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Edge Intelligence Empowered Metaverse:
Architecture, Technologies, and Open Issues

Yanan Xu, Daquan Feng, Mingxiong Zhao, Yao Sun, Xiang-Gen Xia

Abstract—Recently, the metaverse has emerged as a focal
point of widespread interest, capturing attention across various
domains. However, the construction of a pluralistic, realistic, and
shared digital world is still in its infancy. Due to the ultra-
strict requirements in security, intelligence, and real-time, it
is urgent to solve the technical challenges existed in building
metaverse ecosystems, such as ensuring the provision of seamless
communication and reliable computing services in the face of
a dynamic and time-varying complex network environment.
In terms of digital infrastructure, edge computing (EC), as a
distributed computing paradigm, has the potential to guarantee
computing power, bandwidth, and storage. Meanwhile, artificial
intelligence (AI) is regarded as a powerful tool to provide
technical support for automated and efficient decision-making
for metaverse devices. In this context, this paper focuses on
integrating EC and AI to facilitate the development of the
metaverse, namely, the edge intelligence-empowered metaverse.
Specifically, we first outline the metaverse architecture and
driving technologies and discuss EC as a key component of
the digital infrastructure for metaverse realization. Then, we
elaborate on two mainstream classifications of edge intelligence
in metaverse scenarios, including AI for edge and AI on edge.
Finally, we identify some open issues.

INTRODUCTION

The origin of the metaverse can be traced back to the
1992 science fiction novel Snow Disaster which depicts a
virtual world where people interact with others through their
virtual avatars. Although there is no unified definition of the
metaverse, it can be generally understood that the metaverse
is a digital virtual world with a complete economic and social
system that maps to (even surpasses) the real world and
interacts with it through the integration of various emerging
technologies. Over the next two decades, the metaverse is
expected to move from unattainable fiction to reality due to
the increasing demand for ‘digital contact’ in socialization,
work, and lifestyles, as well as the rapid growth of emerging
technologies such as blockchain, artificial intelligence (AI),
and the 5th/6th generation of mobile networks (5G/6G).

With the advances of the Internet of Things (IoT) and
mobile Internet, the Internet of Everything (IoE) has become a
typical application scenario for future information technology.
In this context, there are still fundamental technical challenges
to building a hyperrealistic metaverse ecology with strict
demands on ultra-reliability and ultra-low latency [1]. For
example, the high resolution and refresh rate characteristics of
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metaverse platforms, together with the new interaction mode
of IoE, are bound to bring an explosive amount of data, which
urgently requires a powerful digital infrastructure that can
provide highly scalable computation capacity, reliable com-
munication, large-scale data processing, and storage capabili-
ties. In addition, for digital environment construction, delay-
sensitive tasks such as motion capture, real-time rendering, and
multivariate data processing need massive computing support
to ensure high speed, low latency, and a smooth experience. It
is extremely difficult for computation- and energy-constrained
mobile devices, such as augmented reality (AR) and virtual
reality (VR), to efficiently process such computationally inten-
sive tasks, while under the traditional cloud computing (CC)
paradigm, these tasks can be performed on remote data centers
(DCs) with powerful computing power and sufficient resources
to reduce execution latency, and devices only need to wait for
the execution results from the cloud [2]. However, with the
exponential growth of mobile communication, mobile services
have placed tremendous strain on the backbone network.
Relying solely on the centralized paradigm would result in
high network delay and fail to meet timely response, thereby
significantly degrading the user experience. To cope with this
challenge, edge computing (EC) is regarded as a promising
distributed computing paradigm that can provide both highly
scalable computing power and low network delay [3].

Meanwhile, in order to accelerate the development of
the metaverse, automated and intelligent production, efficient
decision-making, and accurate execution are the key indi-
cators, which also provide opportunities for applying AI in
metaverse construction [4]. Since the debut of AlphaGo in
2016, the era of AI has been ushered in. AI technology has
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Fig. 1: The application scenarios in the metaverse cover
services for individual consumers, specific user groups, and
enterprises, such as entertainment, education, industrial pro-
duction, culture tourism, and so on.
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been deeply embedded in a variety of business scenarios, both
at the technical level (e.g., computer vision and intelligent
speech processing) and the application level (e.g., smart cities
and games), especially in decision-making, digital content
generation, and rendering, to fully demonstrate its superiority.
For instance, reinforcement learning (RL) can be applied to op-
timization problems in EC scenarios (e.g., efficient offloading
decisions, dynamic resource allocation, and caching policies),
as well as to improve the performance of synchronization
between physical devices and the corresponding digital models
in the metaverse (e.g., determining the sampling rate and
prediction horizon) [5].

