
1

EPtask: Deep Reinforcement Learning based
Energy-efficient and Priority-aware Task
Scheduling for Dynamic Vehicular Edge

Computing
Peisong Li, Student Member, IEEE, Ziren Xiao, Student Member, IEEE, Xinheng Wang, Senior Member,

IEEE, Kaizhu Huang, Senior Member, IEEE, Yi Huang, Fellow, IEEE, Honghao Gao, Senior Member, IEEE

Abstract—The increasing complexity of vehicles has led to a
growing demand for in-vehicle services that rely on multiple
sensors. In the Vehicular Edge Computing (VEC) paradigm,
energy-efficient task scheduling is critical to achieving optimal
completion time and energy consumption. Although extensive
research has been conducted in this field, challenges remain
in meeting the requirements of time-sensitive services and
adapting to dynamic traffic environments. In this context, a
novel algorithm called Multi-action and Environment-adaptive
Proximal Policy Optimization algorithm (MEPPO) is designed
based on the conventional PPO algorithm and then a joint
task scheduling and resource allocation method is proposed
based on the designed MEPPO algorithm. In specific, the
method involves three core aspects. Firstly, task scheduling
strategy is designed to generate task offloading decisions
and priority assignment decisions for the tasks utilizing PPO
algorithm, which can further reduce the completion time of
service requests. Secondly, transmit power allocation scheme is
designed considering the expected transmission distance among
vehicles and edge servers, which can minimize transmission
energy consumption by adjusting the allocated transmit power
dynamically. Thirdly, the proposed MEPPO-based scheduling
method can make scheduling decisions for vehicles with dif-
ferent numbers of tasks by manipulating the state space of
the PPO algorithm, which makes the proposed method be
adaptive to real-world dynamic VEC environment. At last, the
effectiveness of the proposed method is demonstrated through
extensive simulation and on-site experiments.

Index Terms—Proximal Policy Optimization, task schedul-
ing, resource allocation, vehicular edge computing.

This work was supported in part by the Key Program Special Fund in
XJTLU under project KSF-E-64, in part by the XJTLU Research Develop-
ment Funding under projects RDF-19-01-14 and RDF-20-01-15, and in part
by the National Natural Science Foundation of China (NSFC) under grant
52175030. (Corresponding authors: Xinheng Wang and Honghao Gao.)

P. Li, Z. Xiao and X. Wang are with the School of Advanced Tech-
nology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China, E-
mail: peisong.li20@student.xjtlu.edu.cn; ziren.xiao20@student.xjtlu.edu.cn;
xinheng.wang@xjtlu.edu.cn

K. Huang is with the Data Science Research Center & Division of Natural
and Applied Sciences, Duke Kunshan University, Suzhou 215316, China,
E-mail: kaizhu.huang@dukekunshan.edu.cn

Y. Huang is with the Department of Electrical Engineering and
Electronics, University of Liverpool, Liverpool L69 3BX, UK, E-mail:
yi.huang@liverpool.ac.uk

H. Gao is with the School of Computer Engineering and Science, Shang-
hai University, Shanghai 200444, China, E-mail: gaohonghao@shu.edu.cn

I. INTRODUCTION

A. Background

Nowadays, vehicles are equipped with advanced features
and rely on multiple onboard sensors to provide intelligent
in-vehicle services [1]. These services encompass a wide
range of functionalities, ranging from safety features such
as automatic emergency braking and blind-spot monitoring
to entertainment systems offering high-quality audio and
video streaming [2]. The increasing demand for intelligent
in-vehicle services highlights the significance of developing
efficient data processing methods based on multiple sensors,
making it a highly promising area of research [3]. When it
comes to in-vehicle services, completion time and energy
consumption of services are two crucial factors. Minimizing
completion time is particularly important for safety-critical
services such as navigation and autonomous driving because
it reduces data processing delays. In addition, vehicles
have limited power resources, and multi-sensor in-vehicle
services require substantial computational power, leading
to significant energy consumption [4]. By optimizing in-
vehicle computation to reduce energy consumption, the
overall battery life of the vehicle can be extended, which
is especially crucial for electric vehicles.

In order to achieve the goal of minimizing completion
time and reducing energy consumption, the Vehicular Edge
Computing (VEC) paradigm offers a solution [5]. VEC
decomposes multiple sensors-based service requests into
multiple computation tasks, which can be distributed among
various computing entities such as the cloud server, edge
servers, and other vehicles. Processing these tasks in par-
allel helps to decrease the time required to complete the
requests. Moreover, this approach offloads the computation
tasks to more powerful computing entities, thus reducing
energy consumption on the vehicle’s onboard resources [6].
Generating optimal task offloading and resource allocation
decisions are two important ways for VEC to enhance the
performance of multi-sensor in-vehicle services. Therefore,
extensive research has been conducted on task offloading
and resource allocation in VEC in recent years, the latest
studies are reviewed in Section II in this paper.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3321679

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on October 05,2023 at 08:16:56 UTC from IEEE Xplore. Restrictions apply.

2

Despite the extensive research on task offloading and
resource allocation to improve completion time and energy
consumption, there remains a challenge in meeting the
requirements of time-sensitive services. The completion time
of a service request is crucial in delivering satisfactory ser-
vice to end users. Therefore, it is essential to further enhance
task offloading and resource allocation algorithms to meet
the demands of time-sensitive services while minimizing
energy consumption.

Deep Reinforcement Learning (DRL) is attracting atten-
tion due to its suitability for decision-making problems
where an agent interacts with an environment [7]. Proximal
Policy Optimization (PPO) is a policy gradient algorithm
proposed in 2017 [8]. As a refinement to Trust Region
Policy Optimization (TRPO) (2015) [9], PPO uses a simpler
clipped surrogate objective, omitting the expensive second-
order optimization presented in TRPO. In 2018, PPO2 was
introduced, which offers better GPU utilization by batch-
ing observations from multiple simulation environments.
Presently, PPO has become the default reinforcement learn-
ing algorithm at OpenAI due to its good performance.
PPO incorporates a mechanism for controlling the update
step size, helping ensure stable and incremental policy
updates. This feature makes PPO less sensitive to large
policy changes and improves the stability of the learning
process. In the context of task scheduling, this stability is
beneficial because it allows the scheduling policy to be
updated gradually and avoids abrupt changes that could
negatively impact the system’s performance.

B. Motivation and Contributions

In order to further reduce request completion time and
energy usage as well as adapt to the dynamic VEC scenario,
the following problems are considered and corresponding
solving methods are proposed:

In VEC, priority refers to the relative importance of a
task compared to other tasks and it determines the order
in which tasks are executed. If tasks are not scheduled
based on their priority, it can lead to longer processing
time and resource waste. If the task is assigned with a
fixed priority, the overall performance can also be negatively
influenced because of the dynamic environment. Therefore,
in this work, the processing priority is assigned to each task
dynamically to determine the execution order. Then, tasks
allocated to the same computing entity are executed in the
order of priority.

In addition to the processing priority, the adjustment of
transmit power, one of the communication resources, is
another crucial aspect of VEC. It involves adjusting the
transmit power of the wireless communication devices used
by vehicles and edge servers to optimize energy consumption
and reduce interference. Current studies typically use a fixed
transmit power. However, if the transmit power is too high,
it can lead to unnecessary energy consumption and interfere
with other devices operating in the same frequency band.
In contrast, if the transmit power is too low, the range of

communication can be limited, leading to communication
failure when the devices are far apart. Starting from 2023,
there has been a focus on optimizing transmit power allo-
cation to minimize transmission energy consumption [10]–
[12]. Recent research has explored the use of reinforcement
learning algorithms to optimize transmit power allocation,
where the allocation of transmit power is considered as
one of the actions in the reinforcement learning process.
However, the challenge lies in the continuous nature of
transmit power, making the learning process quite complex
[13]. Although discretizing the action space can simplify the
learning process, it becomes difficult to achieve the optimal
action since the optimal power allocation might fall between
the discretized actions. Therefore, in this work, the transmit
power is adjusted dynamically to reduce the transmission
cost while ensuring transmission reliability.

Moreover, current DRL-based studies are only capable of
allocating either a single task or a fixed number of sub-
tasks for the vehicle [14]. However, in real-world scenarios,
the number of vehicles generating service requests within
the communication range of an edge server is constantly
changing. Additionally, the number of tasks in the request
generated by each vehicle varies due to different service
requirements and the collaboration of different onboard
sensors. This paradigm can be named the dynamic Vehicular
Edge Computing paradigm. Therefore, the task scheduling
method must be adaptive and able to make scheduling deci-
sions for vehicles with various service requests comprising
different numbers of tasks. Therefore, a task scheduling
method is designed in this paper that can adapt to different
numbers of tasks in a dynamic VEC paradigm, considering
the ever-changing number of vehicles. The designed method
can make decisions, including task offloading, communi-
cation resource allocation, and priority assignment, for a
different number of tasks.

In summary, in order to further reduce the delay and adapt
to real-world dynamic traffic volume, a Multi-action and
Environment-adaptive Proximal Policy Optimization algo-
rithm (MEPPO) is proposed in this paper and then a joint
task scheduling and resource allocation method is designed
based on the proposed MEPPO algorithm. In specific, firstly,
the designed method optimizes the request’s completion time
by dynamically offloading tasks and assigning a priority to
each task based on the task offloading decisions and priority
assignment decisions. Secondly, the energy consumption can
be optimized by adjusting the transmit power based on
the inter-vehicle and vehicle-to-server distances. Thirdly, the
size of the generated decisions is adjusted automatically
according to the dynamic traffic environment, in which the
number of vehicles and service requests is dynamic.

To the best of the authors’ knowledge, this paper is
the first work that studies how to perform task scheduling
for various numbers of tasks. This is also the first work
proposing to dynamically assign priority to the task.

The main contributions are summarised as follows:
(1) A joint task scheduling and resource allocation method

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3321679

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on October 05,2023 at 08:16:56 UTC from IEEE Xplore. Restrictions apply.

3

is designed. The task scheduling in this work is defined
including task offloading and priority assignment. The im-
portance of task priority in determining the order of task
execution and avoiding longer processing time and resource
waste is first recognized. This dynamic priority assignment
ensures optimal task execution order and contributes to
further reducing request completion time.

(2) A dynamic transmit power adjustment approach is
proposed that optimizes the transmission cost while ensuring
reliable communication. By dynamically adjusting the trans-
mit power based on the specific requirements and transmis-
sion distances involved, the proposed method contributes to
improving the overall performance of in-vehicle services in
terms of energy consumption and communication reliability.

