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INTRODUCTION

The concept of matroids was originally introduced by Whitney and Van
der Waerden in the 1930's to generalise the notion of linear dependence in
a vector space; certain axioms satisfied by this relation were observed to
be satisfied by other types of ’'dependence’ relations, such as algebraic
dependence and 'cycle’ dependence in a graph. Consequently a matroid was
defined to be a set with an abstract dependence relation satisfying these
axioms. Ore of the most natural questions to ask is whether every such
"matroid’ is representable in the obvious sense in a vector space. The
answer is of course no (otherwise matroid theory would be equivalent to
linear algebra) although in the early years of the subject examples of
non-representable matroids were not easily obtainable. In this thesis we
continue the work of Inglcton (in [20]) and Vamos (in [35,36]) on the
representation problem, buiding up to an algebraic treatment in the

important last chapter.

Chapter one is essentially preliminary material and is subdivided
into four sections which, broadly speaking, reflect the subject content
of the rest of the thesis
1) Algebra in which the basic set notation and algebraic conventions are
listed. Since the main body of the thesis is in matroid theory rather than
algebra, we have listed here without proof as many as possible of the
algebraic definitions and theorems which we will be using to avoid clutter-
ing up the text later on. However, because of the specialised nature of
some of the algebraic machinery (notably in 85) some has had to be deferred
until the relevant stage in the thesis. Standard texts which adequately
cover all the necessary algebra here are [2,8,14,42].
2) Projective geometry. This is a constantly recurring theme throughout
and this preliminary account prepares the reader for the more substantial

material which appears in 82 and in particular in 84. For a fuller account



we refer to [3,24,25].

3) Graph Theory. Y shall assume a familiarity with the basic notions of
graph theory but list here some particularly relevant definitions and results.
A good account of the subject may be found in [17].

if) Matroid Theory. Being a relatively new development in mathematics,
matroid theory has even fewer universally accepted definitions and notation
than other more established branches of the subject, and consequently it

is a prerequisite to lay these down from the outset. In doing this it should
be noted that for my own purposes it has been inconvenient to follow exact-
ly the notation of any one standard work, although [37] is the closest
approximation for definitions and conventions. The texts [1,10,15,34,37]
adequately cover most results listed here and are a continual source of

reference throughout the rest of this work.

In chapter two we neke a detailed study of the notion of projective
equivalence of matrices. Although labourious and technical in places, the
work here is of fundamental importance for this thesis since projectively
equivalent matrices represent the same isomorphism.class of matroids. We
show by construction (Theorem (2.8)) the existence of a '‘canonical'form
with respect to the relation of projective equivalence. This is achieved
by introducing the notion of s-projectivc equivalence and the atomic
entries of a matrix. Once the atomic entries of a matrix are known, the
proof of (2.8) provides an algorithm for determining the projective can-
onical form. Using the projective canonical form we provide a new proof
of the 'second fundamental theorem of projective geometry', and proofs of
the uniqueness of repressstability of binary and ternary matroids
(Theorems (2.13) ana (2.18)). In [12], Brylawski and Lucas have also
studied this problem (from a different angle) and we describe the connect-
ion between the two different approaches (Theorem (2.19) being the
important 'link'), although it must be stressed that the work here was

achieved without the aid of [12]. We conclude the chapter by describing



the 'step diagonal form' of a matrix (definition (2.24)) and show in (2.25)
that every matrix is permutation equivalent to a matrix in step diagonal
form. The relevance of this result is indicated by proposition (2.26)

which has important implications for later chapters.

In chapter three we study a class of matroids (which | call ‘atomic
matroids') arising naturally from the work in 82. In Theorem (5.6) we
show that atomic matroids are precisely binary fundamental transversal
matroids (described in [6,9]). In (5*7) we introduce a class of graphs
called A-graphs, and prove that atomic matroids are precisely the cycle
matroids of A-graphs (Theorem (3.12)), thus providing a complete graphical

characterization of binary fundamental transversal matroids.

In chapter four we return to the main theme of the thesis; we are
primarily interested here in the representations of matroids defined by
dependence of points from a projective space. Y& describe a method for .
constructing matroids which are in an important sense 'uniquely represent-
able' (Theorem (4.10)) and thin leads to a procedure for constructing
matroids with certain predetermined characteristic sets.(bxamples (4.14)).

The notion of generalised projective equivalence is introduced
(definition (4.15)) and we show that from both an algebraic and geometric
viewpoint (Theorems (4.21),(4.23)) this notion is essentially the same as
projective equivalence. In Theorem (4.1?) we prove that any two
representations of a full projective geometry (over an arbitrary field)
are generally projectively equivalent, thus generalising a result in [12]
which states that full projective geometries over finite prime fields are
uniquely representable.

The chapter concludes with a section on the representation of uniform
matroids; the significant problem is to determine the smallest field over
which a uniform matroia is representable, and we show (proposition (4.26))

that this is essentialy equivalent to determining the meximum value k for
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which k-arcs exist in a certain projective space. The latter problem has

been studied extensively by geometers, and we show how considerable
simplifications of the proofs of some of their important results ((4.27)-(4.31))
can be achieved by using (4.26) together with straightforward matroid

arguments.

In chapter five, which forms a substantial proportion of the thesis,
we reduce the whole problem of matroid representation to an algebraic
problem. The main result of Vamos in ('35] (given here as Theorem (5.5))
leads fairly naturally to the construction of a ring (which | have
called the Vamos ring) associated with each matroid M. This ring is a
polynomial type ring based on a generic matrix X of indeterminates, and is
non-zero precisely when Mis representable (proposition (5.7)). Theorems
(5.8) and (5.15) show that A is a "universal object' with respect to rep-
resentations of M and there is a natural correspondence (although not a
bijeotion) between the prime ideals of and the representations of M
(Corollary (5*9)). Consequently by using only some well known results from
commutative ring theory we ai'e able to deduce results about representability
which were previously very difficult to prove (for example (5.11) and (5.13)).
Although the ring A has some very nice properties, it is based on too
many indeterminates to be explicitly described easily even for the simplest
matroids M Consequently by a tvw/o stage process of simplification which
corresponds to reducing the matrix X first to column echelon form and then
to projective canonical form, we are able to define new rings R, V, with
successively fewer indeterminates, such that both rings retain all the
important properties of . At the same time we are able to determine
the exact algebraic relationship between the three rings (Theorems (5.22)
and (5.26)) so that we are justified in restricting our attention to the
simplest of the rangs V . The most remarkable by-product of this simp-
lification is theorem (5.24); that the natural correspondence between the

prime ideals of V)( and the representations of Min projective canonical



form is actually a bijection. Thus the representation problem is reduced
to the study of the prime ideal structure of Vj, and on this we can bring
the full weight and sophisticated machinery of commutative algebra to bear.
We are thus able to determine explicitly. (in (5.28)) the ring VMfor many
important classes of matroids, the most satisfing of these results being
that V, is equal to the ring of integers if and only if Mis regular. We
also provide a partial solution to the problem of determining which rings
can arise as Vamos rings of matroids (5.28.7)).

In theorems (5.19), (5.29), (5.21), we determine the effect oM. of
performing matroid operations on M and the chapter concludes by exhibit-
ing a relationship (rheorem(5.29)) between the Vamos ring and White's

bracket ring (described in [38,39,40,41] ).

Apart from chapter one, all results appearing in the text which are

not attributed to any author or which have no reference provided, are to

the best of my knowledge new.
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SUMVARY

Chapter one is preliminary material subdivided into the four
main sections which reflect the subject content of the thesis,

1) algebra, 2) projective geometry, 3) graphs, 4) matroid theory.

In chapter two we neke a detailed study of the notion of
projective equivalence of matrices, showing by construction the exist-
ence of a canonical form with respect to this relation. The relevance
of this is that projectively equivalent matrices represent the same

isomorphism class of matroids.

In chapter three we study a class of matroids which arises natur-
ally from the work.of the previous chapter, showing that these are
precisely binary fundamental transversal matroids. Me provide a

complete gaphical characterization of these matroids.

In chapter four we are interested in the representations of
matroids defined by dependence of points from a projective space. We
establish the uniqueness of representability of certain matroids inc-
luding all full projective geometries. The representation of uniform

matroids is also tackled from a geometrical viewpoint.

In chapter five we show that we can associate a ring with each
matroid Min such a way that this ring is a universal object with
respect to representations of M There is a natural bijection between
the prime ideals of this ring and the projective equivalence classes

of representations of M



81 PRELIMINARIES

1. Algebra

The usual set theoretic notation is adopted throughout. The symbol c
denotes containment but not necessarily strict containment. The empty set
is denoted by 0 ; the expression X\Y denotes the set difference of X and
Y, and the cardinality of a set X is denoted by |Xx].

Unless otherwise stated all rings are commutative with identity and
by a ring homomorphism we shall mean a homomorphism which preserves the
identity. A ring isomorphism is a homomorphism".which is both injective
(one -to-one) and surjective (onto). An automorphism of a ring A is an
isomorphism of A onto itself. The ring of integers is denoted by 2 ,
and the ring of rational numbers is denoted by Q .

The only rings to be considered which are not assumed to be commutative
are division rings ; a division ring is a ring in which every non-zero
element has a multiplicative inverse. A (non-zero) division ring which is
also commutative is a field. A ring without zero-divisors is an integral
domain ; every integral domain possesses a quotient field which is unique

up to isomorphism. An ideal a of Ais prime if for any x,y £A, Xxy e a

implies xca or yca The collection of prime ideals of A is denoted

by Spec A. An ideal of Ais maximal if it is not properly contained in any
other ideal of A. For any ideal a, the quotient ring A/a is an integral
domain if and only if ac Spec A, and is a field if and only if ais a
maximal ideal. Every maximal ideal is prime and every ring A (j- 0) contains
at least one maximal ideal. The ring A is Nociherian if every ideal is
finitely generated.

Let AB be rings. Then B is said to be an A-algebra if there is a
homomorphism f: A—B for which B is an A-module with respect to
'multiplication’' defined by

ab = f(a)b for a-eA b £B

In particular, every ring is a 2-algebra (via the mapping n~»n.l) and if



A contains a field. F as a subring, then A is an F-algebra (via the inclusion

mapping). These are the only examples of algebras we shall hoed .

For any two rings A,B, by a product (C,y, () of AB (over Z) we mean a
ring C and homomorphisms y:A <« C, (:B =*C , such that Cis generated by
fy(A), ((b)] . In particular the tensor product of A and B (over z), which

always exists, is denoted by A~ B and is characterized by the following

(1.1)Proposition (Universal mapping property of tensor products).

T.F.A.E. (the foilcaving are equivalent)

i) The product (C,Y,() of A and B (over Z) is a tensor product of A and B.
ii)Given any two homoaorphisms g and h of A and B respectively into a ring D,

there exists a homomorphism f:C -* D such that f=gy ony(a) and

f=h( 1 on ((B)

Analagous results hold when A B is the tensor product over R of two

R-algebras A,B.

For any ring A and abelian group G, the group ring of G over A is denoted

by A(G). If His the free abelian group on t generators x”,...,x (so that H

consists of all elements of the form x~ I~ .x~t where the ™ e V), the group

ring a(h) is usually denoted by A<x”,.*.,x > .

For any integer g=p” where p is a positive prime and t is a positive

integer, there is (up to isomorphism) a unique field of q elements; this field

is denoted by GF(g). Conversely every finite field in isomorphic to some GF(q).

(1,2)Proposition: The field GF(q) possesses non-identity automorphisms if and

only if g is non-prime.

For any field F the prime subfield of F is the smallest subfield contained

in F. W to isomorphism the prime subfield is always either O or GF(p) for

some prime p. The characteristic of F, denoted char(F) ,is defined to be zero

if the prime subfielu of Fis <Q and p if the prime subfield of F is GF(p).
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i 'or any fields E,F, the field E is called an extension of F (written E/F)

if EI F. If al>eee>an c E we write F(ai,'...,a ) for the subfield of E
generated by n OVGr F. An element cteE is algebraic over F if
f(a)=0 for some non-zero polynomial f(x) e F[X]. |If a is not algebraic over
F, a is transcendental over F. The extension E/F is an algebraic extension

if every element in E is algebraic over F, and is a transcendental extension

otherwise.
Given any field extension E/F, let £ E. Then p is algebraic-
ally dependent on al>m»*»an over F if p is algebraic over F(a”™,...,« ).

If XCE, the elements of X are said to be algebraically independent over F
if each finite subset of X consists of elements which are algebraically ind-
ependent over F. Such a set X is called a transcendence set (overF); a tran-

scendence set X in E is called a transcendence basis of E/F if itis maximal,

that is, if X is not a proper subset of another transcendence set.

(1.3)Proposition Transcendence bases for E/F always exist, and any two have
the same cardinality. Moreover a transcendence set X is a transcendence basis

of E/F if and only if E/F(X) is an algebraic extension.

The common cardinality of the various transcendence bases of E/F is called

the transcendence degree of E/F, written tr.d (E/F).

(1 .4)Proposition Suppose  F C KC K are successive field extensions. Then

tr.d (K/F) - tr.d (K/n) + tr.d (e/f)

A field is algebraically closed if it possesses no proper algebraic
extensions. If K/F is analgebraic extension, then K is saidto be the algeb-

raic closure of F if i) K/F is algebraic, and ii) K is algebraically closed.

(1.5)Theorem If F is a field then thei'e exists an algebraic closure of F,

and any two algebraic closures of F are isomorphic fields.
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The following well known theorem can be found in [38] p.107

(1.6)Theorem Let K be an algebraically closed field and let E/F be an algebraic
extension. If cr: F> K is a monomorphism (injective homomorphism), then

a can be extended to a monomorphism o0'l: E-* K .

(1.7)Corollary Suppose FMNF~ are fields with the sane algebraic closure K.

If a: F— P is an isomorphism then there is an automorphism ao* of K

which extends o .2

Proof Take EEK and F=F. in (1.6). Certainly then o is a monomorphism of F1
into K which can be extended to a monomorphism crl: K-> K. But o* must be
surjective (and hence an automorphism) for otherwise cr 1K) is an algebraic
closure of Fg strictly contained in K and this is impossible since K/or* (k)

is then a propel' algebraic extension.

A basic knowledge of linear algebra will be assumed. A vector v.'ill mean

a row vector and will be denoted by v . The transpose of a matrix A will be

denoted by AT. The (r*r) identity matrix is denoted by I , and a diagonal
al O

matrix is denoted by diag(a”®,...,an)
0O

2. Projective Geometry

A projective space (or projective geometry) is a system consisting of a
set & of points together with certain subsets & of called lines such
that satisfies the following axioms

(i) any two distinct points are on exactly one line

(i) if x,y,z,w four distinct points, no three of which are collinear

(on the same line) and if xy (the unique line containing x and y)

intersects zw then xz intersects yw.
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(iii) each line contains at least three points.

A subset is called a subspace if for any two distinct points of
[l it contains the whole line determined by them. It follows from (ii) that
subspaces can also be introduced inductively using the concept of dimension
(which in the event of possible confusion will be specified as projective
dimension) A point is a subspace of dimension O, a line is a subspace of
dimension 1. If n is a subspace of dimension d and if the point * 1 n ,
then n together with all the lines joining x to points of n is a subspace
of dimension d+1 . |If for some integer n, has dimension n, we say that
the projective space has dimension n. otherwise (.Pj-i,) is called
an infinite dimensional projective space. If (¢(Dje&) has dimension n>1, a
hyperplane of (~,-C) is an (n-1)-dimensional subspace of (</E>«E).
Projective spaces of dimension 2 are usually called projective planes; we
shall be generally only considering projective spaces of finite dimension n>2.

For any subspace n of a projective space we define rank n = dimension n + 1

(1~Definition Suppose T = is a projective space of dimension n.
A simplex in F is a set of ni2 points, no nl of which are contained

in a hyperplane of T . Yfhren n-2, a simplex of r is called a quadrangle.

(1,9)Definition Suppose f = (<P*<&), I'* = («*5") are two projective
spaces. A projectivity (or isomorphism) from f to f* is a one-to-one,
order preserving mapping of the partially ordered set of all subspaces of p

upon the partially ordered set of all subspaces of F*.

Given a collection of points x-j>***»xm in a projective space it is
easily seen that there is a unique smallest subspace containing jx.,...,X
called the subspace s_gg_r]p_gq__lgyl’x ,...,x11 and denoted by <x1,..m,x > The
set of points x.j,...,x is said to be dependent if for some I1<i<m,

X. € <XN o0 XN AXNMN L xie . A set of points which is not dependent is

said to be independent.



The projective geometry PG(in,F)

Suppose F is a field and Fmthe collection of ordered m-tuples of F, so
that Fmis a vector space over F of (vector space) dimension m Let cP be
the collection of one-dimensional subspaces of F and let > be the collect-
ion of two-dimensional subspaces (planes) of F. The full projective
geometry of rank m (or (projective) dimension m-1) is (¢,0,<€>) where a
'‘point’ P is on the ‘'line' Cif and only if Pc i in Fm Thus the 'points’
of PG(m,F) have the form P-Fv where o]=v e Fm and we shall call v a
coordinate vector of P ; if |JF| = g <«, there are g-1 distinct coordinate
vectors of P, but it is easily seen (in all cases) that there is a Unique
coordinate vector whose first non-zero coordinate is equal to 1, and we shall
call this the natural coordinate vector of P. If we identify the points of
PG(in,F) with their natural coordinate vectors in Fmthen for k=0,1,... m1
the subspaces of PG(m,F) of (projective) dimension k (or rank k+1) correspond
precisely to the (k+1)-dimensional subspaces of Fm

In PG(m,F) the notion of dependence corresponds corresponds to linear
dependence over F if again we identify points with their coordinate vectors.
For most of our purposes F will be finite, hence a field of g=p™ elements
for some prime p and integer ts>1. In this case PG(m,F), alternatively denot-
ed FG(m,q), is a finite projective geometry with gm 1+...+q+1 points. The
projective plane PG('j,2) (of 7 elements) is the smallest ncn-trivial example
of a projective space and is called the Fano plane. It should be noted that
some authors write PG(m-1,F) for our PG(m,F). also the full projective geom-

etry PG(m,D) is defined in an analagous way when D is a division ring.

The following classical result may be found in [3] p.302

(1.10) Theorem Any projective geometry of rank n»4 is isomorphic to PS(jn,D)
for some division ring D ; a projective plane is isomorphic to PG(3,D) for

some division ring Dif and only if the plane is Desarguesian (see [27,p.140

for definition).
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By Wedderburn's theorem (see for example [14]) every finite division ring
is a field, hence by (1.10) we deduce that every finite projective geometry
of rank n?4 is isomorphic to PG(m,P) for some field P, and that every finite

Desarguesian plane is isomorphic to PG-(3,F) for some field F.

(1.11) Dsfinition Let VIV be vector spaces over fields F,K respectively.
A semi-linear transformation of V upon Wis a pair o = (cr',cr') consisting
of an isomorphism cr of the additive group of V upon the additive group of
W, and a field isomorphism of F upon K subject to

0*(av) = X'(a)cr'(v) for each aeF, v eV

If =K and co'"=idp , then o is a linear transformation. When we are

considering a vector space V of dimension mover F we shall usually take V=Fm

(1.12) Proposition Suppose cr- (aJ,cr') is a semi-linear transformation of Fm

upon Km . Then o induces a projectivity between PG(iu,F) and PG-(m,K).

Proof Suppose S is a subspace of PG(m,F) of rank k for some O<k<m-1, so
that (by the above mentioned convention) S corresponds to a k-dimensional
subspace of the vector space Fm The set cr(s) of all elements cr”s) with
s e S is clearly a subspace of IJ'I Hence the mapping of the subspace S of

PG(m,F) upon the subspace cr(s) of PG(m,K) is the desired projectivity.

The converse to the above result for projective geometries of rank m> 4

is the following 'first fundamental theorem of projective geometry’.

(1.1j)Theorcm For m> } any projectivity of pg(m,F) upon Pd(m,\K) is

induced by a semi-linear transformation of Fmupon Km

Proof See [3]»P 44-48

A projectivity of PG(m,F) upon itself is called an auto-projectivity of
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PG(m,P). By (1.13) any auto-projectivity is induced by a semi-linear

transformation of Pm Consequently we have:-

(1.14) Definition An auto-projectivity which is induced by a linear

transformation is called a collineation.

(1.15) Theorem (‘Second Fundamental Theorem of Projective Geometry’)
In PG(M,D) (where Dis a division ring, m>2) there is one and only
one collineation mapping any given simplex onto another given simplex

if and only if Dis a field.

Proof See [3] pp.66-68.

3. Graphs

/ill graphs considered will be finite, that is, if G(V,E) (or more
simply G) is a graph then the vertex set V and the edge set E are both
finite. The notions of loop, parallel edge, simple graph, subgraph,
isomorphism, homeomorphism, tree, forest, connected component, path,
cycle, contraction, deletion are all defined as in [17]. With these

definitions we have the following well known result:-

(1.16)Proposition If the graph G(V,E) has k connected components

then any spanning forest for G has exactly |M - k edges.

If the vertex set of a graph can be partitioned into two sets
in such a way that every edge of the graph joins a vertex of

V to a vertex of then the graph is said to be bipartite. A
complete graph is a simple graph in which an edge joins each pair of

vertices. The complete graph on n vertices is denoted by Kn, If a
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bipartite graph has the property that every vertex of V is joined
to every vertex of and it is simple then it is called a complete
bipartite graph and is denoted by N where m= | | and n = V]
The graph obtained from the cycle of length k on replacement of each
edge by a pair of parallel edges is denoted by C;Z .

The graph obtained from G by subdividing an edge e into two edges
is called the series extension of G at e. The graph obtained by add-
ing an edge parallel to e is called the parallel extension of G at
e. A series-parallel network is a graph which can be obtained from
a single edge (which may be a loop) by a finite sequence of series

and parallel extensions.

4. 1/.atroid Theory

(1.17) Definition A matroid Me) (or simply M consists of afinite
set K, together with a non-empty collection ¢ of.subsetsof E, call-
ed the independent sets, which satisfy the following two axioms :-

1) If Ae4 and B CA, then Beg -

2) If ABeg with JA]l = [b] + 1, then there exists an xe A\B

such that BU jxj eg

(1.18) Proposition Suppose A,B are independent in Mwith |BJ < kI
Then there exists CC A\B such that Bu C[ = [aJand '‘BUC is

independent.

(1.19) Definition Two matroids and on B and respectively

are isomorphic if there is a bisection ¢JENEN  which preserves

independence
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(1.20) Examples

1) The most natural example of a matroid is a finite set of vectors
together with the collection of its linearly independent subsets.
The central theme of this thesis concerns matroids which are isomor-

phic to matroids arising in this way. (We shall presently give an

alternative definition oi these so-called *linearly representable *

matroids). Closely related to this example is :-

2) Any finite set of points of a full projective geometry FG(in,D)
together with the collection of its independent subsets. In particu-
lar, for the finite field GF(gq), Pg(m,q) itself may be viewed as a
matroid on ¢ - + ... +q+ 1 elements. The Fano plane PG(3,2)
is usually called the Fano matroid when viewed in this way and is

denoted by F-,.

3) Let G=G(V,E) be agraph. Let Xc E if and only if X does not
contain a cycle of G (for XC E). Then g is the collection of
independent sets of a matroid on E, called the cycle matroid of G,
denoted by m(g). An arbitrary matroid Mis graphic if there is a

graph G for which Mis isomorphic to m(g) .

4) Suppose F,K are fields with FC K. Let E be a finite subset of
Kand let Xc £ if and only if XC E and the elements of X are
algebraically independent over F. Then g is the collection of

independent sets of a matroid on E.

5) Let E be a set of cardinality n, and let £ be the collection
of subnets of cardinality < r (where r s n). Then £ is the
collection of independent subsets of a matreid on E called the

Uniform matroid (of rank r, size n) and is denoted by LJr n

6) If 44 is a family of finite subsets of a set E then the collect-

ion partial transversals of (1> (see, e.g. [1] p.279) is the set
of independent sets of a«r.atroid on E. An arbiraxy matroid Mon E

is called a transversal nmatroid if thex'e exists some family
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M. = i-Xl,.e.,xtJ say of subsets of E such that £(m) is the
family of partial transversals of ¢& . This ioatroid is denoted by
MiX ] and we call 65 a presentation of M In this case, if
E:= fe~rw ~ej ,then the matrix induced by the presentation is the
(nxt) zero-one matrix v.ttose (i,j)™ h entry is equal to 1 if e1 e Xj.
For a matroid Mon E the notions of basis, circuit and rank are
defined in a manner entirely analagous to the same concepts in vector
spaces; thus a basis of Mis a maximal independent subset, a circuit
is a minimal dependent set, and the rank of a set Ac E is the
cardinality of a maximal independent subset of A (and is denoted by
p(A)). The rank of the matroid Mis the rank of E, i.e. the conmon
cardinality of any basis of M so that for example the uniform inatroid
Ur, n has rank r. In the case of a graphical matroid e(g), the circuits

of M(G) are precisely the cycles of G and the bases are precisely

the spanning forests. Consequently, by (1.16), we now have :-

(1.21) Proposition |If the graph G=G(V,E) has k connected components,

then the cycle matroid f.'(G) has rank 1V - k .

