the driving force given by a cylindrical Wiener

process, and φ is a Hilbert-Schmidt operator, see Section 4.1.3 for details. In order to

model a physical relevant ( i.e. realistic ) fluid we endow the system (4.1.1) by a set

of constitutive relations characterising the physical principles of a compressible inviscid

fluid. Accordingly, we assume that the pressure p(ρ,ϑ) and the internal energy e =
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e(ρ,ϑ) satisfy the caloric equation of state

p = (γ −1)ρe, (4.1.2)

where γ > 1 is the adiabatic constant. Next we assert that the absolute temperature ϑ

satisfies the Boyle-Mariotte thermal equation of state:

p = ρϑ yielding e = cvϑ ,cv =
1

γ −1
. (4.1.3)

Finally, we assume that the pressure p= p(ρ,ϑ), the specific internal energy e= e(ρ,ϑ),

and the specific entropy s = s(ρ,ϑ) are interrelated through Gibbs’ relation

ϑDs(ρ,ϑ) = De(ρ,ϑ)+ p(ρ,ϑ)D
(

1
ρ

)
, (4.1.4)

where D is a derivative. At this stage it is essential to note that if p,e and s satisfy

(4.1.4), in context of any smooth solutions to (4.1.1), the Second law of thermodynamics

is enforced through the entropy balance equation

d(ρs(ρ,ϑ))+divx(ρs(ρ,ϑ)u)dt = 0, (4.1.5)

where s(ρ,ϑ) denotes the (specific) entropy and is of the form

s(ρ,ϑ) = log(ϑ cv)− log(ρ). (4.1.6)

The premise of this section is to study the weak solutions of (4.1.1). In the context of

weak solutions, the equality in (4.1.5) no longer holds. In this case the balance of entropy

is given as an inequality, we refer the reader to [4] for more details. The assumptions in

(4.1.3) for the state variables ρ,ϑ trivially imply thermodynamics stability

∂ρ p(ρ,ϑ)> 0, ∂ϑ p(ρ,ϑ)> 0 for allρ,ϑ > 0. (4.1.7)

One of the difficulties we face in fluid models is the analysis of fluid’s interaction with

prescribed boundaries. To circumvent such problems from physical boundaries we assign

periodic boundary conditions to our system (4.1.1),that is, the physical domain T3 can be
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identified with a flat torus

T3 = ([0,1]|0,1)3.

Finally, the initial state of fluid emanates from random initial data

ρ(0, ·) = ρ0, ϑ(0, ·) = ϑ0, u(0, ·) = u0, (4.1.8)

subject to initial law Λ. To ensure our solutions are physical relevant we augment the

problem by the total energy balance of the form

d
∫
T3

[
1
2

ρ|u|2+ρe
]

dx =
1
2
∥
√

ρφ∥2
L2

dt +
∫
T3

ρφ ·udxdW. (4.1.9)

We note the strong solutions of the complete Euler system (4.1.1) satisfy the energy

equality (4.1.9), but in weak solutions it has to be added in the definition.

4.1.2 Mathematical framework and main results

In addition to general materials on random variables in Section 2.1 we present the prob-

ability framework for Markov selection and stochastic framework suitable for solving

(4.1.1). We conclude the section by stating the main results of the complete Euler sys-

tem.

Probability framework

Let (X ,τ) be a topological space. We denote by B(X) the σ -algebra of Borel subsets

of X . Let P be a Borel measure on X , the symbol B(X) denotes the σ -algebra of all

Borel subsets of X augmented by all zero measure sets. Let Prob[X ] denote the set of all

Borel probability measures on a topological space X . Furthermore, let ([0,1],B[0,1],L )

denote the standard probability space, where L is one dimensional Lebesgue measure.

Trajectory/Path spaces

Let (X ,dX) be a Polish space. For t > 0 we introduce the path spaces

Ω
[0,T ]
X =C([0,T ];X), Ω

[T,∞)
X =C([T,∞);X), Ω

[0,∞)
X =C([0,∞);X),
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the path spaces are Polish as long as X is Polish, and we denote by BT = B(Ω
[0,T ]
X ) the

Borel σ -algebra. Then, for ω ∈ Ω
[0,T ]
X we define a time shift operator

Φτ : Ω
[t,∞)
X → Ω

[T+τ,∞)
X , Φτ [ω]s = ωs−τ , s ≥ T + τ,

where Φτ is an isometry from Φτ : Ω
[T,∞)
X to Ω

[T+τ,∞)
X . For a Borel measure ν on Ω

[t,∞)
X ,

the time shift Φ−τ [ν ] is a Borel measure on the space Ω
[T−τ,∞)
X given by

Φ−τ [ν ](B) = ν(Φτ(B)), B ∈ B(Ω
[T−τ,∞)
X ).

We proceed to recall the results of Stroock and Varadhan [86] we need for our analysis. In

view of [86, Theorem 1.1.6] we obtain disintegration results, that is, existence of regular

conditional probability law.

Theorem 4.1.1 (Disintegration). Let X be a polish space. Given P ∈ Prob[Ω[0,∞)
X ], let

T > 0 be a finite Bt-stopping time. Then there exists a unique family of probability

measures

P|ω̃BT
∈ Prob[Ω[T,∞)

X ] for P-a.a.ω̃

such that the mapping

Ω
[0,∞)
X ∋ ω̃ 7→ P|ω̃BT

∈ Prob[Ω[T,∞)
X ]

is BT -measurable and the following properties hold

(a) For ω ∈ Ω
[T,∞)
X we have P|ω̃BT

-a.s.

ω(T ) = ω̃(T );

(b) For any Borel set A ⊂ Ω
[0,T ]
X and any Borel set B ⊂ Ω

[T,∞)
X ,

P(ω|[0,T ]∈ A,ω|[T,∞)∈ B) =
∫

ω̃|[0,T ]∈A
P|ω̃BT

(B)dP(ω̃).

Note, a conditional probability corresponds to disintegration of probability measure with

respect to a σ -field. Accordingly, reconstruction can be understood as the opposite pro-

cess of disintegration, that is, some sort of “gluing together" procedure. On the account of
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results established in [86, Lemma 6.1.1] and [86, Theorem 6.1.2] we have the following

results on reconstruction.

Theorem 4.1.2 (Reconstruction). Let X be a Polish space. Let P ∈ Prob[Ω[0,∞)
X ] and T

be a finite BT -stopping time. Suppose that Qω is a family of probability measures, such

that

Ω
[0,∞)
X ∋ ω 7→ Qω ∈ Prob[Ω[T,∞)

X ],

is BT -measurable. Then there exists a unique probability measure P ⊗T Q such that :

(a) For any Borel set A ∈ Ω
[0,T ]
X we have

(P ⊗T Q)(A) = P(A);

(b) For ω̃ ∈ Ω we have P-a.s.

(P ⊗T Q)|ω̃BT
= Qω̃

Markov processes

We proceed to study Markov process following the abstract framework in [12] and ref-

erences therein. Assuming (X ,dX) and (F,dF) are two Polish spaces, let the embedding

F ↪→ X be continuous and dense. Moreover, let Y be a Borel subset of F . Since (Y,dF) is

not necessarily a complete space, it may happen that the embedding Y ↪→ X is not dense.

A family of probability measures {Py}y∈Y on Ω
[0,∞)
X is called Markovian if we have for

y ∈ Y that

Pω(τ) = Φ−τPy|ωBτ
−a.a.ω ∈ Ω

[0,∞)
X and allτ ≥ 0.

Next we define probability measures with support only on certain subset of a Polish space.

Definition 4.1.1. Let Y be a Borel subset of F and let P ∈ Prob[Ω[0,∞)
X ]. A family of

probability measures P is concentrated on the paths with values in Y if there is some

A ∈ B(Ω
[0,∞)
X ) such that P(A) = 1 and A ⊂ {ω ∈ Ω

[0,∞)
X : ω(τ) ∈ Y ∀τ ≥ 0}. We write

P ∈ ProbY [Ω
[0,∞)
X ].

We generalise the classical Markov property (to a situation where it only holds for a.e

time-point) as follows:
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Definition 4.1.2 (Almost Sure Markov property). Let y 7→ Py be a measurable map de-

fined on a measurable subset Y ⊂ F with values in ProbY [Ω
[0,∞)
X ]. The family {Py}y∈Y

has the almost sure Markov property if for each y ∈ Y there is a set Z⊂ (0,∞) with zero

Lebesgue measure such that

Pω(τ) = Φ−τPy|ωBτ
for Py − a.a.ω ∈ Ω

[0,∞)
X

and all τ ̸∈ Z

Finally, based on the link between disintegration and reconstruction as observed by [74],

we have the following definition.

Definition 4.1.3 (Almost sure pre-Markov family). Let Y be a Borel subset of F . Let C :

Y → Comp(Prob[Ω[0,∞)
X ]∩ProbY [Ω

[0,∞)
X ]) be a measurable map, where Comp(·) denotes

the family of all compact subsets. The family {C (y)}y∈Y is almost surely pre-Markov if

for each y ∈ Y and P ∈ C (y) there is a set Z⊂ (0,∞) with zero Lebesgue measure such

that the following holds for all τ ̸∈ Z:

(a) The disintegration property holds, that is, we have

Φ−τP|ωBτ
∈ C (ω(τ)) for P-a.a. ω ∈ Ω

[0,∞)
X ;

(b) The reconstruction property holds, that is, for each BT -measurable map ω 7→ Qω :

Ω
[0,∞)
X → Prob(Ω[τ,∞)

X ) with

Φ−τQω ∈ C (ω(τ)) for P-a.a. ω ∈ Ω
[0,∞)
X

we have P ⊗τ Q ∈ C (y).

Note Definition 4.1.3 is motivated by results in [54, 58]. We conclude our probability

framework by stating the following results.

Theorem 4.1.3 (Markov Selection). Let Y be a Borel subset of F. Let {C (y)}y∈Y be

an almost sure pre-Markov family (as defined in Definition 4.1.3 ) with nonempty convex

values. Then there is a measurable map y 7→Py defined on Y with values in ProbY [Ω
[0,∞)
X ]

such that Py ∈ C (y) for all y ∈Y and {Py}y∈Y has the almost sure Markov property (as

defined in Definition 4.1.2 )
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The following proposition is proved in [54].

Proposition 4.1.4 ([54], Proposition B.1). Let α and β be two real-valued continuous

and (Bt)-adapted stochastic processes on Ω such that α,β : [0,∞)×Ω → R and let

t0 ≥ 0. Then for P ∈ Prob[Ω] the following conditions are equivalent:

(a) (αt)t≥0 is a ((Bt)t≥0,P)-square integrable martingale with quadratic variation

(βt)t≥0

(b) For P-a.a. ω ∈Ω the stochastic process (αt)t≥t0 is a ((Bt)t≥t0 ,P
ω

Bt0
)-square inte-

grable martingale with quadratic variation (βt)t≥t0 and we have EP [E
P|·Bt0 [βt ]]<

∞ for all t ≥ t0.

4.1.3 Stochastic analysis

Let (Ω,F ,(Ft)t≥0,P) be a complete stochastic basis with a probability measure P on

(Ω,F ) and a right-continuous filtration (Ft)t≥0. Let U be a separable Hilbert space

with an orthonormal basis (ek)k∈N. We denote by L2(U ,L2(T3)) the set of Hilbert-

Schmidt operators from U to L2(T3). The stochastic process W is a cylindrical Wiener

process W = (Wt)t≥0 in U , and is of the form

W (s) = ∑
k∈N

ekβk(s), (4.1.10)

where (βk)k∈N is a sequence of independent real-valued Wiener process relative to (Ft)t≥0.

To identify the precise definition of the diffusion coefficient, set U = ℓ2 and consider

ρ ∈ Lγ(T3), ρ > 0, then the mapping φ ∈ L2(U ,L2(T3)), that is, φ : U → L2(T3) is

defined as follows

φ(ek) = φk.

We suppose that φ is a Hilbert-Schmidt operator such that

∑
k≥1

∥φ(ek)∥2
L∞(T3)< ∞, (4.1.11)
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in particular we have φ ∈ L2(U ,L∞(T3)). Consequently, since φ is bounded we deduce

∥
√

ρφ∥2
L2(U ,L2(T3))≲ c(φ)(∥ρ∥L1(T3)). (4.1.12)

In this setting ρφ ∈ L2(U ,L1(T3)). Now arguing similarly as in [20], we expect the mo-

mentum equation to be satisfied only in the sense of distributions and consider the em-

bedding L1 ↪→W−k,2(T3) (which holds provided k > 3/2), and we interpret the stochas-

tic integral as a process in the Banach space W−k,2(T3), k > 3/2. Then the stochastic

integral ∫
τ

0
ρφ dW = ∑

k≥1

∫
τ

0
ρφ(ek)dβk,

takes values in the Banach space C([0,T ];W−k,2(T3)) in the sense that

∫
T3

(∫
τ

0
ρφ dW ·ϕ

)
dx = ∑

k≥1

∫
τ

0

(∫
T3

ρφ(ek) ·ϕ dx
)

dβk, ϕ ∈W k,2(T3),k >
3
2
.

(4.1.13)

Finally, we define the auxiliary space U0 with U ⊂ U0 as

U0 : =

{
e = ∑

k
αkek : ∑

k

α2
k

k2 < ∞

}
,

∥e∥2
U0

: =
∞

∑
k

α2
k

k2 , e = ∑
k

αkek, (4.1.14)

so that the embedding U ↪→ U0 is Hilbert-Schmidt, and the trajectories of W belong

P-a.s. to the class C([0,T ];U0) (see [35]).

4.1.4 Strong solutions

The concept of weak(measure-valued)-strong uniqueness principle for dissipative solu-

tions requires existence of strong solutions. These solutions are strong in the probabilistic

and PDE sense, at least locally in time. In particular, the Euler system (4.1.1) will be

satisfied pointwise (not only in the sense of distributions) on the given stochastic basis

associated to the cylindrical Wiener process W .

Definition 4.1.4 (Strong Solution). Let (Ω,F ,(Ft)t≥0,P) be a complete stochastic basis

with a right-continuous filtration, let W be an (Ft)t≥0-cylindrical Wiener process. The

triplet [r,Θ,U] and a stopping time t is called a (local) strong solution to the system (4.1.1)

provided:
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• the density r > 0 P-a.s., t 7→ r(t ∧ t, ·) ∈W 3,2(T3) is (Ft)t≥0-adapted,

E

[
sup

t∈[0,T ]
∥r(t ∧ t, ·)∥p

W 3,2

]
< ∞ for all 1 ≤ p < ∞;

• the temperature Θ > 0 P-a.s., t 7→ Θ(t ∧ t, ·) ∈W 3,2(T3) is (Ft)t≥0-adapted,

E

[
sup

t∈[0,T ]
∥Θ(t ∧ t, ·)∥p

W 3,2

]
< ∞ for all 1 ≤ p < ∞;

• the velocity t 7→ U(t ∧ t, ·) ∈W 3,2(T3)is (Ft)t≥0-adapted,

E

[
sup

t∈[0,T ]
∥U(t ∧ t, ·)∥p

W 3,2

]
< ∞ for all 1 ≤ p < ∞;

• for all t ∈ [0,T ] there holds P-a.s.

r(t ∧ t) = ρ(0)−
∫ t∧t

0
divx(rU)dt,

(rU)(t ∧ t) = (rU)(0)−
∫ t∧

0
div(rU⊗U)dt −

∫ t∧t

0
∇x p(r,Θ)dt +

∫ t∧t

0
rφ dW,

(rs(r,Θ))(t ∧ t) = (rs(r,Θ))(0)−
∫ t∧t

0
divx(rs(r,Θ)U)dt,

where s is the total entropy given by (4.1.6).

Remark 4.1.1. We expect a blow up in finite time for strong solutions as in the determin-

istic case [85].

4.1.5 The approximate system

To begin, we introduce a cut-off function

χ ∈C∞(R),χ(z) =


1forz ≤ 0,

χ ′(z)≤ 0 for 0 < z < 1,

χ(z) = 0 for z ≥ 1,
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together with the operator

φε = χ

(
|v|−1

ε

)
φ , ε > 0. (4.1.15)

The operator with a cut-off expression is needed for exponential estimates, see Section

4.1.8 for details. Let Q = (0,T )×T3 be a periodic space-time cylinder. We consider a

stochastic variant of a system introduced in [73], and further refined in [10]. That is, the

complete Euler system (4.1.1) is approximated by:
dρ +div(ρu)dt = 0 in Q,

dρu+div(ρu⊗u)dt +∇x p(ρ,s)dt = εL udt +ρφεdW in Q,

dρs+div(ρsu)dt ≥ 0 in Q,

(4.1.16)

with initial conditions

ρ(0.·) = ρ0,ε u(0, ·) = u0,ε , s(0, ·) = s0,ε .

Here, the unknown fields are: the fluid density ρ = ρ(t,x), the velocity u = u(t,x) and

the total entropy (S = ρs). We denote by L , the suitable ‘viscosity’ operator.

Let W 3,2(T3) be a separable Hilbert space complemented with (( ; )), a scalar product on

W 3,2(T3), i.e.

((v;w)) = ∑
|α|=3

∫
T3

∇
α
x v ·∇α

x wdx+
∫
T3

v ·wdx, v,w ∈W 3,2(T3).

In reference to [67], we consider a self-adjoint operator L on W 3,2(T3) associated with

the bilinear form (( ; )) given by

L u = ∆
3u−u = ∑

|α|=3
(∇α

x )∇
α
x u−u.

In view of the viscosity operator L considered, the weak formulation associated with the
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momentum equation in (4.1.16) reads

[∫
T3

ρu ·ϕ dx
]t=τ

t=0
=
∫ T

0

∫
T3

[
ρu⊗u : ∇xϕ +ρ

γ exp
(

s
cv

)
divϕ

]
dxdt

−ε

∫ T

0
((u;ϕ))dt +

∫ T

0

∫
T3

ρφ ·ϕ dxdW,

for any τ > 0, and any ϕ ∈W 3,2(T3). The continuity equation and total entropy in (4.1.16)

are solved strongly, while the momentum equation is solved in the weak sense. We expect

the approximate system (4.1.16) to have stochastically strong solutions, but in the present

work martingale solutions are sufficient for our purposes. In the following we state the

existence theorem of martingale solutions to the approximate system (4.1.16).