(3) A multi-action and Environment-adaptive Proximal
Policy Optimization algorithm (MEPPO) is proposed, which
is adaptive and capable of making scheduling decisions for
vehicles with varying service requests comprising different
numbers of tasks in the dynamic VEC paradigm. The
designed algorithm encompasses decisions related to task
offloading and priority assignment, accommodating different
numbers of tasks efficiently. By addressing the dynamic
nature of the VEC paradigm and developing an adaptive task
scheduling method, the scalability and flexibility of multi-
sensor in-vehicle services can be enhanced.

(4) The proposed method is evaluated by both simulations
and on-site tests. The on-site test scenario is designed to
represent the real-world environment. Experimental results
reveal that the method can improve the performance of
multi-sensor services within the dynamic VEC paradigm.

C. Paper Organization
The rest of this paper is organized as follows: In Section

II, related work is reviewed. It also demonstrates how our
work is different from existing research. In Section III,
the system model is introduced. The proposed MEPPO-
based joint task scheduling and resource allocation method
is introduced in Section IV. The performance evaluation
and results are presented in Section V. The on-site test is
presented in Section VI. Finally, this paper is concluded in
Section VII. The key abbreviations are shown in Table I.

TABLE I: List of main abbreviations
Abbrevation Description

VEC Vehicular Edge Computing
MEC Mobile Edge Computing
V2V Vehicle to Vehicle
V2I Vehicle to Infrastructure
E2C Edge server to Cloud server
V2E Vehicle to Edge server
PPO Proximal Policy Optimization
SAC Soft Actor Critic
DQN Deep Q-Network
GBD Generalized Benders Decomposition

DDPG Deep Deterministic Policy Gradient
A3C Asynchronous Advantage Actor Critic

MAD4PG multi-agent distributed distributional deep deterministic policy gradient

II. RELATED WORK

In this section, existing studies on reinforcement learning-
based task scheduling and resource allocation are reviewed.

A. Studies on Task Scheduling

Firstly, much research focuses on task scheduling [22],
[23]. In [24], an intelligent task offloading scheme was
proposed based on deep Q learning to address the issue
of the insufficient computing capacity of intelligent con-
nected vehicles in VEC networks, which integrates mobile
edge computing (MEC) and vehicular networks. In [25], a
Markov decision process model was proposed to solve the
computation offloading scheduling problem using proximal
policy optimization algorithm in VEC scenarios, where
the trade-off between task latency and energy consump-
tion is minimized by considering both the location and
timing of task execution. In [26], an energy-efficient task
offloading and scheduling algorithm was proposed, which
offloads delay-sensitive tasks to mobile fog vehicles instead
of remote clouds to meet the computational demands of
smart vehicles near rural highways. They presented a fuzzy
reinforcement learning algorithm combined with a greedy
heuristic algorithm to address the challenges of energy
consumption optimization and scheduling decision-making
with task deadline and resource availability constraints. In
[27], a two-stage machine learning-based vehicular edge or-
chestrator was designed to efficiently operate a VEC system
in the highly dynamic environment of autonomous vehicles,
where computationally intensive workloads are offloaded
to a nearby VEC infrastructure. The proposed approach
considers task completion rate and service time to make a
crucial decision about where to offload each task.

Based on the reinforcement learning algorithms, the task
scheduling strategy can dynamically generate task schedul-
ing decisions to reduce task completion time. However, in
order to reduce completion time, most tasks are offloaded to
edge servers, which could cause high energy consumption
for edge servers.

B. Joint Task Scheduling and Resource Allocation

In order to solve the above-mentioned problem of high
energy consumption, many studies focused on the joint
optimization of completion time and energy consumption
via designing a joint task offloading and resource allocation
strategy. In [16], a solution for the joint task offloading
scheduling and resource allocation problem was proposed
by formulating it as a mixed integer optimization problem.
They use a two-layer optimization approach where a Deep
Q-Network (DQN) was used in the upper layer to solve the
task offloading scheduling problem, and Gradient Descent
was used in the lower level for CPU frequency allocation.
In [17], a joint task offloading and resource allocation
scheme was proposed to minimize the total task processing
delay of all vehicles. In [18], a joint task offloading and
resource allocation scheme was proposed for a parked-
and-moving-vehicles-assisted Multi-access Edge Computing
scenario, aiming to minimize the total priority-weighted
task processing delay for all the devices. In [13], a MEC-
enabled vehicular network was proposed to assist through
aerial-terrestrial connectivity using high-altitude platforms

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3321679

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on October 05,2023 at 08:16:56 UTC from IEEE Xplore. Restrictions apply.

4

TABLE II: Comparison with the latest related studies

Work Year Method Task scheduling Resource allocation Dynamic
vehicles

and tasks

Optimization
target

Task
offloading

Priority
assignment

Conputation
resource Bandwidth Transmit

power Delay Energy

[15] 2021 SAC Y Y Y
[16] 2022 DQN Y Y Y Y
[17] 2022 GBD Y Y Y Y
[18] 2022 GBD Y Y Y Y
[13] 2022 DQN Y Y Y Y Y
[10] 2023 MAD4PG Y Y Y Y
[11] 2023 DQN Y Y Y Y
[19] 2023 A3C Y Y Y
[12] 2023 DDPG Y Y Y
[20] 2023 DDPG Y Y Y
[21] 2023 SAC Y Y Y

Proposed PPO Y Y Y Y Y Y

equipped with mobile servers to provide computation of-
floading capability and network access for vehicle-to-vehicle
communications.

By considering the allocation of computation and band-
width resources, thus a balance between completion time
and energy consumption can be achieved. However, above
studies did not consider the allocation of transmit power,
which is critical for reducing energy consumption when
transmitting tasks. From this year (2023), transmit power,
as one of the important communication resources, was
started to be considered when designing resource alloca-
tion methods. In the latest published paper [28], a joint
computation offloading and transmission resource allocation
method was proposed, which combined non-orthogonal mul-
tiple access (NOMA) and multi-access edge computing. In
summary, current studies solved the problem of transmit
power allocation either by setting it as one of the actions
in the reinforcement learning method or converting it into
a convex optimization problem [10], [11], [13]. However, if
the transmit power takes the continuous value, continuous
action spaces can be highly complex and it’s difficult for
the DRL to learn optimal policies. If the transmit power
is converted into discrete values, discrete actions can be
inefficient in representing actions that require continuous
adjustments. Discretizing a continuous action space may
impose unrealistic constraints and limit the agent’s perfor-
mance. In addition, optimizing the transmit power as an
independent sub-problem will result in a high algorithm
complexity.

C. Dynamic VEC Paradigm

Current work focused on the allocation of either one task
or a fixed number of sub-tasks for the vehicle. In [20], the
number of moving vehicles on the road was fixed, and each
vehicle generated a task to be implemented. In [19], it was
assumed that each vehicle generated at most one task at each
time slot. The task generation events were independently and
identically distributed at each time slot. In [14], each vehicle
needed to divide the task into multiple sub-tasks, and then
distribute them to different vehicles for parallel execution.

There is no dependency between the two sub-tasks and all
tasks were split into the same-size sub-tasks.

These studies assumed each vehicle generated a fixed
number of tasks or sub-tasks at a time slot. However, for
the actual scenario, the number of vehicles and the number
of tasks generated from the vehicle depends on the service
provided by the vehicle at that moment. Current work cannot
make adaptive scheduling decisions for the vehicle.

A more comprehensive analysis of the latest studies is
shown in Table II, in which ”Y” denotes yes, representing
that the factor is considered in the paper. As shown in the
table, from 2022, researchers started to focus on the joint
decision making of task offloading and resource allocation,
with the optimization target of minimizing task completion
delay. However, the priority assignment has never been
explored in previous studies. In addition, previous studies
only considered task scheduling for traffic scenarios with a
fixed number of vehicles and tasks, which is not feasible for
real-world scenarios with a dynamic number of vehicles. In
this paper, a joint task scheduling and resource allocation
method is proposed to reduce both request completion time
and energy consumption. The method can generate optimal
task offloading decisions, priority assignment decisions, and
transmit power allocation decisions simultaneously for the
vehicles under the changing traffic volume.

III. SYSTEM MODEL AND PROBLEM DEFINITION

In this section, the dynamic VEC scenario is presented.

A. Network Model

The VEC system is illustrated in Fig. 1, which involves
the use of computing resources in close proximity to vehicles
to enable faster and more efficient processing of data. The
paradigm includes three main components: vehicles, edge
servers, and the cloud server. Vehicles can be divided into
two categories: Task Vehicles that continuously generate
computation tasks while moving and Service Vehicles that
receive offloaded tasks. The tasks can be executed either
locally in the vehicle, transmitted wirelessly to a nearby edge
server or another vehicle in its vicinity, or transmitted to the

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3321679

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on October 05,2023 at 08:16:56 UTC from IEEE Xplore. Restrictions apply.

5

Cloud
server

Edge
server V2V

communication
V2E
communication

E2C
communication

Task Vehicle

Service Vehicle

Computation and
communication
resource

Task scheduling

Resource
allocation

Fig. 1: Vehicular edge computing paradigm

cloud server. The edge servers usually consist of roadside
units, base stations, or other traffic infrastructure, which can
perform real-time analysis of the data generated by vehicles,
enabling faster decision-making and reducing the latency of
communication. Cloud server possesses sufficient computing
resources to handle sophisticated computation tasks.

B. Mobility Model

Because of the constant mobility and speed variation, the
location of vehicles and the distance between them changes
continuously, which impacts the connection between task
vehicles and service vehicles as well as the selection of
vehicle that tasks are offloaded to [29]. Therefore, mobility
is a critical factor that must be taken into account in this
study. In this work, we assume that the vehicles are moving
on the highway, which is a typical two-way road. The speed
of vehicles changes continuously and satisfies the Poisson
distribution [30].

For vehicles i and j, we can use (xi(τ), yi(τ)) and
(xj(τ), yj(τ)) to denote their location (2D coordinates x and
y) at time τ on a 2D map, respectively. Their inter-vehicle
distance di,j(τ) can be calculated by (1):

di,j(τ) =
√

(xi(τ)− xj(τ))2 + ((yi(τ)− yj(τ))2 (1)

Also, the distance di,r(τ) between vehicle i and edge server
r can be calculated by (2):

di,r(τ) =
√

(xi(τ)− xr(τ))2 + ((yi(τ)− yr(τ))2 (2)

C. Communication Model

Both V2V and V2I communications are used in the
communication model. V2V stands for ”vehicle-to-vehicle”.
It refers to the exchange of information between vehicles in
close proximity to each other. On the other hand, V2I stands
for ”vehicle-to-infrastructure”. It refers to the exchange of
information between vehicles and roadside infrastructure.
The vehicles without communication functions cannot build
V2V and V2I communications because of their inability to
communicate with edge servers and other vehicles, thus they

cannot receive tasks from other vehicles and their tasks can
only be executed locally.

