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Abstract: Local feature extractions have been verified to be effective for person re-identification (re-ID)
in recent literature. However, existing methods usually rely on extracting local features from single
part of a pedestrian while neglecting the relationship of local features among different pedestrian
images. As a result, local features contain limited information from one pedestrian image, and cannot
benefit from other pedestrian images. In this paper, we propose a novel approach named Local
Relation-Aware Graph Convolutional Network (LRGCN) to learn the relationship of local features
among different pedestrian images. In order to completely describe the relationship of local features
among different pedestrian images, we propose overlap graph and similarity graph. The overlap
graph formulates the edge weight as the overlap node number in the node’s neighborhoods so as to
learn robust local features, and the similarity graph defines the edge weight as the similarity between
the nodes to learn discriminative local features. To propagate the information for different kinds
of nodes effectively, we propose the Structural Graph Convolution (SGConv) operation. Different
from traditional graph convolution operations where all nodes share the same parameter matrix,
SGConv learns different parameter matrices for the node itself and its neighbor nodes to improve the
expressive power. We conduct comprehensive experiments to verify our method on four large-scale
person re-ID databases, and the overall results show LRGCN exceeds the state-of-the-art methods.

Keywords: person re-identification; graph convolutional network; local feature relationship

1. Introduction

Person re-identification (re-ID) aims at matching pedestrians with the same identity
across multiple camera views [1–4]. It has gained attention in recent years due to its
wide range of video surveillance applications, including tracking suspects and locating
missing individuals.

With the renaissance of deep learning, Convolutional Neural Network (CNN) domi-
nates the field of identity recognition, such as person re-ID [5–8] and gait recognition [9,10].
As for person re-ID, many CNN-based methods [11–14] focus on extracting global features
of pedestrians, but they ignore the fine-grained information of pedestrians which is signif-
icant to distinguish the pedestrians, with high visual similarity. Local feature extraction
has been proven to be an effective way to improve the feature representation in many
research fields [15–17]. As for person-re-ID, some methods [18–20] divide the pedestrian
image or convolutional activation maps into several horizontal parts. Subsequently, local
features are extracted from these parts, as shown in Figure 1a. These methods achieve
impressive performance in most public person re-ID databases. However, they only extract
the local feature from single part of a pedestrian, which neglects the relationship of local
features among different pedestrian images. As a result, these local features contain the
limited information extracted from one pedestrian image, and cannot benefit from other
pedestrian images.
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Figure 1. (a) In traditional person re-ID approaches, the extraction of local features is limited to a
single part of the pedestrian. (b,c) The proposed LRGCN constructs graphs using local features from
the same part of different pedestrian images to learn the relationship of local features among different
pedestrian images.

Recently, Graph Convolutional Network (GCN) has attracted significant attention due
to its effectiveness on graph data processing [21,22]. They propagate the information of
nodes over the graph structure, and therefore, the nodes of graph aggregate the information
from other nodes. Hence, it is reasonable that we resort to GCN to establish the relationship
of local features among different pedestrian images. However, we should take the following
two aspects into consideration for the person re-ID task. The one is how to construct the
graph for local features, and the other is how to propagate the information for different
kinds of nodes effectively.

In this paper, we propose a novel approach named Local Relation-Aware Graph
Convolutional Network (LRGCN) to solve the above-mentioned questions for person re-
ID. Specifically, a pedestrian image is divided into several parts based on key points to
overcome misalignment. Then, each part’s local features are extracted. Since the same parts
of different pedestrian images, especially different images with the same ID, could describe
the pedestrian from the different aspects, we can learn the complementary information after
building the relationship among them. Thus, to solve the first question, we construct the
graphs using local features from the same part of a pedestrian, as depicted in Figure 1b,c.

Concretely, in order to completely describe the relationship among local features from
the same part of different pedestrian images, we propose an overlap graph and similarity
graph. As for the overlap graph, the local features from the same part are treated as the
nodes. The two nodes with the same ID are prone to have more common nodes in their
neighborhoods; these common nodes are denoted as overlap nodes, and they should be
assigned to a larger edge weight. Hence, we formulate the edge weight of the overlap
graph as the overlap node number in the node’s neighborhoods. In this way, the overlap
graph is robust to environmental variations due to considering the contexts of nodes, and
the nodes in the overlap graph could learn the information from other nodes accurately.
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The similarity graph considers local features from the same part as nodes, and regards
the similarity between nodes as edge weight. In order to improve the flexibility of the
similarity graph, we learn two different transformations to measure the similarity between
nodes. As a consequence, the adjacency matrix of similarity graph is asymmetric and
data-driven. Furthermore, we update the graph topology of similarity graph in each graph
convolutional layer, so it is more flexible than the heuristic predefined graph structure.
The discriminative ability of local features is enhanced through the propagation of node
information in the similarity graph.