Given the features of massively complex data production
on metaverse platforms and the ability of AI to learn from
numerous data and adapt well to changing environments, AI
is recognized as a viable technical support for metaverse
construction, while EC can provide scalable computing ca-
pacity and resource support for metaverse applications. In this
context, many researchers have focused on how to acceler-
ate the development of the metaverse from the perspective
of the fusion of EC and AI (i.e., edge intelligence) and
have achieved preliminary research progress. However, the
metaverse is still in its infancy and there are still some
challenges in metaverse-oriented edge intelligence, such as
the applicability of application scenarios, the establishment of
accurate evaluation metrics, and privacy security issues. This
motivates us to explore how edge intelligence can drive the
metaverse ecosystem.

• We introduce the metaverse architecture driven by ad-
vanced technologies and discuss the digital infrastructure,
such as CC and EC, needed to enable a hyper-immersive
metaverse platform.

• We focus on two mainstream classifications (i.e., AI for
edge and AI on edge) of edge intelligence, demonstrate
the specific description for each category, and summa-
rize the preliminary progress of research on the edge
intelligence-empowered metaverse.

• We discuss the open issues in metaverse-oriented edge
intelligence.

The remainder of the paper is organized as follows. First,
we provide an overview of the metaverse architecture and the
driving techniques. Second, we explore the current research
progress in the fusion of EC and AI for building metaverse
platforms. Finally, we present open issues.

THE ARCHITECTURE OF THE METAVERSE

The metaverse is a shared, real-time, realistic, and plural
digital world that is paralleled to the physical world. With the
support of cutting-edge technologies, the development of the
metaverse can be expanded to many fields such as industry,
culture, education, and military, where Fig. 1 presents typical
application scenarios of the metaverse.
• The metaverse architecture and backbone technologies

Building an immersive metaverse ecosystem necessitates a
scalable underlying infrastructure for high-performance sup-
port, an efficient production platform, and solutions to the
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Fig. 2: The metaverse is a large-scale and open platform built
by a variety of parties, which requires efficient and intelligent
construction of each technical layer, a scientific and efficient
digital rule system, and a reliable economic system to assure
the sustainable development of the metaverse.

technical problems of digital objects and environment con-
tent in production, transmission, and interaction. A typical
metaverse architecture mainly consists of infrastructure layer,
digital engine layer, content generation layer, perceptual inter-
action layer, and application layer. Fig. 2 shows an illustration
of a five-layer metaverse architecture, that is, from bottom to
top:

1) The infrastructure layer is the foundation for building the
metaverse ecosystem, which mainly provides networking,
storage, and computing support.

2) The digital engine layer involves application engines that
speed up the development of metaverse applications, such
as development platforms and rendering engines.

3) The content generation layer refers to simulating the
physical world or innovating virtual environments that
do not exist in reality to construct the basic architecture
of the metaverse via digital generation technologies.

4) The perceptual interaction layer includes human-
computer interaction (HCI) devices that allow people to
freely access the virtual world, interact effectively, and
obtain an immersive user experience.

5) The application layer provides the ultra-immersive expe-
rience of digital life and production.

As stated, the construction of the metaverse technical layers
and the creation of a digital ecosystem comparable to the real
world cannot be separated from the collaboration of diverse
backbone technologies to enable the rapid, intelligent, safe,
and reliable development of the metaverse. Fig. 3 shows a
general metaverse platform, where the enabling techniques are
summarized below:

1) Blockchain has inspired a decentralized creator economy
[6] and emerged as one of the most promising technolo-
gies to realize the vision of a metaverse of interoperability
between the virtual and real worlds.