In order to reduce energy consumption while ensuring
communication range, in this work, the transmit power is
adjusted over time based on the distances among computing
entities. Transmit power refers to the amount of power used
by a wireless device, such as a vehicle or an edge server,
to transmit tasks over a wireless communication channel.
It directly affects the power consumption of the wireless
communication system, which can impact the battery life of
the connected vehicles. A higher transmit power can extend
the range of the wireless communication system and allow
vehicles to communicate over a longer distance. However,
it also consumes more power and drains the battery faster,
reducing the driving range and overall performance of the
vehicle. Therefore, adjusting transmit power is crucial for
ensuring reliable and efficient communications among con-
nected vehicles. The transmit power needs to be optimized
based on various factors such as the communication distance
and power consumption to achieve the best performance and
efficiency.

For simplification, it is assumed that the transmission
range is the same for every vehicle in our work. The radius
of the coverage range is d.

1) V2V data transmission rate: Firstly, the signal-to-
noise ratio (SNR) between vehicle i and vehicle j can be
calculated by (3):

SNRi,j(τ) =
pi,j(τ) ·Gi,j(τ)

ξi,j(τ) · di,j(τ) · σi,j(τ)2
(3)

where pi,j(τ) represents the transmit power when transmit-
ting tasks from vehicle i to vehicle j, Gi,j(τ) represents the
channel gain of antennas used for transmission, ξi,j(τ) is the
path loss, σi,j(τ)

2 represents the power of the white Gaus-
sian noise, and di,j(τ) represents the distance calculated by
(1).

Then, the instantaneous data transmission rate Ri,j be-
tween vehicles i and j can be calculated by (4):

Ri,j(τ) = ηj ·Bi · log2 (1 + SNRi,j(τ))

s.t.

V∑
j=0

ηj ≤ 1
(4)

where Bi is the total bandwidth of vehicle i, ηj represents
the allocation proportion of the bandwidth to vehicle j, the
sum of the allocated bandwidth cannot exceed the total
bandwidth of vehicle i. In this work, the full available
bandwidth is utilized for transferring tasks. By utilizing
the full available bandwidth, more data can be transmitted
simultaneously, resulting in higher data transmission rates.

2) V2E data transmission rate: Firstly, the interference
noise Ii,r(τ) depends on other V2E connections and can be
measured by (5):

Ii,r(τ) = (Nr(τ)− 1) · pi,r(τ) · gr(τ) (5)

where (Nr(τ) − 1) represents the number of vehicles con-
necting with the edge server r (except the vehicle i itself),

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3321679

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on October 05,2023 at 08:16:56 UTC from IEEE Xplore. Restrictions apply.

6

pi,r(τ) represents the allocated transmit power of the vehicle
i, and gr(τ) represents the channel gain.

Then, the data transmission rate between vehicle i and
edge server r can be calculated by (6):

Ri,r(τ) = ηi ·Br · log2 (1 +
pi,r(τ)gr

Ii,r(τ) + σ2
) (6)

where Br is the available bandwidth of edge server r, ηi
represents the allocation proportion of the bandwidth to
vehicle i, and σ2 represents the power of the white Gaussian
noise.

3) E2C data transmission rate: The interference noise
Ir,cs(τ) from other E2C connections can be measured by
(7):

Ir,cs(τ) =
∑

s ̸=r,s∈S

ps(τ) · gr(τ) (7)

where ps(τ) represents the transmit power of edge server s.
Thus, the data transmission rate between edge server r and
cloud server cs can be calculated by (8):

Rr,cs(τ) = Br,cs · log2 (1 +
pr(τ)gr(τ)

Ir,cs(τ) + σ2
) (8)

where Br,cs represents the bandwidth between the cloud
server cs and the edge server r.

D. Task Model

In this work, we assume that there are V vehicles and S
edge servers. Set {1, 2, · · · , V } and {1, 2, · · · , E} represent
the index set of vehicles and edge servers, respectively.
Each vehicle generates a different number of data processing
tasks, depending on the service request s. Some kinds of
services require the collaboration of several sensors, then it
can be divided into a small number of tasks. In contrast,
for the service that requires many sensors, it can be divided
into a big number of tasks. In this work, we assume that the
number of tasks generated from one vehicle is K, which is
not a fixed value and differs from different vehicles.

The task k on the vehicle v can be donated by a tuple
⟨Cv,k, Sv,k, Pv,k⟩, where Cv,k represents the total number
of CPU cycles required to complete the computing job,
Sv,k represents the amount of data to be processed, Pv,k

represents the priority assigned to the task k. Each task
can be executed locally or offloaded to edge servers, idle
vehicles, and the cloud server. The scheduling decision α
can be denoted by αv,k ∈ {0, 1, 2, 3}, where αv,k represents
the scheduling decision for task k generated from vehicle v.
αv,k = 0 and αv,k = 1 represent that the task is offloaded to
an edge server and another vehicle, respectively. αv,k = 2
represents that the task is executed locally. αv,k = 3
represents that the task is transferred to the cloud server.
The offloading decision for all the tasks on the vehicle v
can be denoted by α = {αv,1, . . . , αv,2, . . . , αv,K}.

Based on the scheduling decision, the tasks scheduled to
the vehicle v can be denoted by set Lv = {l1, l2, . . . , lns},
where ns represents the number of tasks allocated to the
vehicle v, including the tasks generated by vehicle v and

executed locally as well as the tasks offloaded from other
vehicles. Similarly, let Gs = {g1, g2, . . . , gms} denote the
tasks allocated to edge server s, where ms is the number of
tasks. Let Hcs = {h1, h2, . . . , hls} denote the tasks allocated
to the cloud server cs, where ls is the number of tasks. In
addition, the tasks in the set are queued up in the order of
priority, then the tasks can be executed based on the order.
For example, in the set Lv , the priority and the corresponding
execution order are denoted by l1 ≥ l2 ≥ l3 ≥ · · · ≥ lns.

E. Computation Model

For the task computation that happens after the task
scheduling, both completion time and energy consumption
are critical and need to be considered.

1) Local computing: The completion time TL
v,k and en-

ergy consumption EL
v,k of task k executed locally on the

vehicle v can be defined as follows:

TL
v,k = Tv,lns

+
Cv,k

fv
(9)

EL
v,k = ξ · (fv)γ · Cv,k (10)

where Tv,lns
represents the completion time of the preceding

task, lns represents the index of the preceding task, ns
represents the number of existing tasks in the processing
queue at vehicle v, fv is the computing power of vehicle
v, representing the number of CPU cycles that one vehicle
can execute per second, and ξ and γ are the vehicle power
consumption coefficients.

2) Edge Computing: Apart from local execution, the
tasks can also be offloaded to either edge servers or other
idle vehicles. For the offloaded task k, the execution time
TO
v,k is comprised of task transmission time TO,trans

v,k , task
processing time TO,exe

v,k and result feedback time TO,fb
v,k :

TO
v,k = TO,trans

v,k + TO,exe
v,k + TO,fb

v,k (11)

In (11), the task transmission time TO,trans
v,k , from vehicle

v to either vehicle j or edge server r, can be calculated by:

TO,trans
v,k =

{
TV 2V,trans
j,lns

+
Sv,k

Rv,j
, αv,k = 1

TV 2E,trans
r,gms

+
Sv,k

Rv,s
, αv,k = 0

(12)

where TV 2V,trans
j,lns

and TV 2E,trans
s,gms

represent the transmis-
sion completion time of the preceding task at vehicle j
and edge server s, respectively. lns and gms represent the
index of the preceding task at vehicle j and edge server s,
respectively, ns and ms represent the number of existing
tasks in the transmission queue at vehicle j and edge server
s, respectively.

The task processing time TV 2E,exe
v,k can be calculated by:

TO,exe
v,k =

{
TV 2V,exe
j,lns

+
Cv,k

fj
, αv,k = 1

TV 2E,exe
s,gms

+
Cv,k

fs
, αv,k = 0

(13)

where TV 2V,exe
j,lns

and TV 2E,exe
s,gms

represent the completion
time of the preceding task at vehicle j and edge server s,

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3321679

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on October 05,2023 at 08:16:56 UTC from IEEE Xplore. Restrictions apply.

7

respectively, lns and gms represent the index of the preceding
task, ns and ms represent the number of existing tasks in
the processing queue.

In this work, we assume that the movement of vehicles
is ignored during the task offloading and result feedback. In
addition, the result feedback time TV 2E,fb

v,k can be ignored
because of the small data size of computed results [13].

In addition to the completion time, the energy consump-
tion of the task computation can be calculated by:

EO
v,k =

{
pv · Sv,k

Rv,j
+ ξ · (fj)γ · Cv,k, αv,k = 1

pv · Sv,k

Rv,s
, αv,k = 0

(14)

where pv is the transmit power of vehicle v, representing
the amount of data that can be transmitted per second.

3) Cloud Computing: In addition to local computing and
edge computing, the time-tolerant and computation-intensive
tasks can be offloaded to the cloud server. The total execution
time of task k is expressed by:

TCS
v,k = TV 2E,trans

v,k + TE2C,trans
v,k + TCS,exe

v,k

+TE2C,fb
v,k + TV 2E,fb

v,k

(15)

where TV 2E,trans
v,k and TE2C,trans

v,k represent the transmis-
sion time of the task k from vehicle v to the edge server
and from the edge server to the cloud server, respectively,
TCS,exe
v,k represents the task processing time on the cloud

server, TE2C,fb
v,k and TV 2E,fb

v,k represent the feedback time
of the computed results from the cloud server to the edge
server and from the edge server to the vehicle v, respectively.
Similar to the edge computing, the result feedback time
TE2C,fb
v,k and TV 2E,fb

v,k can be ignored.
In (15), the task transmission time TE2C,trans

v,k , from the
edge server r to the cloud server cs, can be calculated by:

TE2C,trans
v,k = TE2C,trans

cs,hls
+

Sv,k

Rr,cs
(16)

where TE2C,trans
cs,hls

represents the transmission completion
time of the preceding task at cloud server cs, hls represents
the index of the preceding task at cs, and ls represents the
number of existing tasks in the transmission queue at cs.