Any one of the concepts of bases, circuits or rank could have
been used (instead of independent sets) to axiomatize matroids, for

example we have :~

(1.22) (Basis axioms) A non-empty collection c£) of subsets of E is

the set of bases of a matroid on h if and only if it satisfies

Y.'hcnever enN an™ Xe > ‘there is a

y £ such that (b1lU \Wj)\[x | e
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(1.23) (Circuit Axioms) A collection of subsets of E is the

set of circuits of a matroid on Eif and only if it satisfies:-

1) If Ce (5 then no proper subset of Cis in ij

2) If Ci,C+ are distinct members of & and if Xx e clo C2

then there is a e (ii such that C7C (C1U C2)\f x|

A loop of M(E) is an element x e E such that fx j is a depen-
ent set. Two elements X,y e E are said to be parallel if neither
are loops and |[x,y] is a dependent set. Ve shall also say that x
is a parallel element if for some y e E, x,y are parallel. A
coloop is an element which is contained in every basis of M In the
case of a graphical matroid, loops and parallels correspond precisely
to the graph-theoretical notions. As for graphs a simple matroid is
then a matroid without loops or parallels. Associated with every
raatroid M(e) is a canonical simple matroid fb(ib), the underlying

simple matroid of M(K), which may be constructed as follows:-

(1.24) Let E7={e e E; e not a loop]. For each e cE7 let [e]
denote the equivalence class of elements parallel to e (with the
convention that [e] = fej if e is not a parallel). Let e be a unique
representative of [e]. VY.rite ib- je; e ¢ E7J, then N0 is the
matroid on Ib for which a subset AC 1b is independent in My if

and only if A is independent in M

(1.25) Corollary For a finite field F, PG(m,F) (viewed as a matroid

as in (1.20.1)) is the underlying simple matroid of Fm (viewed as a

matroid as in (1.20.1)).

For any suset E7C E the matroid li induces two matroids on E7

which correspond in the natural way to subgraphs of a graph obtained
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by deletion and contraction of edges. The restriction of Mto
written MJv/ is the matroid on E7 whose independent sets are
precisely those subets of E7 which are independent in M In a graph
this corresponds to 'deleting' the edges EN\E/. Y shallwrite ME/
for Mj~p/ and say that M\E7 is the matroid formed from M by
deleting the set E7. The contraction of U to E7, written M /

is the matroid on E/ in which a subset AC E7 is independent if and
only if AU B is independent in M for some basis Bof M\E7. In
a graph thiscorresponds to '‘contracting away' the edges E\E7. We
shall write n/E7 for the matroid and say that n/e7 is the
matroid formed from Mby contracting away from YJ.

The dual matroid of M, denoted M is the matroidon E whose
collection of bases is the set [e\B; B is a basis of m}. For example
the dual of Ur}n is precisely %—ryn' It is clear that (<**= M
A set AC E is a cobasis (cocircuit) if Ais a basis (circuit) in M.
Restriction, contraction and dual are related by the following well

known result (see, e.g. [10] p.38, or [37] p.63):-
(1.26) Proposition For any subset ETC E, MWE/= (n*\E7)*

If EZ E a matroid M on E7 is called a minor of Mif M is
obtained from U by any combination of restrictions and contractions.
Suppose now that ,...,MN are matroids respectively on the (pair-
wise disjoint) sets EX,...,.E~ . Write E - u IP . The direct sum of
the matroids TP (i=1,...,t), written © ... OM is the matroid
on E whose collection of bases is the set

jB. : B. is a basis of M. for i=1,...,t i

For any two elements x,y e E, x is connected toy if x-y or
there is a circuit of Mwhich contains both x and y. This is an .

equivalence relation on K*whose equivalence classes are called the
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connected components of M If there is one connected component then
then Mis connected. Clearly, loops and coloops are connected comp-
onents of M It must be noted that the definition of connectivity
does not correspond to connectivity in a graph, but we do have the

following important result(see [17] p.27)

(1.27)Theorem Suppose G is a connected graph without loops and hav-
ing at least 3 vertices. T.F.A.E.
(i) M@G) is a connected matroid

(ii) Gis a 2-connected graph

For our purposes the following (easily proved) characterization

of the connected components of Mwill be particularly useful.

(1.28) Suppose Mhas connected components E”™,...,E

Then M= M © ... OMi
Ihl ILt

The remaining definitions and results in this section are crucial
for the understanding of this thesis. In particular it should be

noted that where | am using rows of a matrix some authors are using

columns.

(1.29) Definition The matroid Mis said to be (linearly) represent-
able over a field F (or simply F-representable) if there is a one-
to-one correspondence between the elements of E and the rows of a >
matrix A over F such that dependence in Mcorresponds to linear
dependence (over F) of rows of A. The matrix A is said to be a rep-
resentation of U over F (or an F-representation). If Mis
representable over at least one field, wve say that ! is a (linearly)

representable matroid.
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It is not difficult to see that the above definition is equival-
ent to the definition suggested in (1.20.1). Henceforth we shall
always assume that Mhas size n and rank r, in which case it is easily

seen that we may always assume that a representation matrix A of U

is an (nxr) matrix.

Suppose now that A is an arbitrary (nxr) matrix over a field P
whose rows are indexed by the n elements of E. For each X CE, let
A(x) denote the (]x]xr) submatrix of A consisting of those rows
indexed by X. Then the following result (which is easily proved
using (1.18)) provides us with a workable criteria for determining
whether A is an P-representation of M a result which will be used

extensively and without further comment throughout this work:-

(1.30) Proposition For an (nxr) matrix A over P, T.F.A.E.
(i) A is an P-representation of M
(ii) For every r-subset X CE, X is a basis of M

if and only if det AX) 4 0.

Let us assume henceforth that E = ]e”,...,e j and that

B = ie_|,....e~} is a basis of M.

(1.31) proposition For a field F, Mis F-representable if and only

if there is an F-representation matrix of the form

Proof Since the first r elements of E are independent, the first r

rows of any F-representation matrix kK are linearly independent over

F. But then the column echelon form of A/ is a matrix of the form
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(1.31.1) having the same corresponding linearly independent sets of

rows as A', whence A is also an F-representation of M

In [371p*143 it is shown that if A is an F-representation of M

of the form A = then the matrix A = is an
1 /r
F-representation of M with respect to the orderin e e ,e,...
P ! wi P ng r+1 "'n’1
.,.,e™ . Since M= (M*)* ,we can thus deduce from (1.30):-

(1.32) Proposition The matroid Mis F-representable if and only if

Mt is F-representable.

If Mis F-representable by the matrix A and if 1¥CE then
clearly the matrix A(E/) is an F-representation of MyY . consequent-

ly by (1.26) and (1.32) we may deduce

(1.33) Proposition If Mis F-representable then every minor of M

is F-representable.
The next two results are proved in chapter 7 of [I]

(1.34) Proposition The matroid Me) is F-representable if and only

if the underlying simple matroid Mp(lb) is F-representable.

(1.35) Proposition Suppose M = I\é © ...0 M[ Where'l\/i is defined

on EX’“ with Bf BO i41 (a basis for th) and IBj =r. for i=1,...,t.

Then | f Ao B] t{ 1 is an F-representation of I\/{ for

1 APi|

i-1Jeee>i t the matrix
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is an P-representation of M (with respect to the obvious ordering of E).

(1.36) Corollary The matroid Mis F-representable if and only if

each of its connected components is P-representable.

Proof Sufficiency follows from (1.28) and (1.35) whereas necessity

follows from (1.33)

A matroid is said to be binary if it is representable over GP(2)(

ternary if it is representable over Gp(3) and regular if it is re-

presentable over every field. The next two results show that binary

and ternary matroids nmay be characterized by ‘exclusion of certain
minors." The first result is due to Tutte, and is proved in [37] pp.

167-169, while the second is credited to Reid with proofs in [4],[30].

(1.37) Theorem A matroid is binary if and only if it does not con-

tain U, , as a minor.
Tt

(1.38) Theorem A matroid is ternary if and only if it does not con-

tain ary of the matroids Ué, Or, F~t. oi' their duals.

A matrix N over It is called unimodular if every square submat-
rix has determinant (over ©) equal to 0,1 or -1. A matroid is called
unimodular if it possesses a unimodular representation matrix (over Q ).

The following theorem summarises the various characterizations of
regular matroids and can be deduced from results of Tutte, [34],and

Aigner, fl ] pp.344-346, and (1.37), (1«38).
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(1.39) Theorem For a matroid M, T.F.AE

1) Mis regular
2) Mis unimodular

3) His binary and does not contain as a minor either F or

4) Mis binary and ternary

5) Mis binary and F-representable for a field F with char 4 2

The characteristic set c(m) of a matroid Mconsist of those
integers n for which Mis representable over a field of characteristic
n. Thus c(m) C PU jO where P denotes the set of positive primes,

and Mis representable if and only if QM=] £

Suppose now that B is a basis of M It follows easily from (1,23)
that for each e e E\B there is a unique circuit contained in
B U [ej. This circuit is called the fundamental circuit of BU [€]
in M and is denoted by C (B,e) or more simply C(B,e) if there is no
ambiguity. For the following important definition we shall assume

that E=[e~...~ } and that B =

(1.40) Definition The B-basic circuit incidence matrix (B-basic c.i.
matrix) AR=fa..] is the ((n-r)xr) zero-one matrix with columns

indexed by B and rows indexed by E\B where a.J\.1=1 if e0 e C(B,el.).

The matrix is obviously dependent on the ordering of E; a
permutation of B corresponds to a permutation of the columns of A®

and a permutation of E\B corresponds to a permutation of the rows.

(1.41) Proposition Suppose is given as above, and B*= E\B
*

Then IB is the B -basic c.i.matrix of M with respect to the

ordering e -+ﬁ'*' . "'en«61
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Proof If e” e Cf,(B,e”) (I<j<r, r+lri<n) then (B\[e™.j)u Je”j must
be a basis of M Write B/= (B\[e.j) U Je.j ,then E\B/ is a basis
of M . But E\B; = B*\|er.J) U {eaj and since this set is independ-
ent in M*, we must have e® e C\. (B’ ,e”.). The converse follows by

duality.

T . .
(1,42) Suppose A = [1™ AT is a (column echelon) F-representation
of M Then the matrices A/ and Ag have their non-zero entries in

the same corresponding positions.

each i,d write X = (b\{e.uj) U [e*hJ . Then

det N(XtJ) = + b _ (1.42.1)

If ai'j'=0 then ej i C(B,ei), whence C(B,e.l) C (b\{ ed}) U [eij = X)'(j"
But then X/..). is a dependent set in M, so by (1.42.1) b, O.|=O. If
conversely b"\d 0 then by (1.42.1), X"\d contains a circuit of M
Since CC BU [ex], we must have C = C(B,ei) by uniqueness of the
latter. Thus C(B,el.) C Xi.d. so that e(.j e C(B,ei.) whence ai.d.= 0.

m
(1.43 Corollary If Wis binary, the matrix fl | Afi] is a

representation of Mover GF(2).

(1.44) Definition Let A be a matrix with rows R and columns C. Then
A is block reducible if there exist proper subsets R£L R and c'c C
such that all non-zero entries of A are contained in either the sub-
matrices R Ci or (R\R/)X(C\C7). Similarly the matrix A has k
blocks if the rows and columns can be partitioned into k blocks

R ,...,Rk and Ci»." ,dc respectively such that all non-zero entries
of A are contained in the submatrices R% for i=1,...,k and
each submatrix is block irreducible. Also by convention we shall

always assume a block irreducible matrix has no zero row or column.
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(1.45) Proposition If Mhas B-basic c.i.matrix Ag9[ a,] . Then
1) n is a zero row of Ag if and only if is a loop.

2) cis a zero column of Ag if and only if e\ is a coloop.

3) £r. ,...,r. } x[c.,...,c. } forms a block of A if and only
— 11 ——--- XS ------ Jt L e e LR
if je. . 13 ,e,A }A” is a conneicted_component of M

4) For r+l<i<n and 1<j<r, e.l,e:J are parallel if and only if a _=1.
1]

Proof For 1),2),3), see [12].

4) The elements e are parallel if and only if jei,ejj is a

,E.
13
circuit. But then C(B,ei) = je,l,e.\!| ,S0 the result follows.

(1.46) Corollary Suppose Ag has r7 zero rows, c/ zero columns and

k blocks. Then Mhas r/+ c/+ k connected components, and for some

suitable ordering of B, E\B,

[A1. °
0]
B 0 *Ak
r/ O 0]
where the As are the blocks corresponding (as in (1.45.3)) to the
k (non-trivial) components of M Moreover if these k connected

components are -respectively and if B BDE (i=1,...,k),

then A. is the B.-basic c.i.matrix for |\41
———————— s Ry st h.
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82 PROTECTIVE EQUIVALENCE OF MATRICES

Unless otherwise stated all matrices considered will be over a fixed
field P, although the next definition is also valid for matrices over a

division ring.

(2.1)Definition Let M N be (nxm) matrices. Then Mis projectively
equivalent to N if there exists an (mxm) non-singular matrix C and an
(nxn) non-singular diagonal matrix D such that OMC = N. In the case
where C is also diagonal we shall say that Mis strongly protectively

equivalent to N (s-projectively equivalent).

It is clear that projective equivalence is an equivalence relation
on the class of (M) matrices (over P). It is also easily seen that if
M,N are projectively equivalent then any set of rows of Mis linearly
dependent over P if and only if the same corresponding set of rows of N
is linearly dependent over P. It now follows by definition (1.29) that
projectively equivalent matrices represent the same isomorphism class
of matroids, and herein lies its importance to this .work.

As its name suggests, another (more classical) motivation for the

study of projective equivalence is in projective geometry:-

(2.2)Proposition Let MN be (nxm) matrices without zero rows, so that
the n rows of MN respectively are the coordinate vectors of n points,
say P.j,...,Pn ax™Qlre ee»x in PI(m,F)._Then MN are projectively ?
equivalent if and only if there is a conjugation of PG(m,F) in which

p. is mapped to for i=1,...,n.

Proof If Mr are projectively equivalent then DMC - N for some non-
singular diagonal matrix D and non-singular matrix C. Since AP =P
for each point P in FC(ra,F) and O | AeF the rows of DM also are the

coordinate vectors of P”,...,Pn ¢ Being non-singular, C represents a
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linear transformation of Pmwhose induced auto-projectivity of PG(m,F)
is thus (by (1.12)) the required collineation. Conversely suppose that
there is a linear transformation of Fm represented by an (nxra) non-

singular matrix C say, inducing the specified collineation. Then for

for each i=1,...,n if v_ is any coordinate vector of P, and w any
—X X —+

coordinte vector of it follows from the definition in 81 that

Fiy»C) = Fw® . In particular this is true when v»,w” are the i™ rows

of MN respectively. But then for i=1,...,n there exist 0 ~\. e F
for which X~v~C) =w;, . Writing D=Diag”,... , X" it follows that

D is non-singular and OMC = N .

Let us consider some other familiar equivalence relations defined on
matrices :-
i) If MN (nxm) matrices, write M~ N if and only if there exists an
(nxn) non-singular matrix B and an (mxm) non-singular matrix C for
which BVC = N.
ii) If MN (nxn) matrices, write MB N if and only if there exists an
(.nxn) non-singular matrix C for which C 1IMC = N (similarity)
iii) If MN (nxm) matrices, write M~ N if and only if there exists

an (mxm) non-singular matrix C for which MC = N (column equivalence)

In each of these cases we ask the question: ' is there a canonical
form of matrix with respect to the given equivalence relation, i.e. is
there some special simple type of matrix for which we can say that every
matrix within the given class is equivalent to a unique matrix of this
type ?’ The answer in each of the above cases is affirmative and well

known. The canonical form of i) for a matrix of rank r is precisely

The canonical form of ii) is the rational canonical form, which in the

case when F is algebraically closed becomes the simpler Jordan Canonical
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form. The canonical form of iii) is none other than the column echelon
form. We shall show by construction that a canonical form exists for
projective equivalence (we shall henceforth call this the 'projective
canonical form').

First we observe that projective equivalence, like the equivalences
above, is rank preserving. Accordingly we nmay restrict our attention to
matrices having the sane rank r, and so we define G to be the class of
all (nxm) matrices of rank r (over F). It should be noted that equival-
ence iii) above is closely related to projective equivalence; clearly
column equivalence implies projective equivalence, hence every matrix
is projectively equivalent to a matrix in column echelon form. Consequent-
ly we begin in earnest by taking a closer look at the column echelon form.

Let A e (3 and suppose the rows of A are indexed by [1,...,n]

Since A has rank r there is at least one r—subset Jc p,...7n] for
which A(j) (defined in 81) has rank r. Let J be the first such sub-
set in the natural lexicographic order. Then it is easily seen that A
is in column echelon form (which in this case we shall call .Jl—column
echelon form) if and only if A(”) - [0 ] , and in this case we must
have A = [A/] 0] for some (nxr) matrix pJ. Suppose r.ow that

= [1,...,n]\J1 and that A is in J”-colurcn echelon form, then the only
'‘part* of A not already determined by J is the (n-r)xr submatrix
A/(j ). We shall call k'(J®) the non-identity submatrix of A.

With this notation we have:-

(2.3)Proposition Suppose A,B e (3 are in -column echelon form, with
respective non-identity submatrices A/ = [a" ] and ~ - f0, 1

1 <t<n-r, 1<s<r). T.F.AK.

i) A, B are projectiv'ely equivalent)

ii) A/,B/ are s-projectively equivalent

iii) There are non-zero elements_ p»®,...,p",__5",...,0 dp

for which__ 6+a”~.p™ = b~ for each t,s.



Proof (ii)<=> (iii) is clear so it suffices to prove (i)<£=3(iii) .
()=~}(iii) Let D- Diag(\"*., X" , C=[°"] be non-singular
matrices for which DAC = B. Then in particular we have

dacG” =B@J") =[ir] o] (2.3.1)
Suppose that {fir...,1} and JIN= j. Then for each

t=1,...,r the ith row of DA. is (0,...,0,X. ,0,...,0) . Hence the

, ) , and so DAC(j ) =fx.c 1

ith row of DAG is (x. c. ,... X. ¢C
t 1] t1 1t 1 1t

(lj;t<r, 1<s<m). By (2.3«1) this means that

'l o
c = li. .1 0
0 X1
r
_ C;
Now write =x71 n=><'.1 O X®eeeee § X.
X1 r 1 J1 "-r Vr
Then ~,,,,d™n-r are the re(luircd elements of P.
(iii)—~l1) Suppose that Seee> N >eee> N gatisfy the given
relations and that are as above.
. -1 -1
Y/rite X X- /. X. =£>,...} X =6
11 r Ji dn-r 1

Then if D = Diag(x1,...,Xn) and G = Diag(pl,---,p ,1,1,...,D ,
we have DAG =B (so in fact we have shownn AB are s-projectively equiv-

alent in this case).

(2.4)Remark  In our search for the projective canonical form it now
suffices (by (2.3) and the comments prior to it) to find a canonical
form with respect to s-projective equivalence; for suppose such a can-
onical form exists - call it the strong canonical form (s.c.f), so that
every matrix B is s-projectively equivalent to a unique matrix in s.c.f
(called the associated s.c.f. of B). Then every matrix is projectively
equivalent to a unique matrix in column echelon form whose non-identity

submatrix is in s.c.f. Thus for any matrix A the associated projective
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canonical form of A would be precisely the associated column echelon
form of A in which the non-identity submatrix B say, is replaced by the
s.c.f. of B.

Since by (2.3) s-projectively equivalent matrices have their non-
zero entries in the sanme corresponding positions, our search for an s:.c.f*
will be restricted to finding certain privileged non-zero entries which
would become equal to 1. What are these privileged entries ? They cert-
ainly cannot comprise all the non-zero entries, since for example

11 ; is not s-projectively equivalent to 1

On the other hand it is easy to see that any matrix is s-projectively
equivalent to a matrix in which every leading entry (first non-zero

entry in a row or column) is equal to 1, so we would certainly expect
our 'privileged* entries to include all leading entries. However these

will not in general be sufficient to give a canonical form since, e.g.

(2.4.1)

~ O

; is s-protectively equivalent to ? ;]
and these matrices are not equal even though their leading entries are

all equal to 1. So in truth we -will have to search somewhere between
these two extremes to find the 'privileged' entries. In order to do so
we introduce some new notions.

Suppose that A = [a. ] is an arbirary matrix. We shall be concerned
with sequences of non-zero entries of A in which the position (i,j) of
the non-zero entry aiJ' concerns us rather than the specific value al'j"
Consequently we shall frequently use the notation (i,j) to replace the

cumbersome a. . and also describe a. a , / as distinct if (i,j)f(i7,j7).

(2»5)Definition A chain in A is a sequence of distinct non-zero entries
of A such that consecutive terms are either in the samre row or the same
column, with a strict alternation between the two. Thus a chain from

(i,j) to (i7,j7) can be any one of the following four types of sequences

of non-zero entries of A »-
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(1) (ip+l,jp), (ip+l,j7), (i->d’) \
(an (i, (ip,jp), (i »jo, U, /)

P>1
(i) Ascip)r A n
(V) (i,d), (ifdl» (ir~),..., (ip>jp+l), (i'fj JfCifd) J

(Also by convention, if ¢-¢' the trivial chain (i,j),(i/,¢") will be
considered, to be a chain of type (il), and if i=i'" it will be considered
to be a chain of type (1V) ).
For any such chain we also say that &y is connected to allj/ bX the
given chain C. The length of C is simply the number of terms in C and
is denoted by -6(C) . A chain of type (i) or (ill) in which

<i will be called a u-chain. The key to finding our

IX"’..’Ip"'I ____________
privileged entries for the canonical form is in the following:-

(2.6)Definition A non-zero entry a.. of A is non-atomic if for some

\<y<j there is a u-chain of type (l) connecting a.g to, a']:LJ/ . Other-

wise aty is atomic.___An_atomic_chain in A is a chain in which each term

is atomic.

(2.7)Example

1) Every leading entry of a matrix is atomic.

2) In the matrix

0
0 al2 al3
n 223 0 (where all the marked
A =
0 0] a..'s are -
432 434 non-zero)
0 0
41 =

the entry ap. is atomic even though it is not a leading entry (the sane
is true of the (2,2) entry of the matrices in (2.4.1)). The entry a44 ii
non-atomic by virtue of the u-chain

(4.,4),(3,4), (3,2).,(1,2), (1,3), (2.,3),(2,1), (4.1).

3) Suppose Al is the submatrix of A consisting of the first t rows of A
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(where 1< t < no. of rows of A). Then for each a. .e A/, a is
1]
atomic in A/ if and only if a. . is atomic in A. The corresponding

statement for columns is not true, since for example if

0 al2 al3 0 al2
321. 0 a23 and A/ = 321 0
"X am a3z a3l a32

then a is atomic in A" but non-atomic in A because of the u-chain
(3,2),(1,2),(1,3),(2,3),(2,1),(3,1)

4) 1f A= [a..], B = [bi.J] are s-projectively equivalent matrices

then a. , is atomic if and only if b. . is atomic, since by (2.3) both

matrices have their non-zero entries in the same corresponding positions.

(2.8)Theorem Every matrix is s-projectively equivalent to a unique

matrix in which every atomic entry is equal to 1.

Thus the privileged entries we were looking for in our search for
the s.c.f. are precisely the atomic entries. Before proving (2.8) we

shall need a lemma:-

(2.9)L,emma Any two atomic entries of A are connected by at most one

atomic chain.

Proof Assume the contrary. Then we can consider all *4-tuples'

n = (aja®jOjC”) where a,a/ arc atomic entries of A connected by distinct
atomic chains C ,”~. Of all such 4-tuples choose one, say

= (Cir»j)»(i/Z.d")» °,» C2) for which ¢(C”) + e(Cg) is minimal.

The chains ,CO nmay be any of the four different types. Y will prove
.the lemma by showing that each possible permutation leads to a contrad-

iction. First suppose that both chains begin by moving along column j

(so that they are a permutation of types | and Ill), say

0O =(i,]),(ixd)f*»(i/»d/) and c2 =
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Then let be the chain formed from by deleting the first term (i,j)
only. Let be the chain formed from by replacing the first term
(i,j) by the term (i~ j) or simply deleting (i,j) if =in. It is
clear that the 4-tuple ((i™,j),(i;,]"), ) contradicts the

choice of Ho We may arrive at similar contradictions when a) both
chains begin by moving along row i (permutation of types Il and V) ,
b) both chains end by moving along column j/ (permutation of types | and
I1) or c¢) both chains end by moving along row i/ (permutation of |11l
and 1V). This leaves us with only two possibilities:—
case d) one of ON0”N is byPe 1 XK ~he other is type IV ,or
case e) one of ON 0N is type Il and the other is type IlI
Ve will show only that d) is impossible since the argument against e)
is almost identical. Without loss of generality assume that
= (1J5)>(> J)>(il3 )>==>0p"HOp)>( * i )13 )
C2 = (i, j), (i, jN),(idyi),*..,(iN,j~+1)>(i/,0g+1), (i/,jO

First we will show that

i»iNie. »i +1» i7J are all distinct (2.9.1)
Certainly the row indeces i,i™,...,i .j,i/ occuring in Cl are all dis-
tinct, for otherwise we would have i =i for some Ois<t<p+2 (taking
i“=i, i 2=i”) and then we could 'shorten’ to the chain

C' —(i>]) >(iNJj) >eee> (ig»  *Ni't* fAINH>i-t+] )>eee> (| >T/)
(where Jg=Jj j_1= “n Wixcll case ((i»j),(i > ), CN C”N) contra-

dicts the choice of O . By a similar argument all the row indeces

iﬁii_.i'.i' occuring in C,.are distinct. So to establish
(2.9.1) it suffices to show that [il,...,ip+tl} O (i',...,iNj] = &.