2) Digital generation covers enabling techniques including
digital twins, 3D modeling, computer vision, and real-
time rendering to create large-scale, complex immersive
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Fig. 3: A general metaverse platform for virtual and real interaction that is driven by leading-edge technologies, such as AI to
enable intelligence and cloud/edge computing to provide network environments and IT services.

scenes with high accuracy, including 3D reconstructions
of enormous digital objects (e.g., avatars) and environ-
ments.

3) Interactivity is a bridge between the physical world and
digital space. The presentation of the metaverse mainly
relies on VR/AR devices to enable an immersive 3D
experience. Particularly, extended reality (XR) deeply
integrates AR, VR, and mixed reality (MR) techniques,
which has the potential to become the primary access
devices. Moreover, the brain-computer interface directly
controls external devices by collecting and analyzing
brain signals, which is of benefit in enhancing the ef-
ficiency of human interaction with the outside world, but
it is still in the early stages of research.

4) IoT ensures that everything in the metaverse becomes
a part of the network, allowing for human-machine-
things interconnection and interaction, including collect-
ing massive amounts of data via various IoT devices (e.g.,
sensors) and sharing the data over the internet in real time.

5) AI has permeated every aspect of metaverse applications
and production. The mainstream AI techniques include
machine learning (ML), deep learning (DL), and RL,
which leverage their strengths to provide support in terms
of reliability, efficiency, and performance in digital con-
tent generation, rendering, interaction, and other areas.
For example, ML-based methods are utilized for complex
data analysis and processing; DL can help speed up large-
scale scene rendering; and RL algorithms can handle
challenging decision-making problems.

6) Digital infrastructure delivers highly scalable computing
and storage services as well as stable and reliable com-
munication guarantees for metaverse applications, such
as leveraging distributed computing paradigms (e.g., EC)
to apply ultra-low latency and smooth experiences to the
metaverse.

• The digital infrastructure
Regarding the digital infrastructure, EC is regarded as a
promising distributed computing paradigm that provides both

scalable computing power and low network delay, since the
resulting high latency under traditional centralized computing
may significantly degrade the user experience.

By flexibly deploying edge servers (ESs) and sinking
CC resources to the network edge closer to end-users, EC
can better provide a distributed computing environment and
cloud-like services for key applications, such as AI-related
tasks and data analysis and processing from nearby resource-
constrained terminals. Therefore, network transmission and
the possibility of network congestion on the network core
can be reduced, and security concerns in data transmission
can be efficiently alleviated. For example, the device can
exploit edge-side capabilities to offload expensive foreground
rendering or strong interaction tasks to ESs, while ESs can
also cache hot content in advance for fast response to requests
within its service scope. NVIDIA CloudXR can scale to the
edge to deliver immersive and responsive XR experiences via
NVIDIA RTX GPU-powered ESs, thereby extending graphics-
intensive applications to mobile terminals. In addition, EC can
also meet the extremely high requirements for interaction and
mirror rendering in VR online games, including strict ultra-low
latency and high bandwidth [2]. Under this trend, EC is bound
to become an important pillar of future metaverse platforms.

As a crucial component of EC, multi-access edge computing
(MEC, formerly known as mobile edge computing) has gained
a lot of interest in recent years for improving users’ quality of
experience (QoE). MEC servers that are positioned in base
stations within the radio access network enable moderate-
capacity IT service delivery to nearby mobile users, which
can ensure lower latency and better bandwidth capacity than
remote clouds and give an unparalleled experience [7]. Be-
sides, fog computing (FC) is also a representative computing
mode of EC, which reduces communication between DCs
and users by migrating tasks from central to edge devices
for execution, hence alleviating bandwidth load. FC is similar
to MEC except that the focus of FC is communication level
requirements, whereas MEC concentrates on computation and
network optimization.

In addition, considering that the computing capability and
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resources on the edge are relatively limited compared to DCs,
it is challenging to meet the rapidly growing service demand
caused by massive and heterogeneous smart devices and
the ubiquitous connectivity involved in metaverse platforms.
Besides, the high deployment cost and long deployment cycle
brought by numerous ESs are intolerable. In this regard,
a novel computing framework, cloud-edge collaboration, is
proposed to overcome this challenge, in which the resources of
DCs, ESs, and devices can be well utilized at the same time to
guarantee the smooth operation of computation-intensive and
delay-sensitive applications (e.g., avatar computing) [1]. Fig.
4 shows a typical three-layer cloud-edge-end architecture.