The task processing time can be calculated by:

TE2C,exe
v,k = TE2C,exe

cs,hls
+

Cv,k

fs
(17)

where TE2C,exe
cs,hls

represents the completion time of the pre-
ceding task at the cloud server cs, hls represents the index
of the preceding task, ls represents the number of existing
tasks in the processing queue.

F. Problem Formulation

In this work, minimizing the overall completion time T
and energy consumption E jointly is the primary target
of the proposed collaborative multi-task scheduling system.
In order to achieve the target, the objective function is
defined as a weighted sum of the completion time and energy
consumption. The completion time is defined as the overall

time taken to fulfil all the tasks in one service request,
determined by the last computing entity to finish. Energy
consumption, on the other hand, is defined as the sum of
energy consumption on all vehicles. The objective function
is formulated as (18):

obj :min {ω1 · T + ω2 · E}
T = max {TL1

, . . . , TLV
, . . . , TE1

, . . . , TES
, . . . , TCS}

E =

V∑
v=1

K∑
k=1

Ev,k

s.t. C1 : αv,k ∈ {0, 1, 2, 3}
C2 : dOv,j < dv, ∀v, j ∈ V

C3 : dOv,s < ds, ∀v ∈ V,∀s ∈ S

C4 : Tv,k ≤ Dv,k

C5 : Ev,k ≤ Emax

(18)

where ω1 and ω2 are weight factors, TLV
and TES

represent
the completion time of all the tasks in vehicle V and edge
server S, respectively. TCS represents the completion time of
the tasks that are allocated to the cloud server. Ev,k denotes
the energy consumption to process the task k generated
from vehicle v. The objective function is subjected to the
following constraints:
C1 implies that each task k can be executed locally,

offloaded to an edge server or another vehicle, or offloaded
to the cloud server. C2 ensures that the vehicle v can offload
tasks to another vehicle j that in its communication range
dv . C3 ensures that the vehicle v can offload tasks to the
edge server r that in the coverage range ds of edge server s.
C4 ensures that the task k must be completed in the required
time Dv,k. C5 ensures that the energy consumption for task
computation should be less than the maximum energy budget
Emax.

IV. SYSTEM DESIGN

In this section, the proposed MEPPO algorithm is intro-
duced, incorporating the transmit power allocation strategy,
offloading target selection strategy, and PPO-based dynamic
task offloading and priority assignment strategy.

A. Task Scheduling Procedure

The task scheduling procedure is illustrated in Fig. 2.
Firstly, as the number of vehicles within the communication
range of the edge server changes dynamically, the edge
server constantly monitors the presence and connectivity
status of vehicles. This ensures that it has an up-to-date view
of the vehicles that can potentially offload tasks to the edge
server. Secondly, the vehicles continuously generate service
requests, with varying numbers of tasks associated with dif-
ferent requests. The edge server collects information about
the tasks, including their computational requirements and
data sizes ⟨C, S⟩. This information allows the edge server
to evaluate the feasibility and potential benefits of offloading

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3321679

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on October 05,2023 at 08:16:56 UTC from IEEE Xplore. Restrictions apply.

8

tasks from the vehicles to itself or to other computing entities
within the network. Next, based on the task information and
the state of the computation entities, including their compu-
tational capabilities and current workload, the edge server
makes task scheduling decisions, including task offloading
and priority assignment. Task offloading determines which
tasks should be offloaded and which tasks should be exe-
cuted locally on the vehicles. Furthermore, the edge server
assigns execution priority to the tasks that are offloaded to
itself or other vehicles. The goal is to optimize resource
utilization, minimize latency, and balance the computational
load across the computing entities. Finally, the computation
results are fed back and fused to generate the final vehicle
control decision.

Vehicle a Cloud serverEdge server

2. Request information

4. Task scheduling decision

5. Executing tasks locally 𝑇𝑇𝑣𝑣𝐿𝐿,𝐸𝐸𝑣𝑣𝐿𝐿

1. Generating service request 𝑠𝑠

5. Offloading tasks to vehicle
5. Offloading tasks to edge server

5. Offloading tasks to the cloud server

6. Computation results feedback

6. Computation results feedback

7. Results fusion

3. Making scheduling decision 𝛼𝛼

Vehicle b

6. Computation results feedback

1. Generating service request

𝐶𝐶, 𝑆𝑆

𝑇𝑇𝑣𝑣𝑂𝑂,𝑇𝑇𝑣𝑣𝑂𝑂
𝑇𝑇𝑣𝑣𝑂𝑂,𝑇𝑇𝑣𝑣𝑂𝑂

𝑇𝑇𝑣𝑣𝐶𝐶𝐶𝐶,𝑇𝑇𝑣𝑣𝐶𝐶𝐶𝐶

Fig. 2: The flow chart of task scheduling framework

B. Transmit Power Allocation Strategy

Entity A Entity B
RX

TX

RX

TX
1

32 4

TX: Transmit end. RX: Receive end.
1: Transmit power at the TX end.
2: Antenna gain.
3: Path loss and signal attenuation caused by obstacles.
4: Antenna gain.

Transmit
antenna

Receive
antenna

Fig. 3: Signal transmission

In this work, the transmit power is allocated according
to the distance between the vehicle and the task receiver.
The illustration of signal transmission is shown in Fig. 3.
The data is converted into radio signals and then the radio
signals are transmitted from the transmit (TX) end to the
receive (RX) end [31]. The strength of signals gradually
attenuates during wireless transmission. The strength of
signals received by the entity B from A is calculated by
signal strength = 1+2−3+4. Therefore, received signal
strength indicator RSSI can be calculated by:

RSSI = P + TX − (L+ SA) +RX (19)

where L denotes the path loss in dB, P denotes the transmit
power, RSSI denotes the received signal strength indicator,
SA denotes the signal attenuation caused by obstacles, TX
and RX signify the transmit end’s antenna gain and receive
end’s antenna gain, respectively. The relationship between
path loss and signal transmission distance can be represented
by:

L = 32.4 + 26 lg (d) + 20 lg (f) (20)

where d denotes the transmission distance (m) and f repre-
sents working frequency (MHz).

Then, according to (19), (20), and the maximum transmit
power Pmax limited by hardware devices, the maximum
transmission distance dmax can be determined by dmax =

10
Pmax−RSSI+TX−SA+RX−32.4−20 lg (f)

26 .
At last, the allocated transmit power can be changed

within the maximum range Pmax according to the distance
to the task receiver, denoted by p = d · Pmax

dmax
.

C. Vehicle Selection Strategy
In this work, the marking scheme is designed to select

the vehicle with the highest score as an optional offloading
target. Firstly, the information of the vehicles around the
task vehicle is collected, including the distances to the task
vehicle and the workload. The set of collected information
can be denoted by:{

d1 d2 . . . dn
w1 w2 . . . wn

}
(21)

where n represents the number of vehicles in the commu-
nication range of the task vehicle, di and wi represent the
distance and the workload of vehicle i, respectively.

Then, the score of each vehicle can be determined by:

si = ω1 ·
di − dmin

dmax − dmin
+ ω2 ·

wi − wmin

wmax − wmin
(22)

where si is the score of vehicle i, ω1 and ω2 represent the
weight values. As shown in (22), the score is calculated
according to the weighted sum of normalized distance and
workload.

D. Reinforcement Learning for Task Scheduling
With the rapid development of deep learning, train-

ing Large Models for multiple tasks becomes a popular
paradigm. The large models have both better performance
on existing tasks and the ability to develop new kinds of
skills. Motivated by this paradigm and in order to ensure
adaptability to dynamic environments, this work focuses on
training a model for vehicles with a large number of tasks.
This approach allows the trained big model to be adapted to
a wide range of vehicles with various tasks.

1) Training environment: In this work, the edge server
acts as the agent in the reinforcement learning framework
for making task scheduling decisions. Using reinforcement
learning, the edge server learns from its interactions with the
environment, which includes the dynamic number of vehi-
cles, their service requests, and the available computational
resources.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3321679

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on October 05,2023 at 08:16:56 UTC from IEEE Xplore. Restrictions apply.

9

Linear
(64)

Tanh

Categorical
distribution

Linear
(64)

Linear
(#action space)

ActionState
(#state space)

Tanh

Linear
(64)

Tanh

Linear outputLinear
(64)

Linear
(1)

VState
(#state space)

Tanh

Policy network (Actor)

Value network (Critic)

(a) Architecture of the Policy and Value networks.

𝑎𝑎𝑡𝑡+1

Mini-batch
samples

PPO Agent

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)

<𝑠𝑠𝑡𝑡, 𝑟𝑟𝑡𝑡,𝑎𝑎𝑡𝑡+1,𝑉𝑉𝑡𝑡>

Policy
network
(Actor)

Value
network
(Critic)

Environment

𝑟𝑟𝑡𝑡(𝜃𝜃)

�̂�𝐴𝑡𝑡

𝐿𝐿𝑉𝑉(𝜇𝜇)Trajectory
memory

Update 𝜋𝜋𝜃𝜃

Update 𝑉𝑉𝜇𝜇

𝛿𝛿𝑡𝑡

𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)

𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)

(b) The structure of the Proximal Policy Optimization algorithm

Fig. 4: Network architecture

2) States: The states represent the current situation of the
environment that the agents are in. In this work, the states are
represented as a set of observations that the vehicles receive
from the environment, including the positions P e(t) of the
vehicles and edge servers, the information Iv(t) of tasks
generated from each vehicle, the communication overhead
Mv(t) of each vehicle, and the computation workload Ce(t)
of each computing entities. Therefore, the state space of each
agent can be represented by:

st = {P e(t), Iv(t),Mv(t), Ce(t)} (23)

3) Actions: The actions are the decisions that the agents
make in response to the current state of the environment.
Different from other studies, in this work, the combination
action is represented as a set of multiple actions that control
the task scheduling behaviour of each vehicle, including the
offloading decisions and the priority assignment decisions:

Av
t =

{
a11, . . . , a

K
1 , . . . , aki , . . . , a

K
V

}
,

aki =
{
αk
i , p

k
i

}
∀i ∈ {1, . . . , V },
∀k ∈ {1, . . . ,K}, αk

i ∈ {0, 1, 2, 3}

(24)

where aki denotes the combination action for task k gener-
ated from vehicle i, including the offloading decision αk

i and
the assigned execution priority pki . Thus, a two-dimensional
coordinate system is used to describe the action space.
The x-axis represents the offloading of tasks, the y-axis
represents the assignment of priority.

