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Abstract

The UK railway drainage system is facing significant asset management challenges due

to the presence of large numbers of assets with long asset life cycles. Maintaining the re-

quired asset performance economically and efficiently, while complying with the relevant

legislation and regulations is a major concern for Network Rail’s asset managers.

The whole life cost (WLC) approach has been developed and implemented in many in-

dustries and has proven its usefulness in the management of assets, particularly for assets

with long life spans and in situations of uncertain future expenditure. WLC involves

estimating the present value of the total cost of ownership over any asset’s likely oper-

ational life. It is often integrated with decision support tools to enable a more robust

decision making process. This has significant benefits in regulated industries in which all

expenditure requires clear justification.

This project developed a whole life cost model suitable for railway drainage systems,

considering the uniqueness and complexity of costs associated with railway business op-

erations. This WLC model can offer prediction of the transitions of drainage assets

condition grades; assessments of drainage system operational performance; and provide

realistic estimates of financial requirements in order to achieve desired operational per-

formance; and evaluate the financial consequences due to loss of performance. This WLC

model provides the information to build decision support tools that can help Network

Rail prioritise drainage maintenance and refurbishment based on available and antici-

pated budgets and operational risks. This work demonstrated that the whole life cost

modelling approach can provide an ideal solution for sustainably maintaining drainage

systems while optimising the total cost of ownership and minimising operational, social

and environmental impacts.

The developed WLC approach enables asset managers to make decisions both on a strate-

gic and operational level. Strategically, WLC approaches can forecast the overall budget

and workload needed to maintain an infrastructure system over its assets’ lifetime or a

predefined financial period. Tactically, it can provide the asset owner with an optimum

renewal, maintenance and utilisation plan under a given risk/cost requirement. This

project provides WLC approaches that operate at both a strategic and tactical level for

the UK railway drainage system. The methods developed in this thesis are now being

implemented by NR into operational practice.
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1 Introduction

1.1 Background

An important component of a railway’s infrastructure is railway drainage assets, which

in the UK are designed and maintained by NetworkRail(NR). The purpose of railway

drainage is to collect the surface and groundwater that enters and issues from the railway,

and transport it to a suitable outfall without causing damage to other assets or causing a

risk to the safe operation of the railway. Railway drainage assets consist of the following

parts:

• Earthworks drainage

• Track drainage

• Tunnel drainage

• Structures drainage

• Stations, depots and other building drainage

• Third party connections to and from the NR drainage assets

As stated in Spink et al. (2014): “The effective management and maintenance of the

drainage asset require knowledge of the asset inventory, its condition, capacity, perfor-

mance and status”. However, like many other infrastructure owners such as the Water and

Sewerage Companies, the Highways Agency, London Underground, Transport for London

and other highway authorities, drainage assets are often the least known compared with

the other principal asset types. One major reason for this is that the significance of the

drainage system in preventing performance reduction of other assets has been overlooked

in the past. Drainage assets are often below ground so not clearly visible. Also, for NR,

drainage drawings are patchily available across the network and the accuracy and authen-

ticity of the drawings are difficult to verify. This situation has begun to change within

the last 10 years with an increase in the acknowledgment of the importance of drainage;

NR is in the process of improving its drainage asset knowledge by scheduling surveys

and inspections to verify the existing data record and identifying unrecorded assets. NR

is carrying out an Integrated Drainage Project to organise and migrate all data into a

centralised database, where drainage assets are classified into 39 asset types which are

then simplified into 13 inventory groups compatible with CIRIA RP941 (2013) Transport

infrastructure drainage: condition appraisal and remedial treatment.

The railway network is divided into 14 strategic geographical routes which are supported

by five regions (see Figure 1.1). Each route is responsible for its own day-to-day opera-

tions. In this way, the routes can work more closely with the relevant train and freight

operating companies to better meet the needs of passengers and businesses(Our routes

- Network Rail, n.d.). 99% of decisions will be made by route teams, while the central

strategic departments provide them with advice and guidance. In the UK rail industry,

every five years is defined as a Control Period; NR drafts a Strategic Business Plan that

is agreed with the regulator and this agreed plan contains the goals and objectives for
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the Control Period. For drainage, asset management plans are created with the aim of

providing a well-performing system that functions in the most economical and efficient

way, whilst not compromising operational safety.

Figure 1.1: NetworkRail Routes

Effective control of water and proper understanding and maintenance of drainage assets

is fundamentally important for the safe operation of the rail network (Haines, 2020).

It is increasingly recognised that an effective drainage system plays a vital role in the

resilience and safe performance of the railway. Inadequate hydraulic capacity will cause

unexpected flooding which leads to temporary speed restrictions or temporary closures

of railway lines. In the year 2021 alone, there are 3067 hours of delay recorded due to

flooding, leading to a compensation cost of 11.7 million pounds. This not only presents

safety risks for staff and passengers but also brings severe financial and reputational

impacts for NR. Control of water is also important to the management and maintenance

of other railway infrastructure (Track, Earthworks and Structures). This is because water

plays a crucial role in many degradation mechanisms that affect infrastructure, such as

the long-term softening of materials that form the track support system and earthworks

(NetworkRail, 2017). An impaired drainage system can result in damage to other NR

assets, and disruption to train operations as well as risk to human safety.

Most of the drainage assets are buried underground and are often difficult or very costly

to examine, so it is hard for NR to understand the true condition of these assets. Drainage

assets can become reduced in capacity or blocked due to gradual accumulation of silt,
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debris or vegetation in anywhere from 0.5 to 10 years, as well as unexpected large debris

entering the system; so a regular inspection and maintenance scheme is needed to keep

the performance of the system at an adequate level. However the majority of drainage

assets are composed of hard assets (pipes, channels, chambers etc. made of concrete,

brick, stone, earthenware), which typically have a long structural life, in the order of

50 to 150 years, before the physical integrity of the structure is likely to fail and will

need to be renewed (Spink et al., 2014). A regular proactive inspection and maintenance

regime over a long life span means overall a higher operational cost, which is often limited

by budgetary constraints; on the other hand, minimising maintenance expenditure can

cause asset life expectancy to be shortened, which could lead to much a larger spending

on capital investment. Hence it is important for asset managers to understand the bal-

ance between capital renewal and operational maintenance of the assets, and make the

most economical decisions considering both the organisation’s short-term and long-term

objectives. It is both NR’s short-term and long-term goal to mitigate operational, envi-

ronmental, performance, and reputational risks due to drainage asset failure. However,

the ability to achieve that goal in the short term is often limited by the available budget

and workforce. Hence finding a feasible solution under conflicting constraints is vital for

NR’s operation.

1.2 Aim

The overall aim of the project is to provide a framework of models that help NR under-

stand and manage its existing railway drainage system. It is NR’s objective to maintain a

sustainable drainage system while optimising the total cost of ownership and minimising

operational, social and environmental impacts. By considering the whole life cost (the to-

tal cost of managing an asset over its life) and incorporating it into decision support tools,

NR will be able to derive a more effective and economical asset management strategy.

The whole life cost (WLC) approach has been developed over the past 20 years and has

been widely used in many industries. To develop a whole life cost model suitable for

railway drainage systems, a deeper understanding of its composition and design must be

established, as well as an understanding of the unique and complex costs associated with

the railway business operation.

The research objectives will therefore be:

1. Provide a framework of WLC that can be applied across the railway drainage net-

work.

2. Analyse the residual asset life and deterioration patterns of existing assets in order

to assist maintaining aged drainage assets.

3. Develop a drainage system performance assessment regime so that NR can have a

thorough realisation of the impact of poor drainage.

4. Identify high risk / critical drainage assets within the system. This will provide the

foundation of a more robust and economic maintenance scheme.
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5. Build a decision support tool that can help NR prioritise drainage work based on

budgets and risks.

After achieving the objectives, anticipated outcomes & benefits for the stakeholders are:

• Increase asset knowledge — gain in depth understanding of the drainage system’s

capacity and performance.

• Budget planning – with a WLC model, the lifetime expenditure is taken into con-

sideration, which will help with overall budget forecasting and allocation.

• Decision support – WLC approach helps asset managers to make comprehensive

and robust strategic management decisions for NR’s drainage system.

• Reduce risk – studying the railway drainage system in detail will allow NR to

understand its weakness and control, if not eliminate, the risks associated with

drainage failure.

• Improve service – maintaining the drainage system at a desired performance level

will reduce disruption to train operators and increase the reliability of the railway

network for passengers.

• Improve reputation — relationship with neighbours would be improved if there were

fewer flooding events, which can be achieved with a better designed maintained

drainage system.

1.3 Novelty

The key novelty of our study lies in the development of a framework for the objective

examination of different railway drainage asset management strategies. The framework

allows for the WLC of drainage asset management to be minimised over different time

periods (single or multiple control periods), at different scales and under long-term uncer-

tainties such as climate change. WLC approaches have been adopted in many industries

including construction, transportation, and manufacturing. It has not been applied to

the railway drainage systems hence this study also addresses this application gap in the

field of asset management.

The WLC approach with its supporting sub-models helps NR’s railway drainage asset

managers to better understand the performance of their assets, identify assets at higher

risk of failure and hence offer the opportunity to use proactive maintenance regimes. This

work has the potential to be adopted by drainage stakeholders of other linear transport

infrastructure such as highway operators and railway owners in other countries in which

piped drainage systems are used to manage rainfall induced runoff.

Due to the complex interlinks in other piped systems such as for water distribution and

wastewater disposal, it can be extremely costly to simulate the hydraulic performance

of the whole system. However, for rail drainage systems it is relatively simple, as they

are often only composed of two or three parallel pipelines alongside the track, and hence

require less computational power to be analysed. Hence, this study has the opportunity
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to show the full potential of incorporating a complex hydraulic model within a WLC

model which is not yet computationally realistic for other piped industries.

Furthermore, the scope of the WLC model developed in this study is both strategic and

tactical, providing wide usage across national and route level asset management. On

a strategic level, it can forecast the expenditure and amount of works needed for the

drainage systems nationally, and prioritise the works based on the risks and/or financial

costs of failure associated with the part of the system where the work is carried out.

It can help asset managers make national level operational decisions while facing short

term budget constraints to work out the optimum budget allocation strategy that best

achieves the company’s goal. On a tactical level, it can provide WLC calculations for a

small portfolio of asset and assess its performance under a range of renewal, maintenance

and utilisation option scenarios. This can be used by Routes engineers in their day to

day work planning.
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2 Literature review

This chapter comprises several sections, providing a literature review of existing research

related to whole life cost concepts and the relevant model types that could be integrated

to form the Whole Life Cost model. A state-of-the-art review of studies on whole life

cost models for infrastructure assets was conducted. This was then followed by a review

of the decision support tools used in asset management, some of which are developed

based on the whole life cost concept. As the degradation process and the performance of

railway drainage assets are crucial aspects (which will be explained in detail in Chapter

3), this chapter also presented a comprehensive review of degradation and performance

models for infrastructure assets including drainage and other piped systems.

2.1 Whole life cost model

Whole life cost is the total cost of ownership over the life of an asset. It is also known as

life cycle cost (LCC), lifetime cost, through-life-costing, total-life-costing, total-cost-of-

ownership, and total cost. LCC was originally designed for procurement purposes in the

US Department of Defence in the mid-60s of the twentieth century (Korpi and Ala-Risku,

2008). Since then, the WLC models continue to be developed and deployed in many

industrial sectors over the years, with the first attempts made in the construction industry

in the mid–1980s (Wieczorek et al., 2019). The WLC approach involves examining and

determining all the costs, either direct or indirect, of designing, building and management

(operating, maintenance, support and replacement) throughout an infrastructure asset’s

entire service life including the disposal cost (El-Haram et al., 2002).

In the railway industry, the WLC approach has been used to assist better management

planning for various railway assets. Rama and Andrews (2016) proposed a framework

for conducting whole system lifecycle cost analysis on railway infrastructure, providing

support to asset management decisions in a whole-system context. A whole life cost

model was also built for the Overhead Line Equipment underbridge project to provide

decision makers with cost estimates for both the installation phase and over the entire

service life of such systems, so that they can make more informed management decisions

(Kirkwood et al., 2016). For ballasted railway track, maintenance strategies are compared

and prioritised with the WLC analysis under uncertainty approach considering all costs

associated with ballasted track construction; namely maintenance, de-commissioning,

track use, mode change and the environment (Sasidharan et al., 2020a). Various railway

ballast tamping and renewal policies were investigated from a whole life cost point of

view to better understand their effectiveness (Zhao et al., 2006).

Beside the use in other types of railway infrastructure, the WLC model is also widely

appreciated in the UK water industry. Interest in WLC in the water sector first began in

the mid 1990s, especially in its potential application to the rehabilitation of underground

assets in a regulated sector (Skipworth, 2002).

Skipworth (2002) presented the use of WLC in water distributing systems, and provided
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a unique and robust solution to the problems faced by operators aiming to maintain

the quality of service with continuously deteriorating assets. The Whole Life Costing

Methodology consists of two major themes: “Whole Life Cost Accounting” and “Network

Performance”. The WLC accounting framework draws on activity based costing and life

cycle analysis to draw out all cost elements and link these to cost drivers (Skipworth,

2002). The drivers are mostly based on aspects of the performance of the distribution

network such as bursts and leakage measured by the regulator and which are then quan-

tified by the Network Performance model. The model also quantifies the effect on system

performance of different interventions, where an intervention is any action carried out on

the network, such as a pipe rehabilitation or replacement. (Skipworth, 2002) then showed

how WLC models could help in the decision making process. Information generated by

these two themes(“Whole Life Cost Accounting” and “Network Performance”) are con-

solidated in the decision support tool to simulate management scenarios with limited

capital budgets. By testing various strategies with pre-defined intervention options, the

solution with the lowest cost can be found using an optimisation technique namely the

genetic algorithm.

Fuchs-Hanusch et al. (2011) investigated the calculation of whole life costs for individual

pipes. A proportional hazards model was used to make failure predictions at the pipe level

and it was amended to fit the requirements of WLC and pipe rehabilitation prioritisation.

It was tested on data from three Austrian utilities, along with some sensitivity analysis.

Rehabilitation prioritisation with WLC calculations was also discussed.

Shepherd et al. (2004) showed the possibility of using WLC in sewer systems. COST-S

methodologies and tools were developed based on the WLC concept to assist management

decisions in order to provide acceptable performance at a minimum cost over the whole

life of the sewerage system (Savic et al., 2005). Similar to the approach of Skipworth

(2002), it is composed of three modules: Network Definition; Whole Life Cost Accounting;

and Decision Support Tool. The Network Definition concerns the characteristics of the

sewer system and its performance, which is quantified via Key Performance Indicator

(KPI) values. The Whole Life Cost Accounting module links the costs with the range of

activities required to maintain the provision of the service using an activity based costing

approach. Finally the Decision Support Tool links the performance based cost drivers to

the KPIs as well as the cost of rule based management intervention strategies that can be

adjusted over different time periods, allowing different scenarios to be investigated and

compared.

A report on whole life costing for sustainable drainage was produced by Whole Life

Costing for Sustainable Drainage (2004). It provided a brief background of sustainable

drainage in England and Wales, and introduced a Whole Life Costing approach suit-

able for evaluating the costs and benefits associated with sustainable drainage systems,

followed by a case study of a SUDS scheme in Worcestershire, UK. The whole life cost

framework accounted costs including planning costs, capital costs, land-take costs, resid-

ual costs, environmental benefits, operation and maintenance, and disposal costs. It is
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noted that not only the conventional monetary costs that contribute to the cash flow of

the drainage system owner are counted, non-monetary costs such as environmental and

social costs due to flood and pollution events are also included in the calculation. This

was designed to enable sustainable concepts to be fully incorporated at the design stage.

Whole life cost framework

In order to build a whole life cost model, it is important to establish a framework of

the WLC that identifies all the cost elements associated within the lifetime of the assets.

While there are existing studies on WLC for railway assets, there is a lack of literature

specifically focused on WLC frameworks for railway drainage assets. However, it would

be valuable to explore how WLC frameworks have been designed for other infrastructures

such as different railway asset systems (e.g. embankment, track and signalling). These

WLC frameworks can potentially be adopted to form the foundation of building a WLC

framework that is tailored for the railway drainage assets.

Usually, elements of whole life costs arise from different stages of a product’s life cycle,

which are often divided into three or four phrases based on the individual assets/product’s

perspective (Korpi and Ala-Risku, 2008). Fabrycky and Blanchard (1991) used a four-

step division to categorize the costs of an individual product as shown in Figure 2.1.

Figure 2.1: Life cycle cost categories

Expanding upon the fundamental four stages, additional cost components can be included

to cater to the requirements of specific industries being studied. The elements of whole

life cycle and life cycle cost for the building industry were established and presented by

(Wieczorek et al., 2019). A list of the cost elements and their linkages are shown in Figure

2.2, such definitions are adopted from ISO 15686-5:2008 - Buildings and constructed

assets — Service-life planning — Part 5: Life-cycle costing (2008).

Figure 2.2: Elements of whole life cycle and life cycle cost of a building
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Similarly, a flow chart of the Whole Life Cycle Costs of ballasted railway track was

also adapted from ISO 15686-5:2008 - Buildings and constructed assets — Service-life

planning — Part 5: Life-cycle costing (2008) by (Sasidharan et al., 2020b), as presented

in 2.3

Figure 2.3: Elements of whole life cycle and life cycle cost of railway track

Rama and Andrews (2016) developed a LCC model for the railway infrastructure assets

adopting the methodology proposed in IEC (2004). Figure 2.4 presented the generic

framework for modelling infrastructure LCCs, which consists of the state model and the

cost model. Performance of the infrastructure assets is estimated using the state model,

considering the effects of changes in individual asset on other assets and subsequently on

the infrastructure as a whole. The outputs of the infrastructure state model are then fed

into the costs model to evaluate the LCCs.

Figure 2.4: Overview of the Whole life cost framework for railway infrastructure asset

A more detailed framework tailored for the assets under investigation is presented in Fig-

ure 2.5, namely the superstructure and individual assets (sleepers and rails). Individual

LCC cost elements are identified and the breakdown of the system to lower indenture

levels, cost categories (e.g. labour, materials) and lifecycle phases are also specified. The
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cost elements are then aggregated to form the LCC in accordance with the cost breakdown

structure.

Figure 2.5: LCC breakdown structure used for railway infrastructure asset

Although Rama and Andrews (2016) established the whole life cost framework for railway

infrastructure assets, the technical aspects of railway drainage assets were not discussed

in the paper. This may be because the importance of the railway drainage assets was

overlooked, and/or the effect of impaired drainage assets on the performance of other

railway assets and the whole infrastructure system was not fully understood. There is a

gap in the study which would be addressed in this study. The WLC framework presented

for other railway infrastructure systems can also be potentially adopted for the railway

drainage assets.

Activity based costing (ABC) was developed in the 1980s Harvard Business School Profes-

sors Kaplan and Cooper (Skipworth, 2002), and suggested to be brought into the life cycle

cost analysis by (Emblemsvag, 2001) as a substitute of the alternative to conventional

costing systems. ABC establishes links between activities and products by allocating

activity costs to activities to products based on an individual product’s consumption or

demand for each activity (Korpi and Ala-Risku, 2008). This approach enables a better

understanding of the nature of indirect, overheads and general cost items and what drives

them as they are often not directly tied to the production volume. For some industries,

ABC may be hard to adopt due to the complexity of business and difficulties in obtaining

an extensive activity-cost databases. However, it would be useful when analysing assets

with a long life span such as pipes. These assets are less likely to be replaced in a short

time interval, hence the drivers of the whole life cost elements are more likely to be tied

up to operational activities rather than the construction and disposal of assets.

For the water distribution industry, an activity based whole life costing framework was
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developed, the links between the actions, their effect on the system and its subsequent

impact on costs are shown in Figure 2.6. For every action, its resultant cost is calculated

and its impact on performance is evaluated. These connections allow each element to be

treated as a variable, so that their corresponding influences can be observed and analysed

(Engelhardt et al., 2003). The same methodology has also been adopted for sewer systems

(Shepherd et al., 2004). Similar to the water distribution systems and the sewer networks,

the majority of the railway drainage systems are also composed of buried piped systems,

but usually with a less complicated design, hence, it is proposed that it is reasonable for

a similar WLC framework to be adopted for the railway drainage assets.

Figure 2.6: The linkage within the WLC methodology of water distribution system

2.2 Decision support tool

The aim of the decision-making process is to identify the course of action that will most

benefit the asset system’s state and performance within pre-determined economic, time,

and resource constraints (Allouche and Freure, 2002). Asset managers are seeking opti-

mum management strategies that maintain acceptable network-level performance while

reducing operational costs (Luque and Straub, 2019; Balekelayi and Tesfamariam, 2021).

They bear the responsibility of making tough decisions that frequently have long-term,

potentially critical impacts on their organization and/or its stakeholders. Hence, the

need of decision-support tools has emerged, as they can help enhance the precision and

validity of these decisions (Ana and Bauwens, 2007).

For railway track infrastructure, Sasidharan et al. (2022) presented a risk-informed deci-

sion support tool that can provide economical justifications for asset management strate-

gies, taking into account the infrastructure maintenance costs, train operating costs,

travel time costs, safety, social and environmental impacts over the assets’ life cycle. The

risk-informed capability of the tool enables asset managers to deal with uncertainties

associated with forecasting costs and the effects of track maintenance, and the unavail-

ability of data. In the process of resolving real-world issues, one might encounter both

imprecision and uncertainty. Monte Carlo simulation combined with the Fuzzy logic algo-

rithm, enabled the use of less precise linguistic expressions, capturing expert opinion for
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evaluating the impacts/severity of train derailments. Data from three different routes of

the UK’s railway network were used as a case study. Results illustrated that this method

can aid both strategic and tactical railway asset management, providing plausible design

and optimal maintenance tactics within a given budget.

For buried piped systems such as sewer networks, a review of selected decision-support

tools was presented by Ana and Bauwens (2007). Figure 2.7 illustrates the tools discussed

and the steps they addressed within the infrastructure asset management system.

Figure 2.7: The generic infrastructure asset management system with the corresponding

sewer asset management tools applicable at different stages (Ana and Bauwens, 2007).

As Group 1 tools mainly model asset deterioration/performance, they can not provide

a review of the management options available. They can only be used as part of the

decision making process to evaluate the asset status under a given assumption and without

intervention. Whereas group 2 tools provide certain levels of decision making analysis

based on performance calculated from the collected asset data. Group 3 tools are the

most comprehensive ones that cover all aspects of the asset management system. The two

group 3 tools reviewed are CARE-S (Computer-Aided Rehabilitation of Sewer Networks)

and Hydroplan.

CARE-S is a decision-support tool developed by Sægrov and Schilling (2002) that helps

determining the best strategies for rehabilitating sewer networks, considering all crucial

influencing factors such as anticipated structural failures, hydraulic performance, and

pollution discharges. The method incorporates the existing condition of the sewer and
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storm water networks, as well as forecasts of their long-term functionality on both a

comprehensive network scale and an individual pipe scale. This procedure also provides

visualization of the economic and non-monetary implications of any selected rehabilitation

strategy.

Hydroplan is a sewer asset management approach proposed by Gueldre et al. (2007) based

on structural, hydraulic and environmental risk assessments carried out on the strategic

elements of the sewerage network. The procedure starts with building an asset inventory

of the existing conditions and historical data, followed by a pipe-level strategic analysis

where pipes are evaluated based on the potential damage they might cause if they were

to fail. This assessment includes financial, social, and environmental damage factors.

Weighting factors are then applied to these scores to assign an overall strategic level

to each sewer. Subsequently, failure probabilities of sewers are calculated based on the

structural condition (using aging models like Herz distribution and inspection outcomes)

and hydraulic and ecological factors (employing calibrated hydrodynamic models such as

InfoWorks). The results of the strategic analysis and the failure probabilities are then

integrated to generate an overall risk score. The most critical assets are highlighted

and tailor-made solutions are proposed to decrease the risk. This provided a short to

medium term action plan that would take the network to a higher performance level. For

long-term management plans, software was developed (Hades), which uses total life cycle

modelling with Monte Carlo simulations and integrates all costs by monetising the risks

and preventive investments.

Although it would be ideal to develop a stand-alone software for the railway drainage

asset management decision support tool, similar to the ones developed for the sewer

system. In practice, integrating all modules of a whole life cost model into one software

can be complex, especially when dealing with data sourcing issues as the asset data

and failure records are fragmented. However, a framework for the decision support tool

could be established in this study to provide guidance for further studies and software

development.

Another example of the application of decision support tools in asset management of

sewer networks is demonstrated by Tran et al. (2010) with a case study Australia. The

study proposed a proactive management methodology for sewer assets through decision

support tools. The paper reviewed several models which addressed various issues in

sewer asset management, including condition prediction, risk ranking, selection of repair

methods, and cost-benefit analysis. In addition to conventional modelling methods like

Markov chain and statistical regression, novel artificial intelligence-based models such as

artificial neural networks and support vector machine has also been brought to attention.

These models can be helpful in prioritizing sewer network inspections, justifying bud-

get distributions, and conducting asset evaluations for financial analysis. A conceptual

framework was proposed for the effective and efficient management of the sewer network

asset, as shown in Figure 2.8. The database is the centerpiece of the framework, stor-

ing all the physical and operational data related to the network. These data are used
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in a variety of decision support models to provide multi-dimensional information that

is critical for making management decisions. Decisions then can be made to meet the

prescribed network performance measurements such as the serviced volume and number

of service failures. It is suggested that an additional data collection step be made after

the decision-making process to enhance and validate models. Although the case study

in the paper mainly focused on the structural degradation of cement-based sewers and

manholes, the discussed modelling techniques could be adopted for other infrastructure

assets and a more comprehensive list of performance measurements.

Figure 2.8: Conceptual framework for the application of decision support models for

sewer system asset management

A survey exploring municipal infrastructure asset management needs in Canada indicated

that a significant 91% of respondents acknowledged a need for decision support tools to

manage their assets; 24% specifically pointed to Life cycle cost analysis (LCCA) as a

potentially useful tool for decision support; and 70% of those surveyed believed that the

LCCA process could assist in decreasing the substantial backlog of deferred maintenance

(Rahman and Vanier, 2004).

Life cycle cost approach has already been applied in the railway industry to assist asset

management. Rama and Andrews (2016) employed life cycle cost as a tool to guide well-

informed decisions in railway infrastructure asset management. Choices regarding asset

management were driven by monetary criterion alongside infrastructure performance ob-

jectives. A generic framework for decision support in infrastructure asset management is

proposed, as shown in Figure 2.9. The framework consists of two major models namely the

system state model and the cost model. The infrastructure system state model estimates

performance parameters, taking into account the impact of individual asset’s condition

degradation on other assets and the entire infrastructure. The condition degradation may

be influenced by specific actions including inspection, testing, servicing, repair, renewal,

and upgrade, which will consequently affect the performance parameters. These actions

are determined by the asset management strategies chosen. These outputs from the sys-

tem state model are then incorporated into the cost model to assess the life cycle costs.
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The use of the modelling framework was illustrated in a case study examining track super-

structure performance over a 60-year period under varying intervention strategies. The

resulting infrastructure performance and life cycle cost indicated that a combination of

opportunistic and concurrent maintenance strategies yields the most substantial benefits

in terms of cost savings, reduced overall downtime of the line, and a minimised duration

of speed restrictions. However, this is a generalised model and the case study mainly

focused on the track superstructure. In order to adapt it for the railway drainage system,

a detailed discussion of deterioration mechanisms and performance measurements specific

to the railway drainage assets is required.

Figure 2.9: Generic framework for decision support in infrastructure asset management

Maharjan et al. (2009) developed a whole life (staged) cost optimisation tool based on the

hydraulic performance of the urban storm drainage system. A one dimensional hydraulic

model is combined with a genetic algorithm based optimization tool to determine optimal

intervention timings and responses over a simulation period. Storm Water Management

Model (SWMM) is used as the hydrologic/hydraulic simulator to evaluate the hydraulic

performance of the drainage network. The objective function of the optimization scheme

is the minimisation of the whole life cost. The whole life cost component and the hydraulic

simulator are integrated using interfacing code written in C. The conceptual diagram of

the model is presented in Figure 2.10 (Maharjan et al., 2009). The model was applied

in a case study area in the city of Porto Alegre, Brazil, to determine staged intervention

strategies for urban storm water systems subjected to gradually changing external fac-

tors like climate change, demographic and land use changes, etc. The detention storage

implementation schedule is optimised using an objective function of the total cost which

consists of the cost of interventions and residual flood damages. The results showed that

significant financial savings and enhanced flood safety could be realised by approaching

the design problem as a staged plan, rather than a one-time scheme. This provided a

basis for proactive decision making in a changing environment.

The methodology developed by Maharjan et al. (2009) is quite suitable to be adopted

in the railway drainage system as they share some similarities. This is because the
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Figure 2.10: Conceptual diagram of whole life cost optimisation model for urban storm

drainage systems

main purpose of the storm water systems is to drain excess rain and ground water from

impervious surfaces, whereas the the main purpose of the railway drainage systems is

to drain excess rain and ground water from other railway assets (NetworkRail, 2017).

Since they share the similar function, the way their performance is evaluated may also

be similar.

2.3 Degradation model

Drainage assets degrade over time due to various reasons such as debris, aging, corrosion

and pressure, which can lead to a loss of performance and even worse, a loss of func-

tionality. Deterioration models are built to simulate the degradation process of assets.

They can be split into service deterioration models and structural deterioration models

according to the different causes of decline in serviceability. Structural deterioration of

pipes is the continuing reduction of hydraulic load bearing capacity, which can be char-

acterized through structural defects (Tran et al., 2009a), whereas service deterioration is

the reduction in serviceability for other reasons such as accumulation of debris. In order

to forecast future degraded conditions, predictive models are developed incorporating

various factors such as pipe size, age, and soil type (Tran et al., 2007).

Deterioration models can be divided into three categories: physical, statistical, and ma-

chine learning (ML) based models (Aljafari et al., 2022). Physical models are derived from

mathematical relationships based on the understanding of the physical phenomenon of

deterioration; whereas statistical deterioration models are built on relationships between

deterioration observations and factors that influence the deterioration process, where one

or more of these factors are treated as random variables (Rokstad and Ugarelli, 2015).

Although physical models may be scientifically more robust, insufficient understanding

of the physical deterioration process and scarcity of the data has limited the development

of the physical models (Kleiner and Rajani, 2001). Another limitation of the physical
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models is that they require relatively large amounts of specific types of data that are often

difficult to obtain due to time and financial constraints (Kimutai et al., 2015). In cases

where a large number of assets is to be examined but there is not enough manpower to

carry it out, or the low likelihood of failure does not justify the expensive data acquisition

expenditure, statistical models could provide a more economical and efficient solution.

For both the physical and statistical models, they can be classified into deterministic and

probabilistic models (Rajani and Kleiner, 2001). Deterministic models produce the same

exact results for a particular set of inputs, whereas stochastic models analyse input data

and then give predictions that account for certain levels of unpredictability or randomness.

In practice, for deterministic models, the assets analysed are partitioned into groups

to form a homogeneous cohort with respect to other factors that might influence the

asset deterioration rate, such as operational and environmental parameters (Kleiner and

Rajani, 2001). This enables the model to give more accurate predictions based on a small

set of input parameters.

Physical Models

One example of the physical deterministic models is the linear model developed by

Randall-Smith et al. (1992). It estimates the remaining residual life of water mains,

assuming that the corrosion pit depth has a constant growth rate. However, The as-

sumption of a constant corrosion rate over the life of the pipe is questionable (Rajani

and Kleiner, 2001). Rajani and Makar (2000) developed a methodology to predict the

lifespan of grey cast iron water mains considering both the influence of corrosion pits on

the structural resistance capacity of water mains and changes in anticipated corrosion

growth pit rates. When there is a lack of historical corrosion rate data, it is suggested to

take measurements of the dimensions of corrosion pits using non destructive technology,

and then use these measurements to approximate the corrosion rates with a Rossum-like

(Rossum, 1969) power model. However, the main drawback of this model is that it relies

on corrosion pit data that may not be easily obtained due to economic or operational rea-

sons. The model’s dependence on corrosion rate measurement from direct pipe inspection

makes the model expensive to implement (Wilson et al., 2017).

Probabilistic physical models have also been developed over the years to capture the

randomness in the physical deterioration process. (Davis et al., 2007) developed a model

to predict the failure of polyvinyl chloride (PVC) pipes due to cracking caused by in-

herent defects in the pipe wall. The model makes predictions of time to brittle fracture

for pipes with internal defects subject to combined internal pressure and soil deflection

loading together with through-wall residual stress. To include uncertainty in the failure

process, the inherent defect size is treated as a stochastic variable, which is modeled by

the Weibull probability distribution function. As PVC is a relatively recent pipeline ma-

terial and typically decays slowly, its long-term deterioration mechanisms remain poorly

understood. Davis et al. (2007) made the first attempt to fill this knowledge gap. The

probabilistic structure of the model is beneficial as it factors in the uncertainty associ-

ated with inherent defect sizes. However, the use of the Weibull distribution for defects
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is based on Australian data, hence it would require validation when applying the model

to other locations (Wilson et al., 2017).

Wang et al. (2022) studies the corrosion degradation of pipelines using a physical model

and a probabilistic method. The natural metal loss characteristics of corroded surfaces are

modeled with random fields. The corrosion growth is also captured using a probabilistic

framework by combining Bayesian inference and Markov Chain Monte Carlo. However,

in line inspection data is required to update the failure probability of corroded pipelines,

which is not always possible to obtain.

However, all these physical models require a very thorough understanding of assets’ cur-

rent physical status and detailed measurements of the asset’s physical characteristics

which are not present in NR’s drainage asset database. Although physical deterioration

might be simulated accurately using the deterministic models in a controlled environment,

the asset deterioration process may have a high level of uncertainty associated with “ex-

ternal conditions” (Aljafari et al., 2022), and the asset condition degradation may vary

widely and is generally not captured by available data (Korving and van Noortwijk, 2008).

Therefore, statistical models may be used to incorporate many more possible factors that

might relate to the asset degradation process.

Statistical Models

A statistical model that gives deterministic predictions for pipe breakage was developed

by Shamir et al. (1979). Non-linear regression analysis was performed to obtain the

pipe break prediction model that relates a pipe’s breakage to the exponent of its age

(Yamijala et al., 2009). Enhanced time exponential models were sequentially developed

by the following researchers: Walski and Pelliccia (1982), Clark et al. (1982) and Yamijala

et al. (2009). Additional factors were added to the set of deterioration equations to

improve model accuracy, such as asset installation date and asset historical failure records.

These models are simple and relatively easy to implement, but their simplicity requires

additional data pre-processing where data are segmented carefully into homogeneous

groups (Kleiner and Rajani, 2001). Also, this type of model usually simulates a specific

type of asset failure that is unique to a particular industry and hence may not be suitable

for railway drainage asset failures. They also do not indicate the impact of deterioration

on specific assets, but on assets within a defined group or type.

König (2005) presented a computer software package ExtCorr, which estimates the ex-

ternal corrosion of concrete pipes with a linear model, considering asset characteristics

such as age, diameter and wall thickness, as well as the environmental parameters such

as soil type and groundwater depth. However, drainage asset failure mechanisms can be

very complex as they are the result of interaction among numerous factors with randomly

occurring damage propagation (Aljafari et al., 2022). Such randomness and uncertainties

in the degradation process may be better explained with a probabilistic model.

A probabilistic, statistical model to predict the breakage patterns of individual pipes

was developed using the non-homogeneous Poisson process (NHPP) (Constantine and
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Darroch, 1993; Jarrett et al., 2003; Kleiner and Rajani, 2010). In particular, the NHPP

model developed by Kleiner and Rajani (2010) not only considered the static factors (i.e.,

pipe-intrinsic) but also the dynamic factors (e.g., climate, cathodic protection, breakage

history). The model was trained on 40 years of historical breakage data and forecasted

for the next 5 years. While the prediction of the total number of breaks per year was

good, it tends to overestimate the break numbers for pipes with a few historical breaks

and underestimated those with a high history of breaks (Kleiner and Rajani, 2010). The

model is designed for the breakage of pipes in the water distribution system, since the

failure type and failure mechanism would be different for railway drainage systems, it

would not be suitable to be adopted in this study. Also, the model requires a good,

sizeable record of the failure incidents which might not exist for the railway drainage

system. This is because not all railway drainage failures are recorded as an incident, for

example, if a section of the railway was flooded due to a collapsed pipe but the flooding

happens at a time when no train was running on that section, the flooding will unlikely

to be spotted, and even if it is observed, it does not qualify as an incident as it won’t

affect business operation.

Among the existing statistical models used to predict sewer pipe deterioration, many

are designated as survival models (Baur and Herz, 2002; Bruaset et al., 2018; Duchesne

et al., 2013). Herz (1996) proposed a lifetime probability distribution density function

to model the life span of pipes, which is based on the principles that had originally been

applied to population age classes or cohorts. For better prediction results, it is proposed

to divide the pipes into homogeneous groups (cohorts) with respect to their material type

and environmental/operational stress class. The model is hence called the cohort survival

model and the estimation of parameters was done using historical data where the time

of pipe replacement was considered to be the time of its “death” (Kleiner and Rajani,

2001). In the absence of historical data, a Delphi process was proposed by Deb and

Foundation (1998) to estimate the parameters in the cohort survival model. The model’s

application is weakened by the assumption that the replacement of an asset by the asset

owner represents the end of its lifespan, as the decision can be influenced by operational

factors rather than objective technical assessments (Kleiner and Rajani, 2001).

The proportional hazard model (PHM) was first proposed by Jeffrey (1985) to be used for

the prediction of water main breakages by examining the probability of the time duration

between consecutive breaks. The method has then been improved and implemented by

other researchers (Andreou et al. (1987), Le Gat and Eisenbeis (2000), Fuchs-Hanusch

et al. (2011), Xie et al. (2017) and (Xu and Sinha, 2020) amongst others) to predict pipe

failures. Fuchs-Hanusch et al. (2011) used the Proportional Hazards Model (PHM) to

forecast the annual number of water supply pipe failures, which then provided means

for calculating the failure costs in the whole life cost calculations. Xie et al. (2017)

used PHM approach to model the risk of blockage for clay pipes considering not only

established parameters such as pipe age, length, diameter and soil type, but also new

explanatory variables such as proximity to roads, land use code and road type. The

study was carried out with blockage data from 43,976 vitrified clay pipes spanning seven
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years in Australia. The Weibull proportional hazards model was adopted by Xu and

Sinha (2020) to analyse pipes’ mean time to failure using historical pipe break records

(Aljafari et al., 2022). The duration that an asset remains in a certain condition until it

moves to a worse condition category was presented by a survival curve. Xu and Sinha

(2020) identified the main limitation of the model is the missing data points in historical

records which would also pose a major concern when applying to railway drainage assets.

The proportional hazards model is valued for its robustness, versatility, and ability to

incorporate multiple variables. However, the model would assume that all asset types

are equally affected by environmental and operational stresses which is not always valid.

Hence, it is best to segregate the assets into groups that share the same aging process

through careful analysis.

Nevertheless, the Markov approach is a common probabilistic statistical model for sim-

ulating infrastructure deterioration. Markov models operate on the assumption that the

present state of the asset encompasses all relevant information impacting its future con-

ditions. Therefore, the future state of the asset depends solely on its present condition

(Aljafari et al., 2022). There Markov models categorised into two types: the homogeneous

Markov model, which are time independent, and the non-homogeneous Markov model,

which are time dependent, i.e. the transition probabilities relate to the age of the asset,

so older assets are believed to deteriorate faster (Ana and Bauwens, 2010).

The homogeneous Markov model has been widely used for modelling pipeline asset de-

terioration process, such as sewers (Wirahadikusumah et al., 2001; Baik et al., 2006)

and stormwater pipes (Wirahadikusumah et al., 2001; Meegoda et al., 2004). Wira-

hadikusumah et al. (2001) proposed a Markov model to capture the deterioration of

Indiana sewers. They have applied a nonlinear optimization-based approach to derive

the transition probabilities, minimizing the absolute distance among the condition data

and the expected value obtained from the Markov model. As age was the only considered

predictor of the sewer condition, pipes have to be classified matching the groups with the

same deterioration behaviours. 16 sewer categories were defined but reliable data were

only available for 4 groups, limiting the scope of the modelling.

A study was performed by Baik et al. (2006) to explore sewer deterioration in the city

of San Diego, California using a Markov model. They have derived the transition proba-

bilities using an ordered probit model approach, based on sewer age and condition data

and covariates like pipe physical properties. In comparison to the nonlinear optimization-

based approach for transition probabilities estimation, they have claimed that their ap-

proach was both theoretically and statistically more robust. However, to ensure the

accuracy of the model, it is essential to get panel data spanning over multiple time pe-

riods. Also, information such as the groundwater level, the soil condition, the depth of

the installation, and the frequency of sewage overflows need to be collected and properly

evaluated. Such information is often not available in current inspection practices which

could be a major limiting factor.

Micevski et al. (2002) demonstrated a similar application on the stormwater pipes in an
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Australian network. In this analysis, they have used the Metropolis–Hastings algorithm

to estimate the transition probabilities from sewer condition and age data. Like Wira-

hadikusumah et al. (2001), pipes are divided into categories according to pipe diameter,

material, and soil type. The model was validated using the Chi-square goodness-of-fit

test and results have confirmed its suitability to model the deterioration of stormwater

pipes at 5% significance level. A similar methodology may be adopted for the railway

drainage assets.