Although high-quality service support with scalable band-
width and ultra-low latency is the primary driving factor for
metaverse platforms to rely on EC, the characteristics of EC
also pose challenges to the performance enhancement of meta-
verse applications. In general, the unique features of EC refer
to five aspects. That is, 1) high heterogeneity: the EC environ-
ment comprises multifarious end-users, servers, and edge de-
vices that are heterogeneous in terms of computing power, load
conditions, and requirements, etc.; 2) dynamic/time-varying:
such as unstable network conditions and bandwidth fluctua-
tions; 3) resource dispersion: ESs are widely distributed and
have limited resources, necessitating reasonable management
of dispersed edge resources; 4) limited service scope, ESs in
MEC can only cover a limited service range through cellular
network signals; 5) user mobility: the uncertain movement
trajectories of mobile users make it more difficult for EC to
provide continuous service. In order to take full advantage
of EC to meet the diverse demands of various metaverse
applications regarding computing performance and cost (e.g.,
energy efficiency), the edge needs to comprehensively consider
computing requirements, network situations, and user char-
acteristics, which takes improving resource utilization as the
main means to make strategic resource management (e.g., the
decision of offloading, caching, and resource allocation), so as
to provide seamless services for metaverse businesses with a
smooth experience in mobile scenarios.

EDGE INTELLIGENCE-EMPOWERED METAVERSE

Undoubtedly, the integration of EC with AI (i.e., edge in-
telligence) is inevitable to deliver stable and reliable technical
services and achieve ubiquitous access. It is widely accepted
to classify edge intelligence into two categories: 1) AI for edge
that provides AI-based solutions to optimization problems in
EC scenarios (e.g., the optimization of resources, offloading,
and caching); 2) AI on edge that utilizes the platform and
computing power offered by the edge side to solve AI-
related problems (e.g., model training and inference), where
the specific description is presented as follows:

• AI for edge. Benefiting from the distributed computing
paradigm and deployment scheme, EC is regarded as
a promising and highly scalable computing support for
immersive experiences and real-time interactions. How-
ever, the ultimate form of the metaverse will not only
support entertainment consumer applications but will also
be widely used in production applications, such as trans-
portation, industrial, medical, and defense. In different
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Fig. 4: A typical three-tier collaborative computing and com-
munication framework in the metaverse consists of the cloud
layer with powerful computing power and storage centers, the
edge layer enabling rapid response, and the end layer with
diverse end devices.

application scenarios, the quality of service (QoS) re-
quirements of heterogeneous services, such as reliability,
rate, delay, privacy protection, and mobility management,
may be very different. Besides, the heterogeneity and
dynamics of EC challenge the utilization of edge re-
sources. Therefore, to ensure seamless/continuous ser-
vice, strategic resource management is necessary, which
mainly includes offloading decisions, resource allocation,
and caching policies. In addition, since AI technology can
learn from massive amounts of complex data and contin-
uously adapt to various environments, AI is regarded as
promising technical support to solve the key challenges
faced by EC-enabled metaverse platforms, which has the
potential to realize intelligent, automated, and efficient
decision-making, such as applying deep RL (DRL) to
complicated computation offloading problems.

• AI on edge. AI technology has fully demonstrated its
advantages in intelligent decision-making, digital content
generation, and rendering. In general, the core compo-
nents of AI applications include training and inference,
where the traditional process refers to collecting massive
amounts of data from mobile terminals and edge devices
and training complex neural network models on the cloud.
For the trained model, one is to perform it locally on
the devices, and the other is to deploy it on a high-
performance cloud platform. The device only needs to
send the input to the cloud and wait for the inference
results. However, such approaches have certain limita-
tions; that is, local execution is subject to computation
capacity and execution costs (e.g., energy consumption
and execution latency) due to the large scale of AI
models, such as the increasing depth of deep neural
networks, while for training/inference on the cloud, the
centralized aggregation of mobile network traffic due to
the network scale and data transmission involved puts
huge pressure on the network core. With the proliferation
of smart devices, the development of the immersive
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metaverse poses real-time computational requirements for
future AI applications. It is obviously not enough to solely
rely on the centralized computing paradigm. Applying the
EC network architecture to carry out part of the business
requirements can adapt well to the above challenges. For
instance, AI tasks that are not computation-intensive but
have high communication demands can be moved from
the cloud to the edge, and it is also encouraged to send
necessary data to DCs after complex data acquisition,
storage, and preprocessing on the edge. In this way, the
delay caused by network transmission can be reduced,
and the workloads of the core network can be released.