4) Reward: The rewards represent the feedback that the
agents receive from the environment based on the actions
they take. The rewards are typically designed to encourage
the agents to take actions that lead to desirable outcomes,
such as minimizing request completion time and energy
consumption.

In this work, the reward function is defined as:

r = α× exptime

maxexptime

+ β × expenergy
maxexpenergy

(25)

where exptime represents the expected completion time of
the service request, expenergy represents the expected energy
consumption of that request, maxexptime

and maxexpenergy

represent the maximum exptime and expenergy the agent
had reached. α and β are constants controlling the weight
of the corresponding variable.

5) Dynamic space: In order to achieve adaptability to
the dynamic environment, this work involves training the
scheduling method with a large number of tasks. Once the
model is trained, the state space is supplemented with a null
task if the actual number of tasks is fewer than the required
number of tasks when the model is deployed. This approach
ensures that the scheduling method remains environment-
adaptive even when faced with varying task numbers in the
dynamic scenario. The task supplement scheme is defined
as:

S =

{
Ivn×2, if n = K

IvK×2, if n < K

Ivn×2 =

[
Cv,1 Cv,2 . . . Cv,n

Sv,1 Sv,2 . . . Sv,n

]T
IvK×2 =

[
Cv,1 . . . Cv,n Cv,n+1 = 0 . . . Cv,K = 0
Sv,1 . . . Sv,n Sv,n+1 = 0 . . . Sv,K = 0

]T
(26)

where K represents the required number of tasks, n is the
actual number of tasks in one service request, and S is part
of the state space, representing task information Iv .

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3321679

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on October 05,2023 at 08:16:56 UTC from IEEE Xplore. Restrictions apply.

10

E. Input and output

As shown in Fig. 4a, the policy network is a Multi-Layer
Perceptron (MLP)-styled neural network consisting of two
hidden layers and an output layer. Two hidden layers are
with 64 neurons (Linear mapping) and the Tanh activation
function throughout. Instead of using the softmax function,
the output layer samples a discrete value from the categorical
distribution constructed by given logits (the output from the
hidden layers), which is then transformed into an action. In
summary, the policy network is used to predict action based
on the provided state. Therefore, the input of the policy
network is the observation of the environment, and the output
is the assignment of tasks. For example, as shown in Fig. 5,
when making task scheduling decisions for a vehicle with
10 tasks, the size of the input (state) is 19, including the
positions p, communication workload m, and computation
workload c of the vehicle v, edge server e and cloud server
s as well as the information of 10 tasks (based on Eq. 23).
The size of the output (action) is 20, including the offloading
decision α and execution priority p for all 10 tasks (based
on Eq. 24).

state
<19> <64> <64> action

<20>

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = [𝑝𝑝𝑣𝑣, 𝑝𝑝𝑒𝑒 , 𝑝𝑝𝑠𝑠,𝑚𝑚𝑣𝑣,𝑚𝑚𝑒𝑒 ,𝑚𝑚𝑠𝑠, 𝑐𝑐𝑣𝑣, 𝑐𝑐𝑒𝑒, 𝑐𝑐s, 𝑖𝑖0,⋯ , 𝑖𝑖9]

𝑠𝑠𝑐𝑐𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎 = [𝛼𝛼0, 𝑝𝑝0,𝛼𝛼1, 𝑝𝑝1,⋯ ,𝛼𝛼9, 𝑝𝑝9]
3 3 3 10

<140>

Fig. 5: Illustration of input and output

F. Proximal Policy Optimization Algorithm

The structure of the PPO algorithm is shown in Fig. 4b. As
shown in the figure, the actor and critic are two components
that work together to optimize the policy and value function
in reinforcement learning. The actor is responsible for learn-
ing and updating the policy πθ, which determines the agent’s
actions based on the observed states. The critic is responsible
for learning and estimating the value function Vµ, which
evaluates the quality or expected cumulative reward of being
in a particular state. The core idea behind PPO is to introduce
a ”proximal” term to the objective function, which constrains
the policy update to a certain proximity to the old policy.
By maintaining this proximity, PPO ensures that the policy
changes are not too drastic, which helps to maintain stability
during the learning process. The PPO algorithm consists of
the following five steps:

1) Collecting trajectories: Initially, a set of trajectories is
collected by executing the current policy in the environment.
These trajectories consist of states, actions, rewards, and
other relevant information.

2) Computing surrogate objective: Because PPO is based
on Trust Region Policy Optimisation (TRPO) [9], the update
is monotonic, where the updated policy is always better than

the previous one. The objective function in TRPO is denoted
by:

Lcpi(θ) = Êt

[
min

(
rt(θ)Ât

)]
(27)

where cpi represents the conservative policy iteration, the
probability ratio rt(θ) can be denoted by:

rt(θ) =
πθ (at | st)
πθold (at | st)

(28)

which represents the importance sampling weight between
the old policy πθold (at | st) and new policy πθ (at | st).

However, maximization of Lcpi may introduce a large
variance and lead to an excessively large policy update.
Therefore, the surrogate objective function used in this work
is a modification of the policy’s objective function, designed
to ensure stable policy updates, which is denoted by:

Lclip(θ) = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(29)

As shown in (29), the objective function is defined as the
minimum between the unclipped surrogate objective and the
clipped surrogate objective, comparing the probability ratio
with a clipped version of the ratio. The clipped surrogate
objective can be denoted by

clip (rt(θ), 1− ϵ, 1 + ϵ) =

1− ϵ, if rt(θ) ≤ 1− ϵ
1 + ϵ, if rt(θ) ≥ 1 + ϵ
rt(θ), otherwise

(30)
which bounds the policy update to a certain range [1−ϵ, 1+
ϵ], preventing it from deviating too far from the old policy.

3) Estimating policy gradient: The policy gradient is es-
timated by computing the gradient of the surrogate objective
with respect to the policy parameters. This is typically done
using automatic differentiation.

4) Performing optimization: The estimated policy gradi-
ent is used to update the policy parameters. PPO typically
employs stochastic gradient descent (SGD) to perform the
parameter updates. Multiple iterations of this step can be
performed to improve the policy over time. Specifically, the
policy is run for T timesteps and then the collected samples
are used for an update. This work requires an advantage
estimator Â. The estimator used in this work is a truncated
version of Generalized Advantage Estimation (GAE):

Ât =

T−1∑
k=0

(γλ)kδt+k (31)

where Ât represents an estimator of the advantage function
at timestep t, δt = rt + γVθv (st+1)− Vθv (st), γ and λ are
the discount factor of future rewards to control the variance
of the advantage function.

5) Repeating the process: The above steps are repeated
iteratively, with new trajectories collected, the surrogate
objective computed, the policy gradient estimated, and the
policy parameters updated. This iterative process allows the

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3321679

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on October 05,2023 at 08:16:56 UTC from IEEE Xplore. Restrictions apply.

11

policy to improve incrementally while maintaining stability
through the use of the proximal term.

The training process of the PPO algorithm is shown in
Algorithm 1.

Algorithm 1 Training process of the PPO algorithm used for
generating task offloading and priority assignment decisions

Initialize policy parameters θ0
for iteration=1,2,. . . do

Collect an episode to replay memory D.
for actor=1 to N do

for timestep t = 1 to T do
Observe the state st of the environment.
Select an action at based on the observed state.
The environment transitions to a new state st+1

based on the selected action.
Receive a reward rt+1 based on the new state.
Compute advantage estimate Ât using Eq. (31).

end for
end for
Cache all sampled data in the replay set.
Update Lclip(θ) using the sampled data.
πθold ← πθ

end for

6) Illustration of the MEPPO algorithm: One example
is provided to illustrate the task scheduling and execution
based on the designed MEPPO algorithm. As shown in
Fig. 6, there are four vehicles in the range of the edge server,
including three task vehicles (TaV) and one service vehicle
(SeV). All task vehicles generate varying numbers of tasks.
Firstly, one of the vehicles moving around the task vehicle is
selected as one of the optional task offloading targets based
on the vehicle selection strategy. (As shown in Fig. 6, SeV
D is selected as an offloading target for TaV A and B.)
Secondly, the MEPPO-based scheduling method generates
task offloading decisions and priority assignment decisions
for each task vehicle. Then, the tasks on the vehicle are
offloaded according to the task offloading decisions and each
task is assigned an execution priority based on the priority
assignment decisions. (As shown in Fig. 6, A1,2 represents
that the task 1 of vehicle A is offloaded to the edge server
with priority 2.) Thirdly, among the task offloading, the
tasks are offloaded with transmit power allocated by transmit
power allocation strategy. Fourth, after task offloading, the
tasks on the same computing entity are executed in order,
from high priority to low priority. (As shown in Fig. 6, Four
tasks are offloaded to the edge server and executed from
priority 4 to 1.) The workflow of the MEPPO-based energy-
efficient and priority-aware task scheduling method is shown
in Algorithm 2.

V. EXPERIMENT

In this section, the performance of the proposed method
is evaluated via simulation.

A3,0A2,0A1,0

C1,0 C2,0

B1,0 B2,0 B3,0

A4,0

C2,1

Tasks of TaV A

Tasks of TaV B

Tasks of TaV C

TaV A TaV CTaV B SeV D

C1,4 B3,3 A1,2 A3,1

TaV A TaV B TaV C

SeV D ES EA4,2 B2,1

A2,1 B1,1 C2,1

Task offloading
lines of different
vehicles.

Edge
Server E

C1,4A1,2A3,1

A4,2

A2,1 B1,1

B2,1

B3,3

Cm,n
m: Index of the task.
n: Execution priority.

Processing
queue

Cloud
server

Fig. 6: One illustration of task scheduling and execution

Algorithm 2 Workflow of the MEPPO-based energy-
efficient and priority-aware task scheduling method

The trained model is deployed on the edge server.
for timestep t = 1,2,. . . do

Monitor the number of vehicles V around the edge
server.
for vehicle v = 1 to V do

Collect the state information st of vehicle v accord-
ing to (23).
Determine the SeV for vehicle v based on the Vehicle
Selection Strategy.
Collect the number of tasks K in the service request
generated from vehicle v.
for task k = 1 to K do

Generate task offloading decision and determine
execution priority for each task k based on the
PPO algorithm.
if k is offloaded then

Allocate transmit power to k based on the
Transmit Power Allocation Strategy.

end if
end for

end for
end for

A. Experimental Setting

1) The map: In the simulation, we assumed that all
the vehicles are moving on the two-way highway, and the
eight edge servers are deployed alongside the road. All
the vehicles are keeping moving forth along the lanes. The
two-way highway is a typical scenario to evaluate the task
scheduling algorithm [32]. The distribution of vehicles is
shown in Fig. 7, in which the size of node area corresponds
to the number of tasks in the service request generated

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3321679

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on October 05,2023 at 08:16:56 UTC from IEEE Xplore. Restrictions apply.

