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The deflection of light in the gravitational field of the Sun is one of the most fundamental consequences
for general relativity as well as one of its classical tests first performed by Eddington a century ago.
However, despite its center stage role in modern physics, no experiment has tested it in an ostensibly
quantum regime where both matter and light exhibit nonclassical features. This paper shows that the
interaction which gives rise to the light-bending also induces photon-matter entanglement as long as gravity
and matter are treated at par with quantum mechanics. The quantum light-bending interaction within the
framework of perturbative quantum gravity highlights this point by showing that the entangled states can be
generated already with coherent states of light and matter exploiting the nonlinear coupling induced by
graviton exchange. Furthermore, the quantum light-bending interaction is capable of discerning between
the spin-2 and spin-0 gravitons thus also providing a test for alternative theories of gravity at short distances
and at the quantum level. We will conclude by estimating the order of magnitude of the entanglement
generated by employing the linear entropy. In particular, we find that a half-ring cavity of radius 0.25 m
placed around a 10 kg mechanical oscillator operating at 150 Hz, could be used to generate linear entropy
of order unity using a petawatt laser source at optical wavelengths. While the proposed scheme is beyond
the current experimental realities it nonetheless initiates the discussion about testing the spin of the
gravitational interaction at the quantum level.
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I. INTRODUCTION

Among the most pivotal moments in the history of
general relativity was the observation of light deflection
during the solar eclipse in 1919 [1]. The predictions of
Newtonian gravity differed from the predictions of general
relativity for the angle of light deflection, thus providing a
possibility for a definitive test between the two theories.
Since then, general relativity has passed numerous tests [2],
from laboratory experiments of gravitational redshift [3] to
the detection of gravitational waves [4].
Nevertheless, a key question remains; whether gravity is

classical or quantum and how would it couple to any
quantum matter? The theory of quantum gravity [5] is
expected to reveal how to combine quantum mechanics
with general relativity and various consequences for

understanding problems ranging from black hole physics
to the early Universe [6,7]. However, devising a decisive
test of quantum gravity, capable of falsifying the classical
notion of spacetime remains a daunting task and requires
ingenious methods.1

Nevertheless, in 2017 it was shown that a quantumgravity
effect can be tested using a simple matter-wave interferom-
eter exploiting quantum entanglement [10] (see also [11]
for a related work). The basic idea is that quantum gravity
will induce entanglement of masses (QGEM), which can be
explained as follows; the two electrically neutral massive
objects each placed in their spatial superposition via Stern
Gerlach interferometry [10,12–14] are located close enough
that the mutual quantum gravitational interaction can gen-
erate entanglement (a nonclassical correlation), but still far
enough apart that all other interactions (e.g., electromagnetic
such as Casimir) are suppressed. The first such feasibility
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1It is extremely challenging to extract any quantum feature of
gravity from the cosmological perturbations [8], and also it holds
true for the primordial gravitational waves, if it were at all
detectable in future [9].
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study was performed in [10] and in [15–25]. As the
two masses cannot entangle through a local-operation-
classical-communication (LOCC) [26], as is the case for
a classical gravitational field, one must conclude that to
generate entanglement the gravitational field must be a
bonafide quantum entity [27,28]. The proposed scheme can
hence provide a model-independent test about the quantum
nature of spacetime, and by detecting entanglement one
can rule out classical models of the gravitational field
[10,27–32].
One of the key phenomenological advantages is that the

interpretation of a graviton as a quanta which mediates the
gravitational force can be probed experimentally (e.g., a
massive graviton will have different degrees of freedom and
will modify the potential/force), including the properties of
the spin-2 and spin-0 components of the graviton which
are responsible for mediating the force. The underlying
mechanism has been analyzed in detail within perturbative
canonical quantum gravity [27,28], in the framework of the
Arnowitt-Desse-Meissner (ADM) approach [33], as well as
the path integral approach [34]. The QGEM protocol can
also probe the quantum weak equivalence principle where
both matter and gravity are treated at par [35], unlike any
other existing experimental protocols where gravity is
always treated classically. It can be used for quantum
sensing [16] with foreseeable applications for probing new
physics such as axions or fifth force, and other physics
beyond the Standard Model [36].
At the very core of this simple, but powerful result, is the