After constructing the graphs, they should be fed into the graph convolution layer, but
most graph convolution operations share the same parameter matrix for all the nodes, which
is hard to discover interaction of among the nodes. Hence, to propagate the information for
different kinds of nodes effectively (i.e., the second question), we propose the Structural
Graph Convolution (SGConv). In the aggregation stage, a node is updated depending
on itself and its neighbor nodes, and therefore, these nodes are naturally divided into the
node itself and its neighbor nodes. Inspired by this, the proposed SGConv learns different
parameter matrices for the two types of nodes so as to improve the expressive power of
GCN. The proposed SGConv is concise and it is applicable to arbitrary graph topologies.

To summarize, our contributions include the following three aspects:

(1) We propose LRGCN, a person re-ID method, that considers the relationship between
local features across different pedestrian images so as to learn valuable information
from other pedestrian images.

(2) We design an overlap graph and similarity graph to model the relationship of local
features among different pedestrian images from different aspects. Based on the two
kinds of graphs, we could obtain robust and discriminative local features.

(3) We propose SGConv, which learns different parameter matrices for the node itself
and its neighbor nodes to improve the expressive power of GCN.

The effectiveness of each component in LRGCN is validated through rigorous ab-
lation experiments. Meanwhile, our method outperforms state-of-the-art methods on
four large-scale person re-ID databases. Furthermore, we also present visualization re-
sults of overlap graph and similarity graph, which demonstrates the effectiveness of our
method qualitatively.

2. Related Work
2.1. Person Re-ID

Benefiting from the multi-layer non-linear structure of CNN, pedestrian images are
represented by discriminative deep features. Li et al. [23] and Zhao et al. [24] were the first
to apply CNN to person re-ID and achieve great success. Subsequently, many researchers
have designed various CNN models to learn feature representations of pedestrian images
to improve the feature discrimination, an idea borrowed from other fields [9,25]. As for
person re-ID, some of these methods [26–28] primarily concentrate on learning global
features. For example, Yi et al. [26] utilized a structurally symmetric Siamese-CNN to
directly learn the similarity between pedestrian images. Yang et al. [27] presented the
Class Activation Maps Augmentation (CAMA) for person re-ID, which designs multi-
ple branches to mine complementary visual information from entire pedestrian images.
Wei et al. [28] proposed the Self-Inspirited Feature Learning (SIF) for person re-ID, which
improves the discriminative ability of given models using a negative branch.

Some approaches learn local features to provide fine-grained information of pedestrian.
Zhao et al. [29] implemented the localization of pedestrian body parts and local feature
learning in a unified framework of deep network. Zhang et al. [30] proposed to align local
features by calculating the shortest path between them in order to overcome occlusion
and pose variation. Park et al. [31] introduced a relation network for person re-ID, which
exploits a one-vs.-rest relational module to inject the local features from other parts into
the representations.
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To further alleviate the influences of pose variations, background clutter, and mis-
alignment, an increasing number of approaches introduce external clues, e.g., human pose
estimation [32–34], in their models. Su et al. [35] proposed the Pose-driven Deep Convolu-
tional (PDC) model that applies pose transformation in the learning process of local features
to overcome pose variations. Huang et al. [36] divided convolutional activation maps based
on human pose estimation and extracted local features from the aligned parts. Kalayeh
et al. [19] designed the SPReID model for person re-ID, which replaces the rectangular
bounding boxes with human semantic parsing so as to precisely localize the body parts
with arbitrary contours. Tay et al. [37] proposed the Attribute Attention Network (AANet)
that constructs attribute attention maps to obtain strong discriminative representations
using additional attribute information.

In addition, some works try to improve the accuracy of person re-ID using gallery
images, such as manifold learning [38,39] and re-ranking [40]. Loy et al. [38] propagated
query image label information among gallery images in an unsupervised manner to obtain
robust ranking results. Bai et al. [39] proposed the Supervised Smoothed Manifold (SSM),
which leverages the training data label constraint to learn a smooth similarity measure.
Zhong et al. [40] utilized k-reciprocal encoding to optimize the ranking list. These meth-
ods belong to post-processing and pedestrian image features cannot be improved from
these post-processing operations. Recently, Luo et al. [41] proposed Spectral Feature Trans-
formation (SFT) which employs the relationship among images to optimize group-wise
similarities. However, SFT has no learnable parameters, so it cannot model the relationship
among images accurately. In contrast to the previously mentioned methods, our method
can adaptively learn the relationship among pedestrian images using two types of graphs
to improve the feature representation capacity.

