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Global diversity and biogeography of
potential phytopathogenic fungi in a
changing world

Pengfa Li 1,2,11, Leho Tedersoo 3,11, Thomas W. Crowther 4,11,
Baozhan Wang 1 , Yu Shi5, Lu Kuang 1, Ting Li1, Meng Wu2, Ming Liu2,
Lu Luan 2, Jia Liu6, Dongzhen Li7, Yongxia Li7, Songhan Wang8,
MuhammadSaleem9,Alex J.Dumbrell 10 , Zhongpei Li2& Jiandong Jiang 1

Phytopathogenic fungi threaten global food security but the ecological drivers
of their global diversity and biogeography remain unknown. Here, we con-
struct and analyse a global atlas of potential phytopathogenic fungi from
20,312 samples across all continents and major oceanic island regions, eleven
land cover types, and twelve habitat types. We show a peak in the diversity of
phytopathogenic fungi in mid-latitude regions, in contrast to the latitudinal
diversity gradients observed in aboveground organisms. Our study identifies
climate as an important driver of the global distribution of phytopathogenic
fungi, and our models suggest that their diversity and invasion potential will
increase globally by 2100. Importantly, phytopathogen diversity will increase
largely in forest (37.27-79.12%) and cropland (34.93-82.51%) ecosystems, and
this becomes more pronounced under fossil-fuelled industry dependent
future scenarios. Thus, we recommend improved biomonitoring in forests and
croplands, and optimised sustainable development approaches to reduce
potential threats from phytopathogenic fungi.

Phytopathogenic fungi pose a major threat to global food security,
ecosystem service delivery and human livelihoods1,2. Plant diseases
have a range of direct, quantifiable economic consequences for crop
and forest management across a range of terrestrial environments3,4.
For example, the persistent presence of these diseases would only
leave enough food to feed ~1/3 of theworld’s population, and a handful
of plant diseases in forests could reduce global CO2 absorption
annually by 230–580 megatons5. Attempts to mitigate the effects of

such diseases caused by phytopathogenic fungi, via chemical fungi-
cides and biocontrol agents, are often locally ineffective and globally
inadequate due to the complexity and diversity of phytopathogenic
fungal communities and an incomplete understanding of the factors
regulating them6,7. Therefore, ascertaining the distribution and the
environmental attributes that structure phytopathogenic fungal
communities across the globe was recently considered to be a priority
research direction8.
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The study of microbial biogeography enables researchers to link
microbial communities to macroecology through revealing where
microorganisms live, at what abundance, and why9. To date, this
approach has successfully described and analysed the global atlases of
multiple microbial organisms, including bacteria10–12, total fungi1,13,14

and protists15,16. However, despite their ecological and agricultural
importance, very few studies have focused on phytopathogenic fungal
distributions at the global scale, but with limited taxonomic and
environmental coverage17, restricting our understanding of the role of
climate in shaping these communities into the future. Given the tightly
coupled relationships between climate and pathogen development18,
climate change has increased the prevalence and severity of some
human, animal and plant diseases19. While predicting the con-
sequences of climate change remains challenging, models have
already predicted that crop yields20, carbon sequestration21 and polli-
nation rates22 are expected to decrease, whilst evapotranspiration and
tree mortality are expected to increase under future climate
scenarios23. In addition, as the geographic ranges of plant species shift
in response to climate change and alien species are introduced, the
potential of emerging novel plant pests and pathogens increases17,22,
leading to increased incidence and severity of the diseases they
cause24. Considering the magnitude of global climate change, it is
imperative to determine how a changing climate affects the distribu-
tion of phytopathogenic fungi, and potentially to use this new
knowledge to informpolicies to control the emergence of future plant
diseases and maintain ecosystem functions and services.

Here, we use a global dataset that combines newly generatedDNA
sequence data with previously published mycobiome sequences from
the GlobalFungi database25. In total, our global dataset included 5753
potential phytopathogenic species hypotheses (hereafter ppSHs;
ppSHs were generated by 98.5% ITS sequence similarity, which can be
treated as potential phytopathogenic fungal species) from
20,312 samples distributed across all seven continents and four major
oceanic island regions, 11 land cover types (forests, grasslands, crop-
lands, aquatic, deserts, woodlands, shrublands, tundra, wetlands,
urban and mangroves) and 12 habitat types (soils, plant shoots, roots,
rhizosphere, deadwood, air, sediment, litter, lichen, freshwater, top-
soil and dust (atmospheric deposition)) (Fig. 1). We used this to com-
prehensively describe the global biogeographic patterns of potential
phytopathogenic fungi (hereafter phytopathogenic fungi for concise-
ness), and to identify the ecological drivers regulating their diversity.
Through a series of theoretical and modelling approaches, we (i)
mapped the distribution of phytopathogenic fungi and revealed the
underlying factors regulating their distribution, (ii) uncovered uni-
versal ecological properties of phytopathogenic fungal communities
and their dynamics, and (iii) predicted changes in their diversity and
invasion potential under future climate change scenarios. While our
study uncovers the global patterns of phytopathogenic fungi, many of
the proposed relationships between climate, phytopathogen diversity
and disease severity will need to be addressed using specifically tar-
geted experimental approaches elsewhere.

Results and discussion
Global distribution of potential phytopathogenic fungi
Globally, ppSHs represented between 0% and 99.64% (mean = 8.96%)
of all fungal ITS sequences per sample (Supplementary Fig. 1a). The
relative abundance of ppSHs was highest in the Indian Ocean (19.17%),
North America (11.51%), and Europe (11.25%) regions; tundra (19.00%),
urban (17.60%), and mangrove (14.32%) land cover types; and in air
(40.37%), dust (24.16%) and plant shoot (20.42%) habitats (Supple-
mentary Fig. 1b).Moreover, the relative abundanceof ppSHs in the soil
habitat of ourmain dataset (4.24%) canbe cross-validated by a recently
published Global Soil Mycobiome consortium (GSMc) dataset14 (rela-
tive abundance of ppSHs: 4.78%; Supplementary Fig. 1b). The most
abundant phytopathogenic fungal genera included Fusarium,