12

from the vehicle and the colour of the node represents the
computation resource required to complete the request.

1 2 3 4 5 6 7 8
Edge server

Tasks
1
2
3
4
5
6
7
8
9
10

CPU cycles

0
20
40
60
80
100
120
140

Fig. 7: The distribution of vehicles

2) Vehicles and tasks: The task scheduling ability of
the edge server is evaluated under five testing scenarios
with different numbers of vehicles, from 10 vehicles to
50 vehicles. Each vehicle can generate service requests
continuously, with a different number of tasks in the request,
from 0 to 10. The distribution of various service requests
with different numbers of tasks is shown in Fig. 8. As can be
seen from the figure, each scenario comprises some service
vehicles that do not generate tasks (0 tasks), the maximal
number of tasks in one request is 10 and most requests
comprise 2-6 tasks.

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
number of tasks in the request

10 vehicles

20 vehicles

30 vehicles

40 vehicles

50 vehicles

Fig. 8: The distribution of tasks in service requests

3) Parameters: In the experiments, the deep reinforce-
ment learning algorithms are trained on a server with Intel
Xeon W-22555 (10 cores, 3.70GHz), and NVIDIA RTX
3070 GPU. The simulations are conducted on a PC of
Windows 10 with Intel i5-1035G1 and 16 GB DRAM.
The detailed experimental parameters are listed in Table III.
Among them, the Receive antenna gain RX is determined
according to the study about the antenna performance anal-
ysis for V2X communication of connected vehicles [33].

TABLE III: Experimental parameters

Parameters Value
Number of vehicles 10-50
Number of edge servers 8
Number of tasks 0-10
Required CPU cycles of the tasks C 2-20 cpu cycles
Computation power of edge servers 2 cpu cycles/s
Computation power of vehicles 1 cpu cycles/s
data size S 2-20 Mb
Bandwidth of edge server 100 MHz
Speed of vehicles ≈ 25 m/s
Transmit power of vehicles 1 dBm
Execution power of vehicles 3-4 dBm
White Gaussian noise -174 dBm/Hz
Power consumption coefficient ξ 10−11

Power consumption coefficient γ 2
Received Signal Strength Indicator RSSI -65 dBm
Transmit antenna gain TX 20 dBi
Receive antenna gain RX -8 dBi
Signal attenuation SA 7 dB
Working frequency f 5GHz
Learning rate 0.0003
Size of Mini-batch 32
Number of steps in each episode 2048
Entropy loss coefficient 0.01

B. Comparative Methods

In the experiments, the details of the compared methods
are as follows:

a) Deep Deterministic Policy Gradient (DDPG) [20]:
The DDPG-based scheduling method mainly aims to opti-
mize the request completion time.

b) Soft Actor-Critic (SAC) [21]: In order to achieve
a joint optimization of completion time and energy usage,
the SAC is utilized to design an efficient task scheduling
scheme.

c) Random scheduling: The random-based scheduling
method randomly allocates all the data processing tasks in
the service request to edge servers or vehicles.

d) Offloading-only scheduling: With the offloading-
only scheduling method, all the tasks in one request are
assigned to edge servers and the cloud server.

e) Local-only scheduling: In contrast to the offloading-
only method, with the local-only scheduling method, all the
tasks are executed locally on the Task Vehicle itself.

C. Performance Evaluation

1) Convergence: During the training of reinforcement
learning, the agent aims to maximize its cumulative reward
over time. By exploring the environment, trying different ac-
tions, and observing the resulting rewards, the agent learns to
take actions that lead to higher rewards and avoid actions that
lead to lower rewards. This learning process helps the agent
to converge to an optimal policy that maximizes its long-
term cumulative reward. As shown in Fig. 9, the proposed
MEPPO-based method can achieve a fast convergence under
different numbers of vehicles after around 500 episodes.

2) Request completion time: Request completion time
represents the overall time taken to fulfil all the tasks in
one service request, depending on the last completed task.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3321679

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on October 05,2023 at 08:16:56 UTC from IEEE Xplore. Restrictions apply.

13

100

200

300

400

500

600

700

800

900

1000

1100

1200

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951

Re
w

ar
d

Episodes

10 vehicles 20 vehicles 30 vehicles 40 vehicles 50 vehicles

Fig. 9: Comparison of the reward

Fig. 10a illustrates the comparison of total completion times
for ten requests among six different methods. As shown
in the figure, the utilization of the MEPPO-based method
for task scheduling demonstrates a noteworthy reduction in
latency compared to other scheduling methods. Conversely,
the offloading-only scheduling method results in the longest
request completion time among the alternatives. This is
attributed to the offloading of all tasks to the edge server,
resulting in an extended transmitting and waiting period
before task execution. In addition, the increase in the number
of vehicles does not always result in an increase in request
completion time because the rise in the number of vehicles
offers additional computational resources, facilitating rapid
task processing.

3) Overall energy consumption: Overall energy con-
sumption represents the total energy consumption required
for all the computing entities to complete the requests. The
comparison of energy consumption among the six methods is
shown in Fig. 10b. As observed in the figure, the local-only
method incurs significantly higher energy for performing
computation tasks compared to the other methods, because
all the tasks are executed locally. In contrast, the offloading-
only method exhibits the lowest energy consumption as
executing tasks on the edge server consumes less energy than
performing them locally on vehicles. Moreover, the MEPPO-
based and DDPG-based methods result in relatively lower
energy consumption, but the DDPG-based method requires
more time than MEPPO to complete the requests.

4) Priority assignment: The comparison of request com-
pletion time between prioritized task execution and non-
prioritized execution is depicted in Fig. 11. The results of
the comparison indicate that assigning execution priority to
tasks and performing them in a sequential order can signifi-
cantly reduce the request completion time. Furthermore, the
benefits of considering priority become more pronounced as
the number of vehicles increases.

5) Transmit power allocation: Fig. 12 compares the
consumption of transmission energy between transmitting
tasks using dynamic and fixed transmit power. The results
of the comparison demonstrate that adjusting the transmit
power dynamically based on the distance can lead to a
significant reduction in energy consumption. Moreover, as

322

711

350

1500

1331

713

279

1031

814

1740

1924

850

361

1955

512

1392

2154

1138

301

1983

1260

1596

2409

2142

777

2330

2897

1900

27562775

10 20 30 40 50
The number of vehicles

3,000

2,500

2,000

1,500

1,000

500

0

R
eq

ue
st

 c
om

pl
et

io
n

tim
e

(m
s)

PPO
DDPG
SAC
Local-only
Offloading-only
Random

(a) Request completion time

9993
1709117495

53765

9207
16912

2336723537

41781

110650

18039
24150

45474

32408

62241

138585

21979

49877
4438345549

71594

160665

17040

101837

6002157486

159674

172730

30211

137992

10 20 30 40 50
The number of vehicles

180,000

160,000

140,000

120,000

100,000

80,000

60,000

40,000

20,000

0

O
ve

ra
ll

en
er

gy
 c

on
su

m
pt

io
n

PPO
DDPG
SAC
Local-only
Offloading-only
Random

(b) Overall energy consumption

Fig. 10: Comparison on request completion time and energy
consumption

the number of vehicles increases, the consumption of trans-
mission energy initially decreases and then sharply increases.
This trend can be attributed to the fact that as the number
of vehicles increases, the distances between them become
shorter, allowing for the use of low transmit power during
task transmission. However, with a further increase in the
number of vehicles, more tasks need to be offloaded to edge
servers or distant vehicles, requiring higher transmit power
and resulting in an overall increase in energy consumption.

6) Dynamic number of vehicles: In this section, the effec-
tiveness of the proposed MEPPO-based scheduling method
in terms of time saving and energy saving is assessed under
the scenario that the traffic volume in one area changes
continuously. The performances on time saving and energy
saving can be quantified by:

TS = 1− Tmeppo

Tlocal
, ES = 1− Emeppo

Elocal
(32)

where TS and ES represent the ratio of time saving
and energy saving, respectively. Tcost and Tunder represent
the request completion time under the MEPPO-based task

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3321679

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on October 05,2023 at 08:16:56 UTC from IEEE Xplore. Restrictions apply.

14

10 20 30 40 50
The number of vehicles

1,200

1,100

1,000

900

800

700

600

500

400

300

200

100

0

R
eq

ue
st

 c
om

pl
et

io
n

tim
e

(m
s)

With priority
Without priority

Fig. 11: The influence of priority assignment on request
completion time

10 20 30 40 50
The number of vehicles

700

600

500

400

300

200

100

0

C
on

su
m

pt
io

n
of

 tr
an

sm
is

si
on

 e
ne

rg
y

Dynamic
Fixed

Fig. 12: The influence of dynamic transmit power allocation
on energy consumption

scheduling and the local-only scheduling, respectively. Sim-
ilarly, Ecost and Eunder represent the energy consumption
under the MEPPO-based task scheduling and the local-only
scheduling, respectively.

In order to conduct the experiment, we simulated
the traffic volume using real traffic data obtained from
NY C OpenData [34]. The data is collected by the New
York City Department of Transportation (NYC DOT) using
Automated Traffic Recorders (ATR). Fig. 13a illustrates
the daily fluctuations in traffic volume at STATE STREET,
Manhattan, recorded between Oct. 19, 2022 and Oct. 25,
2022. Then, based on this actual traffic volume data, the
performance of the proposed method is evaluated and the
result is depicted in Fig. 13b. The traffic trending in the
figure represents the fluctuation of traffic volume on Oct.
19, which is normalized to [0, 1]. From the figure, it is
evident that the vehicles follow a consistent pattern in terms
of time and energy savings as the traffic volume fluctuates.
Interestingly, this trend opposes the changes observed in
traffic volume. Specifically, during periods of low traffic
volume, particularly before 9 AM, vehicles on the road
can complete service requests with shorter time and lower
energy consumption compared to executing requests locally,
with the ratio of time saving and energy saving higher than

0.6 and 0.3, respectively. However, as the traffic volume
increases, between 10 AM and 7 PM, the time and energy
costs rise significantly, resulting in a reduction in the ratio
of time and energy savings.