2.2. Graph Convolutional Network

CNN has achieved great success in dealing with Euclidean structure data, but it cannot
be directly applied to non-Euclidean structure data, i.e., graph structure data [21,42,43].
However, lots of critical data, such as knowledge graphs and social networks, can be repre-
sented using graph structures. Recently, GCN has been proposed to learn graph structure
data and has achieved impressive performance [44–47]. GCN is usually constructed from
spectral perspective and spatial perspective. Spectral-based methods [21,46] perform the
convolution operation using the graph Fourier transform in the frequency domain. As for
spatial-based methods [48–50], they expand the convolution filter to graph structure data
in order to implement the convolution operation among nodes. It is noteworthy that our
work follows the spatial perspective to construct GCN.

In some recent work [51–54], GCN has been introduced into person re-ID. Furthermore,
ref. [53] achieved satisfactory improvement when applying GCN to global features. This
indicates that it is effective to use GCN to construct the relationship among pedestrian
images so as to improve feature representations. However, global features neglect to
emphasize local differences and lack explicit mechanisms to effectively address the issue of
misalignment. Meanwhile, we observe that using a single graph, e.g., [53], to construct the
relationship among pedestrian images is suboptimal. Therefore, we extend GCN to local
features and propose overlap graph and similarity graph to fully explore the relationship of
local features among different pedestrian images. Besides, we also propose SGConv, which
learns different parameter matrices for the node itself and its neighbor nodes to improve
the expressiveness of GCN.

3. Approach

In this section, we introduce the proposed LRGCN, and its framework is shown in
Figure 2. Firstly, we present the process of extracting local features. Then, we detail the
overlap graph, the similarity graph, and SGConv on the two kinds of graphs.
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Figure 2. The framework of the proposed LRGCN. We first utilize the CNN model to extract the
local features Rn,m of the pedestrian, and then Rn,m is followed by a convolutional layer with the
kernel size of 1× 1 to obtain the dimension-reduced local features Pn,m. Afterwards, we construct
the graphs taking Pn,m as the nodes and perform SGConv on the graphs to learn the relationship of
local features among different pedestrian images. Finally, Qn,m is fed into the classifier to conduct the
ID predictions.

3.1. Extraction of Local Features

To extract the local features of a pedestrian, we first resize the pedestrian images into
384× 128. These resized images are then input into the CNN model of LRGCN. The CNN
model is implemented by ResNet-50 [55], where we remove the down-sampling operation
of Conv5_1 and the fully connected layer FC-1000. Then, we obtain the convolutional
activation maps with the size of 2048× 24× 8, where 2048 is the number of channels,
and 24 and 8 are the height and width of convolutional activation map, respectively.
Meanwhile, to overcome the misalignment, we locate 17 key points of pedestrians using the
pose estimator [56]. Afterwards, we divide the convolutional activation maps into M parts
based on these key points and extract the local feature Rn,m∈R2048×1 (n = 1, 2, · · · , N and
m = 1, 2, · · · , M) from each part via max pooling [36]. Here, N is the number of pedestrian
images, Rn,m indicates the local feature of the m-th part in the n-th pedestrian image, and
M is set to 9 as [36]. Finally, Rn,m is followed by a convolutional layer with the kernel size
of 1× 1 to obtain the dimension-reduced local feature Pn,m ∈ R512×1.

3.2. Learning Relationship among Local Features

Our motivation is to learn the relationship of local features among different pedestrian
images so as to improve the feature representation capacity. However, what kind of local
relationship is conducive to feature representation? From Figure 3, we can see that different
pedestrian images possess different appearances. That is, the same parts of pedestrian
images provide different perspectives to describe the pedestrian. Based on the above
observation, we expect to learn the relationship among local features from the same parts
to obtain the complementary information, thereby improving the representation ability
of features. Meanwhile, with the help of graph convolution operation, the nodes in a
graph can send its information to other nodes and receive information from other nodes
to learn from each other. Hence, for the same part of different pedestrian images, we
resort to the graph to establish the relationship among them. In order to describe the
relationship completely, we design two types of graphs from different aspects, namely, the
overlap graph and similarity graph. In these graphs, the nodes are represented by the local
features from the same parts, and the edge weight reflects the connection strength between
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nodes. As a result, with the node information propagation over graphs, the complementary
information could be integrated into local features effectively.

Figure 3. Different pedestrian images from the same identity.