Alternaria, Fusicladium, Neoerysiphe and Mycosphaerella, whilst the
most frequently occurring phytopathogenic fungal genera included
Fusarium, Trichoderma, Alternaria, Epicoccum and Mycosphaerella
across all sampling sites (Fig. 2a), regions (SupplementaryData 1), land
cover types (Supplementary Data 2) and habitat types (Supplementary
Data 3). Given that some phytopathogens contribute additional eco-
logical roles26–28, we divided the ppSHs into two groups based on their
trophic modes, namely exclusive modes (plant pathogens only, 2405
ppSHs, 41.8% of all pathogenic phylotypes) and non-exclusive modes
(plant pathogen and endophyte and/or saprotrophic fungi, 3348
ppSHs, 58.2% of all pathogenic phylotypes). We then mapped the
global distribution of phytopathogenic fungi using simple linear
regression (Supplementary Fig. 2b), second-order polynomial regres-
sion (Fig. 2b) and aGeneralised LinearModel (GLM; Fig. 2c); our results
consistently indicated a relatively weak relationship between latitude
and the relative abundance of phytopathogenic fungi (for phyto-
pathogens with both exclusive and non-exclusive trophic modes,
Supplementary Fig. 2c, d). However, the phytopathogens with exclu-
sively phytopathogenic trophic modes (R2 =0.005, F = 46.6, Supple-
mentary Fig. 2c) showed a marginally weaker relationship between
their relative abundances and latitude than those with non-exclusive
trophic modes (R2 =0.006, F = 63.6, Supplementary Fig. 2d).

Global patterns of phytopathogenic fungal richness
Across all samples, the richness of phytopathogenic fungi (number of
observed ppSHs) ranged from 1 to 372 (mean = 28.07) ppSHs (Sup-
plementary Fig. 1c). The ppSH richness was highest in Asia (40.80),
Africa (35.46) and Europe (28.96), and it was particularly high in urban
(64.54), cropland (44.59), and grassland (35.05) land cover types
(Supplementary Fig. 1d). Topsoils had extremely high ppSH richness
(68.56), highlighting the importance of these habitats as reservoirs of
fungal plant pathogens in natural ecosystems6.

The relationship between ppSH richness and latitude was eval-
uated using simple linear regression and second-order polynomial
regression for this dataset (Fig. 2d and Supplementary Fig. 3a) and the
GSMc dataset14. The second-order polynomial best described trends in
our data and had a higher fitting efficiency based on multiple para-
meters than a linear or higher-order polynomial fits (R2, F, AIC and
P value). In addition, we inferred the global pattern of ppSH richness
using a GLM after cross-validation (Fig. 2e and Supplementary Fig. 3b).
Both second-order polynomial regression and the GLM consistently
demonstrated that ppSH richness peaks at intermediate latitudes, with
lower values in equatorial and polar regions (Fig. 2d, e). Such a richness-
latitude relationship was also evident across the main land cover types
and habitats (Supplementary Fig. 3c). The soil-only GSMc dataset of
mostly forest habitats showed higher ppSH richness at both low and
intermediate latitudes (Supplementary Fig. 3d). Our results provide
evidence that the traditional latitudinal diversity gradient (LDG) is
poorly applicable for ppSHs. This contrasts with the traditional LDG of
plants, arthropods, vertebrates29 and some bacterial groups10. More-
over, the distribution of ppSH diversity is also greatly different from
thatof total fungi andarbuscularmycorrhizal fungi,whosediversitywas
demonstrated to peak in tropical areas by multiple previous
studies1,30–32. This suggests that fungi with pathotrophic modes may
have distinct biogeographical patterns compared to other fungi with
different trophic modes (e.g., saprotroph and symbiotroph), as a con-
sequence of differential life-history strategies and community assembly
mechanisms33. After regrouping the samples according to sequencing
region (ITS1, ITS2 and both), the ppSH richness also consistently peaks
at intermediate latitudes (Supplementary Fig. 3e). In addition, we tested
the richness-latitude relationship using a rarefied dataset (4000 reads
per sample), and the results also indicated a clear richness peak in mid-
latitude regions (Supplementary Fig. 3f). Mid-latitude regions had
higher ppSH richness for both exclusive and non-exclusive phyto-
pathogens (Supplementary Fig. 3g, h). Similarly, the diversity of
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phytopathogens with exclusively phytopathogenic trophic modes
(R2 =0.054, F = 571, Supplementary Fig. 3g) also showed a marginally
weaker relationship with latitude compared with than those with non-
exclusive trophic modes (R2 =0.066, F= 702.6, Supplementary Fig. 3h).
These results confirm thatourfindings arenot biasedby the sequencing
region, sequencing depth, or trophic mode of phytopathogens. More-
over, to ensure this finding was robust and not biased by differential
sampling coverage, we randomly selected 300 (Supplementary Fig. 3i)
or 150 (Supplementary Fig. 3j) samples from North America, Europe,
Asia, Australia, South America, Antarctica and Africa, which all had
>300 samples, and repeated the analysis. This confirmed that the
second-order polynomial regression best described the phytopathogen
richness peak at intermediate latitudes (absolute latitude ranges

26°–32°) is not driven by sampling effects. Although our resampling
approach can, to a great extent, avoid the bias from unbalanced sam-
pling, it’s worth noting that resampling from highly dense sampling
regions, such as humid areas of East and Southeast Asia in this study,
could also potentially produce greater diversity in those areas. There-
fore, our results would benefit from further refinement as more data
from undersampled regions, especially in the tropics, become available
in the future.