Theorem 4.1.5. Assume (4.1.11) holds. Let Λε be a Borel probability measure on Lγ(T3)×

Lγ(T3)×L
2γ

γ+1 (T3) such that

Λε

{
(ρ,S,m) ∈ Lγ(T3)×Lγ(T3)×L

2γ

γ+1 (T3) : 0 < ρ < ρ < ρ,0 < ϑ < ϑ < ϑ

}
= 1,

where ϑ ,ϑ ,ρ,ρ are deterministic constants. Moreover, the moment estimate

∫
Lγ (T3)×Lγ (T3)×L

2γ

γ+1 (T3)

∥∥∥∥1
2
|m|2

ρ
+ cvρ

γ exp
(

S
cvρ

)∥∥∥∥p

L1(T3)

dΛε < ∞,

holds for all p ≥ 1. Then there exists a martingale solution to the approximate problem

(4.1.16) subject to initial law Λε .

4.1.6 Measure-valued solutions

In order to introduce the concept of stochastic measure-valued martingale solutions, we

reformulate the complete Euler system using the variables m = ρu and S = ρs so that

(4.1.1) reads

dρ +divxmdt = 0 (4.1.17)

dm+divx

(
m⊗m

ρ

)
dt +∇x p(ρ,s)dt = ρφdW in Q, (4.1.18)

dS+divx

(
Sm
ρ

)
dt ≥ 0 in Q. (4.1.19)

We note that, in general, the admissibility criterion for physically possible solutions is
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the energy equality and it is the only tool of establishing a priori bounds. However,

the ‘a priori’ bounds deduced do not guarantee strong convergences of nonlinear terms
m⊗m

ρ
, p(ρ,s)∈ L1(T3) due to the presence of oscillations and concentrations. Given such

a scenario, we adopt the characterisation of (nonlinear terms) in the weak formulation as

combination of Young measures and defect measures.

• Young measures are probability measures on the phase space, they capture the os-

cillations of the solution.

• Defect measures are measures on physical space-time and they account for the

‘blow up’ type collapse due to possible concentration points.

We are now ready to introduce the concept of measure-valued martingale solutions to

the complete stochastic Euler system (4.1.17)-(4.1.19). From here onward, we denote by

M+ the space of non-negative radon measures, and we denote by A the space of “dummy

variables":

A =

{
[ρ ′,m′,S′]

∣∣∣∣ρ ′ ≥ 0,m′ ∈ R3,S′ ∈ R
}

(4.1.20)

Let P(A) denote the space of probability measures on A.

Definition 4.1.5 (Dissipative measure-valued martingale solution). Let Λ be a Borel

probability measure on Lγ ×L
2γ

γ+1 ×Lγ and φ ∈ L2(U ;L2(T3)). Then

((Ω,F ,(Ft)t≥0,P),ρ,m,S,Rconv,Rpress,Vt,x,W )

is called a dissipative measure-valued solution to (4.1.17)-(4.1.19) with initial law Λ,

provided1:

(a) (Ω,F ,(Ft)t≥0,P) is a stochastic basis with complete right-continuous filtration;

(b) W is a (Ft)t≥0-cylindrical Wiener process;

(c) The density ρ is (Ft)t≥0-adapted and satisfies P-a.s.

ρ ∈Cloc([0,∞),W−4,2(T3))∩L∞
loc(0,∞;Lγ(T3));

1Some of our variables are not stochastic processes in the classical sense and we use their adaptedness
in the sense of random distributions as introduced in Section 2.1.3, see [15, Chap. 2.2] for more details.
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(d) The momentum m is (Ft)t≥0-adapted and satisfies P-a.s.

m ∈Cloc([0,∞),W−4,2(T3))∩L∞
loc(0,∞;L

2γ

γ+1 (T3));

(e) The total entropy S is (Ft)t≥0-adapted and satisfies P-a.s.

S ∈ L∞([0,∞),Lγ(T3))∩BVw,loc(0,∞;W−l,2(T3)), l >
5
2

;

(f) The parametrised measures (Rconv,Rpress,V ) are (Ft)t≥0-progressively measur-

able and satisfy P-a.s.

t 7→ Rconv(t) ∈ L∞
weak-(*)(0,∞;M+(T3,R3×3)); (4.1.21)

t 7→ Rpress(t) ∈ L∞
weak-(*)(0,∞;M+(T3,R)); (4.1.22)

(t,x) 7→ Vt,x ∈ L∞
weak-(*)(Q;P(A)); (4.1.23)

(g) Λ = P◦ (ρ(0),m(0),S0)−1;

(h) For all ϕ ∈C∞(T3) and all τ > 0 there holds P-a.s.

[∫
T3

ρϕ dx
]τ=0

t=0
=
∫

τ

0

∫
T3

m ·∇ϕ dxdt; (4.1.24)

(i) For all ϕ ∈C∞(T3) and all τ > 0 there holds P-a.s.

[∫
T3

m ·ϕ
]t=τ

t=0
=

∫
τ

0

∫
T3

[
m⊗m

ρ
: ∇ϕ +ρ exp

(
S

cvρ
divϕ

)]
dxdt

+
∫

τ

0
∇ϕ : dRconvdt +

∫
τ

0

∫
T3

divϕ dRpressdt

+
∫

τ

0
ϕ ·ρφ dxdW ; (4.1.25)

(j) The total entropy holds in the sense that

∫
τ

0

∫
T3

[
⟨Vt,x;Z(S′)⟩∂tϕ + ⟨Vt,x,Z(S′)

m′

ρ ′ ⟩ ·∇ϕ

]
dxdt ≤

[∫
T3
⟨Vt,x;Z(S′)⟩ϕ dx

]t=τ

t=0
,

(4.1.26)

for any ϕ ∈C1([0,∞)×T3),ϕ ≥ 0,P-a.s.,and any, Z ∈ BC(R) non-decreasing.
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(k) The total energy satisfies

Et = Es +
1
2

∫ t

s
∥
√

ρφ∥2
L2(U ;L2(T3)) dσ +

∫ t

s

∫
T3

m ·φ dxdW, (4.1.27)

P-a.s. for a.a. 0 ≤ s < t, where

Et =
∫
T3

[
1
2
|m|2

ρ
+ cvρ

γ exp
(

S
cvρ

)]
dx+

1
2

∫
T3

dtrRconv(t)+ cv

∫
T3

dtrRpress(t)

for t > 0 and

E0 =
∫
T3

[
1
2
|m0|2

ρ0
+ cvρ

γ

0 exp
(

S0

cvρ0

)]
dx.

Remark 4.1.2. The use of cut-off function Z in (4.1.26) is inspired by Chen and Frid [30].

4.1.7 Main results

We proceed to state the second main results of the thesis. The existence of dissipative

measure-valued martingale solutions is given in the following theorem.

Theorem 4.1.6. Assuming (4.1.11) holds. Let Λ be a Borel probability measure on

Lγ(T3)×Lγ(T3)×L
2γ

γ+1 (T3) such that

Λ

{
(ρ,S,m) ∈ Lγ(T3)×Lγ(T3)×L

2γ

γ+1 (T3) : 0 < ρ < ρ < ρ,0 < ϑ < ϑ < ϑ

}
= 1,

where ϑ ,ϑ ,ρ,ρ are deterministic constants. Moreover, the moment estimate

∫
Lγ (T3)×Lγ (T3)×L

2γ

γ+1 (T3)

∥∥∥∥1
2
|m|2

ρ
+ cvρ

γ exp
(

S
cvρ

)∥∥∥∥p

L1(T3)

dΛ < ∞,

holds for all p ≥ 1. Then there exists a dissipative measure-valued martingale solution

to the complete stochastic Euler system (4.1.17)-(4.1.19) in the sense of Definition 4.1.5

subject to initial law Λ.

Furthermore, in view of (4.1.2) the following condition (i.e. purely technical hypothesis)

is satisfied

|p(ρ,ϑ)|≲ (1+ρ +ρe(ρ,ϑ)+ϑ |s(ρ,ϑ)|), (4.1.28)

and we shall use it to establish bounds. The use of (4.1.28) will be made clear in later

sections when deriving bounds. In addition to existence results we establish the following
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weak (measure-valued)-strong uniqueness principle:

Theorem 4.1.7. The pathwise weak-strong uniqueness holds true for the system (4.1.17)-

(4.1.19) in the following sense. Let the thermodynamics functions e= e(ρ,ϑ),s= s(ρ,ϑ),

and p = p(ρ,ϑ) satisfy the Gibbs’ relation (4.1.4), and the technical hypothesis (4.1.28).

let

[((Ω,F ,(F )t≥0,P),ρ,m,S,Rconv,Rpress,Vt,x,W )

be a dissipative measure-valued martingale solution to (4.1.17)-(4.1.19) in the sense of

Definition (4.1.5), let the triplet [r,Θ,U] and a stopping time t be a strong solution in the

sense of Definition 4.1.4 of the same problem; defined on the stochastic basis with the

same Wiener process and with initial data

ρ(0, ·) = r(0, ·), u(0, ·) = U(0, ·), ϑ(0, ·) = Θ(0, ·) P-a.s. (4.1.29)

Then

[ρ,ϑ ,u](·∧ t)≡ [r,Θ,U](·∧ t),

and

Rconv = Rpress = 0,

P-a.s., and for any (t,x) ∈ (0,T )×T3

Vt∧t,x = δr,U,s(r,Θ),

P-a.s.

4.1.8 Basic approximate problem

We devote this section of the thesis to the sketch proof of Theorem 4.1.5, that is, exis-

tence of martingale solutions to (4.1.16). The sketch proof of the theorem follows from

the ideas presented in [13] to which we refer to for further details. We construct these

solutions via a multi-level approximation scheme. The idea here is to start with a finite

dimensional approximation of Galerkin type. However, as a consequence of maximum

principle (usually incompatible with Galerkin type approximation) this can only be ap-

plied to the momentum equation since we need the density ρ and temperature ϑ to be

positive at the first level of approximation. Adopting the approximation scheme intro-
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duced in [50] and adapted to the stochastic setting in [13] with appropriate adjustments,

we regularize our system as follows.

Let ∆ be the Laplace operator defined on the periodic domain T3. Let {wn}n≥1 be the

orthonormal system of the associated eigenfunctions. We consider the Galerkin method

given by the family of finite-dimensional spaces;

Hm =

(
span

{
wn

∣∣∣∣n ≤ m
})3

,m = 1,2, . . .

endowed with the Hilbert structure of the Lebesgue space L2(Q,R3). Let

Πm : L2(Q,R3)→ Hm,

be the associated L2-orthogonal projection, and we have W 2,2(T3,R3) ↪→↪→ C(T3,R3).

Indeed,

∥Πm[f]∥L∞(T3)≲ ∥Πm[f]∥W 2,2(T3)≲ ∥f∥W 2,2(T3), (4.1.30)

where the associated embedding constants are independent of m. Furthermore, since Hm

is finite dimensional, all norms are equivalent on Hm for any fixed m- (a property that will

be frequently used at the first level of approximation). Finally, we introduce the operator

[v]R = χ(∥v∥Hm−R)v,

defined for v ∈ Hm. Let Q = (0,T )×T3 be the space-time cylinder, we seek to solve the

basic approximate system:

dρ +div(ρ[u]R)dt = 0, (4.1.31)

dΠm[ρu]+Πm[div(ρ[u]R ⊗u)]dt +Πm

[
χ(∥u∥Hm−R)∇(p(ρ,ϑ))

]
(4.1.32)

= Πm

[
εL u

]
dt +ρΠm[(φε)]dW,

dS+[div(S[u]R)]dt = 0, (4.1.33)
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subject to initial law Λ, prescribed with random initial data

ρ(0, ·) = ρ0 ∈C2+ν(T3), ρ0 > 0,ϑ(0, ·) = ϑ0, ϑ0 ∈C2+ν(T3), ϑ0 > 0,

u(0, ·) = u0 ∈ Hm.
(4.1.34)

In our basic approximate system (4.1.31)-(4.1.33), equations (4.1.31) and (4.1.33) are de-

terministic, that is, they can be solved pathwise, and equation (4.1.32) involves stochastic

integration. The Galerkin projection applied above reduces the problem to a variant of

ordinary stochastic differential equation. We solve the system (4.1.31)-(4.1.34) using an

iteration scheme.

Iteration Scheme

We construct solutions to (4.1.31)-(4.1.34) using a modification of the Cauchy collocation

method. Thus, fixing a time step h > 0 we set

ρ(t, ·) = ρ0, ϑ(t, ·) = ϑ0, u(t, ·) = u0, for t ≤ 0, (4.1.35)

and define recursively, for t ∈ [nh,(n+1)h)

dρ +div(ρ[u(nh, ·)]R)dt = 0, ρ(nh, ·) = ρ(nh−, ·), (4.1.36)

dS+[div(S[u(nh, ·)]R)]dt = 0, ϑ(nh, ·) = ϑ(nh−, ·), (4.1.37)

Here, the unknown quantities ρ,ϑ are uniquely deduced from the deterministic equations

(4.1.36) and (4.1.37) in terms of u and initial data. Now given ρ,ϑ we solve

dΠm[ρu]+Πm

[
div
(

ρ[u(nh, ·)]R ⊗u(nh, ·)
)]

dt +Πm

[
χ(∥u(nh, ·)∥Hm−R)∇(p(ρ,ϑ))

]
dt

(4.1.38)

= Πm

[
εL u

]
dt +Πm[ρ(φε)]dW, t ∈ [nh,(n+1)h), u(nh, ·) = u(nh−).

To solve (4.1.38), it is convenient to reformulate the system using du. We observe that

dΠm(ρu) = Πm(dρu)+Πm(ρdu) = Πm(∂tρu)+Πm(ρdu).
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We adopt the linear mapping M [ρ],

M [ρ] : Hm → Hm, M [ρ](u) = Πm(ρu),

or, equivalently,

∫
Q

M [ρ]u ·ϕ dx ≡
∫

Q
ρu ·ϕ dx for all ϕ ∈ Hm,

and its properties as introduced in ([51], section 2.2). To be specific, using maximum

principle, we take ρ to be bounded from below away from zero so that the operator

M [ρ] is invertible. Then we reformulate the relation in (4.1.38) to obtain

u(t)−u(nh−)+M−1[ρ(t)]
∫ t

nh
Πm

[
div
(

ρ[u(nh, ·)]R ⊗u(nh, ·)
)]

dt

+M−1[ρ(t)]
∫ t

nh
Πm

[
χ(∥u(nh, ·)∥Hm−R)∇(p(ρ,ϑ))

]
dt (4.1.39)

= M−1[ρ(t)]
∫ t

nh
Πm

[
εL u

]
dt

+M−1[ρ(t)]
∫ t

nh
ρΠm[(φε)]dW, nh < t < (n+1)h.

The constructed iteration scheme (4.1.36)-(4.1.38) gives a unique solution [ρ,ϑ ,u] for

any initial data (4.1.35), and the variables ρ,ϑ and u are continuous in time P-a.s. Indeed,

we find solution ρ and ϑ such that

ρ ∈C([0,T ];C2+ν(T3),ϑ ∈C([0,T ];C2+ν(T3)a.s.

by applying standard results (see, e.g [87]) pathwise. Finally, given ρ and ϑ we can find

the velocity

u ∈C([0,T ];Hm),P-a.s.

solving (4.1.38) recursively.

The limit for vanishing time step

The solution [ρ,ϑ ,u] provided by the iteration scheme (4.1.36)-(4.1.38) exists for any

time step h. Next, we show that as h → 0 the iteration scheme yields the basic approxi-

mate system (4.1.31)-(4.1.33). This essentially follows from establishing uniform bounds

for (4.1.36)-(4.1.38) independent of h following the arguments presented in [13, Section
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3.2]. In particular, we assume the initial data satisfies the bounds

0 < ρ ≤ ρ0,∥ρ0∥C2+ν (T3)≤ ρ, 0 < ϑ ≤ ϑ0,∥ϑ0∥C2+ν (T3)≤ ϑ ,

for deterministic constants ρ and ρ with ν > 0. Taking into account the standard results

on compressible transport equations and that [u]R is bounded in any Sobolev space in

terms of R, and the equivalence of norms we have:

• A priori bound for density ρ is given by

esssup(∥ρ(t, ·)∥2+ν

C +∥∂tρ(t, ·)∥Cν+∥ρ
−1(t)∥C(Q)≲ c(m,R,T,ρ,ρ), P-a.s

(4.1.40)

uniformly in h for deterministic constants ρ and ρ with ν > 0.

• Similarly, a priori bound for total entropy is

esssup(∥S(t, ·)∥2+ν

C +∥∂tS(t, ·)∥Cν+∥S−1(t)∥C(Q)≲ c(m,R,T,S,S), (4.1.41)

P-a.s., where the same bound of ϑ follows immediately from using S= ρ(logϑ cv −

log(ρ)), for deterministic constants ϑ and ϑ uniform in h.

• Following the lines in [13] (Section 3.2), that is, establishing bounds for relation

(4.1.38), we use a test function ϕ ∈ Hm and take a supremum over ϕ , pass to ex-

pectations and apply Burkholder-Davis-Gundy inequality to control the noise term.

Finally, applying Gronwall’s lemma we deduce the estimate

E

[
sup

τ∈[0,T ]
∥Πm[ρu](τ, ·)∥r

Hm
+ε sup

τ∈[0,T ]
∥u(τ, ·)∥r

Hm

]
≲ c(r,T )E[1+∥u0∥r

Hm
], r > 1.

(4.1.42)

To pass to the limit h → 0 in the momentum equation (4.1.38) we require the uni-

form bound (4.1.42) and compactness on the velocities in the space C([0,T ],Hm).

Furthermore, we need to control the difference (u− u(nh, ·)) uniformly in time.

Similarly, following closely the presentations in [13] with appropriate modifica-

tions to our particular case we infer

E
[
∥u∥Cβ ([0,T ];Hm)

]
≲ E

[
∥u0∥r

Hm
+1
]
, r > 2,β ∈

(
0,

1
2
− 1

r

)
, (4.1.43)

uniformly in h. The ‘a priori’ bounds (4.1.40)-(4.1.43) are sufficient to take the
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limit h → 0 in the iteration scheme (4.1.36)-(4.1.38).