In this section, the effectiveness of the proposed method
in terms of time saving and energy saving is assessed under
the scenario that the tasks generated by the vehicles change
continuously. As shown in Fig. 13c, the proposed method
demonstrates robust performance for the majority of the
time, saving much time and energy compared to local task
execution. Nonetheless, its performance tends to degrade
when confronted with an exceptionally high volume of tasks
because coping with a substantial task load requires more
time and energy.

VI. REAL-WORLD TEST

In addition to the simulation results presented in Section
V, the on-site test is executed to evaluate the performance
of the proposed scheduling method in this section.

A. Experimental Setting
The on-site experiment was performed in a corridor, which

was simulated to resemble a highway. Fig. 14a illustrates
the scenario, where three robotic vehicles are moving in the
same direction but at varying speeds. The laptop was placed
along the road, serving as the simulated edge server. In this
experiment, three robotic vehicles equipped with Nvidia
Jetson nano module can perform data processing tasks
efficiently. The jetson nano module can provide sufficient
computing capacity for in-vehicle services and applications.
Each vehicle can generate requests constantly, consisting of
four computation tasks. These tasks can be executed locally
on the vehicle or offloaded to other computing entities
via V2V and V2I communications. The communication
architecture can be observed in Fig. 14b. According to the
actual traffic scenario, four computation tasks are chosen:
pedestrian detection, vehicle detection, traffic light detection,
and lane detection.

B. Performance Evaluation
The performance of the proposed MEPPO-based schedul-

ing method was evaluated by comparing the request com-
pletion time for each vehicle with that under the local-only
scheduling method. The comparison results are illustrated in
Fig. 15.

As depicted in Fig. 15, the request completion time
for each vehicle is significantly reduced when using the
MEPPO-based scheduling method compared to the local-
only scheduling method. This demonstrates the effective-
ness of the MEPPO-based method in reducing latency.
Furthermore, under the local-only scheduling method, there
is a noticeable discrepancy in the request completion time
among the three vehicles due to variations in the actual task
execution times. Conversely, the MEPPO-based scheduling
method ensures that the requests are completed almost si-
multaneously, indicating its ability to achieve load balancing
across all vehicles.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3321679

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on October 05,2023 at 08:16:56 UTC from IEEE Xplore. Restrictions apply.

15

1 2 3 4 5 6 7 8 9 10 11 12131415161718192021222324

Time (Hour)

550

500

450

400

350

300

250

200

150

100

50

0

Tr
af

fic
 v

ol
um

e
Date

Oct.19
Oct.20
Oct.21
Oct.22
Oct.23
Oct.24
Oct.25

(a) The monitored traffic volume in one
week.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Time (Hour)

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Pe
rfo

rm
an

ce

Traffic trending
Time_saving
Energy_saving

(b) Time and energy saving under chang-
ing traffic volume.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Pe
rfo

rm
an

ce

Task trending
Time_saving
Energy_saving

(c) Time and energy saving under chang-
ing number of tasks.

Fig. 13: Comparison of the performances on time and energy saving under changing traffic volume.

(a) On-site test

IP:
192.168.1.101

IP:
124.223.104.195

IP:
192.168.1.102

IP:
192.168.1.103

IP:
192.168.1.106

Cloud server

Edge server
(Laptop)

(b) Architecture

Fig. 14: The scenario about on-site test

VII. CONCLUSION AND FUTURE WORK

In this paper, we explored the challenges and opportunities
in optimizing the completion time and energy consump-
tion of multi-sensor in-vehicle services. Subsequently, an
innovative joint task scheduling and resource allocation
method is designed based on the proposed Multi-action
and Environment-adaptive Proximal Policy Optimization al-
gorithm. The proposed method surpasses existing studies
by incorporating task prioritization and dynamic transmit
power allocation to further reduce completion time and
energy consumption. Additionally, the proposed method ex-

hibits adaptability to the dynamic vehicular edge computing
paradigm, enabling decision-making for varying numbers
of vehicles. Furthermore, the method is evaluated via both
simulation and on-site tests.

Currently, the primary focus of this work is on generating
offloading decisions and allocating priority to independent
tasks. However, some services can be divided into multiple
tasks with task dependency. Therefore, refining the schedul-
ing method to efficiently offload and prioritize dependent
tasks is another challenge. In future work, we will continue
to design task scheduling method to solve the problem of
dependency-aware task offloading in vehicular edge com-
puting.

REFERENCES

[1] P. Li, X. Wang, K. Huang, Y. Huang, S. Li, and M. Iqbal, “Multi-
model running latency optimization in an edge computing paradigm,”
Sensors, vol. 22, no. 16, p. 6097, 2022.

[2] F. M. Ortiz, M. Sammarco, L. H. M. Costa, and M. Detyniecki,
“Applications and services using vehicular exteroceptive sensors: a
survey,” IEEE Transactions on Intelligent Vehicles, 2022.

[3] Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du,
T. Lin, W. Wang et al., “Planning-oriented autonomous driving,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 17 853–17 862.

[4] J. H. Gawron, G. A. Keoleian, R. D. De Kleine, T. J. Wallington,
and H. C. Kim, “Life cycle assessment of connected and automated
vehicles: sensing and computing subsystem and vehicle level effects,”
Environmental science & technology, vol. 52, no. 5, pp. 3249–3256,
2018.

[5] R. Meneguette, R. De Grande, J. Ueyama, G. P. R. Filho, and
E. Madeira, “Vehicular edge computing: architecture, resource man-
agement, security, and challenges,” ACM Computing Surveys (CSUR),
vol. 55, no. 1, pp. 1–46, 2021.

[6] H. Gao, X. Wang, W. Wei, A. Al-Dulaimi, and Y. Xu, “Com-
ddpg: Task offloading based on multiagent reinforcement learning
for information-communication-enhanced mobile edge computing in
the internet of vehicles,” IEEE Transactions on Vehicular Technology,
2023.

[7] H. Gao, W. Huang, T. Liu, Y. Yin, and Y. Li, “Ppo2: Location privacy-
oriented task offloading to edge computing using reinforcement learn-
ing for intelligent autonomous transport systems,” IEEE transactions
on intelligent transportation systems, 2022.

[8] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3321679

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on October 05,2023 at 08:16:56 UTC from IEEE Xplore. Restrictions apply.

16

0

20

40

60

80

100

120

140

160

180

200

1 101 201 301 401 501 601 701 801 901

Re
qu

es
t c

om
pl

et
io

n
tim

e
(s

)

Requests

V1_MEPPO

V1_Local-only

(a) Vehicle 1

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

1 101 201 301 401 501 601 701 801 901 1001

Re
qu

es
t c

om
pl

et
io

n
tim

e
(s

)

Requests

V2_MEPPO

V2_Local-only

(b) Vehicle 2

0

20

40

60

80

100

120

140

160

180

200

1 101 201 301 401 501 601 701 801 901 1001

Re
qu

es
t c

om
pl

et
io

n
tim

e
(s

)

Requests

V3_MEPPO

V3_Local-only

(c) Vehicle 3

Fig. 15: Comparison of request completion time between using the proposed MEPPO-based scheduling and local-only
scheduling.

[9] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning. PMLR, 2015, pp. 1889–1897.

[10] X. Xu, K. Liu, P. Dai, F. Jin, H. Ren, C. Zhan, and S. Guo, “Joint
task offloading and resource optimization in noma-based vehicular
edge computing: A game-theoretic drl approach,” Journal of Systems
Architecture, vol. 134, p. 102780, 2023.

[11] Y. Ju, Y. Chen, Z. Cao, L. Liu, Q. Pei, M. Xiao, K. Ota, M. Dong,
and V. C. Leung, “Joint secure offloading and resource allocation for
vehicular edge computing network: A multi-agent deep reinforcement
learning approach,” IEEE Transactions on Intelligent Transportation
Systems, 2023.

[12] S. Wang, X. Song, H. Xu, T. Song, G. Zhang, and Y. Yang,
“Joint offloading decision and resource allocation in vehicular edge
computing networks,” Digital Communications and Networks, 2023.

[13] N. Waqar, S. A. Hassan, A. Mahmood, K. Dev, D.-T. Do, and
M. Gidlund, “Computation offloading and resource allocation in
mec-enabled integrated aerial-terrestrial vehicular networks: A re-
inforcement learning approach,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 11, pp. 21 478–21 491, 2022.

[14] J. He, Y. Wang, X. Du, and Z. Lu, “V2v-based task offloading and
resource allocation in vehicular edge computing networks,” arXiv
preprint arXiv:2112.15065, 2021.

[15] S. Li, X. Hu, and Y. Du, “Deep reinforcement learning for compu-
tation offloading and resource allocation in unmanned-aerial-vehicle
assisted edge computing,” Sensors, vol. 21, no. 19, p. 6499, 2021.

[16] J. Gao, Z. Kuang, J. Gao, and L. Zhao, “Joint offloading scheduling
and resource allocation in vehicular edge computing: A two layer
solution,” IEEE Transactions on Vehicular Technology, 2022.

[17] W. Fan, Y. Su, J. Liu, S. Li, W. Huang, F. Wu, and Y. Liu, “Joint
task offloading and resource allocation for vehicular edge computing
based on v2i and v2v modes,” IEEE Transactions on Intelligent
Transportation Systems, 2023.

[18] W. Fan, J. Liu, M. Hua, F. Wu, and Y. Liu, “Joint task offloading
and resource allocation for multi-access edge computing assisted
by parked and moving vehicles,” IEEE Transactions on Vehicular
Technology, vol. 71, no. 5, pp. 5314–5330, 2022.

[19] L. Liu, J. Feng, X. Mu, Q. Pei, D. Lan, and M. Xiao, “Asynchronous
deep reinforcement learning for collaborative task computing and
on-demand resource allocation in vehicular edge computing,” IEEE
Transactions on Intelligent Transportation Systems, 2023.

[20] J. Huang, J. Wan, B. Lv, Q. Ye, and Y. Chen, “Joint computation
offloading and resource allocation for edge-cloud collaboration in
internet of vehicles via deep reinforcement learning,” IEEE Systems
Journal, 2023.

[21] X. Li, Y. Qin, J. Huo, and W. Huangfu, “Heuristically assisted
multiagent rl-based framework for computation offloading and re-
source allocation of mobile edge computing,” IEEE Internet of Things
Journal, 2023.