Community structure and spatial turnover of potential phyto-
pathogenic fungi
The ppSH sequences were rarefied to even depth (4000 ppSH reads
per sample) to conduct community-level analyses and comparisons. A
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Fig. 1 | Flow diagram of the methods implemented in the current study. Step 1:
reference sequences and taxonomic information extraction. We extracted all
196,344 reference “species hypotheses” (SHs at 98.5% similarity; SHs can be treated
as fungal species) from the UNITE fungal database (version 8.2)51. Step 2: con-
struction of reference database of phytopathogenic fungi. The 196,344 SHs were
compared against the FUNGuild database (http://www.stbates.org/guilds/app.php;
accessed September 2019)6, and those assigned to ‘probable’ and ‘highly probable’
‘plant pathogen(s)’ were retained. This yielded a robust reference database con-
taining 10,829 potential phytopathogenic SHs (ppSHs). Step 3: extracting data on
the global distributions of phytopathogenic fungi. We used the 10,829 ppSHs to
query the GlobalFungi database25 and extracted the global spatial occurrence data
(and associated metadata) for these fungi. This produced a dataset containing
19,669 samples with 5479 ppSHs. Step 4: Processing novel phytopathogenic fungi
sequence data. We collected additional data from forest and cropland ecosystems,

sampling plant shoots, plant roots, soils and the rhizosphere during 2017–2021. ITS
amplicon sequences were generated and analysed from each of these samples
following the methods used for GlobalFungi25, yielding an additional 643 samples
with 1172 ppSHs for inclusion in this study. Step 5: combining existing and novel
phytopathogenic fungi distribution data. The published data extracted from Glo-
balFungi (Step3) andour newdata (Step4)weremerged into a single globaldataset
containing 20,312 samples with 5753 ppSHs. Step 6: Data analysis. Using the global
dataset, we conducted a series of analyses to systematically investigate the global
biogeography of phytopathogenic fungi. Briefly, this included examining general
biogeography and diversity patterns, universal ecological dynamics, driving forces
and predicting future changes of phytopathogenic fungal diversity and distribu-
tions in response to climate change. The map was generated in the R language.
Source data are provided as a Source Data file.
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three-way PERMANOVA showed that phytopathogenic fungal com-
munities were compositionally distinct across continents, land cover
types and habitats (Supplementary Table 1). Land cover type played
the primary role in determining the composition of phytopathogenic
fungal communities, followed by sampling region and habitat type
(Fig. 3a, Supplementary Fig. 4a and Supplementary Table 1).

A central pattern in macroecology is the distance-decay relation-
ship (DDR), where community similarity decreases as geographic dis-
tance between samples increases34. DDR reflects spatial community
turnover and can also be used to infer underlying ecological processes
controlling the community35,36. Phytopathogenic fungal communities
showed significant DDRs across all land cover types (slope: −0.035 to
−0.186, P <0.001) and habitat types (slope: -0.039 to -0.190, P <0.001,
Supplementary Fig. 4b). To avoid issues of scale dependency in DDRs,
we determined the initial similarity (defined here as the community
similarity within one kilometre) and halving distance (distance at
which community similarity halves, and thus reflects initial community
turnover rates) of phytopathogenic fungal communities from the

observed DDR parameters36. Phytopathogenic fungal communities
from tundra ecosystems had the highest initial similarity, and those
from forests had the lowest similarity (Supplementary Fig. 4c),
whereas halving distances were highest in urban and wetland ecosys-
tems but lowest in forests (Fig. 3b). This suggests that forest ecosys-
tems have relatively high spatial turnover of phytopathogenic fungi,
most likely reflecting their high heterogeneity in terms of environ-
mental conditions and tree species. Across habitat types, air and plant
shoots had the highest and lowest initial similarity, respectively; while
topsoil and dust had the highest and lowest halving distance, respec-
tively (Supplementary Fig. 4c, d). This indicates relatively high homo-
geneity of air-borne phytopathogenic fungi resulting from mixing of
propagules from various plant species, habitats and land cover types.

In community variation, two key components exist—turnover
(replacement of species) and nestedness (the extent to which species
composition of smaller assemblages is a subset of larger
assemblages)37. In our datasets, compositional changes in the phyto-
pathogenic fungal community across land cover types were
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Fig. 2 | Global biogeography and diversity patterns of potential phytopatho-
genic fungi. a Top ten most abundant (top) and frequently occurring (bottom)
phytopathogenic fungal genera across 20,312 samples. b Latitudinal distribution of
relative abundance of phytopathogenic fungi. Colours represent the annual mean
air temperatures (MAT) of sampled locations. The line shows the second-order
polynomial fit based on ordinary least squares regression. Shaded areas represent
the 95% confidence intervals. The analysis was based on one-side F and two-side t
tests (model parameters and P values are reported as inset panels). n represents the
number of samples. c Global relative abundance of phytopathogenic fungi. The
relative abundance of phytopathogenic fungi was predicted using GLMs incor-
porating 19 bioclimatic variables, with the prediction efficiency cross-validated
(CV) by common Pearson correlation test using 2/3 samples as a model training
dataset and 1/3 as a validation dataset (CV: Pearson r =0.249, P < 2 × 10−16, Supple-
mentary Fig. 2a). Climate variables are derived from WorldClim2 at a 5min

resolution (~10 km). The righthand panel shows the mean (with standard deviation
envelope) relative abundance of phytopathogenic fungi across latitudes.
d Latitudinal distribution of phytopathogenic fungal species richness. The line
shows the second-order polynomial fit based on ordinary least squares regression,
and shadedareas represent the 95%confidence intervals. The analysiswas basedon
one-side F and two-side t tests (model parameters and P values are reported as inset
panels). n represents the number of samples. eGlobal diversity of phytopathogenic
fungi. The global distribution of phytopathogenic fungal species richness was also
cross-validated (CV: Pearson r =0.429, P < 2 × 10−16, Supplementary Fig. 3). The
righthand panel shows the mean (with standard deviation envelope) phytopatho-
genic fungal species richness across latitudes, with peaks in richness at inter-
mediate latitudes. The maps were generated in the R language. Source data are
provided as a Source Data file.
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consistently dominated by species turnover (>66.9%) but not nested-
ness (Fig. 3c). For example, species turnover between cropland and
other land cover types always exceeded 74% (Fig. 3c), explaining why
only a low fraction (40.4%) of ppSHs from croplands can be source-
tracked (Supplementary Fig. 5a). Globally, the proportion of shared
phytopathogenic fungal sequences across land cover types was con-
sistently low (<18%), confirming the relatively low community nest-
edness and high turnover (Supplementary Fig. 5b). These findings
contrast to global bacterial communities that are characterised byhigh
nestedness10.