We consider the joint law of the basic state variables [ρ,ϑ ,u,W ] in the pathspace

G≡Cl([0,T ];C2+l(T3))×Cl([0,T ];C2+l(T3))×Cl([0,T ];Hm)×C([0,T ];U0), l ∈ (0,ν),

(4.1.44)

where ν is the minimum Hölder exponent in (4.1.43). Now let [ρh,ϑh,uh,W ] be the

unique solution to the iteration scheme (4.1.36)-(4.1.38), with initial data being F0 mea-

surable and satisfying

0 < ρ ≤ ρ0,∥ρ0∥Cl([0,T ];C2+l(T3))≤ ρ, 0 < ϑ ≤ ϑ0,∥ϑ0∥Cl([0,T ];C2+l(T3))≤ ϑ , (4.1.45)

as well as

E
[
∥u0∥r

Hm

]
≤ u for some r > 2. (4.1.46)

P-a.s., Denote by L [ρh,ϑh,uh,W ] the joint law of [ρh,ϑh,uh,W ] on G, and by

L [ρh],L [ϑh],L [uh] andL [W ]

the corresponding marginals, respectively. As a consequence of bounds established (4.1.40)-

(4.1.43), the joint law L [ρh,ϑh,uh,W ] is tight on the Quasi-Polish space G. By applying

Jakubowski-Skorokhod’s representation Theorem 2.1.21 we get a new probability space

with new random variables, a.s convergence of new variables on the pathspace (w.l.o.g we

keep the same notation). Performing the limit h → 0 in the new probablity space yields

∂tρ +div(ρ[u]R) = 0, (4.1.47)

dΠm[ρu]+Πm[div(ρ[u]R ⊗u)]dt +Πm

[
χ(∥u∥Hm−R)∇(p(ρ,ϑ))

]
(4.1.48)

= Π

[
εL u

]
dt +ρΠm[(φε)]dW,

∂tS+div(S[u]R) = 0. (4.1.49)

The system (4.1.47)-(4.1.49) is still depended on R and m. Now our goal is to perform the

limits R → ∞ and m → ∞, respectively. The procedure is similar to the above discussion

for the limit h → 0. To proceed as discussed above, we start off by deducing uniform

bounds enforced by random initial data and the energy balance.
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Energy balance

A solution to the approximate system (4.1.31)-(4.1.33) satisfies a variant of energy bal-

ance. Derivation of total energy balance to the system consist of testing (4.1.32) with the

test function u and integrating by parts the resultant formulation. Observe that the scalar

product

∫
T3

Πm(ρu) ·udx =
∫
T3

ρ|u|2dx

and the linear mapping M yields

∫
T3

M−1[ρ]Πm[u] ·Πm[ρu]dx =
∫
T3

ρM−1[ρ]Πm[u] ·udx =
∫
T3

u ·udx.

Now we are ready to derive the total energy balance, for this, we consider the following

proposition.

Proposition 4.1.8. let [ρ,ϑ ,u,W ] be a martingale solution of the basic approximate

system (4.1.31)-(4.1.33). Then the following total energy balance equations

d
∫
T3

[
1
2

ρ|u|2+ρe
]

dx+ε((u,u))dt =
1
2

∞

∑
k=1

∫
T3

ρ|Πm[φεek]|2 dxdt+
∫
T3

ρΠm[φε ]·udxdW.

(4.1.50)

holds P-a.s.

Proof. Applying Itô’s formula to the functional

f (ρ,ρu) =
1
2

∫
T3

ρ|u|2 dx =
1
2

∫
T3

|m|2

ρ
dx,

from (4.1.32) we obtain,

d
∫
T3

1
2

ρ|u|2 dx = −
∫
T3

[
div(ρ[u]R ⊗u)+χ(∥u∥Hm−R)∇x p(ρ,ϑ)

]
·udxdt

+
∫
T3

εL u ·udxdt − 1
2

∫
T3
|u|2dρdx (4.1.51)

+
1
2

∞

∑
k=1

∫
T3

ρ|Πm[(φε)ek]|2 dxdt +
∫
T3

ρφε ·udxdW.
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Furthermore, from the continuity equation (4.1.31), we deduce that;

1
2

∫
T3
|u|2dρdx =−1

2

∫
T3

div(ρ[u]R) · |u|2 dxdt,

such that the integral with convective term simplifies to

∫
T3

div(ρ[u]R ⊗u) ·udx =
1
2

∫
T3

div(ρ[u]R) · |u|2 dx,

and

∫
T3

χ(∥u∥Hm−R)∇x p(ρ,ϑ) ·udx = −
∫
T3

p(ρ,ϑ)div [u]R dx.

In view of the above observations, (4.1.51) reduces to

d
∫
T3

1
2

ρ|u|2 dx+ ε((u;u)) =
∫
T3

p(ρ,ϑ)div [u]R dxdt (4.1.52)

+
1
2

∞

∑
k=1

∫
T3

ρ|Πm[(φε)ek ]|
2 dxdt +

∫
T3

ρφε ·udxdW.

Finally, re-writing the entropy equation as an expression of internal energy using Gibb’s

relation (4.1.4) the followings holds

∫
T3

p(ρ,s)div[u]R dx =−d
∫
T3

ρedx.

Consequently, re-writing (4.1.52) yields

d
∫
T3

1
2

ρ|u|2+ρedx+ ε((u;u))dt =
1
2

∞

∑
k=1

∫
T3

ρ|Πm[(φε)ek ]|
2 dxdt +

∫
T3

ρφε ·udxdW,

as required.
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Uniform Bounds

Keeping ε > 0 fixed, we derive bounds independent of the parameters R and m. We note,

the projections Πm are bounded by (4.1.30). In view of (4.1.50), we deduce the estimate

∫
T3

[
1
2

ρ|u|2+ρe
]

dx+ ε

∫ T

0
((u,u))dt ≲

(
E0 + c(T,φε ,ρ)+Mt

)
, (4.1.53)

where

E0 =
∫
T3

[
1
2

ρ0|u0|2+ρ0e0

]
dx, Mt =

∫ T

0

∫
T3

ρΠm[φε ] ·udxdW.

Furthermore, taking the exponential of (4.1.53) and the expectation of the resultant expo-

nent formulation we obtain

E
[

exp
(

λEt +λ

∫ T

0
((u,u))dt

)]
≤ cE

[
exp(λMt)

]
≲ c(λ ) ∀λ > 0, (4.1.54)

P-a.s, the bound follows from applying exponential version of Burkholder-Davis-Gundy

inequality to the r.h.s of (4.1.54), and using χ(|u|−1
ε
)u ≤ 1/ε to deduce

⟨⟨Mt⟩⟩ = ∑
k

∫ T

0

(∫
T3

ρΠm(φε)ek ·u︸ ︷︷ ︸
=ρΠmφekχ(|u|− 1

ε
)u

dx
)2

dt

≤ c(ε)∑
k

∫ T

0

(∫
T3

ρ dx︸ ︷︷ ︸
≤c(ρ)

)2

∥Πmφek∥2
L∞

x
dt

≲ c(ε,φ ,ρ).

The last line above follows from boundedness of density (4.1.45) and application of

(4.1.30).

Limit R → ∞. We assume the parameter m is fixed. The approximate problem (4.1.31)-

(4.1.33) admits a martingale solution [ρR,ϑR,uR] with initial law Λ for any fixed R > 0.

To perform the limit R → ∞, we establish compactness of the phase variables and use

Jakubowski’s variant of the Skorokhod representation Theorem 2.1.21.

Compactness. We recall the standard regularity estimates of compressible transport
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equations in [87] applied to (4.1.47):

∥ρ(t, ·)∥L∞(0,T ;W 2,2(T3))≲ ∥ρ0∥W 2,2(T3)exp
(∫ T

0
∥[u]R∥W 3,2 dt

)
,

≲ ∥ρ0∥W 2,2(T3)exp
(∫ T

0
∥u∥W 3,2 dt

)
,

(4.1.55)

and

∥∇ρ(t, ·)∥L∞(0,T ;W 1,2(T3))≲ ∥ρ0∥W 2,2(T3)exp
(∫ T

0
∥[u]R∥W 3,2 dt

)
,

≲ ∥ρ0∥W 2,2(T3)exp
(∫ T

0
∥u∥W 3,2 dt

)
.

(4.1.56)

We control the right-hand side of (4.1.55) and (4.1.56) in expectation by using (4.1.54) to

deduce the estimate

E
[
∥ρ∥L∞(0,T ;L∞(T3))

]
≲ c, E

[
∥∇ρ∥L∞(0,T ;L6(T3))

]
≲ c, (4.1.57)

where c> 0 is dependent on initial data. In view of (4.1.53), (4.1.56),(4.1.57) and (4.1.47)

we deduce that

E
[
∥∂tρ∥L2(0,T ;L∞(T3))

]
≲ c.

Finally, we obtain the estimate

E
[
∥∂tρ∥L2(0,T ;L∞(T3)

]
+E

[
∥ρ∥L∞(0,T ;L∞(T3)

]
≲ c, (4.1.58)

where c > 0 is dependent on initial data. The standard regularity estimate of the total

entropy for the variable S follows same arguments as shown for ρ and we obtain the ϑ

estimate via the relation s = logϑ cv − log(ρ). Consequently, using (4.1.48), (4.1.53) and

(4.1.30), the compactness of ρu with respect to the time variable follows from the bound

E
[
∥ρu∥r

Cα ([0,T ];W−3,2(T3))

]
≲ c(r), (4.1.59)

for all 0 < α(r) < 1/2. Accordingly, with established uniform bounds necessary to per-

form the limit, we proceed as in h-limit. We consider the joint law of the basic state
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variables [ρ,S,u,W ] in the pathspace

G≡L2(0,T ;W 1,2(T3))×L2(0,T ;W 1,2(T3))×C([0,T ];W−4,2(T3)) (4.1.60)

×L2(0,T ;W 3,2(T3))×C([0,T ];U0). (4.1.61)

Let [ρR,ϑR,mR,W ] be the unique solution to the iteration scheme (4.1.36)-(4.1.38) with

respect to initial law Λ and assume

0 < ρ ≤ ρ0,∥ρ0∥W 2,2(T3))≤ ρ, 0 < ϑ ≤ ϑ0,∥ϑ0∥W 2,2(T3))≤ ϑ ,

as well as

E
[
∥u0∥r

Hm

]
≤ u for some r > 2, (4.1.62)

P-a.s. Arguing similarly as in the h-limit (with obvious modifications): We apply the

Jakubowski’s-Skorokhod representation Theorem 2.1.21 , see [64] for more details, and

create new probability space with new sequence of random variables that are a.s con-

vergent (w.l.o.g we keep the same notation). Thus, passing the limit R → ∞ in (4.1.47)-

(4.1.49) yields

∂tρ +div(ρu) = 0, (4.1.63)

dΠm[ρu]+Πm[div(ρu⊗u)]dt +Πm

[
∇(p(ρ,ϑ))

]
(4.1.64)

= Πm

[
εL u

]
dt +ρΠm[(φ)]dW,

∂tS+div(Su) = 0. (4.1.65)

Galerkin Limit

Limit m → ∞. The approximate problem (4.1.63)-(4.1.65) admits a martingale solution

[ρm,ϑm,um] with initial law Λ for any fixed m > 0. We proceed step by step as in the R-

limit, that is, following preceding parts, we establish uniform bounds (compactness) and

perform the limit. In this case, the density estimate (4.1.58) and similarly the temperature

estimate continue to hold for m → ∞, and we can weaken the regularity of initial data in

(4.1.60) by considering a sequence of initial laws that lose regularity when m → ∞ (the

existence of initial data with given law follows from the Skorokhod Theorem 2.1.20).
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Performing the limit m → ∞ yields a martingale solution to the system

dρ +div(ρu)dt = 0,

dρu+div(ρu]⊗u)dt +∇(p(ρ,ϑ))

= εL udt +ρφε dW,

dS+div(Su)dt = 0.

this completes the proof of Theorem 4.1.5.

4.1.9 Existence results

The proof Theorem 4.1.6 consists of establishing ‘a priori bounds’ from the energy in-

equality, compactness arguments in space-time variables, see Subsection 2.1.4 , and ap-

plication of Jakubowski’s-Skorokhod representation Theorem 2.1.21 to deal with Quasi-

Polish spaces.

Remark 4.1.3. For any ε > 0 Theorem 4.1.5 yields the existence of martingale solution

((Ωε ,Fε ,(F
ε
t ),Pε),ρε ,mε ,Sε ,W ε)

to (4.1.16). We can assume without loss of generality that the probability space does not

depend on ε (see, e.g [64]), that is, the solution is given by

((Ω,F ,(F ε
t ),P),ρε ,mε ,Sε ,W ε).

We are now ready to consider the following proposition of ‘a priori bounds’.

Proposition 4.1.9. Let p ∈ [1,∞). Then the functions ρ,u and s satisfy the following

E

(
sup

t∈(0,T )

∫
T3

[
1
2
|mε |2

ρε

+ cvρ
γ

ε exp
(

Sε

cvρε

)]
dx+ ε

∫ T

0
((uε ;uε))dxdt

)p

(4.1.66)

≤C
(

1+E
[∫

T3

(
1
2

ρ0,ε |u0,ε |2+cvρ
γ

0,ε exp
(

S0,ε

cvρ0,ε

))
dx
]p)

≤C(T,ρ,φ ,Λ),

uniformly in ε , where Λ is the initial law.

Proof. First, we observe that the energy formulation of the approximate system (4.1.16)
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is of the form

∫
T3

[
1
2
|m|2

ρ
+ρe

]
dx+ ε

∫ T

0
((u,u))dt

=
∫
T3

[
1
2
|m|2

ρ
+ρ0e0

]
dx+

1
2

∞

∑
k=1

∫ T

0

∫
T3

ρ|φek|2 dxdt +
∫ T

0

∫
T3

ρφε ·udxdW

To show the estimate holds we take the supremum in time first, and complete the proof

by taking the expectations. Accordingly, splitting terms and proving them individual in

separate steps yields:

• firstly, considering the correction term we deduce

1
2 ∑

k

∫ T

0

∫
T3

ρ|φεek|2dxdt =
1
2 ∑

k

∫ T

0

∫
T3
|
√

ρφεek|2dxdt

≤ 1
2

∫ T

0
∥
√

ρφ∥2
L2(U ,L2(T3))dt < ∞.

The bound follows from the assumptions of φ in (4.1.11) and using

∥ρ∥L1
x
= ∥ρ0∥L1

x
≤ ρ,

for some constant ρ < ∞.

• Next, the noise term. Here we take supremum in time and build expectations.

Furthermore, we use the Burgholder-Davis-Gundy inequality to obtain

E

(
sup

t∈(0,T )

∣∣∣∣∫ t

0

∫
T3

ρφεudxdW
∣∣∣∣
)

= E

(
sup

t∈(0,T )

∣∣∣∣∣∑k

∫ t

0

∫
T3

ρ[φε ]ekudxdβk

∣∣∣∣∣
)

≤ cE

(∫ T

0
∑
k

[∫
T3

ρ[φε ]ekudx
]2

dt

)1/2

≤ cE

(∫ T

0
∑
k
∥
√

ρφek∥2
L2(U ,L2(T3))

∫
T3
|
√

ρu|2 dxdt

)1/2

≤ c(φ)E

(
sup

t∈(0,T )

∫
T3

ρdx︸ ︷︷ ︸
≤ρ

∫
T3

ρ|u|2 dx

)1/2

≤ δ

2
E

(
sup

t∈(0,T )

∫
T3

ρ|u|2 dx

)
+ c2(φ ,ρ,δ ),
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where the last line follows from Young’s inequality. Now taking delta δ small

enough, we can absorb the supremum term from the right.

• We note that expectation on initial data is bounded by assumption i.e.

E
[∫

T3

(
1
2

ρ0|u0|2+cvρ
γ

0 exp
(

S0

cvρ0

))
dx
]p

< ∞.

Hence combining the correction and stochastic terms we deduce (4.1.66).

In view of Proposition 4.1.9, we establish the following bounds:

Firstly, we consider Z ∈ BC(R) such that

Z′ ≥ 0,Z(s)

< 0 fors < s0,

= 0 fors ≥ s0,

then the total entropy in (4.1.16) satisfies the minimum principle provided that

S0 ≥ ρ0s0 >−∞ a.a in T3,

we refer the reader to [47] for details. Since the entropy is bounded below, using (4.1.66)

we deduce

E

(
sup

t∈[0,T ]

∫
T3

ρ
γ dx

)
≲C(T,ρ,φ ,Λ), (4.1.67)

for any t ∈ [0,T ]. Now using m = ρu, we observe

|m|
2γ

γ+1= |ρ|
γ

γ+1

∣∣∣∣ m
√

ρ

∣∣∣∣
2γ

γ+1

≲ ρ
γ +

|m|2

ρ
,

and we obtain

E

(
sup

t∈[0,T ]

∫
T3
|m|

2γ

γ+1 dx

)
≲C(T,ρ,φ ,Λ), (4.1.68)

for any t ∈ [0,T ]. Bounds on the total entropy S. Since S ≥ s0ρ , for S ≤ 0

|S|=−S ≤−s0ρ.
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If S ≥ 0, we note

ρ
γ exp

(
S

cvρ

)
= c−γ

v

exp
(

S
cvρ

)
( S

cvρ
)γ

Sγ ≳ Sγ ;

hence

E

(
sup

t∈[0,T ]

∫
T3
|S|γ dx

)
≲C(T,ρ,φ ,Λ), (4.1.69)

for any t ∈ [0,T ]. Finally, we derive an estimate for the quantity S/
√

ρ . For S ≤ 0, we

obtain

∣∣∣∣ S
√

ρ

∣∣∣∣≤−s0
√

ρ.