[22] G. Ma, X. Wang, M. Hu, W. Ouyang, X. Chen, and Y. Li, “Drl-
based computation offloading with queue stability for vehicular-cloud-
assisted mobile edge computing systems,” IEEE Transactions on
Intelligent Vehicles, 2022.

[23] P. Lang, D. Tian, X. Duan, J. Zhou, Z. Sheng, and V. C. Leung,
“Blockchain-based cooperative computation offloading and secure

handover in vehicular edge computing networks,” IEEE Transactions
on Intelligent Vehicles, 2023.

[24] H. Guo, J. Liu, J. Ren, and Y. Zhang, “Intelligent task offloading in
vehicular edge computing networks,” IEEE Wireless Communications,
vol. 27, no. 4, pp. 126–132, 2020.

[25] W. Zhan, C. Luo, J. Wang, C. Wang, G. Min, H. Duan, and Q. Zhu,
“Deep-reinforcement-learning-based offloading scheduling for vehic-
ular edge computing,” IEEE Internet of Things Journal, vol. 7, no. 6,
pp. 5449–5465, 2020.

[26] S. Vemireddy and R. R. Rout, “Fuzzy reinforcement learning for
energy efficient task offloading in vehicular fog computing,” Computer
Networks, vol. 199, p. 108463, 2021.

[27] C. Sonmez, C. Tunca, A. Ozgovde, and C. Ersoy, “Machine learning-
based workload orchestrator for vehicular edge computing,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 4,
pp. 2239–2251, 2020.

[28] C. Shang, Y. Sun, H. Luo, and M. Guizani, “Computation offloading
and resource allocation in noma-mec: A deep reinforcement learning
approach,” IEEE Internet of Things Journal, 2023.

[29] U. Saleem, Y. Liu, S. Jangsher, Y. Li, and T. Jiang, “Mobility-aware
joint task scheduling and resource allocation for cooperative mobile
edge computing,” IEEE Transactions on Wireless Communications,
vol. 20, no. 1, pp. 360–374, 2020.

[30] J. Guo, Y. Zhang, X. Chen, S. Yousefi, C. Guo, and Y. Wang, “Spatial
stochastic vehicle traffic modeling for vanets,” IEEE Transactions on
Intelligent Transportation Systems, vol. 19, no. 2, pp. 416–425, 2017.

[31] HUAWEI, “Power and signal strength,” https://support.
huawei.com/enterprise/en/doc/EDOC1000113315/c3242b10/
power-and-signal-strength, 2022, [Online; accessed 10-June-2023].

[32] Q. Luo, C. Li, T. H. Luan, and W. Shi, “Collaborative data scheduling
for vehicular edge computing via deep reinforcement learning,” IEEE
Internet of Things Journal, vol. 7, no. 10, pp. 9637–9650, 2020.

[33] J. Feng, G. Jiang, Y. Ding, X. Zhang, H. Liu, and Y. Fan, “Antenna
performance test method and result analysis for v2x communication
of connected vehicle,” in Journal of Physics: Conference Series, vol.
1607, no. 1. IOP Publishing, 2020, p. 012082.

[34] N. OpenData, “Automated traffic volume counts,” https://data.
cityofnewyork.us/Transportation/Automated-Traffic-Volume-Counts/
7ym2-wayt, 2023, [Online; accessed 1-May-2023].

Peisong Li received a B.S. degree from the Guilin
University of Electronic Technology in 2017 and a
M.S. degree from the Shanghai Maritime Univer-
sity, China, in 2020. He is currently pursuing the
Ph.D. degree with University of Liverpool, UK.
His research interests include edge computing,
vehicular edge computing, edge AI, and deep
reinforcement learning.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3321679

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on October 05,2023 at 08:16:56 UTC from IEEE Xplore. Restrictions apply.

17

Ziren Xiao received a B.Sc degree in Com-
puting and Software Systems and an M.Sc in
Computer Science degree from The University of
Melbourne. His past work focused on outlier de-
tection using machine learning algorithms, and he
is currently working on developing reinforcement
learning approaches for transportation systems.

Xinheng Wang received the B.E. and M.Sc.
degrees in electrical engineering from Xian Jiao-
tong University, Xi’an, China, in 1991 and 1994,
respectively, and the Ph.D. degree in electrical
engineering from Brunel University, Uxbridge,
U.K., in 2001. He is currently a Professor with
the School of Advanced Technology and was the
founding Head of Department of Mechatronics
and Robotics, Xi’an Jiaotong-Liverpool Univer-
sity (XJTLU), Suzhou 215123, China. Prior to
joining XJTLU, he was a professor with different

universities in the UK.
He has been an Investigator or Co-Investigator of 30+ research projects

sponsored from EU, UK EPSRC, Innovate UK, China NSFC, and industry.
He has authored or coauthored 220+ referred papers. He holds 22 granted
patents, including 1 US, 1 Japan, 4 South Korea and 16 China patents.
He was one of the key developers of the world’s first smart trolley
to provide intelligent services to passengers at airports. He is currently
leading the XJTLU-uGo Robotics Research Centre with multi-million Yuan
sponsorship from industry to develop airport robots. His current research
interests include intelligent and connected systems, including robotics and
healthcare systems, indoor acoustic localization, acoustic posture detection
and recognition, digitalization of traditional Chinese medicine, and SLAM
and navigation for robots.

Kaizhu Huang works on machine learning, neural
information processing, and pattern recognition.
He holds tenured Full Professorship of ECE and
directors Data Science Research Center at Duke
Kunshan University (DKU). Prof. Huang obtained
his PhD degree from Chinese University of Hong
Kong (CUHK) in 2004, Master degree from In-
stitute of Automation, Chinese Academy of Sci-
ences in 2000, and Bachelor degree from Xi’an
Jiaotong-Liverpool University in 1997. He worked
in Fujitsu Research Centre, CUHK, University of

Bristol, National Laboratory of Pattern Recognition, Chinese Academy
of Sciences, Xi’an Jiaotong-Liverpool University from 2004 to 2021. He
was the recipient of 2011 Asia Pacific Neural Network Society Young
Researcher Award. He received best (runner-up) paper or book award eight
times in major international/ national conferences. He serves as associated
editors/advisory board members in six international journals and book
series (e.g. Pattern Recognition Journal, and Neural Network Journal). He
was invited as a keynote/tutorial speaker in more than 40 international
conferences or workshops.

Yi Huang received BSc in Physics (Wuhan,
China) in 1984, MSc (Eng) in Microwave Engi-
neering (Nanjing, China) in 1987, and DPhil in
Communications from the University of Oxford,
UK in 1994. He has been conducting research in
the areas of antennas, wireless communications,
applied electromagnetics, radar, and EMC since
1987. More recently, he has focused on new mate-
rials for antennas, wireless energy harvesting, and
power transfer. His experience includes 3 years
spent with NRIET (China) as a Radar Engineer

and various periods with the Universities of Birmingham, Oxford, and Essex
in the UK as a member of research staff. He worked as a Research Fellow at
British Telecom Labs in 1994 and then joined the Department of Electrical
Engineering & Electronics, the University of Liverpool, UK as a Faculty in
1995, where he is now a full Professor in Wireless Engineering, the Head
of High-Frequency Engineering Group.

Prof Huang has published over 500 refereed papers in leading inter-
national journals and conference proceedings and authored four books,
including Antennas: from Theory to Practice (John Wiley, 2008 and 2021).
He has received many patents, and research grants from research councils,
government agencies, charities, the EU, and industry, and is a recipient
of over 10 awards (e.g. EuCAP2023 Best Antenna Paper, IET Premium
Award for Best Papers 2022, IET Innovation Award 2018, and BAE Systems
Chairman’s Award 2017). He has served on a number of national and
international technical committees and has been an Editor, Associate Editor,
or Guest Editor of seven international journals (including IEEE TAP 2022-
date, IEEE AWPL 2016-2022). In addition, he has been a keynote/invited
speaker and organiser of many conferences and workshops (e.g. IEEE
iWAT2010, LAPC2012, UCMMT2017/2023, and EuCAP2018/2024). He
is at present the Editor-in-Chief of Wireless Engineering and Technology,
the UK and Ireland Rep to the European Association of Antenna and Propa-
gation (EurAAP, 2016-2020, 2022-date), a Fellow of IET, a Fellow of IEEE,
and a Distinguished Lecturer of IEEE AP-S (2022-2025). More information
can be found from: https://www.liverpool.ac.uk/electrical-engineering-and-
electronics/staff/yi-huang/

Honghao Gao is currently with the School of
Computer Engineering and Science, Shanghai
University, China. He is also a Professor at the
College of Future Industry, Gachon University,
Korea. Prior to that, he was a Research Fellow
with the Software Engineering Information Tech-
nology Institute at Central Michigan University,
USA, and was an Adjunct Professor at Hangzhou
Dianzi University, China. His research interests
include Software Intelligence, Cloud/Edge Com-
puting, and AI4Healthcare. He has publications in

IEEE TII, IEEE T-ITS, IEEE TNNLS, IEEE TMM, IEEE TSC, IEEE TCC,
IEEE TFS, IEEE TNSE, IEEE TNSM, IEEE TCCN, IEEE TGCN, IEEE
TCSS, IEEE TETCI, IEEE TCE, IEEE/ACM TCBB, etc. He was the 2022
recipient of Highly Cited Chinese Researchers by Elsevier, and the 2021
recipient of IEEE Outstanding Paper Award for the IEEE Transactions on
Industrial Informatics.

Prof. Gao is a Fellow of the Institution of Engineering and Technology
(IET), a Fellow of the British Computer Society (BCS), and a Member of
the European Academy of Sciences and Arts (EASA). He is the Editor-
in-Chief for International Journal of Web Information Systems (IJWIS),
Editor for Wireless Network (WINE), The Computer Journal (COMPJ),
and IET Wireless Sensor Systems (IET WSS), and Associate Editor for
IEEE Transactions on Intelligent Transportation Systems (IEEE T-ITS),
IET Intelligent Transport Systems (IET ITS), IET Software, International
Journal of Communication Systems (IJCS), Journal of Internet Technology
(JIT), and Engineering Reports (EngReports). Moreover, he has broad
working experience in cooperative industry-university-research. He is a
European Union Institutions-appointed external expert for reviewing and
monitoring EU Project, is a member of the EPSRC Peer Review Associate
College for UK Research and Innovation in the UK, and a founding member
of the IEEE Computer Society Smart Manufacturing Standards Committee.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3321679

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on October 05,2023 at 08:16:56 UTC from IEEE Xplore. Restrictions apply.

