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ABSTRACT

A major challenge in building shareable datasets
for phonetic studies consists of maximising data
collections while minimising the errors involved, in
particular when automatic processes come into play
(e.g. labeling, formant detection...). Automatically
extracting formants from large amounts of speech
frequently produces artifacts, due to formant jumps,
alignment problems, or noise. One solution is to
use formant range filters. However this requires
prior knowledge about the vowels, such as formant
range information. Here we propose to use the
Mahalanobis distance to remove erroneous values
relying only on the labeled speech data. Our study
is conducted on a Quebec French corpus including
more than 170 k tokens of 16 vowel types. Results
show that the proposed method can complement the
threshold-based filter approach. Furthermore, it can
be used autonomously for undocumented languages
to eliminate erroneous values. The approach also
makes it easy to adjust the degree of filtering.
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Automatic filtering, Corpus Phonetics

1. INTRODUCTION

In the context of automatically annotated medium to
large size corpora, the data are generally numerous,
heterogeneous, and noisy. Different kinds of
errors arise from automated processes, such as
formant-tracking jumps, transcription issues, or
mismatches between the expected and the actual
pronunciation of a word, among others. The
said errors then lead to the presence of erroneous
datapoints in the datasets. On very large datasets,
erroneous values might not affect the results, but
with medium-size datasets(e.g. with 4 or 5 tokens
of each vowel type per speaker), more common in
phonetic studies, erroneous values will likely bias
the subsequent results. Thus medium-sized datasets
need "cleaning" as far as possible.

Several methods can be used to identify erroneous
values during or after the value extraction process
(see [1] for methods applied during the formant
extraction; see [2] for methods applied during the
automatic alignment). Here we address the issue
of "post processing" methods such as formant range
filters (e.g.[3]). Formant range filters are the most
common and work as follow :

1. the user sets up a series of value ranges between
which formants must fall in order to correspond
to the known/expected vowel profile

2. the filter go through and check the formant
values extracted from the audio corpus

3. vowels with formant values oustside the ranges
are discarded

The issue with those methods is that 1) there must
be literature on those values for the given language;
2) ranges are generally set in a wide and arbitrary
fashion (e.g. [3] use ranges from 1500 to 2500Hz
for French /i/ F2). However it does efficiently
identify the most obvious erroneous values.

Here we present a tool for filtering datasets from
low resource language, with no value ranges or
vowel profiles available. Quite counter-intuitively,
Quebec French (QF) can be considered as low
resource when it comes to phonetic description or
NLP. But its closeness to France French allow us
to compare our results to some expected vowel
profiles. Thus we test our tool on the QF dataset
from [4].

1.1. Quebec French vowels

Quebec French vowel system includ 16
phonological vowels [5, 6] : /i, y, e, E, 3, ø, oe, a, A,
O, o, u/ and the 4 nasals /ẽ, Ẽ, õe, Ã/. These vowels
undergo a large amount of phonological processes,
namely laxing, diphtonguization, devoicing,
syncope, according to specific phonological rules
(described by [5, 6, 7] among others).

Most vowel qualities resulting from these
phenomena can be grouped according to the notion
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of vowel class [8, 9]. A vowel class represents
a phoneme and its position in a syllable [10], for
instance iR is the class representing phoneme /i/
followed by a lengthening consonant. It is a very
important concept in QF for vowel position in the
word or syllable strongly affect the allophone used.

Table 1 gives the inventory of the classes relevant
for our study. Vowels in class _C they are followed
by a coda (any consonant), vowels in _K are
followed by a non lengthening consonant coda,
those in class _R are followed by a lengthening
coda (/K,v,z,Z/), finally in class _# vowels are in
absolute final. Class _# usually don’t trigger any
process. In class _K high vowels are laxed (e.g.
"bicycle" /bisik/ [bisIk] bicycle ). Class _R usually
triggers lengthening and diphtonguization for non-
high vowels (e.g. "père" /pEX/ [paEX] father ). Class
_C is only relevant for the /A/s and can trigger
dipthonguization for /A/ or posteriorisation for /a/
(e.g. "pâte" /pAt/ [paOt] pasta - "là" /la/ [lo] here).

Phoneme Vowel Classes
i i# iR iK
y y# yR yK
u u# uR uK
e e#
E E# EK ER
ø ø#
oe oeK oeR
o o# oK oR
O O# OK OR
a a# aC
A A# AC

Table 1: Vowel classes inventory, inspired from
[9] and corresponding to [4]’s corpus.

1.2. Mahalanobis distance as a filtering method

In [11], authors showed that Mahalanobis distance
can be used as a tool for filtering. The
Mahalanobis distance of a multivariate vector x =
(x1,x2,x3, . . . ,xp)

T to a set of mean value vectors
µ = (µ1,µ2,µ3, . . . ,µp)

T and having a covariance
matrix Σ is defined as follows:

(1) Dx = (x−µ)T
Σ
−1(x−µ).