An example of the non-homogeneous Markov model is presented by Le Gat (2008), mod-

elling the deterioration of urban drainage infrastructures with a case study of Dresden

sewer network in Germany. The time dependent transition probabilities of the multi-state

deterioration process are derived from condition data using Gompertz distribution. The

transition probabilities were dependent on the values of a set of covariates (e.g. pipe

diameter, type of effluent), and a pipeline specific random frailty factor. The advantage

of the model is that by incorporating pipe specific covariates, the model is able to predict

directly the deterioration of individual pipes without the need to divide the assets into

homogeneous groups like Wirahadikusumah et al. (2001). Despite this, the methodology

still suffers major challenges due to the scarcity of data and the effect of selective survival

bias (Ana and Bauwens, 2010).

In contrast to the assumption of Markov chain models, where the time in one state

before transitioning to another follows an exponential distribution for continuous time,

semi-Markov models can apply any continuous-time distribution to represent the time

(Thomas and Sobanjo, 2013). Semi-Markov processes have been developed and used in

deterioration models for piped systems as well as many other infrastructure assets such

as flexible pavements (Thomas and Sobanjo, 2013) and bridges (Ng and Moses, 1998;

Sobanjo, 2009). In Liang et al. (2023)’s paper, the fatigue degradation of the piping

was described by a homogeneous time-continuous Semi-Markov process, which allows

accounting for generic distributions of the holding times of the system states. Kleiner

(2001) proposed the use of Semi-Markov models for simulating the deterioration process

of large infrastructure assets such as water transmission pipes and trunk sewers. The

possible conditions of the asset were categorised into condition states and the waiting

times between each state were modelled using a two-parameter Weibull distribution.

Kleiner (2001) presented the model with a case study of five hypothetical large-diameter

water mains. The mean time-to-failure was determined to be approximately 60 years,

with most failures occurring between 40–90 years. The method was also adopted by

Altarabsheh et al. (2016) to estimate the transition probability of the sewer pipes as a

function of time. The model is capable of dealing with uncertainty in the deterioration

process from the beginning of the asset cycle using age-dependent transition probabilities.

However, Kleiner (2001) pointed out that currently there is insufficient deterioration data

to determine the parameters of the waiting time probability distributions. Although a

procedure was proposed to determine the parameters based on expert opinion, further

studies in this area are required (Wilson et al., 2017).
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Although Markov models have not been applied to railway drainage assets before, their

usefulness has been proven in modelling the deterioration of other railway infrastructure.

Moghtadernejad et al. (2021) used Markov chains for the estimation of deterioration

curves of railway bridges and retaining walls, and addressed the challenges that normally

exist when dealing with real-world data. Le and Andrews (2013) presented a Markov

modelling approach for predicting the condition of individual railway bridge elements.

The degradation process is analysed using maintenance records and the duration it takes

for each element to degrade to a level where maintenance of a certain severity classification

is required. The deterioration process created by the irregularities in sections of the track

was analyzed in the form of a Markov stochastic process by Bai et al. (2015).

Machine learning models

Machine learning (ML) and artificial intelligence (AI) techniques offer an alternative mod-

elling strategy, particularly when the inherent bias and scarcity of inspection datasets

hinder the development of statistical models (Tavakoli et al., 2019). Examples of pipe de-

terioration modelling with AI methods include neural networks (Najafi and Kulandaivel,

2005; Tran et al., 2006, 2009b; Khan et al., 2010), Bayesian networks (Jung et al., 2012),

support vector machine (Mashford et al., 2011) and random forests (RF) (Jung et al.,

2012; Harvey and McBean, 2014; Tavakoli et al., 2019).

A random forest model was developed by Harvey and McBean (2014) to predict individual

sanitary sewer pipe conditions in Guelph, Ontario, Canada; achieving a satisfactory true

positive rate of 82% and true negative rate of 73%. The model facilitates the identification

of uninspected pipes in a sewer network that are most likely to be structurally defective,

thereby guiding decisions about potential future inspections. Similarly, Tavakoli et al.

(2019) used the random forest model to predict sewer pipe conditions for a dataset from

the City of Los Angeles, California. The model demonstrated 99.99% in-sample accuracy

and 94.06% out-of-sample accuracy. Although the results of the random forest models

are good, their applicability to different datasets was not tested. The absence of crucial

asset characteristic data may limit the model’s ability to predict asset conditions.

Neural networks are particularly effective in dealing with data that has high volatility and

non-constant variance. Tran et al. (2006) used neural networks to predict the condition

of stormwater pipes and Najafi and Kulandaivel (2005) used them on sewer problems.

The probabilistic neural network model developed by Tran et al. (2006) is tested with

snapshot-based sample data and compared with a traditional parametric model using

discriminant analysis. Results show it slightly outperforms others in terms of prediction

performance, however the accuracy of the model is still not high and the key factors for

prediction are difficult to interpret.

Aljafari et al. (2022) developed data-driven models for predicting the condition of drainage

pipe assets using machine learning algorithms. Four ML algorithms are tested and com-

pared, namely neural networks, decision trees, bagged trees, and k-nearest neighbour.

Predictions were performed for both the structural and service condition of the UK rail-
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way drainage assets. Results showed that bagged trees outperformed the other algorithms

on a balanced dataset, yielding an overall accuracy of 87% for structural condition pre-

diction and 72% for service condition prediction. Out of the nine influencing factors

examined using connection weight analysis, pipe length, prior condition, years since last

condition assessment, and maintenance history were found to be the most significant

factors in condition prediction. While this model was developed specifically for UK rail-

way drainage systems, it is exclusively focused on analysing the condition of railway

drainage pipes. The degradation process of other types of railway drainage assets, such

as chambers, culverts, channels, and structures, remains to be examined.

There are many factors influencing the rate of deterioration such as age, size, material,

soil characteristics, etc. In Ana et al. (2009), an analysis on identification of the important

factors affecting sewer deterioration in the sewer network of Leuven (Belgium), is carried

out using logistic regression. It revealed that out of the 10 variables considered, age,

material and length are the only three that significantly affect the deterioration process.

However, by comparing results with similar studies in the UK and Canadian networks,

they found that each of them has a slightly different set of significant factors, and thus

conclude that there is no single set of factors that can explain sewer deterioration and it

will vary from one network to another.

As condition assessment can be very subjective, knowledge of senior experts can be very

valuable in the determination of asset status. Korving and van Noortwijk (2008) devel-

oped a stochastic model for sewer deterioration, incorporating expert opinion and visual

inspections using Bayes’ theorem. Dirichlet distribution is used to model ‘subjective’

prior knowledge, i.e. expert knowledge, while the likelihood function of condition states

changing is updated by way of inspections.

2.4 Performance model

Performance is a measure of accomplishment for a given task. It is important for the

asset operator/owner to maintain performance at a given standard. Poor performance

often leads to financial expenditure as compensation for damage and/or improvement of

the underperforming asset. It is hence logical to link the costs with the performance in

the WLC model. A performance model is developed to quantify the performance of the

concerning assets with the underlying purpose of numerically connecting it to the whole

life costs.

Performance criteria vary across different industries, and are mainly defined based on

the purpose of the asset and the objectives of the owner/operator. For example, in

water distribution, the companies’ main focus is to meet the customers’ water demand

without disruption, while ensuring the water quality meets the required standard. As

stated in the book Whole life costing for water distribution network management (Skip-

worth, 2002), there are six performance sub-modules in the framework: Leakage, Demand

Patterns and Projections, Structural Performance, Customer Interruption, Water Qual-
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ity, and Hydraulic Capacity; which are split into three groups: Supply and Demand,

Structural Performance, and Water Quality. Each group coincides with one aspect of

the business goal: Supply and Demand modules examine whether costumer’s demand

is satisfied, Structural Performance modules measure service disruptions due to physical

damage of the system, and Water Quality modules test the water quality supplied. Ur-

ban stormwater drainage systems serve as another example. They are designed to drain

excess rain and groundwater from impervious surfaces in order to prevent flood-related

disruptions and property damage. Therefore, the performance of these systems can be

assessed by the frequency, extent, depth, and duration of flooding incidents (Kolsky and

Butler, 2002).

Ashley and Hopkinson (2002) reviewed the current framework for measuring and as-

sessing the performance of UK water service providers (WSPs). In the UK sector, the

three critical areas of performance judged by the regulatory bodies are: value for money,

service delivery, environmental and social impacts. In England and Wales, the perfor-

mance objectives and targets are produced jointly by the Companies, the Government

and the Water industry Regulator; whereas in Scotland, the Water Industry Commis-

sioner covers economics and customer service regulation and the Scottish Environmental

Protection Agency deals with emissions into the environment. The performance of the

English and Welsh WSPs is evaluated by the Office of Water Services (OFWAT) against

different ’levels of service’. OFWAT’s annual reports outline the quality of services deliv-

ered to customers by each company and compared their performance with the industry

average. The report also sets out an overall performance assessment for each company,

considering four key categories: water supply, sewerage service and flooding, customer

service, and environmental impact (Ashley and Hopkinson, 2002). Besides regulatory

bodies, various stakeholder has also taken the initiative to enable performance evaluation

of WSPs. An important example is the International Water Association’s publication

of Performance Indicators (PI) for WSPs (Alegre et al., 2016). PI can be a value or

characteristic, commensurate or non-commensurate, used to measure relevant aspects of

the industry’s performance in a true and unbiased way Cardoso et al. (2004). The PI

for water supply and wastewater consists of the following six areas: Natural resources

(water supply)/environmental (wastewater), Operational, Personnel, Physical, Quality of

service, and Financial (Alegre et al., 2016; Matos et al., 2003; Cardoso et al., 2004).

Cardoso et al. (2004) discussed the performance assessment in water and wastewater sys-

tems, reviewed the concept of PI, and presented the use of the Performance Assessment

System (PAS). PAS was suggested by Alegre and Coelho (1995) as a tool to measure the

performance of water supply or wastewater systems. This system is designed for engi-

neering applications and considers numerous factors and perspectives, such as hydraulics,

water quality, reliability, and social impact. The performance areas explored for water

supply are:

• hydraulics - nodal pressure, nodal pressure variation, link velocity, system energy

consumption;
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• water quality - chlorine residual concentration, travel time;

• reliability - nodal path entropy is used as a measure of supply path redundancy.

For wastewater systems, the following performance domains were identified (Cardoso

et al., 2004):

• hydraulics - water level, flow velocity, overflow volume, overflow peak and duration,

ratio between maximum wet weather flow and maximum dry-weather flow;

• environmental - concentration of pollutants, polluted overflow discharges, septicity;

• structural - damage rate, leakage;

• economic - maintenance costs, power costs;

• social - disruption to public activities, complaints, odours.

(Cardoso et al., 2004) applied the PAS, combining water level and flow velocity metrics,

to evaluate the hydraulic performance of the sewer system. Case studies were conducted

on a combined sewerage system and a separate domestic sewerage system in Portugal,

under various scenarios of different load factors and weather conditions. The hydraulic

model was built using the MOUSE package. Records from 2 flow metering points were

used to analyse the performance.

The performance of sewer systems was also studied in Shepherd et al. (2004)’s paper and

quantified using Key Performance Indicators (KPIs). Sewer systems transport sewage

from houses and commercial buildings through pipes to treatment facilities or disposal.

As it is wastewater in the pipes, factors such as sedimentation and severity of sewer

overflows are taken into consideration and evaluated as one of the measurements of per-

formance. Other factors such as hydraulic capacity and asset structure integrity, which

affect the capability of delivering the asset’s intended purpose, are also included as KPIs.

The performance model was composed of two parts: hydraulic modelling and asset per-

formance modelling. The hydraulic modelling is simulation-based via 3DNet software,

whereas the asset performance modelling is derived from historical data. Figure 2.11

demonstrated the flow chart of sewer KPIs. KPIs analysed with hydraulic modelling are:

Sewage Available to Transport (SATT), wet weather performance, sedimentation and

CSOs. SATT was calculated by the available volume in the sewer divided by the design

volume, measuring hydraulic inadequacy in dry weather environment. In wet weather

environment, performance was evaluated with either water level or discharges, using the

method proposed by Cardoso et al. (2005). Sedimentation had a similar performance

function, built upon the time aggregated velocities in the sewer in relation to the self-

cleansing velocity. For combined sewer overflows (CSOs), the KPI was calculated based

on the consent conditions for the CSO in terms of number of spills. Asset performance

modelling was divided into three areas, blockage, collapse and pump station. Predic-

tive modelling for blockage and collapse was developed by analysing incident records and

the corresponding asset databases. Whereas, for pump stations, analysis of operational

data was performed to identify the regularity of failures that were related to physical

characteristics and maintenance regimes (Shepherd et al., 2004).
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Figure 2.11: Sewer system KPIs

To build a performance model for railway drainage, it is useful to learn from other buried

piped systems as many are designed to direct stormwater from one location to another

through buried pipes, but it is also necessary to consider the unique performance indica-

tors relating to the railway sector. The major concern of the railway drainage system is

not just the successful delivery of stormwater to a designated discharge point, but also

eliminating water related disruption to railway operation and protecting other railway

assets from water damage.

The uncertainties in the performance model were not often discussed in the existing lit-

erature. Most of the uncertainties typically arise from the quality of input data, such

as inaccurate or missing asset characteristics. There are also other significant factors to

consider, such as the impact of climate change. For instance, drainage assets/systems

that previously met performance requirements might fail to maintain satisfactory stan-

dards due to more frequent and/or heavier rainfall events brought on by climate change.

Additionally, regulations and standards set by the country’s railway industry regulatory

bodies can affect the performance criteria used in the model. These effects also need to be

considered and incorporated into the whole life cost framework. The performance model

proposed in this study is designed to identify and evaluate the performance indicators

specific to the railway drainage system, taking into account the model’s uncertainties.
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3 Model Framework

Railway drainage assets include several types of components designed to collect surface

and groundwater which runs towards, falls onto or issues from the railway corridors, and

then deliver it to a suitable outfall (with sufficient capacity), whether that be a natural

watercourse such as a river, a public sewer or a soakaway. Effective management of the

drainage system is essential for safe operation, because the drainage system plays an

important role in protecting rail network infrastructure assets from the damage caused

by moving water as well as eliminating water related service disruption to train opera-

tors. Almost all of NR’s drainage assets are of unknown age and design but were most

likely built before the 1950s. Many may date from the Victorian times (NetworkRail,

2017). Due to the long life span of drainage assets, it is only reasonable to expect a

much higher future expenditure in maintenance and operation as they continue to de-

grade. Currently the maintenance and renewal of the drainage assets are carried out and

financially accounted as an integral part of the renewal and maintenance of the track,

earthworks, structures and buildings assets. However, with increasing attention on the

importance of railway drainage asset developed in the past few years, Network Rail is in

need of developing an asset management tool that could assist them with future asset

maintenance regime planning and expenditure projection calculation for drainage assets.

It is suggested that NR to take a whole of life costing approach, as this will allow them

to take all the costs of owning and maintaining the asset into account at an appraisal

stage.

In the past, while considering the provision of assets, it was usual to focus on minimising

the initial construction costs of the assets in order to achieve a shorter payback period.

However, it was soon discovered that for capital expenditure with a long life span, initial

costs are only a small part of the investment required throughout the assets’ life time

(Engelhardt et al., 2003). Undue attention to minimising initial costs without taking

other costs into consideration can thus potentially lead to a higher overall cost. The

whole life cost concept is hence cultivated on the realisation of the importance of costs

which occur after an asset has been constructed, such as maintenance, operation and

disposal, acknowledging their power to influence decision-making.

3.1 Overview

In this study, a methodology has been developed to facilitate the understanding and

calculation of the whole life cost of the UK railway drainage systems. The construction of

the WLC framework begins with identifying all costs that contribute to the WLC accounts

and the drivers behind these costs. The objectives that the potential model users wish to

achieve have also been considered. User objectives were found to be the need for a better

understanding of the asset degradation process which enables accurate forecasting of

drainage asset conditions, as well as the ability to build tools that provide justifications

for proactive maintenance decisions which would mitigate the risks of drainage asset

failure before they occur.
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As described by NR drainage asset managers, the major concern and main cost drive of

managing the railway drainage system is the effect of drainage asset condition degrada-

tion. Hence a degradation model was developed to help analyse the remaining useful life

and patterns of deterioration for existing drainage assets. The model also provided the

knowledge to further investigate the potential future costs that may arise due to asset

condition degradation.

The two main sources of costs that arise from the operation, maintenance and man-

agement of drainage assets are determined to be the cost of intervention and the cost

incurred due to the future failure of the asset. Intervention is defined by NR as actions

taken on drainage assets in order to prevent the worsening of the current condition level

or improve the asset condition level to a better state. Hence, intervention is naturally

linked with asset degradation, as asset conditions deteriorate, intervention will be carried

out to maintain the assets in a desirable state. Therefore, intervention is deemed as an

important module in the whole life cost framework.

The cost arising from asset failure is usually consequential, so it is defined as a penalty

cost paid out after incidents. A detailed list of possible cost drivers behind the penalty is

discussed in Section 3.5. The root cause of all penalty cost drivers is the loss of function-

ality in drainage assets due to deterioration. In order to investigate the potential penalty

costs, it is important to build a performance model that can measure the capability of the

drainage system and hence quantify the loss of functionality. A performance model needs

to be embedded in the whole life cost framework, providing a tool for the estimation of

the impact of degraded drainage systems.

The whole life cost account is formed by consolidating the two sources of costs listed

above: intervention cost and penalty cost. Combining the two costs drivers with the

degradation and performance models that are essential to assist better realisation of

the drainage assets and enables the calculation of the whole life costs, a comprehensive

WLC framework for UK railway drainage was developed in this study as described in

Section 3.1.1. The Railway Drainage WLC framework consists of four modules: asset

performance, asset degradation, intervention and penalty, as well as the WLC accounts.

To help NR make proactive and robust management decisions, a decision support tool

was developed within the whole life cost framework. A proactive and cost effective man-

agement regime can then be derived from the whole life cost account by minimising the

total cost while complying with budget constraints and at an agreed tolerance to failure

risk.

3.1.1 Whole Life Cost Framework

The developed Railway Drainage WLC framework is composed of four modules: asset per-

formance, asset degradation, intervention and penalty. Figure 3.1 indicates links between

the four modules and their subsequent impact on the whole life accounts. Degradation

influences the intervention decision, as high levels of degradation mean the performance
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of the asset will be jeopardised, and consequently lead to disruption of normal business

and increase in safety risk; vice versa intervention can influence degradation as it will

lower or stabilize the severity of degradation, or reset the degradation none. When the

performance is weakened due to degradation, the likelihood of failure is increased, hence

higher penalty cost is expected to be paid out as a financial consequence which feeds into

the whole life cost accounts. On the other side, if intervention is performed to prevent

degradation and loss of performance, it also generates capital/operational expenditure

that goes to the whole life cost accounts. The optimum intervention strategy can be

found by solving the optimising problem with the objective of minimising the whole life

cost account, while complying with risk tolerance and budget constraints. This framework

helps asset managers to build an asset management plan that is cost efficient, evidence

based and that also mitigates any undesired risks due to drainage asset failure.

Figure 3.1: WLC framework showing the linkage between the four modules (performance,

degradation, penalty and intervention) and the WLC accounts

The WLC framework developed by the author can be configured to operate at both

a strategic level and a tactical level. This flexibility will provide asset managers with

a robust model that fits all aspects of management needs, generating both top-down

strategic plans to assist national/regional budget planning and bottom-up tactical plans

to assist building day-to-day maintenance workbank.

On a strategic level, the author has developed tools that can forecast the expenditure

and amount of works needed for the railway drainage assets nationwide to maintain a

desired level of performance over a long period of time. This can help asset managers to

establish a financially sustainable drainage policy, making proactive investment decisions

that will prevent risks in advance and are more cost effective.

On a tactical level, the author has developed tools that can provide route engineers with

WLC calculations for local drainage systems and assess the site specific performance

under a range of renewal, maintenance and utilisation option scenarios. This can be used

by route engineers in their day to day work planning. They will be able to prioritise their

works based on the risks/financial costs of failure associated with the part of the system
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where the work is carried out. It can help asset managers making decisions while facing

short term budget constraints to work out the optimum budget allocation strategy that

best achieves the company’s goal.

Figure 3.2 presents the various models developed by the author based on the different

components of the WLC framework; and the dynamic relationships between the models

which form two flowcharts of the WLC model on the two different levels of application.

The orange arrows indicate the strategic level WLC framework, whereas the blue arrows

indicate the tactical level WLC framework. For each module, a model specific to the

two levels was developed. The models listed in blue boxes are models developed by the

author in this study, whereas the models listed in green boxes are models developed in

other NR funded projects and have been applied for the first time in a WLC framework

by the author. Each model will be discussed separately in the following sections.

Figure 3.2: WLC model flowchart

3.1.2 Model summary

Figure 3.3 presented a flow chart of how the models shown in the Figure 3.2 are utilised in

the work described in this thesis. The objectives achieved by completing the development

of each stage of the models are listed on the right hand side of this figure.

First, a service and structural condition degradation model was built in this study to

analyse the degradation process of UK railway drainage assets. This provides a tool that

enables the realisation of an asset’s current condition grade and provides a prediction

of future condition grade. The degradation model is described in Chapter 4, and case

studies were performed on selected UK railway drainage asset groups.

Performance models to simulate the performance of the drainage systems were also built
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in this study. A hydraulic performance model was built to enable the quantification of

the hydraulic capacity of a single or a small number of linked systems. This type of

performance model requires detailed information of the local drainage system, it is used

within a tactical level WLC model. The model is described in Chapter 5, followed by a

case study of a real-life drainage system in Scotland. The hydraulic performance model

was then integrated with the degradation model to enable simulation of future drainage

system performance with estimated future asset degradation. This is described in Chapter

6, presented with a case study of the same drainage system used in Chapter 5. For the

strategic level WLC model, a data driven machine learning performance model was used

to quantify the risk of drainage failure induced failure. This type of model, which was

developed in a previous project, was trained and validated using data collected for UK

railway drainage assets in this study. The validated model was then employed to provide

performance predictions for the WLC model. Details of the data driven performance

model were described in Chapter 8.

For both the strategic and tactical levels, whole life cost models were developed using the

same degradation model but the hydraulic performance model and data driven approach

were linked to the tactical and strategic levels respectively. At the same time. decision

support tools are built based on the WLC model using the simulation process stated

in Section 3.6. The two whole life cost models (tactical and strategic) are described in

Chapter 7 and Chapter 8.

Figure 3.3: Model list
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3.2 Degradation

Asset degradation is reflected by changes in the asset condition grade. Asset condition

grading is split into two parts: the structural condition grade and the service condition

grade:

• Structural condition: relates to the fabric of the asset and the severity of the struc-

tural defects that affect its integrity. Structural defects can be addressed by repair-

ing or replacing the asset;

• Service condition: relates to aspects of the condition of the asset that can impact on

the water carrying capacity of the asset and the severity of the defects that reduce

its capacity below its original design level, but is independent of the structural

condition. Service defects can normally be addressed by maintenance of the asset

and are related to defects such as sediment deposits and blockages, and vegetation.

In NR, the Service and Structural condition are both defined on a 1 to 5 grading system

as shown in Table 3.1. The system adopted is compatible with guidance from Spink et al.

(2014).

Service Condition Description

1 Clear

2 Superficial deposits with no loss of capacity

3 Capacity slightly reduced

4 Capacity severely reduced

5 Blocked or unsafe condition

Structural Condition Description

1 No defects

2 Superficial defects

3 Minor defects

4 Major defects

5 Blocked or unsafe condition

Table 3.1: Description of Service and Structural Condition Score (NetworkRail, 2017)

Degraded assets could cause reduction in the drainage system performance and in the

worst case loss of functionality, so it is important for NR to understand the degradation

process and inspect the assets’ condition at appropriate intervals. NR is in the process of

improving its drainage asset knowledge by scheduling surveys and inspections to verify

the existing data record and identify unrecorded assets. The Integrated Drainage Project

(IDP) is being carried out to address the current shortfall in drainage asset knowledge

(NetworkRail, 2017). In order to develop better inspection regimes, appropriate degra-

dation modelling tools are required to enable a better understanding and estimation of

the current condition grade of drainage assets. Degradation behaviour can be analysed
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using the historical condition scores and the asset characteristics; and prediction of the

future structural and service scores can be made based on the past degradation pattern.

In this study, as shown in Chapter 4, a degradation model using Markov Chain was built.

A case study of the UK railway drainage system service and structural condition was

performed using existing historical asset condition records.

3.3 Performance

Degradation of drainage asset condition will reflect on the performance of the drainage

assets. For example, siltation of a pipe reduces its cross-sectional area as well as increases

its hydraulic roughness, hence reducing its hydraulic capacity; a structural defect in a

syphon could reduce water transferring from one side of a cutting to another under the

track. In order to efficiently manage the drainage assets, both an understanding of the

current asset performance (in its current condition state) and a forecast of the future

asset performance (in its future condition state) is required.

3.3.1 Hydraulic performance model

In NR, the purpose of drainage assets is to conduct surface and subsurface water away

from sensitive assets such as tracks and earthworks. Hence it is sensible to say that

the performance of any drainage asset can be measured by its hydraulic capacity (the

maximum volumetric flow rate it is able to convey before becoming surcharged). However,

it is worth noting that the hydraulic capacity of a single asset cannot be assumed to be

its true hydraulic capacity, as it will diminish if the upstream and downstream assets

have inadequate hydraulic capacity. Hence, the whole NR drainage network is considered

as a group of sub-systems, where each sub-system is defined as a series of drainage nodes

and links connected to carry water from an inflow to an outflow.

Lack of hydraulic capacity can be caused either by asset degradation or inadequate de-

signed capacity. As stated in Section 3.2, both asset service and structural condition

change can be simulated using the degradation model. However, it is harder to deter-

mine whether the existing drainage assets lack the capacity to withstand the current and

future precipitation levels. There might also be places where drainage infrastructure is

missing, which can also be considered as a lack of designed capacity. In order to deter-

mine whether the existing drainage system will serve its purpose, it is also important to

perform a catchment analysis as part of the performance model, as this informs the size

of the flow volumes that the drainage system must have the capacity for.

Catchment Analysis

Although drainage assets are normally designed to cope with rainfall events with certain

return periods following the company design standards as shown in Appendix A (Net-

workRail, 2011)). NR’s drainage systems consist of large amounts of historical assets

where the original design plan is unknown. Also, with climate change, changes in the
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surrounding catchment including any changes in geography and land use, the original

designed capacity may not be sufficient anymore, which will reduce the current system

performance.

Hence it is necessary to identify contributing catchment areas for the sub-systems and

understand their characteristics. Although it is difficult to predict the future change

in geography of the surrounding catchment; due to the increase of extreme weather in

recent years, it can be assumed that a certain rate of increase in the rainfall return

period is expected, and hence a predicted increase in the hydraulic capacity demand can

be simulated based on such assumptions. Moreover, with a detailed catchment analysis

alongside all railway lines, it is also possible to identify potential locations where drainage

systems are required but not installed.

In this study, as shown in Chapter 5, a hydraulic performance model is developed using

Storm Water Management System (SWMM) to enable the simulation of rainfall-runoff

from the field adjacent to the railway and routing of runoffs through the railway drainage

system into the outfall. A detailed methodology is also demonstrated to help locate and

analyse the catchments that served by the railway drainage system.

3.3.2 Failure modes analysis

A detailed hydraulic model for all railway drainage sub-systems could provide an asset

performance evaluation both on a strategic and a tactical level. However, given the

current incompleteness of the drainage asset inventory, adequate hydraulic models cannot

be built for all sub-systems. Hence, on the strategic level, a data-driven failure modes

analysis has been adopted as a substitute.

The In2Track2 failure modes analysis project took a data driven approach to explore

the linkage between drainage asset condition and failures using several Machine Learning

(ML) techniques. The In2Track2 is an EU-funded project that addresses the topic of

“Research into optimised and future railway infrastructure”, aiming to reduce lifecycle

costs, improve reliability and punctuality, whilst increasing capacity, enhancing interop-

erability and improving the customer experience (In2Track2, 2018). An unsupervised ML

technique Self-Organising Maps (SOMs) was employed to qualitatively investigate and

identify any plausible linkages between various input parameters that could cause failure

of drainage assets. The plausibility of the identified linkages was further investigated

by conducting interviews with experienced members of NR staff, and probable failure

mechanisms were identified and presented in the form of failure pathways (Kazemi et al.,

2021). The failure pathways are then used to help build a data-driven model that enables

simulating number of incident caused by drainage failures based on the weather and asset

condition parameters. The model is developed and demonstrated as part of the WLC

model using data driven approach in Chapter 8.
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3.4 Intervention

There are various intervention options that can be carried out on drainage assets in order

to prevent the worsening of the current condition grade or improve the asset condition

grade to a better state, and hence maintain their current performance or remedy their

unsatisfactory performance. Interventions can be categorised into the following six general

groups: Inspect, Survey, Maintain, Refurbish, Renew and New Build. Definitions of each

category are listed in Table 3.2 (NetworkRail, 2017).

Intervention

category
Definition

Inspect
Routine inspection of the asset to assess its performance and identify

locations requiring further intervention.

Survey
Periodic detailed surveying of the asset to assess its condition, capacity,

inventory and physical attributes.

Maintain Maintaining the performance of the asset by cleaning and minor repairs.

Refurbish
Restoring the performance of the asset by major repair, local replace-

ment or re-profiling.

Renew
Wholesale replacement of the asset. May also include an element of

asset improvement.

New Build
Installation of new assets to address a shortfall in drainage performance

where there is currently no or insufficient drainage.

Table 3.2: Definition of drainage intervention categories

After each intervention is applied, it is believed that the intervention will affect condition

grade of any drainage asset as follows:

• Renew and New Build will reset the condition grade to 1.

• Refurbish will improve performance and bring the asset to a lower condition grade.

• Maintain will make any asset stay in the current condition grade for a certain period

of time, or will bring the asset to a slightly better condition state.

• Inspect & Survey will not have a direct impact on the asset condition grade, but

will help improve asset knowledge and better monitor the asset condition level

change. Hence, it will potentially shorten the reaction time between asset condition

degradation and intervention actions.

Each intervention group contains various intervention methods, and they each have dif-

ferent levels of impact on asset structural and service condition. Some methods will have

a larger effect on condition than the others, whereas some intervention methods that are

intended to remedy one type of degradation will also have a collateral effect on other

types of degradation. For example, methods of repair or refurbishment aimed at improv-
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ing the structural condition will also result in an improvement in the service condition as

the asset has to be cleaned in order to carry out the repair or refurbishment(NetworkRail,

2017). Detailed discussion on the intervention effects will be given later in Section 7

Interventions are made to maintain assets’ functionality, and costs arising from these

actions will feed into the whole life cost account. These costs are classified as direct costs

since they are directly related to the life cycle of the asset itself, i.e. the costs of design,

construction and maintenance over its whole life to its disposal (Ambrose et al., 2008).

Decision support tools were developed using the WLC approach to assist asset managers

in establishing proactive and cost-effective drainage asset management policies. On the

strategic level, a tool was developed to evaluate long-term intervention strategies that

minimize the whole life costs. This tool allows for the comparison of different long-

term strategies under various input conditions such as rainfall, budget, and resource

constraints. On the tactical level, the developed tool enables testing for shorter-term

solutions that prioritise drainage work at a single asset level, thus helping the route asset

manager in making day to day plans that minimize WLC and the risk of system failure.

In this study, as shown in Chapter 7 and Chapter 8, intervention costs are calculated as

part of the WLC model and are used in the decision support tool. In both chapters, it

is demonstrated that decisions of which assets should be intervened and the frequency of

intervention to be carried out can be optimised by minimising WLC using the decision

support tool. This was demonstrated through application to several case studies.

3.5 Penalty

A penalty arises when a drainage asset does not reach its desired functionality, con-

sequently financial costs are incurred, such as repair costs for damages to third party

properties, compensation cost for train disruption and human accident/fatality. These

costs are classified as indirect (or consequential) costs since they arise as a ‘consequence’

of owning or operating an asset (Whole Life Costing for Sustainable Drainage, 2004).

The possible cost drivers are listed in Table 3.3. Consequential costs are divided into

short term and long term costs. The short term costs arise when there is a rapid failure,

for example, track flooding; whereas long term costs arise when repeated lack of water

carrying functionality causes damage to other railway assets (e.g. earthworks, signaling)

which then leads to disruption of the train operations and outside entities which result

in financial, environmental, reputational and social costs.

The probability of drainage related failures can be modelled by linking the historical

failure records with impaired drainage performance, where drainage performance can be

simulated using the hydraulic performance model. Short term failures are expected to

occur when the hydraulic performance model indicates there is flooding from the trackside

drainage system with water levels above the railway track level. Long term failures are

harder to examine since they will be the cumulative result of minor flooding losses which

may not disrupt normal railway operation.
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Short term drivers Long term drivers

• Accident due to flooding

• Delay due to flooding

• Damage other railway assets & third

party assets due to flooding

• Flood damage to surrounding area

• Long term damage to other railway as-

sets & third party assets (e.g. wetbed)

• Accident due to other railway asset fail-

ure

• Delay due to other railway asset failure

• Derailment due to other railway asset

failure

• Environmental damage

Table 3.3: Consequential Cost Drivers

Hence, when analysing frequency of failure on a strategic scale, the failure mode analysis

mentioned in Section 3.3 can be used to provide a generalised prediction for areas where

there is insufficient quantity of specific failure records and/or historical asset inventory.

This type of model is able to quantify linkages between rainfall, drainage asset condi-

tion, and historical failure records nationwide. Such relationships can hence be applied

to simulated future asset conditions in combination with rainfall to generate a failure

probability prediction of individual assets.

Unit costs associated with each failure are examined using both historical data and market

price. For some consequences that are hard to assign a monetary value, such as fatality,

environmental damage and reputation damage, a pseudo value can be given to reflect the

severity of their consequences.

In this study, the calculation of penalty costs is discussed in both the Chapter 7 and

Chapter 8. In the case studies of the WLC models, only the flooding unit costs are con-

sidered since the linkage between drainage asset failure to other incidents are complicated

and still required further studies to be fully understood.

3.6 Whole life cost simulation process

The whole life cost simulation process is developed in the study and the Figure 3.4

illustrates the flow chart of the simulation process to calculate the whole life costing of

the drainage system. The whole life cost is the “womb to tomb” costs which include all

costs from construction to disposal. However in real life, since a drainage network has a

long structural life, it may have been built a long time ago. Therefore, if at the start of

accounting time, there are existing drainage assets, the acquisition costs will be calculated

instead of design & construction cost. The process starts by evaluating the performance

of the system. If there are existing assets, asset condition scores will be extracted from

historical records or current survey reports. Whereas if the assets are newly built, it is

assumed to have condition score 1. It is then modelled over the service time of an asset,
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or over an appropriate accounting period as the assets may have a very long life-cycle,

by iterating through a predefined time-step (normally one year).

A decision support tool has been developed as part of the simulation algorithm. The tool

generates a set of feasible intervention strategies based on user defined constraints, such

as a total budget constraint, risk constraint (e.g. maximum number of failure allowed),

and a labour constraint (e.g. maximum number of interventions can be carried out during

one time step due to limited in house manpower). It compares the results of the tested

intervention strategies after each step to decide the next one to be feed into the model. At

the end of the simulation, it indicates the optimum intervention strategy that minimise

the whole life cost account while complying with the defined constraints. On a tactical

level, besides finding the overall amount of intervention to be carried out, asset managers

can also potentially use the decision support tool to prioritise the intervention to towards

the asset that has the largest effect on performance loss when degraded.

The steps of the simulation process are described as follows over an asset service life time

of n time-steps:

1. At t = 1, Calculate the acquisition costs or design & construction cost.

2. Apply the degradation model to forecast the condition state changes of assets.

3. Carry out interventions on the assets based on the intervention decision made using

decision support tool.

4. Change asset condition based on intervention executed.

5. Calculate the costs of the interventions to be carried out.

6. Evaluate performance using a performance model based on current asset condition

(for that time step).

7. Calculate the cost of penalties based on the asset’s performance.

8. If t ̸= n, let t = t+ 1, repeat steps 2 to 7.

9. At t = n, the loop stops and disposal cost is calculated.

10. Aggregate the present value of all the costs throughout all time-steps.

11. Compare the total cost generated with previous simulations (compare with 0 on

the first iteration). If the WLC is minimal, end simulation and export the optimal

intervention strategy; if not, rerun the simulation with a new intervention strategy

generated by the decision support tool.

In this study, the WLC models were developed and the calculation of the WLC

account were both stated in Chapter 7 and Chapter 8 as part of the model devel-

opment. For both the WLC model using hydraulic performance measurements and

the WLC model using data driven approach, the WLC simulation process follows

the same principle as described in this section.

48



Figure 3.4: WLC simulation process
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3.7 Uncertainties

The whole life cost model would incorporate a wide range of input parameters, each as-

sociated with various degrees of uncertainty. To address the challenge that arise from the

uncertainties in the data, an uncertainty analysis is required to be carried out as part of

the model (Skinne et al., 2011). The uncertainties of the degradation model primarily re-

volve around the lack of asset condition data and unstable data quality. Whereas for the

performance model, besides the asset data quality, uncertainties also arise from the simu-

lation of runoff processes as the railway drainage system typically serves a small catchment

compared to the water distribution or sewer system, whose hydraulic model has been fre-

quently explored in the literature. Also, the failure criteria/performance indicators might

be affected by the local railway industry’s regulator, hence can be country-specific; this

also imposes a source of uncertainty in the model. Nevertheless, climate change is a

major factor, as it will lead to more frequent and/or heavier rainfall, which might cause

drainage assets or systems that once satisfied performance standards to fail to cope with

the more extreme weather condition. For the whole life cost calculation, uncertainties

arise from data deficiencies of unit cost and penalty cost, as well as the unpredictability

of interest rates. In this study, these uncertainties are discussed and evaluated for all the

models in each Chapter.
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4 Drainage Asset Service and Structural Degrada-

tion Modelling

A degradation model is constructed using a Markov Chain to evaluate the degradation

process of the railway drainage assets. This model serves as a tool for assessing the

present state of assets and forecasting their future condition. In this Chapter, a detailed

methodology of the Markov model is presented, describing how the transition rate matrix

can be constructed, how to simulate future asset condition based on the transition rate

matrix, and how to determine the minimal number of samples required in order to obtain

a stable transition rate matrix. The applicability of the model for both drainage assets’

service and structural condition are tested. A case study of UK railway drainage asset

service and structural condition degradation is presented. The transition rate matrix

was calculated for all asset groups. The model is tested and validated with with 300mm

diameter pipes and an uncertainty analysis is carried out.

4.1 Introduction

As railway drainage assets deteriorate, their capability may be compromised and they

could fail to fulfill their designed purpose, which is to direct water safely away from other

railway assets. A loss in capability would lead to obstruction to train operations as well

as potential damage to other NR assets. Hence it is vital to develop an appropriate model

that could simulate the degradation process of railway drainage assets, which would help

better understand the current asset state as well as provide estimation of the future asset

condition.

As mentioned in Section 3.2, in NR two grades are recorded to reflect the condition

of any drainage asset: service condition grade and structural condition grade. Service

condition is often affected by the probability of siltation at a particular location, which

can be subject to different factors such as the asset geometry, soil content, pipe slope and

water discharge. All these factors are relatively stable as the surrounding environment

is unlikely to change in short periods of time; and the position of the asset is not going

to move unless an incident happens or replacement is required. Hence, it is sensible to

presume that the service condition of the assets is going to follow the same pattern as

before. As for the structural condition, the status of the asset is most likely affected by

the age of the asset as well as the surrounding geometry and track loading. Since the

age of the railway drainage assets can be dated back to Victorian ages and are scarcely

recorded, most asset ages are unknown; and the surrounding environment is not expected

to change significantly in a short period of time. It is hence to assume that the structural

condition also follows the same pattern as exhibited in the historical condition database.
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Service Condition Description

1 Clear

2 Superficial deposits with no loss of capacity

3 Capacity slightly reduced

4 Capacity severely reduced

5 Blocked or unsafe condition

Structural Condition Description

1 No defects

2 Superficial defects

3 Minor defects

4 Major defects

5 Blocked or unsafe condition

Table 4.1: Description of Service and Structural Condition Score (NetworkRail, 2017)

As stated in the NetworkRail (2017), the Service and Structural condition grades are

both defined on a 1 to 5 grading system as shown in Table 4.1.

4.2 Methodology

4.2.1 The Markov model framework

In this study, a Markov chain approach is used to model the degradation rate, which gives

an estimation of transition probability from one state to a lower state. This decision is

made under the assumption that the probability of degradation depends only on the

current condition of the asset. Such an assumption is made based on expert opinion and

will be verified later. Since drainage assets could degrade to a worse state any time during

the year, in order to correctly estimate the adverse effect of degradation on the drainage

capacity throughout the year, a Markov model with continuous time steps is chosen as it is

believed to better reflect the degradation process of railway drainage assets. A continuous

time Markov chain (CTMC) is described by a stochastic process X = {X(t)|0 ≤ t} with

discrete state space S = {s1, s2, . . . , sn}, that satisfies the following for any time s, t ≥ 0

and i, j ∈ S.

P(X(s+ t) = j|X(s) = i, {X(u) : 0 ≤ u < s}) = P(X(s+ t) = j|X(s) = i) (1)

In other words, CTMC is a stochastic process having the Markovian property: the condi-

tional distribution of the future X(s+ t) given the present state X(s) and the past states

X(u), 0 ≤ u < s, depends only on the present and is independent of the past (Ross,

2014).