Suppose not. Then i S'X?‘ for some 1<s<p+l and I<bsg and so we have

the chains
DL = N"s'js-1™Nis,)sN *Nip+l' j/~"Ni/ L j /N
Dy « (is,js-17it,jt+l")’ ,**~i »~Ng+InM N d/)
in v/hich case ((iS S ,j"), D,>D ) contradicts the choice of

r0,thus proving (2.9.1)*
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Thus the set of row indeces (listed in (2.9.1)) has a unique maximal
element which is either iS for some Cks<p+2 or i% for some 1<tcq.
Assume first it is is' Then we may ‘'link* the chains th%k to form
-lg)>Ng+1l > >*xxx )>(1- >jg+n)>***>
Jo n(IGHIJATDIAN JE)N LN )N ) .
By definition of is’ the above chain is a u-chain from (is’js) to
(is’ s—l’) which contradicts the fact that both these entries are atomic

A similar contradiction involving (i™.,j£1) and (i~ ,j') is deduced if i{

is the maximal element in

Proof of Theorem (2.8)

Let A =[a. .] be an arbitrary (nxm) matrix. There are two things
to prove:-
(2.8.1) that A is s-projcctively equivalent to a matrix in which every
atomic: entry is equal to 1, and
(2.8.2) if AB are (nxm) matrices in which each atomic entry is equal

to 1, and which are s-projectively equivalent, then A=B.

By (2.3), to prove (2.8.1) we must find non-zero elements

Mt epj Of P for which
5ia.ij.mj = 1 whenever a. . is atomic (2.8.3)
for then [6.a. p.] is the required matrix. Ve prove (2.8.3) by in--
duction onn . If 1 then A - [a”,...,a. ] and the atomic entries
are precisely the non-zero entries. So take 6.= 1 and
'Ta= 0 i}
. (ij—2>+==>m)

ay if al/j'lo

Next assume that n >1 and that the result holds for matrices of less than
n rows. In particular the result holds for the subinatrix of A consist-
ing of the first n-1 rows. Then (by (2.7-3)) there is at least one set

of non-zero elements 6~ .. Jl, *m tim 0i> satisfying

~ 1 whenever a... is atomic in A and 1<i<n-1 (2.8.4)

21 2
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Of all the sets of elements of P which satisfy (2.8.4) choose one, say

S = [61>...»6Nn A, .]ij,=. e, pmJ for which X(s) is maximal where X(S) is
the set of atomic entries anj' in the last row of A for which anj' Pj' = 1
If X(s) contains every atomic entry in the last row of A then (2.8.3) is
clearly satisfied by the elements 6%, ... ,57" , 8"=1, W )> e\t So
assume this is not the case and seek a contradiction. Let (n,j”) be an
atomic entry in the last row for which (n,j ) X(s). V' are going to
construct a new set S; satisfying (2.8.4) for which X(s;) strictly con-

tains x(s). First define
-1
p. =a (2.8.5)
Jo n’ Jo

Now replace p. in S by p/. . The resulting set Sq clearly satisfies

J ..
X(S) C X(So) , but if there is another atomic entry (i™,Qg) in the j
. p( =1. So what we
V'30 Jo
must do is consider the ,set of all possible atomic u-chains from (n,j”")}

column then we do not necessarily have ¢ .a.

for every row index i and every column index j appearing in such a chain
we will define b/ , pJ respectively to replace b, , p135 in S.

Suppose then that

is such an atomic u-chain (where the appearance of the last term is dep-
endent on whether G is type | or Il1l). Each even-numbered term (i )

(for s=1,...,p+0 in Cwill determine d( and each odd-numbered term
*t

(i i3 ) (f°r t=0,...,p+1, with i =n) will determine p. according to
t t u Jt

the following inductive procedure:-

By (2.8.5) the first term (n,j ) determines p( = a -.

If (i ,j .) is a subsequent even-numbered term, with p» already
B-1
determined,write

6& = (a ) (286)
Vs-1 Js1l

If (i t’jt) is a subsequent odd-numbered term, with b'it already

determined, write
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| =8 a .)"1 (2.8.7)
1t Xt V t

YE have to check that there is no ambigxzity about the choices of the
8/,s and the \f's J suppose that row i appears as an'index in two
different atomic u-chains from (n,j”). Then considering only the first
part of these chains (up to the first occurence of i) we get two
subchains say from (n,”~) to (i,j/) and (i,”) respectively. If
these chains are identical then of course the above pz'ocedure will
lead to the same choice of 8" in each case. If they are distinct,
then we can add the term (i,”~) to C?”, obtaining two distinct atomic
chains from (n, to (i,j7) which contradicts (2.9).

Thus each rov.' i can be'reached’ by an atomic u-chain from (n,”)
in at most one way, and in the case when it can be reached Ai is
uniquely determined according to (2.8.6). If row i cannot be reached
in this way simply take 8=?4 . For similar reasons each column j
can be reached in at most one way, in which case p& is uniquely
determined according to (2.8.7), and if column j cannot be reached
we simply take 3 ii(g-

The new set S/ ... now satisfies (2.8.2).
Moreover if anj' e X(S) then clearly column j cannot be reached by an
atomic u-chain from (n,j.”) for otherwise we could construct an
atomic u-chain from (n,j ) to (n,j) which contradicts the fact that
both these entries are atomic. Thus \>§]= fi\J and anj' uJ[ = anj' u. = 1.
Thus X(S) C x(s;) and strict inequality now follows from the choice

of a together with (2.8.5)« This contradicts the choice of S.

To prove (2.8.2), suppose A - [a.‘}J] , B = [b'-LJ] are s-projectively
equivalent matrices in which each atomic entry is equal to 1. By
(2.7.4) a - is atomic if and only if bl‘l‘ is atomic and in this case

a..=b,.= 1. Also there are non-zero elements 81, ...,5 , fm

n
of F for which

Siaij 4 = /ij (I<icrn, I<j<m) (2.8.8)
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\fe have to show that a. .= b. . for each i,j and we do this by induction
on n. If n=1 then every non-zero entry of AB is atomic, hence equal
to 1. So assume n>1 and that the result holds for matrices of less

than n rows. In particular, by (2.7*3) we nay assume that a .= b__
ij ij

whenever 1<i<n-1. By (2.8.8) we deduce that

6. B = 1 whenever a.. 0 and l<i<n-1 (2.8.9)1_
i 1] :

It now suffices to show that 6n pJ = 1 whenever anj.4=0 . Assume
not; let (n,jQ be the first non-zero entry in the last row for which

5 p. | 1. Then certainly (n,j ) is non-atomic (by(2.8.8)), hence
n jq
there is a chain

( ¢Q)>(i ~Ja) ip>j):( J)

where j < and i1,...,i <n

But then, by (2.8.9),

Thus' p. =p. =... =P., whence 6 p. =6 p. =1, by cnoice
Jq n n

of (n,j ).. This contradiction completes the proof of the theorem.

(2.10) Definition An arbitrary matrix A is in projective canonical
form (p.c*f_.) if Ais in column echelon form and every atomic entry

of the non-identity submatrix of A is equal to 1.

(2.11) Corollary Every matrix A is protectively equivalent to a

unique matrix in p.c.f. (called the associated p.c.f. of A)

Proof Follows immediately from remark (2.it) and theorem (2.8)

(2.12) Remark

1) The method described in the proof of (2.8) of considering all poss-

ible atomic u-chains from atomic entries in the last row of a matrix
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A j>rovides an algorithm for finding the associated s.c.f. of A (once
the atomic entries of A are known). Consider, for example the matrix

A of (2.7.2). The entry is the only atomic entry in the last row,

%n
and the atomic u-chain (4,1),(2,1),(2,3),(1,3)»(1,2),(3}2),(3,4)

determines (according to the formulae (2.8.6),(2.8.7))

-1 1 -1 - *
a4l » h2 - a2l M3 = a23 a2l a4l 91 _31310211’
-1 -1

-1 -1 -1 -1 -1
> - i .
g - alz als aill . a32 al2 ai3 \ 1 > 12 al3adl

Taking ft.4 =1 (as in the proof) the s.c.f. of A is thus the matrix

Dlag(81,A v\ ) A
'0 1 10
/_ 1 0 10 _
A= 510 1 (>here X )
10 0 \
Thus-if, for example B = AA then the associated p.c.f. of B is

the matrix Afrr

2) Throughout the proof of (2.8) the only elements of the field P
which are used arc those in the subfield of F generated by the entries
of the matrix A. Consequently the s.c.f is independent of P in the
sense that P could be any field which contains all the entries of A.
Thus if two matrices A,B (over P) are not'(s-)projectively equivalent

over F then they are not (s-)protectively equivalent over any field

containing F.

As has already been observed, projective (and s-projective) equiv-
alence are v.-ell defined for matrices over an arbitrary division ring.
In fact the commutativity of P is not used in the proof of (2.8.1),
so we may deduce that any matrix A over a division ring I) is s-project-
ively equivalent to a matrix in which every atomic entry is equal to
1 (s.c.f). However in the proof of (2.8.2), the deduction of (2.8.9)

from (2.8.8) is dependent on the commutativity of P, so in general we
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cannot achieve uniqueness. Indeed if a,b are any two non-commuting

elements of D (so that bab = a) then

= T ¥

b O 11 b™ 0 1 1

-1 -1

P b. a 0O b bab
c. o tl th tri Lo! d 1 L distinct
onsequently, e matrices 1 a an 1 bab_1_ are IStiNnCt,
s-projectively equivalent matrices (over D) which are both in s.c.f.

For similar reasons (which we study in detail in %.) it is quite poss-
ible that two matrices over a field F may be non-projectively equival-

ent (over F) but projectively equivalent over sonme division ring
containing F.

4) Suppose the matrix A has no zero entries in the first row. In this
case the associated s.c.f. of Ais particularly easily described; the
only atomic entries are the leading entries, so the associated s.c.f.

is a matrix of the form

B

where the leading entry of each row of B/ is equal to 1.

Applications of the projective canonical form

First we present a new proof of (1.15), the 'second fundamental

theorem of projective geometry :-

Proof of (1.13) Suppose first that 1) is a field and nP2. As ini
(2.2), any simplex in PG(m,D) is associated with an (m+)xm matrix
over D. By definitions (1.8) and (2.10) any such matrix has project-

ive canonical form

(2.15.1)
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and consequently, by (2.2) and (2.11) there is always at least one
collineation mapping any given simplex onto another simplex. To
show that there is only one such collineation it suffices to prove
that the identity nep is the only collineation which leaves invariant
every point of the simplex given by (2.15.1). Let y be such a collin-
eation and P e PG(m,D). Suppose that the natural coordinate vectors

of P, Y(P) are respectively (a”,...,am and (b”,...,b ). By (2.2)

I l.
m in

1 1...1
bl b2 bm
are protectively equivalent matrices. Now since the first non-zero

entry in each of (a”,...,a ), (bj,... ,b ) is equal to 1, it follows
from (2.12.4) that both these matrices are in p.c.f., hence by (2.11)

(a_j,...,an) = (b_j,...,b”) so that P -y (p) and yis the identity.

Conversely suppose that D is not a field, in which case there are

two non-commuting elements a,b e p. Then the (distinct) matrices

in B = m
11 1 ’ -1 1 1
11 a 1 1 bab
are protectively equivalent over D since (b I"™) A (b Il ) =B .

Since the first ml rows respectively of AB represent the same
simplex in PG(m,D), it follows from (2.2) that there is a collineation

other than the identity mapping one simplex onto itself.

The main application of the p.c.f. is in the study of matroid
representations. Suppose that Mis a matroid of rank r on the set
K=1}el ...,ej whereB- [en,...," is a basis of M Then if M
is P-representable it folio-,vs from the above work that the associated

. | .
p.c.f. for any representation has the form ~Kt where every atomic

entry of Ais equal to 1. For example, we can immediately deduce



from (1.43) and (2.11) that every representation of Mover GP(2) is
projectively equivalent to the matrix [i™ IAN  where is the B-
basic c.i.matrix of M Yf next use the p.c.f. to present new proofs
of results concerning certain uniqueness of representability of binary

and ternary matroids. The first of these is

(2.13) Theorem Suppose Mis binary. Then there is a matrix A in p.c.f.
all of whose non-zero entries are equal to +1, such that any repres-

entation of Mover any field P has A as its associated p.c.f.

Before proving this important theorem we shall need a definition

and two lemmas:-

(2.14) Definition For any n»2, an (mxm)block irreducible matrix A
is a circuit matrix if every row and every column of A has exactly

two non-zero entries.

(2.15) Lemma Let A be an (ir.xn) circuit matrix ¢11 of whose non-zero
entries are equal to +1 except possibly one which is equal to a say.

Then (up to sign), dot A=1+ a

Proof Since A is block irreducible, it is easily seen that A

has exactly two non-vanishing permutation products - one of Yihich

is equal to +1 , the other of which is equal to + a .

(2.16) Lenmma Suppose A is an (mxn) circuit matrix (over F) for which

the matrix k' - I IA]T is an F-representation for some binary

matroid M/(K/) of 2m elements. Then the set of @ elements of

corresponding to the rows of A form a circuit in VV, so "det'A - 0.

Proof Let A be the (mxm) matrix over GP(2) whose non-zero entries
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appear in the same positions as those of A. Then clearly by definition
(2.17) the mrows of form a circuit in (GP(2))m But by (1.A3)
iImIAl] is a representation of over G?(2) so the result follows,
Proof of (2.13) Let A=[a® J be an F-representation in p.c.f. Y
have to show that every entry of Ais equal to + 1 , where the sign
is uniquely determined by the inatroid M (i.e. is not dependent on the
particular representation). We proceed by induction on n. The cases

n=1,2 (and n=r) are trivial so assume that n>>1 and that the result

holds for binary matroids of fewer than n elements. Now

A= where A1 = Ay
n Vv
and all atomic entries of are equal to 1. V/ith respect to the
obvious ordering, is an F-representation of the matroid m\|en1
LA J

which, by (2.7.3) is in p.c.f. By (1.33) M\[e ] is binary so by the
inductive hypothesis every non-zero entry of A. is equal to + 1 with
the sign uniquely determined by the matroid li\[e”j (and a fortiori,
by M). Thus we have to show that every non-zero entry of v (the last
row of A) is equal to + 1 where the sign is uniquely determined by
the previous rows.
If every entry of v is atomic in A. we are done since then all
the non-zero entries are equal to 1. If not we proceed to:-
stage | There is at least one u-chain from a non-atomic entiy in the
last row to an atomic entry" in ihe last row. Choose one C say, of
minimal length anong all such chains. Then C has the form
C=(n),0_1.§j,(i*>47)>»..,(1Qj>Im2"> >j/)>(n,j7)

where n>2, i ,...,i . <n and (n,j') is atomic.

het 1= fn,i.,,. .« J — j _7yj i = The choice of C

ensures that the elements of I, J respectively are all distinct.



-38-

Moreover if Nis the (n*m) submatrix of whose rows are indexed by
I and whose columns are indexed by J it is easily seen (by similar
arguments to those used in (2.9))then that the minimality of ¢(c)
implies that N is a circuit matrix. Now write

S=BUITe. e.. e }
ml m2 1

T = B\[e ./,e Seee>p
o2 01 J

Then the minor M= (M]g)/T of Mis binary (by(1.33))and by construct-

ion the matrix N is an F-representation of W with respect to

the ordering e./,e ,...,e , e ,...,e e . By (2.16), det N =0.
.Jm2 J ml Xl n

But N satisfies the hypothesis of (2.18) so (up to sign), det N=1+ a
and so anj' =+ 1.
If (n,j) is the only non-atomic entry in the last row we are done.
If not then we proceed to:-
stage Il there is at least one u-chain from a non-atomic entry (=j(n,j))
in the last row to either an atomic entry or (n,j) in the last row.
Choose one such chain of minimal length, and suppose it is from the
atomic entry (n,j"). Proceeding exactly as in stage | , we again
deduce that a =+ 1 since the only possible difference is that
the (non-atomic) entry anj' may be the other entry in the last row
used in the proof and this has now been uniquely determined to be + 1.
If (n,j),(n,j") are the only non-atomic entries in the last row
we are done. If not we consider u-chains from other non-atomic entries
in the last row to atomic entries or (n,j), (n,j") in the last row,

and proceed as before. It is clear- thatthe result must follow after

a finite number of these steps.

(2.17) Remark The method used in the above proof once again prov-
ides an algorithm for determining the matrix A. This theorem
appears in a slightly different form in f12], and a weaker result is

also proved in [39] . It is not difficult to deduce that the matrix A
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is always unimodular if Mis also F-representable for some field F
with char F 2 (see, [11] for an elementary proof of this).
Consequently, this provides an alternative and more direct proof of
Tutte's famous Unimodular Theorem (which is essentially stated in
(1.39)). Another immediate consequence is that a binary matroid is
uniquely F-representable (that is, any two F-representations are

protectively equivalent) for any field F over which Mis representable.

The next result has also been proved in [12] and [30].

(2.18) Theorem Suppose Mis ternary. Then any two representations

of Mover GF(3) are protectively equivalent.

Proof Let be two repi'esentations of Mover GF(3) in p.c.f.

. Suppose A(=ra_ ] =[1™ JA'] ) and *[a”™] (=flr 'A2]T)* We have
to show that a.. =a.7 for each i,j. By a similar induction arp-
ument to that used in the proof of (2,13), we may assume that all the
corresponding entries of A”A” are equal except possibly those in the
last row. If all the corresponding entries in the last row are equal
there is nothing to prove, so we may assume w.l.o.g. that for some
{lng a.=1 and anj' = -1 and seek a contradiction. Using

nj
exactly the same argument as in (2.13) we may assume there is an

a' and a u-chain from

entry (n,j ) in the last row with a . = .
0] n>JO n,0

(n,j) to (n,j”) such that if | is the set of .row indeces and J the

set of column indeces appearing in this chain then the submatrices

N ,N2 of respectively, indexed by I,J,are circuit matrices.
Now, [ I INj J ,I[ 1 are representations over GF(3) of the
same minor of M Consequently det =0 if and only if det = 0.

But, by (2.15),
det N1

1+a (up to sign)

1
=
+

and, det N + a' (up to sign)



Since a .=1 and a/. =-1 , it follows that .one of det Nl” gotz
nj nj
is equal to zero and the other is equal to + 2, which is a contra-

diction since 2i 0 in GF(3).

Y& conclude this section by describing the connection between the
projective canonical form and the work done by Brylawski and Lucas
in [12] . For an arbitrary (s*t) matrix A = [a. .] with row set R
and column set C we nmy associate a bipartite graph whose
vertices aoe partitioned into the two sets R =jr,j,... ,
C=1]Jc ,...,c j and for which there is an edge joining r. to c. if
and only if a. . =0. Denote such an edge by [i,j] . Brylawski
and Lucas now define a coordinatizing path P of A to be a spanning
forest of the graph , or equivalently a basis of the cycle matroid
M(H ) defined in (1.20.3). In the case of a matroid Mwith basis B
and P a coordinatizing path for A™ (the B-basic c.i.matrix) they also
define a representation mati'ix N of Mto be in (B,P)-basic form if
N(B) =1 and the entries corresponding to P in the non-identity
submatrix of N are all equal to 1. Obviously there may be nmany
coordinatizing paths F) we now show that for a certain natural choice
of P, the (B,P)-basic form corresponds precisely to our p.c.f,(allow-
ing for the fact that the role of rows and columns are interchanged).

First we observe that the set of edges of H is totally order-
ed by the lexicographic order

fi,j] < [i/,j/] if and only if either
(a) i <x' or (b) i =i' and j< j/

This order now induces a (total) lexicographic order on the set of

all coordinatizing paths. Let P be the minimal path in this order.

With this notation we.have

(2.19) Theorem The edge fi,jl e P if and only if the entry

(i,j) is atomic in A.



41 -

Proof  Suppose first that [i,j] e P* but that (i,j) is non-atomic.

Then for some < j there is a chain in A of the form

joOjirjo
) ) ) (2.19.1)
where "1"""’k<'
By ‘shortening' this chain if necessary we nay assume that i, i I""’iK
are all distinct and similarly j,j., e .., are all distinct. Then
the set C={[i,j]1.[~.jl.[i1, v, [ ifc,j/1,[i,]j;]] is a circuit

in M(HAa). Thus the set X = C\£[i,j ]j is independent in I\/I(HA), and
so by (1.17.2) there is an e f X for which the set

P = P\[[i,jIl U [e]
is a basis of MH ), that is, a coordinatizing path for A. By

(2.19.1) e< fi,j] so the choice of P is contradicted.

Conversely suppose that (i,j) is atomic in A but that [i,j] I P*.

Then T U f[i,j]j contains a cycle C of which we may write as

C= (k > 1)

First we shov; that

<1 (2.19.2)

For suppose not. Then we must have i™ > i for some 1<qCk. Since
C is the fundamental circuit of [i,j] in M(l—k), P*\[[iq,jq_.l]}’\{[i.,i]l

is a basis (interpreting jQ-j). This contradicts the choice of P

since fi,j] < [iM™ 7~ » and hence proves (2.19.2). But now
(1,),(11f3)i eee>(ik>0,(1,$’)

is a u-chain in A. This is impossible if j;< j since (i,j) is

atomic. But if j < j/ then (by reversing the terms of this chain)

we infer that (i,j() is non-atomic. But ii,j7] e P*, so by the 'if'

part proved above, (i,j/) is atomic - a contradiction.

(2.20) Corollary (with the sane notation as above) A representation

matrix for Mover a field Fis in (B,P )-basic formif and HH‘ \f SHHHEH
i UNVERY.
| lIBRARY

it is in projective canonical form.



(2.21) Corollary Suppose A is an (sxt) matrix with r/ zero rows,
¢/ zero columns and k blocks _after_zero rows and columns have been
deleted. Then A has (s+t) - (r/+ o'+ k) atomic entries. In partic-

ular if A is block irreducible then Ahas s + t - 1 atomic entries.

Proof The bipartite graph H has s + t vertices and Kk + r;+ c'
connected components. By (1.16) every spanning forest of H, has

s+t - (k +r7+ c') edges so the result follows from (2.19).

(2.22) Corollary Suppose the vatroid M (of size n,rank r) has k conn-
ected components. Then for any basis B of Mthe matrix: has n - k

atomic entries.

Proof If Mhas rl loops, c/ coloops and k/ (non-trivial) connected

components, then k = k7+ r'+ ¢' . The result follows from (1.45),(2.22).

(2.23) Corollary Suppose A is a block irreducible matrix. Then there

is an atomic chain in A joining any two atomic entries.

Proof The graph is connected. Any coordinatizing path of A , in
particular P*, is thus aspanning tree of any two of whose edges

must be connected by apath of thistree. Theresult nowfollows from (2.19)

It has already been noted that for a given matrix A there may be
atomic entries in A which'jare not the leading entries in their respect-
ive row or column. With the help of the following definition (and
the above results) we will show that we can always rearrange rows and
columns of A so that the only atomic entries of the resulting matrix

are the leading entries - a result of some significance in §5.

(2.24) Definition Let A be an (s*t) matrix. For i=1,...,s supj)Ose

) . th , : th .
the leading entry inthe i row of A appearsm the «i position,
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and for j=1,...,t the leading entry in the j column appears in the
Pposition. Then A is in step diagonal form (s.d.f) if both of
the sequences a”®,... & and p”,..., p~ are non-decreasing.

(2.25) Proposition Every matrix can be brought into step diagonal
form by rearranging rows and columns, that is, every matrix is permut-

ation equivalent to a matrix in s.d.f.

Proof It suffices to prove the result for block irreducible matrices,
since by rearranging rows and columns, an arbitrary matrix A can always

be brought into the form

where the IP's are the blocks of A. By definition (2.24) Ais in s.d.f.
if each is in s.d.f. So assume A is block irreducible. Then the
graph IlI, is connected. 7& now relabel the vertices as follows:-

Choose an arbitrary r~, then label the adjacent vertices as c”~,c ,...
then the remaining vertices adjacent to ¢ (if any) as r2>r ,... and

so on. Since H, is connected this procedure will relabel each vertex,

A
and the induced rearrangement of rows and columns of A yields a

matrix which is in s.d.f.

(¢2.26)Proposition Suppose the matrix A is-tins.d.f. Then the only

atomic entries of A are the leading entries.

Proof Again it suffices to assume that A is an (sxt) block irreducible
matrix. By (2.21), A has (s+t-1) atomic entries. But since Ais in
s.d.f it now follows that A has exactly (s+t-1) leading entries since

no (i,j) except (I,1) can be the leading entry in both row ar.d column.

The result now follows by (2.7.1).



§ 3 CHARACTERIZATION OF ATOMIC MATROID3

The work of the previous chapter leads us naturally to the

following definition

(3.1) Definition A matrix A is atomic if every non-zero entry
of A is atomic, or equivalently (by(2.19)) if the bipartite
graph H)(‘ is a forest. A matroid is atomic if for some basis B

of Mthe matrix A® is atomic.

(3.2) Proposition The expansion of any subdeterminant of an
atomic matrix A has at most one non-vanishing term. In particular

every zero-one atomic matrix is unimodular.

Proof Since HA contains no cycle there can be at most one match-
ing between any set of t rows and t columns. Thus any (txt)

subdeterminant of A has at most one non-zero permutation product.

(3.3) Remark

1) The representation problem for atomic matroids is immediately
classified; for suppose Mis atomic with (atomic) B-basic c.i.
matrix A,.. Then by (2.11) and (1.42) every representation matrix
of Mis protectively equivalent to [I “AJJ ,a unimodular

matrix. Thus by (1.39) if Mis representable it must be regular.

2) Rearranging rows or columns of a matrix does not affect its
‘atomicity’. In particular, although for a matroid M(E) the matrix
A is dependent on the ordering of E, its atomicity is independ-
ent of this ordering.

By a consideration of the bipartite graph the following

statements are obvious:-

3) A matrix is atomic if and-only if each of its blocks is atomic.

4) A matrix A is atomic if and only if A is atomic.
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5) Any submatrix of an atomic matrix is atomic.

(3.4) Corollary

1) A matroid is atomic if and only if each of its connected
components is atomic.