Overlap Graph. For the overlap graph, the nodes are represented by the local features
Pn,m. Since the nodes with the same ID usually have more overlapping nodes in their
neighborhoods, we define the overlap node number in the node’s neighborhoods as the
edge weight. Specifically, for the local features from the m-th parts in pedestrian images,
we propose the adjacency matrix Om= [om

i,j]∈RN×N to represent the relationship among
them, and om

i,j represents the edge weight between the m-th parts in the i-th and the j-th
pedestrian images. It is defined as:

om
i,j =

{
|δ(Pi,m, k) ∩ δ(Pj,m, k)|, i 6= j

0, i = j
(1)

where δ(Pi,m, k) and δ(Pj,m, k) are the sets of k nearest neighborhoods of Pi,m and Pj,m,
respectively, ∩ indicates the intersection of two sets, and | · | represents the element number
of a set. From Equation (1) we can see that om

i,j is the overlap node number of k nearest
neighborhoods of Pi,m and Pj,m when i 6= j.

We expect the nodes with the same ID to have larger edge weights, which is beneficial
to learn complementary information. Therefore, the distribution of local features Pn,m and
the selection of k nearest neighborhoods are important for overlap graph construction.
Therefore, the cross-entropy loss is applied to optimize the distribution of Pn,m so that the
nodes with the same ID are closer to each other. Furthermore, since the concatenated local
feature of a pedestrian image is generally more robust than a single local feature, we select
the k nearest neighborhoods based on the Euclidean distance between the concatenated
local features of two nodes. The distance between two nodes is formulated as:

D(Pi,m, Pj,m) = ‖Pi,· − Pj,·‖2 (2)

Pi,· = 〈Pi,1, Pi,2, · · · , Pi,m, · · · , Pi,M〉 (3)

Pj,· = 〈Pj,1, Pj,2, · · · , Pj,m, · · · , Pj,M〉 (4)

where 〈·〉 represents the vector concatenation. Based on Equations (2)–(4), we can find
that δ(Pi,1, k) = δ(Pi,2, k) = · · · = δ(Pi,M, k) because we utilize the concatenated local
feature to replace the single local feature when computing k nearest neighborhoods, so
O1 = O2 = · · · = OM. In other words, we do not need to repeatedly construct the adjacency
matrix of overlap graph for local features from different parts of the pedestrian.

Finally, we normalize Om:

Om′ = Λ−
1
2 OmΛ−

1
2 + I (5)
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where Λ is a diagonal matrix and Λi,i = ∑jom
i,j indicates the i-th diagonal element of Λ. In

addition, I is an identity matrix, and it sets the edge weight of the node itself to 1 to prevent
the over-smoothing.

For ease of understanding, as depicted in Figure 4, we give an example of edge weight
calculation. If we assume k = 4, then δ(node 1, 4) = {node 2, node 4, node 5, node 6},
δ(node 4, 4) = {node 1, node 2, node 3, node 5}, and δ(node 6, 4) = {node 1, node 7, node
8, node 9}. Consequently, |δ(node 1, 4) ∩ δ(node 4, 4)| = |{node 2, node 5}| = 2, that is, the
edge weight between node 1 and node 4 is 2. |δ(node 1, 4) ∩ δ(node 6, 4)| = |∅| = 0, that is,
the edge weight between node 1 and node 6 is 0. Here, we find an interesting phenomenon.
Nodes with the same ID (node 1 and node 4) have larger edge weight than nodes with
different IDs (node 1 and node 6), even though node 6 is closer to node 1 than node 4. It is
clear that the overlap graph is robust to environmental variations because the contexts of
nodes are considered.

4

1

2

3

5

6

7

8

9

ID 1

ID 2

Figure 4. An example of edge weight calculation in the overlap graph.

Similarity Graph. To enhance the flexibility of deep model, we design the similarity
graph to describe the relationship of local features among different pedestrian images. The
similarity graph treats the local features Pn,m as the nodes, and takes the similarity between
nodes as the edge weight. Specifically, for the local features from the m-th parts in pedestrian
images, their relationship is described by the adjacency matrix Sm = [sm

i,j] ∈ RN×N , and
sm

i,j represents the edge weight between the m-th parts in the i-th and the j-th pedestrian
images. It is defined as:

sm
i,j = so f tmax(ϕ(Pi,m)

Tψ(Pj,m)) =
eϕ(Pi,m)Tψ(Pj,m)

∑N
n=1 eϕ(Pi,m)Tψ(Pn,m)

(6)

where ϕ and ψ are two transformation functions and they are performed using the convolu-
tional layer with the kernel size of 1× 1. The adjacency matrix of the similarity graph could
improve the flexibility of the similarity graph because it is asymmetric and data-driven. Note
that weak edge weights may be the noise, so we set the edge weights from less than 0.01 to 0.

It is worthy of note that for multi-layer graph convolutional network, the similarity
graph is reconstructed in each layer according to the nodes of corresponding layer. In other
words, we update the graph topology of similarity graph in each graph convolutional layer,
which further enhances the flexibility of similarity graph.