If S > 0, we have

ρ
γ exp

(
S

cvρ

)
= ρ

γ exp
(

S
√

ρ

1
cv
√

ρ

)
= c−2γ

v

exp
(

S√
ρ

1
cv
√

ρ

)
(

S√
ρ

1
cv
√

ρ

)2γ

(
S
√

ρ

)2γ

≳

(
S
√

ρ

)2γ

,

and in view of this result we deduce the bound

E

(
sup

t∈[0,T ]

∫ ∣∣∣∣ S
√

ρ

∣∣∣∣2γ

dx

)
≲C(T,ρ,φ ,Λ). (4.1.70)

In view of the above bounds (4.1.67)-(4.1.70) and Proposition 4.1.9 we deduce the fol-

lowing (uniform) bounds

√
εuε ∈ Lp(Ω;L2([0,T ];W 3,2(T3))) (4.1.71)

ρε ∈ Lp(Ω;L∞([0,T ];Lγ(T3))), (4.1.72)

mε ∈ Lp(Ω;L∞([0,T ];L
2γ

γ+1 (T3))), (4.1.73)
mε√

ρε

∈ Lp(Ω;L∞([0,T ];L2(T3))), (4.1.74)

mε ⊗mε

ρ
∈ Lp(Ω;L∞([0,T ];L1(T3))), (4.1.75)

Sε ∈ Lp(Ω;L∞([0,T ];Lγ(T3))), (4.1.76)
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Sε√
ρε

∈ Lp(Ω;L∞([0,T ];L2γ(T3))), (4.1.77)

A priori estimates

The bounds established in (4.1.71)-(4.1.77) on their own are not sufficient for us to pass

to the limit. Especially, on the nonlinear terms. We solve this problem by introducing the

compactness arguments. In particular, we use this procedure in the nonlinear convective

and pressure terms. We start off by considering the balance of momentum given by

∫
T3

ρuε ·ϕ dx =
∫
T3

ρ0u0 ·ϕ dx+
∫ t

0

∫
T3

ρεuε ⊗uε : ∇ϕ dxds

−ε

∫ t

0

∫
T3

∇∆uε ·∇∆ϕ dxds− ε

∫ t

0
uεϕ dxds

+
∫ t

0

∫
T3

ρ
γ

ε exp
(

Sε

cvρε

)
·divϕ dxdt +

∫
T3

∫ t

0
ρεφεdWs ·ϕdx,

for all ϕ ∈ C∞(T3). We show boundedness of the system by considering deterministic

and stochastic parts separately. For the deterministic case, we consider the functional

Hε(t,ϕ) :=
∫ t

0

∫
T3

ρεuε ⊗uε : ∇ϕ dxds− ε

∫ t

0
((uε ;ϕ))ds

+
∫ t

0

∫
T3

ρ
γ

ε exp
(

Sε

cvρε

)
·divϕ dxds.

We observe that ∂tHε(t,ϕ) ∈ L1(Ω;L2(0,T ;W−3,2(T3)),

Hε(t,ϕ) ∈ L1(Ω;W 1,2(0,T ;W−3,2(T3)),

uniformly in ε . Then we deduce the estimate

E
[
∥Hε∥W 1,2([0,T ];W−3,2

div (T3))

]
≤C.

The stochastic term yields

E

[∥∥∥∥∫ ·

0
ρεφε dW ε

∥∥∥∥p

Cα ([0,T ];L2(T3))

]
≤ cE

[∫ T

0
∥
√

ρφ∥p
L2(U ,L2(T3))

dt
]
≤ c(ρ, p,φ ,T ),

for all α ∈ (1/p,1/2) and p> 2, see [[17], Lemma 9.1.3. b)] or [[61], Lemma 4.6]). Now
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combining the deterministic and stochastic estimates, and using the embedding W 1,2
t ↪→

Cα
t and L2

x ↪→W−3,2
x shows

E
[
∥ρεuε∥Cα ([0,T ];W−3,2(T3))

]
≤ c(T ), (4.1.78)

for all α < 1/2. On the regularity of mass continuity we have

∫ T

0

∫
T3

∂tρϕ dx =
∫ T

0

∫
T3
[ρu∇xϕ]dxdt,

so that

sup
t
∥∂tρ∥W−3,2 = sup

t
sup

∥ϕ∥W3,2

∫
T3

ρεuε∇xϕ dx

≤ sup
t

sup
∥ϕ∥W3,2

∥ρεuε∥1∥∇xϕ∥∞

≤ sup
t

sup
∥ϕ∥W3,2

∥ρεuε∥1∥ϕ∥W 3,2

≤ C sup
t
∥ρεuε∥1.

Consequently, ∂tρε ∈ L∞(0,T ;W−3,2(T3)) a.s. such that

ρε ∈ L1(Ω;W 1,∞(0,T ;W−3,2(T3)).

Using (4.1.66) and the embedding W 1,∞
t ↪→Cα

t we infer

E
[
∥ρε∥Cα ([0,T ];W−3,2(T3))

]
≤C.

Similarly, for the entropy balance we have

∫ T

0

∫
T3

∂tSϕ dx =
∫ T

0

∫
T3

[
S

m
ρ

∇xϕ

]
dxdt,

and arguing as in the mass continuity case we deduce

E
[
∥Sε∥Cα ([0,T ];W−3,2(T3))

]
≤C.
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Compactness Argument

Accordingly, we proceed to show tightness of the approximate solutions using the fol-

lowing compact embeddings.

Cα([0,T ];W−3,2(T3))∩L∞(L
2γ

γ+1 (T3)) ↪→↪→C([0,T ];W−4,2(T3))∩Cw(L
2γ

γ+1 (T3)).

(4.1.79)

Cα([0,T ];W−3,2)∩L∞(0,T ;Lγ(T3)) ↪→↪→C([0,T ];W−4,2(T3))∩Cw(0,T ;Lγ(T3)).

(4.1.80)

We set the spaces:

Xρ0 := Lγ(T3), Xm0 = L
2γ

γ+1 (T3),

Xm :=C([0,T ];W−4,2(T3))∩Cw(L
2γ

γ+1 (T3)), XW :=C([0,T ];U0),

Xρ :=C([0,T ];W−4,2(T3))∩Cw([0,T ];Lγ(T3)), XC := L∞(0,T ;M+(T3,R3×3)),

XP := L∞(0,T ;M+(T3,R), XU := L2(0,T ;W 3,2(T3))),

XS :=C([0,T ];W−4,2)∩Cw([0,T ];Lγ(T3)), XS0 := Lγ(T3),

XQ := L∞
w∗(Q;P(A)),

with respect to weak-* topology for all spaces with L∞(·,M ·(·)). Furthermore, for T > 0,

we choose the product path space

XT := Xρ0 ×Xm0 ×XS0 ×Xρ ×Xm ×XS ×XQ ×Xprss ×Xconv ×XW , (4.1.81)
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with the following laws:



µ(ρu)
ε

is the law of ρεuε on C([0,T ];W−4,2(T3))∩Cw(L
2γ

γ+1 (T3)),

µρε
is the law of ρε on C([0,T ];W−4,2)∩Cw(0,T ;Lγ(T3)),

µSε
is the law of Sε on C([0,T ];W−4,2)∩Cw(0,T ;Lγ(T3)),

µW is the law of W on C([0,T ],U0).

In addition, let µUε
,µCε

,µPε
and µQε

denote the laws of

Uε :=
√

εu Cε := ρεuε ⊗uε , Pε := ρ
γ

ε exp
(

Sε

cvρε

)
, Qε := Sε

mε

ρε

,

respectively. Let rT be the restriction operator which restricts measurable functions (or

space-time distributions) defined on (0,∞) to (0,T ). We denote by

LT [ρ0,ρ0u0,S0,ρε ,ρεuε ,Sε ,Uε ,Pε ,Cε ,Qε ,W ]

the probability law on XT . Note, tightness on

LT [ρ0,ρ0u0,S0,ρε ,ρεuε ,Sε ,Uε ,Pε ,Cε ,Qε ,W ]

for any T > 0 implies tightness of L [ρ0,ρ0u0,S0,ρε ,ρεuε ,Sε ,Uε ,Pε ,Cε ,Qε ,W ] on X=

∩TXT . For ρu, we fix T > 0 and consider the ball BR1 in the space

Cα([0,T ];W−3,2(T3))∩L∞(L
2γ

γ+1 (T3)).

Using the Markov inequality, (4.1.66) and (4.1.78) on the complement BC
R1

we obtain

µ(ρu)ε
(BC

R1
) = P

(
∥ρuε∥Cα ([0,T ];W−3,2(T3))+∥ρuε∥

L∞(L
2γ

γ+1 (T3))
≥ R

)
≤ E

R1

(
∥ρuε∥Cα ([0,T ];W−3,2(T3))+∥ρuε∥

L∞(L
2γ

γ+1 (T3))

)
≤ C

R1
.
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Therefore, for a fixed η > 0 we find R1(η) with

µ(ρu)ε
(BR1)≥ 1−η .

Hence, the law µ(ρu)ε
is tight. Using similar arguments as shown above we infer that the

laws: [µρε
,µSε

,µUε
] are tight. We proceed to show the less obvious argument of tightness

in measures.

Proposition 4.1.10. The law µCε
is tight.

Proof. We consider a ball BR ∈ L∞(0,T ;M+(T3,R3×3)) that is relatively compact with

respect to weak-* topology. Now taking the complement ( Bc
R) of the ball and using

Markov-inequality we deduce

L [Cε ](Bc
R) = P

(∫ T

0

∫
T3

d|Cε |dt > R
)

= P
(∫ T

0

∫
T3

∣∣∣∣mε ⊗mε

ρε

∣∣∣∣ dxdt > R
)

≤ 1
R
E
∥∥∥∥mε ⊗mε

ρε

∥∥∥∥
L∞(0,T ;L1(T3))

≤ C
R
,

where the last line follows from Proposition 4.1.9. Therefore, for a fixed η > 0 we find

R(η) with

L [Cε ](BR)≥ 1−η .

The proof is complete.

Similarly, arguing as shown above, the laws: µPε
and µQε

are tight. The laws

µW ,µρ0,µρ0u0 and µS0

are tight since they are Radon measures on the Polish spaces. Therefore, we can infer that

the law LT [ρ0,ρ0u0,S0,ρε ,ρεuε ,Sε ,Uε ,Pε ,Cε ,Qε ,W ] is a sequence of tight measures on

(XT ). Consequently, its weak-* limit is tight as well and hence a Radon measure. Since

T was arbitrary chosen we deduce that

L [ρ0,ρ0u0,S0,ρε ,ρεuε ,Sε ,Uε ,Pε ,Cε ,Qε ,W ]

is tight on X. In view of the Jakubowksi’s version of Skorokhod representation theorem
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[64] (see also Brzezniak et al.[22], and [15, Section 2.8] for property d), we have the

following proposition.

Proposition 4.1.11. There exists a nullsequence (εm)m∈N, a complete probability space

(Ω̃,F̃ , P̃) with (X,BX)-valued random variables

(ρ̃0εm, ρ̃0,εmũ0,εm , S̃0,εm, ρ̃εm , ρ̃εmũεm, S̃εm , Ũεm , P̃εm,C̃εm , Q̃εm ,W̃εm), m ∈ N,

and (ρ̃0, ρ̃0ũ0, S̃0, ρ̃,m̃, S̃, Ũ, P̃,C̃, Q̃,W̃ ) such that

(a) For all m ∈ N the law of

(ρ̃0εm, ρ̃0,εmũ0,εm, S̃0,εm , ρ̃εm, ρ̃εmũεm , S̃εm, Ũεm, P̃εm ,C̃εm, Q̃εm,W̃εm)

on X is given by (coincides with) L [ρ0,ρ0u0,S0,ρε ,ρεuε ,Sε ,Uε ,Pε ,Cε ,Qε ,W ];

(b) The law of

(ρ̃0, ρ̃0ũ0, S̃0, ρ̃,m̃, S̃, Ũ, P̃,C̃, Q̃,W̃ )

is a Radon measure on (X,BX);

(c) (ρ̃0εm , ρ̃0,εmũ0,εm, S̃0,εm, ρ̃εm , ρ̃εmũεm , S̃εm , Ũεm , P̃εm,C̃εm , Q̃εm,W̃εm), m ∈ N, converges

P̃-almost surely to (ρ̃0, ρ̃0ũ0, S̃0, ρ̃,m̃, S̃, Ũ, P̃,C̃, Q̃,W̃ ) in the topology of X, i.e.

ρ̃0,εm → ρ̃0 inLγ(T3),

ρ̃0,εmũ0,εm → m̃0 in L
2γ

γ+1 (T3),

S̃0,εm → S̃0 in C([0,T ];W−4,2)∩Cw(0,T ;Lγ(T3)),

ρ̃εm → ρ̃ in C([0,T ];W−4,2)∩Cw(0,T ;Lγ(T3)),

S̃εm → S̃ in C([0,T ];W−4,2)∩Cw(0,T ;Lγ(T3)),

Ũεm → 0̃ in L2([0,T ];W 3,2(T3))),

ρ̃εmũεm → m̃ in C([0,T ];W−4,2(T3))∩Cw(L
2γ

γ+1 (T3)),

P̃εm → P̃ in L∞
w∗(0,T ;M+(T3,R),

C̃εm → C̃ in L∞
w∗(0,T ;M+(T3,R3×3),

Q̃εm → Q̃ in L∞
w∗(Q;P(A)),

W̃εm → W̃ in C([0,T ];U0),

(4.1.82)

P̃-a.s.
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(d) For any Carathéodory function H = H(t,x,ρ,m,S) where (t,x) ∈ (0,T ) ×

T3, (ρ,m,S) ∈ R5, satisfying for some q1,q2,q3 > 0 the growth condition

H(t,x,ρ,m,S)≲ 1+ |ρ|q1+|m|q2+|S|q2

uniformly in (t,x), we denote by H(ρ,m,S)(t,x) = ⟨Vt,x,H⟩. Then the following

H(ρ̃εm, ρ̃εmũεm, S̃εm)⇀ H(ρ̃,m̃, S̃) in Lk((0,T )×T3)

holds P̃-a.s. as m → ∞ for all 1 < k ≤ γ+1
q1

∧ 2
q2

.

We note Proposition 4.1.11 yields existence of new probability space with new random

variables, however, no guarantees of correct measurability. To circumvent this problem

we introduce filtration to guarantee adaptedness of new random variables and to ensure

that the stochastic integral continues to hold in the new probability space. We simplify

notation as follows, set

X0 :=
[
ρ̃0,m̃0, S̃0

]
,X :=

[
ρ̃,m̃, S̃, Ũ,

]
.

Let F̃t and F̃ εm
t be the P̃-augmented filtration of random variables

(ρ̃0,m̃0, S̃0, ρ̃,m̃, S̃, Ũ, P̃,C̃,W̃ )

and (ρ̃0εm, ρ̃0,εmũ0,εm, S̃0,εm, ρ̃εm , ρ̃εmũεm , S̃εm, Ũεm, P̃εm,C̃εm, Q̃εm,W̃εm)m∈N, respectively, i.e.

F̃t = σ(σ(X0,rtX ,rtW̃ )∪σt(P̃,C̃, Q̃)∪{N ∈ F̃ ; P̃(N ) = 0}), t ≥ 0,

F̃ εm
t = σ(σ(X0,εm,rtXεm,rtW̃εm)∪σt(P̃εm,C̃εm, Q̃εm ,)∪{N ∈ F̃ ; P̃(N ) = 0}), t ≥ 0.

Here rt denotes the restriction operator to the interval [0, t] on the path space and σt
2

denotes the history of a random distribution.

2The family of σ -fields (σt [V])t≥0 given as random distribution history of

σt [V] :=
⋂
s>t

σ

 ⋃
ϕ∈C∞

c (Q;R3)

{⟨V,ϕ⟩< 1}∪{N ∈ F ,P(N) = 0}


is called the history of V. In fact, any random distribution is adapted to its history, see 2.1.3.
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The new probability space

In this section we will use the elementary method from [27], also used in Section 3.1.2,

to show that the approximated equations hold in the new probability space. The essence

of this elementary method is to identify the quadratic and cross variations corresponding

to the martingale with limit Wiener process obtained via compactness. Now in view of

proposition 4.1.11, we note that W̃ has the same law as W . And as result, there exist

a collection of independent real-valued (F̃t)t≥0 - Wiener process β̃
εm
k such that W̃ N =

∑k β̃
εm
k ek. To be specific, there exist a collection of independent real-valued (F̃t)t≥0 -

Wiener process β̃k such that W̃ = ∑k β̃kek. For all t ∈ [0,T ] and ϕ ∈ C∞
c (T3) define the

functionals:

M εm(ρ0,m0,ρ,m,U,C,P)t =
∫
T3
(m−m0) ·ϕ dx−

∫ t

0

∫
T3

∇ϕ dCds

√
εm

∫ t

0

∫
T3

∇∆U ·∇∆ϕ dxds−
√

εm

∫ t

0
Uϕ dxds

−
∫ t

0

∫
T3

divϕ dPds,

Ψt = ∑
k=1

∫ t

0

(∫
T3

ρφek ·ϕ dx
)2

ds,

(Ψk)t =
∫ t

0

∫
T3

ρφek ·ϕ dxds.

Now, let M εm(ρ̃0,εm,m̃0,εm , ρ̃εm,m̃εm, Ũεm,C̃εm , P̃εm)s,t denote the increment

M εm(ρ̃0,εm ,m̃0,εm, ρ̃εm,m̃εm, Ũεm ,C̃εm, P̃εm)t −M εm(ρ̃0,εm,m̃0,εm, ρ̃εm ,m̃εm , Ũεm,C̃εm, P̃εm)s and

similarly for Ψs,t and (Ψk)s,t . In the new probability space, completeness of proof follows

from showing that

M εm(ρ̃0,εm,m̃0,εm, ρ̃εm ,m̃εm, Ũεm,C̃εm, P̃εm)t =
∫ t

0

∫
T3

ρ̃εmφ ·ϕ dxdW̃ εm
s . (4.1.83)

For (4.1.83) to hold, it suffices to show that M εm(ρ̃0,εm ,m̃0,εm, ρ̃εm,m̃εm, Ũεm ,C̃εm, P̃εm)t

is an (F εm
t )t≥0-martingale process and its corresponding quadratic and cross variations

satisfy, respectively,
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〈〈
M εm(ρ̃0,εm,m̃0,εm , ρ̃εm,m̃εm, Ũεm,C̃εm , P̃εm)

〉〉
= Ψ, (4.1.84)

〈〈
M εm(ρ̃0,εm ,m̃0,εm, ρ̃εm,m̃εm, Ũεm ,C̃εm, P̃εm), β̃k

〉〉
= Ψk, (4.1.85)

and consequently

〈〈
M εm(ρ̃0,εm ,m̃0,εm, ρ̃εm,m̃εm , Ũεm ,C̃εm, P̃εm)−

∫ t

0

∫
T3

ρ̃εmφ ·ϕ dxdW̃ εm
s

〉〉
= 0,

(4.1.86)

which implies the desired equation on the new probability space. We note that (4.1.84)

and (4.1.85) hold based on the following observation: the mapping

(ρ0,m0,ρ,m,U,C,P) 7→ M (ρ0,m0,ρ,m,U,C,P)t

is well-defined and continuous on the path space. Using proposition 4.1.11 we infer that

M εm(ρ0,εm ,m0,εm,ρεm,mεm,Uεm ,Cεm,Pεm)∼d M εm(ρ̃0,εm,m̃0,εm, ρ̃εm ,m̃εm , Ũεm,C̃εm, P̃εm).