2) A matroid Mis atomic if and only if M is atomic.

3) If a matroid is atomic then so too is its underlying

simple rnatroid.

Proof

1) Follows from (3*2.3) and (1.46).
2) Follows from (3*2.4) and (1.41).

3) Follows from (3*2.5) and (1.24).

(3.5) Definition (using the notation of (1.20.6)) A matroid M
is a fundamental transversal matroid (FT matroid) if,'for some
cobasis B, M= I'I[Cl""’cr] where Cl,...,Cr are the fundam-

cntal circuits of B in M

Because of the following result, the main theorem of this

chapter (3«”2) is also a characterisation of binary FT matroids.

(3.6) Theorem A matroid is atomic if and only if it is a

binaxy FT matroid.

Proof First suppose that Mis an atomic matroid with atomic
B-basic c.i.matrix A 'Write B= {el»...,e } . If B*=K\B and
for J=1,...,r C’;.iis the fundamental circuit of B*U je‘.]j in M~

then the matrix induced by the transversal matroid

»2- mch, ..., is pr-ecisely A =



By (3.2) the matrix A represents the transversal matroid w over
any field. |If we can show that Mis representable it follows
from (3.3.1) that A is also a representation of M (over any
field) and hence that M= f/ as required.

We shall prove that Mis representable by induction on the
size n of M If n=l the result is trivial so assume n>1 and that
the result holds for atomic matroids on less than n elements.

We may assume Mis simple, for otherwise we could apply (3.4.3)
to the underlying simple matroid and deduce the result from (1.34),
Now, since Ag is atomic, its associated bipartite graph is a
forest which thus has a terminal vertex. Consequently Ag has
either a column or a row with only one non-zero entry; since M
is simple it follows from (1.45*4) that the latter is impossible,
so we may assume that the 3th column say, of A”™ has only one
non-zero entry. Let A' be the matrix formed from Ag by deleting
the 3th column and let B/=-B\{e.l. Then B/ is a basis for .the
matroid M/je.j and with respect to the ordei'ing

-v '5(gj_i;cj+ij =€ r+19 9n
the matrix A/ is the B/-basic c.i.matrix for i.I/[((ag}. By (3.3.5)
A/ is atomic, and thus by the inductive hypothesis M/[e .f s
representable, hence by (1.32) so is its dual. But by (1.26)
(M/[eél)*= M*\}eé.g} so the latter is representable. By choice of
the 3~ column it follows from (1.41) and (1.45*4) that eo is a
para’IIeI in M+, and so by (/1.34)\/ M* is representable. The result
now follows from another application of (1.32).

For sufficiency, suppose that Mis binary and M= m&l,...,Cr]
where the C(.S*s are defined as above with respect to some basis
B of M If the bipartite graph associated with Ag contained a
cycle, then there would be a transversal of Mfor which the
corresponding subdeterminant of [I [Ag] is equal to zero over

GF(2)f which contradicts the fact that this matrix is a represent-
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ation of Mover GP(2). Thus A" is an atomic matrix and the

theorem follows.

The above .result is closely connected to a theorem attrib-

uted to BEdmunds (see[373,Ex.(14»4*1)) which states that

A transversal matroid is binary if and only if

it can be presented by a bipartite forest.

Corollary A matroid is a binary transversal matroid if and
only if it can be represented (over every field) by a zero-one

atomic matrix.

A-G-PAHIS

Our next (and most important) aim is to show that atomic
matroids are precisely the cycle matroids of a special class of
graphs. A graph will be denoted by G(V,E) (or simply G) and
any subgraph of Gwill be simultaneously identified with its
edge set as a subset of E in the matroid m(g) (defined in (1.20.3)).

In particular, if Cis a cycle of Gthen it is also a circuit

in M(G).

(3*7) Definition An A-graph G(V,E) consists of a pair
((Ca,...,Ccn™), P) where (CH,...,Cn) is an ordered m-tuple of
cycles of G (called the fundamental cycles) none of which are
loops, for which E =b C. and for which P (the *pivot'set) is
defined by

P=[ec E, ec Cn C. for sone Kiij<mj
In addition we must have:-
1) P contains no cycle of G, and
2) For each k=1,...,m-1 the cycle ~ has exactly one edge x»
say, (called the k pivot) in coomon with and exactly

2 vertices (namely the endpoints of x) in common.
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It is clear that P = [xi,...,x i, but these pivots may

mIl
not all be distinct (see later example). It is also not difficult
to see that A-graphs are precisely those graphs which can be con-
structed inductively on the number of fundamental cycles in the

following manner:-

(3.8) (recursive construction for A-graphs)

1) A single cycle C (not a loop) is an A-graph with P = 0.

2) Suppose G(V,E) = ((cj,... ,C”), P) is an A-graph. Let xne E

for which PU [x j does not contain a cycle. Let G be a new
graph in which a cycle (riot a loop) is added to G, having
only the edge x* and its endpoints in common with G. Then &/ is

an A-graph with defining pair ((CH, .. ., N, PU [xN ).

(3.9) Examples

1) The graph of figure 1 is an A-graph. There are several ways

we can define the fundamental cycles recursively as in (3*8),

one such way is G” i1,2,3( >C2~ i 3,4,56] , [, 7,8,9,10; ,
C=%9,11,12,133, CP:{9,16,17,18} , cO:{11,14,15! ) In this
case xN= 3, xp= 1, 9, x™~ 9, 11,

and hence P =1i3,1,9,11 i
2) A-graphs are series parallel networks.

3) A-graphs arc planar, 2-connected graphs.
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4) The complete bipartite graph K, , is not an A-graph since

it consists of just three cycles, any two of which intersect

in two edges (so that (3*7.2) can never be satisfied). Moreover
no graph which contains a subgraph homeomorphic to K29 J is an

A-graph.

5) For similar reasons no graph which contains a subgraph

2
homeomorphic to or (k>2) can be an A-graph.

(3.10) Definition A generalised A-graph is a graph whose

(graphically connected) components are A-graphs, loops or trees.

(3.11) Remark As for graphs in general it is quite possible that
for two non-isomorphic (generalised) A-graphs G jG~, the matroids
M(G.j), M(Gj,) are isomorphic. Since we are primarily interested

in the cycle matroid structures we shall not distinguish between
G.j,G™ in this case. With this convention, it follows from (1.27)
that graphs whose 2-connected components are A-graphs and coloops
are also to be considered generalised A-graphs, and loops can be

added anywhere with the graph remaining a generalised A-graph.

(3.12) Theorem A matroid is atomic.if and only if it is the

cycle matroid of a generalised A-graph.

Proof Since loops and coloops are trivially atomic matroids
(and of course generalised A-graphs) it suffices by (3.4.1) to

prove that

a connected raatroid M is atomic if and

only if M=M(G) for some A-graph G.

First suppose G(V,E) is an A-graph on the pair ((C.J,...,C ),
By (3.9.3) and (1.27), M(G) is certainly connected. Y!e have to
find a basis B of M(G) for which A is an atomic matrix. Now

since P contains no C3de of G we may choose a yre C \p

P).
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(for each i=1,...,.m). Write B = E\[yl, ...,y }. Using (3.8)

it follows easily by induction on @ that

\Y t. - 2m + 2 where t~r= |G | (i=1,..., m)
1=1 1

and similarly that

Thus, since B is clearly a spanning subgraph for the connected
graph G and |b] = M - 1, it follows from (1.16) that B is a
spanning tree, that is, a basis for m(g) . ‘M now show that
is an atomic matrix.

By construction Ch= C(B,y®) (i=1,...,m). Vi'rite

DN = p and B =C/\( PU {y.J) (which may be empty).

Then if p ,...,p are the distinct elements of P there is a

suitable ordering of B for which A has the form

y1
y2 a'
11. 1
Clearly the atomicity of A will foiler,v if we can show A/

is atonic. Certainly Al is block irreducible (since by (1.45.3)
Ag is block irreducible), thus by (2.21) it suffices to show
that A has exactly (m + k - 1) non-zero entries. For i=1,..., m

the iih row of Al has |dJ non-zero entries, so it suffices to

prove that

i2-} IDEl = m+ p -~ 1 (3.12.1)

V/e use induction on m. If mFl, P - i -ard both sides of (3.12.1)



-B51-

are zero. So assume m> 1. Consider the A-graph
&/=CWU ... UCr e This graph has pivot set

P/=Je;eeC.1HC,‘J for some 1 <i f6<m1 |

Writing = CrOP/, it follows by the inductive hypothesis that
m1 .
E. K | = »+ 1?2 ]- 2 (3-12.2)

Without loss of generality assume that p is the (m-1) pivot

of G. We distinguish two cases

case (a) Py © P/ . In this case P/=P, and so d$(=)P. for

7 and Dm: S}q(}. Thus

£ ld.lI = B l+1 = m+ |o/]-1 —m+ |PP— 1
i=1 1 i=1

case (b) Py & p' . By construction P (= Xml) e Cm and

Dm= ipk!, so in this case there is exactly one Ci (l«<i<m-1)
for which Py eC).( . Then [:keD < and since P7= P\{p k\
we must have dﬁ_ = Bl\pri and Dz —OD. for each
j=1,...,i-1,i+1,...,m-1. Thus (3.12.1) follows from (3.12.2).

This proves sufficiency.

Conversely, suppose that Mis a connected atomic matroid
on the set E. Assume that B = iei erj is a basis of M
for which A is atomic. Write BB =[ fA*«* *f i (so the rows
of a~ are indexed by f~ ..., f*) and let C= C(B,f") for
i=1,....,m. Since (the bipartite graph associated with

AB) is a tree, we can certainly reorder the Cl.'s so that

Crap" % G T 4 for t=1,...,n-1
Moreover, since contains no cycle it follows that
bekr M g Oy 4= 1 (3.12.3)

(for t=1,...,m1)
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Let £ = H Ci (for t=1,... ,ra-1l), and write
pl. . .k,p, for the distinct elements in ixl, - ’Xml l.

We may now construct an A-graph G by identifying the edges
with the elements of K and by taking Cl,...,Cm as the
fundamental cycles; by (3.12.3) each C . (t=1,...,m-1) has
exactly one 'edge' X in common with AN so v'e can also
ensure that in the construction the endpoints of X are the
only vertices in conmon with >'<l:tJl GT . The set P =
clearly the pivot set and does not contain a cycle since
P C B. As in the above proof of sufficiency, B is a basis
(spanning forest) for B.(g), and by construction the B-basic c.i.
matrix of M(G) is precisely Ag. Now M(G) is certainly binary
(graphic matroids are in fact regular), and by (3.6), Mis
binary. Thus by (3.3*0 both matroids have the same representation

matrix [i"JAg] over GP(2) from which it follows that

M= M(G) as required.

Theorem (3*12) appears to be the first characterization of
binary FT matroids. It has been proved in f16] that binary
transversal matroids are graphic, and this result has since been
subsumed by Theorem 14.4.1 of [37] identifying the larger class'
of binary gammgids with the cycle matroids of series parallel
networks. Also in [5] graphical transversal matroids are char-
acterized as those graphs which contain no subgraph homeomorphic
to K4 or G (k>2) ; of course A-graphs are more restrictive
since KO , is not an A-graph (so that ;.i(K ) provides an example
of a transversal matroid which is not an FT matroid). It seems

reasonable to conjecture that K, 7 is the only extra 'obstruction’

for A-graphs
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8 4 PROJECTIVE SPACES AND THEIR MATROID REPRESENTATIONS

In this chapter we are primarily concerned with the
representations of those matroids (of example (1.20.2)) arising
from a collection of points in the projective space PG(r,P)
(where P is a field and r>3) « Suppose that Mis such a ir.atroid
defined on the points PA,...,P~ . Then the (nxr) matrix A over
F, whose itl row (for i-1,...,n) is the natural coordinate vector
of Pi’ is trivially a representation of M (since Mis isomorphic
to the matroid induced by lineal' dependence over F of the rows
of A). We shall call A the natural representation of M (over F).

Providing there is no possibility of ambiguity, we shall
identify each point in PG(r,F) with its natural coordinate vector
in Fr. If Mcontains the r+l1 points (1,0,...,0),(0,1,...,0),

..,(0,...,0,1),(1,1,. -.,1) e shall always assume that in the
matrix A these correspond to the first r+l rows, in which case,

by (2.10) and (2.12.4), the natuial representation matrix of M

is already in projective canonical form.

The natural representation is certainly not (even up to
projective equivalence) the only representation of Min general.
However if F is a finite prime field and Mthe collection of all
the points of PG(r,F) then it is shown in [12] that Mis unique-
ly F-representable, so that every representation is projectively
equivalent to the natural representation. /& generalise this
result to all fields and this requires our extending the notion
of projective equivalence in a way which we will show is
naturally justified.

First we describe a procedure for constructing matroids whose
representations are easily classified, with interesting character-
istic sets, This procedure will also be used to prove the result

mentioned above.
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Geometric addition and multiplication

Most classical proofs of the Coordinatization theorem (1.10)
involve the concept of geometric 'addition’ and 'multiplication’
of points on a line as originated in.the famous 'Von Staudt
Calculus'. The idea behind the proofs is to show that with
respect to these operations, the collection of points on a line
form a division ring which is a field if and only if the project-
ive space is Pappian. The reader is referred to [24,25,27] for
a full account of this process. If we now 'turn the tables' and
actually start with a collection of points in PG(r,P) we nmay
mimick the type of constructions for addition and multiplication
defined for an arbitrary projective space and derive some very

useful consequences for our study of matroid representations.

Let us label once and for all certain points of the project-

ive plane FG(3,P) J-
For each x e F, write P = (1,0,x). |In particular

pO= (1,0,0), pl=(1,0,1)

Let | =(0,0,1), @@= (0,1,0), Q1= (0,1,1), J=(1,-1,0)
The points @,1,P1,Q1 will be'called the five.basic points.
For any two distinct lines the unique point of intersect-

ion of |l 1andtg will be denoted by Al

Let y5 denote the collection of points {P"; xe P,}, so that
consists of precisely the set of points on P P with the
exception of | . M now define the geometrical addition and

multiplication of any two points in 5" .

(L.1) Addition in 5™ (see fig. (4.1.0).

Let Px’ Px/ be any two points in S2 e

Let A= (PX?) A (pOQ@) » B = M)A (px/Q)



Now define the point PX +XP / to be the point (P(§> ) ,cit(l?Q)

A simple argument on determinants shows that A = (I,-x,0),
since PO0,0q,A, collinear implies A must be of the form

(1,z,0) for seme z e P and now P",0MNA collinear implies

[¢] 1
1 z o0 =0
1 0
whence z = -x . By similar arguments it follows that

B = (I,-x,x/) and hence also,that
Px + Px7 = (1.0iX+x") = Py+x/ (4.4.2)

Thus ‘'addition' is a commutative,binary operation on ~ >

with unique identity PU , and each point P)< has unique inverse P .

(4.2) Multiplication in (fig. (4.2.1))
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For any two points P, P / in

Let C=(PxJ) a(Q”) , D= (P*Q.,) a (PgQ)

Now define P~'P / to be the point (PgPj) a (DC)
Again by an argument on determinants it follows that
i C = (0,1,x), D= (ij-x~0) and hence that
P-P/=(1,0xx/) =P , (4.2.2)
Thus 'multiplication* is a commutative, binary operation
on ¢ft with unique identity , and each point P* (x ~ 0) has

unique inverse P

(4.3) Corollary The set ft together with 'addition* and
‘'multiplication* defined in (4*0,(4*2) respectively, is a

field and the mapping x—P is an isomorphiem of F onto ft e

Proof Immediate from (4*1.2) and (4.2.2)
Although the existence of an additive and multiplicative
inverse for each P in ft (x f O) is already ensured, we next

exhibit geometrical constructions of —PX and (px) from the

five basic points together with P» :-

(4 .4) Construction of -P (fig (4.4.0)

FIGURE (4.4.1)
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Let Al= (PqOgq) a (P ~ ), Bl= (PqQl) a (A7)

Now define -P™ = (I1"O”) a (PgP.,)

It follows that A= (1,-x,0), B~= (I,-x,-x) and hence that

= -P_=(10-x) =P ,

U.5) Construction of (x ~ 0)

Let Cl1= (JPx) a (OgQ~", Dl= (C ™) a (POQ)
Now define (PN 1 = (DMQ™ a (PaP.)
It follov/s that C= (0,1,x), D= (1,-x \o) and hence that

(P)'1-(1,0x"1) =P i

(4.6) Definitio'n Let z, X,j,...,x eP. Then z is constructible

from Xq-oeeex if the point PZ may be constructed by some finite

sequence of the four operations (given above) starting v/ith the

points P, ,...,P and the five basic points.
Xl Xn

For example, if x-j>2 ( - 0) e F. then the element
_ _1 2 _ .
z = (x.1+ é(O)x.]1 5 X X,, is constructible fﬁ_ory X,,X0. The
construction may be .achieved in several waysj one way would be
to first construct x*+ x? (by (4.1)), X? (by (4.2)), and

x~ (by (A.5)). Next construct x *x (by (4.2.)) ahd hence
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2
then -(x~- Xg) (by (4-4)). Next construct X"+ X7)ex™"
(by (4.2)) and finally we get PZ the result of the construct-

ion (4.1), Pfxf\+x>3\'x1—°) P2

Given just the basic five we can still construct new points
since P.j+ Pj = . Any point which is constructible from the

basic five points alone will simply be called constructible.

(4.7) Proposition For z e F, 1z is constructible if and only

if z e (the prime subfield of F).

Proof For each positive integer mwe can construct (inductively)
— P H * H

Pm— Pml' + P1 Using (4*4) and (4»5) we can thus deal with

either of the cases -&GFp) or k- @&

(4.8) Corollary For z , Xx,j,...X e F, 1z is constructible

from x1, x~ if and only if z e k(x" XN).
Suppose then that z e ~(x”,...,x ). For a particular
construction of P from x.,...,X the matroid induced (in the

sense of (1.20.2)) by precisely the set of points occuring in
the construction (including the basic five) will be denoted by

M (For an arbitrary point P, not necessarily on PP , if P

is constructible from a given set of points then we can also
define M in the same way). Before examining the representability
of MZ we note that there is another very closely related matroid
induced by the construction of P Jlet C be the planar con—

figuration consisting only of those points ar.d those lines

actually drawn in the construction of (with the exception
that we always assume C,>1 ‘contains' the basic configuration below)
&L
<l
P,
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Since all the 'points' and 'lines' of were derived from a

projective plane we know that each pair of lines of meets in
at most one point of . Hence it follows by a well known
result (see,e.g. T37] P-3'1) that induces a unique simple matroid

vJZ whose bases are those 3~sets of points which are not collinear
in CZ. Of course . contains the sane set of 'points' as I\/IZ

and any 3 collinear point in , must be collinear in l\/2| In
general however the converse is not true; consider for example
the construction of the point P = (1,4, 1) (in an arbitrary

field) shown in Figure (4.8.1). Tf char F e 2 then the points

FIGURE (4.8.1)

P,P(),Ql1 are necessarily collinear in PG(3,F) since

100
0O 1 1 = 2
1-1 1

Consequently the matroid Mp (shown in fig.(4.8.2)) differs from
Up since the extra line joining P>Pg>QlL has had to be added.
(The discerning reader will notice that in this particular case
M is precisely the Fano matroid and the non-Fano matroid -
we shall have more to say about this example in (4.14.1)).

In general then the best we can say is that is always a
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"weak mep image' of MZ/ In the cases when I\/IZ: V\é the matroid

I\/IZ will assume added significance,

Suppose now that the matrix A is the natural representation
of the matroid I\/IZ Me shall always assume the points of l\/% are
listed in order of their construction and that the first five

are the basic, five in the order PU ’Qu’I’Pl’Q| (this ensures AZ

is already in p.c.f.) followed by PX $ Suppose for
1 n
example that z = x*+ x~ is constructed from x/~x” (Ne'0 *
1 0010111 1m1
Then a = 0O 1 00 10 ‘—DS! 0
z 0 0 1 1 1 _.Xol X 2

(4.9) Convention Let f =f(X",...,X ) be a rational function
over Z[XN, ..., X" (that is, f is a quotient of polynomials in
7 XN ... jJX ). If Fis any field and x”,...,xn any elements
in F, then the expression r(x.j,..., x™) will denote the natural

evaluation of f at x~..." in F (providing that the denomin-

ator is non-zero in this evaluation).

Suppose that I\/IZ is the matroid induced by the construction
of z from X isepes X with natural matrix representation AZ
Because of the values of the points A,B,C,D,A1,B1,0MN1)N  deter-
mined in (4.1), (4.2), U -4), (4.5) it follows that for each
entry (i.j) of A there is a rational function f..(X X))
for which the (i,j) entry is f~ (x*>**e>xn) (in the sense of
(4..9)). In fact each entry of A is uniquely determined in this

way by some previous rows. With this terminology we have

(4,10) Proposition Suppose that the matrix A is a representation
of M* in p.c.f. over some field K. Then there exist elements

Yy q of K such that the (i,j) entry of A is f'l,l'(yl'""’}n_)'
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Proof Since A is a representation of I\/% in p.c.f. it

follows from (1.42) that its first 5 rows are precisely

O p OO
O O R O
P P = OO

(noting that the last entry in the 5 ~ row is atomic hence equal
to 1). Also, the first non-zero entry in each subsequent row is
equal to 1, so all the rows of A axe natural coordinate vectors
of points in PG(3,K) - and we shall identify them as such. The
next n rows of A (corresponding to the p 's) have the form
(1>0,y,j)>***»( 1jOjy”) for elements y~>w*»y™ of K. e show
that these are the required elements. Suppose the i~ row of

AZ is the point Ri (of PG-(3,P)) and the ith row of A is the Qoint
r( (of FG(3,K)). For each ikn+5 the rows RM"R™ correspond in
the ascribed way. By induction assume s>n+5 and that the result

holds for all rows RI with i<s. By construction RS is the unique

Roint of intersection of two lines in FG(3,F) of the form R_.R‘J
i

where 1<i,j<s. So suppose R=R. R a R r. where u e
s XL x2 a3\

1«il,i2,in,in<s e ve may assume that Rg= (l,a,b) say, (the
proof is even easier if the first coordinate is zero) where

a = f(x.,,....,xn) , b =gix".-.jX”) for some rational functions

1 n)> i>°°°>°/(ln) e Suppose Ra= (ljajP) for c K
Vie have to show that a= fiy.j,...~) , P =g(yl.. -y ).
Since R ,R. ,R. are collinear and R. R ,R are
X1 X X3 X4 3

collinear, we have the equations

det R, R, R =0

X112 3 (4.10.1)
det R R R =0

X3\ 8

which are two simultaneous equations in a,b whose coefficient:

are the entries of Ry 'Ry +R; ¢  and whose unique solution
2 3 "4
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is precisely a,b (this is hera RS was constructed). But since

A is a representation of , we also have

which are two simultaneous equations in a,p . By the inductive
hypothesis, these equations are the same as (4.10.1) except that
every occurence of a coefficient say h(x,j, ... ,x*) of one of
the R 's is replaced by h(y ,...,y ) and every occurence of
g,/b is:J replaced by a,@3 respectively. It now follows that

a,P are of the ascribed form.

(4.11) Corollary For any z e ic the matroid !_ induced by the
consti-uction of z (recalling (4.7)) is uniquely K-representable

for any field K over which M is representable.

Proof In this case the 'rational functions' which determine the
entries of A all lie in Q ,so by (4.10) the p.c.f. of any

representation is uniquely determined.

(4.12) Corollary Let f(x) be an irreducible polynomial in zTx].
Then we can construct a matroid M (of rank 3) with the property

that U is only K-representable for fields K7in which there is a

p ¢ R7 for which f(p) - O.

Proof The ideal (f(x)) of zZfX] is prime. Consequently 2[XI/ (f(x))
is an integral domain with quotient field K say. If % is the
natural homomorphism from 2[X] into K, then clearly " is the
identity on 2, and if nix) = x then f(x) =0 in K. Suppose
that f(x) = a +aX + ... + a™X ; certainly f(x) is construct-
ible from x in PG(3jK) . First we construct ag from x and

then aQ+ + ... 4anx (= g(x)> say) . Now since



f(x) =g(x) + a~ we now construct f(x) by the addition
(1,0,9(x)) + (I,0,a x*) described in (4.1) . This part of the
construction yields the new points A = (l,-g(x),0) and

B = (1>g(x)>a-x”") = The fact that f(x) =0 is now indicated
by the dotted line in fig(4.12.1), since must be the point

of intersection of BQl and POP1 )

Now let Mbe the matroid induced by this construction,
and let A be the natural representation matrix of il. Suppose
that Mis -representable, and let A/ be a K/-representation

in p.c.f. By (4.10) there is ape s uch that the rows of A;
corresponding to (1,0,0), (0,1,1), (1,-g(x),a x©) are resp-
ectively (1,0,0), (0,1,1), (I,-g(P), &@B ) . But these three
points are dependent since P ,A,B are collinear in FG(3,K) and A/

is a representation of M Thus in K/

1 0 0]
0 1 1 =0
L -9(P atpt

that is, f(3 = ft =0 as claimed.

A straightforward generalisation of the above proof yields:-



), e

JKgpeeeX ) be

(4.13) Corollary Let i i(ix , X n

polynomials in X, ... JX] which generate an ideal whose
radical is prime. Then there is a raatroid Mwith the property

that for any field K/, Mis K/-representable only if there are

(3L, <>Pn e K/ such that fx(P1,...,3n) =0 for i=1,...,t.