To test for host dependence of phytopathogenic fungi, the Fns
(fraction negative slope) index from dissimilarity-overlap curve ana-
lysis was employed38. In this analysis, a high Fns value indicates that the
underlying ecological dynamics of a microbiome are largely host-

independent. In contrast, a low Fns value reflects that the ecological
dynamics of a microbiome are host-specific38. We observed significant
Fns from dissimilarity-overlap curves across the global phytopatho-
genic fungal dataset (Fns = 0.12, P <0.001), and independently across
all land cover types (Fns range, 0.002 to 0.428, P <0.001; Fig. 3d), and
all habitats (Fns range, 0.002-0.211, P <0.001; Supplementary Fig. 6).
The Fns of global phytopathogenic fungi observed in the current study
(0.12) was lower than those reported for human-associated, bacterial
microbiomes (0.23–0.99)38,39, and lower than those reported for all
fungi (0.63)40 and fungi with other trophic modes such as AM fungi in
natural and agricultural fields (0.28–0.94)41,42. This suggests that the
ecological dynamics of phytopathogenic fungi were potentially more
host-specific than other microbial groups. However, given the small
number and scope of these studies, the Fns values for fungi need to be
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Fig. 3 | Community turnover and universal dynamics of potential phyto-
pathogenic fungi. a Principal co-ordinates analysis (PCoA) of phytopathogenic
fungal communities based on Bray–Curtis dissimilarity. Samples are coloured by
land cover type. b Halving distance of phytopathogenic fungal community across
land cover types. Halving distance is the geographic distance between samples at
which community similarity halves (see “Methods” section). c Species turnover and
nestedness of phytopathogenic fungal communities across land cover types. Circle
sizes reflect total beta diversity (measured by Sørensen’s distance), with light blue
and red colours respectively showing the relative contribution of turnover and
nestedness to total community variation. d Universal ecological dynamics of

phytopathogenic fungi. The ecological universality of phytopathogenic fungi was
assessed using dissimilarity-overlap curves. Dissimilarity-overlap curves are in red,
the distribution density of sample pair overlap is in light blue, and the point at
which the curve first becomes negative is marked by a vertical blue line (chosen by
median of 1000 bootstraps). The pink shared area indicates the range of the 94%
confidence intervals. The fraction of negative slope (Fns) is the fraction of data
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higher Fns value indicates that the underlying ecological dynamics of amicrobiome
are largely host-independent. Source data are provided as a Source Data file.
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evaluated across more complex ecosystems and at larger scales, as
well as via controlled experimental manipulation of factors driving
host effects. The relatively high Fns values in cropland (0.35), grassland
(0.208), woodland (0.398), shrubland (0.211) and urban (0.428) land
cover types, and in soil (0.206) and root (0.211) habitats indicated
relatively lower host dependence across these land cover types and/or
habitats38,41.

Factors determining the global distribution of potential phyto-
pathogenic fungi
Random forest models were constructed to examine the factors
determining the globaldistributionof phytopathogenic fungi.Climatic
(indicated by 11 temperature-related and 8 precipitation-related bio-
climatic variables), spatial (indicated by longitude, absolute latitude
and standardised principal coordinate of neighbour matrices) and
vegetation (indicated by gross primary production and plant diversity)
variables were separately or jointly considered in six random forest
models (Model 1: Climate; Model 2: Space; Model 3: Vegetation;Model
4: Climate & Space; Model 5: Climate & Vegetation; Model 6: Climate &
Space & Vegetation; Fig. 4a), and the model performances (R2) were
consequently compared.

The global ppSH richnesswas robustly explained solely by climate
factors (Model 1, 71.15%), which displayed better performance than
space (Model 2, 65.89%) and vegetation (Model 3, 66.59%) (Fig. 4a).
Moreover, adding either space (Model 4, 73.40%)or vegetation (Model
5, 71.80%), orboth space andvegetation (Model 6, 73.47%) to a climate-

only model provided only a minor improvement to the explained
variation in global ppSH richness (Fig. 4a). Across all variables, 67.19%
of the explained variability in global ppSH richness was attributed to
climate factors, 16.13% to spatial variables and 15.68% to vegetation-
related variables (Fig. 4b). This is consistent with previous studies on
both all fungi and on phytopathogenic fungi, whose global distribu-
tionswere alsomainlydetermined by climatic factors1,13,17. Fordifferent
land cover types, the ppSH richness in forest (68.58%), grassland
(78.04%), cropland (75.89%), tundra (60.53%) and urban (61.89%) areas
was also best explained by bioclimatic variables. The ppSH richness of
phytopathogens with non-exclusive trophic modes was consistently
better explained by our random forest models with either solely bio-
climatic variables or with the addition of spatial and vegetation vari-
ables, both globally and acrossmain land cover types including forest,
grassland, cropland, desert, woodland, shrubland, tundra,wetland and
mangrove (Fig. 4a). However, climate factors consistently contributed
most to the explained variability of ppSH richness across all land cover
types and ppSHs with different trophic modes (Fig. 4b). All random
forest models showed weaker performance in explaining the relative
abundance of ppSHs compared to their richness (Supplementary
Fig. 7). Globally, <40% of the variation in relative abundance was
explained by the random forest models (Supplementary Fig. 7). While
vegetation has been frequently considered to be the key factor driving
the distribution of phytopathogens17, it played a relatively small role
globally compared to bioclimatic variables in determining both the
diversity and relative abundance of ppSHs, possibly because plant
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Fig. 4 | Factors determining the global distribution of potential phytopatho-
genic fungi. a Random forest model performances for ppSH richness.
b Contribution of climatic, spatial and vegetation variables to the explained var-
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duction and plant diversity. Source data are provided as a Source Data file.
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distributions are also highly determined by temperature and pre-
cipitation at the global scale43. However, climate change might indir-
ectly affect the distribution of phytopathogens throughmodifying the
composition of host-plant communities, which may provide an addi-
tional dimension to the effects of future climate on the distribution of
phytopathogens. Moreover, we acknowledge that our vegetation
index only considers plant biomass (gross primary production) and
overall plant diversity rather thanplant species identity and taxonomy,
which were largely unavailable for this study. Nonetheless, these key
factors may determine the distribution of phytopathogens, especially
at local and regional scales44,45, once the overarching influence of
temperature and precipitation on shaping the global distribution of
biomes has been accounted for.