The square root of Dx = (x− µ)T Σ−1(x− µ) gives
the number of standard deviations between the
observation and the mean of the distribution. In the
case where P = µD, the distance is 0, this distance
increases as P moves away from the mean in a
determined space. Thus by choosing a threshold for
the distance ([4, 11] chose 3 standard deviations),
it is easy to discard any vowel token further then X

standard deviation from the computed profile.

Figure 1: Schematic explanation of the
Mahalanobis distance. Blue lines represent the
distance of F1 (axis y) F2 (axis x) and duration
(axis z) between the mean (orange squares) of
two vowels (P1 and P2). Stars are tokens of P1
and P2 and the orange arrow indicate the distance
measured.

2. METHODS

2.1. Quebec French data

The Quebec French dataset that we use here is part
of [4]’s Ph.D work. They recorded 10 couples (10♂,
10♀), performing five tasks involving the pictures
from the Diapix task [12, 13]: 1) reading, 2) image
difference identification task alone, with a spouse,
with an unknown investigator from the same region
and finally with a stranger from France. A recording
session lasted approximately 3h and the total corpus
duration is 27.22h with a minimum of 1.19h of
speech per speaker.

The recordings were all segmented in Speech
Units and orthographically transcribed by hand.
Author then used the SPPAS software (v. 2.7,
adapted for QF phonetics and phonology; see [14])
for automatic segmentation and alignment (for more
details see [4]). A total of 162 543 vowel tokens
(belonging the 16 vowel classes introduced above)
and their acoustic features were extracted from these
recordings. Here we only use duration (s), mean F1
(Hz), and mean F2 (Hz).

2.2. Mahalanobis distances setup

In this work we consider a three-dimensional space
made of the vowel tokens’ duration (s), mean F1
(Hz), and mean F2 (Hz). In addition to the
traditional mean F1 and F2, we take into account
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phone duration for it may be helpful to get more
"discriminating" profiles. The filter was coded as
a R script [15], mainly using mahalanobis function
from the mvtoultier package [16].

In the next section, we will investigate several
settings for MD. As the data were build for a
sociophonetic study we had more information than
just the vowel class and the speakers’ gender, and
were able to try 4 different set-ups taking into
account the vowel class, the speaker, their gender,
or the speech condition. Thus for each 160k tokens
of vowel we calculated a Mahalanobis distance
between the phone (P) and:

• the mean of the distributions of mean F1, mean
F2 and duration as a function of vowel class.

• the mean of the distributions of mean F1, mean
F2 and duration as a function of vowel class and
speaker.

• the mean of the distributions of mean F1, mean
F2 and duration as a function of vowel class and
production condition.

• the mean of the distributions of mean F1, mean
F2 and duration as a function of vowel class,
speaker and production condition.

3. MAHALANOBIS DISTANCE AS A
DATA-DRIVEN TOOL FOR PRUNING

The method allowing to keep the most data points
while excluding the most extreme values was the
one using only vowel class. The rejection rate
was of 12% (σ = 1.4 depending on vowel classes),
which is close the 10% reported by [17] on a similar
work. The class ER shows the highest rejection rate
(13.5%), which makes sense as these vowels can be
both diphthongs or monophtongs, thus making the
computation of a unique profile more complicated.
The monologue condition lost just over 16% of
its occurrences after filtering, compared to around
7.7% in Reading, 11.5% for spontaneous speech
with a spouse, 13.6% with a stranger, and 13%
with a foreign stranger. These style related results
become very interesting in the light of phonostylistic
findings and can be linked to work by [18, 19,
20, 21] (among others) on phonetic reduction and
variation in speech, meaning that our method could
be used efficiently for research in this field.

However, we have resorted to a more qualitative
examination of the differences between the
occurrences estimated as too extreme by our
different filters in order to have a sharper vision of
the different performances of these methods. Thus
we examined the occurrences classified as valid or
erroneous for three classes at the extremities of the

system: i#, u#, and A#. We have specifically chosen
these three classes for the following reasons: i# are
among the most stable in terms of phonological
variation, and raise very few problems for formant
detection (except for F1 detection when contextual
devoicing happens); u# also have this stability, but
represent a greater challenge for formants extraction
due to compactness, very low F2, and the possibility
of devoicing; as for A#, they have a wide range of
phonological variability, going from [a] to [O], and
can trigger detection problems when F1 and F2 are
too close (e.g. ∼ 1000Hz).