idea to test whether spacetime can mediate entanglement
between the two quantum systems. However, instead of
considering two matter-waves one could in principle also
consider two massless particles such as photon pairs. While
conceptually simple, photon-photon scattering via the
gravitational interaction poses a formidable experimental
challenge for a laboratory experiment [37,38]. Another
option is to consider hybrid matter-photon setups, with a
photonic system gravitationally coupled to a heavy quan-
tum system [39], generalizing the situation of quantum
field theory in a curved spacetime. Indeed, single-photon
sources have in recent years enabled the experimental
exploration of multimode interference and entanglement
[40–43] within the context of quantum field theory in
curved spacetime [44,45], a regime which can be thought of
as a stepping stone toward a quantum theory of gravity.
In this work we will investigate the quantum counter-part

of the classical light-deflection effect with amatter-wave and
a photonic system, and show that it leads to matter-photon
entanglement as long asweassume that the gravitational field
is a quantum entity. We will find that the gravitationally
induced quantum mechanical Hamiltonian for the photon-
matter system is a cubic interaction reminiscent of the
familiar coupling found in cavity optomechanics. We will
consider the initial state of a mechanical oscillator to be its
(coherent) ground state j0i and the initial state of the photon

to be a coherent state jαi, and estimate the gravitationally
induced matter-photon entanglement using linear entropy.
A fundamental importance of the proposed protocol,

based on the quantum light-bending effect, is that it can
differentiate between spin-2 and spin-0 gravitons, thus
providing a method to distinguish between effective the-
ories of gravity at short distances, where no classical or
quantum test has been performed. It can test perturbative
quantum gravity [46–48], Brans-Dicke theory [49], modi-
fied gravity theories [50], as well as a number of massive
gravity models [51]. Discerning the spin of the mediator at
a quantum level will be a crucial milestone.
The aim will be to pin down the parameter space which

will lead to Oð1Þ position-momentum entanglement of this
gravitational optomehanical system. We will show that a
half-ring cavity of radius ∼0.25 m placed around a 10 kg
system harmonically trapped at 150 Hz (0.1 Hz) could be
used to generate linear entropy of order unity by using the
intensities already available using petawatt (megawatt)
laser sources.

II. QUANTUM INTERACTION

We consider a particle of massm placed at the origin and
a circular path of radius r for the optical field as shown in
Fig. 1(a). The gravitational interaction between the matter
system and the optical field in a classical theory is given
by [52]:

V ¼ −
2Gmω

r
ε�k0;ν0 · εk;ν; ð1Þ

where m is the mass, ω (εk;ν) denotes the frequency
(polarization vector) of the optical field, k is the three-
momentum, and ν denotes the polarization. In particular,
the potential in Eq. (1) can be computed in general relativity
and gives rise to the light-bending effect [1] (in the
Appendix A we show how to obtain this potential in an
effective field theory approach to quantum gravity).

(a) (b)

FIG. 1. (a) Blueprint of the experimental scheme. The mass m
is harmonically trapped and prepared in the (coherent) ground
state j0i. We will assume that the optical field is confined to a
half-ring of radius r (i.e., in the geometric approximation) and
that the photon state is initially prepared in a coherent state jαi.
(b) Tree-level photon-matter scattering via exchange of a grav-
iton. Straight external lines denote the massive particle and
squiggly lines denote photons.
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However, note that the observables are actually quantum
operators [27]:

r → r̂; ð2Þ

εk;ν → εk;νâk;ν; ð3Þ

where r̂ is the position operator for the relative distance
degree of freedom, and âk;ν is the mode operator for the
optical field. From Eqs. (1)–(3) we then find [46,47,53]:

V̂ ¼ −
2Gmω

r̂
ε�k0;ν0 · εk;νâ

†
k0;ν0 âk;ν; ð4Þ

which can be seen as the quantum counterpart of the light-
bending interaction.
It is important to note that Eq. (4) is a nontrivial

consequence of perturbative quantum gravity. The six
off-shell degrees of freedom of the graviton, encoded in
the spin-2 and spin-0 components [28,54], combine to
give the prefactor 2 on the right-hand side, while, for
example, in an effective scalar theory of gravity (such as in
Nördstrom gravity [55–57]) the coupling would vanish
altogether [58]. A quantitative test of the quantum light-
bending interaction thus provides a conclusive test for a
number of alternative theories of gravity [46–51].
Moreover, the quantum nature of the graviton gives rise

to a quantum-interaction, with operator-valued observables,
in stark contrast to the classical interaction in Eq. (1),
arising from the classical theory of general relativity [46].
Although the steps in Eqs. (2) and (3) seem innocuous, as it
is the familiar quantization procedure commonly per-
formed, it has nontrivial consequences for the underlying
gravitational field from which the interaction arises. Indeed,
the procedure of promoting the classical observables of the
matter-photon system to operators, changes the nature of
the gravitational interaction from classical to quantum, as
we now discuss.
One canmake a simple argument following [27] as towhy

Eq. (4) can no longer arise from a (real-valued) classical
gravitational field. We recall that the usual interpretation
of Eq. (1) is that of the energy of the gravitational field;
if the right-hand side is real-valued then the energy of the
gravitational field is real-valued and the gravitational field
can have a classical description. However, as soon as we
promote the classical observables to operators in Eqs. (2)
and (3) we transform the energy of the gravitational field to
an operator valued quantity in Eq. (4), hence requiring also
an operator-valued description for the gravitational field. In
particular, the right-hand side of Eq. (4) contains cross-
coupling terms between r̂ and â†k0;ν0 âk;ν, which can generate
matter-photon entanglement. Since no classical entity is
capable of mediating entanglement, as formalized by the
LOCC theorem, we must conclude that Eq. (4) originates
from bonafide quantum properties of the gravitational
interaction with matter and light.

III. GRAVITON INDUCED
OPTOMECHANICAL COUPLING

For concreteness we consider the experimental configu-
ration shown in Fig. 1(a). We assume the photon beam at an
impact parameter of r with respect to the oscillator, and
write

r̂ ¼ jðδx̂; 0; 0Þ − ðr cos θ; r sin θ; 0Þj; ð5Þ

where δx̂ contains the quantum fluctuations of the matter,
and θ parametrizes the circular geometry of the cavity.
We then expand 1=r̂ to linear order in δx̂ (i.e., assuming
δx̂ ≪ r) and we integrate over the half-ring (i.e. over the
angle θ∈ ½−π=2; π=2�) to find 2δx̂=r2. From Eq. (4) we thus
immediately find the leading order interaction between the
harmonic oscillator and the half-ring cavity:

V̂ ≈ −2Gmω

�
1

r
þ 2δx̂

r2
þOðδx̂2Þ

�
⊗ ε̂�ðk0Þ · ε̂ðkÞ: ð6Þ

The first term in Eq. (6) does not couple matter and photon
degrees of freedom. Omitting also, the higher order con-
tributions Oðδx̂2Þ, we are left with the lowest order
optomechanical interaction:

V̂ ≈ −
4Gmω

r2
δx̂ε̂�ðk0Þ · ε̂ðkÞ: ð7Þ

To obtain the optomechanical coupling we now introduce
the mode operators by writing:

δx̂ ¼ δxzpfðb̂þ b̂†Þ; ð8Þ

and

ε̂ðkÞ ¼ εk;νâk;ν; ε̂�ðk0Þ ¼ ε†k0;ν0 â
†
k0;ν0 ; ð9Þ

where δxzpf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2mωmÞ

p
denotes the zero-point fluctu-

ations of the harmonic oscillator, ωm is the frequency of the
mechanical oscillator, and b̂†ðb̂Þ and â†ðâÞ denote the
creation (annihilation) operators of the mechanical oscil-
lator and the photon, respectively. Here, k, k0, and ν; ν0
denote the momentum and polarization of the photon, but
to simplify the analysis we will now consider the situation
where ν ≈ ν0 and k ≈ k0 and will suppress the momentum-
polarization indices to ease the notation, i.e., â will denote
the mode of a given polarization following the circular path
shown in Fig. 1(a).
Hence by combining Eqs. (7)–(9) we find that the

interaction potential at the lowest order reduces to:

V̂ ¼ −g0ðb̂þ b̂†Þâ†â; ð10Þ
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where the gravitationally induced (single-photon) optome-
chanical coupling is given by

g0 ¼
4Gmω

r2ð2mωmÞ1=2
: ð11Þ

We note that Eq. (10) is formally of the same form as the
well-known cavity optomechanical interaction Hamiltonian
[59,60], and hence we can directly adapt well-established
protocols to explore the coupling in Eq. (10), i.e., gravi-
tational optomechanics.

IV. LINEAR ENTANGLEMENT ENTROPY

To show the entanglement between the photon-matter
subsystems, we will calculate the linear entropy S of the
mechanical oscillator, given by

S ¼ 1 − Trðρ2mÞ; ð12Þ

where, ρm is the reduced density matrix of the oscillator
subsystem, obtained by tracing out the photon degrees of
freedom.
We will assume the initial state to be of the form

jΨð0Þi ¼ j0im ⊗ jαip; ð13Þ

where, j0im and jαip denote coherent states of the oscillator
and the photon respectively. The separable state in Eq. (13)
can be prepared by placing the photon source sufficiently
far from the mechanical oscillator, where the weak gravi-
tationally induced optomechanical coupling ∝r−2 in
Eq. (11) does not have enough time to generate a
measurable preexisting entanglement. As can be estimated
from Eq. (30) below, such a condition can be readily met as
the photon flight-time outside the cavity will be signifi-
cantly shorter than the time spent inside the cavity.
In the following we will use the following parameters

G ¼ g0
ωm

; t ¼ ωmτ; ð14Þ

where t denotes the experimental time τ multiplied by ωm.
The time-evolved state using the quantum Hamiltonian in
Eq. (10) is given by [60],

jΨðtÞi ¼ e−jαj2=2
X∞
n¼0

αnffiffiffiffiffi
n!

p eiG
2n2ðt−sin tÞjϕnðtÞi ⊗ jni: ð15Þ

Here, jni is in the number basis of the photon space and

jϕnðtÞi ¼ jGnð1 − e−itÞi: ð16Þ

For computing the linear entanglement entropy of the
system at a time t using Eq. (12), we first obtain the
reduced density matrix ρm of the oscillator,

ρm ¼ e−jαj2
X
n

jαj2n
n!

jϕnihϕnj; ð17Þ

⇒ ρ2m ¼ e−2jαj2
X
n

X
m

jαj2ðnþmÞ

n!m!
jϕnihϕnjϕmihϕmj: ð18Þ

Using the number basis representation of coherent states,

jϕmðtÞi ¼ e−jϕmðtÞj2=2P∞
p¼0

ϕmðtÞpffiffiffiffi
p!

p jpi, we have,

ρ2m ¼ e−2jαj2
X
n

X
m

jαj2ðnþmÞ

n!m!
e−

1
2
ðjϕmj2þjϕnj2Þ

×

�X∞
p¼0

ϕp
mϕ

�p
n

p!

�
jϕnihϕmj: ð19Þ

Taking the trace of Eq. (19), we obtain,

Trðρ2mÞ ¼ e−2jαj2
X
n

X
m

jαj2ðnþmÞ

n!m!
e−ðjϕmj2þjϕnj2Þ

×

�X∞
p¼0

ϕp
mϕ

�p
n

p!

��X∞
a¼0

ϕa
nϕ

�a
m

a!

�
: ð20Þ

Finally, using Eq. (16) in Eq. (20), we write down the linear
entropy of the oscillator subsystem as,

S ¼ 1 − e−2jαj2
�X∞
n¼0

X∞
m¼0

jαj2ðnþmÞ

n!m!