Research issues in the above two categories mainly involve
edge offloading, edge caching, and edge training and infer-
ence, where Fig. 5 outlines research issues in these three
aspects in edge intelligence metaverse scenarios. For instance,
computationally intensive rendering tasks could be offloaded
to nearby ESs together with precaching popular content to
accelerate execution. Besides, for AI-driven rendering tasks
or intelligent decision-making, it is feasible to combine dis-
tributed computing paradigms and polynomial coding tech-
niques to ensure performance demands. The edge intelligence-
empowered metaverse has become a hot spot in academia, and
initial progress has been made, as detailed in the categories
below.
• Edge Offloading Decision

The computation offloading technique enables computation-
intensive or power-hungry workloads on mobile devices (e.g.,
AR/VR devices) sent to servers with sufficient resources. In
EC, tasks with high computing requirements and execution
costs (e.g., model training and foreground rendering) can
be offloaded from devices to the edge for remote execution
to ensure a high-speed, low-latency, and smooth experience,
while devices only need to receive the processing result.
Generally, offloading decisions and resource allocation are
jointly optimized. In [8], the authors considered a distributed
intelligent cloud-edge-end network architecture with the col-
laboration of ML and proposed a multi-agent DRL frame-
work to obtain offloading and resource allocation schemes to
decrease the total energy consumption under the task latency
constraint, which applied federated learning (FL) to reduce the
training overhead. Sun et al. [9] considered digital twin edge
networks and proposed a mobile offloading solution based on
DRL, aiming to reduce the latency of the offloading process
while guaranteeing the migration cost constraint. VR online
gaming has extremely high requirements for game interaction
and mirror rendering, namely strict latency, high bandwidth,
and support for numerous simultaneous players. Considering
user mobility, Zhang et al. [2] modeled service placement
as a Markov decision process and designed a hybrid game
framework to dynamically place services on those edge clouds
that lead to the best performance, maximizing the game’s
performance for all players. For example, local view updates
and frame rendering can be placed on the edge for timely
response and high bandwidth, while global state updates are
sent to the cloud.
• Edge Caching Scheme
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Fig. 5: Research issues of edge intelligence in metaverse
scenarios.

As IoE applications grow in complexity, massive mobile
services place enormous strain on network architectures, which
may result in unnecessary waste of resources caused by
repeated access to similar content by different users and high
latency that significantly degrades QoE. In this regard, edge
caching takes advantage of its geographical layout to pre-cache
hot content near the terminals and responds immediately to
requests within its service scope, thereby effectively alleviating
the problems of data redundancy and transmission overhead
network resource waste and improving QoS [10]. For example,
the edge can cache data collected by edge devices (e.g.,
sensors) and provide training data for intelligent applications
nearby. In general, edge caching involves cache placement,
cache content, and cache policy, which are coupled with
many challenges, such as the dynamics of edge networks,
the limited and decentralized characteristics of edge resources,
and popular content’s time-varying nature. In the face of the
uncertainty of network conditions, AI-powered edge caching is
proposed as a promising solution to deal with the situation of
incomplete prior information and an inaccurate environmental
model. Guo et al. [11] investigated offloading scenarios for
real-time VR rendering tasks in MEC, defined functions on
energy consumption and latency to represent users’ QoE,
and proposed effective offloading schemes based on DRL
to enhance QoE. Regarding the limited cache space of ESs,
Yang et al. [12] investigated a novel cloud-edge-end service
framework for AI-assisted VR content generation to guarantee
VR devices’ demands on latency and bandwidth, which allows
for independent encoding of background/foreground content.
Specifically, the authors proposed a graph neural network
(GNN)-based caching policy where the edge content sharing
mechanism and content’s time-varying features are utilized
to cache background content and GNN is used to predict
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TABLE I: Summary of Research on Edge Intelligence in the Metaverse

Aspect Scenarios Key issues Viable solutions Ref.