In the case of modelling railway drainage asset service and structural condition degra-

dation, the X(t) the is condition score of the modelled asset at time t, and the state

space S = 1, 2, 3, 4, 5 represents the 1 to 5 grading system mentioned above. The matrix
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Q shown below is the transition rate matrix, or infinitesimal generator, of the Markov

Chain,

Q =


−q1 q12 q13 q14 q15
0 −q2 q23 q24 q25
0 0 −q3 q34 q35
0 0 0 −q4 q45
0 0 0 0 −q5

 (2)

where qij = lim∆t→0
P(X(∆t)=j|X(0)=i)

∆t
, representing the transition rate from condition i

to condition j given that the asset is currently in condition i, assuming that the limit

exists in [0,∞].The diagonal of the matrix is defined as qi, where qi =
∑n

j=1,j ̸=i qij. The

holding time of an asset in rating i is exponentially distributed with parameter qi. It is

assumed that the assets’ condition cannot improve without human intervention, hence

qij = 0 ∀ i < j. Although degradation is a gradual process, it is not always possible to

monitor the status of an asset continuously, so the condition of an asset may has degraded

by more than one state before the next inspection; thus, transition from state i to state

j where j > i+ 1 is also included in the model.

Given matrix Q, a transaction probability matrix for a small time interval ∆t can be

expressed as:

P(t, t+∆t) = I+∆tQ+ o(∆t) (3)

where I is an identity matrix. Let s denote t+m∆t. Then,

P(t, s) ≈ (I+∆tQ)m =

(
I+

(s− t)

Q

)m

(4)

Taking the limit m → ∞, the probability matrix P for any arbitrary time interval t to s

can be obtained by

P(t, s) = exp((s− t)Q). (5)

The Markov model used in this study is time-homogeneous, which means the transition

probability is time-independent. Although in reality, an asset’s deterioration rate may be

affected by the age of the asset (Ana and Bauwens, 2010; Kleiner et al., 2006), without any

data related to the age of the railway drainage asset currently available in NR’s database,

it is not possible to explore the effect of age on transition rate in this study. Hence, the

transition probability is assumed to be stationary over time. As drainage assets normally

have a long life span, the effect of age on the transition probability would be minimal for

short period simulations (i.e. 5-year Control Period); however, for simulations over longer

time periods, such an assumption could lead to underestimation of the degradation rate.

4.2.2 Verification of the Markov Property

For the Markov property to stand, it is required to prove that the probability of an asset

degrading into score j with a given current score i is not related to its previous conditions.
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This can be done by analysing the three state transition sequence (Xt|Xt−1, Xt−2) of the

historical data set, where (Xt = i|Xt−1 = j,Xt−2 = k) = (i|j, k) represents an asset

condition jump from j to i, given that the previous condition before j is k, i.e. the

condition transfer from state k to state j and then state i. If the Markov property holds,

for any given i and j, there would be no difference in the probability of the sequence

(i|j,Xt−2) to exist, for all Xt−2 < j.

The Chi-square Test (χ2 test) is one of the most widely used statistical hypothesis tests

for independence and goodness of fit, testing whether two or more categorical variables

are related in some population. Hence it is adopted here to test whether the pre-condition

of an asset is related to its current condition. A similar method has also been used in

water distribution networks (Sempewo and Kyokaali, 2016) and other infrastructure such

as pavements (Surendrakumar et al., 2013).

For a given current condition i and previous condition j, the null hypothesis is that the

past condition Xt−2 has no effect on the probability of the asset jump from condition j

to i. The contingency table for the given current condition i and previous condition j

is constructed by listing all possible sequences (i|j,Xt−2) as rows, then calculating under

the given past condition j and Xt−2, the number of occurrences that the current condition

is i and the number of occurrences that the current condition is not i. The contingency

table is shown as Table 4.2.

Sequence

Number of sequence

occurrence

Xt = i

Number of occurrences of all other

sequences with same past condition

Xt ̸= i

(i|j,1) N(i|j, 1)
s=5∑

s=j,s̸=i

N(s|j, 1)

(i|j,2) N(i|j, 2)
s=5∑

s=j,s̸=i

N(s|j, 2)

...
...

...

(i|j, j − 1) N(i|j, j − 1)

s=5∑
s=j,s̸=i

N(s|j, j − 1)

Table 4.2: Contingency Table for sequence (Xt = i|Xt−1 = j,Xt−2)

where N(i, j|k) is the number of occurrences of the sequence (i|j, k).
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The test statistic for this table is:

χ2 =
∑ (O − E)2

E2
(6)

where O is the observed value and E is the expected value for each scenario. For example,

for the sequence (i|j, 1), the observed value O = N(i|j, 1), and the expected value:

E =

x=j−1∑
x=1

N(i|j, x)× N(i|j, 1)∑s=5
s=j+1N(s|j, 1)

(7)

The null hypothesis is normally rejected at a 5% significance level, meaning that if the

χ2 statistic with j − 2 degree of freedom is less than 0.05, the Markov property holds as

the current condition is independent of past conditions.

4.2.3 Development of Transition Rate Matrices

Estimation of generator matrix is possible given complete asset condition score history, ie.

for any asset x ∈ {x(t)|0 ≤ x ≤ n)} is available. Consider the likelihood of observations

with a transition from i to j at time τ1 followed by a subsequent transition from j to k

at time τ2 and etc. Assuming that an initial state probability is known, the likelihood

can be expressed as

L(Q) = exp (−qi(τ2 − τ1)) qijexp (−qj(τ2 − τ1)) qjk . . .

=
n∏

i=1

∏
i ̸=j

q
Nij(T )
ij exp(−qiRi(T )) (8)

where Ri(T ) =
∫ T

0
1x(s)=ids which is the total value of the holding time at rating grade

i by the time t; Nij(T ) is the number of times for ij transition by the time T . The

log-likelihood is

logL(Q) =
n∑

i=1

∑
j ̸=i

log(qij)Nij(T )−
n∑

i=1

∑
j ̸=i

qijRi(T ) (9)

Solving ∂logL(Q)
∂qij

= 0, the maximum likelihood estimator for the element of the generator

matrix is

q̂ij =
Nij(T )

Ri(T )
(10)

(Inamura, 2006)

4.2.4 Condition degradation Simulation

After obtaining the transition rate matrix, the potential future condition grade of the

drainage system can be simulated using the stochastic simulation algorithm (SSA), also

known as the Gillespie algorithm (Banks et al., 2011). The detailed procedure is described

below:
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1. Initialize the state of the system x0 at time t = 0, which is the current condition

score of the asset.

2. For the given state x0 = i, find the transition rate λij from state i to all other states,

i.e. generator matrix elements λij = q̂ij, ∀j ∈ s, j ̸= i.

3. Calculate the sum of all transition rates, λi =
∑

j ̸=i λij.

4. Simulate the time, τ , until the next transition by drawing from an exponential

distribution with mean 1/λi. Generate a pseudo random uniform variable u1 from

the interval [0, 1], τ = (− ln(u1))
λi

.

5. Simulate the transition type by drawing from the discrete distribution with prob-

ability Prob(transition to state j) =
λij

λi
. Generate a pseudo random uniform vari-

able u2 from the interval [0, 1], and choose the transition as follows: if 0 < u2 <
λi1

λi
,

choose transition 1; if λi1

λi
< u2 <

λi1+λi2

λi
choose transition 2, and so on.

6. Update the new time t = t+ τ and the new system state xt.

7. Iterate steps 2-6 until t is larger than the designed simulation period.

4.2.5 Determine the minimum sample size required

As drainage assets are often buried underground, they are difficult and more costly to

inspect than other assets in the railway system. It is in the interest of asset managers to

minimise such inspection costs whilst obtaining sufficient data to build a robust transition

rate matrix for subsequent use in a degradation model . Hence, a study is performed to

determine the number of samples required to obtain a stable transition rate matrix in

which the rate values would not alter more than 5% by including more calibration data.

Procedures are as follows:

1. Randomly select n samples (assets) from the whole asset database, calculate tran-

sition rate matrix Qn,1 using the condition scores of these n samples.

2. Repeat previous step m times, giving a sample of m transition rate matrices {Qn,1,

Qn,2, . . . , Qn,m}.
3. Calculate sample mean Qn and standard deviation σn, where Qn =

∑s=m
s=1 Qn,s

n
and

σn =

√∑s=m
s=1 (Qn,s−Qn)

2

n
.

4. Increase the number of samples in steps of n, repeating steps 2-3 to obtain matrices

{Qn, Q2n, . . .} and {σn, σ2n, . . .}.
5. Find the critical sample number r where Qr is within 5% of the actual transition

rate calculated using all assets.

4.2.6 Model calibration and validation

To examine the performance of the degradation model, test is performed using the entire

data set and through a split sample analysis. The split sample analysis is a more rigorous

test because it uses data independent of that used in the model calibration (Micevski

et al., 2002). the asset datasets were randomly split into two groups: a calibration group
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and a validation group. The calibration data set was used to build the model and the

predicted analysis results were compared with the validation data set to verify the model

(Wellalage et al., 2015). After finding the minimal sample size n that is required to

generate a stable transition matrix, n assets were randomly selected from the dataset to

form the calibration group, whereas the remaining assets in the dataset belong to the

validation group. The transition matrix Q was calculated using the calibration dataset

then applied to the validation set to predict the number of transitions in each condition

category. Observed and expected percentage of transitions were then compared to test

the accuracy of the Markov Model proposed.

4.3 Data Processing

The robustness of the degradation model simulation results highly depends on the quality

of the input data. It is hence important to perform data cleansing and data processing

before inputting and using them in the model. This involves detecting and removing

false or inaccurate records from the dataset, and identifying duplicates, incomplete or

irrelevant parts of the data and then modifying, replacing or removing them accordingly.

The detailed data processing steps are described in the following subsections. As a result,

around 59.5% of the assets have remained in the service condition analysis and 57.8%

of the assets have remained in the structural condition analysis; 68.5% of the service

condition records and 65.5% of the structural condition records remained in the analysis

respectively.

4.3.1 Condition historical records

Historical condition records are extracted from the Network Rail drainage asset database

(Ellipse). With the oldest asset condition records dated in 2007. As dated on 19/02/2020,

there are in total 445,584 drainage assets recorded in the Ellipse database. The assets

stored in Ellipse are categorized into 13 asset groups which are further divided into 39

asset types. A full list of the asset groups and asset types can be found in Appendix

B. Each asset has several general and asset specific attributes associated with it, namely

asset number, asset type, location, condition scores and asset characteristics such as pipe

diameter and size.

As the importance of the drainage assets is gaining more attention, NR has made efforts to

attempt to complete the asset register. The Integrated Drainage Project was undertaken

in Control Period 4 (01/04/2009 – 31/03/2014), the project consisted of:

• A review of available drainage data held centrally and with the routes from previous

systematic surveys, which comprise around 35% of all the drainage assets.

• A national walkover survey of the remaining 65% of the NR drainage networks.

• Establish a national drainage database within the Ellipse maintenance system.

• Migrate the data from the previous databases into Ellipse (NetworkRail, 2017).
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The number of assets recorded is plotted in Figure 4.1. To be noted that the date of

recording is missing for 99,498 assets, so the year of first recording can only be found

for the 346,086 assets. The act of data migration and asset survey is recognised in the

sudden jump in the number of drainage assets on record from 60,489 in 2011 to 235,805

in 2012 in Figure 4.1. It is hence decided to use condition scores taken after 2012 to

ensure the standard of condition assessment is consistent throughout the dataset.

Figure 4.1: Number of asset in record at the end of the year

4.3.2 Data cleansing

In this study, the NR asset condition dataset was examined in detail and the following

data cleansing procedures were developed to remove data points considered ”invalid” and

so prepare a data set that can be used in the degradation analysis carried out in the case

study. If an asset condition score is missing or is deemed invalid, such a data entry is

removed from any further analysis. A condition score is considered invalid if it is not

a number, or if it is not one of the defined condition scores, e.g. the score is set to 0.

After the initial data cleanse, it was found that out of all assets, 264,933 has at least one

service condition score record, and 257,514 has at least one structural condition score

record. That means, for both service and structural condition data, around 60% of the

total assets has been inspected at least once in the 8 years’ period (2012-2020).

It is noticed that for some of the assets, some of their condition data are recorded on the

same date. If these condition scores are the same, then they are treated as duplicates and

are merged into one data entry. If these condition scores are different, with no additional

information provided, there is no way to determine whether these data are in error in

NR’s asset database system or a real condition improvement and/or degradation that
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happened on the day of inspection. Therefore, these assets are removed from the dataset

and not used in further analysis to maintain the validity of the data. As a result, 1,102

assets are removed from the service condition dataset and 995 are removed from the

structural condition dataset.

After the data cleanse, the percentage of assets remaining in each asset groups are in-

dicated the Table 4.3. As shown, most asset groups have 74-87% of assets that have a

valid service and structural condition record that can be used to calibrate and validate

the degradation model except for the pipe and granular drain asset group, which only

has less than 50% of these assets with valid condition data after the data cleansing. This

may be due to the fact that pipes are buried assets and granular drains are also covered

or buried, hence they are more difficult to access and inspect.

Asset group Service Condition Structural Condition

Chamber 74% 74%

Pipe 43% 38%

Channel 87% 86%

Structure 82% 80%

Culvert 79% 77%

Outfall 82% 82%

Inflow 87% 87%

Covered Channel 79% 78%

Granular Drain 47% 47%

Pond 81% 81%

Syphon 75% 76%

Table 4.3: Percentage of assets remaining in each asset group with valid condition scores

after data cleansing

4.3.3 Further data processing

The number of assets in each asset group was then examined to see whether there was

enough data to produce a reliable transition rate matrix. The number of assets with valid

conditions scores in each asset group is shown in Table 4.4. As Granular Drain, Syphon

and Pond have less than 1,500 assets recorded with condition scores, it was assumed that

there are not enough historical data points to produce a reliable probability prediction,

so they were not taken into consideration in the following analysis.

It is noted that for some assets the recorded condition scores can go both higher and

lower over time. As the condition score of an asset improves (goes lower), it would be

assumed that there has been either an unknown intervention has taken place or there

is an inspection error. Since this study is focused on the degradation of drainage asset

condition, only the transitions where the condition is degraded (score has increased) has

been considered to calculate the transition matrix. However, in order to eliminate the
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Asset group Service Condition Structural Condition

Chamber 120982 121696

Pipe 57642 50337

Channel 30821 30645

Structure 18139 17866

Culvert 15760 15434

Outfall 10134 10081

Inflow 7726 7737

Covered Channel 2204 2187

Granular Drain 1072 1078

Pond 400 399

Syphon 53 54

SUM 264933 257514

Table 4.4: Number of all assets of each asset group after data cleanse

effect of score improvement on the assets without affecting the total holding time Ri(T )

used to calculate the transition matrix (as stated in equation 10), for all the transitions

where the score is decreased (condition is improved) the end condition is substituted by

the start condition, which means the asset is assumed to have stayed in the starting

condition score until the moment that the asset’s service condition is improved. The

subsequent transition is unaffected as the next transition will be separate out from the

previous one with a start condition of the original improved condition. Nevertheless it

is assumed that the asset remains in their current condition until the data cutoff date of

19/02/2020.

Although in reality the degradation is unlikely to be observed immediately after a transi-

tion and the change of score is therefore recorded some time after the asset deteriorates.

Such knowledge can only be obtained if all assets are constantly monitored. As this is

practically and economically impossible, it is decided to make the assumption that the

degradation happens on the day of the change of condition score. The possible uncertainty

caused by such an assumption will be discussed later in Section 4.4.8.

4.4 Case Study

4.4.1 Verification of the Markov Property

As explained in the Methodology Section 4.2.2, the Markov property can be tested with

the Chi-squared Test to verify that the net transition from the current condition is inde-

pendent of past conditions. The test has been carried out for all asset groups and for both

service and structural condition. Examples of the contingency table for Channel, Cham-

ber, Culvert and Pipe asset categories are shown in Table 4.5. A full list of contingency

tables is presented in Appendix C.
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All test statistics are above the significance level of 5% except the transition from con-

dition 3 to 4 for Channel structural condition. For all other asset groups, it can be

concluded that there is no evidence to reject the null hypothesis of the independence

for each asset group under 5% significance level. Hence, they are proven to possess the

Markov properties, so the Markov methods described in the above Methodology section

may therefore be applied.

The dependence of Culvert structural transition from 3 to 4 on the previous condition

status may be due to several reasons. The precondition for transition from condition 3

to 4 is either 1 or 2; since the difference between condition 1 and 2 is very minor, there

may be a chance that this condition transition exhibits some degree of dependence on the

pre-condition. Also, for structural condition, it is possible that a new-build asset that is

graded with condition 1 has a slower degradation rate than condition 2. However, with

no information on the asset age profile, it is hard to accurately predict the age related

factor of the structural degradation rate. Hence, in this analysis, it is assumed that the

Culvert structural condition degradation also follows a Markov process.

Channel

sequence Xt = i Xt ̸= i χ2

(4, 3|1) 13 153
0.80

(4, 3|2) 65 706

(5, 3|1) 3 163
0.31

(5, 3|2) 7 764

(5, 4|1) 0 6

0.30(5, 4|2) 6 54

(5, 4|3) 9 173

Culvert

sequence Xt = i Xt ̸= i χ2

(4, 3|1) 65 372
0.72

(4, 3|2) 124 668

(5, 3|1) 48 389
0.89

(5, 3|2) 85 707

(5, 4|1) 43 68

0.97(5, 4|2) 75 124

(5, 4|3) 60 101

Chamber

sequence Xt = i Xt ̸= i χ2

(4, 3|1) 15 48
0.04

(4, 3|2) 19 131

(5, 3|1) 3 60
0.43

(5, 3|2) 4 146

(5, 4|1) 2 6

0.49(5, 4|2) 6 23

(5, 4|3) 4 31

Pipe

sequence Xt = i Xt ̸= i χ2

(4, 3|1) 4 31
0.28

(4, 3|2) 36 154

(5, 3|1) 2 33
0.17

(5, 3|2) 27 163

(5, 4|1) 2 6

0.88(5, 4|2) 8 17

(5, 4|3) 11 30

(a) Chi-squared test contingency table for Channel, Chamber, Culvert and Pipe service condi-

tion
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Channel

sequence Xt = i Xt ̸= i χ2

(4, 3|1) 11 115
0.004

(4, 3|2) 22 662

(5, 3|1) 0 126
N/A

(5, 3|2) 0 684

(5, 4|1) 0 7

0.73(5, 4|2) 0 23

(5, 4|3) 1 47

Chamber

sequence Xt = i Xt ̸= i χ2

(4, 3|1) 15 114
0.30

(4, 3|2) 26 138

(5, 3|1) 0 129
N/A

(5, 3|2) 0 164

(5, 4|1) 1 48

0.39(5, 4|2) 0 31

(5, 4|3) 1 16

Culvert

sequence Xt = i Xt ̸= i χ2

(4, 3|1) 2 16
0.39

(4, 3|2) 5 84

(5, 3|1) 0 18
N/A

(5, 3|2) 0 89

(5, 4|1) 0 5

N/A(5, 4|2) 0 10

(5, 4|3) 0 5

Pipe

sequence Xt = i Xt ̸= i χ2

(4, 3|1) 0 3
N/A

(4, 3|2) 0 94

(5, 3|1) 0 3
N/A

(5, 3|2) 0 94

(5, 4|1) 0 2

N/A(5, 4|2) 0 1

(5, 4|3) 0 0

(b) Chi-squared test contingency table for Channel, Chamber, Culvert and Pipe structural

condition

Table 4.5: Chi-squared test contingency table for Channel, Chamber, Culvert and Pipe

service and structural condition

4.4.2 Cohort analysis

Each asset group is further divided into several asset types based on their function or

characteristic as shown in Appendix B; for example, pipes are divided into three asset

types based on the type of water they carry: surface water, foul water or combined.

For all assets, other characteristics such as size and material are also recorded in the

database. To decide whether the transition rate matrix should be produced based on

these groups and characteristics, a correlation between each of these parameters and the

service or structural condition was explored with linear regression using a least squares

approximation. As the characteristics of Inflow, Outflow and the Structure are scarcely

recorded, they are not further divided into smaller cohorts. Tests were therefore per-

formed for Channel, Chamber, Culvert and Pipe, as they are the majority groups with

asset characteristics such as material and shape recorded. The resulting significance level

of each characteristic is listed in Table 4.6, of which below the 5% (0.05) critical level

would be deemed as influential.
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Channel

Characteristics Significance

Channel Material 1.9× 10−48

Channel Shape 0

Route 1.2× 10−32

Asset Type 2.3× 10−5

Chamber

Characteristics Significance

Chamber Material 7.6× 10−26

Chamber Shape 0.46

Route 2.3× 10−16

Asset Type 5.6× 10−50

Culvert

Characteristics Significance

Culvert Material 2.9× 10−5

Culvert Shape 1.2× 10−12

Route 1.4× 10−17

Pipe

Characteristics Significance

Pipe Size 2.1× 10−117

Pipe Material 0.63

Pipe Shape 0.39

Route 1.3× 10−20

Asset Type 0.19

(a) Linear regression result of the asset characteristics with service condition score

Channel

Characteristics Significance

Channel Material 3.07× 10−31

Channel Shape 0

Route 5.4× 10−109

Asset Type 1.4× 10−20

Chamber

Characteristics Significance

Chamber Material 0

Chamber Shape 3.9× 10−5

Route 1.2× 10−234

Asset Type 5.6× 10−8

Culvert

Characteristics Significance

Culvert Material 0.03

Culvert Shape 2.6× 10−130

Route 1.1× 10−123

Pipe

Characteristics Significance

Pipe Size 4.5× 10−7

Pipe Material 4.9× 10−60

Pipe Shape 7.1× 10−8

Route 0

Asset Type 5.7× 10−80

(b) Linear regression result of the asset characteristics with structural condition score

Table 4.6: Linear regression results of the significance coefficient of different characteris-

tics for channel, chamber, culvert and pipe
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The results can be summarised as follow:

• Channel: both service and structural condition are correlated with its material,

shape, route and asset type.

• Chamber: service is correlated with its material, route and asset type; structural

condition is correlated with its material, shape, route and asset types

• Culvert: both service and structural condition are correlated with its material,

shape and route.

• Pipe: service condition is correlated with its size and route; structural condition is

correlated with its size, shape and asset type.

The construction material of the assets may affect the rate of deterioration, and hence

a higher chance to form cracks and collapse, which means a higher rate of structural

condition degradation. It can also lead to a higher possibility of increase in surface

roughness and hence an increase in the probability of lower hydraulic capacity, lower

flow velocities, and higher likelihood of sediment derived blockage and hence a higher

rate of service condition degradation. With different size, assets are expected to enable

different flow rates to pass through. Higher flow rates without an adequate slope gradient

could bring more debris and cause sedimentation which can then lead to loss of hydraulic

capacity and decline in service condition. Also, smaller pipes may more easily become

blocked by large debris at lower flow velocities. For an asset’s structural integrity, size and

shape would also be influential as they could affect the strength and load bearing ability. If

any particular size or shape is more vulnerable to the load from railway trains, asset with

these characteristics will have a faster structural condition degradation. The dependence

of service and structural score on location may be due to different local hydrological

characteristics, as all drainage assets are designed to withstand rainfall events with a

certain return period depending on route classification following the company design

standards (as stated in Appendix A). It may also be due to the way each route inspects

and records the score, which could warrant a future study on uncertainty in condition

scoring.

4.4.3 Estimate condition transition matrices

As shown in the last Section 4.4.2, dividing the asset groups into smaller cohorts based

on asset characteristic would produce cohorts that have more cohesive asset behaviour.

The transition rate matrix of generated by these cohorts will hence potentially give better

prediction of the asset degradation process of the assets in each cohort. Although the

asset groups can be divided based one or more influential characteristics, the resultant

cohort may not have enough data to generate a stable matrix. Hence, as requested by

NR, transition matrices are calculated for a selection of asset cohorts which has more

than 1,500 assets, and results are available upon request from NR.

For demonstration of the developed methodology, 300mm diameter pipes were chosen, as

it has the largest population among all pipe sizes, 78% of pipes that a diameter record
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of 300mm. After the data cleanse process described in Section 4.3, the total number of

assets used in the analysis for service condition is 33,472 whereas for structural condition

it is 30,493. The service condition transition rate matrix for pipes with 300mm diameter

is given by the Markov Chain degradation model as:

Qservice =


−0.1484 0.1295 0.0120 0.0028 0.0041

0 −0.0372 0.0302 0.0041 0.0030

0 0 −0.0342 0.0231 0.0111

0 0 0 −0.0496 0.0496

0 0 0 0 0.0000

 ;

the structural condition transition rate matrix is:

Qstructural =


−0.0483 0.0447 0.0033 0.0002 2.28× 10−5

0 −0.0215 0.0209 0.0007 0.0000

0 0 −0.0027 0.0027 0.0000

0 0 0 0 0.0000

0 0 0 0 0.0000

 .

The one year transition probability can be calculated by taking the exponential of the

transition rate matrix Q,

Pservice,1 = e1×Qservice =


86.21% 11.81% 1.28% 0.29% 0.41%

0% 96.34% 2.92% 0.42% 0.32%

0% 0% 96.64% 2.21% 1.15%

0% 0% 0% 95.16% 4.84%

0% 0% 0% 0% 100.00%

 .

The structural condition one year transition probability matrix is:

Pstructural,1 = e1×Qstructural =


95.29% 4.32% 0.37% 0.02% 0.002%

0% 97.87% 2.06% 0.07% 0.00%

0% 0% 99.73% 0.27% 0.00%

0% 0% 0% 100.00% 0.00%

0% 0% 0% 0% 100.00%

 .

As seen in the service condition transition matrix, for 300mm pipes in all service condition

states except condition one, less than 5% of the assets degrade to a worse condition state;

whereas for structural condition, less than 5% of pipes in all condition states degrade into

a worse condition state. Although the number does not seem large, this small number

of degraded pipes can still have a large effect on the performance of individual drainage

systems. Railway drainage systems usually consist of a series of drainage nodes and links,

that are interconnected to form several drainage pipelines alongside tracks to bring water

from a series of inflows to an outfall. If one of the assets fails, for example one of the

pipes is blocked or collapsed, it will not only affect its own water carrying ability, but

also diminish the upstream hydraulic capacity and potentially cause the whole drainage

sub system to fail.
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It is also important to look at the condition transitions to the worst state, as a blocked

or collapsed pipe would cause shut down for the whole drainage system whereas assets in

other condition states would still preserve some functionality. For service conditions, the

transition rate to score 5 is the highest from condition 4, which is anticipated as assets

that are failing will have a higher chance of losing their functionality entirely. However,

for structural condition scores, such a pattern is not observed, this is mainly due to

the fact that there are not many 300mm pipes that failed structurally in the period of

time. More precisely, there is only one transition from structural condition 1 to 5 and no

transition from other condition states to 5. This does not mean that pipes with 300mm

diameter do not transit into condition 5. It may simply have a very small probability of

collapse in a short time period as pipe usually has a very long life span. The accuracy

of the matrix can be improved over time with additional condition observations that

provide more information on the degradation rate. Alternatively, statistical models built

for other piped systems in other industries might be used as a substitute, however, the

uncertainty of such substitution would need to be examined as pipe might degrade with

different rates based on their functionality.

It is noted that, for both service condition and structural condition, the likelihood of

transition from condition 1 to condition 2 is very high compared to other state transitions.

The reasons behind such phenomenon could be varied. The high transition rate could be

due to both how condition 1 and 2 are classified and interpreted. Condition 1 is described

as no defects/clear, which is only expected to be seen in new build assets; any new build

will soon show superficial defects and have potentially small amounts of deposits which

have negligible effects on its hydraulic capacity but warrants escalation to condition 2.

Hence, a transition from condition 1 to 2 is expected to be easily identified and promptly

recorded which will lead to a higher transition rate. However, on the other hand, the

definition of whether superficial defects are present can be vague and could vary across

inspectors and may be affected by the weather condition on the day of inspection. A

superficial defect in one inspector’s opinion may seem unnoticeable to another. The

subtle difference between service condition 1 and 2 might cause extra fluctuations in

condition scores between 1 and 2, and hence induce an increase in N12 and hence a

higher transition rate from 1 to 2.

It is worth mentioning that all condition scores are purely examined by visual inspection

and based on expert knowledge. Without a clear quantification method, human sub-

jectivity is inevitable. A similar 1 to 5 grading system is also being used in the sewer

drainage system but with more complex inspection rules (Water Research Centre (Great

Britain), 2001). Adopting this more complex systems for railway drainage systems in the

future may lead to better condition classification, but is more time consuming and so

more costly.
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4.4.4 Condition score trajectory simulation

While the above section estimated the probability of transitions for the whole asset cohort,

if individual asset degradation is to be simulated, the stochastic simulation algorithm is

used as explained in Section 4.2.4 to simulate condition state change. A few exemplar

assets’ simulated status transitions are presented assuming the asset followed the his-

torical transition rate of the cohort and no intervention will take place in the simulated

period (i.e. no improvement in asset condition). The simulation process is forecasted

for a period of 50 years from the data cut-off date (19/02/2020). To be noted that the

sample trajectories presented are probabilistic, which means that the predicted date of

asset degradation is not an absolute certainty. To obtain a more accurate prediction in

real-life scenarios, it is recommended to take an average of an ensemble of simulations to

represent the most probable time and likelihood of degradation.

Asset Number Service Condition Date Of Transition

17344381 2 23/01/2018

17344381 3 04/05/2019

17344381 4 01/08/2026

17344381 5 08/04/2031

Asset Number Service Condition Date Of Transition

18911409 2 22/09/2018

18911409 3 15/10/2050

Asset Number Service Condition Date Of Transition

17344381 2 23/01/2018

17344381 3 04/05/2019

17344381 4 01/08/2026

17344381 5 08/04/2031

Asset Number Service Condition Date Of Transition

18940379 1 06/02/2019

18940379 2 27/10/2033

(a) Service condition simulation for exemplar assets from 19/02/2020 to 18/02/2070
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Asset Number Structural Condition Date Of Transition

6769394 2 11/09/2019

6769394 3 05/09/2032

6769394 4 03/02/2050

Asset Number Structural Condition Date Of Transition

18911409 2 22/09/2018

18911409 3 19/09/2040

Asset Number Structural Condition Date Of Transition

17344381 1 23/01/2018

17344381 2 30/06/2022

Asset Number Structural Condition Date Of Transition

18940379 1 06/02/2019

18940379 2 18/12/2020

18940379 3 30/08/2046

(b) Structural condition simulation for exemplar assets from 19/02/2020 to 18/02/2070

Table 4.7: Examples of asset service and structural condition degradation trajectory

simulation

Four 300mm pipes are randomly chosen as examples, their service and structural condition

scores are simulated and the results are shown in Table 4.7. Each sub-table shows the

condition transition simulated in the 50 year time period. The first row of each table

is the start condition and the date of that condition state measurement was taken, i.e.

the last inspected condition score before the simulation start date 19/02/2020. Then the

rest of the rows listed have the forecasted condition and the predicted date of transition

taken place.

4.4.5 Determine the minimum sample size required

In order to reduce the costs of inspection for buried assets, a method has been proposed

in the Section 4.2.5 to determine the minimum number of samples that could provide

sufficient data to obtain a stable transition matrix for the degradation model. With any

pre-divided cohorts from the above linear regression test, the transition rate matrix will

be calculated with various numbers of randomly selected samples. Such results are then

to be compared with the transition rate matrix generated from all assets in the cohort,

in order to investigate what is the critical number of assets that can represent the whole

cohort.

The pipes with 300mm diameter is tested below as an example, following the procedure

listed in Section 4.2.5 with chosen value n=100 and m=100. Results are shown in the

Figure ; in the figures, the left-hand y-axis of each sub-plot represents the change of

68



one element qij in the estimated transition rate matrix Qs with increasing number of

samples. For better clarity of the comparison of elements qij in transition rate matrix

Q, all figures of qij are shown as
qij
qij
. The right-hand y-axis demonstrates the change in

standard deviation for each sample size.

Service condition

As shown in Figure 4.2, the sample mean Qs graphs for all elements in the transition

rate matrix start to flatten out after around 5,000 samples. Also, the standard deviation

decreases dramatically first and then slows down after 5,000 samples, which makes sense

because as sample size gets larger, there is less error in estimating the true transition rate

matrix. Although for each element qij of Qs the rate of convergence is different, their

difference with the qij in transition matrix Q all converge below 5% after 7,000 samples.

Hence it can be said that for this cohort a 7,000 sample will be able to provide a stable

transition rate matrix with a five-year historical data record. Although the transition

rate matrix produced with the minimum required sample size is a sound estimation of

the whole cohort, a certain degree of uncertainty will always be present, which the asset

managers should take into consideration while interpreting the results of this method.

Structural condition

For structural condition, more asset samples are required to generate a stable matrix.

Although the standard deviation drops around a 5000 sample size, although high fluctua-

tions in the sample mean still exists until around 20,000 sample size. The highest sample

size required for elements qij of Qs to converge within 5% difference of the transition

matrix Q is 28,700.

This large value is mainly due to the fact that there is many fewer transitions in the

structural condition, and hence whether a particular asset is selected as a sample could

make a large difference in the transition rate. For example, there is only one transition

from condition 1 to condition 5 recorded throughout the whole time period, when sample

size is small, the likelihood of that asset is chosen would be much less, and hence a large

sample size is required to ensure this particular asset is included in the dataset used to

estimate the transition matrix.
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4.4.6 Minimum Sample Size Required with shorter timeframe

Although there exists a quite sizable historical condition data record ranging from 2007 to

present nationwide, there are some areas that have fewer years of past data and hence it

is important to understand how that could affect the number of samples that are required

to obtain an accurate matrix.

Number of

years

Total number

of assets

Number of assets

required for a

stable matrix

Percentage of

Assets

Required

5 33,434 5,500 16%

4 32,583 9,300 29%

3 30,441 10,400 34%

2 24,406 11,900 49%

1 14,753 13,300 90%

(a) Number of assets required for a stable service condition transition rate matrix

Number of

years

Total number

of assets

Number of assets

required for a

stable matrix

Percentage of

Assets

Required

5 30,437 27,800 91%

4 29,693 28,200 95%

3 27,765 26,200 94%

2 22,045 19,100 87%

1 13,791 12,400 90%

(b) Number of assets required for a stable structural condition transition rate matrix

Table 4.8: Number of assets required for a stable condition transition rate matrix with 1

to 5 years’ historical condition record

The same analysis was performed to investigate the number of assets required to obtain

a stable matrix for 300mm diameter pipes (see Table 4.8). For service condition, the

percentage of samples required to provide a stable matrix increases as the number of

years’ data collection decreases. This is because in a shorter period, fewer condition

transitions occur, and hence the behaviour of asset degradation would appear to be more

volatile, and therefore the degradation matrix over a smaller time window may be less

easy to extrapolate into the future. Whereas for structural condition, the number of

assets required for a stable matrix does not vary much with the duration of the condition

record used. This may due to the fact that the amount of particular condition status

transition is very low (e.g. transition 1 to 5), and this will affect the speed of convergence

for the particular element in the transition matrix, and hence lead to a high sample size

requirement for all tested datasets.
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4.4.7 Model validation

Service Condition

The degradation model is validated with 300mm diameter pipe asset data. The data is

randomly split into two groups; one is the calibration group, consisting of 7,000 assets

which are shown to be the minimum amount required to generate a stable transition

rate matrix for asset service condition; the other contains the remaining assets and is

the validation group. The split was done once by randomly selecting 7,000 assets using

Matlab function ‘randsample’. Although validation may be performed multiple times, it

is generally believed that any random split can adequately represent the model validation

process. The transition rate matrix is calculated using the calibration dataset assuming

no intervention is performed between inspections. This matrix is then applied to the val-

idation set to predict the number of transitions in each condition category. The observed

and expected percentage of the condition state transitions are shown in the Table 4.9 be-

low, while the differences between observed and expected percentages are shown in Table

4.10. The number of expected values are on average within 2% of the observed value,

which provides sound evidence that prediction of possible transitions in a given period

is possible. The only transition with a high difference in transition rate is the transition

from condition 1 to 2. This is due to the high variability of the data for transitions from

condition 1 to 2, which is also reflected in the Figure 4.2, where the standard deviation

of q11 and q12 with 7,000 samples has one of the highest standard deviation value among

all element values. Hence it is more likely that the randomly selected sample groups

have a higher difference in their transition rate than the others. Moreover, the differ-

ence between condition 1 and condition 2 are minimal, hence there might exists more

uncertainty in determining the transition from 1 to 2 purely due to the subjectiveness of

different inspectors. Some inspectors may think condition 1 is only designated to newly

build assets and mark the asset to condition 2 once on the subsequent visit, whilst other

inspectors may continue to use condition 1 if no noticeable defect is observed.
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Start Condition
End Condition

1 2 3 4 5

1
Observed 77.70% 19.40% 1.87% 0.41% 0.62%

Expected 80.35% 16.74% 1.83% 0.48% 0.60%

2
Observed 95.53% 3.65% 0.46% 0.36%

Expected 95.91% 3.16% 0.55% 0.37%

3
Observed 94.84% 3.48% 1.68%

Expected 96.18% 2.47% 1.35%

4
Observed 92.92% 7.08%

Expected 93.46% 6.54%

5
Observed 100.00%

Expected 100.00%

Table 4.9: Observed and expected percentage of service condition transition in validation

dataset

Start Condition
End Condition

1 2 3 4 5

1 -2.65% 2.66% 0.04% -0.07% 0.01%

2 -0.38% 0.48% -0.09% -0.01%

3 -1.35% 1.02% 0.33%

4 -0.54% 0.54%

5 0.00%

Table 4.10: Difference between observed and expected percentage for service condition

validation set

Structural condition

For Structural condition a similar validation process was performed, where the samples

dataset containing randomly picked 28,700 assets and the validation set contains the

remaining assets. The split was done once by randomly selecting 28,700 assets using

Matlab function ‘randsample’. The results are shown in the Table 4.11 and 4.12. For all

transitions, the expected and observed percentages have a less than 2% difference. The

largest difference appears in the transition from condition 3 to 4. As shown in Figure 4.3,

q33 and q34 are both higher in the variance. The high variance would be due to the fact

that the structural condition of buried assets such as pipes is often difficult to visually

examine. The change from 3 to a worse condition state might not be noticed until severe

obstruction to water flow is observed as a result of structural failure. As a result, the

variation of time between condition change from 3 to 4 has high volatility, which leads

to the high variability in the observed and predicted transitions.
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Start Condition
End Condition

1 2 3 4 5

1
Observed 93.88% 5.76% 0.36% 0.00% 0.00%

Expected 94.01% 5.43% 0.53% 0.03% 0.00%

2
Observed 97.59% 2.41% 0.00% 0.00%

Expected 97.23% 2.67% 0.10% 0.00%

3
Observed 98.33% 1.67% 0.00%

Expected 99.71% 0.29% 0.00%

4
Observed 100.00% 0.00%

Expected 100.00% 0.00%

5
Observed N/A

Expected N/A

Table 4.11: Observed and expected percentage of structural condition transition in vali-

dation dataset

Start Condition
End Condition

1 2 3 4 5

1 -0.12% 0.33% -0.17% -0.03% 0.00%

2 0.35% -0.26% -0.10% 0.00%

3 -1.38% 1.38% 0.00%

4 0.00% 0.00%

5 N/A

Table 4.12: Difference between observed and expected percentage for structural condition

validation set

4.4.8 Uncertainty analysis

The reliability of the transition matrix is dependent on the quality of the historical asset

condition records. The methods used to preprocess the asset condition before input into

the degradation model were explained in Section 4.3. The analysis described below has

been carried out to understand how various assumptions and data cleanse criteria could

affect the degradation transition probability. In this section, different assumptions will

be tested to quantify the variability of the output matrix that is due to the uncertainty

of the input data. The following analysis are performed with the 300mm diameter pipe

cohort.

Case 1

In the above sections, assets that have at least one condition score are included in the

study. Assets with only one record are assumed to stay in that condition until the

data cut-off date. However, there is a possibility that these data do not provide valid

information on the true condition state transitions, as they may have been only inspected

once and then forgotten. Lack of frequent inspections for these assets could give a false
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illusion that these assets have always stayed in a stable condition whilst they may have

already been degraded, or that these assets have stayed in a bad condition while they

have been intervened and brought to a better condition. Hence, it is suggested to remove

the assets with only one condition record and investigate the effect of such data filtering.

The result one-year probability matrices are as follows:

P∗
service,1 =


71.82% 23.83% 2.81% 0.64% 0.89%

0% 94.09% 4.64% 0.72% 0.55%

0% 0% 93.60% 4.13% 2.27%

0% 0% 0% 91.20% 8.80%

0% 0% 0% 0% 100.00%

 ,

P∗
structural,1 =


88.95% 10.07% 0.92% 0.02% 0.01%

0% 96.86% 3.04% 0.10% 0.00%

0% 0% 99.53% 0.47% 0.00%

0% 0% 0% 100.00% 0.00%

0% 0% 0% 0% 100.00%

 .

The difference between the new matrix and the matrix composed with all assets in the

cohort in Section 4.4.3 are as follows:

Pservice,1 −P∗
service,1 =


14.39% −12.02% −1.54% −0.35% −0.48%

0 2.25% −1.72% −0.30% −0.24%

0 0 3.04% −1.91% −1.13%

0 0 0 3.96% −3.96%

0 0 0 0 0.00%

 ,

Pstructural,1 −P∗
structural,1 =


6.33% −5.75% −0.55% −0.04% 0.00%

0 1.02% −0.98% −0.04% 0.00%

0 0 0.21% −0.21% 0.00%

0 0 0 0.00% 0.00%

0 0 0 0 0.00%

 .