(4.14) Examples

1) In the case of (4.12) when f(x)=p (pa positive prime), the
construction is none other than the construction of p =0 in
GP(p). Provided that we now construct each n (2«n<p) induct-
ively by (1,0,1) + (1,0,n-1), the resulting matroid M has

natural representation matrix A where

1001011111 111... 1 1
01001111 0-1 0-1 0-1 ... 0 1
p 0 1 1 10 12 2 3 3 4 h p-1p-1

The last line in this construction joins (1,0,0),(0,1,1),(1,-1,p-1
and the corresponding determinant is equal to p. It follows

that c(MP) = ip] since by (4.11) any K-representation of NI!’ in
p.c.f. is equal to A. We also note that if the last line is
omitted the resulting matroid has characteristic set equal to
p\jp/ prime, pl = In the case when p=2 these constructions

j'ield respectively the Fano and non-Fano matroids of figs.(4.8.2)
and (4.8.1).

2) The preceding example suggests a very naive procedure for
constructing matroids with two-prime characteristic set jp~p”j
say. The idea would be to construct the number n=p™p”™ over
either GF(p®) or GF(p”). By (4*12) the resulting matroid is only
representable over fields of characteristic p* or p» , but we
encounter the problem that the representation matrix may have
determinants (other than the one corresponding to the 'last line")
divisible by p or p® . Not surprisingly then the whole problem

of finding finite (non-singleton) characteristic sets is an
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extremely difficult one. Until very recently the only known
example was that of Reid who exhibited a matroid with character-
istic set ]1103, 2809] . More recently Ingleton,[21] has
exhibited a matroid with characteristic set [13, 19 ]. Neither
of these examples have been published and (to the best of my
knowledge) only the matrices which induce the matroids have been
exhibited in private communications. We now provide a geometric-
al motivation for both these examples; what is remarkable is that
they can be constructed by only a slightly more subtle approach
than that suggested above:-

The Mersenne non-prime 229 ;~-1 has the prime factorisation
22~ - 1 = 233.1103*2809. Consequently 2~ = 1 over each of
the fields GF(p), p = 233, 1103, 2809- \e now construct 22"
(over any of these fields) in the following manner:- first
construct P+ =P (=(1»0,2)) which involves the new points
(1,-1,0),(12,-1,1) and P2 . Next construct =P~ (=(1,0,4))
which involves the new points (0,1,2),(1,-2,0) and (1,0,2 j . Nov/
inductively for each 2<n<28 construct Ppn-1*P2 = p2n * At
each of these stages the only new points occuring are (0,1,2“'_A)
and (1,0,2n) . The last part of the construction is
P2 8 = (1,0,2@'?) = (1,0,1) which will mean that the points
(1,-2,0), (0,1,228’), (1,0,1) are collinear. By (4.11) the

resulting matroid Mis uniquely representable by its natural

representation matrix A where

1 0 (o] 1 0 1 1 1 1 0] 1 0 1 0 1 0 1 0
_ 0 1 0 0 1 1 0o -2 1 0 1 0 1 (o] 1 (0] 1
23 24
0 0 1 1 1 0 2 0 2 22 22 2 227 228 228
Since
1 0 1
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it follows that £233) '1103, 2809} c(m). It is not difficult
to check that no other subdterir.inants of A are divisible by
1103 or 2809 and so 11103, 2809]C c(m). Y note that

233 | c¢c(M) since

1-1 1

1 0 2« 1

01216

which is divisible by 233, and so c(m = £1103, 28091 The
matrix A was precisely that which was presented by 'Reid .
We note that 229—1 is the smallest Marsenne non-prime for

which the above construction yields a two-prime characteristic
n

set. For example the construction of 27 - 1 = 23.89 yields
the subdeterminant

1-1 1

10 2° = 2022+ 1 = 253

0 1 28

which is divisible by 23» so again we can only obtain a

singleton characteristic set.

3) (ingleton's matroid)

We notice that 13’19 = 8.32 - 9 and so 8.32 =9 in
GF(13) or GF(19). First then we construct 8.32 :-
P.J+ P1 = P2 which yields new points (1,-1,0),(1,-1,1) and P2
Next PG.P(C:) = PH which yields points (0,1,2), (I,-2,0) and PZf
Next ?2<P™ = Py - - " (1>-4,0) and Pg
Next P8.P, =P 2 .. (0,1,8) and P

Now the construction of P~.P~ yields new point (1,-32,0).
If we construct P~ then the fact that 8.32 =9 will be
indicated by the collinearity of the points (1,~32,0)(o,1,8),P9
But the points (1,-1,1),(0,1,8),(1,-32,0) already constructed

are collinear over GF(13) and GF(19) since
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1 1 1
0O 1 8 =832- 8- 1=1319
1 -32 0

Consequently the matroid Mconstructed up to the point (I,-32,0)
is by (4.11) uniquely representable by its natural representation

matrix A, where

0O O 111 01 1 1 1 0 11
1 00 1-1-1 0 1-20-40 1 0 -32
01 11012204088 320

at =

|
O Opr

It is easily checked that no other subdeterminants of A are div-
isible by 13 or 19 and consequently c(m) = [13, 19 j.
The matrix AT,v/ith the first column deleted, is precisely

the matrix which was presented by Ingleton.

Remark In all the above work we have restricted ourselves to
the plane and rank 3 matroids. However it follows from the work
in f23] that if for any r>3, Mis a matroid of rank r and
characteristic set C , then there is a matroid of rank 3 and
characteristic set C (\" is formed by the *Dilworth truncation').
Since we have been primarily interested in the characteristic

set problem we are thus justified in concentrating our attentions

on planar configurations.

Generalised Projective Equivalence

Suppose that the (n*r) matrix A=[a_] is a natural
representation matrix (in p.c.f) for a collection of points of
PG(r,F). 14 o is an automorphism of P it is clear that the
matrix A'-fo”a. .)] is again a representation (in p.c.f.).
Unless o is the identity mapping the matrices A,A/ will not be

projectively equivalent (by (2.11)). Indeed (by (1.2)) this is
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precisely why Brylawski and Lucas' result about unique repres-
entability of full projective geometries (in [12] ) only holds
for (finite) prime fields. However, what is unmistakable is that
the automorphism induces (by (1.12)) an auto-projectivity of
PG-(r, P) in which the i row of A is mapped onto the i row of
A/ (identifying points of PG(r,P) with their natural coordinate
vectors as usual ) for i=1,...,n. Tims the geometrical view-
point suggests that we extend our definition of projective
equivalence to include this case since in the sense of (1.9)

the matrices k,k' are 'projectively' equivalent. From an
algebraic viewpoint there are- also grounds, for suggesting that
we extend the definition of projective equivalence to include
this case, since (for reasons on which v.e shall elucidate later)
we can always find a division ring D containing F and an element
x e D for which xa =cr(@x for each a e F; consequently the

matrices A,A/ are projectively equivalent over I), since
(xIn) A (x"1r) = [xa.™x-1 ] = [Jo-UN) j = k'

Inspired by these examples we meke the following definition

0O4.15) Definition Let A=[a_] , ] be (sxt) block
irreducible matrices over fields , P respectively (see (4.16)
below) v;hich are in p.c.f. The matrices are generally

projectively equivalent (g.p.e.) if there is an isomorphism
cr:FI—*E_ in which cr(a. .) = b'u‘j for each entry a.ij of A.
Two arbitrary block irreducible matrices are generally project-
ively equivalent if their associated p.c.f.'s are g.p.e. Two

arbitrary matrices are g.p.e. if their blocks are g.p.e.

(A.16) Note When we say that A is a matrix over a field F we

shall always assume that the smallest subfield of F generated

by the entries of F is F itself.
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nhen i 1~ and o—id” »definition (4.15) reduces to
projective equivalence. Me will eventually show that there are
both natural algebraic and geometrical characterizations of
'generalised projective equivalence exactly along the lines
suggested above, and the work in 85 will yield another sur-
prising characterization. First however we present the promised

generalisation of the result of Brylawski and Lucas.

(4.17) Theorem For any finite field F and integer r>}, any

two representations of Pd(r,F) (viewed as a inatroid) are g.p.e.

I present two proofs of this result ; the first (short)
proof relies on two classical results of projective geometry
already mentioned in $1, while the second is an elementary and

intuitive proof using only the constructions of (4.1) and (4.2).

First Proof It suffices to show that any representation of PG-(r,F)
is g.p.e. to the natural representation,(which we have already
noted is in p.c.f.). Let A=[a..] be the natural representation
and let /\/-[b. .] be another representation in p.c.f. over some
field F, say. Since // is in p.c.f. it follows (by (1.42)) that

the first r+l rows of 1J are precisely

r

11..1

and the leading entry in each row is equal to 1. For each row i
of j\,jJ: respectively let P*Q”™ denote the corresponding points
of PG-(r,F),PG(r,F/). Then since fiJ is a matroid representation
of PG-(r,F) - a Desarguesian projective space - it follows that
the Oi 's themselves form a Desarguesian projective subspace of
PG(r»T'/) of rank r. By (1.10) this subspace must be of the form
PG(r, ) for some subfield FL of f( which by (4.16) must be

equal to F/. Thus the mapping r.: FG(r,F)—>FG(r,F/) defined
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by 7tP?) - for each i , is clearly a projectivity of
PG(r,F) onto PGCtjF7) . By (1.13), ft is induced by a semi-

linear transformation (o7.,r ) FP~~>F/1 defined as in (1.11).

This means that for each v c Fr, r.(Fv) = F/(cr/(v))#
In particular, for i=1,...,r
P7(0, -,0) = *(f(o,...,1,...,0) =(a7(0,...,1,...,0))
T
i th place

Thus o7(0,...,1, ==.,0) = (0,...,X",...,0) for some O f X f

Also, F'(1,1,...,1) = *(F(1,1,...,1)) = F7(o~(1,1,...,1))

so that (1,1, =X(1,1,...,1) for some O e p.
But then N 0>0,...,0) + = + 07(0,...,0,1)
= >ooo>/\|’)

Thus X=X1— Xk= =Xr

Consequently, for each (¢ ,...,c ) e Fr , we have

o7(cl,...,Cr) = o07(c140,...,0) + ... +07(0,...,0,cN)

= a7(1,0,...,0) + ... +cr'(c ) a7, ...,
— 0 (o”) (x,0,...,0) H ... + o0 (c”™)(O,..., 0,X)
=' X (cr"(cl),...,0-"(cr))

In particular, if we consider the ith row of A we get

If/(b’\ ..... fr) = TXi(ajp, ***.aly)) -~ * fajp v agp))

= P'(X (cr'(ail),...,a-"(air))

= F/(a/(ail),...,cr"(a. )) (4.17.1)
Now (a™1,...,a ), (Ni-P»>****7ir) both have their leading entry

equal to 1, appearing in the same corresponding position. Since
a"(1) =1, the sare is true of (or (a™),... ,cr'(a )) and

fb ...,b. ) . Consequently by (4.17.1) we deduce that

il’ I'r

(err@n™y), .-, (a™)) " (~1,....~"n) , and since this is tiaxe
V4

for each row of A, it follows that o' is the required isomor-

phism of F onto F7 which makes A,A7 g.p.e.
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Second proof We proceed by induction on r, the most
important step being the first, r = 3* Let A=[a..] be the
natural representation of PG(3,F) and let A~fb. .] be another
representation (in p.c.f.) over sonme field F/. As usual we
identify points of PG(3>F) (and PG(3,F/)) with their natural
coordinate vectors and the points 1,Qq,Q",J and (for each
X e F) are defined as before.

Let y Le the mapping of FG(3,F) into PG(3,F/) which takes
rows of A onto the corresponding rows of A;. Then for any three
points P,Q,R of PG(3,F), the fact that A/ is a representation

of PG(3,F) (viewed as a matroid) means that

P,Q,R are collinear if and only if y(p),t(Q),y(R),
are collinear and this happens precisely when the

corresponding subdeterminants of A,A/ are zero.

The above fact, will be assumed henceforth without further comment.

Now all the points of PG(3,P) (that is,rows of A) have the form:-

(i) (1,0,x) (=P") for somex ep
(i)  (1,x,0) for some x ep

v (4.17.2)

(ri'll)\(é,l,x for some x ep

(iv) (1,*.,*1 for some x,x' e p

The first four rows of A are P0,Q0,1,J/ respectively,

where j'- (1,1,1). Since A' is in p.c.f. it follows immediately

that
Y(POM1,0,0), y(Q0)=(0>1,0), y(i)=(0,1,0)
and y(j/"=(1>1>1) (~.17.3)
By (1.42), y(p—iJ = (1>0/0 for some a e . But J,Pl,,Qo are

collinear, so by (4.17*3) we have

o
O R r
R O
oD

'_\

Q
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So in fact we have
Yte,) = (1,0,1) and y~) =(0,1,1) (4-17-4)

(the latter foilowing by a similar argument).

Let us now define a mapping cr : F—=F by cr(x) =y ,
where y is the (uniquely defined) element of F/ for which
Y(PX) = (1,0,y). The mapping o must be injective for other-
wise we would have P»,P/N/, collinear for some x | x/ which
is absurd. Also by (4-17-3) and (4.17.4) we have a0 =0
and cr(l) =1 , so if we can show that o is additive and
multiplicative it will follow that cr(p) is a subfield of P;

isomorphic (under cr) to P

a additive: Let x,x/e F. V& may assume neither are zero.
Suppose that y(Px)=(1,0,y) and y(P~/)=(1,0,y/) . Ve have to
show that y(P /)=0 ,0>y+y/) and for this we refer back to
fig.(4.1.1); we have established (4.1.2) that PX+ PX/ = Px+x’
Now y(Q1),Y(py)»r (A collinear implies that y(A)=(1,-y,0).

Next, y(a),y(b),y(1l) collinear and y(Qg),y(p),y (px/) collinear
together imply that y(B)= (1, ) . Finally y(u),Y(Q1).,y(p +>,)
collinear implies that y(Px+x/) =y (px+ px/) =f(1,0,y+y/)e

a mdtiplicative: This time we assume x,x7 are as above but that
neither are equal to O or 1. We refer back to fig.(4.2.1). W

have established (4*2.2) that PX.I?( / = PX.X/ and we have to

show that y(P /)= (1,0,yyO* The collinearity of y(j),y(p ),y(c)
implies that y(C)=(0,1,y), and the collinearity of y(d),y(p 7),y(q )
implies that y(D)=(l,-y/,0). Finally the collinearity of
Y(D),Y(C),Y(PX.PX,) implies that

Y(P j) -Y(p -P/) ~(1i0Ojyy7) as required.

In order to prove the theorem (for r=3) we now have to

show (by (4.17.2)) that
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(iy (1,0,x) = (1,0/r(x)) for each x e F
(ii) (1,x,0) = (1,0(x),0) for each .x e F
(iii) (0,1,x) = (0,1,cr(x)) for each x e F
(iv) (1.x.x:) = (Ler(x),cr(x/))  for each x,x/

since in that case <r(p) = P; and o is the required isomorph-
ism. Certainly (i) holds since this is how o was defined.
For (ii) let 0=(l,x,0). Then Q,P ,Q collinear forces
v(q) = (l,cr(x),0) , since Y(p_x) = (I»0,0<-x)) = (1,0,-cr(x)).
For (iii) let Q= (0,1,x). Then J,P </ collinear forces
y(Q7) = (0,1,cr(x)).

For (iv) let Q= (ijXjx"). If A= (l,-x,0), then by (ii) we
have y(-A) = ('I>er(xr),0). But then Q",0nPY collinear and

Q",A,l collinear together imply that y(Q") = (1 ,<x(X),0'(x)).

This proves the theorem for r=3«

Next, assume r>4 and that the result holds for full pro-
jective spaces of rank < r-1. Let A=[a. .] be the natural
representation of PG(r,F) and A'=[b. .] another representation
(in p.c.f.) over some field F . V/ithout loss of generality, wc

may assume that the first (2r + 1) rows of A are

11 11
11 10
11 01
(4.17.5)
01 ... 1i
For each i=1,...,r consider the set of points of PG(r,F)
having zero entry in the i ‘ entry. This collection of points

is a rank (r-1) subspace (hyperplane) of PG(r,F), isomorphic
to PG(r-1,F) < Moreover, if A. is the subraatrix of A obtained

by deleting all those rows with non-zero entry in the i ' pos-
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ition and deleting the i column, then because of (4.17.5),
it is easily seen that A" is the natural representation of

PG(r-1,P) mwith first r rows equal to

and is thus in p.c.f. It is also easily seen that the correspond-
ing submatrix of A/ is a representation (in p.c.f.) of
PG(r-1,F) over some subfield K, of F/ (which we will deduce are

all equal to presently).

For each i=1,...,r e can thus deduce by the inductive
hypothesis that there is an isomorphism <4: F-*f' in which
cRgatS)= bts for each entry aj(S e Al‘ qs C q

Yie show that cr/.\=cr(.8 for each 1<i,jir . Let ae F, then
since r>4 there must be a row of A in which there are zeros in
the 11* and jt positions and a appears as the second non-
zero entry (the first is always equal to,l). Suppose the

corresponding entry (to this a ) in A/ is PcF/. By choice, the

selected row of A appears in li (with the i » entry deleted)

and in A (with the jth entry deleted). Thus cr.(a) = p = o (a),
J 1 j

and so cré- CI:J: a say, and Fj.: Fi]: ' ,say for all 1<iKiir.

Thus we have an isomorphism a from F onto a subfield F' of
F in which cr(a)[<s) = b,tS provided that row t contains at least
one zero entry. So finally we need only consider those rows of
A which have only non-zero entries. Let (1 ¢ e e >ar) be such
arow and let (1,p2>...,Pr) be the corresponding row of K .
Suppose that p( for i=2,....,r (p(, e F/). Ye must show

that pl. =Pi for each i=2,...,r

Write Q= (1,0,...,a.,.»,0) and L = (0,...,1,...,0)

i th place i th place

for each i=2,...,r and let Il be the hyperplane generated
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by the (r-1) independent points *URIAN-L LEIHL T F RN *

The point P=(1,«2,...,Y is the unique point of intersection
r

iQ2 1L . In particular, for each i=2,...,r, the collection of

r points c* Ei-1,Ei+1’ *** Er ,P is dePendent in BI(r,P).

Consequently, the corresponding r rows of A/ have zero determ-

inant. But the row corresponding to must be (1,0,...,fb,...,0)
Thus,
10 ... OI' 0
01... o
0 0
0]

and so 35(: 3; as claimed for each x=2,...,r . Thus Fl: F/

and o : F—=F is the required isomorphism.

(4.18) Corollary (Brylawski and Lucas, [12]) For F - CP(p), where
p is prime, the projective space PG(r,P) is uniquely P-represent-
able, that is , any two F-representations of Pp(r,F) are

protectively equivalent.

Proof By (1.2) there are no (non-identity) automorphisms of P,

so the result is immediate from (4.17).

(4-.19) Representations of PG(r,F) where P is infinite

Although projective equivalence is not defined for infinite
matrices, there is a natural analogue for the p.c.f. for a rep-
resentation of PC(r,p) when P is infinite; again we nay identify
PG(r,P) with its natural representation and say that a K-repres-
entation of PG(r,F) is in 'p.c.f.1if the simplex
is mapped onto the natural simplex of PG(r,K) and each point is

mapped onto a vector xn K' whose first non-zero entry i3 equal
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to 1. The only occasion in the proof of (4.17) where the
finiteness of F was used was in deducing that the homomorphism
a was surjective. In the light of this we deduce the following

result (where A,denote infinite sets of r-tuples)

If Ais the natural representation of PG(r,F), and iJ is
another representation over some field K (in 'p.c.f.1 defined
above), then there is an injective homomorphism o : F—*K

mapping the entries of A onto the corresponding entries of A/.

This result shows the close connection between coordinatiz-

ing (arbitrary) projective spaces and representing them when

viewed as matroids.

Geonetrical .and algebraic characterizations of projective

equivalence

(4.20) Lemma Suppose A is an (sxt) block irreducible matrix,

and B an arbitrary (pxt) matrix without zero rows. Then the

. . . A . .
atomic entries of the matrix C = g are precisely the atomic

entries of A together with the leading entries of each row of B.

Proof It is clear that G is block irreducible and hence by (2.21)
has (s+p+t-1) atomic entries. By (2.7.3) the atomic entries of
the first s rows of C are precisely the atomic entries of A,

so there are (s+t-1) atomic entries in these rows. But by (2.7.1)
the leading entry in each of the p rows of B is atomic in C,

so the result now follows.

Suppose now that A,B are block irreducible (s*r) matrices

of rank r over fields F~F*, respectively, in p.c.f. Then the
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i th row of A (for i=1,...,s) is a natural coordinate vector of
the point P~ say in PG-(r,F.]) and similarly the i1 row of B
corresponds to the point 0" say of FG(r,F2). Vrith these assumpt-
ions we now present the promised geometrical characterization

of generalised projective equivalence.

(A*21) Theorem T.F.A.E.
(i) The matrices A,B are g.p.e.f
(ii) There is a projectivity TI PG(r,F )—»P&(r,F2)__in which

y(p.) = for i=1, ... ,s.

Proof (i) implies (ii) Let o : F—> Be the isomorphism
mapping entries of A onto the corresponding entries of B. The
mapping ar7: F—> defined by

Seee>ar) = aj) >*eexcKar))
clearly makes the pair (cr7,cr ) a semi-linear transformation from

F] into P which by (1.12) induces the required projectivity.

(ii) implies (i) Y'e may view A as"the first s rows of the nat-
ural representation matrix A/ of PG(r,F~) where the remaining
rows are the natural coordinate vectors of the remaining points
of RIirjF~). Since A is block irreducible and in p.c.f. it
follows from (A.20) that A7 is in p.c.f. (this had to be verified

since in this case we nay not assume that the first r+l rows

of A are Now let B7 be the matrix over F» whose

11 )
rows are the image under Y of the corresponding rows of A7.
Since y(P.) = Q" for i=1,...,s the first s rows of B7 is the
matrix E. As for A7, the matrix B7 is in p.c.f. Since Y is a
projectivity, it follows that B7 is a representation of PG(r,F )
(as well as PG(r,F2) viewed as a matroid). By (A.17) we deduce

that A7,B7 are g.p.e., and since both these matrices are already

in p.c.f. it follows from definition,(A.15) that AB are g.p.e.
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(4.22) Note The hypothesis of theorem (4«21) is in no way
restrictive for our purposes, since ve shall wusually be con-
sidering matrix representations (in p.c.f.) of a connected,
rank r raatroid M. If AB are two such representations then (4*21)
(which, by (1.45) is certainly applicable) is of great signif-
icance, particularly when both representations are over the same
field P ; for then, via the matrices AB respectively , M
generates two subgeometries M, My say, of PG(r,F) which by
(4.16) and (1.10) are the full space in each case. If AB are
not g.p.e. then (4.21 ) implies that there is no auto-project-
ivity of PG(r,P) in which the ’'points' of A are mapped onto the
'‘points’ of B. This means in particular that there will be three
points (lines) of which are collinear (concurrent) in M but

not collinear (concurrent) in

Example Let Mbe the rank 3 matroid on E =[ a,b,c,d,e,fj
in which’'vail 3-sets except Ja,b,e] and [c,d,fj are dependent
(that is, f! is the planar configuration of two disjoint lines of
3 points). Let P =GP4) = jO,1,e,where e is a

primitive cube root of unity. It is easily seen that the matrices

~1 00" 100
010 010
001 A 001
111 A2 ITT -
10 1e0
11ce _11e2

are both representations (in p.c.f.) of Mover P with respect
to the ordering a,b,c,d,e,f. These matrices are clearly not
g.p.e. For i=1,2, let vy be the mapping from E into PG(3,4)
taking points of E onto the corresponding rows of A. . The three
linesyl(a)y.(c), y~bjy™d) and y~e~~f) are concurrent
in PG(3,4) at the point (1,0,1). However the 'same' three lines
Yp@) Y'j(®) > Y™MNb)Y™Mct) and Y~reWAN ) fire not concurrent in

PG(3>4) since (1,0,1) is not on the line Y*c)Y\f) «
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The promised algebraic characterization of generalised

projective equivalence is stated in the following theorem

(4.23) Theorem Let AB be block irreducible matrices (in p.c.f.)
over fields FMNF respectively. T.F.A.E.

(i) A,B are g.p.e.

(ii) There is a division ring D containing both P and P such

that A,B are protectively equivalent over D.
Before proving this theorem we need two lemmas

(A.24) Lemma Let AB be (s*t) block irreducible matrices over
fields FMNF™ respectively, in which each atomic entry is equal
to 1 (so AB are in s.c.f.). Suppose that I) is a division ring
containing F~F2 and that AB are s-projectively equivalent

over D . Then-there is an x e D such that (xI*) A(x | ) =B8

Proof Let A=[a.10.] B=[bij.] . There are non-zero elements
x1,...,X£, yl,...,yt in D for which
diag(x1,...,xs) A diag(yl,...,yt) =B

that is, x.a. .y, =b, . for each i,j.
1 aj°0 10

Since every atomic entry of AB equals 1 (and of course they
appear in the same corresponding positions) it follows that

-1
y m= X whenever (i,j) is atomic. Thus if we can show that
-1

XN= ... =X =X, say , it will follow that y™= ... =y =X

since every column j contains an atomic entry (i,j) for some i.

So let 1<i<i'<s. Yie will show X)= X'r/
Certainly every row contains an atomic entry, so suppose (i,j),
(i/,j/) are atomic entries in the i*h and i/ rows respect-
ively. By (2.23) there is an atomic chain joining (i,j) and

(i/»j/)» Without loss of generality, assume that thi3 chain has
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the form
(i,j),(i1,5),(i1,01), joiu7,j")
-1 -1
Then . = = =y, = = = }= /
Xi yJ X|1 y01 X\ y XI

(4.25) Lemma  Suppose Fj,F2 arc Ku>fields of a field F
(finitely generated over their prime fields) and that
: P~F is an isomorphism. Then there is afield KDF

and an automorphism of K which extends o .