Structural Graph Convolution. In the traditional graph convolutional layers [21,44,49],
its input is the adjacency matrix A ∈ RN×N and the node feature matrix X ∈ Rdi×N . Here,
di represents the node dimension and N is the number of nodes. Then, the node feature
matrix is updated by propagating the node information in the graph. The convolution
operation is formulated as:

Y = µ(WXA) (7)

where W∈Rdo×di is the parameter matrix, d0 is the node dimension after updating, and µ(·)
is a non-linear activation function.
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Following Equation (7), the graph convolutional operation can be decomposed into
three steps. Firstly, by left multiplying X by W, node representations are transformed using
a learnable parameter matrix. Secondly, by right multiplying (WX) by A, the node collects
transformed information from itself and its neighbor nodes. Finally, µ(·) is applied to
conduct a non-linear transformation. In the first step, all the nodes of graph are treated
equally, and they share the same parameter matrix, which is hard to discover complex
interaction of the nodes. In the second step, since the transformed information is from
the node itself and its neighbor nodes, we naturally divide the nodes into two categories
and utilize different parameter matrices on them. Hence, an improved graph convolution
operation called SGConv is proposed, which is formulated as:

Y = µ(W0X(I � A) + W1X((1− I)� A)) (8)

where � represents the element-wise multiplication, I is an identity matrix, 1 is a matrix
with all elements of 1, and W0 and W1 are the parameter matrices for the node itself and its
neighbor nodes, respectively.

In LRGCN, for the m-th parts of pedestrian images, we set A = Om′+ Sm and X = Xm,
and Equation (8) is reformulated as:

Ym = µ(Wm
0 Xm(I � (Om′+ Sm)) + Wm

1 Xm((1− I)�

(Om′+ Sm))), m ∈ {1, 2, · · · , M}
(9)

where Xm∈Rdi×N consists of local features from the m-th parts in pedestrian images,
Wm

0 ∈Rdo×di and Wm
1 ∈Rdo×di are the parameter matrices, and µ(·) is implemented by the

ReLU function. For the first SGConv layer, Xm = [P1,m, P2,m, · · · , PN,m].
In this work, we design five SGConv layers for LRGCN, as shown in Figure 5. The

output feature dimension of each SGConv layer is 512, 512, 256, 256, and 256, respectively.
The output of the last layer is denoted as Qn,m, and then Qn,m is fed into a Softmax classifier
to predict the identity probability and calculate the cross-entropy loss. The Softmax classifier
is formulated as:

Ĥn,m = so f tmax(Qn,mV) (10)

where V is the parameters of classifier implemented by a fully connected layer,
Ĥn,m = [ĥt

n,m] ∈ RT×1 is the predicted identity vector, ĥt
n,m represents the predicted proba-

bility that Qn,m belongs to the t-th identity, and T is the number of pedestrian identities.

512, 512 256, 256256

0

mW

1

mW

1

mW

1

mW

,n mP ,n mQ

Figure 5. The SGConv layers in LRGCN.

The cross-entropy loss of Qn,m is formulated as:

Ln,m =
T

∑
t=1
−ht

n,mlog(ĥt
n,m) (11)
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where ht
n,m indicates the true probability that Qn,m belongs to the t-th identity. If Qn,m

belongs to the z-th identity, then hz
n,m = 1; otherwise ht

n,m = 0.
Finally, the total loss is formulated as:

Ltotal =
N

∑
n=1

M

∑
m=1

Ln,m. (12)

4. Experiments

In this section, we first introduce person re-ID databases and implementation details.
Afterwards, we conduct an ablation study and report the results of the proposed LRGCN
compared with state-of-the-art methods. Finally, we analyze the influence of several
hyperparameters for LRGCN and visualize the overlap graph and the similarity graph.

4.1. Databases

Market-1501 [57] contains 32,668 images of 1501 identities. According to the database
setting, the training set consists of 12,936 images with 751 identities. The test set consists of
19,732 images with 750 identities.

DukeMTMC-reID [58] comprises of 36,411 images of 1404 identities, 16,522 images
from 702 identities for training, 19,889 images from other 702 identities for testing. Both the
training set and the test set contain 702 non-overlapping identities.

CUHK03 [24] contains 14,097 pedestrian images of 1467 identities, and each identity
is observed by one of five camera pairs. We utilize the same setting as [27,36,40,59], where
the training set includes 767 identities and the test set includes 700 identities. CUHK03
provides two kinds of bounding boxes, i.e., DPM-detected and hand-labeled. We choose
the DPM-detected bounding boxes that are closer to the realistic setting.

MSMT17 [60] comprises 126,441 images captured by 15 cameras. Meanwhile, it is
also the most challenging database for person re-ID due to significant changes in scene,
lighting, viewpoint, and pose. There are 32,621 images of 1041 identities in the training set
and 93,820 images of 3060 identities in the test set.