As expected, there is an increase in the probability of staying in the current status for all

condition states, this the due to the fact that assets with only one condition score do not

contribute to any of the condition transitions count Nij, whilst they contributed to the

holding time Ri since they are assumed to stay in the observed condition from the date

of inspection to the data cut-off date. It is noted that for both service and structural

condition, the probability of staying in condition 1 has the biggest decrease after the data

filtering. This indicated that the assets with only one condition record spend the longest

time in condition 1, and this is because the majority of these assets have a condition score

1. This suggests that assets with only one data record do bias the transition matrix.

By removing the assets with one condition score, it could prevent the underestimation of

asset degradation rate due to infrequent asset condition inspection. However, on the other
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hand, it could also exclude the portion of the asset whose service/structural condition

that are genuinely unchanged, and hence cause overestimation in the degradation rate.

It can be concluded that the true degradation rate would fall in between the P and

P ∗. With no additional information, it is impossible to accurately quantify the influence

of infrequent inspection. It is hence suggested to the asset manager to appreciate the

impact of these data assumptions while making the decision on which data to use for asset

management planning. The filtered dataset can be used as an indication of the worst

degradation scenario; whereas the unfiltered dataset can be used as a bottom line case.

Such differences in results can also be used to support any recommendation to promote

a more frequent and regular inspection regime.

Case 2

In the above case, one assumption is made without pre-justification which is that condi-

tion transitions happen at the time of inspection. In reality, it is impossible to observe

the condition change immediately, hence such assumption should be challenged and there

should exist a time lag between the time of degradation and the time of inspection. With-

out constant monitoring of the asset degradation process, it is hard to define the how

long the time lag should be. Therefore, it is assumed in this section that such transition

happens half way between inspections and test the difference such an assumption would

make to the degradation transition matrix. The resulting one-year probability matrices

are as follows:

P∗
service,1 =


86.42% 11.63% 1.27% 0.29% 0.40%

0% 96.19% 3.04% 0.44% 0.33%

0% 0% 96.69% 2.18% 1.12%

0% 0% 0% 95.46% 4.54%

0% 0% 0% 0% 100.00%

 ,

P∗
structural,1 =


95.32% 4.29% 0.37% 0.02% 0.00%

0% 97.84% 2.09% 0.07% 0.00%

0% 0% 99.74% 0.26% 0.00%

0% 0% 0% 100.00% 0.00%

0% 0% 0% 0% 100.00%

 .

The difference between the new matrix and the matrix composed with all assets in the

cohort in Section 4.4.3 are very minimal: less than 0.3% difference for service condition

and less than 0.03% difference for structural condition. This may because the effect of

early transition is averaged out across the various condition transitions. It may also

suggest that a more frequent inspection regime may not impose a big improvement in

the accuracy of the degradation prediction. The example shows that an additional tran-

sition inspection placed in the middle of the original two inspections, which provides a

more accurate time of condition transition, will not bring much change to the original

degradation probability.
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4.5 Discussion

As shown above, the continuous Markov Chain model can provide a robust prediction of

the service degradation process of the railway 300mm diameter drainage pipes with only

21% randomly selected samples from the entire cohort; and provides a sensible prediction

of the structural degradation process with 94% randomly selected samples. Such analysis

would help asset managers to justify the overall inspection costs while maintaining a

sufficient understanding of degradation process for different asset classes, which would

further contribute to objective budget planning of potential maintenance and renewal

schemes. Also to be noted, as shown in Section 4.4.6, is that with a longer duration

of historical record, fewer asset samples may be required to simulate the whole cohort’s

service condition degradation behaviour. However, this may not apply to structural

condition, at least not for the 300mm pipe cohort chosen in the case study. This may be

due to the fact that structural condition transitions have a slower speed and hence more

asset samples are needed to simulate the whole asset group. These results would provide

asset managers with quantitative evidence of the advantages of maintaining a consistent

and continuous inspection regime, and guide the extent of such a regime.

Moreover, by combining the degradation estimation with a hydraulic model of the drainage

system, there is possibility of estimating the frequency and scale of drainage failure under

different maintenance strategies over long time periods. This could allow asset managers

to weigh the cost of intervention against the loss of performance quantitatively, hence

bringing stronger arguments when producing budget estimations for future asset man-

agement purpose.

This Markov Model forms a cornerstone of the decision support tool developed to assist

the route managers in prioritising works on drainage assets. For assets that have a detailed

track record of condition scores, by comparing the degradation rate of different asset

groups and different routes, asset managers will be able to identify the type of asset and

the location of the system that is more prone to degradation. Hence they may objectively

justify decisions to increase the inspection frequency and prioritise maintenance/renewal

works of these assets.

Impact of Intervention

In this study, the effect of apparent historical interventions is removed by disregarding

any upgrading incidents in the historical database. Although in this way the effect of in-

tervention is minimised, the interference to the estimation of the degradation rate caused

by this data processing process cannot be fully eliminated. It is assumed that if an asset

has been upgraded due to an intervention, it stayed in the previous condition until in-

tervention happened. Without intervention, the particular asset may have stayed in its

current condition for a further amount of time before degrading, hence this may cause

an underestimation of the possibility of remaining in the same condition state, and hence

an overestimation of the possibility of degradation. This problem cannot be rectified

without establishing a model that could simulate the intervention activities. However,
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slightly overestimating the degradation rate may not be a shortcoming in real life, as

degradation can always be accelerated due to unforeseen events such as extreme adverse

weather conditions; hence it can prepare asset managers with a worst case scenario.

As stated in Section 3.4, there are various intervention options that NR carries out on

drainage asset in order to slow down, stop or reset the condition of degraded assets;

and hence remedy any unsatisfactory system performance. Each type of intervention is

believed to affect condition level as follows and will be implemented in the WLC model

using these rules:

• Renew and New Build will reset the condition score to 1.

• Refurbish will improve performance and brings the asset to a certain low condition

score with no defect or only superficial defect that does not affect serviceability (ie.

condition 1 or 2).

• Maintain will make assets stay in the current condition score for a certain period of

time, or brings the asset to a slightly better condition state (lower condition score).

• Inspect & Survey will not have a direct impact on the asset condition level, but

will help improve asset knowledge and better monitor the asset condition level

change. Hence, it will potentially shorten the reaction time between asset condition

degradation and intervention actions.

Besides resetting the asset condition score to 1, renewal of an asset might have other

effects on the degradation rate. The degradation rate of a new-build asset might be

slower than the older assets in the same condition score category. Such a difference

in rate can only be examined if there is information about the age of drainage assets.

However, almost all railway drainage assets are of unknown age, many may date from as

early as Victorian times. Until additional age related data is provided, this will remain

as one of the limitations of the model.

Routine maintenance will defer the rate of degradation in service condition. If routine

maintenance is applied to all assets nationwide with the same schedule, its effect will

be normalised and will not cause bias in the degradation rate. However, in real life

the frequency of maintenance for a particular asset can depend on many terms such as

the criticality of the asset failure, the budget allocation of the region and the current

condition of the asset. The effect of routine maintenance is to be quantified in further

studies and is assumed negligible in this study.

There are currently limited studies on how interventions are affecting the rate of degrada-

tion of different types of drainage assets s. The effect of intervention is to be investigated

by linking the intervention records to the improvement of condition score. Analysis of

NR asset database during this study indicated such data are scarce and unorganised.

It is uncertain whether the asset owner always updates asset condition data once an

intervention is made. Also, drainage asset interventions can be carried out as part of

the work order of other railway assets such as earthwork or track, and hence make the

linkage to condition score improvement harder to locate. Since all these questions cannot
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be answered conclusively given the current quality of NR’s asset data, it was decided to

overlook the effect of interventions in this study.

4.6 Conclusion

This chapter presented a continuous Markov chain model to quantify the degradation pro-

cess of the service and structural condition of railway drainage infrastructure in the UK.

The model was informed by condition data of the UK railway drainage assets collected

by Network Rail. The characteristics influencing the degradation process were studied so

that the drainage assets could be divided into homogeneous groups. Hence, the transition

matrix derived from each group could predict the probability of the degradation process

of individual assets in the group. Methodologies were performed on the case study with

NR drainage assets to verify the Markov property of the data set, compute the transition

rate matrix, and find the minimum number of samples needed for any cohort of assets in

order to get a stable transition matrix that can represent the whole cohort. The model

was applied and validated for the service and structure condition degradation of pipes

with 300-mm diameter, and the results showed that the difference between the observed

and predicted percentage of asset degradation is within 2%.
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5 Hydraulic Performance Model

As explained in Section 3.3, in this study models are developed to simulate current

railway drainage system performance and forecast the risks of failures under potential

future weather conditions and possible asset condition degradation. Two complimentary

models were designed, that could accommodate asset management scenarios aligned at a

tactical and a strategic level. With a tactical approach, individual route can use the model

to find the optimum maintenance schedule that ensures acceptable system performance

while minimising the total expenditure for a local area or a particular problematic site,

whereas at the strategic level asset managers can make decisions on a national scale by

ensuring adequate performance while taking into account the economics of the whole of

NR drainage assets over a long time period.

For regions with detailed and complete asset databases, a comprehensive hydraulic model

could be built to represent the performance of individual drainage systems. Whereas

places with insufficient asset inventory and/or limited recordings of asset characteristics,

a data driven failure mode analysis can be used as a substitute. Also, on a strategic

level, it would be more cost efficient to estimate the performance of the national drainage

assets’ performance with a data driven approach than the hydraulic modelling as they

are usually more time consuming.

In this chapter, the methodology for the hydraulic performance model to be used in the

tactical approach is presented with a case study of a historically frequently flooded site

in Scotland. The methodology consists of the following sections:

• Overview: This section provides an outline of the methodology section, including a

flow chart of how each subsection is linked and presented.

• SWMM: Introduction of the storm water management model used in the study,

listing and describing the steps taken to construct a hydraulic performance model

for railway drainage systems using SWMM.

• Data sourcing and processing: This section described the data required to build the

hydraulic performance model, including the datasets acquired for this study and the

data processing methods used to prepare the data for use in the performance model.

• Catchment analysis: This section described a methodology for determining the

catchment area served by any railway drainage system. This methodology helps to

prepare the data required for the SWMM model and provides NR with a way of

defining the catchment area associated with their railway drainage systems.

• Model calibration: This section described a methodology for calibrating the hy-

draulic performance model with field collected data such as flow rate and water

depth within the drainage system.

• Asset criticality analysis: This section described a methodology for identifying the

most vulnerable assets in a railway drainage system using the hydraulic performance

model. This helps asset managers locate high-risk or critical drainage assets. In

this study, it also helped to optimize sensor placement for field measurements when
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monitoring resources are limited.

The case study was then carried out following the methodologies introduced. The case

study section consists of the following subsections:

• Digital replica: The exemplar railway drainage system was built into the hydraulic

performance model, creating a digital replica of the system in SWMM.

• Catchment analysis: Catchment analysis was carried out for the exemplar system

using the methodology described in Section 5.1.4.

• Rainfall data: This section states how the rainfall data used in the case study were

acquired and prepared following the methodology described in Section 5.1.3.

• Sensor proposition: Sensors were planned to be placed in the field to collect data

for the model calibration. The locations of the sensor placement were decided based

on preliminary tests with the hydraulic performance model using historical rainfall

time series and the critical asset analysis following the methodology described in

Section 5.1.6. Locations of flooded site in the preliminary test and weak links

determined in the critical asset analysis are chosen.

• Sensor installation and data collection: This section described the sensor installa-

tion procedure, and analyzed the data collected using the implemented sensors.

• Model calibration: This section describes the process of calibrating the hydraulic

performance model of the exemplar railway drainage system using the data pro-

cessed in Section 5.2.5.

5.1 Methodology

5.1.1 Overview

The performance of a railway drainage system could be measured by its available hy-

draulic capacity due to the nature of its designed purpose, which is transporting wa-

ter away from other railway assets to protect them and maintain normal operations of

NetworkRail. The hydraulic capacity can be modelled using EPA’s Storm Water Man-

agement Model (SWMM), simulating water flow in the drainage system according to

asset conditions, surrounding catchment characteristics and imposed rainfall. When the

hydraulic capacity of the system is inadequate, water is expected to come out of the

catchpits and accumulate above ground. If the level of the ponded water is higher than

the level of the rail, it is defined as a flooding event that could cause obstruction to train

operations. The level of flooding can hence be used as the indicator of drainage system

failures.

SWMM is a dynamic rainfall-runoff simulation model used for single event or long-term

(continuous) simulation of runoff quantity and quality from primarily urban areas (Ross-

man, 2015). It comprises a rainfall-runoff component and a routing module. The rainfall-

runoff component represents the transformation of rainfall into runoff through the user de-

fined catchment areas. Then the routing module transport the runoff through a drainage
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system that is composed of pipes, channels, storage/treatment units, pumps, and regu-

lators, into an outfall. It is used throughout the world for planning, analysis, and design

related to stormwater runoff, combined and sanitary sewers, and other drainage systems

(Rossman, 2015). The railway drainage system can be deemed as a simplified urban storm

sewer system with small and elongated catchments, and is well suited to be modelled by

SWMM.

The workflow of the methodology section is displayed in the flow chart in Figure 5.1.

The general methodology for building a hydraulic performance model with SWMM is

described in Section 5.1.2. Data required for constructing the model is listed in the

Section 5.1.3 and the methodology of processing the data is also described. In order

to obtain the catchment related input parameters, a catchment analysis methodology

is developed as shown in the Section section:CathMethod. The developed model using

the data prepared can be used in the asset criticality analysis to inform the location

of vulnerable assets and hence suggest the locations where field measurement should

be taken for model calibration. The methodology of the asset criticality analysis is

presented in Section 5.1.6. Once the model is calibrated with sensor data using the

methodology explained in Section 5.1.5, the resultant model can be used to provide an

accurate evaluation of the railway drainage system performance. It can also be used in

the asset criticality analyse to provide a more accurate prediction of the level of risk for

drainage assets in the systems.

Figure 5.1: Workflow of the hydraulic performance model methodology
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5.1.2 SWMM

Water transportation from precipitation into a drainage system is simulated in SWMM

as a series of flow exchange between several major environmental compartments. The

compartments and their objects used in this study are listed as below:

• The Atmosphere compartment.

It generates precipitation and deposits pollutants onto the land surface compart-

ment. SWMM uses Rain Gauge objects to represent rainfall inputs to the system.

• The Land Surface compartment.

It is represented through one or more subcatchment objects. It receives precipi-

tation from the Atmospheric compartment in the form of rain or snow; it sends

outflow as surface runoff to the Transport compartment.

• The Transport compartment.

It contains a network of conveyance elements (channels, pipes pumps, and regu-

lators) and storage/treatment units that transport water to outfalls. Inflows to

this compartment can come from surface runoff or from user-defined hydrographs.

The components of the Transport compartment are modelled with Node and Link

objects. Nodes are points of the system that connect links together, consisting of

Junctions, Outfalls, Flow Dividers and Storage Units. Links are the conveyance

components of a drainage system that lie between a pair of nodes. Types of links

are Conduits, Pumps and Regulators (Rossman, 2015).

The following steps outline the procedure to create a hydraulic performance model for

any railway drainage system in SWMM:

1. Build a digital replica of the physical components of the study drainage system

using the SWMM objects.

2. Adjust each object properties according to the corresponding drainage asset char-

acteristics and condition information.

3. Perform catchment analysis to find the subcatchments that are served by the

drainage system, and analyse their characteristics.

4. Draw the subcatchments in SWMM.

5. Prepare the rainfall time series for each subcatchment.

6. Choose appropriate modelling options.

7. Run the simulation.

8. Extract modelling results from output file.

9. Calibrate Model by comparing field collected sensor data and calibrated results.

10. Use the calibrated model to predict future drainage system performance.
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5.1.3 Data sourcing and processing

Prior to building any model, it is important to explore and analyse the data required.

For each type of object in SWMM, the properties to be inputted in SWMM are listed in

Table 5.1.

Object Properties

Node

(Junctions, Outfalls,

Flow Dividers,

Storage Units)

All Nodes

X-Coordinate, Y-Coordinate, Invert Elevation, Maximum

depth, Ponded Area

Category Specific

Flow Divider: Diverted Link, Type of divider and correspond-

ing parameters

Storage Unit: Storage Curve and corresponding coefficients

Link

(Conduits, Pumps)

Conduits

Inlet Node, Outlet Node, Shape, Maximum Depth of Cross

Section, Length, Roughness (Manning’s n), Inlet Offset, Outlet

Offset, Initial Flow, Loss Coefficient

Pumps

Inlet Node, Outlet Node, Pump Curve and corresponding co-

efficients

Rain Gauge
X-Coordinate, Y-Coordinate, Rain Format, Rain Interval,

Data Source

Subcatchment

X-Coordinate, Y-Coordinate, Rain Gage, Outlet, Area, Width,

Slope, Percentage of Impervious Area, Manning’s n for over-

land flow over the pervious and impervious area, Depth of de-

pression storage on the pervious and impervious area, Infiltra-

tion coefficients

Table 5.1: List of SWMM object properties

Asset Properties

The properties of the Nodes and Links are expected to be found in the drawings and design

documents of the study drainage system from the NR drainage databases (Ellipse). Each

type of asset in Ellipse is linked to one object in SWMM, for example a Chamber is defined

as a Junction in SWMM. In cases where there are insufficient recordings of the study

drainage system, or the data quality of the existing asset database is inadequate; field

surveying is recommended to obtain the most accurate levelling measures and detailed

asset condition information. If surveying could not be performed due to operational

difficulties such as restricted accessibility to specific sites, digital terrain models can be

85



used as a substitute to find the elevation level of the top of the Nodes. However, in

this case, the accuracy of the model will be undermined as there is no way to verify the

invert level of the Junctions and which will increase the uncertainty in the gradient of

the conduits, which is thought to be one of main influence of the hydraulic capacity of

the drainage system (Spink et al., 2014).

Rainfall Time Series

Rainfall used in SWMM can be real life data (collected using rain gauges or estimated

from radar data), or user selected design rainfall events based on expected return periods.

In this study, when real life rainfall data is required, rainfall time series that are produced

from rainfall radar data operated by the UK Meteorological Office and processed by the

Met Office’s Nimrod system is used in the simulations. Data are downloaded from CEDA

(Center for Environmental Data Analysis) Archive site. Nimrod is a fully automated

system for weather analysis and nowcasting based around a network of C-band rainfall

radars located throughout the UK. Four or five radar scans at different elevations at each

site are processed to give the best possible estimate of rainfall intensity at the ground

(Met Office (2003): Met Office Rain Radar Data from the NIMROD System, n.d.). Data

files are available at a time resolution of 5 or 15 minutes, on a 1 km and 5 km Cartesian

grid, dating from late 2002. For higher accuracy in the performance model simulations

given the small contributing areas of railway drainage systems, rainfall time series on a

the finer temporal and spatial scale of 1 km grids with a 5 minutes’ interval is used.

After downloading the raw rainfall time series data, it is to be cleaned and processed to

remove the anomalies such as negative values and repetitive data points. To be noted

that subcatchments in the model could cover more than 1 km grid, or span over a few

adjacent 1 km grids. Hence, rainfall time series for the catchments should be calculated

based on the size of area belongs to each kilometer square grid. It is decided to make the

distance between the centroid of the subcatchment and the centroid of each 1 km grid as

the indicator of the proportion of rainfall contributed by each grid. The reciprocal of the

distance is used as part of the weighting factor to calculate the weighted average rainfall

time series for the subcatchment, so that the contributing rainfall amount of each grid is

inversely proportional to the distance.

If a subcatchment is to span over n 1 km grids, namely C1, C2, . . . , Cn. LetXC1 , XC2 , . . . , XCn

and YC1 , YC2 , . . . , YCn to be the X and Y coordinates of the centroid of the 1 km grid

C1, C2, . . . , Cn; and let RC1 , RC2 , . . . , RCn to be the rainfall data of each grid. Let

Xs, Ys, Rs to be the X, Y coordinates and rainfall data of the subcatchment. The distance

DC1 between the centroid of 1km grid Ci and the centroid of the subcatchment is equal

to:

DCi
=
√

XCi
−Xs)2 + (YCi

− Ys)2 (11)

The rainfall data of the subcatchment can be computed as:

Rs =
i=n∑
i=1

WCi
×RCi

(12)
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where WCi
is the rainfall weighting factor calculated based on the distance DCi

.

For each grid Ci, WCi
is evaluated by solving the following equation:

Find constant k such that:

WCi
=

k

DCi

i=n∑
i=1

WCi
= 1 (13)

Catchment Topography

In order to construct the subcatchments in SWMM, topographical catchment analysis

is required to identify the boundaries of the contributing subcatchment of the linked

railway drainage system. Topographic information can be analysed using Open source

data available at DigiMap 1. The dataset used in this study are:

• OS OpenMap: OS OpenMap is a digital map dataset provided by Ordnance Survey,

the national mapping agency of the UK, offering high-quality, vector-based mapping

providing geographic information.

• Aerial Image: Aerial Image provides high quality aerial photography of a bird’s-eye

view over Great Britain. It is ideal for looking at the reality of a location in great

detail.

• LIDAR Composite DTM (Digital Terrain Model): A LIDAR Composite DTM is

a 3D representation of the earth’s surface created from LIDAR (Light Detection

and Ranging) data. The data is captured by firing very rapid laser pulses at the

ground surface. laser energy reflected back from the ground the surface is examined

and captured as a dense cloud of 3D points, which are then converted into highly

detailed terrain models of the surface of the earth.

DTM data are available in resolution of 25 cm, 50 cm, 1 m and 2 m. All LIDAR data has

a vertical accuracy of +/-15cm RMSE. Highest possible resolution is preferable as higher

resolution will enable analysis of more detailed minor drainage features. OpenMap and

Aerial Image are used to observe the land use and any minor drainage feature that could

not be identified automatically by using the DTM.

5.1.4 Catchment analysis

Catchment Analysis is performed using ArcMap with LIDAR Composite DTM. DTM is

converted into raster, which consists of a matrix of cells each containing a value represent-

ing the average elevation level of the area in that cell. The size of the cells is determined

by the resolution of the DTM data, data with 25cm spatial resolution will produce cells

with areas 25x25 cm.

1https://digimap.edina.ac.uk/
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After obtaining the topography of the surrounding land, the next step is to investigate the

hydrologic characteristics of the surface. In the study of Jenson and Domingue (1988), it

demonstrated that algorithms in their computer-based tools could transfer vector-based

geographic information systems to drainage lines and watershed polygons and pour point

(outlet) linkage information. The algorithm consists of two phases:

1. Conditioning phase that generates three data sets:

• Original DTM with depressions filled.

• Flow direction data set which contains the direction of flow for each cell.

• Flow accumulation data set in which each cell receives a value equal to the

total number of cells that drain to it.

2. Application phase that processes the original DTM and these three derivative

data sets to delineate drainage networks, overland flow paths, watersheds for user-

specified locations, sub-watersheds for the major tributaries of a drainage network,

or pour point linkages between watersheds.

A procedure is developed for the small catchments found in this study and performed

using several tools within ArcMap to help understanding how water flows across the

surface and analysing the subcatchments served by the drainage system. Below listed the

steps of using ArcMap tools to determine the contributing area of each subcatchment.

1. Use Fill tool to fill depressions in the surface raster to remove small imperfections

in the data.

2. Apply Flow Direction tool to the DTM raster to find the direction of flow from

every cell in the raster.

3. Apply Flow Accumulation tool to the Flow Direction raster to calculate accumu-

lated flow and identify streams by locating areas of concentrated flow. vFind points

where streams intersect with railway drainage systems.

4. Perform Watershed tool on the Flow Direction raster to find the area that con-

tributes flow to the designated points, which are the junctions of streams and the

drainage system determined in step 3.

Once watersheds are determined, they are used as subcatchments in the SWMM model.

The following subcatchment characteristic can also be computed using ArcMap tools:

Area, Average slope, Flow width, Impermeability. The Slope tool identifies the steepness

at each cell of the DTM raster. Average slope is calculated by finding the average of

the slope within a subcatchment. An estimate of the subcatchment width is given by

the subcatchment area divided by the average maximum overland flow length (Rossman,

2015). Flow length can be computed using ArcMap Flow length tool. Impermeable

area is estimated by manual detecting and aggregating the area of building and road in

ArcMap using OS OpenMap and Aerial Image.

The details of the algorithm behind each ArcMap tools used are explained below.
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Fill

DTMs almost always contain depressions (sinks) that obstruct flow routing (Jenson and

Domingue, 1988), hence they should be filled to ensure accurate delineation of watersheds

and streams. These sinks are often caused by errors due to the resolution of the data or

rounding of elevations to the nearest integer value. The Figure 5.2 shows how the cross

section of the landscape changes after Fill is performed (How Fill works—ArcGIS Pro,

n.d.).

Figure 5.2: Profile view of a sink before and after running Fill

Fill of sinks are performed in the following steps:

1. Identify sinks inside the DTM raster data. A sink is defined as a cell in the DTM

raster that has an undefined flow direction, i.e. no cells surrounding it has a lower

elevation level.

2. Identify the contributing area of each sink by computing the flow direction of all

cells and hence find the watershed of the sink; and then locate the pour point of

that area. The pour point is defined as the cell with the lowest elevation on the

boundary of the area.

3. If a z-limit is specified, sinks with a maximum difference between the depth of the

sink and the pour point of its contributing area that is larger than the z-limit will

be filled. Otherwise, all sinks found in step on will be filled.

4. Elevation of the sinks to be filled will be changed to the elevation level of their pour

points.

5. As existing sinks are filled, additional sinks may form at the boundaries of the filled

areas. Step 1-4 are repeated until all sinks are removed.

Flow Direction

The Flow Direction tool analyses the direction of flow out of the cell. For any given

cell, there are eight cells that are spatially adjacent to it in the raster. A unique value

is assigned to the processing cell, each representing the orientation of one of the eight

directions that the flow could travel in. The procedure is developed by Jenson and Jenson

and Domingue (1988) and is usually known as the eight-direction (D8) flow model. The

output of the tool is an integer raster whose values range correspond to the orientation

of one of the eight cells that surround the cell (x) as follows:
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The methodology is presented below:

1. The direction of flow is determined using the maximum drop from one cell to its

surrounding cells. The maximum drop is calculated as following:

maximum drop =
change in z value

distance
× 100

The z value for this model would be the elevation value of each cell and the distance

is calculated between cell centers.

2. Find the adjacent cell/cells with the highest maximum drop, or the steepest descent,

and apply one of the following:

(a) If the largest maximum drop is less than zero, that cell is given the value of its

lowest neighbour, and flow is defined toward this cell.

(b) If the largest drop is drop is less than zero, and if multiple neighbours have the

lowest value, assign the flow direction as the sum of those directions.

(c) If the largest maximum drop is greater than or equal to zero and occurs at only

one neighbour, assign the flow direction to that neighbour.

(d) If the largest maximum drop is greater than zero and occurs at more than one

neighbour, the flow direction is assigned with a lookup table defining the most

likely direction. See Greenlee (1987).

Flow Accumulation

The Flow Accumulation tool uses flow direction information evaluated by the Flow Di-

rection tool to calculate accumulated flow for each cell of the DTM raster. Accumulated

flow is computed by adding up the weight of all cells flowing into the downstream cell. If

no weight raster is provided, a weight of 1 is applied to each cell, and the accumulated

flow of any given cell is the total number of cells that flow into it (How Flow Accumulation

works—ArcGIS Pro, n.d.).

Figure 5.3 demonstrates the conversion of an exemplar flow direction raster into the flow

accumulation master. The left two squares illustrate the direction of flow travel from

each cell in the graphic way (arrow pointed to the flow direction), and in the numerical

format as stored in the flow direction raster file. The right image shows the result flow

accumulation raster.

Cells with a high value of flow accumulation are areas where water would concentrate

and can be used to identify streams across the land surface.
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Figure 5.3: Computing the accumulation of flow from flow direction

Watershed

A watershed is the land area that contributes flow to an outlet point where water is

assumed to flow out of the area. After the flow direction raster file is computed from

DTM using the Flow Direction tool, it can be used by the Watershed tool to delineate the

watershed of a designated pour point. The pour points in this model are the points where

the overland flow stream intersect with the railway drainage system, and are identified

by manual detection on the map. During the watershed generation procedure, the flow

direction data set is used iteratively to examine whether each cell will eventually flow

into the pour point. Cells contributing to the pour point will be grouped together and

form a watershed.

Slope

Slope of a cell is measured as the maximum rate of change in elevation level from the

cell to adjacent cells in a 3 by 3 cell neighbourhood. The calculation is performed on a

projected flat plane using a 2D Cartesian coordinate system using the average maximum

technique as described by (Burrough and McDonnell, 1998)(How Slope works, n.d.). The

slope is computed using the rates of change of the surface in the horizontal
[
dz
dx

]
and

vertical
[
dz
dy

]
directions from the the cell for which the slope is being calculated. Formula

of slope calculation in degrees in as follows:

slope = atan

(
sqrt

[
dz

dx

]2
+

[
dz

dy

]2)
× 180

π
(14)

Figure 5.4 illustrated the surface scanning window when calculating the slope of the

middle cell e. Cells in this 3 x 3 window are labelled by letters from a to i.
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Figure 5.4: Profile view of a sink before and after running Fill

The rate of change in the x direction
[
dz
dx

]
and the rate of change in the y direction

[
dz
dy

]
for cell e is calculated with the following algorithm:[

dz

dx

]
=

(c+ 2f + i)× 4/wght1− (a+ 2d+ g) ∗ 4/wght2
8× cellsize in x direction

(15)

[
dz

dy

]
=

(g + 2h+ i)× 4/wght3− (a+ 2b+ c) ∗ 4/wght4
8× cellsize in y direction

(16)

Where wght1, wght2, wght3 and wght4 are weighted counts of valid cells in the bracket

beforehand. For instance, if cells c, f and i all has a valid value of elevation level, wght1 =

(1 + 2× 1 + 1) = 4.

Flow Length

By selecting the Upstream direction, the Flow length tool will use flow direction data to

find the flow paths from the top of the subcatchment to each cell, calculate the upslope

distance along these flow paths and output the longest distance.

5.1.5 Model calibration

Since the rainfall-runoff model of SWMM relies on a number of site specific parame-

ters to simulate the catchment runoff, and some of these parameters such as infiltration

levels are not easily obtainable without field studies. These parameters are normally es-

timated using existing experimental data of sites under similar geographical conditions.

However, whenever possible, it is encouraged to calibrate the model using field-measured

observations, such as water depth in catchpits and flow discharge volume at the outlet.

The general calibration process is described below:

1. Select a section of the sensor monitored time period as the calibration sample data

set.

2. Adjust the model calibration parameters to produce simulations that have the best

match for the real life sensor data (water level and flow rate) for defined objective

functions.

3. Use the remaining sensor monitored period as a validation data set. Run SWMM

model with the selected calibration parameter values for rainfall events in the vali-

dation period.
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4. Compare simulated results to the sensor data to validate model prediction against

defined objective parameters.

SWMM model calibration presents significant challenges since a SWMM model may con-

sist of hundreds of sub-catchments, each having over 20 parameters (Shahed Behrouz

et al., 2020). Manual calibration can be labor intensive, hence automatic parameter esti-

mation and calibration methods have been explored to address this challenge (Chamani

et al., 2011).

Baffaut and Delleur (1989) developed an automated parameter estimation and calibration

procedure that used expert system technology. The system analyses the simulation results

and offers recommendations for parameter modifications, hence reducing the user’s time

and effort. Liong et al. (1991) described a knowledge based system for automating the

calibration of the SWMM’s runoff block. The proposed method first derives functional

relationships using the response surface method and then estimates the optimal set of

parameters using a probabilistic approach. Later, Liong et al. (1995) proposed a method

of calibrating SWMM using genetic algorithms, which is a search method based on the

principles of natural evolution. It selects individuals from the existing population to be

the parents and use them to create mutation children by randomly changing the genes

of the parent. Population hence can gradually ”evolves” towards an optimal solution

over various generations. Zaghloul and Kiefa (2001) used an artificial neural network

for sensitivity calibration of the SWMM model. However this research was limited to

models with impervious areas. An optimization procedure using the complex method

was incorporated to estimate runoff parameters, and ten storms were used for calibration

and validation (Chamani et al., 2011). The main idea of the complex method is to

replace the worst point with a new point obtained by reflecting the worst point through

the centroid of the remaining points in the complex. However, all these methods listed

above are limited to the calibration of the hydrologic parameters of the Runoff block of

SWMM and the Transport compartment was not incorporated due to the complexity of

the model, lack of data, and limited resources.

An SWMM calibration method with multi-objective optimisation approach was developed

by Herrera et al. (2006) using Non-dominated Sorting Genetic Algorithm (NSGA-II).

The model was also originally used to calibrate the hydrologic parameters, it is later used

by Arriero Shinma and Ribeiro Reis (2014) to model both the hydrologic parameters

(roughness coefficient for impervious areas and pervious areas, min and max infiltration

rate, decay coefficient) and the hydraulic parameters (conduit roughness coefficient).

Optimisation is one of the most commonly used approaches to address the problem of

model calibration. An optimization problem involves finding the best solution from all

feasible solutions. The optimization problem has two core components: (1) Objective

Function: This is the function that needs to be optimized (either minimized or maxi-

mized), (2) Constraints: These are the restrictions or limitations that define the range

of feasible solutions. The Multi-objective optimisation approach is based on the Pareto

optimality or non-dominance concept (Herrera et al., 2006). For a multi-objective opti-
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misation problem, the objectives may conflict with each other, which means the optimal

set of parameters for one objective is different from the optimal set of parameters for one

or more of the alternative objectives (Shahed Behrouz et al., 2020). In this situation, the

Pareto optimality or non-dominance concept states that for a given set of solutions, there

exists a subset of solutions, often referred to as the Pareto front or the non-dominated

set, that outperforms the rest of the solution taking all objectives into account. The con-

cept of Pareto dominance is illustrated in Figure 5.5 with an example of a hypothetical

calibration problem presented by Herrera et al. (2006).

Figure 5.5: Set of Pareto optimal group of solutions for a two-objective hypothetical

calibration.

The hypothetical calibration problem has two objectives: minimization of high and low

flow model errors. The Pareto front is composed by solutions {a, b, c, d, e, f, g, h} while

{i, j, k, l,m, n, o, p} are dominated solutions. Note that, although k < f in terms of low

flows, e < k in both objectives, so k is a dominated solution. When comparing solution

e with solution f , none of them are dominated as neither one is better than the other

considering both objectives (Herrera et al., 2006).

Several other multi-objective SWMM calibration models were also developed and im-

plemented. Awol et al. (2018) calibrated a selection of representative semi-distributed

hydrologic parameters with a multi-objective optimisation approach using the Pareto

Archived Dynamically Dimensioned Search algorithm. An automated calibration tool

OSTRICH-SWMM was developed by Macro et al. (2019); Shahed Behrouz et al. (2020).

SWMM was integrated with the Optimization Software Tool for Research Involving Com-

putational Heuristics (OSTRICH) to enable both single-objective and multi-objective au-

tomatic calibration. The tool was tested with a case study catchment in Buffalo, NY and

was calibrated according to two objectives: minimizing errors in simulated peak flow and

minimizing errors in total flow volume. The Pareto front of the two competing objectives

was examined and trade-offs between the two criteria were evaluated.
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In this project, an automated multi-objective SWMM calibration model was built based

on the similar concept using Matlab. The best fit (optimum) parameters were found by

comparing the simulated results systematically. The Matlab-SWMM tool developed in

this study is constructed using scripts that interact with the SWMM module and hence

enable an automated parameter optimisation process. The tool uses parallel programming

so that multiple simulations can run at the same time, which significantly reduces the

computation time required. The methodology behind the tool is listed as following:

1. Define a reasonable range for all input SWMM parameters to be calibrated using

expert knowledge.

2. Work through each combination of possible parameter values, alter the SWMM

input accordingly.

3. Run SWMM simulations for all possible choices within the predefined parameter

value range.

4. Extract the time series of SWMM object variables such as flow rate and water depth

in each catchpits from the SWMM output files.

5. Use the extracted results and the sensor data to solve the objective functions and

find the optimal value for the SWMM parameters.

In this study, the main objective of hydraulic model is to find the time and scale when

the drainage system fails under heavy storms. Hence the calibration process should be

focused on the peak of the water depth in catchpits, as these values are important to show

whether water level will rise above ground level and potentially cause a track flooding

failure. The end goal is to find a set of SWMM parameters that gives the best fit simulated

peak water depth.

The calibration process is hence designed into two stages:

• Hydrology

The runoff volume will be calibrated by adjusting the infiltration parameters and

comparing the simulated and sensor measured volume of discharge.

• Hydraulics

The condition of the drainage assets will be calibrated by adjusting the roughness

of the pipes and comparing simulated and sensor measured catchpit depths as well

as the flow rate.

Hence for each stage, one or more objectives have been considered. For the Hydrology

part, the two objectives are:

1. Minimising the high flow rate error. The objective function is:

E1(X) =
100%

n×m× 10%

n∑
i=1

∑
top10%Qsensor,i

∣∣∣∣Qsensor,i −QSWMM,i

Qsensor,i

∣∣∣∣ , (17)

where X is the set of hydrological parameter values such as infiltration rates; n is
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the number of flow rate sensors; Qsensor,i is the flow rate recorded by sensor i, and

QSWMM,i is the simulated flow rate by SWMM at the location of sensor i.

2. Minimising the total flow volume error. The objective function is:

E2(X) =
1

n

n∑
i=1

√
1
m

∑m
j=1(Qsensor,i,tj△tj −QSWMM,i,tj△tj)2

1
m

∑m
j=1Qsensor,i,tj△tj

, (18)

where n is number of flow rate sensors; Qsensor,i,tj is the observed flow rate at time

j by sensor i; QSWMM,i,tj is the simulated flow rate at time j at the location of

sensor i; δtj is the length of time step, and m is the total number of time steps.

As mentioned above, the trade-off between the objectives in the multi-objective calibra-

tion model can be examined using Pareto front. Without additional criteria, all Pareto

optimal solutions can be considered candidates for the “best fit” parameter set. The se-

lection of the solution can be made based the asset manager’s objective. By choosing to

prioritise minimising E1(X), asset managers will be able to eliminate more risks of flash

flood due to high flow rate. However, this could potentially overestimate the total volume

of runoff during a long period and less intense rainfall event and hence overestimate the

potential track flooding risk.

For the Hydraulics part, the objective is to minimising the catchpit water depth error,

and the objective function is:

E3(Y ) =
1

n

n∑
i=1

√
1
m

∑m
j=1(Dsensor,i,tj −DSWMM,i,tj)2

1
m

∑m
j=1 Dsensor,i,tj

, (19)

Where Y represents the asset characteristic parameters such as roughness and pipe di-

ameter, Dsensor,i,tj is the observed water depth at time j by sensor i; DSWMM,i,tj is the

simulated water depth at the location of sensor i at time j; n is the number of water

depth sensors and m is the total number of time steps.

Mean absolute percentage error (MAPE) is used for high flow rate error E1(X) as it is a

widely used measure for prediction accuracy and it is present in percentage format which

is easier to understand. Also, MAPE is scale independent, hence it is a suitable indicator

for evaluating errors of different locations as they are expected to have difference scales

of readings. However, for total flow volume E2(X) and water depth error E3(Y ), MAPE

is not suitable since there are 0 values in the time series which cannot be divided, hence,

percent root mean square error (%RMSE) (Li et al., 2013) is used as error indicator.

5.1.6 Asset criticality analysis

Once the hydraulic performance model is build, calibrated and validated, it can be used to

identify the critical assets of the drainage system. Critical assets are defined as the weak

link of the system, and the hydraulic performance will be more prone to changes in their
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condition. The method proposed here is the Achilles Approach, since it is a straightfor-

ward approach which has been used for the identification of weak points during operation

and emergency for the urban water infrastructure, as well as for the identification of most

critical elements in a network of sewer system with respect to malfunctioning of the sys-

tem as a whole (Meijer et al., 2018).

Figure 5.6 shows the flow chart of the steps in determining the criticality of an asset in the

drainage system using the Achilles approach. For simulation run 0, all assets are assumed

to be in the perfect condition. The simulation result of this run will set a baseline of the

system performance. Then the simulation will run for n more times, where n is the total

number of conduits in the system. In the run i, where i ∈ [1, n], the roughness of conduit

i is increased to mimic the loss of serviceability when conduit is degraded, whilst leaving

the remaining assets under the perfect condition. The results of these simulations were

then compared with the baseline performance. The conduit that has the biggest effect

on the whole drainage system’s hydraulic performance can be found by finding the one

causing the highest volume and/or the longest duration of flooding. These conduits are

the more vulnerable asset of the system and hence can be defined as critical assets.

Figure 5.6: Process to determine criticality of individual conduit using Achilles approach

Two indicators are used to define the criticality of the assets. One is the total flooding

volume out of all the nodes, as this will define how much water will be accumulated above

the ground, which could potentially disturb the train operation. The second indicator

is the total duration of flooding across the whole system. If multiple nodes are flooded

at the same time, such period of time will only be counted once. The second indicator

could measure the time scale of the flooding events, whereas the first indicator will give

an overall severity valuation of the flooding event. The two criticality indicators can be

expressed as below in CI1,i and CI2,i.

CI1,i =
∑
t

S∑
s=1

FVi,s,t (20)

CI2,i =
∑
t

It where It =

{
1, if FVi,s,t > 0

0, otherwise
(21)

CI1,i and CI2,i are the two criticality indicators for simulation run i as explained above.