Global diversity and invasion risk of potential phytopathogenic
fungi under future climate change scenarios
The effects of climate change on the diversity and distribution of
phytopathogenic fungi (across land cover types and habitats) has
remained a major uncertainty. Here, we modelled phytopathogenic
fungal diversity and relative abundance in the year 2100 under four
future climate scenarios (Shared socioeconomic pathway (SSP); sus-
tainability (SSP126); middle of the road (SSP245); regional rivalry
(SSP370); and fossil-fuelled development (SSP585) scenarios) using
elevendifferentCMIP6downscaledglobal changemodels (GCMs).Our
projections showed consistent increases in phytopathogenic fungal
diversity under all future climate scenarios compared to current cli-
mate conditions across all land cover types and habitats
(13.32–30.43%, Fig. 5a). The regions with predicted increasing diversity
account for more than 90% of the global area, especially in the Arctic
where phytopathogenic fungal diversity is expected to increase shar-
ply (Fig. 5a). These resultswere consistentwhendatawere analysed for
phytopathogenic fungi with both exclusively phytopathogenic trophic
modes and those with non-exclusive trophic modes (Supplementary
Fig. 8a). However, the richness of phytopathogens with exclusive
trophic modes is expected to have a greater increase than phyto-
pathogens with non-exclusive trophic modes under all future climate
scenarios and under all eleven GCMs (Supplementary Fig. 8a). The
ppSH richness increase in grassland was relatively slight (2.14–3.32%),
but we observed the largest increases in phytopathogenic fungal
diversity in forest (37.27–79.12%) and cropland (34.93–82.51%) eco-
systems and in soil (11.95–28.19%), plant shoot (38.63–96.14%) and root
(29.99–78.16%) habitats across climate change scenarios (Fig. 5a). We
also predicted that the relative abundance of ppSHs in forest ecosys-
tem and soil habitat will increase (all samples: 0.5–1%; forests:
1.49–3.92%; soils: 0.43–1.03%; Supplementary Fig. 9). However, not all
phytopathogenic fungi showed a consistent increase at the genus level
(Supplementary Fig. 9). For the top ten most relatively abundant
genera, seven (Fusarium, Alternaria, Acrodontium, Trichoderma, Epi-
coccum, Erysiphe and Pseudocercospora) were expected to increase in
relative abundance, while the other three genera (Fusicladium, Neoer-
ysiphe and Plectosphaerella) were predicted to show opposite trends
(Supplementary Fig. 9). It is important to note that these predictions
are based on observational data alone, with no mechanistic inference
to drive these trends. Moreover, our projections are founded on a
permanent climate-diversity/relative abundance relationship, and the
projections may need to be amended if climate-diversity/relative
abundance relationships change under future climate scenarios. For
example, if in the future, extremely high temperatures experienced in
some regions exceeds the thermal limits for growth of many phyto-
pathogenic fungi, our prediction will fail for those regions. Our pre-
dictions may also be biased if major land use or vegetation
type changes occur. Nevertheless, our predictions are consistent with
previous research, which predicted an increased proportion of soil-
borne pathogens (~0.8% to 2.3%) under warming conditions in global
soils17, and thus lends additional inference to support this global trend.

These predicted major changes in phytopathogenic fungi have
the potential to threaten global carbon storage, food security and
ecosystem sustainability. Recent research suggests that climate
change will lead to 243% (SSP126) to 460% (SSP585) increase in the
occurrence of crop pests and diseases (CPD) by the end of this
century24. The close match between ppSH richness and CPD emer-
gence in croplands implies that for each 1% increase in phytopatho-
genic fungal diversity, CPD emergence would potentially increase by
2.25% (Pearson’s r = 0.405, P =0.002, Supplementary Fig. 8b). It should
be noted that direct links between the diversity and relative abun-
dances of ppSH and the incidence of plant disease are not yet estab-
lished. For example, high phytopathogen diversity could imply greater
disease incidence with a broader range of potential hosts affected, but
may also lead to lower disease risk due to dilution effects and lower
densities of host-specific fungal propagules. Furthermore, pathogen
diversity may be a key regulator maintaining the plant diversity by
relatively stronger suppression of dominant species, hence preventing
competitive exclusion46,47. Therefore, the observed positive correla-
tion between ppSHdiversity andCPD emergence in croplandsmaynot
hold in other land cover types, and caution is required when extra-
polating the ppSH-disease relationships of anthropogenic habitats to
natural ecosystems. Moreover, diversity and relative abundances may
be unrelated to absolute abundances, which could not be deduced
from our datasets. For example, high phytopathogen diversity with
low absolute abundance may not bring greater disease risk compared
with low phytopathogen diversity with high absolute abundances.
Therefore, further experimentation is required to fully examine the
mechanisms underpinning the diversity-disease severity relationship,
and the contrasting responses of phytopathogenic fungal diversity
from different land cover types and habitats to climate change.

Using a maximum entropy model48, we assessed the current glo-
bal invasion risk of all phytopathogenic fungi taken together (Fig. 5b
and Supplementary Fig. 10), and predicted their invasion risk under
future climate-change scenarios using the eleven CMIP6 GCMs (Sup-
plementary Fig. 10a). Analysis of the receiver operating characteristic
curve revealed that all predictions show high accuracy based on the
high AUC values (AUCs > 0.890, Supplementary Table 2). Under cur-
rent and all reasonable future climate scenarios, eastern Asia, Europe,
southern Africa, southern Australia, southern South America and
central North America have a relatively higher invasion risk of phyto-
pathogenic fungi compared with other regions (Supplementary
Fig. 10a). On average, all eleven GCMs showed an increased risk of
invasion of phytopathogenic fungi under all future climate scenarios
(3.3–5.4%, Fig. 5b). The relative change in invasion riskwas significantly
positively correlated with the predicted change in ppSH richness
(r =0.434, P =0.004, Supplementary Fig. 8c).