Some pedestrian images from the four person re-ID databases are presented in Figure 6.
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Figure 6. Some images from four databases.

4.2. Implementation Details

We resize all the pedestrian images to 384× 128 and utilize random horizontal flipping
and random cropping for data augmentation. The batch size is set to 66 during training.
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We first randomly select 11 identities from the training set, and then randomly choose
6 pedestrian images for each identity. We utilize SGD optimizer with momentum to train
LRGCN, where the momentum is 0.9 and the weight decay is 5× 10−4.

4.3. Ablation Experiments

We perform ablation experiments on four databases so as to investigate the contri-
bution of each component in LRGCN. As shown in Table 1, CNN denotes that we only
utilize the CNN model of LRGCN to learn feature representations, and CNN + re-ranking
denotes that we use re-ranking technology for CNN. CNN + S employ the similarity
graph to model the relationship of local features among different pedestrian images, and
CNN + S_sharing adopts the same transformation function to process Pi,m and Pj,m, i.e.,
ϕ = ψ in Equation (6). CNN + O employ the overlap graph to model the relationship of
local features among different pedestrian images, CNN + O_single adopts the single local
feature to replace the concatenated local feature when selecting the k nearest neighborhoods
for the overlap graph, and CNN + O_updating indicates that we update the overlap graph
in each graph convolutional layer. CNN + O + S denotes that SGConv is replaced by the
traditional graph convolution operation, and LRGCN_concatenating denotes that we apply
GCN to the concatenated local features.

Table 1. Ablation experiments on Market-1501, DukeMTMC-reID, CUHK03, and MSMT17.

Methods
Market-1501 DukeMTMC-reID CUHK03 MSMT17

mAP (%) Rank-1 (%) mAP (%) Rank-1 (%) mAP (%) Rank-1 (%) mAP (%) Rank-1 (%)

CNN 84.1 94.0 73.0 85.6 66.8 72.1 52.8 78.5
CNN + re-ranking 89.9 95.1 82.7 88.4 74.7 73.5 58.2 81.4
CNN + S_sharing 86.0 94.7 74.5 86.1 69.1 72.5 57.2 79.7

CNN + S 86.6 95.0 75.2 86.9 70.7 73.0 57.6 80.1
CNN + O_single 86.9 95.3 75.1 87.5 72.5 73.4 58.0 80.7

CNN + O_updating 87.7 95.3 76.6 88.4 72.6 73.9 58.1 80.3
CNN + O 87.6 95.5 76.3 88.2 72.8 73.6 58.2 81.0

CNN + S + O 89.0 95.9 78.1 89.0 73.9 74.6 59.1 81.5
LRGCN_concatenating 88.0 94.4 76.7 87.3 71.4 72.9 56.5 78.1

LRGCN 90.7 96.5 80.0 90.6 75.3 76.1 60.6 82.7

From Table 1, several conclusions can be drawn. Firstly, CNN + S and CNN + O
significantly exceed CNN due to the consideration of the relationship of local features
among different pedestrian images. Specifically, CNN + O improve CNN in mAP from
84.1%, 73.0%, 66.8%, and 52.8% to 87.6% (+3.5%), 76.3% (+3.3%), 72.8% (+6.0%), and
58.2% (+5.4%) on the four databases, respectively. Secondly, CNN + S outperforms
CNN + S_sharing. This is because using different transformation functions for Pi,m and Pj,m
could improve the flexibility of similarity graph. Thirdly, compared with CNN + O_single,
CNN + O gains higher rank-1 accuracy and mAP on the four databases. This indicates
that the concatenated local feature of pedestrian image is more robust than single local
feature when selecting k nearest neighborhoods. Fourthly, the performance of CNN + O
and CNN + O_updating is similar. Therefore, we do not update the overlap graph to
reduce computation cost. Fifthly, CNN + O + S improves the performance of CNN + S
and CNN + O after combining the overlap graph and the similarity graph. This is because
the two kinds of graphs can describe the relationship of local features among different
pedestrian images from different aspects. Sixthly, LRGCN achieves better performance than
CNN + O + S due to SGConv treating node itself and its neighbor nodes differently. Sev-
enthly, LRGCN clearly exceeds LRGCN_concatenating. It shows that applying GCN to local
features is more effective than concatenated local features. Finally, although the re-ranking
technique significantly improve CNN performance, our method surpasses CNN_re-ranking
in rank-1 accuracy by +1.4%, +2.2%, +2.6%, and +1.3% on the four databases. Re-ranking is
a post-processing method and does not improve the feature representations. In our method,
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the feature representations can benefit from the relationship learned by GCN and we do
not adopt the re-ranking technique for the results calculated based on GCN features.