Proof Let K be the algebraic closure of F (1.5)» and for i=1,2
let E® be the subfield of K formed by adjoining to F~ a transc-
endence basis of Kover F. . By (1.3) k/b” is an algebraic

extension. If & is the common prime field of F*,F , then we

have the lattice of inclusion

Since F ,F are isomorphic, we certainly have
tr.d. F/fc- tr.d. F N
But also, by (1.4),
tr.d. K/&= tr.d. K/ + tr.d.

and tr.d. K/£ = tr.d. KA?2 + tr.d.

Thus it follows that tr.d. K/ = tr.d. K/F2 . But K/E is
algebraic .(i=1,2), so by another application of (1.4),

tr.d. El/"L = tr.d. K/ = tr.d. K/Fp = tr.d. BE2/°2 =

Consequently there is a set I, and transcendence bases

iVia" iViel forEA> ®A?2 respectively. Now
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V  Fi(] Xiiiei) and V F~Y .]™), so we ney extend o to
an isomorphism o : E—>F by defining cK™) = Y for each
i el, and o (a) =cr(@ for each a e

Now K is the algebraic closure of both E~E~, so by (1.7)

the isomorphism a”™ extends to an automorphism of K.

Proof of (4«23)

(i) implies (ii) Suppose A=[a_1], E=[b_. .] . Let FA~>FQ be
an isomorphism in which <c¢r(a_) = "~— ¢ \e can certainly find
a field containing both F_j,F and so by (4.16) v/e may apply

(4*25) to deduce the existence of a field K (containing F~F”N)
and an automorphism 1 of K which extends cr. A well known
procedure in Ring Theory (described, for example in [14] Vol 11,

p.436) allows us to construct under these circumstances a

(non-commutative) ring - called the Skew Polynomial Ring of
K,t and denoted by k[x,t] - which contains K and an element
x (1 0) for which xa = m(a)x for each a e K. This ring in

turn is contained in a division ring D (again see [14] Vol 11,

pp.448-450). But now, over D we have,

(x IS) A (x Ilr) - E_xa_l'@x 13:! = ia(al-lS'l)]J = bij\i. 1= B
so that, AB are protectively equivalent over D

ii implies i Let A/= [a5,. 1, B/=[bj~ be the non-identit
(ii) p (_) [3J 1 [30 1 y
submatrices of A,B respectively (defined in (2.3)). Then by
(2.3), A/}B/ are s-projectively equivalent over D. Thus by

(4.24) there is a non-zero element x e D such that

-1
X =

X a, .. b... (4.23.1)
ij ij
If & is the (common) prime field of F~AF |, it follows from

) . Thus F,,F

= | =N
(4.16) that F_=£(] aij'LJ') and F ({b 17

1 2 ij5i,.i
are the quotient fields respectively of the rings
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The mapping O: R—D defined by cr(r) = xrx is clearly a
well-defined monomorphism, for which (by (4.23.1)) o"(@a. .) =b. .
for each i,j. Thus c(R™) = R and d' is thus an isomorphism
of Rj onto R* . By the universal property of quotient fields,
it follows that o extends in the natural way to an isomorphism

F—F of the respective quotient fields of R™NRA.

Maximal k-arcs and representations of uniform matroids

For any integer k>r, a k-arc in Pd(r,q) is a set of k
(distinct) points such that no r lie in a subspace of dimension
r-2 . An important problem in the theory of finite projective
spaces is to determine the meximum value of k for which there
exist k-arcs in PG(r,q). /This number is denoted by m(r,q) (cr
m(r-1,q) by those authors who refer to PG(r,q) as PG(r-1,q)) and
the reader is referred to [7,13»18,19,26,27,31,32,33] for some
of the extensive work which has gone into determining this
number for various values of r and q ; in general only the
values m(i,q) and m(g-i+2,q) for i=2,3,4,5 appear to have
been satisfactorily solved.

Y& approach this problem from an entirely different view-
point. It is easily seen that uniform matroids are representable
over any sufficiently large field, so the relevant representat-
ion problem in this case is to determine the smallest field over
which Ur,n is representable. Ve will show that this Eroblem
is essentially equivalent to determining the value m(r,q) (for
various ) and consequently show hoy/ considerable simplifications
(of the projective geometry) can be achieved by using straight-

forward matroid arguments.

The result which links the two different approaches is :-
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(4.26) Proposition The matroid ~ is representable over

GF(q) if and only if n < m(r,q).

Proof For any integer k>r a set of k points in PG(r,q) form
a k-arc if and only if no r of the points lie in a subspace of
dimension (r-2), that is, if and only if any r of the points
form an independent set in PG(r,q). But Ur,k is representable
over GF(q) if and only if there are k points in PG(r,q) for
which any subset of r points is independent, that is, if and
only if there is a k-arc in PG(r,q). The result now follows

if we note that Ur n is representable over GF(q) implies Ur K

is representable over GF(q) for each integer k<n.

Before examining this correspondence any further, we note

that for r>2 and n>r+2 an F-representation of Ur n

in g.c.f.

will be of the form

1 1 1

L&l - ah g (4.26.1)

i an

I as, r-1*
where s=n-r-1, a*‘] ¢0,1 for each i,j. Moreover, for each
i=1,...,s the elements a™, . . . are all distinct , and
for each j=1,...,r-1 the elements a ,...,a . are all distinct.

We also note that when r=1, n-r, or n=r+1, it follows from
(4.26.1) that Urn is regular, so we shall ignore these trivial

cases henceforth

(4.27) Lemma If g<r, then m(r,q) =r+l
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Proof  Since Ur is representable over every field, we have

r+1
by (4.26) that r+l < m(r,q). Suppose that r+2 < m(r,q). Then

by (4.26) Ur 47 is representable over GF(q). Because of
(4.26.1) any representation of over GF(q) will have p.c.f.
I
r
1 1 1
Ll ag - ar—lJ
where 1,a1 ..... ar 7 are distinct non-zero elements of GP(q).

But then g > r+1, a contradiction, so we must have m(r,q) = r+1.

In the light of the above result we shall always assume

that g>r in PG(r,q).

(4.28) Lemma For any r>2 and g (a_prirne power),
1) m(r,g) <m(r-1,q) + 1

2) m(2,q9) = agtl

3) atl <m(r,q) <qgtr-1

Proof

1) S ose m(r, > m(r-1, + 2. Then by (4.26), U , \
) Suppose m(r,0) (r-1,9) y ( ) Fmir-1,q)32
is representable over GF(q) . By contracting and deleting

respectively two distinct elements ot this matroid, we deduce

by (1.33) that Us 1 nr_1 q)+1 is representable over GF(q), and

hence by (4.26) m(r-1,q) > m(r-1,q) + 1 which is absurd.

2) (and we prove 3) at the same time)

Write GF(a) = io,an,...,a 7} . Cpnsider the qg+1xr matrix
0] 0O O
0 0O 1
A = cee r-2 r-1
1 H"l ai al
. r-2 r-1
1 Sq—f aq_I aq_1
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over GF(qg). By a consideration of the well known Vandermonde
determinant, the fact that the a.'s are distinct non-zero
elements of GF(q) implies that each (r*r) subdeterminant of A

is non-zero. Thus A is a representation for U~ ~ over GF Q).

By (4.26) we deduce
gl < m(r,q) for each r>2 (4.28.4)

In particular it follows that otl m(2,q). Write &= n{2,q) «

Then by (4.26) U yri is representable over GF(q) in which case

(because of (4*26.1)) a representation in p.c.f. has the form

0]
1
1

R O R

where 1,b b .7 are (m-2) distinct non-zero elements of

PeREE

GF(q). Thus g > m1l, and so ni(2,q) = g+l, proving 2).
By iteration of 1), we get

rn(r,g) <m(2,q) +r- 2= g+ r-1

which, together with (4.28.4) proves 3).

Next \ie present a much shorter and elementary proof of a

result originally proved in [7] and [26] ana which can be found

in [18].

(4.29) Theorem For any prime power q,

g+l (g odd)

i(3,q) =
q+2 (g even)

Proof For g even it suffices, by (4.26) and (4.28.2) to prove
that U7 is rer.reser.table over GF(q). With GF(q) listed as

Jtg?
above, consider the (gq+2)x3 matrix
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1 0O O
0 i o
0 0 1
A
aq—laq—l’

over GP(q). The .only (j5x3) subdeterminants of A which are not

of the Vandermonde type are those of the form

1 0
a a2 = ai- & (Kij<g-1)
a. a,
J J
8fhce q is even, a§ - ai2 (@, - a)2 ~ 0 . Thus Ais a
representation of U?, over GP(q) as required.
For g odd it suffices to prove that is not repress-

entable over GF(q). Suppose it were, then by (4.26.1) there would

be a representation of the form

1 0 0
0O 1 o
0O O 1
tJ = 1 alo'(al)
1 a q_1_a—(a q—I)

where 0 is a permutation of GF(q)< (= GF(q)\[o0O* An element-
ary result from group theory states that in a finite abelian
group G, if there is exactly one element, say a, of order 2 then
the product of all the elements of Gis equal to a. Consequently
in the multiplicative group GF(q)+, we have the relations

(amounting to the well known 'generalised1 Wilson Theorem) :-
lIx = -1 and M) = -1 (products over all xeGF(g)#H

Consider now the function f : GF(q)—GF(q)+ defined by
f(x) =x cr(x) . This function is not surjective (i.e. a perm-

utation of GI\q)+) for if it were we would have



-87-

-1 = nf(x) =rix V(x) = (nx"(ncr(x)) = (nx)"1(ncr(x)) =1

(all products over all x ¢ GF(q) )

Phis is a contradiction since g is odd.

Thus for some i 4 j, we must have a. o0"(a.) = a. cr(a.).

But then
1 0 0
1 a (a.). =acr@) - acr@)
Yo J J d
1 aj (a7

which contradicts the fact that A/ is a representation of U3 qr2*

Results in [10,24,27] vyield the important results that
for any prime power q,
m(4,q) = m(5,q) = gl
Prom m(5,q) = g+1, we deduce now from (4*28.3), that for r~3, q>r,
gl <m(r,q) « gtr-4-

At present these are the best known bounds in general for m(r,q),
since for 11i,g<225 it is not knowmn whether m(r,q) = g+2 or g+l
In 1970 Hirschfeld conjectured that m(r,q) = gt1 for any odd
prime power q and r<q. In matroid terms ( by (4.26)) this can

now be restated as

Conjecture For any integers r,n,q=pS (p prime =2), and n-2>r.

T.P.A.E. (i) U is representable over GP(q)
n — —

— - -r

(ii) n< gl

Finally we turn our attention to the determining of

ra(g-j ,q) for j=0,1,2,3.

(4.30) Proposition If m(r,q) = g+l, then m(g-r+2,q) = g+l

Proof By (4.28.2) it suffices to prove that m(g-r+2,q) < g+1.

Suppose not. Then m(qg-r+2,q) > g+2 in which case U
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is representable over GF(q). The dual matroid of

is Ur G2 so by (1.32) this matroid is representable over

GF(q), whence by (4*26), m(r,q) ~ g+2 , a contradiction.

For g odd we have seen that m(i,q) = g+1 for i=2,3,4;5

hence by (4.30) we deduce that m(g-j,q) = ¢¢t1 for j=0,1,2,3

a result proved in [32] . Moreover, since mf(i,q) ogtl for

i=2,4,5 and g even, we may deduce that m(q-j,q) = g+l for
j=0,2,3 and q even (a result which does not appear in [32]).
Thas does prove however in [29] that with q even, m(qg-1,9) = g+2,

thus completing this 'dual' set of results. Again this result

can be proved easily by dual matroids

(4.31) Proposition For q even, m(g-1,q) = g+2

Proof By (4»29), m(3,q) = 1+2 for g even and so U}ygpko is
representable over GF(q). As above this implies Uq—l',q+2 is

representable over GP(q), and so m(q-1,q) > g+2.

If m(g-1,9) > g+t3 then we must have Uq—l',q+3' representable

over GP(q). Again taking duals this-means that U4 3 is
» q

representable over GP(q) and so m(4,q) > g+3, contradicting the

fact that m(4,9) = g1 for any q. The result now follows.
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85 VAMOS RINGS

Tiie algebra in this chapter will be of a slightly more
specialised nature than any previously used and, although
adequately covered in [2], we shall begin by listing some

definitions and results for purposes of reference.

For any ideal b of a ring A, the radical of b, denoted Wb

is defined by

Vb=[aeA; a%¢ b for some positive integer nj

The nilradical of A, denoted N(a) is the ideal Vo, that is,
the collection of all nilpotent elements of A, or equivalently,
the intersection of all prime ideals of A. The ring A is
reduced if N(a)=0. In particular, for each ideal b of A, the
ring A/\/b is reduced. The Jacobson radical of A, denoted
J'(a) is the intersection of all the maximal ideals of A. The
ring A is called a Jacobson (or Hilbert) ring if every prime
ideal of A is the intersection of a family of maximal ideals.

Clearly N(a) =j(A) if Ais a Jacobson ring.

(5»1) Theorem Suppose A is finitely generated (as a 2-algebra)

Then
1) A is a Jacobson ring, and
2) For each p e Spec A, p is naximal if and only if A/p

is finite
Proof See [6] pp.352-35A
For each multiplicatively closed subset (m.c.s.) S of A,

the ring of quotients of A with respect to S (see [2] pp,36-40)

is denoted by A or S A. This ring is zero if and only if
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0O es. For any m.c.s. S, the mapping *: A—A defined by
$(a) = a/1l for each a e A, is called the natural homomorphism,

and we have the following well known 'universal property of A f

(5»2) Proposition Suppose that A—A" is the natural
homomorphism, and that f: A—=AX* is a ring homomorphism satisfying
1) f(s) is a unit in ¥ for each s e S

Then there is a unique hononmorphism : AN-Af  making the

diagram | commute

Moreover, if in addition, f satisfies
2) Whenever f(a)=0, then sa =0 for some s e S, and

3) Every element in A may be written in the form f(a)(f(s))

for some a eA, s eS

Then ir is an isomorphism.

(5.3) If Ais Noetherian, then A[X",...,X ] is Noetherian

Qnd_ﬁg) is Noetherian for any m.c.s. S.

(5.4) If Sis am.c.s. and b is an ideal of A for which

b HS = 0 then there is a prime ideal p )b for which p DS ~

As a final preliminary we no"e that for a non-nilpotent
X £A the set S 4C xn ; man integer >0} is a m.c.s. of A

for which the ring A will usually be denoted
by Aw

For the remainder of this chapter, unless otherwise stated,
Mw ill denote a matroid of rank r on the set E = 5e1,...,,e n*?

where the ordering is fixed.



-91 -

Let X be the generic (n*r) matrix of indeterminants
[X“'L']] whose rows are indexed by the elements of E, and let
T = 2[JX.1‘J J.] , the polynomial ring over 2 in the nr indet-
erminates ?inj’bJ' . For each r-set UC E, U is either a basis
(independent) or a non-basis (dependent) in M and det X(U)

is a well-defined element of the ring T.

Let a = Fl[det X(u) ; U basis of Mj

and let b be the ideal of T generated by the set of elements

[det X(U) ; U non-basis of M

With these definitions Vamos has proved the following remarkable

characterization of representability which inspired this study:-

(5.5) Theorem (Vamos, [35]) The matroid Mis representable

if and only if a{vb .

Proof Suppose first that Mis representable over some field F

by the (n*r) matrix N=[a. .] . Let yJ T—F be the ring
homomorphism induced by y(X.Ad) = a"t)' for each 1<i<n, I1<j<;r.
For each r-set UC E, U is a non-basis if and only if det N(U) = O.
But det NU) - y(det X(U)), so if Uis a non-basis then

y(det X.(u)) =0 . Consequently b C Ker y, and since Ker y is

a prime ideal with F a domain, it follows that Wb C Ker y.

Now y(a) =y( ndet X(U)) = Hy(det X(u)) = Iidet NU)

(where the products are over all the bases U of M)

Hence y(a) ™~ 0 since det N(u) AO for each basis U . Thus

al Kery and so a Avb since Vb C Kery.

Conversely suppose a | v'b. Then the set C -
S=T[an ; tinteger >
is am.c.s. of T disjoint from b . By (5*4) there is a prime =

ideal pXb with pAS=< Let Kbe the quotient field of
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T/p , and let « be the composition map Tm >t/p K

Let N be the (nxr) matrix N = [X(X7"1)')] over K.

Then N is a K-representation of M For suppose U is an
r-subset of E. If Uis dependent then det X(U) e b Cp so
that 0 = 7i(det x(I)) = det NQU). If U is independent then
det X(U) divides a. Consequently det X(U) {p for otherwise

a e p which contradicts the choice of p . But then

det N(U) = 7i(det X(U)) | O .

Suppose now that T—>T//lb  denotes the canonical

homomorphism . Then the set s = {a™; nBG is a m.c.s. of T/vb

(5*6) Definition The Vamos ring of the -matroid Mis the ring

am - <= >

Although AMhas been defined with respect to a fixed order-
ing of E, it is clear that if c is any permutation of [1,...,n]
then the Vamos ring hi, defined with respect to the ordering
ecr( 1)’ **e>e0-(N) AsornorPAMc Ni (if ] is the gen-
eric matrix of indeterminates used to define AW/\\/I then the mapping
Yi'j_ >X, u)s induces an isomorphism between and AM),
(5*7) Proposition

1) A = (@ if and only if Mis representable.

Proof 1) The ring A* = (@) if and only if Of S, that is,
if and only if a'eb for some positive integer m This is

true if and only if aevb, so the result follows from (5.5).

2) Follows from the results in (5.3) since 2 is Noetherian.
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Let 6: T—>A" denote the composition megp T—>T/\Vb-
where $ is the natural homomorphism defined previously.
Write ©(X.10.) = Xij' and let X denote the fnxr) matrix
over AN Also, if N = [a”4] is an F-representation of M
write gN for the homomorphism gN: T—F induced by ¢ N "

(5«8) Proposition VY.ith the above definitions, the ring AM,

together with the matrix X satisfies :-

1) A, is a reduced ring.

2) Every (r*r) subdeterminant of X is either zero or a unit

in A, and A% is finitely generated as a g-algebra by the x *s
together with the inverses of these subdeterminants.

I
F-representation of M there is a unique homomorphism

3) For any field F a-nd (n*r) matrix N = [« f)'] which is an

making the diagram below commute.

4) For any homomorphism f: AY=F (F a field) , there is a

unique F-representation N which makes the above diagram commute.

Proof
1) We have already noted that T//b is reduced, and any ring

of quotients of a reduced ring is again reduced.

2) Let Ube any r-subset of E. If Uis a non-basis then

det X(Uj ¢ b, whence ©(det Xil)®) =0 in AM. If Uis a basis
then det X(u) divides a whence ©(det X(u)) divides ©(a) ;

now by definition of Af), ©(a) is a unit in A, hence ©(det X))

is ¢ unit in e The iii>\st statement now follows since every



(r*r) subdeterminant of X has the form detX(u) = 6(det X(u))

for some r-set UC E. The second statement follows from the fact

that
6(a)-1="n(0(det x(u))-1=n(detx(u))"1

(where products are over the set of bases U of M
since every element in AMhas the form h/6(a)m where h £ T.

3) By (5'.2) and the definition of 6 , it suffices to show that
*/b C Ker gN (so 'factors' through T/v(b) and that g”~(a) is
a unit (i.e. is non-zero) in F.

For any r-set UC E, g~(det X(u)) = det N(u) which is zero
if and only if U is a non-basis. So clearly b C Ker gN, and
since the latter is a prime ideal and F a domain we deduce that
Vb C Ker gN . Also gNa) = gN(ndet X(u)) = ndet li), £0

(products over all bases U), so g”~(a) is indeed a unit.

4) Suppose f(x. ) =a..c F for each 1ld<n, 1<j<r.

ljet N be the (nxr) matrix [a. .] over F. W have only to show
that N is an P-representation of M For any r-set UC E,

det N(U) = f(det X(U)), and by 2) det X(u) is zero in AMif U
is a non-basis and is a unit if Uis a basis. Hence

det N(u) = f(o) =0 if Uis a non-basis and det N(U) £ 0 if U
is a basis since any ring homomorphism into a field maps units

onto units (i.e. non-zero elements of F).

InN (5.15) we will show that the four properties listed in

(5*8) characterize the ring A

(5*9) Corollary and definition To each p e Spec AN there
corresponds a representation Kp=[r.(x_)] of Mover Kn the quotient
. o i . . .

field of Ann/B (where % is the composite regp Am >AR’/(£ >Kp).

Conversely, to each F-representation N =[a1j1] of M there
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corresponds a ring homomorphism f : A,—>F in which
f(x; j--) = a&;; . and hence a corresponding prime_ideal p., of
AH = PK = Ker fB

The natural correspondence given above between the prime
ideals of Amand the representations of Mis not in general a
bisection. The most important by-product of our later refine-

ment of Ajj will be that this correspondence does become a bisection.

(5.10) Proposition The ring A,; is a Jacobson ring for which

Ai/m is a finite field for each maximal ideal @ of A"

Proof By (5.8.2), A}, is finitely generated as a 2-algebra,

so the result follows from (5*1)e

(5*11) Corollary (Rado) If Mis representable, then it is

representable over a finite field.2®

Proof By (5.7.1) A (0). Consequently A possesses a maximal
ideal m say. By (5«10), AYm is a finite field, so by virtue
of the canonical homomorphism A~>AYra , it follows from

(5.8.4) (or (5.9)) that Mis representable over AN(m

(5.12) Lemma Suppose Mis representable (so A*(0)), and for

each n e Z, 1et n denote the image of nin A under $ . Then

1) For every non-zero element xc A there is a maximal ideal

mof A with X £m.

w n_Z Pl *#*-J% _ where ,**.,p~ are distinct prime
numbers, then n =0 if and only if c(m) C.Jpj,,...,Pi[} . In

particular, for any prime p, p =0 if and only if c(w) = jp] .

3) For any prime p, p is a non-unit in A){ if and only if p e c(m).
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Proof

1) By (5.8.1) A is a reduced ring so NiA®") =0 . But is a
Jacobson ring, whence j(A”) = NA”) =0. Thus x ~ 0 implies

X { ; mmaximal ideal of A j and the result follows.

2) First suppose n =0 . Let P be any field over which Mis rep-
resentable. Then by (5.8.3) there is a homomorphism f: A— >F.
Thus,
0 =f0) =f(n) =f(n.T) - n.1p

so char F divides n. But then char F = p~ for some 1<i<t
and hence c((.) C [p™,...,.p"].

Conversely, suppose c(Bl) C [p”™,...,p ) but that n O.
By 1) there is a maximal idea] mof Ap for which n j m.
Consider the field F= Aj/m and the canonical homomorphism
x: Ar->F. By (5.0.4) > Mis representable over F. But
n.1 =x(n) ] 0, and consequently char F 4 p~ for each i=1,...,t

which contradicts c(m) C [pj>ee*»p”j =

The second statement now follows from (5.7.2) and (5.11).

3) Suppose p is a non-unit in A(]. Then p is contained in a
maximal ideal m of A, so that the field A,,/m must have char-
acteristic p. By (5*0.4), Mis representable over A®m ,so p e C(m).
a field F

Conversely suppose p> < c(m). Then by (5.8*3) there is

of characteristic p and a homomorphism f: A~ »F | Since

f(p) = p.lr =0, p cannot be a unit in %

(5.13) Theorem (Rado and Vamos) For a matroid M !c(M) | = ¢

if and only if O r c(h).

Proof First suppose |c(m] - Then since every integer mf O

has a prime factor decomposition, it follows from (5.12.2) that
|

m4 0 . Consequently the set W- jii ; Or mf ?] is a m.c.s.

°f Aw which is disjoint from the zero ideal (0). By (5.4) there
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is a prime ideal gq of AN/ with g fl w= let Kbe the quotient
field of A?q , so that by (5-9) Mis representable over K.
By definition of g m.1™ 40 for each 0 4 me Z hence char K =0
which proves necessity.

Conversely, suppose O e c(lvi) . By (5»11), Mis represent-
able over a finite field so c(M) contains at least one prime

p 4 0. Suppose that c(M)\[0] consists only of a finite number

of primes PP 0 and seek a contradiction. If we write

n=n p;, . then by (5.12.2) n~ 0, since 0 4 [pl,...,p 0} .
By (5.12.1), there is a meximal), ideal @ of A with \rtwfll m . As

in the proof of (5.12.2), Mis representable over the field

F = Av/m which is finite (by (5«10)), hence having characterist-
ic p/,say with px4 0. This means that p/=jr for some 1<i<;t

»w

in which case PI.1F= 0, and hence n e m, a contradiction.

(5.14) Corollary Suppose Mis representable and A, a domain.

Then ‘C:Ml|=: or |c:M|J

I'roof By (5.7.1), |c(m] >1. Suppose that 2 < k(m)]< < and
seek a contradiction. By (5.13) 0 j c(m), so c(m = fp ,...,pT}

» »
for some distinct primes p~,...,p”~ . Since t>2, the second
statement of (5.12.2) implies p. 40 for each i=1,...,t,
whereas by the first statement 1If[1 Py =0 in AM This

contradicts the fact that Al is a domain.

(3.15) Theorem (universal property) Let S be a ring and

satisfy the following conditions2

1) 3 is a reduced ring

2) EVery (rxr) subdeterminant of Y is either zero or a unit in
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S, and S is finitely generated as a Z-algebra by the y 's

together v/ith the inverses of these units.

3) For any field F and (nxr) matrix N =[ a. .] which is an F-
representation of M, there is a unique homomorphism h : S—>F

making the diagram below commute.

N (where d is induced by

4) For any homomorphism hr S—F (F a field), there is a unique

F-representation N of M making the above diagram commute.