Vi,s,t is the flooded volume out of nodes s at time t for simulation run i. S is the total

number of nodes.
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The criticality indicators can be then used to rank the conduits, and hence find out

which conduit is more critical for the whole drainage system. In addition, the degree of

criticality of can be evaluated by comparing the CI1,0 and CI2,0, the baseline criticality

for simulation 0. Furthermore, the effect of degraded pipe on the location of flooding,

and severity of flooding on single locations can also be investigated. Comparing the time

series of FVi,s,t and FV0,s,t for any given simulation run i can show the degraded conduit

will cause additional flooding at which nodes. Comparing
∑

t FVi,s,t for a given node s

across all conduit i will show which degraded pipe will cause the largest flooding volume

at node s.

5.2 Case Study

In order to verify the practicality of the proposed method, a case study was performed

on a real life functioning railway drainage system. Network Rail’s Scotland Route kindly

offered an opportunity to collaborate and provided the Knockenjig Level Crossing site,

which has a known history of frequent flooding. The mileage of the site is between GSW

63 m 0565 yards and 63 m 1298 yards, east to the Kirkconnel station. The drainage

system starts around the easting and nothing of (274876, 611625). The location of the

Knockenjig site is shown in the map in Figure 5.7, marked with a red dot. The site was

chosen because it is one of the few available sites that is easily accessible. It is in a rural

area with a relatively quiet train schedule, hence the installation of inspection of the site

can be arranged without disruption of the train operation.

Figure 5.7: Map of the Knockenjig site location

Since there is limited availability of sensors, water depth sensors and flow rate monitors
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were installed in locations identified as links in the system that would provide the most

useful information Asset criticality analysis was also performed before the installation to

identify the optimum sensor locations. The proposed location was carefully presented to

the installation technicians in detail. Due to restricted access to the site, the installation

process was supervised remotely via phone. Once installed, the sensors remained in the

test site for a minimum of 6 months. Sensor data were transmitted to the online platform

eDas through the telemetry unit every day. The live data were constantly monitored to

ensure data quality. At the end of the period, the collected sensor data was used to

calibrate the hydraulic performance model and assist further model development.

The following steps are planned to carry out the case study:

1. Collect geometrical and catchment data required to build the model.

2. Build a digital replica of the Knockenjig drainage system in SWMM.

3. Perform catchment analysis for the designated drainage system.

4. Perform preliminary tests on the hydraulic capacity of the system.

5. Determine weak links in the system using asset criticality analysis.

6. Propose sensor locations to a monitoring contractor using analysis results.

7. Instruct a monitoring contractor to install sensors.

8. Collect data from sensors remotely and check for validity.

9. Calibrate and validate SWMM model using collected and checked data.

10. Use the validated model to evaluate Knockenjig drainage system’s hydraulic per-

formance against collected historical time series rainfall data.

5.2.1 Digital replica

The digital replica is the virtual replica of the physical drainage assets. Compared to

using traditional visual inspections to determine when and where intervention needs to be

scheduled, the digital replica provides asset managers with an opportunity to diagnose

the root cause of a decline in drainage system performance and predict the potential

performance loss due to asset degradation. The model would hence help reduce the costs

incurred due to frequent inspections and also reduces the disruption of any unscheduled

interventions.

Through discussions with NR asset managers and other European railway asset owners,

it was agreed that using digital replicas in asset management would be advantageous.

Although drainage systems in the UK are modeled in hydraulic models during the design

phase to test whether they meet the design requirements, digital replicas of existing

systems have not yet been implemented. French railway operators have begun to build

digital replicas of their drainage assets to enhance their understanding of the drainage

systems and help them make robust maintenance plans. Hence, I’ve proposed the method

of building a digital replica as part of the hydraulic performance model as described in

the Methodology Section 5.1 and demonstrated with this exemplar UK railway drainage
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system in Knockenjig. This method can also be applied to other railway drainage systems

in the future as it provides a robust tool for evaluating drainage system performance

comprehensively. It is therefore suggested that NR carry out a national rollout of the

model if sufficient resources and the required asset information are available.

The effectiveness of the digital replica relies on the accuracy and reliability of the data

used to build the model. Higher precision of the asset location, characteristics and con-

dition will help the asset manager to better mimic the real world situation. For the

provided site at Knockenjig, since Network Rail Scotland is planning to renovate the

drainage system to resolve the flooding issue in the next few years, a levelling survey was

produced using high accuracy laser levels in order to provide a system design specialist

with detailed information of the existing drainage system and surrounding topography.

Elevation data are all indicated in the CAD drawings, a snapshot of the drawing is

presented in Figure 5.8. Essential elevation readings were extracted to be input into the

digital replica, for example, the invert level of the pipes and culverts, elevation levels of

the top and bottom of the catchpits, and contour lines in 50 cm scale covering the width

of the rail. In the drawing, the surveyor also indicated important information of the asset

characteristics such as the pipe diameter and structure material, which can be used to

cross check with the NR Ellipse database to improve the accuracy of the asset property

information. The survey also provides additional information such as the location and

size of the vegetation, the presence of other NR infrastructure such as fences, elevation

level of track and ballast. This additional information would help asset managers indicate

any external obstruction that may impose a constraint onto the drainage system such as

excess vegetation and potential debris accumulation due to leaf fall. Also, it would help

asset managers assess the severity of the flooding as water ponded above ground would

be less likely to affect train operation if it is below the top of the railway track.

Figure 5.8: Snapshot of the Knockenjig levelling survey
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(a) Plan view of the Knockenjig drainage system

(b) Long section of the Knockenjig drainage system

Figure 5.9: Top view and long section view of the Knockenjig drainage system

A digital replica was built in SWMM from the ground and pipe elevation data. Figure

5.9(b) illustrates a plan view and a cross section view of the Knockenjig drainage system.

Although relatively thorough survey data has been provided by the asset management

team, some connections between assets are still remain uncertain. This is because in the

current NR database, assets are recorded in isolation, interlinkage such as which pipe is

connected to which catchpit or discharge point is not logged in the system. Relationships

between assets can only be assumed based on the relative locations of them.

(a) Top view of the connection around catchpit 13 (b) Outlet point of pipe C13

Figure 5.10: Connection from catchpit 13 to culvert CL1 (photo taken on 23/08/2019)

Hence a field investigation was conducted by me, my superviors and the Scotland draiage
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asset manager on the 24/07/2019 to further clarify the uncertainties in building the digital

replica. For instance, though catchpit 13 and 14 are next to each other, the downstream

pipe leaving catchpit 13 does not connect to the catchpit; instead it is connected to the

culvert underneath the track to discharge the water cross the railway into the natural

stream nearby (photos of the discharging pipe are presented in Figure 5.10).

5.2.2 Catchment analysis

Catchment Analysis was performed using a Digital Terrain Model with 50cm spatial

resolution to determine the catchment area serviced by the Knockenjig railway drainage

system. The Digital Terrain Model was created from LiDAR data, and the 3D terrain

model is illustrated in Figure 5.11. Water concentration features were then analysed and

plotted using ArcGIS; the blue lines spanned over the surface in Figure 5.11 indicate the

paths where water would flow and accumulate to form water features when precipitation

presents. The darker the blue colour means a higher flow accumulation.

Figure 5.11: The DTM illustration of the topography at the Knockenjig site and the

overland water concentration features

In order to find which and where water concentration features feed into the drainage sys-

tem, drainage assets plotted into the ArcMap and DTM close to the track were investi-

gated. Figure 5.9(a) shows a zoomed-in plot of the DTM model with the railway drainage

system. Conduits are marked in light blue and nodes are marked in yellow. Intersection

points where the water concentration lines meet the drainage system are marked out in

the plot. These points were then used as pouring points in the watershed analysis. Catch-

ments were drawn as the result of watershed analysis, 8 sub-catchments were determined

as shown in Figure 5.12. Each colour block corresponds to one sub-catchment, where

precipitation onto the land is expected to move across the land following the plotted

water concentration paths into the NR drainage system.
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Figure 5.12: Watershed analysis of the Knockenjig site

Sub-catchments are then manually adjusted to include the small areas that have not

been assigned an inlet point. The existence of these areas may be due to the fact that

they are generally small in size, i.e. no bigger than 0.02 kilometer square, hence the

concentration feature in that area is hard to determine or does not exist. Therefore,

these areas are all assigned to the downstream sub-catchment. Also, since information

from visual inspection and aerial maps indicates that for some adjacent sub-catchments,

their water flow paths converge into one ditch above the track before it feeds into the

system through one inlet point; these sub-catchments are hence combined into one.

Moreover, it was noticed that the surrounding sub-catchments are mainly composed of

pasture land, and hence there are some man-made structures such as fences and paths

that may create small water concentration features that affect the overland flow paths

but may not be detected by the DTM. As shown in the aerial image in Figure 5.13, in the

red circles are two fences parallel to the railway line, which divides up the subcatchments

and could direct water to flow alongside them before flowing down the slope towards

the track. Therefore, it was decided to split the left two sub-catchments into smaller

catchments, since they are narrower and maybe more prone to the disturbance of the

fences.
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Figure 5.13: Man-made features that could disturb overland flow

After the adjustments of the sub-catchments, the adjusted sub-catchments were extracted

and plotted into the SWMM model as shown in Figure 5.14. Area, flow length and slope

of the sub-catchments were calculated using ArcMap. All physical characteristics of the

sub-catchments required for the model are listed in Table 5.2.

Figure 5.14: Sub-catchments of Knockenjig drainage system
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Sub-Catchment Area (m²) Flow Length (m) Width (m) Slope (%)

Cat41 6682.53 223.58 29.89 10.79

Cat42 15317.07 299.99 51.06 14.09

Cat43 7963.94 169.33 47.03 13.56

Cat71 14607.02 224.12 65.18 12.72

Cat72 24237.23 330.72 73.29 14.47

Cat73 12829.24 188.52 68.05 14.56

Cat12 13125.22 210.26 62.42 14.42

Cat14 98914.39 756.80 130.70 12.28

Cat17 16225.43 364.92 44.46 12.75

Table 5.2: Sub-catchment characteristics

5.2.3 Rainfall data

Radar derived rainfall data from 2007 to date were downloaded from the CEDA site.

Since the rainfall data is produced over 1 km2 in 5 minute intervals, the first step was to

find out which grid squares the rainfall should be taken from. Figure 5.15 plotted the 1

km grid (yellow lines) on top of the sub-catchments of the Knockenjig system, it can be

seen that the sub-catchments are located in the intersection of 4 kilometer squares, hence

4 rainfall time series were extracted to estimate each sub-catchment’s rainfall intensity.

As explained in the Methodology Section 5.1.3, the distance between the centroid of the

sub-catchment and each 1 km grid was used as the weighting factor for the amount of

rainfall contributed by that grid to the sub-catchment.

Figure 5.15: Kilometer grid of the rainfall data over the Knockenjig site
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5.2.4 Sensor proposition

Water depth sensors and flow rate monitors were installed at locations identified as weak

links in the system. The sensors remained in the test site over a minimum 6-month

time period, and the collected data was then used to calibrate the hydraulic performance

model and assist further model development. It is believed that once the model is fully

developed, it will be able to forecast possible flooding events with a minimal number of

sensors in a few critical points. Preliminary hydraulic performance analysis and critical

asset analysis were performed to help decide how many sensors are needed and where the

sensors should be installed.

For this case study, the preliminary hydraulic performance analysis and critical asset

analysis was done at the early stage of the research study. At the time the available

topographic data available was the OS Terrin 50, which has a lower resolution than

the LIDAR Composite DTM used in Section 5.1.4 for catchment analysis, hence the

catchment division would be expected to be less accurate. The resulting sub-catchments

are demonstrated in the Figure 5.16.

Figure 5.16: Sub-catchments for preliminary test at Knockenjig site derived using OS

Terrain 50 data

Preliminary Hydraulic Performance Analysis

Preliminary hydraulic performance analysis was conducted to examine the hydraulic ca-

pacity of the Knockenjig system with the available data, and determine the potential

locations of flooding.

The hydraulic capacity was tested with historical rainfall data of 2018, under the assump-

tion that all assets have a service condition with no defects. Although rainfall time series

is available from 2007, for the preliminary test, it is believed that one year of simulation

should provide enough rainfall event samples to give an indication of how the drainage

system might behave. Therefore, the year 2018 was chosen as it is the year before the
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simulation was carried out, and hence is assumed to best reflect the current weather con-

ditions. Horton’s model was chosen as it is a robust and commonly used infiltration model

based on empirical parameters. Also, results from Rajasekhar et al. (2018)’s field tests

showed that Horton’s model gives a better prediction than the Green-Ampt model for

uncultivated land, which composes the majority of the catchment area. Moreover, tests

have been carried out for the different infiltration models with designed rainfall events,

and the results showed very similar/identical flow rate and water depth time series. The

following simulation options were set for this analysis:

• Infiltration Model: Horton model was selected; default values are used for the four

required parameters as listed below.

– Maximum Infiltration Rate: 3 mm/hr

– Minimum Infiltration Rate: 0.5 mm/hr

– Decay Constant: 4

– Drying time: 7 days

• Routing Model: Dynamic wave model

• Routing time step: 30 seconds

• Reporting time step: 5 minutes

Results show that the system is under capacity to drain runoff away from the track.

There is a total of 21.07 × 106 litre flooding loss through catchpits over the whole year.

There are 4 flooded catchpits, details of flooding are listed in Table 5.3. Locations of the

flooded nodes are indicated with red circles in Figure 5.17.

Node Hours Flooded Maximum Rate (m3/s) Total Flood Volume (103 m3)

4 80.56 0.506 9.232

5 112.56 0.015 4.405

7 91.53 0.162 7.078

D1 1 0.336 0.358

Table 5.3: Node flooding summary table

Figure 5.17: Location of Flooded nodes

Catchpits 4 and 7 floods often because they are inlet points of the drainage system,

and catchpit 7 has a relatively short depth, which will affect its water storage capacity.

Catchpit 5 floods because the pipe linking it with the downstream catchpit is a flat pipe

(slope = 0) as shown in Figure 5.18, which will affect the speed of flow and hence the
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depth. The node D1 is both the outlet from trackside drainage to the culvert CL1 and

the inlet point of adjacent land runoff towards the culvert CL1, hence it would be stressed

when experiencing high intensity of rainfall. However, there is very minor flooding (less

than an hour) over the whole year, which means the culvert in general is functioning well

under current weather conditions.

Figure 5.18: Long section view of the flooded nodes

(a) Flooding volume at nodes 4 (b) Flooding volume at nodes 5

(c) Flooding volume at nodes 7

Figure 5.19: Flooding volume at nodes 4, 5 and 7
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Figure 5.19 plots the simulated flooding events at the flooded nodes in the year 2018. As

shown in the graph, there exists a major flooding event every month since July for nodes

4, 5 and 7.

Asset criticality analysis

Asset criticality analysis was performed to determine the weak links in the Knockenjig

drainage system using the methodology explained in Section 5.1.6. Each pipe was indi-

vidually set to its worst condition by changing its manning’s n roughness coefficient to

0.05; then the system hydraulic performance as simulated with the hydraulic performance

model to test the importance of each pipe over the whole drainage system. Two factors

were used as a numerical validation: a) the total amount of flooding loss over the tested

period (ie. aggregate amount of water that came out of all the catchpits); b) the total

duration for which flooding occurred (ie. aggregate time whenever water came out of any

of the catchpits). The full results are shown in Appendix D. The top 5 critical pipes are

listed in Table 5.4. Conduit C8, C9, C10, C13 are in both lists, hence making them the

most critical pipes in the system.

Pipe
Total Flooding

Volume (103 m3)

C13 40.04

C10 37.14

C12 36.54

C9 36.31

C8 35.78

(a) Top 5 Critical Pipes based on Total

Flooding Volume

Pipe
Duration of Flooding

Occurred (Hour)

C7 221.50

C9 174.00

C10 173.92

C8 173.92

C13 173.50

(b) Critical Pipes based on Total Duration of

Flooding Occurred

Table 5.4: Top 5 critical pipes

After gaining an understanding the degradation in condition of which pipe would impose

the largest effect on the drainage system hydraulic performance, it could also be in asset

managers’ interests to investigate the exact location of flooding under the influence of

such pipe. In the next step, the time series of node flooding were extracted for each

critical conduit, the aggregate flooding volume was calculated and is listed in Table 5.5.

As shown in the table, pipe C13 has the largest impact on the flood volume at catchpit

8, whereas for the rest of the catchpits, all 4 critical pipes have a similar effect on the

flooding severity. Such results show that the blocked pipe could be somewhere further

upstream or downstream from the position of flooded catchpits, the severe flooding at

Catchpit 8 is not caused by the worsening in pipe C8’s condition which is next to the

catchpit, but caused by pipe C13, which is the outlet pipe 160 metres from the catchpit.

Therefore, this analysis could help an asset manager to gain better understanding of

the cause and effect relationship between asset failure and flooding, and help detect the

actual location of problematic assets when flooding occurs in order to give out the best
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remediation advice.

Conduit

Node
1 2 4 5 7 8 13 D1

C8 0.0000 0.0000 9.6972 5.8998 9.7278 10.2960 0.0000 0.2920

C9 0.0000 0.0000 9.6897 5.8869 9.7287 10.8543 0.0000 0.2910

C10 0.0000 0.0000 9.6891 5.8860 9.7293 11.6829 0.0000 0.2890

C13 0.0009 0.0045 9.6753 5.8647 9.7392 14.6343 0.0003 0.2830

Table 5.5: Flooding Volume (103 m3) of each node (non-flooded nodes are hidden) when

critical pipe is degraded

Sensor Deployment

Based on the results of the preliminary hydraulic performance analysis, a sensor deploy-

ment plan created had 4 water level sensors installed into the most frequently flooded

catchpits to monitor potential flooding events. The catchpits expected to have more fre-

quent flooding are 4, 5, 7 and D1. Since a water depth sensor will not give additional

information of water leaving the system when the catchpit is already flooded, it was also

suggested to put one sensor in the non-flooding catchpit as a baseline. It would also be a

good idea to put a sensor in one of catchpit 10, 11 and 12; because though they may be

unlikely to flood, they are the downstream catchpit of a critical pipe. The critical pipes

should be monitored as they are the weak link of the system and the system hydraulic

capacity is more sensitive to any changes in their condition. It was also decided to imple-

ment 2 flow rate sensors in one of the inlet points and the conduit C13 which is the outlet

pipe from track drainage to the under track culvert. This would help to more precisely

understand the amount of rainfall runoff entering and leaving the railway drainage sys-

tem. The sensors were planned to stay in the test site over a minimum of a 6-month time

period, and the collected data was used to calibrate the hydraulic performance model and

assist further model development. The sensor deployment plan was communicated to a

monitoring company, who installed the monitors based on the instructions in the plan.

5.2.5 Sensor installation and data collection

Sensor Implementation

The installation of the sensors was implemented by an experienced monitoring contractor

on the 23rd April 2020. I was not able to attend on the installation day due to covid

restrictions, however, I was communicating with the installation engineers throughout

the whole process with photos and phone calls to check the installation status of each

monitor. Live data were available to view online from the eDAS platform from 1st

May 2020. Maintenance was scheduled on a quarterly basis to check the general physical

condition of the sensor and change the battery when required. Monitor data was therefore

continuously reviewed by me for range and noise.

110



Five water depth sensors and two flow rate sensors were installed; the locations of the

sensors are shown in the Figure 5.20. The red circles indicate the locations of the water

depth sensors; the blue triangles indicate the locations of the flow rate sensors. The

water depth sensors were installed in the catchpits numbered 4, 5, 7, 11 and culvert entry

D1. The flow rate sensors were installed in the pipe linking catchpit 4 and 5, i.e. the

downstream pipe of the inlet point at catchpit 4; and the pipe linking catchpit 13 and

the culvert entry D1, i.e. the outlet point of the system.

Appendix E contains several photographs from the installation team showing the sensor

locations within the catchpits/pipes and the conditions of the asset at the time of instal-

lation. The detailed installation sheets for the level monitoring locations can be found in

Appendix F; these show the depth of installed sensors, level of siltation, and invert level

of the catchpits/pipes at the time of installation.

Sensors were set with a logging interval of 5 min and transmitted data to an online server

once every 24 hours. These configurations were set to mimic the simulation settings in

the drainage system hydraulic model. In the current model, both the rainfall interval

and the reporting steps are set to 5 minutes, hence for easier comparison between the

collected and simulated water depth/flow rate data, it is best to record the sensor data

using the same interval.

(a) Long section of the Knockenjig drainage system

(b) Aerial map of the Knockenjig drainage system

Figure 5.20: Location of the sensors

Sensor Data Processing

Before using the sensor data collected for further model calibration, it is important to first

review the data quality and perform a data validation/cleanse to remove any anomalies.
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The sensor data were collected from 1st May 2020 to 28th February 2021. For clarity,

the sensors are referred to using the abbreviations stated in Table 5.6.

Abbreviation Sensor description

F1 flow meter sensor in pipe between catchpit 4 and 5 (inlet point)

F2
flow meter in the pipe linking catchpit 13 and the culvert entry D1

(outlet point)

L1 water depth sensor at Catchpit 4

L2 water depth sensor at Catchpit 5

L3 water depth sensor at Catchpit 7

L4 water depth sensor at Catchpit 11

L5 water depth sensor at culvert entry D1

Table 5.6: Sensor abbreviation

The first step of data processing is to look at the consistency of the data, check for any

missing data points and identify outliers. Table 5.7 indicated the aggregate duration of

the missing data in days, and in which month these missing data points are located. As

shown, for most of the months, there is only a very limited number of missing data points,

which may be present due to logging or transmission errors. The data in February 2021

for sensor F1 and October 2020 for sensor L4 are missing due the loss of battery power.

There are also some missing data in July and August 2020 for L1, L2 and L3, which

is due to a configuration issue in the telemetry unit, which had then been rectified in a

subsequent maintenance visit.

Month/year F1 F2 L1 L2 L3 L4 L5

05/2020 0.02 0.201 0.55 0.01 1.51 3.04 0

06/2020 0.52 0.01 1.51 1.01 2.99 1.50 0

07/2020 0.52 0 21.58 17.99 4.00 1.74 0

08/2020 0 0 26.76 17.66 1.51 3.10 0.06

09/2020 0.05 0.05 9.08 1.03 0.05 13.29 0.04

10/2020 0.06 0.03 2.56 1.35 1.32 31.00 1.24

11/2020 0.11 0.08 0.63 0.76 0.78 13.50 0.94

12/2020 0.50 0 0 0 0 0 0

01/2021 0 0 0 0 0 0 0

02/2021 26.88 0 0 0.50 0.003 2.00 0.50

Total 28.64 0.37 62.66 40.32 12.15 69.16 2.78

Table 5.7: Aggregate duration of missing data points in days

The negative values in the water depth datasets were investigated. Table 5.8 lists the

number of negative values from each sensor dataset and the duration of these data.
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Sensor Number of negative values Duration of negative data (days)

F1 431 1.50

F2 9 0.03

L1 0 0

L2 0 0

L3 1296 4.50

L4 1504 5.22

L5 16 0.06

Table 5.8: Negative data points in sensor data

For the flow rate sensor, the flow rate is calculated using the water depth and velocity

detected. Hence the negative values could be possible due to errors in the water depth

measurement or velocity measurement. When water levels are low the doppler velocity

sensor can have significant uncertainty due to the weak/poor reflected signal. For the

water depth sensors, the negative values are usually clustered within one day, or a few

consecutive days. Hence it can be assumed that the pressure sensor may be impacted

by debris which are then resolved naturally as debris are washed away by subsequent

inflows. Both issues obviously impact flow rate measurement.

After removing the negative values, the histogram of the sensor data is plotted to help

visualise the distribution of the data, and this assists in observing the presence of any

outliers. Figure 5.21 contains the histograms of the two flow rate sensor datasets and

Figure 5.22 contains the histograms of five water level sensor datasets. After the initial

data cleansing described above, all histograms exhibit a lognormal distribution shape,

with no abnormal cluster of data at the lower tail of the distribution. For the flow rate

distribution, the skewness towards the left is because there is believed to be a constant

inflow from groundwater even when there is no rainfall event. Usually, this kind of inflow

will have a small but consistent flow rate that may vary seasonally. For water level

distribution, the skewness towards the left is due to the fact that there will always be a

certain level of water stored at the bottom of the catchpits. Since there is an offset from

bottom of the catchpit to pipe invert, designed to catch silt and debris flowing through

pipes, it hence also provides a storage space for water causing a constant presence of

water in the catchpits.
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(a) Histogram of flow rate data at F1 (b) Histogram of flow rate data at F2

Figure 5.21: F1 and F2 flow rate histogram

(a) Histogram of water depth data at L1 (b) Histogram of water depth data at L2

(c) Histogram of water depth data at L3 (d) Histogram of water depth data at L4
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(e) Histogram of water depth data at L5

Figure 5.22: Water level histogram

Data Validation

Although there is no second source of flow volume or flow rate data to check against and

verify the integrity of the sensor data, logic tests can be done among different sets of sensor

data as they should exhibit correlations between each other. It is logical to assume that

the time series of inlet and outlet flow volume are correlated; and the upstream catchpit

water depth is correlated to the downstream catchpit water level. Once water enters the

piped drainage system, it will not leave until the next catchpit or the outlet. Hence the

total amount of water flowing into the system will equal to the volume flow out of the

system through the outlet point. Also, the increase in the upstream water depth indicates

there is an increase in the amount of flow into the system towards the downstream pipes

and outlet point, which should be reflected in an increase in the water depth at the

downstream catchpit as well.

The Pearson’s linear correlation coefficient between flow rate from F1 and F2 is 0.8476

with a p-value of 0.0000, indicating a strong positive correlation, and the rejection of the

hypothesis that no correlation exists between the two datasets. A linear regression test

has also been performed and plotted in the Figure 5.23.
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Figure 5.23: Linear regression between flow rate at F1 and F2

The Pearson’s linear correlation test results between water depth level in each of the 5

tested catchpits and their downstream catchpits are listed in Table 5.9. The P-value

for all the correlation coefficients in the table 0.0000. Hence it can be concluded that

upstream catchpit water level is strongly correlated to the downstream catchpit water

level as expected, proving that the sensor data collected are reasonable and expected to

be reliable.

L2 L3 L4 L5

L1 0.9033 0.8564 0.3636 0.8094

L2 0.9662 0.4346 0.9593

L3 0.4181 0.9726

L4 0.4293

Table 5.9: Pearson’s linear correlation coefficient between catchpit water depth time series

Moreover, the amount of inflow is a result of runoff from the precipitation falling on the

catchments serviced by the drainage system. Hence it is expected that the rainfall volume

will also be correlated with the amount of inflows and outflow of the drainage system.

Therefore, expected correlations between the sensor time series and rainfall volume time

series are investigated to examine the reliability of the sensor data collected. The rainfall

time series used is the Met Office Rain Radar Data from the NIMROD System, recorded

on 1 km grids with a 5 minute interval. Nimrod is a fully automated system for weather

analysis and nowcasting based around a network of C-band rainfall radars. Data are

downloaded from the CEDA (Center for Environmental Data Analysis) Archive site.

The rainfall time series are then logged in the intensity format as millimetre per hour,

it is then converted to the total rainfall volume contributing the runoff that enters the

system by multiplying the intensity by the catchment area surrounding the drainage
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system. Figure 5.24 indicates the area of the corresponding catchment for the inlet point

at catchpit 4 and outlet point at culvert entry point D1. The area shaded yellow is served

by the inlet point at catchpit 4, so the sensor F1 should recorded the flow rate of the

runoff from this area. The area shaded by red is served by the whole drainage system

that discharges at Culvert entry point D1, so the sensor F1 should reflect the flow rate

of the runoff from this area.

Figure 5.24: Catchments serviced by the drainage system

Figure 5.25 shows comparison plots between the flow rate time series of F4/F14 and

rainfall volume from the corresponding catchment areas. As shown in the graph, the

peaks of the rainfall coincide with the peaks of the flow rate quite well, indicating both

data sets share a very similar pattern. This is expected as the vast majority of the water

inflow is due to the rainfall, and higher rainfall volume will cause higher volume of runoffs

and hence higher water flow rate collected by the drainage system.

It is noticed that the average magnitude of rainfall volume is higher from February to

September 2020, than in the second half of the inspected period. This is due to the fact

that there are more convectional storms in summer which provides rainfall events with

higher intensity over a short period of time. However, the average magnitude of the flow

rate exhibits the opposite behaviour; in general, it has a higher magnitude in the second

half of the observed period than the first half. These could be caused by several reasons:

the temperature in summer will be higher causing a higher level of evaporation; the soil

moisture level could be lower in summer, which leads to higher soil infiltration levels and

hence less runoff, and lower flows in the drainage system. Also, since convectional storms

happen at a shorter time period and generally are more volatile than frontal driven rain

events, the radar measurements of the rainfall intensity may be less accurate.
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(a) Flow Rate at F1 and Catchment Rainfall Volume

(b) Histogram of flow rate data at F2

Figure 5.25: Flow Rate at F2 and Catchment Rainfall Volume

Table 5.10 shows the Kendall’s Tau coefficient between the water flow rate at F1/F2

and their corresponding catchment rainfall volumes. Kendall’s Tau correlation test is

used here as the flow rate in the drainage system and the rainfall volume may not be

linearly correlated, as the difference between them is caused by non-linearities in the

runoff processes such as the soil infiltration process which is still unclear at the current

stage. Kendall’s Tau coefficient is more suitable here as it provides a non-parametric

measure of the strength and direction of association that exists between the two datasets

measured. As shown in Table 5.10, both coefficients are positive with p value much lower

than 0.05. Therefore, it proves that although the magnitude of the rainfall and pipe flow

rate may be affected by seasonality, their trends are still positively correlated with each
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other.

Kendall’s Tau

coefficient
p-value

F1 flow rate and catchment

rainfall volume
0.1028 2.31 ×1084

F2 flow rate and catchment

rainfall volume
0.1189 2.55 ×10149

Table 5.10: Kendall’s Tau coefficient between flow rate sensor data and catchment rainfall

volume

The positive correlations demonstrated above between all the listed datasets proves that

the sensor data collected are reasonable and are expected to be reliable.

5.2.6 Model calibration

As explained in Section 5.1.5, two phases are involved in the model calibration process.

The hydrology phase determines the best fitted hydrological parameters for the small

catchments of the tested site, whereas the second hydraulics phase determines the most

suitable asset condition parameters of the test railway drainage system at Knockenjig.

The data set is split into two parts, one is used for the calibration process, whilst the

other is used for the verification process. Hydrological and hydraulic parameters that

best mimic the real situation and best reproduce the sensor data will be found using the

calibration methods stated in Section 5.1.5. This set of parameter values will then be

verified with the second verification part of the data.

Previous studies have performed sensitivity analysis on SWMM parameters to understand

the impact of each on model outputs. Given the considerable number of parameters in

the SWMM model, to lessen computational strain, the influential parameters identified

by sensitivity tests can guide the selection of key parameters for the calibration process.

Based on the review of previous studies carried out by Shahed Behrouz et al. (2020), 7

SWMM parameters that were frequently reported as sensitive in the literature and are

relevant to the case study were identified as: “Roughness”: Manning’s n for the conduits;

“N-perv”: Manning’s n for overland flow over the previous portion of the subcatchment;

“Width”: Width of the overland flow path for runoff over the subcatchment; “%Slope”:

Average percent slope of the subcatchment; “MaxInfilRate”: Maximum infiltration rate

for Horton infiltration; “MinInfilRate”: Minimum infiltration rate for Horton infiltration;

“DecayConst”: Decay rate constant for Horton infiltration. Since the geographic charac-

teristics of the subcatchment (“Width”, “%Slope”) are determined through the detailed

catchment analysis, they are believed to be accurate measurements. Also, Manning’s n

for subcatchment (“N-perv”) has been tested in preliminary trials and shown to be less

influential, as a ±70% change in “N-perv” made no change to the high flow error and

peak flow error.
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Therefore, the hydrological parameters to be calibrated are the three Horton infiltration

parameters: the maximum and minimum infiltration parameters and the decay con-

stant. It is difficult to determine the soil properties of the tested site due to the lack of

geographical information, and little knowledge of the effect of agricultural use of the sur-

rounding farm land. Hence, initial calibration of a few randomly selected rainfall events

are performed to narrow down the range of the infiltration parameters to be tested.This

calibration was done using the updated sub-catchment data described in Section 5.2.2.

The SWMM simulation was run and the high flow error E1(X) was calculated to find the

optimum solution that could best fit the real time sensor data.

In this study, rainfall events are defined as a continuous period of precipitation, where

continuous means that there does not exist consecutive zero precipitation readings for

over a period of three hours. Under such criteria, 291 rainfall events are found over the

10 months monitoring period. The histogram of the rainfall events duration and the total

precipitation volume over the catchment areas shaded in red in Figure 5.24 are plotted

in Figure 5.26. Events with very small rainfall volume (i.e. less than 1 mm rain which

means roughly 2× 105 litres in rainfall volume for the test catchments), and events with

a short duration of less than an hour are excluded from the selection.

Figure 5.26: Rainfall events duration and total rainfall volume histogram for the test

catchment

Seasonal changes in the infiltration rate have been noticed and discussed in many other

studies (Horton, 1933, 1940a; Cerdà, 1997; Cerdà, 1999; Cerdà, 1996; Beven, 2004; Bod-

dice et al., 2017). However, how the infiltration varies with seasonality is not fully un-

derstood, due to the lack of high-quality long-term seasonal field monitoring data of

various soil conditions (Boddice et al., 2017). SWMM models were not usually calibrated

based on seasonality mainly due to the lack of long period field data. Nonetheless, Shahed

Behrouz et al. (2023) assessed the robustness of SWMM under dry and wet hydroclimatic

conditions and discovered that the best fit estimates of SWMM parameters (including in-

filtration rate) differed significantly between dry and wet years. Considering the possible

effect of seasonality on rainfall volume and other weather related conditions, in order to
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exclude any possible bias in the initial parameter calibration process, three samples are

randomly chosen, each from a different season (summer, autumn and winter). The date

and time of these three events are listed in Table 5.11.

Start Date Time End Date Time

Event 1 - Summer 02/07/2020 22:35 04/07/2020 04:40

Event 2 - Autumn 03/10/2020 06:30 04/10/2020 09:00

Event 3 - Winter 27/01/2021 22:20 28/01/2021 14:40

Table 5.11: Sample rainfall events date and start and end time

Simulations are run for these three events using a combination of parameter values as

listed in Table 5.12. The range of these parameters are chosen based on the suggested

values in the SWMM user guide; the interval is set to pick a moderate number of data

points so that the preliminary tests would provide sufficient information to help locate

the potential values for the best fit while not taking too much computational time.

Parameter Range (mm/hr) Interval (mm/hr)

Maximum Infiltration Rate (5,155) 5

Minimum Infiltration Rate (1,12) 1

Decay Constant (4,7) 1

Table 5.12: Range and interval of the test parameters

The resulting high flow error E1(X) and total flow volume error E2(X) are calculated

with simulated flow rate time series and sensor data of F2 which is the outlet of the whole

system. It is then plotted in Figure 5.27 and the value of errors are indicated with a colour

map. As shown, for all three rainfall events, the colour pattern of the dots with each

decay constant number are quite similar, which indicates that the decay constant does

not have as much effect on the E1(X) and E2(X)) as the other two parameters. With

small minimum infiltration rates, E1(X) and E2(X) are more sensitive to any changes in

maximum infiltration rate, as the colour changes rapidly along the maximum infiltration

axis when minimum infiltration is 1 or 2 mm/hr.
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(a) High flow error E1(X) and total flow volume error E2(X) of event 1

(b) High flow error E1(X) and total flow volume error E2(X) of event 2

(c) High flow error E1(X) and total flow volume error E2(X) of event 3

Figure 5.27: High flow error E1(X) and total flow volume error E2(X)

The set of parameters with the minimum value of E1(X) and E2(X) for each of the three

samples are then found and listed in Table 5.13. The optimum minimum infiltration rate

122



is the same for all rainfall events, whereas the decay constant varies, but is an insensitive

parameter. The optimum maximum infiltration rate is quite different for each event,

this may be because the soil moisture level changes with the season. It is noted that,

the optimum infiltration rate is higher in autumn and lower in summer, which is not as

expected. The infiltration rate is generally expected to be greater in summer (dry season)

(Horton, 1940a,b; Cerdà, 1997; Beven, 2004). The reason behind this may be due to the

nature of summer rainfall events, which are mostly smaller scale convectional storms.

These storms typically have a shorter duration and tend to be more volatile than frontal

driven rain events. As a result, the radar measurements of rainfall intensity might be less

accurate, and hence the rainfall data used for calibration could be lower than what was

actually received on-site (Schleiss et al., 2020). Such uncertainties that arise from the

radar rainfall data can only be mitigated through the use of more accurate, site-specific

data collection methods such as rain gauges.

The optimum maximum infiltration ranges from 40mm to 120mm. This implies that the

soil could be between clay and loam, and hence its maximum infiltration rate should

roughly lie between 8 to 76mm and its minimum infiltration rate should lie between 0.2

and 1.6 mm according to the soil characteristic table (Rossman, 2015). The simulated

flow rate time series of flow meter F1 and F2 under the optimum parameters are plotted

and demonstrated with the observed flow rate data in the Figure 5.28. Hence the fitness

of the simulated results at each flow sensor location can be visually inspected.

Event Objectives

Optimum Maxi-

mum Infiltration

Rate (mm/hr)

Optimum Mini-

mum Infiltration

Rate (mm/hr)

Optimum

Decay

Constant

Event 1
Minimise E1(X) 50 1 6

Minimise E2(X) 40 1 5

Event 2
Minimise E1(X) 110 1 7

Minimise E2(X) 120 1 6

Event 3
Minimise E1(X) 80 1 7

Minimise E2(X) 75 1 6

Table 5.13: Optimum hydrological parameters under different objectives for three sample

events
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(a) Flow rate at F1 and F2 using optimum parameters under objective E1(X) for event 1

(b) Flow rate at F1 and F2 using optimum parameters under objective E2(X) for event 1

(c) Flow rate at F1 and F2 using optimum parameters under objective E1(X) for event 2
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(d) Flow rate at F1 and F2 using optimum parameters under objective E2(X) for event 2

(e) Flow rate at F1 and F2 using optimum parameters under objective E1(X) for event 3

(f) Flow rate at F1 and F2 using optimum parameters under objective E2(X) for event 3

Figure 5.28: Flow rate at F1 and F2 simulated using optimum parameters
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As shown in Figure 5.28, the general trend of the simulated flow rate is similar for both

optimisation objectives (E1(X) and E2(X)) and at both flow rate measurement location.

However, it is observed that there is some trade-off between the accuracy of prediction

in the two sensor locations. Especially for event 1 and 2, the flow rate at F1 is always

overpredicted and the flow rate at F2 is always underpredicted. This means by matching

the flow rate at F2, the flow rate at F1 will be even higher than what shown in Figure

5.28. This could be because there are less flow entering the drainage system through inlet

point 4 where F1 is located assuming the total outflow (measured by F2) is measured

accurately. Hence it can deduce that some of the overland flow from the catchment 41, 42

and 43 which originally assumed to enter the drainage system through inlet point 4 are

actually diverted and enters the system through other inlet points. This could be due to

the obstruction to overland flows caused by manmade features such as fences and roads

as mentioned in catchment analysis in Section 5.2.2. Rain fall onto catchment 41, 42

and 43 could flow into the adjacent catchments 71, 72 and 73 alongside the fences before

flowing towards the track. Such small changes in the runoff route cannot be detected

by DTM, and can only be adjusted manually based on field inspections. However, since

such changes are prone to human activities, it may change over the course of a year. As

shown in event 3, such a trade-off is not so obvious compared to case 1 and 2. Hence, it is

decided to keep using the current catchment layout for the remaining part of the study.

Also, for both optimisation objectives, the simulated and observed results are quite sim-

ilar, although, the predicted value by optimising objective E1(X) is sometimes slightly

higher than the predicted value by optimising objective E2(X). This is reasonable as

rainfall estimation in a small region can be unpredictable, there may be spikes in the

local rainfall time series that are not picked up by radar data. In this situation, in order

to meet these peak flow values, the runoff would need to be predicted higher and hence

also increase the total volume.

Based on the suggested soil type according to the calibration testing for a single event,

the hydraulic performance model is then run for a longer period time. As shown in the

results, the optimum infiltration rate varies for events from different seasons, hence, it

is suggested to split up the dataset based on seasonality and find the best hydraulic

calibration parameter values for each season. For each season, the dataset should be

further divided into two subsets, one to be used to find the set of optimised infiltration

parameters that could represent the soil characteristics throughout the season, and the

other subset will be used to verify the parameters. Due to the fact that sensor monitoring

was not implemented for a whole year, in this study, it would not be possible to calibrate

the model for each season. Also, during the first three months of the data collection

period, the sensors has been adjusted a few times due to inaccurate datum data logged

at installation as well as several calculation setting errors. The data collected during such

a period could be flawed, hence, it is decided to only calibrate the model for the autumn.

First, a set of simulations are run with a range of hydrological parameters from 01/10/2020

to 31/10/2020. The hydrological parameters tested are arithmetic sequences with range
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and interval listed in Table 5.14. The result E1(X) and E2(X) are plotted in Figure 5.29.