4.4. Comparison with State-of-the-Art Approaches

Market-1501. As depicted in Table 2, we report mAP of 90.7% and on rank-1 accu-
racy of 96.5%, which exceeds the performance of all previous methods. Compared with
EANet [36], the proposed LRGCN raises 6.2% and 2.1% on mAP and rank-1 accuracy.
Although EANet also utilize 17 key points to divide the convolutional activation maps, it
ignores the relationship of local features among different pedestrian images. However, our
method models the relationship of local features among different pedestrian images via
constructing two kinds of graphs and using SGConv to propagate useful information, so
that the local features of pedestrian images could learn complementary information from
each other.

Table 2. Comparison on the Market-1501 database.

Methods
Market-1501

mAP (%) Rank-1 (%)

BoW + kissme [57] 20.8 44.4
MFFM (HOG + LBP) [61] - 70.1

MGCAM [62] 74.3 83.8
AOS [63] 70.4 86.5
DaRe [64] 76.0 89.0

MLFN [65] 74.3 90.0
HA-CNN [66] 75.7 91.2
SGGNN [53] 82.8 92.3

PCB [18] 77.3 92.4
Mancs [59] 82.3 93.1
GCSL [51] 81.6 93.5
EANet [36] 84.5 94.4
IANet [67] 83.1 94.4

Auto-ReID [68] 85.1 94.5
CAMA [27] 84.5 94.7
DG-Net [69] 86.0 94.8
CDPM [70] 86.0 95.2
RNet-S [31] 88.0 94.8
OSNet [71] 86.7 94.8

ICA [72] 82.3 93.3
AGW + DA + Joint [73] 88.6 95.2

LRGCN (Ours) 90.7 96.5

DukeMTMC-reID. In Table 3, the proposed LRGCN achieves the best performance.
The proposed LRGCN significantly exceeds SGGNN [53] by 11.8% for mAP and 9.5% for
rank-1 accuracy. This is because SGGNN discovers the relationship of global features
among different pedestrian images using one kind of graph, while the proposed LRGCN
constructs two kinds of graphs from different aspects to model the relationship of local
features among different pedestrian images.

Table 3. Comparison on the DukeMTMC-reID database.

Methods
DukeMTMC-reID

mAP (%) rank-1 (%)

BoW + kissme [57] 12.2 25.1
AOS [63] 62.1 79.2
DaRe [64] 64.5 80.2

HA-CNN [66] 63.8 80.5
MLFN [65] 62.8 81.0
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Table 3. Cont.

Methods
DukeMTMC-reID

mAP (%) Rank-1 (%)

SGGNN [53] 68.2 81.1
PCB [18] 65.3 81.9

GCSL [51] 69.5 84.9
Mancs [59] 71.8 84.9
CAMA [27] 72.9 85.8
EANet [36] 73.3 86.1
DG-Net [69] 74.8 86.6
IANet [67] 73.4 87.1
CDPM [70] 77.5 88.2
RNet-S [31] 77.1 89.3
OSNet [71] 76.6 88.7

ICA [72] 71.6 85.6
LRGCN (Ours) 80.0 90.6

CUHK03. The comparison results on the CUHK03 database are listed in Table 4. The
proposed LRGCN obtains mAP of 75.3% and rank-1 accuracy of 76.1%, which significantly
outperforms all the compared methods. RNet-S [31] combines the information of different
parts of the same pedestrian image, while our method learns the relationship among the
same parts of different pedestrian images. Hence, LRGCN improves RNet-S [31] by 5.8%
and 3.6% for mAP and rank-1 accuracy.

Table 4. Comparison on the CUHK03 database.

Methods
CUHK03

mAP (%) Rank-1 (%)

BoW + kissme [57] 6.4 6.4
HA-CNN [66] 38.6 41.7
MGCAM [62] 46.9 46.7

AOS [63] 43.3 47.1
MLFN [65] 47.8 52.8

PCB [18] 54.2 61.3
DaRe [64] 59.0 63.3
Mancs [59] 60.5 65.5
CAMA [27] 64.2 66.6
EANet [36] 66.2 72.0

Auto-ReID [68] 69.3 73.3
CDPM [70] 67.0 71.9
RNet-S [31] 69.5 72.5
OSNet [71] 67.8 72.3

ICA [72] 59.3 64.6
AGW + DA + Joint [73] 69.2 70.3

LRGCN (Ours) 75.3 76.1

MSMT17. In Table 5, the proposed LRGCN reports mAP of 60.6% and rank-1 accuracy
of 82.7%. Compared with Auto-ReID [68], our method achieves +8.1% on mAP and +4.5%
on rank-1 accuracy. The results indicate that the proposed LRGCN is beneficial for a more
realistic and challenging person re-ID database.
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Table 5. Comparison on the MSMT17 database.