Fixing times s, t ∈ [0,T ], with s < t we consider a continuous function h such that

h : V |[0,s]→ [0,1].

The process

M εm(ρ0,εm,m0,εm ,ρεm,mεm,Uεm,Cεm ,Pεm) =
∫ t

0

∫
T3

ρεmφ ·ϕ dxdW εm
s

= ∑
k=1

∫ t

0

∫
T3

ρεmφek ·ϕ dx dβ
εm
k ,

is a square integrable (Ft)t≥0-martingale, consequently, we infer

[M εm(ρ0,εm,m0,εm,ρεm ,mεm,Uεm,Cεm,Pεm)]
2 −Ψ,

M εm(ρ0,εm ,m0,εm,ρεm,mεm ,Uεm ,Cεm,Pεm)βk −Ψk,
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are (Ft)t≥0-martingales. Now we set

X := [ρ0,m0,ρ,m,U,C,P], Xεm := [ρ0,εm ,m0,εm,ρεm,mεm ,Uεm ,Cεm,Pεm ],

and

X̃ := [ρ̃0,m̃0, ρ̃,m̃, Ũ,C̃, P̃], X̃εm := [ρ̃0,εm ,m̃0,εm, ρ̃εm ,m̃εm , Ũεm ,C̃εm, P̃εm ].

Let rs be a restriction function to the interval [0,s]. In view of Proposition 4.1.11 and the

equality of laws we obtain:

Ẽ
[

h(rsX̃εm,rsW̃ εm)M εm(X̃εm)s,t

]
= E

[
h(rsXεm,rsW εm)M εm(Xεm)s,t

]
= 0 (4.1.87)

Ẽ
[

h(rsX̃εm,rsW̃ εm)([M εm(X̃εm)]
2 −Ψ)s,t

]
= E

[
h(rsXεm ,rsW εm)([M εm(Xεm)]

2 −Ψ)s,t

]
= 0 (4.1.88)

Ẽ
[

h(rsX̃εm,rsW̃ εm)(M εm(X̃εm)βk − (Ψk))s,t)

= E
[

h(rsXεm ,rsW εm)(M εm(Xεm)βk − (Ψk))s,t)

]
= 0 (4.1.89)

Therefore, (4.1.84) and (4.1.85) hold, and consequently, (4.1.86) follows. Thus the mo-

mentum formulation:

∫
T3
(m̃εm) ·ϕ dx =

∫
T3
(m̃0,εm) ·ϕ dx+

∫ t

0

∫
T3

∇ϕ dC̃εmds

−
√

εm

∫ t

0

∫
T3

∇∆Ũεm ·∇∆ϕ dxds−
√

εm

∫ t

0
Ũεmϕ dxds

+
∫ t

0

∫
T3

divϕ dP̃εmds+
∫
T3

∫ t

0
ρ̃εmφdW̃ εm

s ·ϕ dx,

holds P̃-a.s in new probability space (Ω̃,F̃ , P̃). We note that, the terms in the conti-

nuity equation and entropy balance are continuous on the path-space and as such, both

equations continue to hold on the new probability space P̃-a.s as well.
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Passage to the limit

To identify the limits in the nonlinear terms we first introduce defect measures. For this,

we adopt the notion of measures as presented in [14]. In view of Proposition 4.1.11 we

have

p(ρ̃εm , S̃εm)→ p(ρ̃, S̃) weakly-(*) in L∞(0,T ;M+(T3,R).

Noting that p(ρ̃, S̃) = ρ̃γ exp
(

S̃
cvρ̃

)
is a convex functional, we deduce

0 ≤ p(ρ̃, S̃)≤ p(ρ̃, S̃), R̃press ≡ p(ρ̃, S̃)− p(ρ̃, S̃) ∈ L∞(0,T ;M+(T3,R).

Arguing similarly for the convective term,

m̃εm ⊗ m̃εm

ρ̃εm

→ m̃⊗ m̃
ρ̃

weakly-(*) in L∞(0,T ;M+(T3,R3×3),

setting

R̃conv ≡
m̃⊗ m̃

ρ̃
− m̃⊗ m̃

ρ̃
,

for ξ ∈ R3, convexity implies

R̃conv : (ξ ⊗ξ ) = lim
εm→0

[
m̃εm ⊗ m̃εm

ρεm

: (ξ ⊗ξ )

]
− m̃⊗ m̃

ρ
: (ξ ⊗ξ )

= lim
εm→0

[
|m̃εm ·ξ |2

ρ̃εm

− |m̃ ·ξ |2

ρ̃

]
≥ 0,

so that R̃conv ∈ L∞(0,T ;M+(T3,R3×3)). In the entropy case we use Proposition 4.1.11

property (d). Specifically, we use the fundamental theorem of Young measures ( see [3])

and argue as follows. Let A be defined as in (4.1.20), that is, the state variables space for

solving the entropy equations. On the account of Proposition 4.1.11 property (d) we infer

that there exists a family of parameterized probability measures

(t,x) 7→ V(t,x)∈((0,T )×T3) ∈ L∞((0,T )×T3,P(A))

such that

⟨Vt,x,H(ρ̃,m̃, S̃)⟩= H(ρ̃,m̃, S̃)(ω̃, t,x)
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for any H ∈Cc(A) and a.a. (t,x) ∈ ((0,T )×T3) whenever it holds that

H(ρ̃εm,m̃εm, S̃εm)→ H(ρ̃,m̃, S̃)

weakly-* in L∞((0,T )×T3,P(A)). Here the family of probability measures is called

the Young measures associated with the sequence {ρεm,mεm ,Sεm}εm>0. Moreover, since

[(t,x) 7→ ⟨Vt,x,H(ρ̃,m̃, S̃)⟩] is a family of parametrised measures acting on the phase

space A, H(ρ̃,m̃, S̃) a signed measure, then the difference

H(ρ̃,m̃, S̃)− [(t,x) 7→ ⟨Vt,x,H(ρ̃,m̃, S̃)⟩ ∈ M+((0,T )×T3)]

vanishes for entropy equations, see [47, 15] for more details. To perform the stochastic

limit term we use Lemma 2.1.14. On the account of convergences in Proposition 4.1.11,

Lemma 2.1.14 and the higher moments from (4.1.87)-(4.1.89) we can pass to the limit

εm → 0 in the momentum equation in (4.1.16) and obtain

Ẽ
[∫ T

0

∫
T3

m̃ ·ϕ dxdt
]
= Ẽ

[∫ T

0

(∫
T3

m̃0 ·ϕ dx+
∫ t

0

∫
T3

˜m⊗m
ρ

: ∇ϕ dxds

+
∫ t

0

∫
T3

ρ̃γ exp
(

S̃
cvρ̃

)
·divϕ dxds (4.1.90)

+
∫
T3

∫ t

0
ρ̃φdW̃s ·ϕ dx

)
dt

]
.

Consequently, the momentum equation in the sense of (4.1.25) follows from rewriting

(4.1.90) using defect measures. Similarly, using Proposition 4.1.11 we perform εm → 0

limit in the mass continuity and total entropy to deduce the equivalence of (4.1.24) and

(4.1.26) in the new probability space, respectively.

On the Energy inequality

Finally, we consider the energy equality. In the original probability space, the approxi-

mate system (4.1.16) has an energy equality of the form

Eεm
t = Eεm

s +
1
2

∫ t

s
∥√ρεmφ∥2

L2(U ,L2(T3)) dσ +
∫ t

s

∫
T3

mεmφ dxdW εm,
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P-a.s for a.a 0 ≤ s < t, where

Eεm
t =

∫
T3

[
1
2
|mεm |2

ρεm

+ cvρ
γ

εm exp
(

Sεm

cvρεm

)]
dx+ εm

∫ T

0
((uεm,uεm))dt,

for a.a t ≥ 0. For any fixed s this is equivalent to

−
∫

∞

s
∂tϕEεm

t dt−ϕ(s)Eεm
s =

1
2

∫
∞

s
ϕ∥√ρεmφ∥2

L2(U ,L2(T3)) dt+
∫

∞

s
ϕ

∫
T3

mεm ·φ dxdW εm,

P-a.s for all ϕ ∈ C∞
0 ([s,∞)). By virtue of Proposition 3.1.2 and Proposition 4.1.11 the

energy equality continues to hold in the new probability space and reads

Ẽεm
t = Ẽεm

s +
1
2

∫ t

s
∥
√

ρ̃εmφ∥2
L2(U ,L2(T3)) dσ +

∫ t

s

∫
T3

m̃εmφ dxdW̃ εm,

P̃-a.s. for a.a s (including s = 0) and all t ≥ s. Averaging in t and s, and arguing as in

Section 3.1.3; the energy arguments, the above expression becomes continuous on the

path space. Furthermore, fixing s = 0, we use Lemma 2.1.14, the bounds established in

Proposition 4.1.11, and higher moments to perform the limit εm → 0 and obtain

Ẽt ≤ Ẽ0 +
1
2

∫ t

s
∥
√

ρ̃φ∥2
L2(U ;L2(T3)) dσ +

∫ t

s

∫
T3

m̃ ·φ dxdW̃ , (4.1.91)

P-a.s. for a.a. t ∈ [0,T ], where

Ẽt =
∫
T3

[
1
2
|m̃|2

ρ̃
+ cvρ̃

γ exp
(

S̃
cvρ̃

)]
dx+

1
2

∫
T3

dtrRconv(t)+ cv

∫
T3

dRpress(t),

and

Ẽ0 =
∫
T3

[
1
2
|m̃0|2

ρ̃0
+ cvρ̃

γ

0 exp
(

S0

cvρ0

)]
dx.

Performing the limit εm → 0 yields an energy inequality. Our goal now is to convert

(4.1.91) to equality, for this, we argue as in [10]. The entropy balance in the approximate

system (4.1.16) holds as an equality. Hence, to convert (4.1.91) to equality, it is sufficient

to augment the term contributing to the internal energy (Rpress(t)) by h(t)dx with suitable

spatially homogeneous h ≥ 0. And Rpress(t) acts on divxϕ in a periodic domain T3,

therefore,
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∫
T3

h(t)divϕ dx = 0.

Finally, for any s we have

−
∫

∞

s
∂tϕẼt dt −ϕ(s)Ẽs =

1
2

∫
∞

s
ϕ∥

√
ρφ∥2

L2(U ,L2(T3)) dt +
∫

∞

s
ϕ

∫
T3

m̃ ·φ dxdW,

P-a.s for all ϕ ∈C∞
0 ([s,∞)).

4.1.10 Weak-strong Uniqueness

In this section we aim to show that the weak-strong principle (i.e. a stochastic measure-

valued martingale solution to (4.1.17)-(4.1.19) coincides with a strong solution so long

as the later exists) holds. In order to do this, we need to introduce a relative entropy

inequality; a tool that allows us to compare two solutions. In the following analysis, it is

more convenient to express the variable S as ρs(ρ,E) where E = ρe(ρ,ϑ) and to work

with new state variables: the density ρ , the momentum m and the internal energy E, we

refer the reader to [47] for more details.

Now following the presentation in [49], we introduce the (thermodynamic potential) bal-

listic free energy

HΘ(ρ,ϑ) = ρe(ρ,ϑ)−Θρs(ρ,ϑ), (4.1.92)

introduced by Gibbs and more recently by Erickson [45]. In addition to Lemma 2.1.18,

we consider the relative energy functional in the context of measure-valued martingale

solutions to the complete Euler system given by

E

(
ρ,E,m

∣∣∣∣r,Θ,U
)

=
∫
T3

[
1
2
|m|2

ρ
+E

]
dx+

1
2

∫
T3

dtr[Rconv]+ cv

∫
T3

dRpress

−
∫
T3

m ·Udx+
∫
T3

1
2

ρ |U|2 dx (4.1.93)

−
∫
T3

Θρs(ρ,E)dx−
∫
T3

ρ∂ρHΘ dx

+
∫
T3

∂ρHΘ(r,Θ)(r)−HΘ(r,Θ)dx,

where the relative functional (4.1.93) is defined for all t ∈ [0,T ]. Now, having stated
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Lemma 2.1.18 and the relative energy functional, we are in a position to derive the relative

entropy inequality.

Proposition 4.1.12 (Relative Entropy Inequality). Let

((Ω,F ,(Ft)t≥0,P),ρ,m,S,Rconv,Rpress,Vt,x,W )

be a dissipative measure-valued martingale solution to the system (4.1.17)-(4.1.19). Let

(r,Θ,U) be a trio of stochastic processes defined on the same probability space and

adapted to the filtration (Ft)t≥0 such that

dr = Dd
t r dt,

dU = Dd
t Udt +Ds

t UdW,

dΘ = Dd
t Θdt, (4.1.94)

d[∂ρHΘ(r,Θ)] = Dd
t [∂ρHΘ(r,Θ)]dt,

and3

r ∈C([0,T ];C1(T3)), Θ ∈C([0,T ];C1(T3)), U ∈C([0,T ];C1(T3)), P-a.s.,

E

[
sup

t∈[0,T ]
∥r∥2

W 1,q(T3)

]k

+E

[
sup

t∈[0,T ]
∥U∥2

W 1,q(T3)

]q

≤ c(q), for all 2 ≤ q < ∞,

0 < r ≤ r(t,x)≤ r P-a.s.,

E

[
sup

t∈[0,T ]
∥Θ∥2

W 1,q(T3)

]k

≤ c(q), for all 2 ≤ q < ∞,

0 < Θ ≤ Θ(t,x)≤ Θ P-a.s..

Furthermore, r,Θ,U, satisfy

Ddr,Dd
Θ,DdU ∈ Lq(Ω;C(0,T ;C1(T3))) DsU ∈ L2(Ω;L2(0,T ;L2(U ;L2(T3))),

3Note, the moment bound for Θ below implies the same for S(r,Θ) by (4.1.6) since r and Θ are bounded
below and above.
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(
∑
k≥1

|DsU(ek)|q
) 1

q

∈ Lq(Ω;Lq(0,T ;Lq(T3))), (4.1.95)

respectively. Then the relative entropy inequality:

E

(
ρ,E,m

∣∣∣∣r,Θ,U
)
≤ E

(
ρ,E,m

∣∣∣∣r,Θ,U
)
(0)+

∫
τ

0
Q

(
ρ,E,m

∣∣∣∣r,Θ,U
)

dt +M,

(4.1.96)

holds P-a.s for all τ ∈ (0,T ), where

Q

(
ρ,ϑ ,u

∣∣∣∣r,Θ,U
)
=
∫
T3

ρ

(
m
ρ
−U

)
·∇xU ·

(
U− m

ρ

)
dx

+
∫
T3
[(Dd

t U+U ·∇xU) · (ρU−m)− p(ρ,ϑ)divxU]dx

−
∫

τ

0

∫
T3
[⟨Vt,x;ρs(ρ,E)⟩Dd

t Θ+ ⟨Vt,x;s(ρ,E)m⟩ ·∇xΘ]dxdt

+
∫ T

0

∫
T3
[ρs(r,Θ)∂tΘ+ms(r,Θ) ·∇xΘ]dxdt

+
∫
T3

((
1− ρ

r

)
∂t p(r,Θ)− m

r
·∇x p(r,Θ)

)
dx.,

− ∑
k≥1

∫
T3
Ds

t U(ek) ·ρφ(ek)dx−
∫
T3

∇U : dRconv −
∫
T3

divUdRpress

+
1
2
∥
√

ρφ∥2
L2(U ,L2(T3))+

1
2 ∑

k≥1

∫
T3

ρ|Ds
t U(ek)|2 dx,

and

M =
∫

τ

0

∫
T3

mφ dxdW

−
∫ t

0

∫
T3

[
mDs

t U+Uρφ

]
dxdW +

∫ t

0

∫
T3

ρU ·Ds
t UdxdW.

Remark 4.1.4. From here onward we shall use the cut-off function Z and set Z(s(ρ,E)) =

s(ρ,E) for convenience, see (4.1.112); a detailed discussion on the properties of Z.

Proof. We observe that the right-hand-side of the formulation (4.1.93) follows from en-

ergy inequality. Therefore, using the energy inequality and Lemma 2.1.18, we proceed in

several steps as follows:

Step 1: To compute d
∫
T3 m ·Udx we recall that q = m satisfies hypotheses (2.1.11) ,
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(2.1.13) with some k < ∞. Applying Lemma 2.1.18 we deduce

d
(∫

T3
m ·Udx

)
=

(∫
T3

[
m ·Dd

t U+

(
m⊗m

ρ

)
·∇U+ p(ρ,s)divU

]
dx
)

dt

+ ∑
k≥1

∫
T3
Ds

t U(ek) ·ρφ(ek)dxdt +
∫
T3

∇U : dRconvdt

+
∫
T3

divUdRpressdt+dM1, (4.1.97)

where

M1 =
∫ t

0

∫
T3

[
mDs

t U+Uρφ

]
dxdW.

Similarly to (4.1.97), we compute

d
(∫

T3

1
2

ρ|U|2 dx
)

=
∫
T3

ρu ·∇U ·Udxdt +
∫
T3

ρU ·Dd
t Udxdt (4.1.98)

+
1
2 ∑

k≥1
ρ|Ds

t U(ek)|2 dxdt +dM2,

where

M2 =
∫ t

0

∫
T3

ρU ·Ds
t UdxdW.