Edge offloading

- Distributed real-time rendering for
AR/VR applications;

- Offloading data processing and AI-
related computation tasks to the edge
side;

- Neural network partitioning and
layer-based distributed collaborative
computing.

- Energy efficiency and resource uti-
lization;

- Offloading granularity and applica-
tion partitioning;

- Mobility and network connectivity;
- Scheduling and resource manage-

ment.

- Online algorithms;
- Path optimization and migration of

virtual machine;
- Load balancing;
- DRL-based decision-making.

[2], [9]

Edge caching

- Collecting data for realizing AI algo-
rithms;

- Caching rendering content for
VR/AR content generation/updating;

- Computation caching on the edge for
AI applications.

- Data collection and management;
- Granularity of computation redun-

dancy;
- Cache objects determination.

- Path optimization;
- Mobility and trajectory prediction;
- Model selection and partition;
- Load balancing;
- Smart cache schemes.

[11]–[13]

Edge training
and inference

- Efficiently training AI models re-
quired for intelligent metaverse ap-
plications (e.g., face and speech
recognition, recommender system,
and content generation) via utilizing
edge resources;

- Intelligent decision-making for non-
player characters;

- Personalized recommender system
for metaverse applications.

- Efficiency of training and communi-
cation;

- Tradeoff between computing over-
head and latency;

- Security and privacy;
- Model optimization and deployment;
- Inference acceleration;
- Tradeoff between accuracy and la-

tency.

- Offline algorithms;
- ML-based distributed cloud-edge-

end framework;
- FL-enabled collaborative training;
- Blockchain-based FL architecture;
- Knowledge distillation and parameter

pruning for model compression;
- Model segmentation and sharing;
- Edge caching.

[11], [14]

content, thereby proactively caching the requested content on
the edge, and an update algorithm for background content
based on GNN was designed to optimize caching. Regarding
what content to cache, Kumar et al. [13] designed an effective
algorithm combining convolutional neural network (CNN) and
long short-term memory (LSTM) to obtain the caching scheme
for 360◦ video streaming in the MEC network. To determine
which videos needed to be cached, they used LSTM to predict
future popularity and then utilized the CNN model to identify
tiles suitable for caching instead of caching the entire video,
aiming to reduce the pressure on the edge cache space and
improve cache efficiency.
• Edge Training and Inference

Typically, edge training mainly refers to two aspects: 1) the
training architecture (including solo and collaborative training)
needs to be determined according to the capacity of edge
devices and servers, and if necessary, DCs may be introduced
to cooperate with the edge for model training; 2) training
optimization is essential to promote the efficiency of edge
training since the model is extremely computationally inten-
sive and the edge resource is relatively limited. As for edge
inference, large-scale AI models with high accuracy demands
pose challenges to real-time operation. Edge inference needs
to make strategic considerations to balance inference accuracy
and latency. On one hand, on the metaverse platform, AI
applications are complicated and large-scale, requiring a huge
amount of computing and storage, and the resource condi-
tions between heterogeneous devices/servers are time-varying.
Devices with limited capacity will have a significant impact
on the overall model’s training efficiency. In this context, it

is necessary to make efforts on resource management (e.g.,
model segmentation and collaborative solutions by different
devices), AI model optimization (e.g., parameter pruning,
sharing, and model compression), and accelerating inference
to achieve high-performance edge training and low-cost and
accurate edge inference. In [11], the authors adopted a strategy
of multi-agent DRL offline training and online running based
on game theory to reduce the delay caused by the training
process, while sharing training information between different
agents at the same time is supposed to speed up training and
improve performance. On the other hand, AI training involves
numerous parameters/data transmission and updates, which
often rely on co-training between multiple heterogeneous
computing nodes, and privacy protection for important input
data in the inference stage should be taken into account. To
this end, the common solution is to adopt FL which is a
distributed learning architecture. As an example, considering
an FL-based cloud-edge-end architecture, mobile users in the
metaverse that are treated as clients in FL use local data
training models without uploading original data to the central
cloud and then send updated model parameters to the edge for
intermediate model aggregation, in which the central cloud is
responsible for global aggregation and ESs can also participate
in FL as clients. Such an architecture can make full use of
the resources of all parties, alleviate network congestion, and
reduce communication costs and the risk of data leakage. To
meet the challenges of data security and privacy protection, Li
et al. [14] considered a blockchain-based FL architecture to
eliminate the security problems caused by the central server
and allow some nodes to discard historical blocks so as to
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alleviate the huge storage consumption for models.
To sum up, the emergence of edge intelligence is expected to