Globally, the areas with increased risks of invasion from phy-
topathogenic fungi are mainly distributed at mid-latitudes (Sup-
plementary Fig. 10b), which is associated with the higher ppSH
richness of these regions. Although the mean invasion risk value
increases under SSP126 (3.3%), relatively less area (45.9%) shows an
increased risk of invasion from phytopathogenic fungi under sus-
tainable development projections (SSP126; Fig. 5b). While under the
other three scenarios, a greater area shows an increased risk of
invasion in the future, especially under projections of fossil-fuel
dominated scenarios (SSP245: 61.4%; SSP370: 54.6%; SSP585: 67.2%;
Fig. 5b). It’s worth noting that the polar regions, which are likely to
show the greatest increases in temperature under climate change,
may also suffer from an increased risk of invasion from phyto-
pathogenic fungi under SSP585 (Supplementary Fig. 10b). This is
consistent with the currently observed range shifts towards higher
latitudes in many pathogenic species49,50. Therefore, our results
highlight the need to further reduce global greenhouse gas emission
in order to limit future phytopathogen invasion, which could be
especially prominent in mid- and high-latitude regions.
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Limitations, conclusions and future perspectives
This study provided an omnidirectional understanding on the global
diversity and biogeography of phytopathogenic fungi. It is important
to acknowledge that using closed-reference data, and lacking a refer-
ence database fully resolved to species level, may obscure some of the
overall diversity and abundance of phytopathogenic fungi. However,
the distributions and biogeographic patterns of phytopathogenic
fungi presented here are still valuable, and provide a robust first-order
approximation of their underlying ecology and susceptibility to cli-
mate change. In addition, CO2 fertilisation effects were not considered

in this study’s predictions of future changes in phytopathogenic fungi,
as the direct relationship between CO2 concentration and phyto-
pathogens remains ill-defined. Furthermore, without global data on
the range distribution of plants, directly linking fungal pathogens with
actual plant host distributions remains challenging. Our observational
data can only provide correlative insights into the distributions of
plant pathogens, but a mechanistic understanding of current and
future trajectories of pathogen biogeography will require detailed
information about host plant ranges. Further research into the dis-
tribution of plant species and their niche ranges will be fundamental to
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Fig. 5 | Diversity and invasion risk of potential phytopathogenic fungi by 2100
under future climate change scenarios. a Predicted change in phytopathogenic
fungal diversity under future climate-change scenarios. A diversity-climate model
was constructed by GLMs using ppSH richness and 19 climate variables. Thismodel
was used to predict future ppSH richness across all land cover types, or withinmain
land cover types, or from main habitats, under four different climate scenarios.
Predictive models were cross-validated (CV) by common Pearson correlation test
using 2/3 samples as a model training dataset and 1/3 as a validation dataset. All
climate variables were derived fromWorldClim2 using a 5min (~10 km) resolution.
The future climate data were derived from eleven different CMIP6 downscaled
global change models (GCMs; See detailed information in Methods. NB—The cli-
mate data of model FIO-ESM-2-0 under the SSP370 scenario in 2080-2100 are not
available). The relative change in ppSH richness under different GCMs compared to

current climate conditions were averaged. Plot axis labels reflect, shared socio-
economic pathway (SSP); sustainability (SSP126); middle of the road (SSP245);
regional rivalry (SSP370); and fossil-fuelled development (SSP585) scenarios. Box
plots indicate median (middle line) with 25th, and 75th percentile (box), and 5th
and 95th percentile (whiskers). n = 11 for SSP126, SSP245 and SSP585; n = 10 for
SSP370. n represents the number of GCMs. The map was generated in the R lan-
guage. b Mean invasion risk under different future climate scenarios. After con-
structing the invasion-climatemodel, the future invasion riskswerepredictedusing
the climate data derived from eleven different CMIP6 downscaled GCMs, and the
invasion risks under different GCMs compared to current climate were averaged
(mean ± s.d.; n = 11 for SSP126, SSP245 and SSP585; n = 10 for SSP370. n represents
the number of GCMs). The pie charts represent the increased/decreased invasion
risk area. Source data are provided as a Source Data file.
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facilitating the joint species distribution modelling that is needed to
assess these trends in the future.

Our findings highlight the importance of climate factors in
determining the diversity and composition of phytopathogenic fungal
communities across the globe. More importantly, our model projec-
tions indicate a potential increase in phytopathogenic fungal diversity,
and an increased global invasion risk especially under unsustainable
development scenarios. Such increased fungal pathogen risks are
likely to have direct consequences for the productivity and sustain-
ability ofmanaged andnatural ecosystems,with direct implications for
food production and carbon sequestration. Our research suggests that
low-emission-dependent climate scenario can mitigate the invasion
risks caused by climate changes, shedding light to optimised sustain-
able development solutions that protects agriculture and forestry
from the harmful impacts of phytopathogens.

Methods
Data collection and processing
Constructing a reference database of phytopathogenic fungi. We
extracted all 196,344 reference species hypotheses (SHs) from the
UNITE fungal database (version 8.2)51. The 196,344 SHs were queried
against the FUNGuild traits database (http://www.stbates.org/guilds/
app.php; accessed September 2019)6, and those assigned to the guild
‘plant pathogen’ with confidence of ‘probable’ and ‘highly probable’
were retained. This yielded a reference database containing 10,829
potential phytopathogenic SHs (ppSHs).

Processing new data. New samples were collected across East Asia
from forest and cropland ecosystems, with samples from plant shoot,
plant root, soil and rhizosphere habitats during 2017–2021. After
extracting totalDNA, the ITS regionwasamplifiedusing the fungal PCR
primers ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2
(5′-GCTGCGTTCTTCATCGATGC-3′)52 and then sequenced on an Illu-
mina MiSeq platform. Sequencing data were analysed following the
methods described in GlobalFungi25. Briefly, the ITS sequences were
extracted using ITSx (v1.0.11)53, and non-ITS sequences were removed.
The extracted ITS sequences were classified according to the repre-
sentative sequence of the closest UNITE species hypothesis (SH) using
BLASTn54 with a 98.5% similarity threshold. Representative sequences
of each SH were queried against the reference database constructed
above to identify ppSHs. This yielded a dataset containing 643 samples
(from forest and cropland ecosystems, and plant shoot, root, soil and
rhizosphere habitats) with 1172 ppSHs.

Meta-analysis data collection and trimming. The 10,829 ppSHs were
queried against the GlobalFungi database (3rd release, January 5, 2021;
https://globalfungi.com/)25, and the targeted SHs with associated
metadata including sample source, geographical location, land cover
type and habitat type, sampling time, abundance and total sequencing
depth were downloaded using the Taxon search function. After mer-
ging the data by sample IDs, we produced a dataset containing
19,669 samples with 5479 ppSHs.