Step 2: We set

D(t) : =
1
2

∫
T3

dtr[Rconv]+ cv

∫
T3

dRpress,

µ : = tr[Rconv]+ tr[IRpress].

Combining relations (4.1.97) and (4.1.98) with the total energy balance (4.1.27) we obtain

∫
T3

[
1
2

ρ|u−U|2+ρe(ρ,ϑ)

]
dx+D(t)−

∫
T3

[
1
2

ρ|u0 −U0|2+ρ0e(ρ0,ϑ0)

]
dx

=
∫

τ

0

∫
T3

ρ(Dd
t U+u ·∇xU) · (U−u)]− p(ρ,ϑ)divxU]dxdt (4.1.99)

+
1
2

∫
τ

0
∥
√

ρφ∥2
L2(U ,L2(T3)) ds+

∫
τ

0

∫
T3

mφ dxdW −
∫

τ

0

∫
T3

∇Udµdt −M1 +M2

− ∑
k≥1

∫
τ

0

∫
T3
Ds

t U(ek) ·ρφ(ek)dxdt +
1
2 ∑

k≥1
ρ|Ds

t U(ek)|2 dxdt,

for any 0 ≤ τ ≤ T . Computing d
∫
T3 ρ⟨Vt,x;s⟩ ·Θdx (i.e. testing the entropy balance

(4.1.26) with Θ), we recall that q = ρ⟨Vt,x;s⟩ with Ds
t q = 0 satisfies hypotheses (2.1.11),

(2.1.13) for some k < ∞. In view of Lemma 2.1.18 we obtain
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d
(∫

T3
⟨Vt,x;ρZ(s(ρ,ϑ))⟩ ·Θdx

)
≥
∫
T3
⟨Vt,x;Z(s(ρ,ϑ))m⟩ ·∇xΘdxdt

+
∫
T3
⟨Vt,x;Z(s(ρ,ϑ))⟩Dd

t Θdxdt, (4.1.100)

where Dd
t Θ = ∂tΘ. Using s(ρ,ϑ) = Z(s(ρ,ϑ)), summing (4.1.99) and (4.1.100) yields

∫
T3

[
1
2

ρ|u−U|2+ρe(ρ,ϑ)−Θ⟨Vt,x;ρs(ρ,ϑ)⟩
]
(τ, ·)dx+D(t)

−
∫
T3

[
1
2

ρ|u0 −U0|2+ρ0e(ρ0,ϑ0)−Θ0⟨Vt,x;ρ0s(ρ0,ϑ0)⟩
]

dx

≤
∫

τ

0

∫
T3
[ρ(Dd

t U+u ·∇xU) · (U−u)− p(ρ,ϑ)divxU]dxdt (4.1.101)

−
∫

τ

0

∫
T3
[⟨Vt,x;ρs(ρ,ϑ)⟩Dd

t Θ+ ⟨Vt,x;s(ρ,ϑ)m⟩ ·∇xΘ]dxdt

+
1
2

∫
τ

0
∥
√

ρφ∥2
L2(U ,L2(T3)) dt +

∫
τ

0

∫
T3

mφ dxdW −
∫

τ

0

∫
T3

∇Udµdt −M1 +M2

− ∑
k≥1

∫
τ

0

∫
T3
Ds

t U(ek) ·ρφ(ek)dxdt +
1
2 ∑

k≥1
ρ|Ds

t U(ek)|2 dxdt.

In addition, testing the continuity equation (4.1.24) with ∂ρHΘ(r,Θ),that is, computing

d
∫
T3

ρ∂ρHΘ(r,Θ)dx

we have

d
(∫

T3
ρ∂ρHΘ(r,Θ)dx

)
=
∫
T3

ρu ·∇x(∂ρHΘ(r,Θ))dx+
∫
T3

ρDd
t (∂ρHΘ(r,Θ))dx.

(4.1.102)

Combining (4.1.101) and (4.1.102) we obtain

∫
T3

[
1
2

ρ|u−U|2+ρe(ρ,ϑ)−Θ⟨Vt,x;ρs(ρ,ϑ)⟩−∂ρHΘ(r,Θ)

]
(τ, ·)dx+D(t)

−
∫
T3

[
1
2

ρ|u0 −U0|2+ρ0e(ρ0,ϑ0)−Θ0⟨Vt,x;ρ0s(ρ0,ϑ0)⟩−ρ0∂ρHΘ(0,·)(r0,Θ0)

]
dx

≤
∫

τ

0

∫
T3
[ρ(Dd

t U+u ·∇xU) · (U−u)− p(ρ,ϑ)divxU]dxdt (4.1.103)

−
∫

τ

0

∫
T3
[⟨Vt,x;ρs(ρ,ϑ)⟩Dd

t Θ+ ⟨Vt,x;s(ρ,ϑ)m⟩ ·∇xΘ]dxdt

−
∫

τ

0

∫
T3
[ρu ·∇x(∂ρHΘ(r,Θ))dx+ρDd

t (∂ρHΘ(r,Θ))]dxdt

+
1
2

∫
τ

0
∥
√

ρφ∥2
L2(U ,L2(T3)) dt +

∫
τ

0

∫
T3

mφ dxdW −
∫

τ

0

∫
T3

∇Udµdt −M1 +M2
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− ∑
k≥1

∫
τ

0

∫
T3
Ds

t U(ek) ·ρφ(ek)dxdt +
1
2 ∑

k≥1
ρ|Ds

t U(ek)|2 dxdt.

Using Dd
t Θ = ∂tΘ and Dd

t (∂ρHΘ(r,Θ)) = ∂t(∂ρHΘ(r,Θ)), we add

∫
τ

0

∫
T3

∂t(r∂ρHΘ(r,ϑ)−HΘ(r,ϑ))dxdt =
∫
T3
(r∂ρHΘ(r,ϑ)−HΘ(r,ϑ))dx

−
∫
T3

r0∂ρHΘ0(r0,ϑ0)−HΘ0(r0,ϑ0))dx,

to both sides of (4.1.103) and obtain

∫
T3

[
1
2

ρ|u−U|2+HΘ(ρ,ϑ)−∂ρHΘ(r,Θ)(ρ − r)−HΘ(r,ϑ)

]
(τ, ·)dx+D(t)

≤
∫
T3

[
1
2

ρ|u0 −U0|2+HΘ0(ρ0,ϑ0)−∂ρHΘ0(r0,Θ0)(ρ0 − r0)−HΘ0(r0,ϑ0)

]
dx

+
∫

τ

0

∫
T3
[ρ(Dd

t U+u ·∇xU) · (U−u)− p(ρ,ϑ)divxU]dxdt (4.1.104)

−
∫

τ

0

∫
T3
[⟨Vt,x;ρs(ρ,ϑ)⟩Dd

t Θ+ ⟨Vt,x;s(ρ,ϑ)m⟩ ·∇xΘ]dxdt

−
∫

τ

0

∫
T3
[ρ∂t(∂ρHΘ(r,Θ))+ρu ·∇x(∂ρHΘ(r,Θ))]dxdt

+
∫ T

0

∫
T3

∂t(r∂ρHΘ(r,ϑ)−HΘ(r,ϑ))dxdt.

+
1
2

∫
τ

0
∥
√

ρφ∥2
L2(U ,L2(T3)) dt +

∫
τ

0

∫
T3

mφ dxdW −
∫

τ

0

∫
T3

∇Udµdt −M1 +M2

− ∑
k≥1

∫
τ

0

∫
T3
Ds

t U(ek) ·ρφ(ek)dxdt +
1
2 ∑

k≥1
ρ|Ds

t U(ek)|2 dxdt.

Furthermore noting that HΘ(ρ,ϑ) is function of three variables [(Θ,ρ,Θ)], by chain rule

we deduce

∂y
(
∂ρHΘ(r,Θ)

)
= −s(r,Θ)∂yΘ− r∂ρs(r,Θ)∂yΘ+∂

2
ρ,ρHΘ(r,Θ)∂yρ

+∂
2
ρ,ϑ HΘ(r,Θ)∂yΘ (4.1.105)

for y = t,x. And in view of (4.1.105), we rewrite (4.1.104) in the form
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∫
T3

[
1
2

ρ|u−U|2+HΘ(ρ,ϑ)−∂ρHΘ(r,Θ)(ρ − r)−HΘ(r,ϑ)

]
(τ, ·)dx+D(t)

≤
∫
T3

[
1
2

ρ|u0 −U0|2+HΘ0(ρ0,ϑ0)−∂ρHΘ0(r0,Θ0)(ρ0 − r0)−HΘ0(r0,ϑ0)

]
dx

+
∫

τ

0

∫
T3
[ρ(Dd

t U+u ·∇xU) · (U−u)− p(ρ,ϑ)divxU]dxdt (4.1.106)

−
∫

τ

0

∫
T3
[⟨Vt,x;ρs(ρ,ϑ)⟩Dd

t Θ+ ⟨Vt,x;s(ρ,ϑ)m⟩ ·∇xΘ]dxdt

+
∫ T

0

∫
T3
[ρs(r,Θ)∂tΘ+ms(r,Θ) ·∇xΘ]dxdt

+
∫ T

0

∫
T3

ρ(r∂ρs(r,Θ)∂tΘ+ r∂ρs(r,Θ)u ·∇xΘ)dxdt

−
∫ T

0

∫
T3

ρ(∂ 2
ρ,ρHΘ(r,Θ)∂tr+∂

2
ρ,ϑ HΘ(r,Θ)∂tΘ)dxdt

−
∫ T

0

∫
T3

ρu(∂ 2
ρ,ρHΘ(r,Θ)∇xr+∂

2
ρ,ϑ HΘ(r,Θ)∇xΘ)dxdt

+
∫ T

0

∫
T3

∂t(r∂ρHΘ(r,ϑ)−HΘ(r,ϑ))dxdt.

+
1
2

∫
τ

0
∥
√

ρφ∥2
L2(U ,L2(T3)) dt +

∫
τ

0

∫
T3

mφ dxdW −
∫

τ

0

∫
T3

∇Udµdt −M1 +M2

− ∑
k≥1

∫
τ

0

∫
T3
Ds

t U(ek) ·ρφ(ek)dxdt +
1
2 ∑

k≥1
ρ|Ds

t U(ek)|2 dxdt

To further simplify (4.1.106), we use Gibbs’ relation to deduce the following identities:

∂
2
ρ,ρHΘ(r,Θ) =

1
r

∂ρ p(r,Θ),

r∂ρs(r,Θ) =−1
r

∂ϑ p(r,Θ), (4.1.107)

∂
2
ρ,ϑ HΘ(r,Θ) = ∂ρ(ρ(ϑ −Θ)∂ϑ s)(r,Θ) = (ϑ −Θ)∂ρ(ρ∂ϑ s(ρ,Θ))(r,Θ) = 0,

and

r∂ρHΘ(r,Θ)−HΘ(r,Θ) = p(r,Θ).

In view of the identities derived from Gibbs’ relation, we observe the following:
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ρu(∂ 2
ρ,ρHΘ(r,Θ)∇xr+∂

2
ρ,ϑ HΘ(r,Θ)∇xΘ) = ρu

(
1
r

∂ρ p(r,Θ)∇xr
)

and

ρr∂ρs(r,Θ)u ·∇xΘ =−ρu
(

1
r

∂ϑ p(r,Θ)∇xΘ

)
,

combining these terms we obtain

ρu
r

·∇x p(r,Θ) = ρu
(

1
r

∂ϑ p(r,Θ)∇xΘ

)
+ρu

(
1
r

∂ρ p(r,Θ)∇xr
)
.

Arguing similarly for remaining terms using the identities in (4.1.107), we obtain a more

concise form

∫
T3

[
1
2

ρ|u−U|2+HΘ(ρ,ϑ)−∂ρHΘ(r,Θ)(ρ − r)−HΘ(r,ϑ)

]
(τ, ·)dx

≤
∫
T3

[
1
2

ρ|u0 −U0|2+HΘ0(ρ0,ϑ0)−∂ρHΘ0(r0,Θ0)(ρ0 − r0)−HΘ0(r0,ϑ0)

]
dx

+
∫

τ

0

∫
T3

ρ(u−U) ·∇xU · (U−u)dxdt

+
∫

τ

0

∫
T3
[ρ(Dd

t U+U ·∇xU) · (U−u)− p(ρ,ϑ)divxU]dxdt (4.1.108)

−
∫

τ

0

∫
T3
[⟨Vt,x;ρs(ρ,ϑ)⟩Dd

t Θ+ ⟨Vt,x;s(ρ,ϑ)m⟩ ·∇xΘ]dxdt

+
∫ T

0

∫
T3
[ρs(r,Θ)∂tΘ+ms(r,Θ) ·∇xΘ]dxdt

+
∫ T

0

∫
T3

((
1− ρ

r

)
∂t p(r,Θ)− ρ

r
u ·∇x p(r,Θ)

)
dxdt.

+
1
2

∫
τ

0
∥
√

ρφ∥2
L2(U ,L2(T3)) dt +

∫
τ

0

∫
T3

mφ dxdW −
∫

τ

0

∫
T3

∇Udµdt −M1 +M2

− ∑
k≥1

∫
τ

0

∫
T3
Ds

t U(ek) ·ρφ(ek)dxdt +
1
2 ∑

k≥1
ρ|Ds

t U(ek)|2 dxdt,

the proof is complete.

Remark 4.1.5. The relative entropy inequality is satisfied for any trio [r,Θ,U] provided

p,e and s satisfy the Gibbs’ relation (4.1.4) only, that is, the particular model from (4.1.2)

and (4.1.3) is not needed here.

We are now ready to prove Theorem 4.1.7, accordingly, we use Proposition 4.1.12 and a
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Gronwall type argument to prove a pathwise weak-strong uniqueness claim as follows.

Proof of the claim. :

Step 1

We begin by introducing a stopping time

τM = inf
{

t ∈ (0, t)| ∥U(s, ·)∥W 1,2(T3)> M
}

Since [r,Θ,U] is a strong solution,

P
[

lim
M→∞

τM = t

]
= 1;

therefore, it is enough to show results for a fixed M. Furthermore, [r,Θ,U] ≡ [ρ,ϑ ,u]

satisfies an equation of the form (4.1.94), with

Dd
t =−U ·∇xU− 1

r
∇x p(r,Θ), Ds

t U = φ , Dd
t r =−divx(rU).

Remark 4.1.6. Note that the Itô correction term in (4.1.96) vanishes for our choice of

Dd
t U.

Step 2

We proceed to recall assumptions and properties needed to show the pathwise weak-

strong uniqueness principle. For M > 0, we have

sup
t∈[0,τM ]

∥∇U∥L∞(T3)≤ c(M). (4.1.109)

Since r satisfies the continuity equation and hypothesis (4.1.29), then from maximum and

minimum principle we have

0 < rM ≤ r(t ∧ t)≤ rM

for some deterministic constants rM,rM. Similarly, for Θ we have

0 < ΘM ≤ Θ(t ∧ t)≤ ΘM.
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The relative energy (4.1.93) can be re-written as

E

(
ρ,E,m

∣∣∣∣r,Θ,U
)

=
∫
T3

(
1
2

ρ

∣∣∣∣mρ −U
∣∣∣∣2 +E −Θρs(ρ,E)−∂ρHΘ(r,Θ)(ρ − r)−HΘ(r,Θ)

)
dx

+
1
2

∫
T3

dtrRconv(t)+ cv

∫
T3

dRpress(t). (4.1.110)

where E = ρe(ρ,ϑ). Let K ⊂ (0,∞) be a fixed compact set containing the trajectories

∪t∈[0,τM ],x∈T3[r(t,x),Θ(t,x)]

and let ˜K denote its image with new phase variables

(ρ,ϑ) 7→ [ρ,ρe(ρ,ϑ)] : (0,∞)2 → (0,∞)2.

We introduce a function Φ(ρ,E),

Φ ∈C∞
c (0,∞)2,0 ≤ Φ ≤ 1,Φ|B= 1,

where B is an open neighborhood of K̃ in (0,∞). Accordingly, given a measurable func-

tion G(ρ,E,m), we set

G = Gess +Gres, Gess = Φ(ρ,E)G(ρ,E,m), Gres = (1−Φ(ρ,E))G(ρ,E,m).

(4.1.111)

Arguing similarly to the works of [47, 50], we assign Gess to the ‘essential part’ that de-

scribes the behaviour of the non-linearity in the non-degenerate area where both ρ and

ϑ are bounded below and above. On the other hand, Gres accounts for the ‘residual part’

that captures the behaviour in the singular regime ρ,ϑ → 0 or/and ρ,ϑ → ∞.

On the property of Z the cut-off function we argue as follows. Let Z =Za,b ∈BC(R),−∞≤
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a < b ≤ ∞,

Za,b(s) =


a fors < a,

s fors ∈ [a,b]

b fors ≥ b,

(4.1.112)

and we fix a,b finite such that

[Za,b(s(ρ,E))]ess = Φ(ρ,E)Za,b(s(ρ,E)) = Φ(ρ,E)Z(s(ρ,E)) = [s(ρ,E)]ess.