further accelerate the construction of the metaverse ecosystem,
where EC guarantees computing capability and network speed
transmission and AI provides technical solutions to solve the
key problems of the EC-enabled metaverse. Table I summa-
rizes the aforementioned aspects of edge intelligence in the
metaverse.

OPEN ISSUES AND FUTURE DIRECTIONS

The existing research on edge intelligence mainly includes
utilizing or optimizing AI algorithms for effective resource
management (e.g., resource allocation and offloading strategy),
caching schemes, and performing AI applications on terminals
based on edge resources. However, there are still some inter-
esting open issues about metaverse-oriented edge intelligence.

• The quality of data: The data collected from edge
devices directly affects the performance of model training
and inference. Compared with DCs, data and labels on
edge nodes are scattered and scarce. Besides, the raw
data generated by different metaverse applications and
collected by devices might be biased and inconsistent. In
this regard, the collaborative mode of FL can better adapt
to the scenario of decentralized data, while approaches
such as transfer learning and incremental learning can be
used for personalized model training. Besides, encourag-
ing users to provide more usable data through methods
such as incentive mechanisms is also of importance for
AI learning performance.

• Adaptability of models: Due to the limitations of edge
resources, lightweight and high-precision AI models are
necessary, and potential solutions to optimize models
include knowledge distillation and model compression.
It is also critical to design a reasonable coordination
mechanism between terminals and servers to achieve
compatibility because of the heterogeneity between de-
vices and servers. Furthermore, in order to improve the
applicability of AI models to better deal with unfamiliar
scenarios, lifelong ML is a feasible solution, but it needs
knowledge evaluation to learn and accumulate useful
knowledge. Reducing the complexity of the model, rapid
deployment, and delivery are also good future research.

• Applicability of scenarios: More complex and challeng-
ing edge scenarios, such as jointly optimizing resources
(e.g., offloading granularity, network slicing, resource
allocation), caching, and mobility management, must be
considered in order to better serve the variety of applica-
tions and demands in the future metaverse. The potential
advantages of EC and AI should be fully exploited to
deliver personalized and diverse services for users in more
complicated cloud edge-end environments consisting of
multiple heterogeneous users with cooperative or com-
peting interactions, ESs, and DCs. Furthermore, green
EC, such as energy harvesting technology, is an important
research direction to assure the sustainability of metaverse
development.

• The establishment of evaluation indexes: There are
various physical and virtual service providers and user

accesses on metaverse platforms, and it is difficult to
customize the performance assessment criteria for all
parties considering the heterogeneous characteristics. For
example, AI application metrics refer to inference latency,
model overhead, service revenue, and model accuracy,
and the user experience includes not only an immediate
response but also personalized preferences (e.g., color
and visual sensitivity), while service providers need to
consider QoE, network overhead, service costs, and cus-
tomized AI architectures for reasonable resource manage-
ment and deployment. Thus, evaluation metrics must be
optimally defined across disciplines.

• Security and privacy: It is inevitable to involve the
issues of end-user privacy and data security when per-
forming metaverse applications, such as identity theft of
avatars. Although blockchain is regarded as a decentral-
ized solution, it will incur high storage and computing
costs while ensuring data security; hence, it is required
to incorporate other technologies (e.g., FL) to reduce the
impact of cost on performance [15].

CONCLUSIONS

This paper has provided an overview of the metaverse
architecture and platform driven by cutting-edge technologies.
Regarding the digital infrastructure for the metaverse, we have
discussed edge computing, as well as research work on the
fusion of edge computing and artificial intelligence around the
construction of metaverse ecology. Finally, we have pointed
out some open issues and potential future research directions.
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