Then the rings AM_and S are isomorphic,

under an isomorphism _tg@%_x.lj. —t—g—}?ij-'

Proof We first note that S-(o) if and only if Mis not repres-
entable ; for if S 4 (0) then S contains a maximal ideal m, and
because of the canonical homomorphism S—S/m , it follows from
4) that 1 is representable over Ym . Conversely, if Mis, say
IXrepresentable then the existence of a homomorphism of S into F
(by 3)) ensures that S 4(c) (since, by our definition of homo-
morphism, h(1) = 1v). Thus by (5.7.1) we deduce that A = (0)
if and only if .S = (0), and we may new assume that both rings
are non-zero.

So let 7l S—S/in denote the canonical homomoigzhism where
mis a maximal ideal of S. By 4) the matrix N=rx(v 1 is a
representation of K over S/4 . Let Ube an r-subset of E, so
then det N(u) =0 if and only if U is dependent. But
d(det Y(U)) = det N(u), so det Y(u)e m if and only if Uis
dependent. Since, by 2), det Y(U) is either O or a unit (the

latter of which is not contained in any maximal ideal) we deduce,

det Y(U=0 if and only if U is dependent in M (5.15,5)
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Next we appeal to (5.2.1) to show that the homomorphism di T-vS
indvices the required homomorphism dl A,—S , and for this we
must show show that Vb C Ker d and d(a) is a unit in S. Clearly

a(det XQU)) = det Y(U) for each r-set UC b, so by (6.15*5),

bc Ker a. By i) S is a reduced ring, hence we deduce Wb c Ker a
Also, a(a) =nfdet Y(u),* U basis] , which, by (5.15*%9) and 2)
is a product of units in S, hence is itself a unit in S. Thus,
by (5.2.1) there is a (unique) homomorphism a5 A™->S in

a(x ) =y. . 7e have only to show that a is a bijection:-
1] 1]

a surjective :- By 2) and (5.15.5), 3 is generated (as a Z-

algebra) by the y. ,'s together with those elements of the form

(det y(u))~1 where Uis a basis of M By (5.8.2), det CCu) is

a unit in A, and since a(detx(u)) = det Y(U) we also have

ni

A 1.
a(detX(u) ) - (det YA)™', hence a is surjective.

a injective :- Ve need only show that d(x) =0 implies x =0
for each x e A®. Suppose not, and d(x) =0 for some x ™0 .
By (5.12.1) there is a maximal ideal nY of A~ for which x{ m.
Let %/: Ap>A/m/ denote the canonical homomorphism and the
matrix K = [¢ (x..)] . Then by (5*8.3) and 3) there is a
(unique) homomorphism h: S-»Aj,/n/ which makes the diagram

below commute.

But then r.' =hd . Hence k1{x) = hd(x) =h(©) =0, in which

case xXx e rn/ , a contradiction. The result now foil o,vs.
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(5.16) Remark In the light of (5*8) and (5*15) we can view
the ring A as any pair (S,Y) where Sis a ring and Y is an
(nxr) matrix over S satisfying the conditions of (5.15). In

particular, of course (Aj,,X) is such a pair.

The simplified Vamos ring

The ring A, is based on too nmany indeterminates for
practical use, since even for the simplest matroids M cannot
easily be explicitly described. When we eventually define the
canonical Vamos ring we will have reduced the number of indeterm-
inates sufficiently to be able to compute the ring easily for
many important matroids. However, since we wish to establish
the precise algebraic relationship between these rings it is
necessary to define the intermediate ring , which we will call

the simplified Vamos ring, and which is of genuine interest in

its owmn right.

Once again we shall assume the same fixed ordering of E,
but in this case we assume in addition that the first r elements
e j,...,e form a basis B. In 82 we noted that a representation
matrix of Mis.in column echelon form if and only if the first
r rows form the identity matrix 1 , and that every matrix is
column equivalent to a matrix in column echelon form. With this
consideration we define R in an exactly analagous way to A ,
except that now the definitions of T, b, a are nade with respect

to the matrix

X = where X/= X”LI Y X'”’I”r

instead of the previous matrix of nr indeterminates. To empha-
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size the analagy we are using the same labels JX T, b, a ,as

before, but now T = Zf[X. ,]r+1l<i<n] , b is the ideal in T
+J Ujtr

generated by the elements |Jdet X(u); U non-basis] ,

a = njdet X(1J); Ubasis] , and Rj, = (T/v(b)™-s

Unlike AMit is by no means obvious that the ring Fiq is
independent of the ordering of E (in the sense that if we define
the ring with respect to some other ordering the resulting ring
is isomorphic to R”). There is no problem if we merely permute
the elements of B among themselves or the elements of E\B among
themselves since these operations correspond (respectively) to
permutations of the columns and rows of X/ and the resulting
ring is then isomorphic to R{, under the mapping induced by the
corresponding permutation of the X.,'s. However things are much
more difficult in the case of an arbitrary permutation of E since
this may result in defining the ring with respect to a basis

different to B. We defer the proof of the isomorphism in ithis

case until we have established the basic properties of RM.

As before let 0: T-»In denote the natural mapping. Write

G(X,..) ~ x,.. and the matrices X7 = fx, . ."Ir+1l<i<n and
] 1] T cjer

X - I '|X7]T = Ore elementary but useful property which now is

possessed by (R ,X) is :-

(5.17) Proposition For each r+l<i<n, 1<j<r,

1) Xq 3 is (up to sign) an (rxr) sgbde;erminant of X.
2) Xx_- 0 inRj if and only if e GB,e .) and is a unit
otherwise. Thus the matrix X7 over R, has its zero entries

in the jsame corresponding positions to the matrix X,

Proof 1) Write U,.= b\!ci) U Ie.li . Then det (u. ) =+ X,
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2)With H . as above, det X(L|J.'r')= + X'n' . Thus X'i.i £b if and
onlx if Uij' is a non-basis, and Xij' divides a if and only if
U.. is abasis. But then x. =0in R, if and only if U. . is
Li 1.1 M 11
a non-basis , and Xij' is a.unit if and only if Ui'j' is a basis.

The result now follows since U. . is a non-basis if and only if

it contains a circuit which must be c(B,e ).

The following set of results (5*7)/,(5*8)1,(5%9); >(5»-0)/s
(5.15v for RI\VI are analagous results to those corresponding to
AM' In each case the new proof requires such minor modifications

as to neke their statement here unnecessary.

2) Rj is a Noetherian ring.

(5»8)/ The ring R1, together with the matrix X sati3f3es:-

1) Rjj is a reduced ring.

2) Every (r<r) subdeterminant of X is either zero or a unit in
R,,, and R; is finitely generated (as a 2-algebra) by these units
together with their inverses.3

3) For any field F, and (n<r) column echelon matrix N - [ liV] »
which is an F-representation of M there is a unique homomorph-

ism f: R—F making the diagram below commute.

4) For any honomorphism f: R—F (F a field) there is a unique
column echelon F-representation N which makes the above diagram

commute.

(Note:- (5.8.2)" is tronger than (5.8.2) thanks to (5.17.1)).
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(5»9)/ To each p e Spec R there corresponds a column echelon

T
representation 5 =il k(x; J..)] of Mover I% the guotient

field of I%/p (where n is the composite n’a@___lﬁwflﬁﬂ/_p_:’_‘[(p)_.

Conversely, to each column echelon P-representation N=[1 [N/]

(where K/= [a. .jh+I]ci_’\n ) of Mthere corresponds a homomorphism
- -<J< r

jﬁ R—F in which fff’(f(j' .) =a. . (for each i,j), and hence

a corresponding prime ideal pr of R , where p - Ker f

(5.10)7 The ring R is a Jacobson ring for which R /m is a

finite field for each maximal ideal m of FF\A—

(5.15)/ (universal propert}) Let 3 be aring and Y = [I r|_/fT

an (nxr) matrix over S (where Y/- [y” .]Jr+l<i<n ,say) such
Uijsr

that the pair (S,Y) satisfy the conditions :-

1) S is a reduced ring.
2) Every (r*r) subdeterminant of Y is either zero or a unit in S
and 3 is finitely generated (as a 2-algebra) by these units

together with their inverses.

3) For any field F, and (nxr) column echelon matrix N = [I jlI/]1R&
which is an F-representation of M there is a unique homomorph-

ism h which makes the diagram below commute.

T——>8
N ,"u (where d is induced

4) For any homomorphism hi S->F (F a field) , there is a
unique column echelon F-representation of H which makes the

above diagram commute.

Then the rings R and S are isomorphic
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(5.18) Theorem The ring R is (up to isomorphism) independent

of the ordering of E.

I~-roof Let (R ,X) be defined as above, with respect to the

ordering e , e where B=[e 'R elj is a basis. N/

EEE
let R/ (=R/) be the simplified Vamos ring defined with respect

to some new ordering e "™, ... where 0 is a permutation

of (I,...,n). We may assume B;= iecr(1l)»* **»#-(n)l is a basis*
By (1.22) (basis exchange) it suffices to prove the theorem in

the case when B,B/ differ by only one element, so by our previous

comments, we nmay assume that B/- [e”™,...,e | and that
R; is defined with respect to the ordering e”,...,e” ,e”™ e ,
r+2 n

Now suppose that R is defined with respect to the generic

(column echelon) matrix of indeterminates Yq where

el
° I
r

-t

N
€rel
®r Yr+1,1 Yr+1,r
en Yr.,r

Let y. . denote the natural image of Y, . in R/ and let
1)

Y=T1I | Y7 where Y/=[y. .] . Since (5.8)7 is true for
any simplified Vamos ring defined on a fixed ordering, it is
certainly true for (R/, Y) with respect to the new ordering of E.

Also, we note that

er+tl e C(b' ,er) (5»18.2)

for otherwise C(b',e™ Cf ,...,«r_1JU [e j = B, which is

a contradiction. So by (5.17) applied to (r',Y) it follows that

yr+1l,r i5 a unit in /' Vrite (yr+1,r' =z 5 ray*
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e now define a new matrix Yj over R' which is the matrix
resulting when we interchange the r~ and (r+1)”™ rows of Y and

reduce this matrix to column echelon form. Explicitly*:-

1 0 0] 0]
0] 1 0] 1
Vo= P Y . (5.18.2)
0 0] 1 0
-hr+i,i>2 e(yrtil,2)a - 'Wr+1,r—r)Z z
(where Pr r+1.is, the (nxn) permutation matrix obtained from In
by interchanging the r~ and (r+1)” rows).
Thus Y* is an (nxr) colujnn echelon matrix, say Y= [i [y""
where Y( = fy( ] r+l<i<m . Y now show that the rings Rw, R®

Ujcr
are isomorphic by showing that the pair (R"Y”) satisfies all

the conditions of (5¢75)/ (in which case the isomorphism takes

x..toy(L].) Ir

1) By (5.8.i)/ applied to R/, certainly R; is reduced.

2) By (5»8.R)/ applied to Y, every (rxr) subdeterminant of Y is
either zero or a unit in R/ and R/ is generated by these units
and their inverses. By (5.18.2) it is clear that the (rxr) sub-
determinants of Y~ differ from those of Y by at most a factor
of +z which is itself an (rxr) subdeterminant of Y; (since
yer’iyr"' z ). Thus (5.15.2)' holds for (R; ’Yl)'
3) Let N=[id n7]1 be a.column echelon P-representation of M
(where N7= [a.,.]) with respect to the original ordering of E.
By (5.18.1) ar+in 0 . Write 3=(«r+1,r) 1°

Then the matrix (defined overleaf by (5.18.3)) is
a column echelon F-representation of ! with respect to the new

ordering of E. Suppose the (i,j) entry of I is a( . Then
by (5«6»3)/ applied to (R™"Y) there is a homomorphism f: RfF»F

in which f(y~) =a(. . It is clear from (5*18.3) that r=3
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1
0
N1 = Pr,r+1’ N (5.18.3)
0
LR 1, “artl,r-pPo P
and that , for each i=1,...,r-1 |, 41,0 ="(“1r»+'1,f§. °
— — .
Mow, f(z) = f(amlwg =3 , and so for i=1,...r-1
f(‘%r+1,r)3) = 'f(¥]r+1,|‘) 3 *= ar+1,i

f to (5.18.2), we get

applying
1 0
0 0

= Pr, r+’iN1 = N (by (5.18.3))
0 1

“rel,1 e Rr+l,r

and so f(y( .) = «'r]' , in which case (5»15»3)/ holds for (R/’Yl)

Let f: RA>F be a homomorphism. Suppose f(y(AJ.) = a.

(where N= [a'x.'r]) is an F-rep-

4)
We have to show N = [i rIn/>
resentation of M (with respect to the original ordering of ,E).

Let be defined as in (5.18.3). By (5.18.2) we have

LA X J o

O e00e O R
o

>+1,1 0o yr+l,r

Applying f to this expression yields

1 «»* 0
0 0
[
f(Ty!) = Prrer K H _ Ny (by (5-18.2)
O 1
and (5.18.3))

gyrern o g e
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Thus, if the (i,j) entry of N, is a(, we have f(y. .) =am..
Now by (5.8.4)/ applied to (R”~Y), it follows that N is ,a
representation of Mwith respect to the new ordering of E, in
which case, by definition of , Wwe must have N is a represent-

ation of Mwith respect to the original ordering.

Thus (5.15Jh)/ holds for (R7,~) and the theorem follows.

(5.19) Theorem For a matroid M R ~ R™

Proof By (5*18) we may certainly assume that R,» is defined

with respect to the ordering e ,...,en>en, .. .e where of
course B = he e ! is a basis of M
e r+l r
Suppose that Z = n-r (where z = [z. .jkkr )
1J r+l1 «y<n

is the matrix over R,, for which (R® ,Z) satisfy (5*8 )/

Let Z' = Xr . Once again we appeal to the univeral property

L4

by showing that the pair (R{, ,Z/) satisfy the conditions of (5.S)/

1) Certainly RY.is reduced.

2) For any r-set UC E , it is easily seen that det Z/(u) =
det Z(E\U), in which case the set of (rxr) subdeterminants of zZ/
is precisely the same as the set of( (n-r'ix(n-r)) subdeterminants

of Z which have the desired property.

3) Suppose N= A is an F-representation of M where say
LJ1.
N, =fa..] r+tl<icn . Then the matrix N/= 'n-r s an
1 1 1< ?r~
I=r L 13

F-representation of \ with respect to the ordering e .....

r+1
en,G1," " 'Cr * «fhu> "7 (9.8.3)/ applied to (Rj ,2) it follow:;

that there is a unique homomorphism f: R”~—F in which
f(~i.) = O < But the (i,j) entry of Z/ is y and so

f(yJi) ~ afjl as required.
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4) Suppose f; er:\—PF is a homomorphism in which f(y. .) = Kij"

sa}r. If N=[a..1l we have to show that is an
1 LV T

P-representation of M. Now, by (5*8.4)/ applied to (Rj> .,Z) we

have that n-r is an Pfrepresentation of M, so the result

Ini
follows.

We now deduce by (5-15)7 that R, R} are Zisomorphic
under a mapping which takes X, to Zys

(5.20) Theorem For a matroid M__ RM~ > v/here N is the

underlying simple matroid of M (defined in (1.24)).

Proof  With the notation of (1.24) we may assume that the first

melements of E (m$n) are precisely id . Hence the elements,

€ . eeennnn e are either loops or parallel elements. We now
mtl n
define RM with respect to e,,...,e]]l ; suppose Y =TI lYﬂT
r

is: the (nxr).'matrix over F{I for which (R ,y) satisfy (5.8)7.

O
Now let Y~ be the (nyr) matrix over R* defined by

_V_

—m
where the row (m+l<t<n) is zero if e is a loop in H and
if e is parallel to some eM (I<i<m) then v is precisely the

tth row of Y repeated. It is now routine to check that the

pair (Rj, ,Y?) satisfy all four conditions of (5.15)7.

(5»21) Theorem With the same hypothesis as (1.35) (for t-2),

suppose M=+ M, Then N2\ ( =S, say)
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Proof Suppose that Y = [Ir"j |[y.i0] 11, zZz=101 [ Zij 11
are the matrices over Ru , Ru respectively for which (P ,Y),

\% n?

(R ,z) satisfy (©.B)7. We shall identify elements of
2

R a R with their natural images in S. Define the matrices
_ Ir v/ s =
I)J/.io.® 1] 0 >Y = _[y.lo 3 ' [_1®z. ]
1®z, . B
o [1®z,]

We now show that (S,V) satisfy the conditions of
1) By definition S is a reduced ring.

2) For any r-set UNE , if sU=UlLUUg whereIP is an r™-

subset of (i=1,2), then it is easily seen that

(det Y(U1) ® 1). (1 ®detz(U0))

det V(U) = det YAUA~.det z'(U )

det Y(UL)®det Z(U9)

and since det Y(U”), det z(Ug) are either zero or units in

R , R respectively, it follows that det (U) is either
1 W
zero or a unit in S. By similar arguments it is routine to check

that every (r*r) subdeterminant of V is zero or a unit in S ,
and that S is generated by these elements together with their

inverses.

3) If N is any F-representation of M then it follows from (1.35)

that N has the form

IpO

[a.
.Eb'ﬁuai il

By (5.8)" there are homomorphisms f.1 r R—>F (i=1.2)

in which f,(y. .) = a.. and f (z. ) =p. . . It now follows
1(yij) 10 - 10) p10

from (1.1) that thepe is a homomorphism f: R ® R —»F in
i 2

which f(y..®1) = a . and f(Il®z. .) =P, . . Since f
10 10 10 10
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clearly factors through S, we get the required homomorphism f: S-*F

4) Suppose 1I: S—F is a homomorphism in which ,qgay
fly. .(>1 = aij' and f(I18 Zi'J ) = (%. . Certainly f induces
homomorphisms f~: RM~—>F (for i=1,2), in which

and f’Z(Z'ij') - ﬁ>” . Thus by (5.8.L)7 applied to (RML’Y)’
. T T
(R ,Z) we deduce that the matrices [I1I||[a..]] , 1 2|[P-.]]
r

are respectively F-representations of . By (1.36) it

now follows that f induces the required F-representation of M

Thus by (5.15)7, Rm~ S.

: To complete this section we now establish the exact algebraic

relationship between the rings A and

(5«22) Theorem  Suppose Z = [Zl'j 1 1<i<r is an (rxr) generic
"""" © Uj<r

matrix of indeterminates Z‘j .
i

Then

Proof  To avoid confusion we assume that (a X) is defined
as before and that Y is the matrix over R for which (R vy)
satisfy (5.B)/. Then Y has the form

Y=n_ W/]T where Y/= fy. ] 1<i<n-r
1J U3<r

Write S-I1tfiz | ](bet Z)' i< identify elements
of R with their natural images in S. In particular we form

the (n*r) matrix V =YZ over S. W now show that (S,V)

satisfy the conditions of (5.15)

1) It is clear that S is a reduced ring since R" is.

2) Every (rxr) submatrix of V has the form le where Y1 is

an (rxr) submatrix of Y. But det Y..Z = det Y .det Z which is
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either zero or a unit in S since (by (5*8.2)") det is either
zero or a unit in R (hence also in S) and by construction, det Z
is a unit in S. Now by (508.2)/, R(, is finitely generated (as
a 2-algebra) by elements of the form det Y~,(det Y») ' where
Y™ is an (r«r) submatrix of Y. By definition of S it follows
that these elements together with the Z”~ms (which are entries
of V) and the element (det 2) (which is the inverse of an
(rxr) subdeterminant of V) generate S as a 2-algebra. Also,

det Y1 = (det Y Z).(det Z2)"1

and, (det Y ) 1= (det Y 2)* Ydet 2)

Consequently it follows that S is generated as a 2-algebra by
the entries of V together with the inverses of the (rxr) non-

zero subdeterminants of V.

3) Suppose N is an P-representation of M We may write

N when N =[a.Jkicr and N = [p. .]I<i<n-r
o< J*r 1<s.Kr

We have to show that there is a homomorphism f: S—p in which
f(z ) =a (I<i,jer) , and the (i,j) entry of Y/Z is mapped
by f ont ... (I<i<n-r, 1<j<r). Now since B =ie,,...,e |
Y 0 pIJ (I<i r j<r) Si i i g r!]
is a basis of M det - det N(b) j: O . Thus N is invertible.

Suppose that NT = [C,. .JI<sisr . This means that
1 *Jy 1y
j<r

r G 22.1)

and £
k=1

Moreover, NN is again an P-representation of M which is
in column echelon form, since NI\TiJ‘ = {I—r|N2N_1JSLI . Thus b}f

(5.8.3)" applied to (Rj,,Y), there is a homomorphism f: R({p>F

in which y+. is mapped to the (i,j) entry of N,N~1 # That is
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for 1<i<n-r, 1<j<r (5.22.2)
ryij) =¢., ««
We may now extend f to a homomorphism f : R [fz. }. .]—>F
by defining f(Z ,) = . Since then f(aet Z) = det EO
this homomorphism in turn induces a homomorphism f: S—F.

We have only to show that the (i,j) entry of I/Z is mapped by

f top . Now the (i,d) entry of Y/Z is ~z~yn™ zZ~  (I<i<n-r, kj<r)
and
f(a ~ -J, fkik) mj,
I .
E (E ikakl) P,
-\ k1 1 K 1
3 J by (5.22.1)

4) Suppose f: 5-+F is a homomorphism, with say f(Z. . = a

(Ki,O<r), and f( J., Vik ) =372 (Ki<n-r, 1<j<r).
Then if N.1 = T«'lcll.l and NE = ip. .] we have to show that the
matrix N =] IN ]T' is an F-representation of M We first
note that det = f(det Z2) - 0 (since det Z is a unit in S),
so that N. is invertible.

LN ] f(y 1|‘)
Let If

f%n—r, 1) f&),’ln—r,r)

Then the (i,j) entry of N'K s
k:Zlf(yj_j‘k} Hi = k:Zlf("n'k) f(zki} = k-1 zkd - 0,,

Thus , and hence N/ = NX

Since f restricts in the natural way to a homomorphism from RI\’/I
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into F, it now follows from (5»8.4)/ applied to (r ,Y), that
-k _ is an F-representation of M. Post-multiplication
N2 v tj

by the invertible matrix still yields an F-representation

namely N as required.

It now follows from (5*15) that AMx RlVl under an isomor-

phism taking x.oto the (i,j) entry of V.

The Canonical Vamos Ring

In studying matroid representations we have already seen

in §2 that it really suffices to study representations which

are in p.c.f. This is the motivation behind the following

construction of the canonical Vamos ring

(5*23) Once again we assume the usual fixed ordering of K with

basis B. Suppose that the B-basic c.i.matrix has exactly s

non-zero, non-atomic entries. Let. T - 2[X.,...,X 1 , the

polynomial ring over Zin s indeterminates.

Y'e now replace each one of the non-zero, non-atomic entries

of by exactly one of the X Ns. Suppose the resulting matrix

is D/ =Td. ] r+l<icn . write D=1p[1JDs]l . Although T is
J I<j<r

is not a field, the matrix D over T is in p.c.f. in the sense

of (2.10).

Example Suppose Mis the Fano matroid on E = fl1,...,7} with

planar representation given below
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Clearly B = j1,2,3} is a basis of M Now

4 1 1 1
5 (l) © 0 (where the non-zero,
6 1 (% % non-atomic entries are ringed)
7
2[xl>x2>
1 00
0O 1 0
P 00 1
I = X1 e and D 1 1 1
0 1 4 1 Xlo
1 0 o 1 _.
X
1 0 X

Based on the matrix D we now construct the canonical Vamos
ring V,, in an entirely analagous way as beforej we let b be
the ideal of T generated by the set [aet u(u); U non-basis of M
and let a = FIfdet D(U); U basis of M . The canonical Vamos

ring is the ring

vm=<T/ "% )

In much the same way as R is a universal object with respect
to column echelon renresentations of M we will see that VMis
universal with respect to representations in p.c.f.

Let _6. denote the natural nmep of T into VM and let
ed )=t . write L;=[t ] and L=[I Lf)1 . Once
again we can now list all the analagous results which hold for
the pair (V,.,L). The only 'new' part of the proofs is to note

that every representation matrix is protectively equivalent to

a representation in p.c.f.

(5»5) With T, b, a as above, Mis representable

if and only if . a f \&

(5.7)" 1) VM, = (0) if find only if ) is not representable

2) —Vj\/j is _a _Noetherian ring
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(5*8)/ The ring V), ,together with the matrix L, satisfies

is a reduced ring.

2) Every (ixr) subdetenninant of L is either zero or a unit in

V , and V is finitely generated (as a 2-algebra) by these units

together with their inverses.

3) For any field F and (nxr) matrix N which is an F-represent-

ation of Vin P.c.f.,___there is a unique homomor_ghism f: Kl’_*F

which makes the diagram below commute.

4) For any homomorphism f: V,—F. (F a field) there is a

unigue F-representation N in p.c.f. which makes the above

diagram commute.

(5.9)# To each p e Spec V  there corresponds a renresentation
of Min p.c.f. over K, the quotient field of V~/p , namely
= fIN ] r. ()] T (where mis thé composite map V|-"V}/p -»K"),

Conversely, to each F-representation N = [i r_il[a.ld]] in p.c.f.

there corresponds a homomorphism f~: V,7~—=F in which

f(t_._.) =a. , and hence a corresponding prime ideal pM of V,,,

where p - Ker fA.

(3.10)# The ring is a Jacobson ring for which V./m is a

finite, field for each maximal ideal m

(5.13)" (universal property) Let Sbe aring and Y =[i [Y7]T

(where Y/=[y J1r+.JU<_i<n , say ) an (nxr) matrix over S in p.c.f.
J<r

such that the pair (S,Y) satisfy
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1) S is a reduced ring.
2) Every (rxr) subieterminant of Y is either zero or a unit in

S, and S is finitely generated as a 2-algebra-by these units
together with their inverses.