Finally, in view of (4.1.111) we recall the coercivity properties of E proved in ([50],

Chapter 3, Proposition 3.2),

E

(
ρ,E,m|r,Θ,U

)
≳

∫
T3

[
|ρ − r|2+|E − re(r,Θ)|2+

∣∣∣∣mρ −U
∣∣∣∣2]

ess
dx

+
∫
T3

[
1+ρ +ρ|s(ρ,E)|+E +

|m|
ρ

]
res

dx. (4.1.113)

Step 3:

In view of (4.1.110) and Proposition 4.1.12, we apply the relative entropy inequality

(4.1.96) on the time interval [0,τM]

E

(
ρ,E,m

∣∣∣∣r,Θ,U
)
(t ∧ τM)≤E

(
ρ,E,m

∣∣∣∣r,Θ,U
)
(0)

+
∫

τ∧τM

0
Q

(
ρ,E,m

∣∣∣∣r,Θ,U
)

dt +M(t ∧ τM), (4.1.114)

with

Q

(
ρ,E,m

∣∣∣∣r,Θ,U
)
=
∫
T3

ρ

(
m
ρ
−U

)
·∇xU ·

(
U− m

ρ

)
dx

+
∫
T3
[(ρU−m)(Dd

t U+U ·∇xU)− p(ρ,E)divxU]dx

−
∫

τ

0

∫
T3
[⟨Vt,x;ρs(ρ,E)⟩Dd

t Θ+ ⟨Vt,x;s(ρ,E)m⟩ ·∇xΘ]dxdt

+
∫ T

0

∫
T3
[ρs(r,Θ)∂tΘ+ms(r,Θ) ·∇xΘ]dxdt

+
∫
T3

((
1− ρ

r

)
∂t p(r,Θ)− m

r
·∇x p(r,Θ)

)
dx

−
∫
T3

∇U : dRconv −
∫
T3

divUdRpress.
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(4.1.115)

To apply a Gronwall’s type argument we first need to show the estimate

Q

(
ρ,E,m

∣∣∣∣r,Θ,U
)
≲ cE

(
ρ,E,m

∣∣∣∣r,Θ,U
)
, (4.1.116)

holds for some constant c > 0. We proceed by splitting terms and proving estimates

separate as follows. In view of (4.1.109), the estimate on defect measures is given by

∫
τ∧τm

0

∫
T3

∇xU : d[Rconv +RpressI]dt ≲ c(M)
1
2

∫
τ∧τm

0

∫
T3

dtrace[Rconv +RpressI]dt.

(4.1.117)

Similarly, using (4.1.109) we obtain

∣∣∣∣∫T3
ρ

(
m
ρ
−U

)
·∇xU ·

(
U− m

ρ

)
dx
∣∣∣∣ ≤

∫
T3

ρ

∣∣∣∣mρ −U
∣∣∣∣2 |∇xU|dx,

≲ c(M)
∫
T3

ρ

∣∣∣∣mρ −U
∣∣∣∣2 dx.

Furthermore, we observe that

(ρU−m)(Dd
t U+U ·∇xU)− m

r
·∇x p(r,Θ) =−ρU

r
·∇x p(r,Θ).

Consequently, (4.1.115) reduces to

Q

(
ρ,E,m

∣∣∣∣r,Θ,U
)
≲−

∫
τ

0

∫
T3
[⟨Vt,x;ρs(ρ,ϑ)⟩∂tΘ+ ⟨Vt,x;s(ρ,ϑ)m⟩ ·∇xΘ]dxdt

+
∫ T

0

∫
T3
[ρs(r,Θ)∂tΘ+ms(r,Θ) ·∇xΘ]dxdt

+
∫
T3
[p(r,Θ)divxU− p(ρ,E)divxU]dx

+
∫
T3

(
(r−ρ)

1
r

∂t p(r,Θ)− ρU
r

·∇x p(r,Θ)− p(r,Θ)divxU
)

dx

+ c1 E

(
ρ,E,m

∣∣∣∣r,Θ,U
)
.

(4.1.118)
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Re-writing terms with entropy s using the notation introduced in (4.1.111) we consider

the formulation

−
∫
T3
[m(⟨Vt,x;s(r,Θ)⟩−⟨Vt,x;s(ρ,E)⟩) ·∇xΘ]dx

+
∫
T3
[ρ(⟨Vt,x;s(r,Θ)⟩−⟨Vt,x;s(ρ,E)⟩)∂tΘ ]dx

=−
∫
T3

[
[m(⟨Vt,x;s(r,Θ)⟩−⟨Vt,x;s(ρ,E)⟩)]ess ·∇xΘ

]
dx

+
∫
T3

[
[ρ(⟨Vt,x;s(r,Θ)⟩−⟨Vt,x;s(ρ,E)⟩)]ess∂tΘ

]
dx

−
∫
T3
([ρ⟨Vt,x;s(ρ,E)⟩]res∂tΘ+[⟨Vt,x;s(ρ,E)⟩m]res ·∇xΘ)dx (4.1.119)

+
∫
T3
([ρ]res⟨Vt,x;s(r,Θ)⟩∂tΘ+[m]res · ⟨Vt,x;s(r,Θ)⟩∇xΘ)dx.

Here we bound the residual terms in (4.1.119) by applying (4.1.113). In the essential part,

we first revert to the use of original variables (ρ,ϑ) and note the following

[s(ρ,ϑ(ρ,E))− s(r,Θ)]ess ≈ ∂ρs(r,Θ)[ρ − r]ess +∂ϑ s(r,Θ)[ϑ(ρ,E)−Θ]ess,

for such case the difference is proportional to

[ρ − r]2ess +[E − re(r,Θ)]2ess,

is controlled by the left hand side of (4.1.113). Consequently, taking into account the

discussions above the inequality (4.1.118) reduces to

Q

(
ρ,E,m

∣∣∣∣r,Θ,U
)

≲−
∫
T3
[m(∂ρ⟨Vt,x;s(r,Θ)⟩[ρ − r]ess +∂ϑ ⟨Vt,x;s(r,Θ)⟩[ϑ(ρ,E)−Θ]ess) ·∇xΘ]dx

−
∫
T3
[ρ(∂ρ⟨Vt,x;s(r,Θ)⟩[ρ − r]ess +∂ϑ ⟨Vt,x;s(r,Θ)⟩[ϑ(ρ,E)−Θ]ess)∂tΘ ]dx

+
∫
T3
[p(r,Θ)divxU− p(ρ,E)divxU]dx

+
∫
T3

(
(r−ρ)

1
r

∂t p(r,Θ)− ρU
r

·∇x p(r,Θ)− p(r,Θ)divxU
)

dx

+ c1 E

(
ρ,E,m

∣∣∣∣r,Θ,U
)
.

(4.1.120)
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Now using the fact that r and U satisfy the equation of mass continuity, we deduce the

following identity

(r−ρ)
1
r

∂t p(r,Θ)+∇x p(r,Θ) ·U− ρ

r
U ·∇x p(r,Θ)+divxU(p(r,Θ)− p(ρ,ϑ))

= divxU
(

p(r,Θ)−∂ρ p(r,Θ)(r−ρ)−∂ϑ p(r,Θ)(Θ−ϑ)− p(ρ,ϑ))

)
+ r(ρ − r)∂ρs(r,Θ)

(
∂tΘ+U.∇xΘ

)
+ r(Θ−Θ)∂ϑ s(r,Θ)

(
∂tΘ+U.∇xΘ

)

Accordingly, the residual part of the above expression is absorbed by left-hand side of

(4.1.28). Next applying the identity derived above, we may re-write (4.1.120) taking into

account the estimation of (4.1.119) as

Q

(
ρ,E,m

∣∣∣∣r,Θ,U
)

≲
∫
T3

(
p(r,Θ)−∂ρ p(r,Θ)(r−ρ)−∂ϑ p(r,Θ)(Θ−ϑ)− p(ρ,ϑ))

)
divxUdx

+ c2 E

(
ρ,E,m

∣∣∣∣r,Θ,U
)
.

≲
∫
T3
[ρ − r]2ess +[E − re(r,Θ)]2ess dx

+ c3 E

(
ρ,E,m

∣∣∣∣r,Θ,U
)
.

(4.1.121)

Finally, in view of (4.1.113), the term

[ρ − r]2ess +[E − re(r,Θ)]2ess

is absorbed by the left-hand side to obtain the desired form in (4.1.116).

Step 4

In view of the above estimates, the relative entropy inequality (4.1.114) reduces to

E

(
ρ,E,m

∣∣∣∣r,Θ,U
)
(t ∧ τM)

≲ E

(
ρ,E,m

∣∣∣∣r,Θ,U
)
(0)+

∫
τ∧τM

0
cE

(
ρ,E,m

∣∣∣∣r,Θ,U
)
(t)dt +M(t ∧ τM). (4.1.122)
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To conclude we take the expectation in [t ∧ τM] and apply Gronwall’s lemma yielding

E
[
E

(
ρ,E,m

∣∣∣∣r,Θ,U
)
(t ∧ τM)

]
≤ c(M)E

[
E

(
ρ,E,m

∣∣∣∣r,Θ,U
)
(0)
]
, (4.1.123)

where

E
[
E

(
ρ,E,m

∣∣∣∣r,Θ,U
)
(0)
]
= 0

by assumptions. Therefore, we observe that

E
[
E

(
ρ,E,m

∣∣∣∣r,Θ,U
)
(t ∧ τM)

]
= 0

for all t ∈ (0,T ), yielding the claim.

Remark 4.1.7. We note arguing similarly as in the proof of Theorem 3.1.14 for an in-

compressible Euler system, the weak-strong(measure-valued) uniqueness property in law

continues to hold in the compressible Euler system.

4.1.11 Martingale solutions as measures on the space of trajectories

We dedicate this section and subsequent sections to the study of Markov selection for

the complete stochastic Euler system (4.1.17)-(4.1.19). To begin with, we address the

difficulties one encounters when applying Markov selection on systems with measures.

Accordingly, we observe that from the proof of Theorem 4.1.7, the natural filtration asso-

ciated to a dissipative measure-valued martingale solution in the sense of Definition 4.1.5

is the joint canonical filtration of [ρ,m,S,Rconv,Rpress,Vt,x,W ]. However, the canonical

processes [S,Rconv,Rpress,Vt,x] are class of equivalences in time and not a stochastic pro-

cesses in the classical sense. Therefore, it is not obvious as to how one should formulate

the Markovianity of the system (4.1.17)-(4.1.19). To circumvent this problem, we shall

introduce new variables S ,R (time integrals) such that

S =
∫ ·

0
Sds, R =

∫ ·

0

(
Rconv,Rpress,Vt,x

)
ds.

Consequently, the notion of new variables allows us to establish the Markov selection for

the joint law of [ρ,m,S ,R]. In this case, the stochastic process has continuous trajecto-

ries and contains all necessary information. The initial data for [S ,R] is superfluous and

only needed for technical reasons in the selection process. To study Markov selection, it
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is desirable to consider the martingale solutions as probability measures P ∈ Prob [Ω]

such that

Ω =Cloc([0,∞);W−k,2(T3)),

where k > 3/2. Adopting the set-up of Section 4.1.2 we set X =W−k,2(T3). Accordingly,

let B denote the Borel σ -field on Ω. Let ξ =(ξ 1,ξ 2,ξ 3,ξ 4) denote the canonical process

of projections such that

ξ =(ξ 1,ξ 2,ξ 3,ξ 4) : Ω→Ω, ξ tω =(ξ 1
t ,ξ

2
t ,ξ

3
t ,ξ

4
t )(ω)=ωt ∈W−k,2(T3), for any t ≥ 0,

where the notation ωt indicates that our random variable is time dependent. In addition,

let (Bt)t≥0 be the filtration associated to canonical process given by

Bt := σ(ξ |[0,t]), t ≥ 0,

which coincides with the Borel σ -field on Ω[0,t] = ([0, t];W−k,2(T )). From here hence-

forth, we shall consider analysis of the dissipative martingale solutions

((Ω,F ,(Ft)t≥0,P),ρ,m,S,Rconv,Rpress,Vt,x,W ),

in the sense of Definition 4.1.5 as probability laws P , that is,

P = L

[
ρ,m,

∫ ·

0
Sds,

∫ ·

0
(Rconv,Rpress,Vt,x)ds

]
∈ Prob[Ω].

Consequently, we obtain the probability space (Ω,B,(Bt)t≥0,P). Furthermore, we

introduce the space

F =

{
[ρ,m,S ,R] ∈ F̃

∣∣∣∣∫T3

|m|2

|ρ|
dx < ∞

}
,

F̃ = Lγ(T3)×L
2γ

γ+1 (T3)× (Lγ(T3))× (W−k,2(T3, ·))2 × (W−k,2(T3,A)).

where A = R×R3 ×R. We augment F with the points of the form (0,0,S ,R) for

S ∈ Lγ(T3) and R ∈W−k,2(T3,R15). Therefore, F is Polish space with metric

dF(y,z) = dY ((y1,y2,y3,y4),(z1,z2,z3,z4)) = ∥y− z∥F̃+

∥∥∥∥∥ y2√
|y1|

− z2√
|z1|

∥∥∥∥∥
L2

x

.

(4.1.124)
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Moreover, inclusion F ↪→ X is dense. Accordingly, we define a subset

Y =

{
[ρ,m,S ,R] ∈ X

∣∣∣∣ρ ̸≡ 0,ρ ≥ 0,
∫
T3

|m|2

ρ
dx < ∞

}
.

We observe that (Y,dF) is not complete because ρ ̸≡ 0, and the inclusion Y ↪→ X is not

dense since ρ ≥ 0. The probability law P(t, ·) continues to hold (supported) in Y , and

consequently determines the set of admissible initial conditions.

Definition 4.1.6 (Dissipative measure-valued martingale solution). A borel probability

measure P on Ω is called a solution to the martingale problem associated to (4.1.17)-

(4.1.19) provided:

(a) it holds

P
(
ξ

1 ∈Cloc[0,∞);(Lγ(T3),w)),ξ 1 ≥ 0
)
= 1,

P

(
ξ

2 ∈Cloc[0,∞);(L
2γ

γ+1 (T3),w))
)
= 1,

P
(
ξ

3 ∈W 1,∞([0,∞);Lγ(T3))
)
= 1,

P
(

ξ
4 ∈W 1,∞

weak−(∗)(0,∞;M+(T3,R3×3))
)
= 1;

P
(

ξ
4 ∈W 1,∞

weak−(∗)(0,∞;M+(T3,R))
)
= 1;

P
(

ξ
4 ∈ (W 1,∞

weak−(∗)((0,∞)×T3;P(R5)))
)
= 1;

(b) the total energy

E=
∫
T3

[
1
2
|ξ 2|2

ξ 1 + cv(ξ
1)γ exp

(
ξ 3

cvξ 1

)]
dx+

1
2

∫
T3

dtrξ 4
conv(t)+ cv

∫
T3

dξ
4
press(t)

belongs to the space L∞
loc(0,∞) P-a.s.;

(c) it holds P-a.s. [∫
T3

ξ
1
t ψ

]t=τ

t=0
−
∫

τ

0

∫
T3

ξ
2
t ·∇ψ dxdt = 0

for any ψ ∈C1(T3) and τ ≥ 0;
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(d) for any ϕ ∈C1(T3,R3), the stochastic process

M (ϕ) : [ω,τ] 7→
[∫

T3
ξ

2
t ·ϕ

]t=τ

t=0

−
∫

τ

0

∫
T3

[
ξ

2
t ⊗ξ

2
t

ξ 1
t

: ∇ϕ +ξ
1
t exp

(
ξ 3

t

cvξ 1
t

)
divϕ

]
dxdt

−
∫

τ

0
∇ϕ : dξt

4
convdt −

∫
τ

0

∫
T3

divϕ dξt
4
pressdt

is a square integrable ((Bt)t≥0,P)-martingale with quadratic variation

1
2

∫
τ

0

∞

∑
k=1

(∫
T3

ξ
1
t φek ·ϕ dx

)2

dt;

(e) It holds P-a.s.

∫
τ

0

∫
T3

[
⟨(ξ 4

ν)t,x;Z(S̃)⟩∂tϕ + ⟨(ξ 4
ν)t,x,Z(S̃)m̃/ρ̃⟩ ·ϕ

]
dxdt

≤
[∫

T3
⟨(ξ 4

ν)t,x;Z(S̃)⟩ϕ dx
]t=τ

t=0

(4.1.125)

for any ϕ ∈C1([0,∞)×T3),ϕ ≥ 0, and any Z ∈ BC(R) non-decreasing.

(f) The stochastic process

E : [ω,τ] 7→ Eτ −E0 −
1
2

∫
σ

0
∥
√

ξ 1φ∥2
L2(U ;L2(T3)) dσ (4.1.126)

is a square integrable ((Bt)t≥0,P)-martingale with quadratic variation

1
2

∫
τ

0

∞

∑
k=1

(∫
T3

ξ
2
t ·φek dx

)2

dt

for τ ≥ 0.

In the following we state the relation between Definition 4.1.5 and Definition 4.1.6.

Proposition 4.1.13. The following statement holds true

1. Let ((Ω,F ,(Ft)t≥0,P),ρ,m,S,Rconv,Rpress,Vt,x,W ) be a dissipative martingale

solution to (4.1.17)-(4.1.19) in the sense of Definition 4.1.5. Then for every F0-

measurable random variables [S0,R0] with values in S ∈ W−k,2(T3)∩ Lγ(T3)
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and R ∈W−k,2(T3,R15) we have that

P = L

[
ρ,m = ρu,S0 +

∫ ·

0
S ds,R0 +

∫ ·

0
Rds

]
∈ Prob[Ω] (4.1.127)

is a solution to the martingale problem associated to (4.1.17)-(4.1.19) in the sense

of Definition 4.1.6.

2. Let P be a solution to the martingale problem associated to (4.1.17)-(4.1.19) in

the sense of Definition 4.1.6. Then there exists a dissipative martingale solution

((Ω,F ,(Ft)t≥0,P),ρ,m,S,Rconv,Rpress,Vt,x,W1)

to the system (4.1.17)-(4.1.19) in the sense of Definition 4.1.5 satisfying properties

(a)-(j), furthermore, there exists W2 such that

((Ω,F ,(Ft)t≥0,P),ρ,m,S,Rconv,Rpress,Vt,x,W2)

satisfies Definition 4.1.5 property (k) and an F0-measurable random variables

[S0,R0] for S ∈W−k,2(T3)∩Lγ(T3) and R ∈W−k,2(T3,R15) such that

P = L

[
ρ,m = ρu,S0 +

∫ ·

0
Sds,R0 +

∫ ·

0
Rds

]
∈ Prob[Ω], (4.1.128)

where W1 and W2 correspond to Wiener process generated by momentum equation

and energy equality, respectively.

We proceed to present a proof of Proposition 4.1.13 following the arguments presented

in [12] with appropriate adjustment to our system (4.1.17)-(4.1.19).

Proof. Step 1: Definition 4.1.5 implies Definition 4.1.6.