Table 2 summarises the observations made for
each filter and for the three classes. The table reads
as follows: with the filter only using vowel class,
out of the 3 171 tokens of i# tagged as erroneous
8% were actually valid datapoints (i.e. with mean
F1s between 100Hz and 500Hz, mean F2s between
1800Hz and 2800Hz, and duration under 0.5s)1,
over the 570 u# tagged as erroneous, 21% were
valid (100 < F1 < 500Hz, 600 < F2 < 1200Hz,
dur < 0.5s), and over the 1 699 tokens of A# tagged
as erroneous 17.5% were valid (400 < F1 < 1KHz,
800 < F2 < 1700Hz, dur. < 0.5s). On the other
hand, some tokens which should have been tagged
as erroneous were not: for class A# over 15
495 tokens classified as valid datapoints, about
23% should have been excluded by the filter
(F2 > 1800Hz), for i# it drops to 8% (F1 > 500Hz
& F2 < 1600Hz) of the 22,528 tokens, and about
27% of 3676 for u# (F1 > 500Hz & F2 > 1500Hz).

Filter Diag. i# u# A#
class WK 8% 27% 23%

WD 8% 21% 17.5%
class*spkr WK 6% 23% 21%

WD 30% 28% 70%
class*sex*
condition WK 8% 27% 25%

WD 30% 24% 57%
class*
condition WK 7% 28% 23%

WD 34% 23% 52%

Table 2: Diagnostics of phones wrongly
filtered/discarded (WD) or wrongly kept (WK)
according to the different filters setups on the QF
data.

Overall, MD filtering method did well with cases
of devoicing (very common in QF), such as in
the word "édifice" building /edifis/ where the first
[i] is devoiced and drown in the affrication noise
of /d/. However it missed some formants jumps
in compact back vowels such as [O] in [SprOpoz]
(reproduced in figure 2). In this example, F2

17. Speech Corpora and Big Data ID: 337

3183



was wrongly detected around 1800Hz when it was
actually around 1100Hz, merged with a high F1.

A few questionable events also arised. Figure
3 shows a case in which the vowel realization is
very far from the average profile of the class: the
/o/ is realized with an F2 closer to a [œ] (F1 at
370Hz and F2 at 1732Hz). This fronting movement
was documented by [22, 10] as a rare but possible
sociophonetic variation. Thus our filter might have
removed some important tokens for the study of
variation.

Finally table 3 gives the mean formants values
that result from our filtered data. QF i#, u# and
a# are often described as similar to France French
/i, u, a/, and the formant values we report for these
three vowels in QF are very close to what was found
in France French reference values [23, 3], which is
why we want to use them as a further evidence of
the process’s success.

Figure 2: Spectrogram and oscillogram
illustrating a case of poor detection of F2 in a [O]
from the word "propose" /prOpoz/ suggest.

Figure 3: Spectrogram and oscillogram
illustrating the non canonical realization of an /o/
in the word "aussi" /osi/ also.

.

4. CONCLUSIONS

The "by class" filtering process we used on the
FQ corpus identified 12% of vowel tokens as
erroneous. The number may seem very (too)
substantial, however on a corpus of such magnitude,

mean F1 mean F2
V. Class F M F M
i# 393 348 2184 1957
iK 435 368 2118 1896
iR 423 348 2191 2004
y# 425 396 1863 1717
yK 449 393 1788 1630
yR 474 425 1540 1473
e# 426 376 2139 1903
E# 560 501 1858 1638
EK 539 474 1942 1692
ER 652 561 1748 1559
ø# 405 365 1690 1517
a# 609 532 1641 1516
aC 723 616 1627 1458
A# 586 542 1325 1238
o# 442 407 1039 988
O# 574 518 1436 1322
OK 562 513 1250 1180
u# 418 386 1299 1219
uR 443 398 1099 1012

Table 3: Mean formant values for each vowel
class after the filtering by class only.

for which automatization was the main method, it
is not unrealistic to consider that certain types of
recurring errors have crept into segmentation and
formant detection. In a way our rejection rate is
pretty close to what [17] reported.

The classes experiencing the highest rejection rate
were those with vowels that can be both diphthongs
or monophtongs (e.g. ER), making the computation
of a unique profile more complicated; while less
variable classes had smaller rejection rates (e.g.
9.9% for A#).

The differences of rejection rates between speech
styles also demonstrate that MD filter can be used
widely without previous information on style and
will not erase style based differences. It also gives
information on the variation rate of style, as the
most standard style (Reading) rejection rate was of
7.7%, as opposed to 16% in self directed speech;
which is in line with phonostylistic findings such as
[18, 19, 20, 21].

However, more investigation is needed on the
efficiency of Mahalanobis distances for filtering
purpose. A comparison with [1]’s result would
state whether MD is more efficient before or after
features extraction. Different thresholds must be
tested to evaluate which distance from the profile
is the most suitable for phonetic studies and their
different goals. Various type of data from high and
low resources languages, different speech styles, and
speaker profiles, should be tested. Further work also
need to investigate on the effect of lexical categories
and frequencies known to affect variation.
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