Finally, the published data in GlobalFungi and our new sequenced
data were merged into a global dataset containing 5753 ppSHs from
20,312 samples across all seven continents and four major oceanic
island regions, 11 land cover types (forests, grasslands, croplands,
aquatic, deserts, woodlands, shrublands, tundra, wetlands, urban and
mangroves) and 12 habitat types (soils, plant shoots, roots, rhizo-
sphere, deadwood, air, sediment, litter, lichen, freshwater, topsoil and
dust (atmospheric deposition)) (Fig. 1). The number of ppSH sequen-
ces was divided by the total ITS sequences of each sample to calculate
the relative abundance. The total relative abundance of the potential
plant pathogens was highly correlated with the same variable calcu-
lated using a rarefied OTU table (8000 reads per sample; r = 0.999,
P << 0.001), so the choice of not rarefying our data did not affect our

conclusions. We also tested the deviation between close-reference-
based and open-reference-based outputs using our new data. The
results showed a perfect match between the relative phytopathogen
abundance of close-reference-based and open-reference-based out-
puts (r =0.983, P <<0.001), suggesting that using close-reference-
based data would not quantitatively affect our conclusions. All Gib-
berella readswere considered as Fusarium in this study for consistency
with the most recent classifications55.

Climate factors and vegetation data
Nineteen bioclimatic variables for each sample’s location were
extracted from WorldClim2 (https://www.worldclim.org/)56. The his-
torical climate data represent the average for the years 1970-2000 and
comprise 19 variables, 11 of which are temperature-related, and 8 of
which are precipitation-related (for detailed information see Supple-
mentary Table 3; https://www.worldclim.org/data/bioclim.html). The
future climate data (2080-2100) are CMIP6 (Coupled Model Inter-
comparison Project 6, https://esgf-node.llnl.gov/projects/cmip6/)
downscaled future climate projections. Monthly values of minimum
temperature, maximum temperature and precipitation were pro-
cessed for four Shared Socio-economic Pathways (SSP): 126, 245, 370
and 585 (SSP126: sustainability; SSP245: middle of the road; SSP370:
regional rivalry; SSP585: fossil-fuelled development)57. The climate
data under different SSP scenarios were separately predicted using
eleven CMIP6 downscaled global change models (GCMs), namely
ACCESS-ESM1-5, CanESM5, CanESM5-CanOE, CNRM-CM6-1-HR,
CNRM-ESM2-1, EC-Earth3-Veg, FIO-ESM-2-0, GISS-E2-1-G, MIROC6,
MRI-ESM2-0 and UKESM1-0-LL. The vegetation variables capture gross
primary production (GPP) and overall vascular plant diversity. TheGPP
data used in this study were the annual average GPP data during the
last four decades derived from satellite near-infrared reflectance
data58. The plant diversity data were extracted from the global map of
alpha diversity (local species richness, 1 km resolution) for vascular
plants built from 170,272 georeferenced local plant assemblages59.

Statistical analysis
Global alpha-diversity fitting. Richness (defined as the number
of observed ppSHs in this study) was used to measure taxonomic
α-diversity of phytopathogenic fungi. Two approaches were used to
investigate the global diversity patterns of phytopathogenic fungi:
generalised linear models (GLMs) and ordinary least squares
regression13. First, we used the generalised linear models (GLMs) to fit
global ppSH diversity data. Briefly, we used GLMs to select the vari-
ables that were significantly related to diversity from bioclimatic
variables BIO1-BIO19, because these variables are broadly considered
to influence fungal diversity, and have been used to predict diversity
patterns of multiple microbial groups at various scales1,60,61. We pre-
dicted the global diversity pattern of phytopathogenic fungi after
characterising the environment within each grid cell under the reso-
lution of 5min (~10 km). A cross validation was conducted to test the
efficiency of our prediction. Briefly, 2/3 of samples were randomly
selected as the modelling dataset, while the remaining 1/3 samples
were selected as the validation dataset. After constructing the GLMs
using the modelling dataset, we predicted the diversity of phyto-
pathogenic fungi in the validation dataset. Predicted diversity was
plotted against the observed diversity, and the correlation coefficients
used to determine the prediction efficiency62. Second, the diversity-
latitude relationship was fitted using simple linear regression and
second-order polynomial regression to infer if a latitudinal diversity
gradient (LDG) exists. We also tested if the richness-latitude relation-
ship was not biased by the different sequencing region (ITS1, ITS and
both) by separating the samples according to sequencing region
information (Supplementary Fig. 3e). To confirm the richness-latitude
relationship was robust and not biased by unequal sequencing depth,
we equally and randomly chose4000ppSH reads for each sample, and
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calculated the richness-latitude relationship (Supplementary Fig. 3f).
Given the potential unbalanced sampling effect, we randomly selected
300 or 150 samples in North America, Europe, Asia, Australia, South
America, Antarctica and Africa where >300 samples were collected.
The diversity-latitude relationship based on subsampled data was fit-
ted using both simple linear regression and second-order polynomial
regression, and the fitting parameters includingmodelR2, F values, AIC
and P values were compared. Both random resampling procedures
(300/150 samples) were conducted 100 times in R language, and the
comparisons were also conducted 100 times to avoid the randomisa-
tion bias (Supplementary Fig. 3i, j).

Community-level analyses. The ppSH sequences were rarefied to
even depth (4000 sequences per sample) to conduct community-level
comparisons and analyses. Bray–Curtis (abundance-based) and
Sørensen (occurrence-based) distances were calculated to quantify
taxonomic β-diversity using the vegan R package. Three-way PERMA-
NOVA was conducted to investigate the main determinants of varia-
tion in species composition. The variation in species composition can
be further divided into two components, species turnover (species
replacement by others) and nestedness (the extent to which the spe-
cies composition of small assemblages is a subset of larger
assemblages)37,63. The betapart R package was used to disentangle the
relative contribution of species turnover and nestedness to the β-
diversity37.

DDRs and halving distance. To determine the spatial turnover of
phytopathogenic fungi, the distance-decay relationship (DDR) was
calculated as the slope of a linear least squares regression on
the relationship between log-transformed geographical distance
[log(distance+1)] and community similarity (Bray–Curtis similarity).
The DDR slope was calculated following the formula below.

log S=a+b logðD + 1Þ ð1Þ

where a is the intercept and b is the slope of the distance-decay
relationship. S and D are community similarity and geographical
distance, respectively. The significance of the DDR slope was
determined using matrix permutation test (999 permutations). Given
the scale-dependency of DDRs, we calculated the initial similarity
(similarity within one km) and halving distance (HD, the distance at
which community similarity halves) to eliminate scale-dependent
errors36. Briefly, the initial similarity was calculated following the
formula below.