Parameter Range Interval

Maximum Infiltration Rate (mm/hr) (8,76) 1

Minimum Infiltration Rate (mm/hr) (0.1,11.5) 0.1

Decay Constant (4,7) 0.5

Table 5.14: The range and interval of the hydrological parameters sequence tested

Figure 5.29: High rate flow error E1(X) and total flow volume error E2(X) for the

Autumn calibration set

Maximum

infiltration rate

(mm/hr)

Minimum

infiltration rate

(mm/hr)

Decay constant

minimising high flow

rate error E1(X)
39 0.1 4

minimising total flow

volume error E2(X)
76 0.1 4

Table 5.15: Optimum hydrological parameters for objectives E1(X) and E2(X)

The optimum set of parameters under the two minimising objectives are shown in the

Table 5.15. As explained in Section 5.1.5, the two objectives have a trade-off effect. As

shown in the Figure 5.30, for all the tested sets of parameters, their high flow rate error

E1(X) is plotted against the total flow volume error E2(X) and are displayed in blue

dots; whereas the Pareto frontier is marked as a red line, which consist of a set of non-

dominated solutions such that when no one criteria can be improved without making the

other poorer. In this case, depending on the model user’s preference, any point on the

Pareto frontier can be chosen as the best fitted parameter values. As discussed earlier,

if the high flow rate error E1(X) is preferred over total flow volume error E2(X), there

is a possibility of overestimating flood risk. For this case study, from NR’s point of

view, flood risk will not only interfere with the train operation and induce financial loss,
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but also damage their reputation, hence, it is better to overestimate the flood risk and

get prepared beforehand than underestimate the risk which would potentially endanger

passengers. Hence, the parameter values on the Pareto front with the lowest high flow

rate error will be chosen as the optimal solution.

Figure 5.30: Pareto frontier of the two objectives: minimising high flow rate error E1(X)

and minimising total flow volume error E2(X)

After the hydrological calibration process is complete, the chosen parameter values are

put back into the SWMM model to be used for the hydraulic parameter calibration. As

described in the methodology section, the hydraulic parameter that will be calibrated

is the roughness of the pipes, and the water depth in each monitored catchpits will be

analysed to find the roughness value that minimisea the water depth error E3(Y ) at the

monitored catchpits. The roughness coefficient in SWMM is Manning’s n, and the range

of roughness values tested is from 0.01 to 0.06, with a step increase of 0.005. The range

of roughness is defined based on the guidance of the SWMM user’s manual, as well as the

Manning’s n Values for Closed Conduits table in Schall et al. (2008) and table of values

of roughness n in Chow (1959). All tables can be found in the Appendix G. As shown in

these tables, the roughness of closed conduits can range from 0.009 to 0.03; whereas for

constructed and maintained channels, the roughness ranges from 0.01 to 0.06. Although

the roughness can be quite different for different types of asset made by difference material

and shape, it is computationally costly to assign a specific roughness score to each asset.

Hence, it is decided to use a unified roughness coefficient for all linear assets. Result

shows that E3(Y ) is minimal when Manning’s n is equal to 0.01.
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Manning’s n 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05 0.06 0.06

E3(Y ) 0.40 0.46 0.59 0.75 0.92 1.12 1.32 1.50 1.66 1.81 1.95

Table 5.16: Water depth error E3(Y ) with various Manning’s n

With both the optimum hydrological and hydraulic parameter values identified from the

calibration process, the model is then validated with sensor data collected in November

2020. The simulated and observed flow rate at F1 and F2 of are shown in Figure 5.31;

and the water depth level at each monitoring catchpit is shown in Figure 5.32.

Figure 5.31: Flow rate at F1 and F2 in November 2020 using calibrated parameters
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Figure 5.32: Water depth level at L1, L2, L3, L5 in November 2020 using calibrated

parameters

As shown in the figures, both the flow rate and the water depth fit quite well. At least

90% of the simulated peaks occur at the same time as the sensor data and many have

a reasonable correspondence in values. Though a lot of the flow in between the rainfall

events are not captured well. As the focus is on the flood risk, the data fitting around

the peak flow rate and highest water depth is more valued and the effect of the lower

readings between rainfall events are less considered, which is already reflected by choice

made when selecting parameter values on the Pareto front as the one minimises the high

flow error is preferred.

It is also noted that for the water depth sensor at L1, there are some fluctuations during

4th Nov and 9th Nov 2020 that are not indicated in the simulated data. Comparing

the other water depth and the flow rate sensor data, they does not show any significant

movement, hence, it can be concluded that the fluctuations in L1 may be caused by some

sensor malfunction. Also, for water level at L3, the plot for simulated data is lower than

the sensor data, though they exhibit similar trends. Such phenomenon is also observed

in the previously calibrated datasets, therefore, it can be assumed that either the datum

of the sensor is set lower than the actual catchpit base level or there is error in the field

survey data so that the actual catchpit is deeper than recorded.

The value of each type of error for the validation set are shown in Table 5.17. As shown

in the table, the water depth error E3(Y ) is the same, whereas total flow volume error

E2(X) is also lower than the calibration set. However, the peak flow error is higher

for the validation set. This may due to the fact that the case study hydraulic system

serves a relatively small catchment area, and the radar rainfall data is processed over

1 km square, hence local variation which are expected to exist may lead to modest

inaccuracy in forecasting runoff. Despite recent advances in radar technologies, it is still

very challenging to accurately measure rainfall due to its highly variable nature over

time and space. This type of error can be potentially reduced by installing numerous

local rain gauges and comparing with the radar data to eliminate the uncertainties in the

130



precipitation data.

E1(X) E2(X) E3(Y )

Calibration 0.5 1.8 0.4

Validation 1.1 1.5 0.4

Table 5.17: Estimation error for the calibration set and validation set

5.3 Conclusion

This section has introduced the methodology used to evaluate the hydraulic performance

of railway drainage systems for both single-event and long-term rain fall time series. The

SWMM modelling software is used to build a digital replica of existing drainage systems.

The model uses input rainfall time series and simulates runoff volume across the defined

catchment areas which then feeds into the drainage system digital replica. The time and

location of where water exits the system though nodes are recorded as system failures.

This can help asset managers to understand the potential of flooding in any designed

rainfall event for a particular drainage systems.

Building of the SWMM model required detailed information of the geometry of the

drainage assets such as invert level and pipe diameter, as well as the surrounding catch-

ment geology information. Hence, although ideally it is best to populate these models

nationally, due to the scarcity of the existing data and the cost of field survey, it is

suggested to use such models only in areas where flood risks are more severe.

The case study is in a rural area, hence the catchment geology and soil characteristics

has a large influence in the runoff prediction as infiltration processes may vary during the

year. For railway drainage systems in urban areas, extra consideration of the land use

is needed in catchment study. Manmade features such as buildings and structures would

have a bigger impact on the hydrological model. In the catchment identification process,

watershed identification should be drawn not only based on the water concentration

feature but also on the land cover, and extra water flow routes may need to be manually

implemented such as stormwater gutters and drains.

The calibrated and validated SWMM model can also be used as a tool to identify critical

assets in a system by incorporating the effect of deterioration of each asset. The asset

that cause the highest amount of flooding when deteriorate to a higher roughness would

be the weak link in the system. The drainage system performance would hence be more

prone to asset condition changes to critical assets, as roughness changes are often lead

by asset condition degradation. Following on this, the hydraulic model will be combined

with the degradation model introduced in Chapter 4 to simulate the possible loss in

hydraulic performance with asset degradation; this will be discussed in detail in the next

chapter.
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6 Integrated Model Combining Hydraulic Performance

Model and Degradation Model

Drainage assets are expected to degrade over time. Both the service and structural

degradation of drainage assets affect the hydraulic carrying capacity of a whole drainage

system. For example, service degradation such as blockage due to debris accumulation

would limit the amount of water that could flow freely towards the outlet and hence

increase upstream water levels and potentially cause flooding in one of the upstream

catchpits; structural degradation such as collapse of a culvert could prevent runoff from

one side of the railway from flowing safely under the railway tracks, leading to water

accumulation above tracks and hence obstruction to train operation. Hence, it would be in

an asset manager’s interest to be able to predict the effect of asset degradation on drainage

system performance, in order to take proactive actions to prevent any unacceptable loss

of performance.

As demonstrated in Chapter 4, asset degradation processes for railway drainage assets

can be simulated using a Markov Chain model. Combining the degradation model with

the hydraulic performance model shown in Chapter 5 would provide asset managers with

an integrated model that could forecast the future drainage system performance whilst

taking into account any estimated future asset degradation.

Nevertheless, after the tragic derailment of a passenger train at Carmont on 12 August

2020, the importance of a resilience and safe railway in a changing climate has been raised

(Haines, 2020). The root cause of the incident was a poorly constructed drainage system

which failed to meet design standards. Inadequate drainage capacity caused soil to be

washed onto the track after a high volume rainfall event, which led to the fatal accident

as the train hit the soil on the track at high speed and derailed. It is recognised that

the drainage system plays a vital role in weather resilience as it is essential for the water

management of all railway assets. The integrated model can also provide asset managers

with a tool to simulate and forecast the resilience of the existing system using forecast

precipitation projections under various climate change scenarios as well as accounting for

asset degradation projections.

In the sections below, a description of the integrated model will be presented followed by

a case study using data collected from the Knockenjig site.

6.1 Methodology

The hydraulic performance model is integrated with the degradation model using Mat-

lab. The forecast drainage asset condition changes are simultaneously reflected in the

hydraulic model by automatically changing the asset characteristic parameters. The ser-

vice condition of the asset impacts three important factors that could affect the hydraulic

carrying capacity of the drainage asset: size, gradient and roughness. For example: sil-

tation of a pipe reduces its size; vegetation growth in a ditch increases its roughness as
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well as reducing its size; severe siltation of a ditch or channel can reduce the gradient

(NetworkRail, 2017). Since gradient is a very sensitive factor in the SWMM model and a

minimum slope is required for the model to run, i.e. the elevation drop between the two

ends of any conduit must be at least 0.00035 m, in this study only size and roughness

of the drainage asset will be altered to reflect the service condition degradation. For

Pipe, Channel, Culvert and Granular Drain, service condition degradation is reflected

both by increase of the roughness and a decrease of the asset diameter/height/width.

For Chambers, Outfall, Inflow and Syphon, reduction in depth or increase in elevation

level is used to mimic physical property change that leads to worsening service condition

score. However, the relation between asset service condition score and the changes that

lead in an asset’s physical characteristic is not fully understood yet and cannot be pre-

cisely quantified without further studies. Hence, assumptions need to be made based on

expert opinions and assessments of the study area while applying the model to real life.

The structural condition degradation would affect the hydraulic capacity in a different

way. With a minor defect such as a small crack, it is expected to obstruct and slow down

the water flow, but such crack may only present in a small section of the pipe and does

not affect the roughness of the whole pipe, so it is hard to quantify. Also, if such a crack

is observed in the catchpit, it would not have any impact on the hydraulic capacity until

it develops and endangers the structural integrity of the catchpit which could lead to the

catchpit collapsing. Hence, it is suggested that when the structural condition of an asset

degrades to 5, the asset is removed from the system. Since the effect of minor structural

degradation on hydraulic performance is a much more complex problem, it will require

further study to be able to reflect it in this integrated model.

The following are the steps for building an integrated model of asset degradation, drainage

system performance, and climate change. Since the asset degradation process is simulated

with the stochastic simulation algorithm based on the asset degradation transition rate,

all the simulations rely on an element of probability, hence each simulation run will

generate a different result. Therefore, multiple stochastic runs are needed to generate a

distribution of the simulated performance results. The average of the simulation results

is taken as the estimate of the forecasted drainage system performance.

1. Calculate asset degradation rate using a Markov Chain model as explained in Sec-

tion 4.2.3.

2. Define the number of years of simulation T.

3. Generate asset degradation time series of T years for each asset in the drainage

system using stochastic simulation algorithm as described in Section 4.2.4. The

time series contains the asset number, condition scores that asset will transition

into and the time of transitions.

4. Combine degradation time series of all assets and sort them according to the time

of transition in ascending order.

5. Run simulation with hydraulic performance model (SWMM) using current asset

condition data and designed/predicted rainfall time series.
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6. When an asset degradation is predicted to happen according to the degradation time

series, the simulation will be stopped and the corresponding asset characteristics

will be altered to reflect the effect of asset degradation.

7. A temporary file is generated every time the simulation is stopped to record the

full hydrologic and hydraulic state of the drainage system at the time of stopping.

It can then serve as the initial conditions for the subsequent run after condition

change to enable a continuous simulation process.

8. Time series of desired output such as flow rate, water depth and runoff volume are

extracted from the output file for each simulation.

9. Repeat steps 3 – 8 for n times to obtain a set of stochastic simulation results.

The results were analysed, the performance related parameters such flooding volume

and duration were studied, mean expected performance estimate was calculated. Such

performance indicators would give asset managers a tool to predict the future performance

reduction assuming asset degradation is continuous without any intervention mechanism

and under the stress of defined rainfall time series.

6.1.1 Rainfall time series construction

To test the performance of the drainage system with different climate scenarios, rainfall

time series needed to be constructed based on the future climate projections. There are

several developed climate change models available that can provide simulated rainfall

time series in the next decades, such as UK Climate Projections (UKCP18) and the

sixth phase of the Coupled Model Intercomparison Project (CMIP6). However, most

of the time series usually have a temporal resolution of one hour, which is longer than

the 5 minute interval used in the hydraulic performance model in Chapter 5. Hence,

it is required to disaggregate the existing rainfall time series data into finer temporal

resolution.

Review of the rainfall disaggregation methods

Many hydrological studies require rainfall data at fine time scales that range from daily to

1-minute intervals. Due to the scarcity of sub-hourly scale data in real-world situations,

stochastic disaggregation methods are proposed to generate statistically consistent rain-

fall events that aggregate up to the field data collected at coarser scales. Over the years,

various stochastic models have been developed to address the rainfall disaggregation prob-

lem, such as Poisson-cluster models, cascade models, artificial neural network, K-nearest

neighbor technique and method of fragments framework (Gyasi-agyei and Mahbub, 2007;

Kossieris et al., 2018; Rafatnejad et al., 2022; Fadhel et al., 2021). However, most of

the methods proposed are focusing on disaggregating of daily or longer time increment

rainfall; only a few addressed the problem of disaggregation of sub-hourly rainfall data

to finer resolution (Burian et al., 2000).

The Poisson-cluster models are based on point process theory developed by Rodŕıguez-

Iturbe et al. (1987); Rodriguez-Iturbe et al. (1988), including the Neyman–Scott (Cow-
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pertwait et al., 1996b; Cowpertwait, 2006; Fatichi et al., 2011) and Bartlett–Lewis rect-

angular pulses (Cowpertwait et al., 1996a; Onof and Wheater, 1994; Koutsoyiannis and

Onof, 2001; Gyasi-agyei and Mahbub, 2007; Vanhaute et al., 2012; Villani et al., 2015).

The models assumes rainfall at a finer resolution can be represented as a sequence of

rectangular pulses, hence disaggregate the hourly rainfall into smaller time intervals by

allocating pulses of a specified small depth at different intervals. The model parame-

ters are estimated using historical rainfall data, and the disaggregation is achieved by

sampling from the estimated parameters to generate the desired sub-hourly rainfall time

series. The main difference between these two types is that Neyman–Scott models dis-

tribute rain cells from the time origin (beginning of the storm), whereas Bartlett–Lewis

models distribute rain cells based on their interarrival time (Rodriguez-Iturbe et al.,

1987).

The Cascade model is another major group of rainfall disaggregation models (Ormsbee,

1989; Olsson, 1998; Olsson and Berndtsson, 1998; Güntner et al., 2001; Molnar and Bur-

lando, 2005; Sivakumar and Sharma, 2008). The approach is based on the concept of

scaling in rainfall, assuming that the characteristics of different timescales are related

and scale-invariant, hence finer time series can be generated according to patterns of

coarser time scales. The approach is based on the concept of scaling in rainfall, or,

relating the properties associated with the rainfall process at one temporal scale to a

finer-resolution scale. The Cascade processes model the distribution of rainfall by par-

titioning the available space into smaller sections and then reassigning a corresponding

value at each stage according to the cascade generator. The scaling rules are usually

determined by calibrating the universal multifractal model on existing rainfall time series

data.

Examples of other models include the two artificial neural network (ANNs) models in-

troduced by Burian et al. (2000), one is trained by backpropagation/steepest-descent

algorithm and the other model uses a self-organization approach. Method of fragments

was used for sub-daily rainfall disaggregation by Rafatnejad et al. (2022), using historical

sub-daily data to facilitate the disaggregation of future daily data by producing a series of

fragments. Also, two different approaches were introduced to improve the accuracy, one

is to consider weather variables in the selection process while the second one uses general-

ized regression neural network to simulate the sub-daily characteristics. Shahabul Alam

and Elshorbagy (2015) and Uraba et al. (2019) used the K-nearest neighbour method

to disaggregate future daily rainfall to hourly and sub-hourly scales using only historical

rainfall as the predictor for the disaggregation.

Several software packages have been developed based on the models mentioned above,

namely Hyetos, Hyetominute, Stormpac, and NetStorm.

Hyetos was developed by Koutsoyiannis and Onof (2001) based on a modified Bartlett–Lewis

rectangular pulse model that disaggregates rainfall into a finer timescale while preserving

the daily total rainfall. However, Hyetos can only disaggregate the daily rainfall into

hourly rainfall. A few studies has proposed methods to generate sub-hourly rainfall by
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creating a hybrid model of Hyetos with an additional model to enable disaggregation

of the hourly rainfall output into sub-hourly time series. Laloy and Bielders (2009) ap-

plied a symmetrical double-triangular hydrograph method to hourly data from Hyetos

to generate rainfall time series of 1-min interval. Whereas Anis and Rode (2015) used

a micro-canonical cascade model (Onof2005, Sivakumar2008) to disaggregate the hourly

depths into 10-min data.

(Kossieris et al., 2018) created HyetosMinute based on Hyetos with the following few new

features: (1) generation of synthetic rainfall data at sub-hourly time scales (minimum

1-min time scale), (2) incorporate the Bartlett-Lewis model with randomised intensity

parameter that assumes dependence between cell intensity and duration (Kaczmarska

et al., 2014), (3) implementation of an enhanced-version of the Evolutionary Annealing-

Simplex (EAS2) optimization algorithm for the estimation of model parameters.

Stormpac is a software tool designed for rainfall generation, predominantly used by water

companies in the UK for design and simulation purposes (Onof et al., 2005). This software

incorporates a cluster point process model to create hourly time series, which are then

disaggregated to a 5-min time scale. It is built based on the rainfall disaggregation model

proposed by Ormsbee (1989).

Ormsbee (1989) developed models based on a continuous distribution approach that per-

mits disaggregation of hourly rainfall into time intervals from 1 to 30min. The model

is composed by two methods; one is the deterministic method which constructs rainfall

time series of refined time steps based on patterns of the previous three-hour sequence in

the original dataset (i.e. pattern of the preceding, current and successive hours’ rainfall

data); the other is the stochastic method which distributes the volume of rainfall using a

Monte Carlo approach based on the distribution deduced using the three-hour sequence.

Although Ormsbee (1989)’s algorithm has demonstrated reasonable effectiveness, it ex-

hibits a negative bias when compared to actual high-frequency data (Heineman, 2004).

This could result in an underprediction of the peak rainfall intensity, and consequently,

lead to an underestimation of flood risk.

NetSTORM is a software for hydrologic data analysis developed by Mitch Heineman at

CDM Smith that can perform rainfall time series synthetic disaggregation (Heineman,

2004). It is also developed based on Ormsbee (1989)’s model with a choice of deterministic

approach and stochastic approach. In addition, NetSTORM added an optional ‘spiking’

factor that increase the maximum value of the disaggregated dataset by a user-specified

factor (between 0 and 1) multiplied by a random value (between 0 and 1) multiplied

by the difference between the original total and the initial maximum value. The rest of

the data of the hour are decreased accordingly to meet the original hourly value. This

additional component is designed to reproduce sub-hourly extrema that were often not

adequately replicated in the original approach.

Model choice

Although as mentioned above, there are several recently developed sub-hourly rainfall dis-
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aggregation models such as the modified method of fragments (Rafatnejad et al., 2022)

and K-nearest neighbour method (Uraba et al., 2019), their accuracy has not been com-

pared with the all the other models. Also, for the simplicity of application, it is decided

to use an established software for the rainfall disaggregation process.

Among the readily build software, Hyetons and HyetonsMinute would not be suitable

for this study because Hyetos only disaggrate daily data into hourly data, whereas

HyetosMinute only takes input as daily time series, and then disaggregates daily val-

ues into hourly or sub-hourly data. The climate change rainfall time series extracted

from UKCP18 projections is hourly data that needs to be disaggregated into 5-min scale.

Hyetons could not provide rainfall disaggregation of 5-min level, whereas HyetonsMinute

requires aggregation of the hourly time series into daily value before it can be input into

the model, hence would lose certain finer temporal features in the original rainfall pro-

jection time series. Since both Stormpac and NetStorm were build based on Ormsbee’s

model, and Netstorm is available software and with an extra component, compared to

Strompac to address the problem of underestimation of the peak flows, it was chosen to

be used in the study.

6.1.2 Selection of simulation number

As described above, multiple simulations are required for each scenario as the degradation

simulation is a stochastic process. To determine how many runs are needed to derive a

reliable representative of potential outcomes, a preliminary test to find such number is

suggested as described below:

1. Make a preliminary test of 100 simulation runs over a designed period.

2. Extract and calculate the performance indicator for each run.

3. Calculate the mean x̄100 and standard deviation σ̄100 of the 100 run .

4. For n = 2, 3, 4,. . . ..,100, randomly select performance indicator of n runs, calculate

the sample mean x̄n and standard deviation σ̄n.

5. Use the two-sample t-test (Snecdecor and Cochran, 1991) to test null hypothesis

that the sample mean x̄n is equal to the total x̄n+1.

6. Find the maximum n such that the null hypothesis is rejected at 5% significance

level.

7. n+1 would be the minimum simulation runs required for the model to get a reliable

estimate of the system performance indicator.

6.2 Case Study

A case study was performed with the Knockenjig site, using the calibrated hydraulic

performance model developed in Chapter 5. The service condition degradation rate of

drainage assets at the Knockenjig site used in the simulation is the transition rate gener-

ated using the historical asset condition data of all assets nationwide. This was done as
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there was insufficient data at this size of site to generate a stable transition matrix. The

service condition degradation rate is analysed separately for each asset group because

the results of cohort analysis in Section 4.4.2 suggests that asset condition transition rate

would differentiate between asset groups.

As discussed earlier, the consequence of degrading into structural condition 2 to 4 is

not clear and hard to quantify. Although the consequence of degrading into structural

condition 5 is very severe and usually means complete destruction, the probability of

transitioning into a structural condition 5 is very low. For example, pipes have less than

0.02% probability of degradation to condition 5 in 10 years’ time. Considering the low

probability of failure and uncertainties in modelling the performance loss, it was decided

to not include the structural condition degradation in this case study.

Hydraulic performance of the Knockenjig railway drainage system can be simulated for

any period of time. According to the historical condition data, the average duration

between observations is 2.7 years. Therefore, a period of 10 years from 2022 to 2031 is

chosen to be tested for this case study, as this duration would be long enough for sufficient

amounts of asset degradation to be observed.

To test the resilience of the drainage system under climate change, precipitation forecasts

under climate change scenarios are also tested to investigate and forecast the ability of any

degrading railway drainage system to cope under future extreme weather conditions. In

this case study, UK Climate Projections 2018 (UKCP18) is used to provide precipitation

forecasts under several global warming scenarios. In particular, the UKCP Local model is

selected, as it provides weather projections on a 2.2km scale, which gives the opportunity

to analyse the risk of extreme weather events at precise geographical locations and the

spatial scale is similar to most railway drainage systems. The local projections provide

hourly precipitation predictions under the high-emissions ‘RCP8.5’ global warming sce-

nario. RCP stands for Representative Concentration Pathway which is a greenhouse gas

concentration trajectory adopted by the Intergovernmental Panel on Climate Change.

These pathways describe various potential climate change futures based on the projected

volume of greenhouse gases that will be emitted. RCP 8.5 refers to the concentration of

carbon that delivers global warming at an average of 8.5 watts per square meter across

the planet. The hourly precipitation time series are disaggregated into shorter durations

of 5 minute intervals using NetSTORM. A stochastic version of the disaggregation model

was selected as it adds a random component to the disaggregated time series and a spike

factor of 0.5 is used.

In the case where climate conditions will not worsen, the rainfall statistics were assumed

to remain the same as the previous 10 years. Historical precipitation records from 2011

to 2020 were used as the future precipitation predictions. The rainfall time series is the

same as the one used in Capter 5 case study: Met Office Rain Radar Data from the

NIMROD System.

139



6.2.1 Assumptions

As explained in Section 6.1, the following assumptions are made based on expert opinions

and assessments of the case study area, defining the effect of asset service condition

changes on their physical characteristics:

• For Pipe, Channel, Culvert and Granular Drain

i. Service condition score changes will have the following effect on roughness:

Service Condition Score 1 2 3 4 5

Manning’s n 0.010 0.012 0.020 0.035 0.055

Table 6.1: Condition score and corresponding roughness

ii. Service condition score changes will have the following effect on asset diame-

ter/height/width:

Service Condition Score 1 2 3 4 5

Percentage reduction 0% 0% 10% 30% 50%

Table 6.2: Condition score and effect on asset diameter/height/width

When changing the diameter/height/width of the asset, the asset’s invert level

will remain the same. This will result in a decrease in cross sectional area for

about 20% - 75% depending on the shape

• For Chambers, Outfall, Inflow, Syphon

Service condition score changes will have the following effect on reduction in asset

depth:

Service Condition Score 1 2 3 4 5

Depth reduction (m) 0 0 0.1 0.2 0.4

Table 6.3: Condition score and effect on reduction in asset depth

The depth reduction is in place to reflect the loss of storage capacity of the catchpit

due to siltation and blockage.

Moreover, based on NR Drainage Policy (NetworkRail, 2017), the effect of interventions

on the drainage service condition score is assumed to be as following:

Start Service Condition 1 2 3 4 5

Service Condition After Refurbishment 1 1 1 1 1

Service Condition After Maintenance 1 1 2 2 3

Table 6.4: Effect of intervention on drainage service condition scores
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Since there is not enough field data to calibrate the hydraulic performance model for each

season, it is assumed that the input parameters of the hydraulic performance model re-

main the same throughout all seasons in this case study. The parameters of the calibrated

model for autumn were used, as deduced in Section 5.2.6. Making such an assumption

could potentially lead to an overestimation of flood volume in summer and an underesti-

mation of flood volume in winter. This is because the infiltration capacity usually is high

in summer and low in winter Horton (1940b), hence, the percentage of runoff in summer

predicted with autumn infiltration rate will be higher than the actual value which leads

to a higher chance of flooding, whereas in winter the predicted runoff would be lower

than the actual value which leads to a lower chance of flooding.

6.2.2 Scenarios

The hydraulic performance of this system was simulated under several proposed scenarios

to test the effect of asset degradation and climate change on drainage system performance

in the next 10 years (2022-2031). Operational intervention on degraded assets are not

analysed in this modelling, in order to set a bench mark for the degradation scenarios,

assets are assumed to be maintained in the current condition in Scenario 1 and 3. The

scenarios investigated are listed as below:

• Scenario 1: Assets maintained in the current condition and no climate change

• Scenario 2: Assets degrade naturally and no climate change

• cenario 3: Assets maintained in the current condition and RCP8.5 global warming

scenario

• Scenario 4: Assets degrade naturally and RCP8.5 global warming scenario

For each scenario, the duration that at least one model node is flooded (i.e. water

leaving catchpit) is calculated from the node depth time series. Through discussions with

Network Rail engineers, it is suggested that if flooded water is ponded with a 30 cm

depth above ground, it is likely to be above the rail level, which can lead to temporary

speed restrictions or temporary closures of railway lines. Therefore, the duration of the

possible train operation interference is also listed as an indicator of the drainage asset

performance.

6.2.3 Number of simulations

For scenarios 2 and 4 where asset degradation takes place, the model needs to run multiple

times to address the possible fluctuations in the behaviour of stochastic simulations of

the asset degradation process. Since one single simulation run of Scenario 4 would take 5

to 6 hours to run. In order to save computational time, a test is carried out to determine

the minimum number of simulations needed to get a stable result, The model was run

100 times under Scenario 4, but with a shorter duration of 5 years. Since less degradation

would be observed in a shorter duration, the volatility of change in performance might

also be lower, so it was suggested to use a stricter confidence level of 1%. The results
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showed that the minimum number of simulations required is 23.

6.2.4 Cases study results

Hence, 30 simulations are run for scenarios 2 and 4 and the average Flooding hours of

the 30 simulations is taken as being representative of the forecasted drainage system

performance. The results of the proposed scenarios are shown in Table 6.5.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Total Estimated Average

Flooding Hours in 10

years

37.0 405.2 667.8 1637.1

Total Estimated Average

Flooding Hours above rail

in 10 years

11.6 281.4 331.4 1155.4

Table 6.5: Drainage system performance under various weather and asset condition sce-

narios

As shown in Table 6.5, comparing scenario 1 and 2, and scenario 3 and 4, it is noticed

that the asset degradation has a significant effect on the performance of the drainage

system. In both no climate change and RCP8.5 global warming scenarios, when asset

degradation takes place without any human intervention, the flooding hours increased

significantly. The flooding hours above rail is about 25 times more with degradation in

place than the case where asset condition is maintained in original condition. This shows

that if assets are left unattended, the hydraulic capacity of the existing system will be

significantly reduced, hence it is important for asset managers to regularly inspect the

assets and maintain the assets at serviceable condition.

By comparing scenario 1 and 3, there is a large increase of 320 hours in the hours flooded

above rail. This indicates that climate change will also affect the performance of the

drainage system significantly. For scenario 1 and 3 the asset conditions are assumed to

be unchanged, i.e. maintained in current condition. Under current asset condition, only

11.6 hours of flooding above the rail is expected in 10 years. That is on average roughly

1 hour of flooding per year which is an acceptable value, because it is possible that this

one-hour flooding won’t have any effect on the train operation as there is a low chance

of having a train passing by in such a short period. However, under the RCP8.5 global

warming scenario, the hours flooded increased significantly, resulting in an estimated 30

times more flooding hours than the ‘no climate change’ scenario. This means if climate

change continues the railway drainage system is expected to fail due to lack of hydraulic

capacity. Hence, it is necessary to acknowledge the importance of global climate change

and make efforts to account for this in any design and maintenance procedures, as well

as to prepare for any potential consequences due to climate change and make drainage

system upgrade decisions when needed. Also, such climate change scenario simulations

should be taken into account in the drainage system design phase to help build sustainable
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systems that can withstand future extreme weather circumstances.

Moreover, comparing scenario 2 and 3, the results show that the effect of asset degra-

dation alone is almost as significant as the effect of climate change on its own, hence

further emphasizing the importance of building a proactive and effective drainage asset

management regime.

6.2.5 Sensitivity testing

As explained in above, due to the lack of knowledge about the corresponding physical

characteristics for each asset service condition category, assumptions have to be made

based on expert opinion for the integrated model to run. Several sensitivity tests have

been performed to evaluate the uncertainty in the hydraulic performance prediction with

variation in the assumed changes in asset condition parameters.

Roughness coefficient corresponding with degraded service condition is increased and

reduced by 20% and the new set of roughness parameter values are listed in Table 6.6.

The Manning’s n for condition 1 is not changed as roughness for assets in perfect condition

is set to be the same as a baseline. Adjusted roughness when Pipe, Channel, Culvert and

Granular Drain degrade are assumed to be:

1 2 3 4 5

Manning’s n (reduced) 0.0100 0.0096 0.0160 0.0280 0.0440

Manning’s n (increased) 0.0100 0.0144 0.0240 0.0420 0.0660

Table 6.6: Condition score and corresponding roughness for sensitivity test

The results of estimated flooding hours are shown in the Table 6.7 below, since Scenario

1 and 3 does not involve asset degradation, only results from Scenario 2 and 4 are listed.

Percentage change of the flooding results compared with results obtained the original

assumptions are shown in Table 6.8.

Scenario 2 Scenario 4

Manning’s n
(reduced)

Total Estimated Average Flooding

Hours in 10 years
308.8 1425.6

Total Estimated Average Flooding

Hours above rail in 10 years
205.4 965.3

Manning’s n
(increased)

Total Estimated Average Flooding

Hours in 10 years
507.8 1833.0

Total Estimated Average Flooding

Hours above rail in 10 years
365.9 1339.2

Table 6.7: Drainage system performance under weather and asset condition scenarios

with reduced and increased asset roughness assumption
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Scenario 2 Scenario 4

Manning’s n
(reduced)

Percentage change in Total Estimated

Average Flooding Hours in 10 years
-23.8% -12.9%

Percentage change in Total Estimated

Average Flooding Hours above rail in

10 years

-27.0% -16.5%

Manning’s n
(increased)

Percentage change in Total Estimated

Average Flooding Hours in 10 years
25.3% 12.0%

Percentage change in Total Estimated

Average Flooding Hours above rail in

10 years

30.0% 15.9%

Table 6.8: Percentage change in drainage system performance under weather and asset

condition scenarios with reduced and increased asset roughness assumption compared

with original assumptions

As shown in the above tables, the reduction in roughness coefficient values leads to less

flooding hours, whereas the increase in roughness coefficient results in higher flooding

hours. This is as expected since any increase in the Manning’s number indicates a higher

energy loss per length of pipe, a slower water flow velocity and a higher flow depth. Hence

the ability of transporting water to the outlets is reduced which leads to higher chances

of flooding. The percentage difference of the estimated average flooding hour is roughly

the same as the percentage change of the Manning’s n. The changes for both reduced

and increased cases under scenario 2 is about 10% higher than scenario 4, though the

absolute difference in flooded hours for scenario 4 is still much higher. This is because for

scenario 4, besides asset degradation, climate change also made a large contribution to the

resultant flooded hours. Hence, the percentage increase in flooding hours due to change

in roughness scores compared with the flooding hours due to both asset degradation and

climate change would be smaller than the change compared with only the flooding hours

due to asset degradation.

Also, comparing the results of scenario 2 with the graph (Figure 6.1) of storm drain

capacity sensitivity to the parameters in the Manning’s equation from the Urban Drainage

Design Manual of Federal Highway Administration (Brown et al., 2013), the percentage

reduction of the performance indicator is quite similar to the changes in hydraulic capacity

shown in the graph. As shown in Figure 7.1, 20% reduction in the roughness will result

in 30% increase in hydraulic capacity and 20% increase in the roughness will result in

15% reduction in hydraulic capacity. This suggests that the original assumptions made

linking roughness change to asset condition score appears reasonable.

Assumption on percentage reduction in asset diameter/height/width with regard to as-

set service condition degradation is increased and reduced by 20%, and the new set of

assumptions are listed in Table 6.9. The resulting cross sectional area reduction will be

about 15% - 64% in the reduced case, and 22% - 84% in the increased case.
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Figure 6.1: Storm drain capacity sensitivity to the parameters in the Manning’s equation

(Brown et al., 2013)

1 2 3 4 5

Percentage reduction (reduced) 0% 0% 8% 24% 40%

Percentage reduction (increased) 0% 0% 12% 36% 60%

Table 6.9: Condition score and corresponding asset diameter/height/width for sensitivity

test

The results are shown in the Table 6.10 below.

Scenario 2 Scenario 4

Diameter/height/
width percentage
reduction (reduced)

Total Estimated Average Flooding

Hours in 10 years
257.5 1314.6

Total Estimated Average Flooding

Hours above rail in 10 years
160.0 852.3

Diameter/height/
width percentage
reduction (increased)

Total Estimated Average Flooding

Hours in 10 years
669.3 2097.9

Total Estimated Average Flooding

Hours above rail in 10 years
512.2 1609.8

Table 6.10: Drainage system performance under weather and asset condition scenarios

with reduced and increased asset diameter/height/width reduction assumptions
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Scenario 2 Scenario 4

Diameter/height/
width percentage
reduction (reduced)

Percentage change in Total Esti-

mated Average Flooding Hours in

10 years

-36.5% -19.7%

Percentage change in Total Es-

timated Average Flooding Hours

above rail in 10 years

-43.1% -26.2%

Diameter/height/
width percentage
reduction (increased)

Percentage change in Total Esti-

mated Average Flooding Hours in

10 years

65.2% 28.1%

Percentage change in Total Es-

timated Average Flooding Hours

above rail in 10 years

82.0% 39.3%

Table 6.11: Percentage change in drainage system performance under weather and asset

condition scenarios with reduced and increased asset diameter/height/width reduction

assumptions

Similar to the change in the roughness assumption, the increase/decrease in diame-

ter/height/width percentage reduction also increases/decreases the total estimated flood-

ing hours. The percentage change in the performance indicator due to reduction in di-

ameter/height/width is higher than the ones due to roughness changes. This indicated

the predicted drainage system performance is more sensitive to the reduction in diame-

ter/height/width. The may be due to the fact that any change in diameter/height/width

will result in squared change in the cross sectional area, and hence will lead to even higher

change in hydraulic capacity. Such a relationship is also shown in Figure 6.1; if the di-

ameter of a storm drain is decreased to 60% of the original, its capacity will decrease to

roughly 25%. The percentage change in the performance indicator is within the range

of changes in asset cross sectional area due to changes in the diameter/height/width.

The percentage changes in the “increased” case is higher than the “decreased” case, this

is because the change in diameter/height/width reduction percentage will have a larger

effect in the total cross sectional area change in the increased case.

Assumption on asset depth change is examined by changing this parameter by up to

20%, and the new set of assumptions are listed in Table 6.12. Depth reduction when

Chambers, Outfall, Inflow, Syphon degrade are assumed to be:

1 2 3 4 5

Depth reduction (m) (reduced) 0 0 0.08 0.16 0.32%

Depth reduction (m) (increased) 0 0 0.12 0.24 0.48%

Table 6.12: Condition score and effect on reduction in asset depth for sensitivity test

The flooding results are shown in the Table 6.13 below:
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Scenario 2 Scenario 4

Depth reduction
(m) (reduced)

Total Estimated Average Flooding

Hours in 10 years
404.2 1632.2

Total Estimated Average Flooding

Hours above rail in 10 years
281.3 1153.4

Depth reduction
(m) (increased)

Total Estimated Average Flooding

Hours in 10 years
406.2 1643.3

Total Estimated Average Flooding

Hours above rail in 10 years
281.5 1158.3

Table 6.13: Drainage system performance under weather and asset condition scenarios

with reduced and increased depth reduction assumptions

The change in assumption of depth reduction is less than 0.4% for both scenarios and

for both reduced and increased cases. This means the effect of this assumption with

regard to the predicted system performance is very small. The system performance is

least sensitive to this assumption among the three assumptions tested. This may because

by changing the depth of the node, only a limited amount of storage capacity (no more

than 0.5 m2) will be reduced as a result, which will not have a significant effect on the

hydraulic capacity of the whole system.

Scenario 2 Scenario 4

Depth reduction
(m) (reduced)

Percentage change in Total Esti-

mated Average Flooding Hours in

10 years

-0.25% -0.30%

Percentage change in Total Es-

timated Average Flooding Hours

above rail in 10 years

-0.04% -0.17%

Depth reduction
(m) (increased)

Percentage change in Total Esti-

mated Average Flooding Hours in

10 years

0.25% 0.38%

Percentage change in Total Es-

timated Average Flooding Hours

above rail in 10 years

0.04% 0.25%

Table 6.14: Percentage change in drainage system performance under weather and asset

condition scenarios with reduced and increased depth reduction assumptions

6.3 Conclusion

The integrated hydraulic and degradation model for a railway drainage system demon-

strated a way to systematically evaluate the performance of a railway drainage system

under the influence of asset degradation and climate change. It gives a way of predicting

the future failure possibilities and comparing the ability of the drainage system to fulfil its

designed purpose under different climate change scenarios. For the case study drainage

system, the expected flooding is much more significant for the climate change scenario

(RCP 8.5) than the ‘no climate change’ scenario, no matter whether asset degradation
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process is taken into consideration or not. For both the ‘no climate change’ scenario

and the RCP8.5 scenario, the asset degradation will bring a large increase in the flood-

ing hours. These show that both the asset degradation and climate change will have

a significant impact on the railway drainage system performance. Hence, it is impor-

tant for asset managers to make proactive management decisions that can help maintain

the serviceability of the drainage assets and mitigate any possible flood risk. It is also

important for asset managers to consider possible effects of future climate change due

to global warming, and design programs of work to increase the hydraulic capacity of

existing drainage systems.

The case study is simulated under several assumptions to describe the linkage between

asset condition change and asset characteristics. The sensitivity of the system perfor-

mance indicator to these assumptions is tested. Result shows that the assumption on

the roughness change and reduction in diameter/height/width of the linear assets has a

large effect on the predicted performance, whereas the change in depth reduction has very

little effect. The performance is most sensitive to the diameter/height/width changes;

hence this assumption should be considered more carefully. On balance however the

assumptions used to link changes in asset condition with modelled parameters appear

reasonable.

The Knockenjig site is a typical rural railway section. The railway drainage system

receives water from the surrounding farmland and then directs water to a nearby natural

watercourse. Hence the demonstrated case study proves that the same methodology can

be similarly applied to other railway sections in rural areas. For railway drainage systems

in urban areas, extra analysis in the catchment area is needed, as the catchment served

by the drainage system may be affected by factors other than surrounding topography.

There might be extra discharges from structures and buildings, and man-made features

may obstruct the rainfall runoff.