× exp ð2G2ðm − nÞ2ðcos t − 1ÞÞ
�
: ð21Þ

To find an approximation of Eq. (21) we first note that the
summand is significant only for m ∼ n ∼ α2, for arbitrary
t;G > 0. Therefore, if we extend the summation domain to
m; n∈Z, the result does not change significantly. One can
write Eq. (21) as,

S ¼ 1 −
X
n∈Z

X
m∈Z

�
e−ΛΛn

n!

�
gðm; nÞ

�
e−ΛΛm

m!

�
; ð22Þ

where,

Λ ¼ jαj2 ð23Þ

is the mean photon number, and,

gðm; nÞ ¼ expð2G2ðm − nÞ2ðcos t − 1ÞÞ: ð24Þ

Further, assuming that Λ is large, we can write the Poisson
distributions in Eq. (22) as continuous Gaussian distribu-
tions, and convert the summation into a double integral
over continuous variables ðm; nÞ → ðx; yÞ (formally, we
use the Euler-Maclaurin formula and discard the Bernoulli
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terms, since all derivatives of the summand vanish for large
x, y). Then, we have,

S ≈ 1 −
Z

∞

−∞

Z
∞

−∞
dx dypðΛ; xÞgðx; yÞpðΛ; yÞ; ð25Þ

where, pðΛ; xÞ ¼ exp½ðx−ΛÞ2=2Λ�ffiffiffiffiffiffi
2πΛ

p and gðx; yÞ is an extension

of Eq. (24) from Z × Z to all of R2. Equation (25) can be
analytically computed to be,

S ≈ 1 −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8G2Λð1 − cos tÞ
p : ð26Þ

Furthermore, assuming the value of G2Λ → 0 is small we
obtain a simple expression for the normalized entanglement
entropy:

S ¼ Smaxð1 − cos tÞ: ð27Þ

Using the definitions in Eqs. (14) and (23) we find that the
normalization has a simple expression

Smax ¼ 4G2Λ ¼ 4g20jαj2
ω2
m

; ð28Þ

where we recall that g0 is the gravitationally induced single-
photon optomechanical coupling, jαj2 is the initial mean
photon number of the coherent state, and ωm is the
frequency of the mechanical oscillator.
To enhance the generated entanglement, we will consider

large values jαj ≫ 1 for the coherent state of the optical field,
resulting in the light-enhanced optomechanical coupling

g ¼ g0jαj: ð29Þ

In practical experimental situations we will however still be
limited to the regime g < ωm such that G2Λ remains small
and the above approximations remain valid. We will thus
use Eq. (27), which reaches its maximum value 2Smax
when t ¼ ωmτ ¼ π.
We note that Smax ∝ 1=ω3

m (since from Eq. (11) we have
g0 ∝ 1=

ffiffiffiffiffiffiffi
ωm

p
), which suggests to use low-frequency har-

monic oscillators to increase the maximum attainable
entanglement entropy. In addition, we want the experimen-
tal time to remain small in order to avoid the deleterious
effect of environmental noises and decoherence. We are
hence led to the short-time regime t ¼ ωmτ ≪ 1 such that
we can use the approximation cosðtÞ ≈ 1 − t2=2. Using
Eqs. (11), (28), and (29) we then find that Eq. (27) reduces
to the following simple formula for the entanglement
entropy:

S ¼ 2g2τ2 ¼ 4G2mω2jαj2τ2
r4ωm

: ð30Þ

V. PARAMETER REGION

To quantify the generated entanglement we consider
the currently available state-of-the-art from two hitherto
disparate fields; a high intensity light source, such as the
CoReLS petawatt (PW) laser [61], and a heavy, low-
frequency, mechanical oscillator, such as the 10 kg
LIGO mirror [39]. The optomechanical coupling, between
these two systems, is induced by gravity. We now quantify
the resulting entanglement entropy.
We recall that the light intensity I is related to the

amplitude via the formula

jαj2 ¼ 2I
ϵ0E2

c
; ð31Þ

whereEc is the electric field amplitude, and ϵ0 is the vacuum
permittivity. We further suppose that the optical field is
confined in a half-ring cavity of radius r [see Fig. 1(a)] with
the electric field amplitude given by