Methods
MSMT17

mAP (%) Rank-1 (%)

IANet [67] 46.8 75.5
DG-Net [69] 52.3 77.2

Auto-ReID [68] 52.5 78.2
OSNet [71] 55.1 79.1

AGW + DA + Joint [73] 50.0 68.2
LRGCN (Ours) 60.6 82.7

4.5. Parameter Analysis

We analyze the effect of k in Equation (1) and the effect of SGConv layer number on
the four databases.

Firstly, we evaluate the effect of k in Equation (1), which is related to the adjacency
matrix of overlap graph, and the results are presented in Figure 7. The mAP and rank-1
improves all the four databases when k increases from 4 to 8, while both of them decline
when k > 8. Therefore, we choose k = 8 in the experiments.
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Figure 7. The effect of k for LRGCN.

Secondly, we study the effect of the SGConv layer number for LRGCN. As depicted
in Figure 8, the performance rises as the number of SGConv layer increases. Deeper GCN
allows nodes to learn more abstract information from each other, which is beneficial to
improving the expressive power of features. However, the performance reaches saturation
when the number of SGConv layer is larger than 5. Hence, we set the number of SGConv
layer to 5 on the four databases.
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4.6. Time Analysis

Table 6 lists the inference time of each query image in CNN (baseline) and LRGCN,
where q denotes the number of query images and g denotes the number of gallery images.
From Table 6, the inference time of CNN and LRGCN increases with the increase of the
gallery image number. This is because larger number of gallery images requires more
time cost for retrieval. Besides, both CNN and LRGCN meet the requirements of real-time
application on all databases expect for MSMT17.

Table 6. Comparison of inference time between LRGCN and CNN (baseline) on four databases.

Methods
Market-1501 DukeMTMC-reID CUHK03 MSMT17

q:3368 g:15913 q:2228 g:17661 q:1400 g:5332 q:11659 g:82161

ms fps ms fps ms fps ms fps

CNN 13 77 15 67 5 200 73 14
LRGCN (Ours) 22 45 25 40 12 83 112 9

4.7. Visualization

Figure 9 shows an example of the adjacency matrix of overlap graph. In the left color
matrix, each color block corresponds to an element in the adjacency matrix, and the deeper
color represents the larger value. For each image, we list its 8 nearest neighborhoods and
use the same color bounding boxes to mark the pedestrian images with the same identity.

8 Nearest Neighbourhoods

a

b

c

A

B

Figure 9. Visualization of the adjacency matrix of the overlap graph. A and B represent the edge
weights between images a and b, and images b and c respectively.

As can be seen from Figure 9, a ranks 5th in the 8 nearest neighborhoods of b, but they
are with the same ID and the overlap node number between them is 4. In contrast, c ranks
2nd in the 8 nearest neighborhoods of b, but they have different IDs and the overlap node
number between them is 2. In short, as for the overlap graph, nodes with the same ID have
larger edge weight than the nodes with different IDs, even if the nodes with different IDs
are closer. This verifies the robustness of overlap graph to environmental variations.

The visualization of the adjacency matrix of similarity graph is illustrated in Figure 10
where (a), (b), and (c) correspond to the adjacency matrices of similarity graphs in the
1st, 3rd, and 5th SGConv layers, respectively. Obviously, the adjacency matrices of these
similarity graphs are asymmetric and different. This shows that each SGConv layer can
learn different similarity graphs. Meanwhile, we find that although images e and f with
different IDs have large edge weight in the 1st similarity graph, the edge weight between
them gradually decreases in the 3rd and 5th similarity graph. This indicates that building
unique similarity graph for each layer can correct some unreasonable edge weights in the
learning process so that nodes can effectively learn complementary information.

In the comparison of Figures 9 and 10, we can find that the adjacency matrices of the
overlap graph and similarity graph are different because they establish the relationship
of local features among different pedestrian images from different aspects. Hence, when
combining the similarity graph and the overlap graph, the performance is further improved.
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f

e

(a) (b) (c)

Figure 10. Visualization of the adjacency matrix of the similarity graph. The (a–c) correspond to the
adjacency matrices of similarity graphs in the 1st, 3rd, and 5th SGConv layers, respectively. The e and
f denote pedestrian images with different IDs, respectively.

5. Conclusions

In this paper, we have proposed LRGCN to learn the relationship of local features
among different pedestrian images. Specifically, we have constructed two kinds of graphs,
i.e., an overlap graph and similarity graph, to fully mine the relationship of local features
among different pedestrian images. Moreover, we have proposed SGConv, which treats
the node itself and its neighbor nodes differently to effectively propagate information in
the graph. As a result, we have obtained robust and discriminative local features. We have
fully verified LRGCN on four large-scale person re-ID databases, and the experimental
results have shown that our method surpasses the state-of-the-art methods.
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