Although in this case study, only the worst global warming scenario RCP 8.5 is tested,

scenarios of less severe climate change could also be tested to analyse the sensitivity of

drainage system performance to different degrees of climate change. Moreover, the effect

of human intervention (such as pipe renewal and maintenance) to bring drainage asset

condition into a more robust state is not considered in this case study, which would be

introduced in the next chapter and the results incorporated into the whole life cost model.

The effect of human intervention will be reflected in the improvement of asset conditions,

and the effect of various asset intervention strategies will be examined to provide asset

managers with guidance to discover improved asset management regimes.
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7 Whole life cost model using hydraulic performance

measures

In this chapter, the degradation and hydraulic performance model explained in the previ-

ous chapters will be integrated into a whole life cost model to estimate the cost of owning

the drainage assets in its service life time. By optimising the whole life cost, a decision

support tool can be developed to help NR’s asset managers develop a proactive asset

maintenance regime that minimises the risk of asset failure.

7.1 Methodology

As shown in Chapter 5 and 6, once the hydraulic performance model is built and cal-

ibrated, it then can be implemented in the whole life cost model alongside with the

degradation model so that the performance of railway drainage systems can be evaluated

under the influence of worsening asset condition. The whole life cost model is then com-

pleted by introducing the decision support tool where various intervention strategies are

generated to reverse or slow down the asset degradation process, and hence improve the

drainage system hydraulic performance and reduce the consequences of failure.

The whole life cost model is designed to calculate the cost of an asset from ‘womb’ to

‘tomb’, ie. from the time when asset is acquired or build to its disposal. The whole

life cost simulation process can be expressed in the flow chart shown in Figure 7.1. At

the start of time, the asset is either constructed by the asset owner or purchased from

a previous owner. Hence, a Design and Construction / Acquisition cost is calculated to

reflect the price paid for owning the assets. The Penalty costs and intervention costs will

then be calculated based on the performance and intervention strategies applied. At the

end of the asset’s life, a cost is incurred for the disposal of the asset.

Since drainage assets have a very long life-cycle, the model can be modified for short term

management purposes. By disregarding the Design and Construction / Acquisition cost

and Disposal Cost (shaded boxes in the diagram), the model can run not only for the

whole life of an asset, but also for any appropriate accounting periods such as the 5-year

Control Period in NR.

Here are the steps to run the whole life cost simulation:

1. Define the duration of the simulation T .

2. If simulating for the whole service life of the drainage assets, calculate the Design

and Construction / Acquisition cost.

3. Apply the degradation model to simulate the condition degradation for each asset.

4. Whenever an asset is degraded, carry out interventions on the assets based on the

intervention strategy generated by the Decision Support Tool.

5. Prepare a time series combining predicted degradation and intervention for all assets

and sort them according to the time of transition in ascending order.
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Figure 7.1: Flow chart for Whole Life Cost simulation

6. Run a calibrated hydraulic performance model with the current asset condition

and modify the asset characteristics according to the condition changes due to

degradation and intervention.

7. Extract the level of flooding from the performance model output and calculate the

duration of water above rail level.

8. Calculate the cost of penalties based on the asset’s performance.

penalty cost = duration of flooding × delay compensation cost per minute due to

flooding

9. Calculate the total costs of the interventions carried out.

10. Calculate disposal cost if simulating for the whole service life of the drainage assets.
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11. Aggregate the present value of all the costs.

12. Compare the total cost generated with previous simulations (compare with 0 on

first iteration). If the WLC is minimal, end simulation and export the optimal

intervention strategy; if not, rerun the simulation with a new set of intervention

strategies generated by the decision support tool.

As explained in Chapter 6, the asset degradation process simulated is a stochastic process,

hence each run will generate a different result. In order to reduce the stochasticity,

for each intervention strategy, multiple stochastic simulations are needed to obtain a

representative value of performance. As demonstrated in Section 6.2.3, a minimum of 23

runs is required for a 5 year simulation of drainage hydraulic performance under influence

of asset degradation and climate change. Hence in this chapter, 30 simulation runs are

performed for each scenario.

The Decision Support Tool is designed to generate a set of possible intervention strategies

based on expert opinion and understanding of existing NR asset management policies.

For each intervention strategy, two things will be defined: the proportion of interventions

that will take place for each asset condition groups; the proportion of assets that will get

intervened for each intervention type in each asset condition groups.

The WLC model was built using Matlab, SWMM was called and run with system com-

mand within Matlab when the hydraulic simulation has taken place, and the results are

then fed back into Matlab to be analysed and used in the WLC calculation.

7.2 Case Study

A case study is performed with the Knockenjig case study site to forecast the whole life

costs in the next 5 year Control Period under the influence of asset degradation and

various asset intervention strategies. The strategy that costs the least will be taken to

be the optimum intervention strategy. The historical rainfall data from 2015 to 2019 was

used to mimic future rainfall. A few assumptions and decisions need to be made for each

model and cost calculation steps before running the simulation.

7.2.1 Assumptions and model inputs

Before the starting the whole life cost simulation, several assumptions need to made and

a few input parameters need to be defined and calculated.

Assumptions

The effect of asset service condition changes on their physical characteristics needs to be

defined in order to simulate the performance of the drainage system under the influence of

asset degradation. Similarly, as explained and stated in Chapter 6, following assumptions

are made based on data from the literature, expert opinion and preliminary investigations

of the case study area:
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• For Pipe, Channel, Culvert and Granular Drain

i. Service condition score changes will have the following effect on roughness:

Service Condition Score 1 2 3 4 5

Manning’s n 0.010 0.012 0.020 0.035 0.055

Table 7.1: Condition score and corresponding roughness

ii. Service condition score changes will have the following effect on asset diame-

ter/height/width:

Service Condition Score 1 2 3 4 5

Percentage reduction 0% 0% 10% 30% 50%

Table 7.2: Condition score and effect on asset diameter/height/width

When changing the diameter/height/width of the asset, the asset’s invert level

will remain the same. This will result in a decrease in cross sectional area for

about 20% - 75% depending on the shape

• For Chambers, Outfall, Inflow, Syphon

Service condition score changes will have the following effect on reduction in asset

depth:

Service Condition Score 1 2 3 4 5

Depth reduction (m) 0 0 0.1 0.2 0.4

Table 7.3: Condition score and effect on reduction in asset depth

Based on NR Drainage Policy (NetworkRail, 2017), the effect of interventions on the

drainage service condition score is assumed to be as following:

Start Service Condition 1 2 3 4 5

Service Condition After Refurbishment 1 1 1 1 1

Service Condition After Maintenance 1 1 2 2 3

Table 7.4: Effect of intervention on drainage service condition scores

Drainage asset condition at the start of simulation is expected to be the same as the

current asset condition. However, as NR’s asset database is incomplete, the current asset

condition may be unknown and assumptions of the asset condition can only be made

based on field survey observations. As shown in Appendix E, the service condition of

many catchpits is relatively good. Hence, it is assumed that this type of asset’s current

condition is 1.

Model inputs
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The parameters needed for the Whole Life Cost model are listed below. How they are

deduced is also explained.

• Degradation generator matrix

– Degradation matrices are calculated based on asset types.

– All historical condition data are used to calculate the matrices.

• Unit penalty cost

– Unit penalty cost is defined as the delay cost per minute, calculated using the

delay cost due to flooding extracted from the Schedule 8 delay dataset, dated

from 2015 to 2021.

– Schedule 8 is an automatic payment scheme in the rail industry designed to

protect train operators from uncontrollable risks by keeping them financially

neutral during disruptions caused by other parties.

Unit penalty cost =
Total delay cost of all incidents from 2015 to 2021

Total delay minutes of all incidents from 2015 to 2021

= £55 per minute of flooding

• Unit intervention cost

– Unit intervention cost is extracted from the Delivery Plan of CP6 for drainage

maintenance and renewal cost and volume table in 2021. The Delivery Plan is a

comprehensive document that outlines the strategic goals, projects, initiatives,

and performance targets of Network Rail for a Control Period.

– The average cost of refurbishment is £224 per meter and the cost of mainte-

nance is £46 per meter.

– Since the unit cost per meter does not differentiate between asset type, and the

asset length is not recorded for all assets. The unit cost per asset is calculated

based on whether an asset is a linear or a point asset. Linear assets such as

pipes and culverts are assumed to be 30 meters long, whereas point assets such

as culverts and inflow/outfall are assumed to be 3 meters long.

Refurbishment Maintenance

Linear Asset £ 6720 £ 672

Point Asset £ 1380 £ 138

Table 7.5: Unit intervention cost

• Interest rate

– Interest rate is required to calculate the present value of future cash flow. The

interest rate used in this study is the long-term interest rate from March 2022,

which was the time when the WLC model was built. Long-term interest rates

are defined by the yield on government bonds maturing in ten years. According

to the forecasts generated by the Organisation for Economic Co-operation and
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Development (OECD), the long-term interest rate was 1.5% in March 2022

(OECD, 2023).

7.2.2 Results

The whole life cost simulation algorithm, developed in this study through the integration

of Matlab and SWMM, takes approximately three hours to execute a five-year simulation

for a single intervention strategy. This was computed on a system with an Intel Core

i9 processor, using 8 cores, and equipped with 16 GB of RAM. Although with Matlab

Parallel Computing Toolbox™, multiple simulations can run at the same time, it is not

sensible and efficient to run simulations for all possible interventions. Hence, an initial test

of three strategies is performed, and a larger set of intervention strategies are selected

based on the results of the initial test, and the outcomes of the set of new strategies

are interpolated to estimate the whole life cost for the rest of the possible intervention

strategies.

The initial three intervention strategies compared are as follows, assuming all assets are

in condition 1 at the start of the simulation.

(A) No intervention

(B) Only intervene on an asset in condition 4 and 5

• Intervention percentage

Service Condition Score 1 2 3 4 5

Refurbish 0% 0% 0% 50% 100%

Maintain 0% 0% 0% 50% 0%

Table 7.6: Intervention percentage for each asset condition group for Strategy B

• Intervention interval in months

Service Condition Score 1 2 3 4 5

Refurbish 6 6 6 6 6

Maintain 6 6 6 6 6

Table 7.7: Intervention interval for each asset condition group and each intervention type

for Strategy B

(C) Test with shorter Intervention interval

• Intervention interval in months

Comparison of the results for these three strategies are listed below:
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Service Condition Score 1 2 3 4 5

Refurbish 3 3 3 3 3

Maintain 1 1 1 1 1

Table 7.8: Intervention interval for each asset condition group and each intervention type

for Strategy C

Strategy A Strategy B Strategy C

Average Flooding Hours 95.1 72.3 64.1

Average Flooding Hours above 30cm 69.1 47.9 44.4

Penalty Cost £191,936 £133,213 £123,226
Refurbishment – Linear Asset 0 1.8 2.2

Refurbishment – Point Asset 0 1.9 2.1

Maintenance – Linear Asset 0 0.5 0.5

Maintenance – Point Asset 0 0.6 0.4

Intervention Cost £0 £13,255 £15,783
Total Cost £191,936 £146,468 £139,009

Table 7.9: Results of the three initial intervention strategies

As shown in Table 7.9, compared with any intervention taken place, the amount of total

costs is lower with some intervention actions. Although there is a cost paid out for

intervention, the amount of penalty cost reduced is higher than the intervention cost,

hence, it is more cost efficient for asset managers to maintain their assets following that

strategy. Also, comparing strategy B and C, it is observed that the size of the total cost

is reduced when the asset is intervened sooner after they degrade into a poorer condition.

More interventions are carried out as expected as the response time to degradation is

quicker which leads to a slightly higher intervention cost, however, such cost is balanced

out by the improvement of drainage performance which leads to a reduction in flooding

time and hence a lower penalty cost. The overall cost added up is lower for strategy C

than B, this means it is always encouraged for asset managers to remedy the degraded

asset as soon as possible.

However, it is not always possible at the current stage to have a response time less than

6 months for all drainage assets for various reasons: some assets may be hard to access

and some intervention may need to be outsourced and require longer times to plan and

arrange. Also, although the amount of flooding time is reduced when assets are intervened

sooner, the difference is not as large as compared with no intervention. As shown in Table

7.9, the average flooding hours for strategy B is actually lower than strategy C, although

the flooding in strategy B is more severe hence the average flooding time that will affect

train operation is higher. Therefore, it is decided that in the following simulations, the

intervention interval will be fixed at 6 months.

Hence a set of strategies are constructed based on the following pre-defined rules:

• Since condition 5 is the worst condition, all should be refurbished to a better state.
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• For all types of intervention and for all condition classes, intervention will take place

6 months after the degradation condition state transition happens.

• The aggregate percentage of Maintenance and Refurbishment applied to one asset

condition group should not exceed 100%, i.e. any asset can only be intervened with

one type of intervention action.

• No intervention is applied to condition class 1 and 2, as assets with condition

score 1 are in their perfect condition and do not need to be intervened; whereas

assets with condition 2 are defined as ‘Superficial deposits with no loss of capacity’,

interventions are also not needed.

• No refurbishment is applied to condition class 3, since maintenance is enough to

bring condition 3 back to functioning state with full hydraulic capacity, as a more

expensive option, refurbishment will not be performed on asset with condition 3.

The strategies are hence composed by combinations of maintaining assets at condition

grade 3, maintaining assets at condition grade 4 and refurbishing assets at condition

grade 4. A set of 21 combinations were tested and results were interpolated. The list

of the tested strategies can be found in Appendix H. Assets conditions at the start of

the simulation are assumed to be 1. The plots of the interpolated results are shown in

Figure 7.2 below. The total cost value is shown as volumetric data along slice planes that

are orthogonal to each axis. The colour bar indicated the scale of the cost value. The

optimum intervention strategy that minimises the total cost is marked with a red dot.

Figure 7.2: Total cost of the Knockenjig system under various intervention strategies with

starting condition 1

The optimum intervention strategy in this case is refurbishing 100% of condition 4 and

intervening 0% of condition 3. Although only slices of the total cost colour can be
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seen in the graph, it clearly shows that the total cost increases when the amount of

refurbishment for condition 4 approaches 0%. The effect of maintaining condition 3 and

4 is less significant. This could be due to the fact that the assets at the start are in a

“perfect” condition, hence the degradation of assets is slower or less unlikely. Degradation

to condition 4 and 5 would rarely happen, hence the overall state of the drainage system

will remain in a relatively good level if all assets degraded to a condition 4 or 5 is

intervened.

7.2.3 Sensitivity testing

Start condition

As explained in the assumptions, the condition of the assets at the start of the simulation

is assumed since the asset condition data does not exist in the database. In Section 7.2.2,

the results of 5 years’ of simulation with start condition of 1 is presented. However, the

assumption of asset in condition 1 is questionable, as only new build assets (installed

without error) can be qualified in such status. Since the assets have been in use for many

years, in reality, their conditions are expected to be worse. To test the effect on the

final result under such assumptions, a sensitivity test is performed by running similar

simulations with various start condition scores. The test is done assuming assets are in a

good but not perfect condition, ie. condition 2. Also, the model is tested with randomly

assigned start conditions that better reflect the general population of the asset conditions;

the proportion of assets in each condition class in the Knockenjig site is designed to be

the same as the proportion of assets in each condition class nationwide. The results are

shown in Figure 7.3 and 7.4.

157



Figure 7.3: Total cost of the Knockenjig system under various intervention strategies with

starting condition 2

Figure 7.4: Total cost of the Knockenjig system under various intervention strategies with

starting condition 3

As shown in the Figure 7.4, the optimum strategy with start condition 2 is 50% of

maintenance for condition 3 and 50% of refurbishment for condition 4. There is more

cost incurred on the edge where 0% of maintenance is done or both asset conditions 3

and 4. This means it is important to intervene on the poorer asset state, as a condition

4 asset left unattended can have a much worse effect. However, the optimum strategy
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is not refurbishing 100% and only 50% of condition 4, this may because the cost of

refurbishment is high, the cost of refurbishing all condition 4 cannot be recovered by the

savings in reducing flood risk. Since the loss of hydraulic capacity at condition 3 is less

severe, the effect of maintaining condition 3 would be less significant, hence only 50% is

needed to be intervened to reach the minimum overall cost.

The optimum strategy with randomly assigned start asset condition is 100% of mainte-

nance for condition 3 and 100% of maintenance for condition 4. In this case, the average

asset condition is worse than the previous two cases, and there exist some assets with

the worst conditions at the beginning. It is expected that more interventions should be

carried out to take the assets to a better functioning condition. Hence, all assets in both

condition 3 and 4 are intervened. 100% of condition 3 assets are maintained compared to

the 50% for the case with start condition 2. 100% of the condition 4 assets are maintained

rather than refurbished, since refurbishment and maintenance will bring assets back into

a better functioning state, but refurbishment is more costly, so maintenance would seem

to be the more cost efficient option.

Therefore, it is demonstrated that the condition of the drainage assets at the start of the

simulation has a significant effect on the optimum intervention strategy. Asset managers

should therefore understand the importance of making frequent inspections and acquire

updated asset condition when using the whole life cost model to simulate the possible

future costs and finding the optimum intervention strategy. Without an up to date

condition score, it is suggested that the asset manager could use a randomly selected

start condition using the national asset condition score distribution. Although based on

the simulation results, the overall costs for the randomly assigned condition case is the

highest among all the simulation scenarios, and more interventions are expected to be

planned; it is believed it is always better to overestimate than underestimate the amount

of budget needed to cover the scheduled intervention costs and penalty costs.

Roughness score

As presented in the sensitivity analysis in Section 6.2.5, the assumption made as to how

asset service condition change is reflected on a pipe roughness score and hence the effect

of asset degradation on the hydraulic performance of the drainage system under an asset

degradation trajectory. Similarly, a sensitivity test is also performed with the whole life

cost model to examine how sensitive the result of the optimum intervention strategy is to

the change in roughness assumption. The Manning’s n in degraded assets are reduced by

20% compared to the assumption made in the above section, and the results are shown

in the Table 7.10.

Service Condition Score 1 2 3 4 5

Manning’s n 0.010 0.0096 0.016 0.028 0.044

Table 7.10: Condition score and corresponding assumed roughness

Simulations are run while the rest of the assumptions remain the same, the condition of
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the assets at the start is 1. The graph of the resultant total costs is shown in Figure 7.5.

The optimum intervention strategy is 50% maintenance for condition 3 assets and 50% of

refurbishment for condition 4 assets. Compared with the original scenario, which is 100%

of refurbishment for condition 4, there is less refurbishment required which could mean

that assets in poorer states require less intervention as its effect on hydraulic capacity

is reduced. However, for assets in less severe condition, the decrease in roughness may

not reduce the risk of flooding in some situations. For example, if the upstream pipes

have a lower roughness score, flow velocity may increase which is helpful in protecting

the upstream railway assets; however, at the same time, it could also put more pressure

on the downstream assets and cause flooding in locations where the drainage system does

not have enough hydraulic capacity. Therefore, some maintenance of condition 3 is also

required to bring the overall drainage system to a better state.

Figure 7.5: Total cost of the Knockenjig system under reduced roughness score

Asset diameter/height/width

Assumption on percentage reduction in asset diameter/height/width with regard to asset

service condition degradation is increased by 20%, and the new set of assumptions are

listed in Table 7.6. This will result in a reduction of 22% - 84% in pipe cross sectional

area.

Service Condition Score 1 2 3 4 5

Percentage reduction 0% 0% 12% 36% 60%

Table 7.11: Condition score and corresponding asset diameter/height/width for sensitiv-

ity test
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The result WLC with the increased reduction in asset diameter/height/width is shown

in the Figure 7.6. The optimum solution is 100% maintenance for condition 3 and 100%

refurbishment for condition 4. As shown in the sensitivity test for the integrated hy-

draulic model in Section 6.2.5, drainage system performance is most sensitive to the

increase/reduction in asset diameter/height/width percentage reduction. With the in-

creased percentage reduction assumption, the asset hydraulic capacity will be severely

reduced and its performance will become much poorer. Hence, a much higher penalty cost

would be expected as more flooding is likely to occur. Therefore, since the consequence

of asset degrading is more serious, there is more incentive to intervene these assets and

bring them to a better condition. Hence all of the conditions 3 and 4 are intervened, and

both are improved to its highest possible performance level under the pre-defined rules.

Figure 7.6: Total cost of the Knockenjig system for a 10 year simulation

Duration of simulation

For the case study, the duration of simulation is 5 years, i.e. one Control Period. In

reality, simulations may be performed for a longer period of time, e.g. the useful life of

the assets. Hence in this section, how the optimum intervention strategy might change

with an increasing simulation period was also tested. The result is shown in Figure

7.7 and the optimum is 100% of maintenance for condition 3 and 100% of maintenance

for condition 4. 100% of condition 3 is intervened compared to the 0% in the 5-year

simulation, this may due to the fact that duration a longer time period, there is a higher

probability of assets transitioning from condition 3 to the worse condition 4 and 5. As

such transitions are less likely to be observed in a 5-year simulation, it is less likely to

cause any flooding due to performance loss, and hence there is no incentive to intervene

assets in condition 3. Whereas in a 10-year simulation, more asset degradation from

161



condition 3 is expected; and it is always ideal to intervene in all degraded assets to bring

them back to a serviceable condition before it degrades into the worst state (condition 5),

as assets with condition 5 may cause larger or even critical damage to the performance

of the drainage system. It is noted that the optimum intervention strategy over 10

years’ period with start condition 1 is the same as the optimum strategy of the random

start case. This might indicate that over a longer simulation period, the effect of the

start condition will become less significant, and the optimum intervention strategy will

converge into one single longer term strategy. Moreover, since refurbishment cost more

than maintenance, and the consequence of the two is not too different according to the

assumed changes in asset characteristics (i.e. difference between condition 1 and 2 is

only an increase of 0.002 in roughness); refurbishment would normally be the more cost

effective way of intervening assets.

Figure 7.7: Total cost of the Knockenjig system for a 10 year simulation

7.3 Conclusion

In this chapter, Whole Life Cost model was developed using the integrated hydraulic

performance model introduced in Chapter 6. A set of feasible intervention strategies

were generated based on expert opinion from route engineers about the general rules

of route level maintenance planning. The intervention strategies were then applied to

the degradation simulation process to bring an asset’s condition to a better state after

the asset had significantly degraded. The asset condition trajectory simulated under the

influence of both asset degradation and human intervention was then used as an input

to change the asset characteristics in the integrated hydraulic performance model. The

performance of the drainage system was then evaluated using the hydraulic performance

model with the adjusted asset characteristic, and the output performance indicator (du-
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ration of flooding) is used to calculate the penalty costs due to loss of performance. The

whole life cost is calculated by adding up the present value of the intervention costs and

penalty costs. The intervention strategy with the the minimal total whole life cost is

proposed as the optimum strategy.

A case study is performed for the Knockenjig site, for a 5 year simulation, the optimum

intervention solution is found to be refurbishing all assets with condition scores 4 and 5

while not intervening in assets in other conditions. Since several assumption has been

made on the linkage between condition degradation and the asset characteristic changes,

as well as the start condition of the drainage assets, sensitivity tests were performed to

test their effect on the WLC simulation. Decreasing the roughness score of the degraded

assets would decrease the percentage of asset need to be intervened in a worse condition.

Since the effect of degradation is reduced, less intervention is required to maintain the

asset’s condition and performance level. On the contrary, the increase in the percentage

reduction of asset’s diameter/width/height would lead to a higher percentage of asset in-

terventions. For a worse start condition, the percentage of assets intervened was increased

as more intervention is required to bring the assets’ performance to a desired level. For

a longer simulation period of 10 years, the percentage of assets intervened also increased,

and the optimum intervention strategy would converge into one strategy that intervenes

all degraded assets to bring them back to a serviceable condition before it degrades into

condition 5.

This model can be used on a tactical level to assist asset managers in identifying the

optimum intervention strategy for a portfolio of drainage systems. Since the model is

built based on a very thorough investigation of the geometric properties and hydraulic

capacity of the drainage system, it can provide site-specific information that assists route

engineers in prioritising their day to day maintenance plan. It can also be used during the

design process of building a sustainable and climate resilient drainage system, providing

justification for construction expenditure from a whole life cost perspective.
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8 Whole life cost model using data driven approach

As explained in Section 3.3 and Chapter 5, two parallel models are developed to evaluate

the performance of the drainage assets and which then integrated into the Whole life

cost model in order to provide asset manager with a tool that can be used for decision

making both on the tactical and the strategical level. The hydraulic performance model

introduced in Chapter 5 can produce a thorough assessment of the hydraulic carrying

capacity of any railway drainage system, however, it requires detailed asset information

that are currently not available nationwide in the NR database. The WLC model that

integrated with the hydraulic performance model also has its limitations. It needs a lot

of computational power; it takes a day to simulate for the 1 km long drainage system

in the case study. Hence it will be both too financially costly and time consuming to

perform an aggregated WLC simulation nationally for all the railway drainage systems.

Although it is very useful on a tactical level to help route engineer to prioritise their day

to day maintenance regime, it is less practical to be used for national budget planning and

workload forecasting. Therefore, a WLC model with data driven approach is presented

in this chapter to assist strategic top level management planning.

8.1 Methodology

8.1.1 Failure mode analysis

As described in Section 3.3.2, railway drainage failure mechanisms have been investigated

using Machine Learning (ML) algorithms in the In2track2 project. ML techniques can en-

able the identification of dominant failure mechanisms and empirical failure relationships

in large data sets by mapping inputs to outputs without attempting to replicate assumed

underlying processes, a property that has made it a useful method for various engineering

applications. They are categorised into two groups: supervised learning and unsupervised

learning. Supervised ML approaches such as Linear regression and Decision Trees are em-

ployed when parameters in the data set can be clearly labeled as input and output, and

then the algorithm is used to “learn” the mapping function from the input to the output

parameters. However, when relationships between parameters are poorly understood and

prior knowledge about data is unavailable, an unsupervised clustering technique such as

Principal Component Analysis (PCA) or Self-Organising Mapping (SOM) will provide

a more objective tool to uncover those relationships. PCA is unable to deal with miss-

ing values in the input data and with nonlinear relationships between parameters, while

SOM can easily handle both issues (Speight et al., 2019). SOM is suitable specifically for

visualizing relationships within large data sets, producing a low-dimensional (typically

two-dimensional) representation of a higher dimensional data set while preserving the

topological structure of the data (Miljkovic, 2017).

The historical data set recorded by NR contains large numbers of samples with many

variables, with a significant amount of missing values due to the incremental and devolved

way in which the asset data was collected. Therefore, SOM was chosen to explore and
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Figure 8.1: A schematic representation of a Self-Organizing Map

visualise relationships and correlations between various parameters in the data ranging

from weather, drainage and other railway asset characteristics to delays, derailments and

railway asset failures (Kazemi et al., 2021).

SOM does not have hidden layers, it maps the training set directly to the output network

using competitive learning. The idea is illustrated in Figure 8.1, a training set of n

vectors of x1, x2, . . . , xn, is mapped into a lattice of K neurons. A neuron contains a

vector of weights (wi1, wi2, . . . , wim) associated with all the input attributes and with

the same dimension of m. The colour of the map encodes the organization of groups of

samples/observations with similar properties (Kazemi et al., 2021).

The SOM training process consists of the following steps:

1. Initialise the weights of neurons.

2. A vector from the input data (a sample in the data) is presented to the lattice and

the weight vectors of the neurons in the output layer are compared with the input

vector.

3. The neuron with the most similar weights to the input vector is selected as its ‘Best

Matching Unit’ (BMU). This is done by calculating the Euclidean distance between

weight vector and input vectors.

4. The weights of the neighbouring neurons of the BMU are updated to make them

more like the input vector but with a smaller degree, according to their distance to

the BMU.

5. The neighbourhood is defined by a circle with a certain radius which decreases

gradually over the training process.

6. Repeat steps 2-5 until the change of the weight vectors falls below a certain thresh-

old, i.e. the clusters are formed.

The failure pathways of drainage related failure incidents was derived as a result of SOM

analysis. Based on the failure pathways identified in the In2Track2 project, in this study,

another widely used supervised ML algorithm: linear regression model has been employed
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to quantify the relationship between the identified “cause of failure” parameters and the

number of failures. The linear regression is usually expressed in the form:

Y = β0 +X1β1 + . . .+Xpβp + ϵ, (22)

where Y is the observed failure value, and Xi is the input variables that are parameters

presented with a linkage to failures, and ϵ denotes the error term that cannot be explained

by the model. The model is fitted using least-squares.

8.1.2 Whole life cost optimisation

The output of failure mode analysis then was incorporated into the Whole Life Cost

model to provides predictions of asset failure risk and drainage asset performance. The

WLC optimisation problem is described as follows:

min
x

C =
t=n∑
t=1

Pt(x, y)
1

(1 + r)t
+

t=n∑
t=1

It(x, y)
1

(1 + r)t

subject to C ≤ budget constraint (23)

Pt ≤ risk constraints ∀t ∈ [1, n]

It ≤ manpower constraints ∀t ∈ [1, n]

x meets feasibility constraints

C is the whole life cost account, Pt is the penalty cost at time step t, It is the intervention

cost at time step t, x is the intervention strategy, y is the a set of user defined input

parameters, n is number of time steps simulated, and r is the interest rate of one time

step.

The WLC cost is the sum of the aggregated present value of the penalty costs and the

aggregated present value of the intervention costs. The objective of the WLC optimisation

problem is to find the optimum intervention strategy x that minimise C and comply with

the constraints.

Several constraints have been proposed to meet operational requirement as well as assist-

ing asset managers with intelligent decision making which could limit the risks they are

willing to take.

• The WLC account is set to meet the budget constraints, i.e. the total amount of

cost must not exceed the amount of budget set for each year, no matter whether the

cost is contributed by penalty cost due to asset degradation and performance loss,

or contributed by intervention costs to bring assets into a better condition state.

• At each time step, penalty costs are restricted by the risk constraints. This pre-

vents the algorithm from allocating too much cost into the penalty rather than

intervention, even though it may yield a lower total cost when no constraints are

set. This constraint is put in place since one of the main purpose of the model is

to mitigate failures while minimising the WLC cost. By adjusting this constraint,

asset managers can then alter the model based on their risk appetite.
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• In NR, many interventions are done in-house, but there may be limited amount

of manpower in NR, i.e. a limited amount of intervention can be carried out each

year. Hence, the intervention cost is restricted by the manpower at each time step.

• The intervention strategy needs to be feasible, for example, it cannot exceed 100%

and one asset should not be intervened with different intervention action in the

same time step.

Matlab function ‘fmincon’ was used to solve the optimisation problem. ‘fmincon’ is a

nonlinear programming solver that finds the minimum of a problem specified by:

The first two equation define the non-linear inequality and equality constraints, and next

two equation defines the linear inequality and equality constraints, and the last equation

defines the lower and upper boundary of the minimiser x. ‘fmincon’ solves the optimi-

sation problem with gradient-based method by finding local minima through iterations.

The process of ‘fmincon’ begins with a selected initial point, follows a predetermined up-

date mechanism, and concludes when a specified stopping condition is satisfied. A local

optimum is found if the first-order necessary and second-order sufficient conditions are

both satisfied.

Normally, multiple runs with different initial starting points would be performed manually

with ‘fmincon’ to look for a global optimum. However, with the Matlab ‘GlobalSearch’

algorithm, such a process can be automated. ‘GlobalSearch’ attempts to find the global

minimum of a problem by performing a search over the entire problem space. The func-

tion is typically used when the problem has multiple local minima and the goal is to

find the absolute minimum, not just a local one. The algorithm is developed based on

methodology in Ugray et al. (2011), detailed description can be found at (How Glob-

alSearch and MultiStart Work, n.d.). The simulation process is shown in the Figure 8.2

and the basic steps of the algorithm as stated below:

1. Randomly select a set of different starting points in the problem space using the

scatter-search method.

2. From each starting point, a local search algorithm (‘fmincon’) is run to find a local

minimum.

3. Keep track of the optimum solution found from all of the local searches.

4. After all local searches are completed, the best solution is returned as the global

minimum.
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Figure 8.2: Matlab GlobalSearch Algorithm Overview (source:(How GlobalSearch and

MultiStart Work, n.d.))

8.2 Case Study

A case study is conducted on a national scale to demonstrate the use of whole life cost

algorithm with the data driven approach. A failure mode analysis was carried out in the

In2track2

8.2.1 Failure Mode Analysis

Two failure types were under investigating in the In2track2 project: Track Flooding

and Earthwork Failure. Track Flooding is defined as the incidents recorded when train is

under speed restriction or stopped due to excess of water present above the railway track.

Earthwork Failure is defined as damage of an earthwork asset due to underperforming

drainage. Track Flooding incidents are the result of short term drainage failures, whereas

the Earthwork Failures are the result of a combination of short term and long term

drainage failure, i.e. it can happen due to long term water erosion and short term

excessive water flows. Since the failure mechanism of Earthwork failures is more complex

and is related to some earthwork specific parameters that requires further investigation,

in this case study, only the Track Flooding failures are taken into consideration as part

of the WLC simulation.

Several parameters has been investigated using SOMs to test for linkage to Track Flooding

failures, such as drainage structural and service asset condition, precipitation and local

geology. The result shows that the following parameters are identified to be important:

• Total precipitation (mm) in the last 5 days before the failure and non-failure events

• Average service condition score of all assets 100 m of the location of failures and

non-failures
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Figure 8.3: Relationships between Failure, total precipitation in the last 5 days, and

average service condition score

The SOMs graph is presented in Figure 8.3. On the maps, each cell(colored hexagon)

represents a group of observations; the spatial location of a cell in a topographic map

corresponds to a particular domain or feature drawn from the input space. Colour of the

cell represents the value of the variables where red is high and blue is low. Each cell in the

same position on different maps corresponds to the same group of observations/samples.

As shown in the Figure 8.3, two clusters are formed due to the Failure map (lattice C),

which is marked by the dashed lines. The number in the Failure map indicates whether

a failure occurred, where 1 means failure happened and 2 means there is no failure. As

expected, the failure is linked to a higher precipitation level as there are lots more red

cells in the upper cluster in the 5 day total precipitation map (lattice A). The linkage

between asset service condition is less obvious, however, in the service condition map

(lattice B), there is slightly less cells with a low condition score (better condition) in the

cluster corresponding to failure.

Following the result of SOMs analysis, linear regression is performed to model the re-

lationship between Track Flooding failures and the average service condition score and

total precipitation nationwide. Number of failure per year is calculated using historical

failure records. Service condition for each drainage asset at the end of each year is ex-

tracted from the historical asset condition records in Ellipse database, and the average

service condition is calculated. Annual precipitation in the UK is obtained from the UK

Meteorological Office. The model was simulation with a time step of one year, due to the

fact that inspection of the drainage asset is likely to be only carried out once per year;

170



with a shorter time steps, there is not enough asset condition information to generate an

accurate prediction of the number of failures. The analysis was performed using failure

data from 2017-2021, and the result are as follows:

Estimated Coefficients:

Estimate SE tStat pValue

(Intercept) -3301.5 639.88 -5.16 0.036

x1 1360.5 313.94 4.33 0.049

x2 1.02 0.45 2.15 0.164

Number of observations: 5, Error degrees of freedom: 2

Root Mean Squared Error: 97.8

R-squared: 0.95, Adjusted R-Squared: 0.899

F-statistic vs. constant model: 18.8, p-value = 0.05

Table 8.1: Linear regression results for Track Flooding failure analysis

x1 is the average service condition score and x2 is the annual precipitation. The p-

value for the F-test on the model is 0.05, means this null hypothesis of each independent

variable has no effect on the dependent variable is rejected at 5% significance level. The

R-squared is 0.95 suggests that the model explains approximately 95% of the variability

in the dependent variable. The added variable plot is shown in Figure 8.4, demonstrating

a partial correlation between the independent variables and the dependent variable. The

dotted line shows a confidence interval that indicates how precisely the sample data fit

that correlation.

Figure 8.4: Added variable plot for Track Flooding failure analysis

The slope of the regression line in the Figure 8.4 indicates that there is a positive correla-

tion between the independent variables (asset service condition and annual precipitation)

171



and the depend variable (number of failures). The graph also demonstrated that the

adjusted data are all in the 95% confidence bounds and most of them are quite close

to the best fitted line. This indicates that the model gives a sound prediction for the

number of failures.

It is noted that this prediction model could pass origin when x1 > 1. This means the

predicted of failures could reduced to 0 even when the asset service condition is not at

its minimum value 1. This is sensible as once the average service condition reaches a low

value, even though it is not at its best performance, the existing hydraulic performance

is enough to direct water away from railway assets and mitigate any flood risks. Hence,

in cases when predicted number of failures is negative, it is assumed to be 0.

8.2.2 Whole life cost optimisation

The WLC optimisation problem is described in Section 8.1.2 as:

min
x

C =
t=n∑
t=1

Pt(x, y)
1

(1 + r)t
+

t=n∑
t=1

It(x, y)
1

(1 + r)t

subject to C ≤ budget constraint (24)

Pt ≤ risk constraints ∀t ∈ [1, n]

It ≤ manpower constraints ∀t ∈ [1, n]

x meets feasibility constraints

The minimizer x represents the intervention strategy. Two types of intervention can be

carried out to remedy the drainage service condition: Refurbishment and Maintenance.

Hence x is constructed as a matrix that represents the percentage of each condition

category get intervened by each type of intervention action.

x =

(
r1 r2 r3 r4 r5
m1 m2 m3 m4 m5

)
(25)

ri is the percentage of assets in service condition i get refurbished. mi is the percentage

of assets in service condition i get maintained. As condition 1 represents the perfect

performance, no intervention is needed for this condition category, hence, r1 and mi are

set to equal to 0.

The constraints of the optimisation problem are listed as follows:

• Total cost ≤ budget constraint

• Expected failures ≤ risk constraint

• Total refurbish work done ≤ Maximum refurbish manpower

• Total maintenance work done ≤ Maximum maintenance man hour

• Lower boundary of intervention matrix element is 0%

• Upper boundary of intervention matrix element is 100%

• Asset can not be both refurbished and maintained
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8.2.2.1 Inputs and assumptions

Similarly as Chapter 6 and Chapter 7, the effect of interventions on the drainage service

condition score is assumed to be as following based on NR Drainage Policy (NetworkRail,

2017):

Start Service Condition 1 2 3 4 5

Service Condition After Refurbishment 1 1 1 1 1

Service Condition After Maintenance 1 1 2 2 3

Table 8.2: Effect of intervention on drainage service condition scores

Hence, the refurbishment and maintenance effect can be calculated using the matrix:

E =


r1 +m1 0 0 0 0

r2 +m2 1− r2 −m2 0 0 0

r3 m3 1− r3 −m3 0 0

r4 m4 0 1− r4 −m4 0

r5 0 m5 0 1− r5 −m5

 (26)

Input parameters generated from the asset degradation model and the failure mode analy-

sis, as well as several user defined parameters are listed and explained below. Assumptions

are made when required information is not available or uncertain.

Precipitation

Precipitation is used as one of the independent variable to predict the number of failures.

Hence, future annual precipitation in the simulated time period needs to be predicted.

In cases where precipitation is assumed to be similar to the precipitation in the past,

the annual precipitation is randomly picked from past 100 year’s record. In cases when

climate changes are considered, annual precipitation from the UK Climate Projections

(UKCP18) global projections (60km) and regional projections (12km) is used as the future

precipitation prediction. Two climate change scenarios provided by the model: RCP2.6

and RCP8.5. The predicted annual precipitation at time t is denoted as Ht.

Service Condition degradation transition matrices

Service condition degradation transition matrix is calculated with the methodology stated

in Section 4.2.3 using historical asset condition records. For better accuracy of prediction,

transition rate is calculated and applied individually for each asset groups. In cases when

an asset has no asset group information record or the asset group does not have enough

asset samples to generate a stable transition matrix, the transition rate matrix produced

with all drainage assets is used as a proxy. Qk represents transition rate matrix for asset

type k.

Asset Start Condition
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The amount of assets in each service condition category for each asset type is calcu-

lated from the drainage database, and recorded in matrix Nk,1 = [n1,k,1, n2,k,1, n3,k,1,

n4,k,1, n5,k,1], where ni,k,1 is number of assets in condition i with asset type k at time

t = 1.

Simulation Duration and Time steps

The length of the time steps l and number of iterations n need to be defined for the

simulation process. l is presented as a fraction of years, hence the number of years

simulated would be l × n.

Unit Penalty Cost

The average penalty cost of the Track Flooding incidents is calculated and used as the

unit penalty cost pc.

Unit Intervention Cost

Similarly to Section 7, unit intervention cost per meter is extracted from the Delivery

Plan Table, unit cost per asset is calculated for linear and point assets and is shown in

Table 8.3.

Refurbishment Maintenance

Linear Asset £ 6720 £ 672

Point Asset £ 1380 £ 138

Table 8.3: Unit intervention cost

The unit intervention cost is hence denoted as: uc =

[
6720 672

1380 138

]
.

Interest rate

Interest rate is required to calculate the present value of future cash flow. The interest

rate used in this study is the long-term interest rate from March 2022, which was the

time when the WLC model was built. Long-term interest rates are defined by the yield

on government bonds maturing in ten years. According to the forecasts generated by

the Organisation for Economic Co-operation and Development (OECD), the long-term

interest rate was 1.5% in March 2022 (OECD, 2023).

Budget Constraints

As the budget for drainage interventions are historically accounts as part of the expendi-

tures of other railway assets such as track and earthwork, it is hard to obtain the exact

total budget allocated to drainage. Hence, a budget constraint of £30,000,000 per year

is estimated based the historical drainage related work done in track/ earthwork and

average compensation cost due to flooding.

Risk Constraints
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The average number of historical annual failures of 600 is used as the maximum number

of failures allowed to happen in a year.