3) For any field F and (nxr) matrix N which is an F-representat-

ion of Min p.c.f., there is a unique homomorphism h making the

diagram below commute.

(where 6 is induced

by 6(d. ) =y. )

T W

4) For any homomorphism h: S—=F (Fa field) there is a unique

F-representation in p.c.f. which makes the above diagram commute.

Then the rings V and S are isomorphic

under an isomorphism taxing_t. . toy. ..
= J X ] -

In 84 we saw that the notion of generalised projective

equivalence was, in every natural sense, the sane essentially

as projective equivalence. In the light of this observation

the following theorem is of great significance

(5.24) Theoreme The correspondence in (5»9)" between the prime

ideals of and the representations of Min p.c.f. is

actually a bijection, providing we do not distinguish between

g.p.e. representations. That is, there is a natural one-to-one

correspondence between the prime ideals of V, and the (g.p.e)

classes of representations of M.

Proof By (5.9)" we have to prove that if N~N are represent-

ations of Min p.c.f. over fields F/~F~" respectively, then
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Ker f T= Ker t if and only if N, N are g.p.e.

For ease of notation write f~ for f~ (i=1, . Suppose
i

that N|= [Irl[aid]]T , and N_=[I_[llp .J]J.
First suppose N~N,, are g.p.e. This means that there is

an isomorphism <x P~ in which cr(a_) = P— . But then

F2(ti > hj =crict. ) =crC,(t. )

Thus Ker f2 Ker f1

By (5«S.2)" this means that f, =0 f,
since o is injective.

Conversely suppose Ker f~ = Ker fA . Now for i-1,2
V/Ker f ~f (V) , where f.(VW) denotes the subring of F.
generated by the image of under f~, so we deduce that
flo/\/\) ~ fZQ/I_} under an isomorphism o which maps al'j' to 6i'j
Since for i=1.2, f.{vl\)| contains all the entries of Nl.,it
follows from (4.16) that Fi is the quotient field of fi (Vf().
Consequently, by the universal property of quotient fields, it
follows that o' extends in the natural way to an isomorphism

from F onto Fg . Thus 17, N2 are g.p.e. by defn.(4.15).

By (5.24) we have not only provided the third character-
ization of generalised projective equivalence promised in 84,
but we have also reduced the representation problem to a study
of Spec Vy and for this we use the sophisticated machinery
of commutative algebra. Moreover if we are just interested in

representations over finite fields we have

(5.25) Corollary The correspondence in (5.9)" restricts to a
bijection between the maximal ideals of V., and the g.p.e. classes

of representations of Mover finite fields.
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Proof By (5.22)-) it suffices to prove

1) that if mis a maximal ideal of V then VJm is finite

and 2) if Nis an F-representation (in p.c.f.) of Mwhere F

is finite, then Ker f,Y is a maximal ideal of V.,

1) has already been established in (5<10)

2) since F.is fiqlite, f (VM) is a finite integral domain contain-
ed in F. But every finite domain is a field, so because of (4.16)
fN(VI\/? = F. that is, f'\T is surjective and \/M’Ker fN~ F.

Hence Ker fN is a maximal ideal of VN/I'

In the next theorem we establish the algebraic relationship
between the rings VIVI’ RIVI We shall assume that Mhas k
connected components and hence (by (2.22)) the B-basic c.i.
matrix has n-k atomic entries. Let g=n-k, andH

the free Abelian group on g generators 2zZ%,...,Z

(5«26) Theorer RI\’/IS V&&I<ZIA""’ZQ> (= VM(h))

Proof Write S =V~<Zn,... 2> . Recalling that L=1i |iJ]»

(where iJ=ft. Jr+l<i<n ) we shall identify the t. ,'s with their
J i<jcr 1]

natural images in S. By construction the matrix L1 has s atomic
entries (all equal to 1), so suppose these appear in the

(> J])je=*>(i >Jq) positions of I/. It can be shown by an

argument which is a repetition of the proof of (2.8.1) that

we can find elements >g.,,...,0 e H (cs)
such that f.lkg.1k =7, (for k=1,...,0)
So if we write y11 = fitxOgJ and Y' = [yij.,]r+1<|.<n
1<«Kr
then Y diag(f,...,fY L/ diag(g”,...,g") (5.26.1)

th
and the k atomic entry of Yf is equal to ZK (k=1,...,9).
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If we now write Y = 1[I '|T/]T , then we will prove the theorem

by showing that the pair (S,Y) satisfy the conditions of (5*15)/

1) Certainly S is reduced since V is.

2) By (5.26.1) every (rxr) subdeterminant of Y has the form

h det L(U) where h e H and U is an r-subset of E. Every
element of His a unit in S and det L(U) is either zero or a
unit in Vw (hence also in S), so we deduce that every (rxr) sub-
determinant of Y is either zero or a unit in S. Moreover, by
construction, Z~,...,Z~ all appear as entries of Y/, hence (up
to sign) as (rxr) subdeterminants of Y. Now S is clearly
generated as a Z-algebra by together with the elements
Zl""’zq’ Zzl,...,Zdl . By (5.8.2)* Vkl/l is finitely generated
as a 2-algebra by elements of the form det L(U), (det L(u))J
(where U is an r-subset of E) , and det L(U) = h det Y({U) for

some h e H. ‘It now follows that S is finitely generated as a

2-algebra by the (rxr) subdeterminants of Y, together with their

inverses.
3) Suppose that N =[I [N] is a column echelon F-represent-
ation of Mwhere N/=[a. Jr+l<i<n . W have to find a

1] Uj<r
homomorphism h : S—P for which f(v.t;] -a.i i
By (1.42), N has its atomic entries in the same correspond-

ing positions as (and hence also 1/, Y;), that is, the

(ir>]))e==>(i >Jq) positions. For ease of notation write

a . =y (k=1,...,q)
kJk k
The elements fred,* jfm gl ,**.gr are of course ‘functions'
of Zl,...,Z of the form Z’il... Z‘('_:I‘l (itx € Z), so if
= NNZIEx*F*x Q) 6 = , then in the sense

of (4.9) we may define elements C$r+1""’6n’ nl,...,ur of F bX
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i=r+1

6i = fi<vi..... Yq) (5.26.2)
=1, -

>
1

EO(r1>-“ 'YQ)

The 6,'s ad u.'s are all non-zero, and since f. g. =
' PR

; — k—ly*eey (5.26.5)
6l k T TE
Consider the matrix
) — " ) “1 —
N1 =diag”, ...,hr> 5r+v**'»6n ) Ndiag(M1 ,... ,n“ ),

S0 N1 = Llr‘ln&]T where N(1=[6.i a'ijpj 1.  The matrices N,,L\I.1

are protectively equivalent so is an F-representation of M
Moreover, is in p.c.f. since for each k-1,...,q, the k*
atomic entry of is

6Tla. i n,1=6.1Yk(ij =1 (by (5.26.5))

i J
k Vk J k Jk
Thus, by (5*8.3/ there is a homomorphism h: V;—F in which

-1
h(t..) =6. a . p-.J'rI . Certainly h ,extenas to a homomorphism

frora S into F if we define h(z») =y~ for k=1,...,q.

Now for i=r+1,...,n, N ¢ we have

>
<
11
>
—
-
(]
N—r
11
>
’_T.,
0
i~
0
)

=h(f.) h(B.) e, :V .mTl

- b(fA(, ee.,Z9)) h(g (Z*,....,Z )) 6~ 0.. p.

=fiU-—-.Yq) S)(r,--..,rQ) 6Tk.. mT
= 6i M Mj1 (by (5.26.2))
= crj as required.

4) Suppose h: S->F is a homomorphism in which h(y. ) - n_

1] 1]
say. Write N\/= f a n d N=1[i] W] . We have to show
that N is an F-representation of M

For k=1,...,9 write a, k =v,1 D then h(Zk) =yk,
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which is non-zero since ZK is a unit in S. Let 81, P be
defined as in (5*26.2).

Now h(f.t.__.lq/.) = h(y,..) - a ... , that is,
ij

) h(fi(z1,...,2z()) h(gdZ1,...,Z ))

1
>
-

h¢tip) ri(rl,—.,rg) 8j(rl... Yg)
h(t”.) 6. (@

Hence hfti..)\ - 6i'_laij iaJ._l Thus, by considering the
restriction of h to V we deduce from (5.8.4)* that the. matrix

J — ~
= = [6. "a... , o - i K-
N1 [Irl n&] ,  where n& [61 aIJ lel] is an F-represi
ation of M But N is protectively equivalent to so Nis

an P-representation of Mas required.

The theorem now follows from (5.1b)7.

(5.27) Remark Ve have shown that both the rings A, ,and R, are
independent of the ordering of M We obviously hope now to
establish the same result result for VIU’ that is, if VK’/I is the
canonical Vamos ring defined with respect to a different

ordering of K, then

VB =V (5.27.1)

In [29] , Sehgal conjectured that for any commutative,

Noetherian rings R, S,

RY> ~ S<Y> implies R~ S.

If this conjecture were true then (5.27.1) would follow immed-
iately from (5.18) and (5.26). However in [22] , Krempa has

provided a counter-example, so it seems that we may not be able
to deduce (5.27.1) from (5.26)'and the general theory of group
rings as | had first expected. 1 believe however that a proof

of (5.27.1) could be constructed along the same lines as (5.18),
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using (5.15;" Until all the extremely labourious and technical
details of such a proof are checked, (5.27.1) will have to
remain a (very strong) conjecture. It should be noted that all
the examples of VM given at the end of this section are certain-
ly independent of the ordering of E.

Until (5.27.1) can be proved, the analagous results to
(5.19),(5.20), (5.21) for V will only hold with respect to
certain orderings of E. However, since these are very signific-
ant results modulo (5»27»1) we state them below. Only (5*19)'

now requires any additional justification.

(5»21V Suppose M= (E”) © MEg). Then with respect to the
orderings of E,EMNEN given in (5»21),

Vv z Ywe

nfvm ®z Vu )

| 5 ‘ J Q \\‘ There are orderings of E for which s VA

Proof By (2.25) there is an ordering of E with respect to
which the matrix A" is in step diagonal form. Suppose this
ordering is ey..,e”™ . Now suppose A =11 | ] is an
F-representation of Mwith respect to this ordering which is in
p.c.f. By (2.26) every atomic entry of A is equal,to 1, since
by (1.42) A is in s.d.f. Thus [I iaT]T is also in p.c.f.
With this consideration, the proof of (5.19) carries through in
this case if V.. is defined with respect to e...... e and V *

»€,€

is defined with respect to er+1”"' > 1*...;3 r
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($.28) Examples

1) Suppose M is the uniform matroid Ug}k for k>4 < Write

m = k-3

Then D

T = 2f)(]:,...,an

o0 m O
seeX L RO

A

m

In this case b =0, and a = (Ilg Xl.)(ign;,(l—xl))(igt(x.l—-x.))

J

Hence VM

in V. it is now easily deduced that M is representable over

= Z[Xl" "’Xinl(a)\ in this case. Since a is a unit

P if and only if o] > me2

2) The matroid Mis regular if and oply~if Vf,a 2

Proof First suppose ~ 2. Per any field P there is a hom
omorphism  f: Z-»F defined by f(n) =nl1 , so by ($.8.4)"
M is P-representable for every field P, that is, Mis regular.
Conversely suppose Mis regular . Then by (2.13) there is
a (0,1,-1)-matrix A such that for any field F, any F-represent-
ation of Mis protectively rquivalent to A. It is now routine

to check that the pair (Z,A) satisfy the four conditions of ($.1%$)".

3) Suppose Mis binary. Then_V e G?(2) if and only if M

is not regular.

Proof If Vj,~ CP(2) it is immediate from (5.8.4)" that c(m)={2],
so Mis certainly not binary.

Conversely Mbinary and not regular implies by (1.43) and
(2.13) that every representation of Mis protectively equivalent
to the matrix A - [Ir'AE]_IIO . It is now routine to check that

the pair (Gp(2), A) satisfy (5.15)" «



We may illustrate this example in the special case when Mis
the Pano matroid whose planar representation is given in (5*23)e
The matrix D is also given in (5.23). Now Mhas 7 non-bases,
of which only {3,4,51, 1,4,6?, 2,4,/?, i5,6,/? yield non-
zero subdeterminants. In particular

deto , Z =, , sdetD(14,6?)_, 4,

det D(i 2,4,7?)= Xyl

are all equal to 1.

i N YN
hence the images of X~ X '3 in vu

may as well assume then that

100
010
001
D S 111 and T =127
110
011
101

in which case the only non-basis yielding a non-zero subdeterm-
inant is {5,6,7?, and det D(?5,6,7?) = 2.

Thus b =\/(2) = (2), and it is easily checked that a = 1.

Thus V, =1z/(2) = GF(2).

We also note here that if we remove the line (5,6,7) from
Mwe obtain the non-Fano matroid ML ; by the same argument as
above in calculating V,/ we may assume that D is given as
above. In this case b =0 and a =2 since {5,6,7? is a
non-basis, so that Vy = ' By (5.8.4J, 2 is the only

prime (or zero) not in c(M/)>

4) A weak generalisation of (5.28.3) for arbitrary finite fields

is the following result . We assume F = GF(pn)

T.F.A.F. 1) M is representable only over fields isomor-
phic to F, and any two representations are g.p.e.
2) V, *F

(Note :- by (2.13) this reduces to (5.28.3) for F=GF(2))



Proof 1) implies 2) Let A be an F-representation of Min p.c.f.

Then it is clear that the pair (F,A) satisfy (5»15)"e

2) implies 1) is immediate from (5-24).

5 In (4.14*1) we constructed , for each prime p, matroids M, VJ
having respective characteristic sets fpj and P\[p”~p] . For
either matroid, any representation is protectively equivalent to
the matrix A given in the example. Using this matrix, it is
routine to check (using (5*15) ) that

VM= 2/(p) (=GF(p)) and V,/ = where

a = njp/ prime < p(

6) If M=PG(r,F) (viewed as a matroid in' the usual sense) where

Fis a finite field, then V,. ~ F.

Proof Let A be the natural representation matrix of Mdescrib-
ed in 84. Using (4.17) it is now routine to check that the

pair (m,A) satisfy the conditions of (521 /e

7) By the previous examples we have seen that (where
a is the product of the first t primes, for any t) and any
finite field all occur as the Vamos rings of matroids. These
are of course special examples and we would like to know in

general which rings can occur. A partial solution is

If f(x) is an irreducible polynomial in 2[X] , then there

is a matroid Mfor which

M= @YY ) (~Y)}  for some g() e Z[X]

Proof We use the same notation as (4.10)-(4*12). Let K be

the quotient field pf ZIXJ/(F(X)) and x the natural image

of X in K. We recall that the construction of (1,0,f(x)) in
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FG(3jK) (described in (4.12)) induces two matroids, '\4(x)

and '\{(x) , the latter being the actual configuration of the
construction (without any extra lines of FG(3,K) added) , For
ease of notation write " V\{(x) , If Ais the natural matrix

corresponding to the points of the construction, we have seen

in (4.10) that the collinear triples force each entry of A to have

the form g. J.(x) for some g..(X) e z[x]. (note that A is by
construction a representation of but n°t necessarily
of M) . For exactly the same reasons we may assume that the
matrix D used to define Vy is precisely D= [q:l(x)] over

T =2z[xJ .In this case all the non-bases of Mhave zero deter-
minant in D except for one, namely that corresponding to the
triple B, PQ, 8 , and this has determinant f(X) . Thus

=b = (f(x)) (since the latter is prime) and

VJ =
By (4.1j5) and a similar argument this result generalises to
Corollary If f~,... ft is any family of polynomials in

7(X ,...jX”] which generate an ideal b whose radical is prime.
Then there is a matrold {! for which

VM= (4 X1,... ,Xt]//b) for some gc Z X™, ... XN

8) In every one of the preceding examples the ring V is an

integral domain. For examples of non-domain Vamos rings we

consider the matroids of (4.13.2) and (4.13.3). In both cases
Ic(M] = 2, so the desired examples follow from (5.14). In fact
using (4.10) and (5.15) (with the respective natural rep-

resentation matrices) it is easily seen that the canonical Vamos

rings of these matroids are respectively

(27/(1103. 2809))(5) ., (z/(13.19))(-7}

@Y (x) )~y) where  g(X) =nfdet D(U); U basis of u{.
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where a, a/ are the products of the non-zero (3x3) subdetermin-

ants of the respective natural representation matrices.

9) We now exhibit an example of a matroid Mfor which Ic(ii)f = 1

and yet V., is not a domain:-

Let ' , My be copies of the matroid FG(3,4). By (5*28.6)

V ~ OF©®) (for i=1,2). By Theorem 39 in [42] , the tensor
1

product of finite fields is a reduced ring, so N(GF(4) €*GF(4)) = 0.

Thus by (5.21)/, if M= ©Mg it follows that

Vu « GF(4)®2GF@4) ( * GF(4) ®pj?’(\2 v4) ).

We claim that the latter is a non-domain. For, write
GF@4) = [o,1,e,e~21 where e is a primitive cube root of unity.

Then [l,e} is a basis for GF(4) over GF(2). Thus if we v/rite
1 = 1«1 , a2 = 1®e , =e®1 , a e©e ,

.then (an ,ari,a,,a;} is a basis for V{, over GF(Z), so V,; consists

4

of 16 elements of the the form i.=71 ala.1 where a.1 =O,:,L

it = a.+ a.+ , = a,+ +
Now write X a1 aJ a,4 Yy a2 a5 a.a

Certainly x, y io. However since e2+e =1, and 2=0 , we havet-

Xy (1Ce) ++(e©1) + (e©Ce) + (e©Ce) + (e®i) (e®e) +

(eCe2) + (e%>e) + (e%te2)

(Ice) + (e0i) + (e°Si) + (efe) + (ePe2)

(1®e) + (@) + (e®i)+ (1«1) + (€0i) + (eCe) +

(1®1) + (I®e) + (e®i) + (e&e) =0

Thus V is a non-domain. In this example li is disconnected,

but we can define a matroid Y as that being induced by the matrix



-128-

ovCr GF(4) wnere ‘IIYEL is the natural reoresentation matrix

for PG(3,4). Ey (1.4-5) -is a connected matroid (which differs
from Monly by the addition of the last line of A). Since both
non-zero entries in the last line are atomic it follows from (4.17?)
that vJ S uniquely representable by the matrix A, and hence it

is routine to check that the pair (Vy, A) satisfy (5*15)" for the

ring V{/. Thus V./ ~ Vf, which is a non-domain.

10) Me now show how (5»5)" can be used to prove that the well-
known Vamos matroid is not representable. This rnatroid Mis
usually defined as the matroid on E = j1,...,8j with bases al.l
4-sets except [1,2,3,4] , [1,2,5,6} , [1,2,7,8] , [3.,4,7,6 },
[3,4,7,8] . After a suitable relabelling of the elements it will

also be correct (and more convenient in our case) to assume that

the non-bases are U= [2,3,4,8] , [1,2,7,8] , U= [1,3,4,7] ,
= [3,4,5,6} , =[1,5,6,7} . W.ith respect to the ordering
1,...,8 , the matrix D becomes

1 1 1 1

h X1 X2
1 0
XJ X4
0
X5 X6

Now det DU = 13X so the natural image of X in V
AU =125 ural image of X, In Vy

will be equal to 1. 7 may thus assume that X =1 in D and

that = NXAN,...,Xg]l . In this case
det D(U1) =0 , det DU2) = X~g - X , det d(U3) =0 ,
det DU.) =0, det DU, = X.X,Zf - X X, - X,/f + X7

Write gl= X3X6 - X,X5 ghAn XN - XN - XM+ X3
Then b = (gl1,g2) . 'Ve note that the sets Ug = [1,2,4,7 J and

U, = [2,5,6,8 | are bases, and
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det D(Ig) =Xy det D(U?) = XX - XQXA - Xt Xg
But then the polynomial g = XAMXAXN - XQX™ - XN+ XN
divides a. How,
g =X"2 + (1-X1)gle bc A

Thus ¢ divides a implies aeWb and by (5»5)", Mis non-

representable.

Relationship to White's bracket ring2

An alternative approach to reducing the representation problem
to a ring-theoretical one has been made by White in [38,39,40,411.
The rinp; Bl\'/l (called the bracket r!Lng) which White associates with
each matroia Mis a ring of generalised determinants, and which
is also ,in a weaker sense than ours, a 'universal representation

object for M'. We now determine a relationship between the

bracket ring and the Vamos ring.

e Let the matroid Mon E be of rank r as usual. The bracket ring

is defined in the following way :-

To every ordered r-tuple U=(ul,...,u ) of elements of E,
associate a symbol [u”,...,u ], or simply [u], called a bracket.
Let SM be the polynomial ring over 2 generated by the indetermin-
ates [[u]; I e Er) . Let a be the ideal of generated by all
elements of the following three types

1) [u], if U contains repeated elements or is dependent in M

2) [U] - (sgnecr)fer(u)] for any permutation a of I

r
3) [ul,...,ur][vd,...,vr] - i]lfvi,u2,...,ur]fvl,...,vi_21,ul,vi+l,...

The 3yzygies are any relations in this ideal. The bracket

ring Bj, is now defined by B = S"/k.

We now suppose that B = je~...,« J is a basis of Mas usual.

, Vi
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Now write a_7 for the ideal of SIOII generated by the ideal a
together with the additional element [B] - 1, and write

Bf =S./a7 (so if z is the natural image of the element [B] - 1
in BK\h then bE/I: BM/(Z) ). If now the ring T and ideal b of T
are defined as in the construction of the simplified Vamos ring R

then the bracket ring and Vamos ring are related by.

(5.29) Theorem With the notation above, BY s T/b

Proof, It suffices to find homomorphisms y:  »T/b and 1. T/b—bf,
for which Y!"" and 'hf are the identity mappings respectively on

T/b and b(, . For ease of notation we shall write i for e. in

E (i=1,...,n) and for 1<j<r , r+1%ikn , U. . for the r-tuple

(I>...»]" 1>ixj+1>.#,>r) . We recall that T, b are defined with

respect to the matrix

r+131° Xr+i',r

¢

LXn,I Xn, rJ

and for each UC Er we now define det a(u) as previously, but

noting that we have to respect the ordering of U. In particular

det X(Uij') =+ Xij' .

Now let Y! S —T be the homomorphism induced by mapping
y (Eu])i= det X(U) for'each bracket. [Uj . .By elementary properties
of determinants (including the Laplace expansion) and the definition
of b in T, it follows that yU') ¢ ~ . Thus y induces (in the
natural way) a homomorphism y: B/—»T/b.

Conversely, let i< T-+S be 'the homomorphism induced by
o(x.iJ.) = ti] . 'Hus induces (via the natural homomorphism SI\/I ﬁ)

a homomorphism #: T-»B', . We wish to show that b C Ker if , and

for this we will have to prove
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For any r-subset UC ii with Je\u] = s=1

(5.29.1)
V(det X(U)) = + fBI 3 U] in B

We prove (5.29.1) by induction on s. |If s=1, then U = U.J. for

some r+l<i<n , 1<j<r , and the result is clear since

I (det x(U.IJ_.)) - 1U.i.j.] . Next assume s>2 and that the result holds

for r-sets U/ with jB\U/1 < s. Without loss of generality, assume

that U\B = [i I""’isl and that B\U = [I,...,s] (that is,
U={s+1,...,r, i ,...,i } ). Then expanding along the first row
we get
det X(U) =
X. X X. QeeeX - X oo
o1 v vV ooV -12S 'Cov. 2 2
i 1 Ns X X s X1 1
S s s
(5.29.2)
+(-i)s“1xi o X aaaX
.121 rass 1
X1 I"'X15—1
S S

But by the inductive hypothesis, for each j=1,...,s,

(X .eeX. . X . .eeeX.
,121 v '1 2J 1 Y

- [b] [j,S+1,...,r’ |gt...>|g]
TR SRS IaRRe]

Thus, if we apply | to (5.29.2) we obtain
I(det X(u)) =[B]S2 ([IL 1,s+1,.. r,i2,...,igQ]

H(-0° AUyndlSs*+L,..., ri, ., id )

Now, because of the syzygies of type (3) in a, it follows that in Eﬁ ,
EBl[u] = [I>**#>r][ifs+li*** r>i?,ee.ij =

. < s
+ f1 »3,ee.,r][ 2,s+1,...,r,i2,...jig] +,,'

H1...,s-1,il,s+1, ..., r][s,s+1, ..., r, i, ..., ]
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because of the syzygies of type (2) in a, it follows that (up

Now,

to sign) in Bjj , [B][u] is equal to the expression in brackets
in (5.29.3). Thus, up to sign,

+(det X(u)) = [B]S 2([B][UI) = [B]S_1[U]
which proves (5.29.1) by induction.

So if now U is a non-basis of M, it follows from the syzygies
of type (1) in a, that [u] =0 in Bj) and hence by (5.29.1) that
il'(det(u)) =0 in b’\./l . Thus b C Ker ijr and induces a homo-
morphism T/b_»B’K'/I in the natural way.

Finally we have to show that the mappings y\]i defined above
satisfy Wf = idT/b & Y = idg/

Certainly wwi/(X. .) =y([U. .]) =Xij' and since T is gener-
ated over 2 by the indeterminates X~ it follows that Vy|r= id*y®

Conversely 'B™ is generated over 2 by the brackets [U], and
by (5.29.1) we have,

M M) =t(det X(U)) = [B]S_1fU]
But, in b' , fB] =1 (since fB] - 1 e a/) , and so \)y([U]) = [U]

in BK/I and W = idD/ as required.
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