Sð1Þ=a+b× log 2 ð2Þ

While the HD was calculated as follow.

HD = 10
ðb × log 2Þ�a

2b ð3Þ

Shared sequences and source tracking analysis. The proportion of
shared sequences reflects species turnover across different systems64.
Therefore, we calculated the pairwise shared proportion of sequence
numbers, and used the average shared proportion as a proxy for
species turnover. To determine where the phytopathogenic fungi in
different land cover types come from, we estimated the source of
phytopathogenic fungi in different land cover types using
SourceTracker65, which was run in the R language with default settings
at genus level.

Universal ecological dynamics. A dissimilarity overlap curve analysis
was conducted to assess whether the ecological dynamics across
phytopathogenic fungal communities are universal38,40 using R pack-
age DOC. The dissimilarity-overlap curve emerges by plotting the

community dissimilarity against the fraction of taxa that overlap.
Where the curve dips as the overlap grows, universality is supported
and the level of support is proportional to the fraction of pairwise
comparisons under the graph where the curve slope is negative
(termed the fraction negative slope, Fns). A high Fns value indicates
that the underlying ecological dynamics of a microbiome are largely
host-independent. In contrast, a low Fns value reflects that the ecolo-
gical dynamics of a microbiome are host-specific38. For the smoothed
curve of a given dissimilarity-overlap curve, the initiation of negative
slope represents the median of initiation of negative slopes calculated
from dissimilarity-overlap curves of 1000 bootstrapped data sets.

Random forest modelling. We applied a machine-learning random
forest model to quantitatively examine the key variables influencing
the relative abundance and diversity of phytopathogenic fungi using
the randomForest R package66. Six random forest models were con-
structed. Climatic (indicated by 11 temperature-related and 8
precipitation-related bioclimatic variables), spatial (indicated by
longitude, absolute latitude and standardised principal coordinate of
neighbour matrices) and vegetation (indicated by gross primary pro-
duction and plant diversity) variables were separately or jointly con-
sidered in six random forestmodels (Model 1: Climate;Model 2: Space;
Model 3: Vegetation; Model 4: Climate & Space; Model 5: Climate &
Vegetation; Model 6: Climate & Space & Vegetation). To reduce colli-
nearity among predictors, we reduced the initial set of 24 predicting
variables to 15 variables with a variation inflation factor (VIF) below 10.
This final set included ten bioclimatic variables (BIO2: Mean diurnal
range; BIO3: Isothermality; BIO4: Temperature seasonality; BIO8:Mean
temperature of wettest quarter; BIO9: Mean temperature of driest
quarter; BIO13: Precipitation of wettest month; BIO14: Precipitation of
driest month; BIO15: Precipitation seasonality; BIO18: Precipitation of
warmest quarter; BIO19: Precipitation of coldest quarter), three spatial
variables (longitude, absolute latitude and standardised principal
coordinates of neighbour matrices (PCNM)) and two vegetation vari-
ables (gross primary production and plant diversity). The variation
inflation factor values of predictors are listed in Supplementary
Table 4. Five hundred trees were fitted in each model. Each tree was
fitted based on a random sample of two-thirds of the observations (“in-
bag”), and each tree split was based on a different random subset of
one-third of the predictors, while the results were cross-validated
against the remaining observations (“out-of-bag”), which is in line with
standard protocols66. The model performance was assessed based on
modelR2 using rfUtilitiesRpackagewith 999 permutations. To express
variable importance across all modelled ppSHs, the relative impor-
tance of each predictor was calculated as a sum of predictor relative
importance of all Random Forests for ppSH richness/relative abun-
dance weighted by Random Forest predictive ability (out-of-bag R2)13.

Future diversity, relative abundance and invasion risk projections.
As described above, the global diversity pattern under current climate
was estimated using GLMs and then cross-validated. Using the model
constructed based on the current climate data, the global diversity
pattern under different future climate scenarios were then estimated
based on the model parameters. For detailed land cover types and
habitats, the future diversity patterns were only predicted for those
with >1500 globally distributed samples to avoid issues of low sample
coverage. We obtained different diversity projection equations for
each of land cover type and habitat, and all projections were cross-
validated following the procedures described above.We predicted the
future diversity under different climate scenarios using the climate
data derived from the above eleven different CMIP6 downscaled
GCMs, and the relative diversity changes were averaged. The proce-
dures predicting the future relative abundance were same. The pro-
jections were conducted using the formula listed in Supplementary
Table 5.
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We then used the maximum entropy model48 to make a global
invasion risk projection of phytopathogenic fungi under different
future scenarios using theMaxent software, whichhas beenwidely used
to forecast species distribution probability of various macro and
microbial organisms at the global scale67–70. The standardised outputs
indicate predicted probability that conditions are suitable, with higher
values indicating high probability of suitable conditions for the species,
and lower values indicating low predicted probability of suitable con-
ditions. Here, we used the predicted probability as an agent of invasion
risk. First, the occurrence data of phytopathogenic fungi and current
climate data were used to predict the global distribution probability of
phytopathogenic fungi with 30% of the samples as the random seed.
Second, based on the constructed invasion-climate model, the future
climate data derived from eleven CMIP6 downscaled GCMs were used
to predict the future invasion risk. Third, the relative change in invasion
risk under future climate compared to current climatewas calculated in
AcrMap (version 10.2, https://www.esri.com/)71 using the Raster Calcu-
lator tool. The receiver operating characteristic curve (ROC) analysis
was simultaneously conducted to assess the prediction efficiency.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All raw data used in the current study including reference database,
sample metadata, climate data and species-abundance dataset are
publicly available in Figshare72. The newly generated sequencedata are
available in the NCBI Sequence Read Archive (SRA) under the acces-
sion number PRJNA1021497. The UNITE fungal database is available in
https://unite.ut.ee/. The samples and the corresponding metadata in
GlobalFungi database are available in https://globalfungi.com/. The
current and future climate data are available in WorldClim2 (https://
www.worldclim.org/). Source data are provided with this paper.

Code availability
Most numerical analyses included in this article do not have an asso-
ciated code. Used codes are available in Figshare72.
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