Manpower Constraints

The manpower constraints are unclear as no information can be found from NR. Hence,

an assumption is made: no more than 3% of all the assets can be refurbished and no

more than 5% of all the assets can be maintained in a year, which is 14,019 and 23,365

respectively.

8.2.2.2 Calculations steps

At each time step, the following calculations are performed to calculate the penalty cost

Pt and intervention cost It.

1. Use transition rate matrices Qk and intervention strategy matrix x to calculate the

amount of number of interventions at time t. Tr,t is the amount of refurbishment

carried out at time t, whereas Tm,t the amount of maintenance carried out.

Tr,t = (
∑
k

Nk,t ×Qk) · [r1, r2, r3, r4, r5] (27)

Tm,t = (
∑
k

Nk,t ×Qk) · [m1,m2,m3,m4,m5] (28)

Nk,t is the start condition of asset group k at time t.

2. Calculate the Intervention cost It.

It =

[
Tr,t

Tm,t

]
⊙ uc (29)

3. Use degradation matrices and intervention effect matrices to calculate the amount

assets in each condition category for each asset type at the end of the time step.

Nk,t+1 = Nk,t ×Qk × E (30)

4. Calculate the national mean service condition Mt.

Mt =

∑
k Nk,t+1 · [1, 2, 3, 4, 5]∑i=5

i=1 ni,k,t+1

(31)

5. Predict number of failure Ft using the result of the linear regression model.

Ft = −3301.49 + 1360.46×Mt + 1.02×Ht; (32)

6. Calculate the penalty cost.

Pt = Ft × pc (33)
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8.2.2.3 Optimisation problem summary

The optimisation problem hence can be expressed in the more detailed format:

min
x

C =
t=n∑
t=1

∑
∀ Asset type k

Pt(x, Ht, Qk, Nk,1, pc, uc)
1

(1 + r)t

+
t=n∑
t=1

∑
∀ Asset type k

It(x, Ht, Qk, Nk,1, pc, uc)
1

(1 + r)t

subject to C ≤ 30000000× n (34)

Ft ≤ 900 ∀ t ∈ [1, n]

Tr,t ≤ 14019 ∀ t ∈ [1, n]

Tm,t ≤ 23365 ∀ t ∈ [1, n]

ri ≥ 0% ∀ i ∈ [1, 5]

mi ≥ 0% ∀ i ∈ [1, 5]

ri ≤ 100% ∀ i ∈ [1, 5]

mi ≤ 100% ∀ i ∈ [1, 5]

ri +mi ≤ 100% ∀ i ∈ [1, 5]

Definition of each term in the equation is listed below.

x: Intervention strategy matrix.

C: Total whole life cost account.

Pt: Penalty cost at time step t.

It: Intervention cost at time step t.

Ht: Annual precipitation predicted at time step t.

Qk: Transition matrix for asset type k.

Nk,1: Number of asset in each condition state for asset type k at start of the simulation.

n: Number of time steps simulated.

pc: Unit penalty cost.

uc: Unit intervention cost.

r: Interest rate of one time step.

8.2.3 Results

5 year simulation

The test was firstly run for 5 years period as it is the duration of one Control Period (CP)

in NR, and their budget planning is carried out at beginning of every CP. The time step

was defined as one year, and it was assumed that the precipitation would not be affected

by climate change. The optimum intervention strategy is presented in Table 8.4, showing
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the percentage of asset get intervened in each condition category. The present value of

the aggregated costs are shown in Table 8.5.

Asset Condition 1 2 3 4 5

Refurbishment 0.0% 0.0% 0.0% 0.0% 40.0%

Maintenance 0.0% 0.0% 6.6% 77.9% 52.2%

Table 8.4: Optimum intervention strategy for 5 year simulation period

Penalty cost £70,959,579
Intervention cost £52,984,409
Total £123,943,988

Table 8.5: Present value of penalty, intervention and total cost for 5 year’s simulation

The optimum intervention strategy focus on intervening assets in worst conditions: 77.9%

of asset condition 4 is and 92.2% of condition 5 is intervened. All intervention on condi-

tion 4 is maintenance. This is because the difference between condition 1 and 2 is very

small, also the regression model shows that the predicted failure falls to zero between an

average condition 1 and 2. Refurbishing condition 4 will bring it to 2 whereas maintaining

condition 4 will bring it to 1, but the cost of maintenance is 10 times lower than refur-

bishment; hence maintenance would be the more cost efficient choice when intervening

condition 4. For condition 5, the percentage of refurbishment and maintenance does not

differ too much, this may because due to limited budget or manpower, not all assets can

be refurbished, hence maintenance are performed to bring them from completely ruined

to a condition level with partial hydraulic capacity.

Also, some of the condition 3 are also maintained to bring the overall condition into a

better state and slow down the degradation process to prevent them from degrading into

condition 4 and 5, as the hydraulic capacity of asset in condition 4 and 5 will be severally

reduced.

The breakdown of the forecasted average service condition score, failures and intervention

as well as the calculated penalty and intervention costs are shown in Table 8.6.
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Simulation

Step

Forecasted

Average

Service

Condition

Score

Forecasted

Number

of

Failures

Penalty Cost

Number

of Refur-

bishment

Number

of Main-

tenance

Intervention

Cost

1 1.87 409 £11,573,525 7355 23365 £30,443,778
2 1.88 600 £16,969,202 1232 9614 £7,621,180
3 1.91 600 £16,969,201 745 7913 £5,566,968
4 1.94 425 £12,006,816 709 7849 £5,446,103
5 1.97 592 £16,746,562 711 8045 £5,535,013

Table 8.6: Number of forecasted average service condition score, failures and intervention;

and penalty and intervention costs for a simulation of 5 year duration

As shown in Table 8.6, although the forecasted average service condition is increasing

over the 5 year period, the predicted amount of failures varies from 400 to 600, and does

not follow the trend of the asset condition changes. This is because the predicted failure

is also affected by the forecasted precipitation level. Although in time step 4, average

service condition is poorer than year 3, the amount of failures is actually lower, this is

because in year 4, the forecasted precipitation is 1057.5 mm whereas in year 3 it is 1269.6

mm. In addition, the increment in average service condition is at a maximum of 0.03,

which might be too small to have an effect on the predicted number of failures. Annual

results provide an insight into the impact of rainfall variability; increased failure risk in a

year may be due to the rainfall volume in that year and not the level of asset degradation.

Aggregating results over a 5 year period aligns with the expected performance over a 5

year control period.

The number of interventions shows a downward trend, the number of assets intervened

in the first time step is 3.5 times to the ones in the last year. This is because drainage

assets have a long life time and degrade relatively slowly, an asset is very unlikely to

degrade from a condition 1 or 2 to the worst states of 4 or 5 in a short time period. Also,

as most of the assets in condition 4 and 5 are intervened in time step 1, there is only a

few left to be addressed in the following time steps. Given the limited number of assets

degrading into conditions 4 and 5, and the fact that almost all of these will be improved

to a better state, the majority of assets will have a condition score of 1 to 3 which means

they will provide an acceptable level of hydraulic performance, assuming their designed

hydraulic capacity is sufficient. Hence, the amount of assets need to be intervened will

decrease over the years which leads to an decrease in the expected intervention cost.

The upward trend in the asset condition score indicates that under this strategy the

intervention actions can not offset the degradation effect completely. Although such effect

is minimal in a short time period, it could accumulate in the long term and increase the

risk of failure to a point that the risk constraint could not be meet. Hence, a simulation

over a longer period of 50 years will be performed to analyse the long-term optimum

intervention strategy.
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50 year simulation

The model was tested for a longer time period of 50 years while all other inputs and

constraints remains the same, however, no feasible solution was found. This is probably

because in a longer period, more intervention are needed to maintain the asset in a

acceptable service condition and hence keeps the number of predicted failures is below

the risk constraint. As explained above, the optimum intervention strategy for a 5-year

period could not offset the degradation effect completely. Such difference between the

rate of degradation and the rate of remediation would become more significant over time.

Hence, it is possible that the optimum solution can only exist beyond the boundary

of the current manpower constraints or risk constraint. As risk mitigation would be a

major concern to the asset manager, it is decided to only relax the manpower constraint

and encourage more interventions to improve the asset service condition. The manpower

constraint was lifted by 1%, so a maximum of 4% of all assets can be refurbished and

a maximum of 6% of all assets can be refurbished (18,692 and 28,038 receptively). A

solution was found under the new constraint. The optimum intervention strategy is

shown in the Table 8.7 and the present value of the aggregated costs are shown in Table

8.8.

Asset Condition 1 2 3 4 5

Refurbishment 0.0% 0.0% 0.0% 0.0% 100%

Maintenance 0.0% 8.4% 20.4% 40.1% 0.0%

Table 8.7: Optimum intervention strategy for 50 year’s simulation

Penalty cost £91,111,218
Intervention cost £557,735,988
Total £648,847,206

Table 8.8: Present value of penalty, intervention and total cost for 50 year’s simulation

As shown in Table 8.7, comparing with the optimum strategy of the 5 year simulation,

the percentage of intervention for all asset condition categories except condition 4 has

increased. Although less assets in condition 4 is intervened, more assets are intervened

for condition 2 and 3. As improvement of asset condition in 2 and 3 will prevent asset

from degrading to the worst state, this will consequently reduce the number of asset in

condition 4 and hence improve the overall condition of drainage assets. Also, 100% of

the condition 5 is refurbished, which is as expected since they are the ones that can leads

the most significant reduction in performance. The result indicates that adopting a more

active intervention strategy would prove to be more cost-effective in the long run. Initially,

it may entail high costs to intervene in a large proportion of assets. However, once the

asset condition is brought down to a desirable level, both the intervention and penalty

costs are expected to remain low. Over time, the asset condition level should stabilise,

since any degradation of assets can be offset by the high proportion of intervention. Even
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with a high proportion of intervention, fewer interventions would be required as less

degradation is expected. Furthermore, asset performance would be optimised once assets

reaches the stable level, which would lead to fewer failures and significant reduction in

penalty costs.
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Climate change scenarios

Tests was run under RCP 2.6 and RCP 8.5 climate change scenarios to examine potential

effect of the climate change on the performance of the drainage assets and the influence

on the choices of the optimum intervention strategy. The result optimum strategy are

shown in Table 8.9 and 8.11 and the present value of the aggregated costs are shown in

Table 8.10 and 8.12.

Asset Condition 1 2 3 4 5

Refurbishment 0.0% 0.0% 0.0% 0.0% 0.0%

Maintenance 0.0% 7.2% 18.7% 26.4% 24.6%

Table 8.9: Optimum intervention strategy for 50 year’s simulation under RCP 2.6 climate

change scenario

Penalty cost £223,456,867
Intervention cost £332,909,223
Total £556,366,090

Table 8.10: Present value of penalty, intervention and total cost for 50 year’s simulation

under RCP 2.6 climate change scenario

Asset Condition 1 2 3 4 5

Refurbishment 0.0% 0.0% 0.0% 0.0% 95.7%

Maintenance 0.0% 7.8% 20.2% 40.7% 4.3%

Table 8.11: Optimum intervention strategy for 50 year’s simulation under RCP 8.5 climate

change scenario

Penalty cost £57,656,721
Intervention cost £542,845,844
Total £600,502,575

Table 8.12: Present value of penalty, intervention and total cost for 50 year’s simulation

under RCP 8.5 climate change scenario

Comparing the two climate change scenarios (RCP 2.6 and RCP 8.5), the optimum

intervention strategies were found to be quite different. For the RCP 2.6 scenario, the

optimum intervention strategy is formed by maintenance interventions only. For all assets

not in perfect condition (i.e., those in conditions 2-4), a certain percentage is maintained,

while the percentage of assets intervened is slightly higher for the worst conditions (i.e.,

conditions 4 and 5). This may be because with a milder climate change scenario, the

volume of expected precipitation is less than in the RCP 8.5 scenario, hence, assets are

not required to be maintained at such a high condition standard in order to cope with the

failure risks expected to be caused by the higher rainfall volume. This is also reflected
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by the smaller amount of whole life cost and intervention cost. However, the penalty

cost of the RCP 2.6 scenario is higher than the RCP 8.5 scenario despite the fact that

its precipitation level is lower. This may be because with a less proactive intervention

regime, assets will experience more degradation, as long as the loss in performance does

not lead to excess amount of failures that will violate the risk constraint. In this case,

asset managers may wish to adjust the model when their risk expectation has changed,

i.e. fewer failures will be expected if precipitation is lower then in the RCP 8.5 scenario.

In the optimum intervention strategy for the RCP 8.5, almost all assets scored at condition

grade 5 are intervened with 95.7% refurbished and 4.3% maintained. Higher failure risk is

induced by the high precipitation prediction, this then motivates the model to generate a

strategy that can better maintain or improve an asset’s current service condition. Hence,

a higher number of interventions is performed which is reflected by the high intervention

cost compared to the RCP 2.6 scenario. As a result, the asset condition is improved and

the failure risk is mitigated and the penalty cost is reduced.

It is noted that, compared with the optimum intervention strategy for 50 year’s simulation

assuming no climate change, although the optimum intervention strategy under RCP 8.5

climate change scenario is quite similar, the total cost is still lower. This is due to the

fact that the rainfall prediction generated using the UKCP18 RCP 8.5 global projections

(60km) has a lower mean value than the randomly selected historical rainfall time series

that has been used for the non-climate change scenario, hence, fewer failures are expected

to occur.

The RCP 8.5 climate change scenario is then tested again with precipitation simulated

in the UKCP18 regional projections (12km), which provides data with higher spatial res-

olution. The predicted annual precipitation in the next 50 years using UKCP18 regional

projections (12km) is generally higher than the one using UKCP18 global projections

(60km). No feasible solution was found probably due to the fact that under a higher

predicted rainfall volume, inevitably more failures will be expected to happen, and with

the current budget and manpower constraints, the asset conditions were not able be

maintained to a level that could keep the number of predicted failures below the risk

constraint. This implies that more resources are needed in order to cope with the in-

creasing precipitation expected under this climate change scenario. In order to find a

feasible solution, it is decided to increase the manpower constraint by another 1%, so

a maximum of 5% of all assets can be refurbished and a maximum of 7% of all assets

can be refurbished (23,365 and 32,711 receptively). A solution was found under the new

constraint. The optimum intervention strategy is shown in Table 8.13 and the present

value of the aggregated costs is shown in Table 8.14.
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Asset Condition 1 2 3 4 5

Refurbishment 0.0% 0.0% 0.0% 0.0% 100.0%

Maintenance 0.0% 11.0% 22.3% 37.8% 0.0%

Table 8.13: Optimum intervention strategy for 50 year’s simulation under RCP 8.5 climate

change scenario using UKCP18 regional projections (12km)

Penalty cost £146,845,275
Intervention cost £590,466,238
Total £737,311,513

Table 8.14: Present value of penalty, intervention and total cost for 50 year’s simulation

under RCP 8.5 climate change scenario using UKCP18 regional projections (12km)

As shown in Table 8.13, the optimum intervention strategy is similar to the one using

historical precipitation data. However, both the penalty and intervention costs have

increased, with the intervention cost rising by 6%, while the penalty cost increased by

60%. This could be due to the fact that even though assets are maintained at a similar

or slightly better condition, high precipitation levels will lead to more failures as the

hydraulic capacity of many assets has been exceeded and this cannot be eliminated due

to current budget and manpower limitations.

8.3 Conclusion

In this chapter, a whole life cost model is developed using data drive approach to analysis

the risk of failure. In the failure mode analysis, machine learning algorithms are used

to determine the linkages between between parameters that can affect drainage asset

performance and hence cause damage to railway assets and obstruction to rail operations.

After the failure mechanism has been identified using the unsupervised machine learning

model SOMs, such linkage is further investigated and quantified using Linear Regression.

The analysis is performed using historical Track Flooding record and asset condition

data from NR as well as precipitation data from Met Office. As a outcome of the failure

mode analysis, the amount of Track Flooding Failures can be predicted using average

service condition of drainage assets and national precipitation. This is then build into

the Whole Life Cost model to provide asset manager a tool that can help them with asset

maintenance planning and expenditure projection calculation. An optimum intervention

strategy can be found by minimizing the total costs of owning the drainage asset, while

complying with any operational requirements and controlling the amount of risks they

are willing to take.

Several scenarios has been test in Section 8.2 as a demonstration of possible ways to use

the model. The model was run both with a short period of 5 year and a longer period

of 50 year. The results shown that, in the long term, a more proactive maintenance

regime is required to mitigate the risk caused by loss in performance as a result of asset
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degradation. Also, two climate change scenarios of RCP 2.6 and RCP 8.5 were tested.

The result shows that the amount of precipitation will have a clear effect on the expected

failures and hence affect the intervention strategy. When less precipitation is expected,

the expected failure risk will also be lower, and hence less intervention is required to adapt

to the changing climate. Also, climate change projections of different Spatial resolutions

were tested and compared. The results showed that the WLC simulation is sensitive to

the choice of climate projections. Under the same climate change senario (RCP 8.5), the

rainfall predictions generated from the UKCP18 Regional (12km) projections were higher

than the Global(60km) projections, which led to a higher prediction of the WLC and a

need for a more active intervention regime.

This model can be used on a strategic level to help asset manager make top-level bud-

getary plans that provide asset degradation prediction and performance estimation as

well as work volumes and expenditures projections for a portfolio of assets. The portfolio

of asset could both be all asset nationwide or assets in a particular route. This model can

also be used with the Whole Life Cost model with hydraulic performance, as this model

only provide high level intervention instructions. The detailed hydraulic model can help

local engineer to prioritise asset based on their criticality in the local drainage system.
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9 Discussion

In this study, new models were developed: degradation model, strategic and tactical

performance models, and WLC models with decision support tools. These models were

designed for the UK railway drainage assets to help NR’s managers gain a better un-

derstanding of their assets and assist them to develop proactive management regimes

by considering the whole life cost of the drainage assets throughout their lifetime. The

whole life cost accounting incorporates not only the costs of acquiring and disposing of

the assets, but also the operational costs incurred between the time of construction and

disposal. There are two main types of operational costs identified by the model: penalty

costs and intervention costs. Penalty costs are caused by the loss of performance of the

drainage assets. The performance level is affected by the asset condition and hence is

prone to any changes due to asset deterioration or changing environmental pressures. The

intervention costs are those incurred to improve or rectify the performance level through

the intervention actions that can remedy deteriorated assets.

A condition degradation model was developed using the Continuous Time Markov Chain

concept to simulate asset service and structural condition degradation. Two types of

system performance model were examined, each operated at a tactical and a strategic

level. A hydraulic performance model was constructed for individual drainage systems,

using the SWMM hydrological/hydrodynamic models to evaluate the drainage asset per-

formance based on both current and forecasted asset conditions and rainfall time series.

In parallel to this hydraulic performance model, a data driven failure mode analysis was

also carried out to examine failure mechanisms and quantify the failure risks due to loss

of asset performance at a national (strategic) scale using data from NR’s national as-

set databases. The above models are incorporated into the WLC simulation algorithm

alongside a decision support tool; the whole life cost of the drainage assets can then be

calculated under the influence of asset degradation, rainfall under climate change and

the intervention strategies generated by the decision support tool. By solving the op-

timisation problem with the objective of minimising the whole life cost, an optimum

intervention strategy can be found. Asset managers could hence use the simulated re-

sults to build objective, more cost efficient and sustainable management plans to mitigate

undesired risks to the operation of the railway due to drainage related asset failures.

Several case studies were presented to demonstrate the practical use of the models. For

the degradation model, both the service and structural condition of the 300 mm diameter

pipe (the most common type of pipe asset group) have been studied in detail. The

transition rate matrices for both service and structural condition were calculated using

the historical NR asset condition records collected from 2012. The minimal number of

sample data needed to obtain a stable matrix was found, where a stable matrix is defined

as the transition matrix that varies within 5% of the matrix deduced using all assets

in a particular asset cohort. The results show that the asset degradation model can

provide a sensible prediction of the service and structural degradation process with 21%

and 94% randomly selected samples from all 300 mm diameter pipes respectively. The
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transition matrices can help asset managers better understand the magnitude of the asset

degradation processes for railway drainage assets; the construction and analysis of stable

transition matrices can be used to justify NR’s asset inspection volume and costs, as

well as contributing to the decision making process of potential intervention schemes. As

requested by NR, this model has been applied to a wide set of asset groups and asset

types, and the results have been implemented as part of their asset management tools.

The hydraulic performance model was demonstrated with a case study of a drainage sys-

tem on an operational railway line near Knockenjig, Scotland. A digital replica of the

drainage system was built in the SWMM hydrological/hydrodynamic software tool. A

catchment study was conducted to identify the catchment area served by the Knockenjig

drainage system. Several water flow and water depth sensors were installed in the system

at locations that are more likely to fail according to critical asset testing performed us-

ing the hydraulic performance model. Several critical hydrological and hydraulic model

parameters were calibrated using the collected sensor data, so that the model can more

accurately simulate the catchment run-off and drainage system hydraulic performance.

The hydraulic performance of the drainage system is quantified by the duration of flood-

ing. When there is not enough hydraulic capacity in the system, excess water will leave

the drainage system through drainage nodes (catchpits) and cause flooding onto the

railway. The hydraulic performance of the Knockenjig site was analysed both with the

current assets’ conditions and with degraded conditions that were simulated using the

degradation model described above. Also, the resilience of the drainage system is tested

with current rainfall time series and rainfall times series adjusted using climate change

projection RCP 8.5. Results show that both asset degradation and climate change will

affect the flood risk performance of this drainage system significantly. The estimated

flooding hours under either the effect of degradation or climate change is 25-30 times

more than the baseline scenario of no condition change and rainfall time series with

no climate change. The combined effect of asset degradation and climate change is even

higher and causes 100 times more flooding hours than the baseline scenario. These results

indicate the scale of the challenge facing NR’s drainage assets might face over the next

few decades. This model provides asset managers with a useful tool that can quantify the

current asset performance and forecast future performance levels under the influence of

asset degradation and climate change projections, which can help asset managers make

proactive management decisions to mitigate current and future potential flood risks. The

model can also be used during the design phase for any new railway drainage system to

help build a sustainable and resilient drainage system that can withstand future extreme

rainfall conditions.

The quality of the output from the hydraulic model is subject to the accuracy of the

asset information and the assumptions made during the calibration process. Accurate

and detailed asset information is required to build the model. Gathering such detailed

asset information and building individual system models will be costly, so this modelling

approach would not be suitable for national rollout. Furthermore, the linkage between as-

set condition degradation and parameters that could affect asset performance is unclear.
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Assumptions, such as the change in roughness parameter values when pipes degrade, have

been made based on values reported in literature and expert opinion in this study. Any

further experimental studies to identify and quantify such linkages would be beneficial.

Sensitivity tests were carried out to analyse the effect of these assumptions on the perfor-

mance of the drainage system model. The performance was proven to be more sensitive to

changes in assumptions on roughness and diameter/width/height of degraded conduits;

the percentage changes in the performance indicator (flooding duration) are similar but

slightly higher than the percentage change in roughness scores due to roughness and cross

sectional area changes due to diameter/width/height reduction.

On the tactical level, the developed Whole Life Cost model incorporated the hydraulic

performance model and the asset degradation model, and was tested with data from

the Knockenjig drainage system. A set of feasible intervention strategies was generated

based on expert knowledge of the general rules in route level maintenance planning. It

was then applied to the degradation model to estimate the improvement in condition of

degrading drainage assets during the asset condition simulation. The forecasted asset

condition scores were then input into the hydraulic performance model and the resulting

performance indicator (i.e. flooding hours) is used to calculate the penalty cost. The

aggregated present value of the intervention costs and penalty costs were compared among

the tested intervention strategies, and the one with the minimal total whole life cost

is proposed as the optimum strategy. For a 5 year simulation at the Knockenjig site,

the optimum intervention solution is found to be refurbishing all assets with condition

scores 4 and 5 while not intervening assets with other condition grades. Sensitivity

tests were performed for a set of parameters that could affect the WLC simulation: the

asset start condition, asset roughness, asset diameter/width/height and the duration of

simulation. Changing the assumptions of how asset condition score affects asset roughness

and asset diameter/width/height reduction will lead to a larger/smaller percentage of

assets interventions. For a longer simulation period of 10 years or a worse start condition,

the percentage of assets intervened was also increased. As this model is built based on

a very thorough investigation of the geometric properties and hydraulic capacity of the

study drainage system, it can provide site specific information that helps route engineers

to prioritise their short-term maintenance schedule, as well as assist asset managers to

make maintenance planning on a long-term tactical level.

The case studies of the hydraulic performance based WLC model indicated that carrying

out maintenance/refurbishment within one/three months after the observation of degra-

dation is more cost beneficial compared to 6 months. Also, in this study, interventions

were assumed to be carried out at a fixed interval after asset degradation. In real life

practice, routine (cyclical) maintenance might be the norm rather than the condition-

based approach proposed here. Routine maintenance could lead to delays in restoring

asset condition back to a satisfactory state, consequently increasing the failure risk. The

benefit of prompt intervention includes not only mitigating the immediate risks posed

by the degrading assets, but also preventing more severe risks that could emerge as as-

sets degrade into the worst condition state. However, implementing a condition-based
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intervention approach presents practical challenges. For instance, scheduling intervention

within the desired time frame might be difficult for some assets, as they are located on a

busy railway line, making site access hard to arrange.

Although it has demonstrated that the WLC model based on hydraulic performance

measures was able to identify an optimum intervention strategy for individual drainage

system over a 5 and 10 year period, the cost and time required to develop the underlying

models was high and therefore this approach could not be applied at a strategic level. On

a strategic level, when considering a WLC approach of a large portfolio of drainage assets

in conjunction with regional and national level budgeting, operational and risk require-

ments, a performance model with data driven approach was built to provide predictions

of performance that could be input into a national WLC modelling approach. The data

driven performance model incorporated knowledge from failure mode analysis developed

in the In2track2 project, where self-organising maps were used to identify the causal

mechanisms of failures caused by drainage performance loss. Based on historical failure

records, it is found that the average drainage condition score and precipitation volume

exhibit a linkage with the likelihood of track flooding failure. This finding is implemented

into a linear regression model to quantify these linkages, and the estimated number of

failures can be expressed as a function of average asset condition score and annual precip-

itation. Optimum intervention strategies can then be found by solving the optimisation

problem that minimises the total present value of the simulated interventions and penalty

cost, while complying with budget, risk and manpower constraints. This WLC approach

was tested on a national scale over a 5 year and a 10 year period, and the result shows

that for a longer period, a more proactive intervention strategy is needed to maintain

the asset condition at an adequate level so that the performance under such condition

level stays within the boundary of the risk constraint. The WLC model was also tested

with different climate change scenarios: RCP 2.6 and RCP 8.5, the results shows that

under the more severe climate change scenario RCP 8.5, more interventions need to be

carried out to maintain the asset condition in a level that can withstand the climate

change effect and meet the risk constraint set in place. When comparing the results of

the RCP 2.6 and RCP 8.5 scenarios tested with UKCP18 global climate projections, it

is found that the optimal strategy for the RCP 8.5 scenario requires interventions for an

additional 16% of assets in condition 4 and 75% more assets in condition 5 compared to

the RCP 2.6 scenario. Simulation of the RCP 8.5 climate change scenario was performed

with rainfall data from both the UKCP18 regional and global climate change projections.

The results indicated that the model is sensitive to the choice of climate change projec-

tions. The total cost of the optimum strategy using regional projection is 23% higher

than the one using global projection. Also, a higher percentage of assets in condition 5

needs to be refurbished instead of maintained with the regional projection. Hence, it is

essential to carefully choose the climate change projections for future simulations. This

model is suitable to be used as a tool to develop top-level asset management regimes. It

can help asset managers to make decisions on budgeting and work volume planning on

a national scale, and provide long term intervention strategies that minimise the whole
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life cost while mitigating failure risks and complying with operational limitations. Given

that the data-driven performance model was implemented on a large scale (i.e., at the

national level), it might be limited when applied on a smaller scale for risk identification

and management decisions pertaining to an individual asset.

The two WLC models can be used jointly to provide management solutions on both

strategic and tactical levels. While a WLC model with a data driven performance mod-

elling approach can provide justifications for top-level management decisions, the WLC

model with hydraulic approach can assist route engineers to make localised daily work

planning decisions. Together they will offer a robust solution to the problem faced by

NR of improving knowledge of the drainage assets’ condition and performance and main-

taining assets economically and efficiently.

It can be considered that all the objectives of the study have been met.

• A framework of WLC that can be applied across the railway drainage network were

developed as stated in Section 3.1.1.

• To analyse the residual asset life and deterioration patterns of existing assets, a

degradation was developed as shown in Chapter 4.

• Drainage system performance assessment regimes were developed in Chapter 5

based on drainage system’s hydraulic capacity and in Chapter 8 using data-driven

machine learning techniques, which can help asset managers gain a thorough ap-

preciation of the impact of poor drainage.

• The high risk / critical drainage assets can be identified using the asset performance

models as stated Chapter 5 and Chapter 8. This will provide the foundation for a

more robust and economic intervention regime.

• In Chapter 7 and Chapter 8, decision support tool were developed using the WLC

models. They can help asset manager prioritise drainage maintenance works based

on budgets and risks both on a tactical and strategical level.

The applicability of the WLC approach to railway infrastructure outside the UK has been

explored via the In2tack2 and In2track3 projects. Presentations have been made and dis-

cussions have taken place with several European railway drainage asset owners/operators.

Two of these operators have agreed that the model has the potential to be applied to their

railway systems if there is sufficient asset condition and failure data available. However,

asset condition data is recorded in different ways, and like NR asset databases are often

incomplete, especially for assets built before drawings were digitized. However, these op-

erators have also noted that there are areas where railway infrastructure was constructed

in recent years, and they tend to have better records, making them potentially suitable

for model testing. Also, both countries have national rainfall databases. There is there-

fore the potential to apply the WLC framework described above to the railway systems

of these two European operators.
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10 Conclusion

This study established a comprehensive whole life cost framework for railway drainage

assets, providing valuable insights to Network Rail’s railway drainage asset managers

regarding asset deterioration, system performance, and costs associated with penalties

and interventions. This framework can enhance the managers’ understanding of both the

current and evolving conditions and performance of the drainage assets, and hence assist

asset managers in building cost-effective, proactive maintenance strategies to mitigate

the risks associated with drainage asset failures.

A degradation model was created using Continuous Time Markov Chains to analyse the

service and structural condition degradation process for a range of railway drainage asset

groups and types. A case study was conducted on 300mm diameter pipes, demonstrating

that the model can predict condition grade transitions with less than 0.2% error. A

journal paper of the degradation model was published in the Journal of Infrastructure

Systems in 2021 (Wu et al., 2021). This modelling approach has been used to obtain

transition rate matrices of all drainage asset groups and these have been implemented

in NR’s asset management tools to help simulate the future condition of NR’s drainage

assets.

A hydraulic performance model was constructed using SWMM to assess the hydraulic

capacity of a railway drainage system. A case study was performed on a single drainage

system located on an operational railway line near Knockenjig, Scotland. This model was

built and calibrated using field-collected water depth and water flow sensor data. This

performance model was integrated with the asset degradation model to evaluate drainage

asset performance based on forecast asset condition grades and rainfall projections. The

use of the integrated model was demonstrated through a case study at the Knockenjig

site. Flooding hours are calculated for various climate change and asset degradation

scenarios. This demonstrated that both climate change and asset deterioration increased

flooding duration by between one and two orders of magnitude.

The hydraulic performance modelling approach requires detailed information on drainage

assets that are not available nationally. Hence, a data-driven failure mode analysis

method was developed to analyse failure risks using machine learning techniques that

could be applied nationally with current asset data.

Whole life cost models were developed using both the hydraulic performance model and

the data-driven approach to support asset management decision-making at tactical and

strategic levels, respectively. Decision support tools were developed through the opti-

mization of whole life cost accounts, enabling the identification of the most robust and

cost effective intervention strategy for railway drainage systems.

For the WLC model using hydraulic performance analysis, a case study was conducted at

the Knockenjig site to find the optimum strategy for the next 5 years assuming all assets

are in perfect condition. The optimum strategy is refurbishing all assets with condition
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scores of 4 and 5 and not intervening assets in other conditions, resulting in the lowest

total cost of £43,704, whereas the highest total cost from the poorest strategy tested was

£258,623. Sensitivity tests were carried out to evaluate the effect of the starting condition

assumption and duration of simulation.

While for the WLC model using the data-driven approach, a case study was conducted for

all drainage assets nationwide to determine the optimal strategy based on given budget

and risk constraints in a 5-year and a 50-year simulation, as well as 50-year simulations

under various climate change scenarios. Results showed that the optimum strategy of 50-

year simulation promotes a higher number of interventions for assets in lower condition

scores. This suggests that implementing a more proactive intervention strategy could

result in greater cost-effectiveness in the long run. Results also showed that the model is

sensitive to rainfall prediction in climate change scenarios and hence the choice of climate

change projections is important in further simulation process.

The combination of the two WLC models allows for comprehensive management solutions

at both strategic and tactical levels. The data-driven WLC model offers justifications

for high-level management decisions, while the hydraulic-based WLC model aids route

engineers in making localized daily work planning decisions.

Although different intervention strategies have been investigated under a number of cli-

mate change scenarios, more scenarios should be examined in addition to the ‘best’ and

‘worst’ RCP cases tested in this study, to enable better understanding of the impact of

climate change uncertainty in long term WLC optimisations. Also, the effect of changes

in constraints and inputs on the optimum intervention strategies was not fully examined

in this study. Further studies could be conducted to study the impact of these param-

eters on the WLC model; investigating how optimum interventions will be affected by

the changes in budget, manpower and risk constraint, as well as other inputs such as

interest rate and unit cost. Also, as that level of resource and cost of goods are expected

to change over time, for simulations of a longer period, model should be developed to

incorporate dynamic changes in the constraints and input parameters over every 5 year

control periods.
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Appendix

A Designed return period

Route Classification Return period of design event(years)

Primary
50

London & South East conmmuter

Secondary 25

Rural
10

Freight

Table A.1: Rainfall event return period
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B Asset groups and asset types

Asset Group Asset Type

Chamber

Chamber - Catchpit

Chamber - Manhole

Chamber - Interceptor

Chamber - Pumping Station

Outfall

Outfall - Public Sewer

Outfall - Watercourse (Natural)

Outfall - Watercourse (Artificial)

Outfall - Soakaway

Outfall - Sea Or Estuary

Inflow

Inflow - Land Drainage (Farm)

Inflow - Land Drainage (Garden)

Inflow - Surface Water Drain

Inflow - Foul Water Drain

Inflow - Combined Water Drain

Inflow - Trade Effluent Drain

Inflow - Unknown

Inflow - Watercourse

Inflow - Groundwater

Point Point Drainage Node

Ghost

Intermediate Drainage Node

Boundary Drainage Node

Unable to Locate Drainage Node

Point of Interest Drainage Node

Channel

Channel - Natural Ditch

Channel - Artificial Ditch

Channel - Flume

Channel - Aqueduct

Channel - Cascade

Culvert Culvert

Granular Drain
Granular Drain - French Drain

Granular Drain - Counterfort

Pipe

Pipe - Surface Water

Pipe - Foul Water

Pipe - Combined

Syphon Syphon

Covered Channel
Covered Channel - Collector

Covered Channel - Other

Pond Pond

Structure Inlet or Outlet Structure

Table B.1: Asset groups and asset types
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C Chi-squared Test Contingency Table

Outfall

sequence Xt = i Xt ̸= i χ2

(4, 3|1) 5 22
0.98

(4, 3|2) 11 48

(5, 3|1) 1 26
0.94

(5, 3|2) 2 57

(5, 4|1) 0 2

0.79(5, 4|2) 2 8

(5, 4|3) 3 14

Inflow

sequence Xt = i Xt ̸= i χ2

(4, 3|1) 4 29
0.77

(4, 3|2) 10 87

(5, 3|1) 0 33
0.56

(5, 3|2) 1 96

(5, 4|1) 0 1

0.68(5, 4|2) 0 4

(5, 4|3) 1 6

Structure

sequence Xt = i Xt ̸= i χ2

(4, 3|1) 30 111
0.01

(4, 3|2) 21 172

(5, 3|1) 4 137
0.89

(5, 3|2) 5 188

(5, 4|1) 3 9

0.79(5, 4|2) 5 26

(5, 4|3) 7 33

Covered Channel

sequence Xt = i Xt ̸= i χ2

(4, 3|1) 0 2
0.57

(4, 3|2) 1 6

(5, 3|1) 0 2
N/A

(5, 3|2) 0 7

(5, 4|1) 0 0

N/A(5, 4|2) 0 0

(5, 4|3) 1 2

Table C.1: Chi-squared test contingency table for Outfall, Inflow, Structure and Covered

Channel service condition
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Outfall

sequence Xt = i Xt ̸= i χ2

(4, 3|1) 1 10
0.96

(4, 3|2) 4 38

(5, 3|1) 0 11
N/A

(5, 3|2) 0 42

(5, 4|1) 0 0

N/A(5, 4|2) 0 3

(5, 4|3) 0 1

Inflow

sequence Xt = i Xt ̸= i χ2

(4, 3|1) 1 12
0.19

(4, 3|2) 2 108

(5, 3|1) 0 13
N/A

(5, 3|2) 0 110

(5, 4|1) 0 0

N/A(5, 4|2) 0 2

(5, 4|3) 0 3

Structure

sequence Xt = i Xt ̸= i χ2

(4, 3|1) 9 71
0.10

(4, 3|2) 16 255

(5, 3|1) 0 80
N/A

(5, 3|2) 0 271

(5, 4|1) 0 7

N/A(5, 4|2) 0 12

(5, 4|3) 0 12

Covered Channel

sequence Xt = i Xt ̸= i χ2

(4, 3|1) 0 2
N/A

(4, 3|2) 0 30

(5, 3|1) 0 2
N/A

(5, 3|2) 0 30

(5, 4|1) 0 0

N/A(5, 4|2) 0 0

(5, 4|3) 0 0

Table C.2: Chi-squared test contingency table for Outfall, Inflow, Structure and Covered

Channel structural condition
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D Asset criticality test – total flooding volume and

duration

Pipe Total Flooding Volume (103 m3) Duration of Flooding Occurred (Hour)

C1 21.072 127.42

C2 21.063 126.92

C3 21.061 127.25

C4 23.462 162.25

C5 24.059 170.75

C6 23.599 163.00

C7 33.818 221.50

C8 35.781 173.92

C9 36.313 174.00

C10 37.139 173.92

C11 35.682 172.08

C12 36.535 172.08

C13 40.041 173.50

C14 21.091 127.42

C15 21.078 127.17

C16 21.076 127.25

C17 21.080 127.17

C18 21.080 127.33

C19 21.076 127.25

C20 21.073 127.33

C21 21.074 127.17

C22 21.074 127.33

C23 21.073 127.33

C24 21.072 127.17

C25 21.072 127.25

Table D.1: Total flooding volume and duration of the asset criticality test for each pipe
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E Sensor installation photos

(a) Water depth sensor at catchpit 4 (b) Flow meter between catchpit 4 and 5

(c) Water depth sensor at catchpit 5 (d) Water depth sensor at cathpit 7

(e) Water depth sensor at culvert entry D1 (f) Flow meter at outlet point

Figure E.1: Photos of sensors installed at Knockenjig site
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F Installation sheets for the level monitoring loca-

tions

Figure F.1: Installation sheets for catchpit 4
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Figure F.2: Installation sheets for catchpit 5
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Figure F.3: Installation sheets for catchpit 7
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Figure F.4: Installation sheets for catchpit 11
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Figure F.5: Installation sheets for culvert at outfall
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G Table of Manning’s n

Figure G.1: Table of Manning’s n in SWMM user’s manual (Rossman, 2015)
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Figure G.2: Manning’ n for channels (Chow, 1959)
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Figure G.3: Manning’ n for close conduits flowing partly full (Chow, 1959)
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Figure G.4: Manning’s n values for closed conduits table (Schall et al., 2008)
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H List of intervention strategies tested using WLC

model with hydraulic performance measure

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 0% 100%

Maintenance 0% 0% 0% 0% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 0% 100%

Maintenance 0% 0% 0% 50% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 25% 100%

Maintenance 0% 0% 0% 25% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 50% 100%

Maintenance 0% 0% 0% 0% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 0% 100%

Maintenance 0% 0% 0% 100% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 50% 100%

Maintenance 0% 0% 0% 50% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 100% 100%

Maintenance 0% 0% 0% 0% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 0% 100%

Maintenance 0% 0% 50% 0% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 0% 100%

Maintenance 0% 0% 50% 50% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 25% 100%

Maintenance 0% 0% 50% 25% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 50% 100%

Maintenance 0% 0% 50% 0% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 50% 100%

Maintenance 0% 0% 50% 50% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 100% 100%

Maintenance 0% 0% 50% 0% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 0% 100%

Maintenance 0% 0% 100% 0% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 0% 100%

Maintenance 0% 0% 100% 50% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 25% 100%

Maintenance 0% 0% 100% 25% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 50% 100%

Maintenance 0% 0% 100% 0% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 0% 100%

Maintenance 0% 0% 100% 100% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 50% 100%

Maintenance 0% 0% 100% 50% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 100% 100%

Maintenance 0% 0% 100% 0% 0%

Condition 1 2 3 4 5

Refurbishment 0% 0% 0% 0% 100%

Maintenance 0% 0% 50% 100% 0%

Table H.1: List of intervention strategies tested using WLC model with hydraulic per-

formance measure for case study at Knockenjig
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