Our aim is to show that the probability law given by (4.1.127) is a solution to the martin-

gale problem associated to (4.1.17)-(4.1.19) in the sense of Definition 4.1.6. To proceed,

we let

((Ω,F ,(Ft)t≥0,P),ρ,m,S,Rconv,Rpress,Vt,x,W1)

be a dissipative solution martingale solution to Euler system (4.1.17)-(4.1.19) in the sense

of Definition 4.1.5 and let [S0,R0] be arbitrary F0-measurable random variables with

S ∈ W−l,2(T3)∩Lγ(T3) and R ∈ W−k,2(T3,R15). Accordingly, we observe that prop-
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erty (a) of Definition 4.1.6 follows from properties: (c), (d),(e) and (f) in Definition 4.1.5

(the adaptedness of terms with measures are understood in the sense of random distribu-

tions, see Section 2.1) and the definition of P as the pushforward measure generated by

[ρ,m,S ,R].

Similarly, we note that the total energy, mass continuity equation and balance of entropy

are measurable functions on the subset Ω with P a.s.(i.e. the law P is supported on

Ω). Consequently, we obtain that the properties (b), (c) and (e) of Definition 4.1.6 hold.

Finally, we proceed to show that properties (d) and (f) of Definition 4.1.6 hold. This

follows from noting that the functionals M (ϕ) and E are measurable on the subset of Ω

where P is supported. Specifically, we re-write the equation of moment in form

[∫
T3

m ·ϕ
]t=τ

t=0
−

∫
τ

0

∫
T3

[
m⊗m

ρ
: ∇ϕ +ρ exp

(
S

cvρ
divϕ

)]
dxdt

−
∫

τ

0
∇ϕ : dRconvdt −

∫
τ

0

∫
T3

divϕ dRpressdt

=
∫

τ

0
ϕ ·ρφ dxdW, (4.1.129)

P-a.s. for all ϕ ∈ C∞(T3) and all τ > 0. We observe that the left hand side of (4.1.129)

is a martingale with respect to the canonical filtration generated by [ρ,m,S ,R]. Conse-

quently, M (ϕ) is subject to properties of a martingale. To show property (d) of Definition

4.1.6 we argue as follows. Let V be a stochastic process, we denote by Vt,s the increments

Vt −Vs for s ≤ t. We consider ϕ ∈ C∞(T3) and a continuous function h : Ω[0,s] → [0,1]

such that

EP [h(ξ |[0,s])M (ϕ)s,t ] = EP[h([ρ,m,S ,R]|[0,s])M(ϕ)s,t ] = 0,

where

M(ϕ) =

[∫
T3

m ·ϕ
]t=τ

t=0
−
∫

τ

0

∫
T3

[
m⊗m

ρ
: ∇ϕ +ρ exp

(
S

cvρ
divϕ

)]
dxdt

−
∫

τ

0
∇ϕ : dRconvdt −

∫
τ

0

∫
T3

divϕ dRpressdt.
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Furthermore, we deduce

EP [h(ξ |[0,s])[M 2(ϕ)]s,t −Q(ϕ)s,t ] = EP[h([ρ,m,S ,R]|[0,s])[M2(ϕ)]s,t −Q(ϕ)s,t ] = 0,

where

Q(ϕ) =
∫

τ

0

∞

∑
k=1

(∫
T3

ξ
1
t φek ·ϕ dx

)2

dt.

Q(ϕ) =
∫

τ

0

∞

∑
k=1

(∫
T3

ρφek ·ϕ dx
)2

dt.

Accordingly, we conclude that M (ϕ) is a Bt-martingale with quadratic variation Q(ϕ).

We observe that property (f) of Definition 4.1.6 follows from arguing as in arguments of

property (d) with appropriate adjustments. This completes proof of Step 1.

Step 2: Definition 4.1.6 implies Definition 4.1.5.

To begin with, let P ∈ Prob[Ω] be a solution to the martingale problem (4.1.17)-(4.1.19)

in the sense of Definition 4.1.6. To complete step two we need to find a stochastic basis

(Z ,F ,(Ft)t≥0,P), density ρ , momentum m, entropy S, convective (Rconv) and pres-

sure measures (Rpress), respectively, Young measure Vt,x and a cylindrical (Ft)- measur-

able Wiener process W such that

((Ω,F ,(Ft)t≥0,P),ρ,m,S,Rconv,Rpress,Vt,x,Wj), j = 1,2;

is a dissipative solution to (4.1.17)-(4.1.19) in the sense of Definition 4.1.5. In the case

of j = 1 (without labelling) we use momentum equation and argue as follows. Taking

into account property (d) of Definition 4.1.6 in conjunction with the standard martingale

representation theorem, see [35, Theorem 8.2], we deduce that there exists an extended

stochastic basis

(Ω× Ω̃,B⊗ B̃,(Bt ⊗ B̃t)t≥0,P ⊗P̃),

and an (Bt ⊗ B̃t)t≥0-measurable cylindrical Wiener process W1 = ∑
∞
k=1Wkek such that

Q(ϕ) =
∞

∑
k=1

∫
τ

0

(∫
T3

ρφek ·ϕ dx
)

dWk,
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where

ρ(ω, ω̃) = ξ
1(ω), m(ω, ω̃) = ξ

2(ω), S(ω, ω̃) = ξ
3(ω), (4.1.130)

and

ξ
4(ω) =

(
Rconv(ω, ω̃),Rpress(ω, ω̃),Vt,x(ω, ω̃)

)
. (4.1.131)

Finally, we proceed to account for the noise term W2 generated by the energy inequality.

Similarly to the case above, we apply the standard martingale representation theorem

again to the extended space (Ω× Ω̃) and obtain an extended stochastic basis

(Ω× Ω̃×Ω,B⊗ B̃,(Bt ⊗ B̃t ⊗Bt)t≥0,P ⊗P̃ ⊗P),

and an (Bt ⊗ B̃t ⊗Bt)t≥0-measurable cylindrical Wiener process W = ∑
∞
k=1Wkek such

that

E =
∞

∑
k=1

∫
τ

0

∫
T3

ξ
2
t ·φek dxdWk

with ξ
1
t ,ξ

2
t ,ξ

3
t ,ξ

4
t satisfying the conditions in (4.1.130)-(4.1.131), and are extended triv-

ially (with constant values w.r.t (Ω). Accordingly, we let (Z ,F ,(Ft)t≥0,P) to be the

above extended probability space associated to the filtration (Bt ⊗ B̃t ⊗B)t≥0, then

((Ω,F ,(Ft)t≥0,P),ρ,m,S,Rconv,Rpress,Vt,x,Wj), j = 1,2;

is a dissipative martingale solution to (4.1.17)-(4.1.19) in the sense of Definition 4.1.5. In

addition, the following holds

P = L

[
ρ,m = ρu,S0 +

∫ ·

0
Sds,R0 +

∫ ·

0
Rds

]
∈ Prob[Ω],

with S0(ω, ω̃) = ξ 3
0 (ω) and R = (Rconv,Rpress,Vt,x)0(ω, ω̃) ≡ (0,0,0)0(ω) by defini-

tion. To be precise, we conclude that applying the martingale representation theorem

twice completes proof of Step 2.

4.1.12 Markov selection

In this section we state and prove the strong Markov selection to the complete stochas-

tic Euler system (4.1.17)-(4.1.19). Let y ∈ Y be an admissible initial data (condition),
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we denote by Py a solution to the martingale problem associated with (4.1.17)-(4.1.19)

starting on y at time t = 0; that is, the marginal of Py at t = 0 is Λy. We start off with the

definition of strong Markov family;

Definition 4.1.7. A family (Py)y∈Y ∈ Prob[Ω] of probability measures is called a strong

Markov selection family provided

(1) For every A ∈ B, the mapping y 7→ Py(A) is B(Y )/B([0,1])-measurable.

(2) For every finite (Bt)t≥0-stopping time T , every y ∈ Y and Py-a.s. ω ∈ Ω

Py|ωBT
= Py ◦Φ

−1
−τ .

Accordingly, a strong Markov family follows from the so-called pre-Markov family via

a selection procedure. Finally, we have all we need to state the following theorem.

Theorem 4.1.14. Assume (4.1.11) and (4.1.12) holds. Then there exists a family {Py}y∈Y

of solutions to the martingale problem associated to (4.1.17)-(4.1.19) in the sense of

Definition 4.1.6 with a.s. Markov property (as defined in Definition 4.1.3)

We set y = (y1,y2,y3,y4) ∈ Y and denote by C (y) the set of probability laws Py ∈

Prob[Ω] solving the martingale problem associated to (4.1.17)-(4.1.19) with initial law

[Λy]. The proof of Theorem 4.1.14 follows from applying abstract result of Theorem

4.1.3. In particular, we show that the family {C (y)}y∈Y of solutions to the martingale

problem satisfies the disintegration and reconstruction properties in Definition 4.1.3.

Lemma 4.1.15. For each y = (y1,y2,y3,y4) ∈Y . The set C (y) is non-empty and convex.

Furthermore, for every P ∈ C (y), the marginal at every time t ∈ (0,∞) is supported on

Y .

Proof. Assuming y ∈ Y , application of Theorem 4.1.6 yields existence of a martingale

solution to the problem (4.1.17)-(4.1.19) in the sense of Definition 4.1.5. Consequently,

by Proposition 4.1.13 we infer that for each y ∈ Y the set C (y) is non-empty. For some

λ ∈ (0,1), we consider P1,P2 ∈C (y) such that P = λP1+(1−λ )P2. Then convex-

ity follows from noting that properties of Definition 4.1.5 involve integration with respect

to the elements of C (y). In view of Definition 4.1.5 property (f) (energy equality), the

marginal P ∈ C (y) at every t ∈ (0,∞) is supported in Y .
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For compactness we consider the following Lemma.

Lemma 4.1.16. Let y∈Y . Then C (y) is a compact set and the map C :Y →Comp(Prob[Ω])

is Borel measurable.

Proof. The lemma follows from the claim: Let (yn = (ρn,mn,Sn,Rn))n∈N ⊂ Y be a

sequence converging in Y to some (y = (ρ,m,S ,R)) with respect to the metric dF in

(4.1.124). Let Pn ∈ C(yn),n ∈ N. Then for each (Pn)n∈N , the sequence converges

to some P ∈ C (y) weakly in Prob[Ω]. Since Y is a metric space the measurability of

the map y 7→ C (y) follows from using [86, Theorem 12.1.8] for the metric space (Y,dF).

Accordingly, the claim is an immediate consequence of Theorem 4.1.6. Consequently, by

Proposition 4.1.4 P is a solution to a martingale problem with initial law Λ. Therefore,

P ∈ C (y) as required.

Finally, we verify that C (y) has disintegration and reconstruction property in the sense of

Definition 4.1.3.

Lemma 4.1.17. The family {C (y)}y∈Y satisfies the disintegration property of Definition

4.1.3.

Proof. Fix y ∈ Y , P ∈ C (y) and let T be Bt-stopping time. In view of Theorem 4.1.1,

we know there exists a family of probability measures;

Ω ∋ ω̃ 7→ P|ω̃BT
∈ Prob[Ω[T,∞)]

such that

ω(T ) = ω̃(T ), P|ω̃BT
-a.s., P(ω|[0,T ]∈A,ω|[T,∞)∈B) =

∫
ω̃|[0,T ]∈A

P|ω̃BT
(B)dP(ω̃),

(4.1.132)

for any Borel sets: A ⊂ Ω[0,T ] and B ⊂ Ω[T,∞). Here, we want to show that

Φ−τP|ω̃BT
∈ C (ω(T )) for ω̃ ∈ Ω,P-a.s.

Thus we are seeking an P|ω̃BT
-nullset N outside of which properties (a)-(f) of Definition

4.1.6 holds for P|ω̃BT
. To begin with, set Na, . . . ,N f to each of the properties (a)-(f) of

Definition 4.1.6, respectively, and let N = Na∪·· ·∪N f . Arguing similarly along the lines

of [54, Lemma 4.4] and [12] we have the following observations:
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(1) Set

HT =

{
ω ∈ Ω : ω|[0,T ]∈C([0,T ];Lγ(T3))×C([0,T ];L

2γ

γ+1 (T3))

×W 1,2([0,∞),Lγ(T3))∩BV 2
w,loc(0,∞;W−l,2(T3))× (W 1,∞

weak-*(0,∞;M+(T3)))2
}

HT =

{
ω ∈ Ω : ω|[T,∞)∈C([0,∞);Lγ(T3))×C([0,∞);L

2γ

γ+1 (T3))

×W 1,2([0,∞),Lγ(T3))∩BV 2
w,loc(0,∞;W−l,2(T3))× (W 1,∞

weak-*(0,∞;M+(T3)))2
}
,

in view of property (a) in Definition 4.1.6, for P we obtain

1 = P(HT ∩HT ) =
∫

HT

P|ω̃BT
(HT )dP(ω̃),

therefore, there is an P|ω̃BT
-nullset Na such that P|ω̃BT

(HT ) = 1 holds for P-

a.a.ω̃ ∈ Ω (i.e. the remaining ω̃ ∈ Ω are contained in nullset Na).

(2) Similarly, for the total energy property (b) in Definition 4.1.6 we set

HT = {ω ∈ Ω : E|[0,T ]∈Lloc
(0,T )},

HT = {ω ∈ Ω : E|[T,∞)∈Lloc
(T,∞)}.

Since the property (b) holds P a.s., arguing as in proof for property (a) (i.e. sub-

stituting HT and HT with HT and HT , respectively) we deduce that there holds

P|ω̃BT
(HT ) = 1 for P-a.s. ω . Consequently, this yields the nullset (Nb).

(3) For property (c), let (ψn)n∈N be a dense subset of W k,2(T3) and fix n ∈N. For each

n ∈ N we assign an P-nullset Nn
c and set Nc =

⋃
n∈NNn

c . To proceed, we split the

continuity equation as follows:

[∫
T3

ξ
1
t ψn

]t=τ

t=0
−
∫

τ

0

∫
T3

ξ
2
t ·∇ψndxdt = 0, ∀ 0 ≤ τ ≤ T, (4.1.133)[∫

T3
ξ

1
t ψn

]t=τ

t=T
−
∫

τ

0

∫
T3

ξ
2
t ·∇ψndxdt = 0, ∀ T < τ < ∞, (4.1.134)

and consider the sets

AT = {ω ∈ Ω : ω|[0,T ] satisfies (4.1.133)}

AT = {ω ∈ Ω : ω|[T,∞) satisfies (4.1.134)}.

164



Chapter 4.

As the property (c) holds for P , arguing similarly as in proof of (a) and (b) yields

a nullset Nn
c .

(4) In case of momentum equation (d), let (ϕn)n∈N be a dense subset of W k,2(T3,R3)

and fix n ∈ N. Similarly, we assign for each n ∈ N an P-nullset Nn
d and set

Nd =
⋃

n∈NNn
d . Noting that property (d) holds for P , then (Mt(ϕn))t≥0 is a

((Bt)t≥0,P)-square integrable martingale with quadratic variation

(Q(ϕn))τ =
1
2

∫
τ

0

∞

∑
k=1

(∫
T3

ξ
1
t ϕek ·ϕ

)2

dt;

As a consequence of Proposition 4.1.4, for P-a.a. ω̃ we deduce that (Mt(ϕn))t≥T

is a ((Bt)t≥T ,P|ω̃BT
)-square integrable martingale with quadratic variation (Q(ϕn))t≥T .

(5) In the entropy inequality (e), the arguments coincide with those of proof of (c).

(6) Similarly, for (f) we can argue as in the proof of (d) to obtain the nullset Nn
f .

Choosing N = Na ∪·· ·∪N f completes the proof.

Lemma 4.1.18. The family {C (y)}y∈Y satisfies the reconstruction property of Definition

4.1.3.

Proof. Fix y ∈ Y , P ∈ C (y) and let T be Bt-stopping time. In view of Theorem 4.1.2,

suppose that Qω is a family of probability measures such that

Ω ∋ ω 7→ Qω ∈ Prob[Ω[T,∞)],

is BT -measurable. Then there exists a unique probability measure P ⊗T Q such that :

(a) For any Borel set A ∈ Ω[0,T ] we have

(P ⊗T Q)(A) = P(A);

(b) For ω̃ ∈ Ω we have P-a.s.

(P ⊗T Q)|ω̃BT
= Qω̃
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We aim to prove that for a Qω : Ω → Prob[Ω[T,∞)]-BT -measurable map such that there is

N ∈ BT with P(N) = 0 and for all ω ̸∈ N it holds

ω(T ) ∈ Y and Φ−T Qω ∈ C (ω(T ));

then (P ⊗T Q) ∈ C (y). In order to do this we have to verify properties (a)-(f) in Defini-

tion 4.1.6. The proof follows along the lines of [54], Lemma 4.5. Adopting the notation

introduced in Lemma 4.1.17, we argue as follows:

Here we note that Qω is a regular conditional probability distribution of (P ⊗T Q) with

respect to BT .

(1) Since (a) holds for Qω we have Qω(HT ) = 1 such that

P ⊗T Q(HT ∩HT ) =
∫

HT

Qω [HT ]dP(ω) = 1.

(2) For properties (b), (c) and (e) of Definition 4.1.6 we argue as in property (a) (Using

the notation developed for each property, respectively).

(3) In the case of property (d),we proceed as follows:

Since (d) holds for Qω we know that (Mt(ϕn))t≥T is a ((Bt)t≥T ,Qω)-square in-

tegrable martingale for all ϕ ∈ C1(T3). Consequently, by Proposition 4.1.4 we

deduce that (Mt(ϕn))t≥T is a ((Bt)t≥T ,P ⊗T Q)-square integrable martingale as

well. Observing that P and P⊗T Q coincides on B(Ω[0,T ]) and (Mt(ϕn))0≤t≤T is

a ((Bt)0≤t≤T ,P)-martingale (since P satisfies property (d)) we infer that (Mt(ϕn))t≥0

is a ((Bt)t≥0,P ⊗T Q)-martingale.

(4) Property (f) follows by the same argument as in property (d) (with obvious modifi-

cations).

166



Chapter 5

5.1 Published papers

D. Breit, T. C. Moyo: Dissipative Solutions to the Stochastic Euler Equations. Journal of

Mathematical Fluid Mechanics, 23, 1-23.(2021).

T.C.Moyo: Dissipative solutions and Markov selection to the complete stochastic Euler

system, arXiv preprint arXiv:2112.09955 (2021).
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