Ec ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ω

2ϵ0Vc

r
; ð32Þ

where Vc ¼ ðπrÞðπw̃2Þ is the cavity volume, and w̃ is the
cavity waist. Combining Eqs. (31) and (32) we then find that
the amplitude is given by:

jαj ¼
ffiffiffiffiffiffiffiffiffiffi
4IVc

ω

r
: ð33Þ

Let us estimate the order of magnitude of the generated
entanglement for an optical field of intensity I¼1013Wcm−2

at the opticalwavelength λ ¼ 1 μm(ω ¼ 2π=λ),while for the
half-ring cavity we set the radius to r ¼ 25 cm and the waist
to w̃ ¼ 6 cm such that the total power circulating in the cavity
is ∼1 PW; using these numbers we find from Eq. (33) the
value jαj ∼ 1013. For the mechanical oscillator we consider
the mass m ¼ 10 kg and the trap frequency ωm ∼ 2π ×
150 Hz (such a system has been recently cooled by LIGO
to 11 phonons [39]). In our case we will assume the trapped
system to be sphere of radius R ∼ 6 cm corresponding to a
material of density ρ ∼ 104 kgm−3. From Eqs. (11) and (29)
we then find that the single-photon and light-enhanced
optomechanical couplings are given by g0∼2π×10−29Hz
and g ∼ 2π × 10−16 Hz, respectively.
To further enhance the coupling wee can envisage an

experimental protocol with squeezed states. Since the
gravitational light-bending interaction in Eq. (10) depends
linearly on the position operator δx̂ ∝ b̂þ b̂† we can
enhance the interaction by delocalizing the mechanical
oscillator in position using a squeezing protocol [62–64].
The resulting linear entanglement entropy in Eq. (30),
which is a second order effect in the interaction (and hence
∝δx̂2), will thus be enhanced by a factor e2ξ, where ξ is the
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squeezing parameter. In particular, we consider Eq. (30)
with the left-hand side amplified by the squeezing con-
tribution e2ξ with ξ ∼ 41, corresponding to the center-of-
mass delocalization Δx ¼ xzpfeξ ∼ 6 cm matching the
radius of the mass, i.e., Δx=R ∼ 1. To summarize, the
experimental values form a simple hierarchy of values, i.e.,
w̃ ∼ Δx ∼ R and r ¼ 4R. Using these values we find that
the generated entanglement grows to unity in a time
τ ∼ 1 ms.
The proposed scheme can be also suitably modified

without lowering the generated entanglement. Depending
on experimental and technical considerations we can
change simultaneously two or more parameters appearing
in Eq. (30). For example, we can lower the laser power to
∼1 GW by lowering the frequency to ωm ¼ 2π × 0.1 Hz
as well as increasing the experimental time to τ ¼ 2.5 s, at
the cost of making the experiment more prone to low-
frequency noises [16,17]. Alternatively, we could change
the photon frequency to gamma-rays, i.e., λ ¼ 0.1 nm [65],
obtaining a comparable entanglement entropy at ωm ¼
2π × 150 Hz using the laser power ∼100 GW. Another
option would be also to consider lighter masses, e.g., m ¼
100 g corresponding to the radius R ¼ 1 cm, by decreasing
the mechanical frequency down to ωm ¼ 2π × 0.1 Hz
and increasing the experimental time to t ¼ 2.5 s, while
reducing the total power in the cavity to ∼10 TW. In this
paragraph we have used the same geometric ratios,
Δx=R ∼ 1, w̃=R ∼ 1, and r=R ¼ 4, as used in the previous
paragraph, to ease the comparison of the parameters. For
further discussions about the available parameter space see
Appendix B.

VI. SUMMARY

To summarize, this is a simple illustration of how a
photon will get entangled with a quantum matter solely via
quantum gravitational interaction. We have quantified the
entanglement in an effective field theory approach to
quantum gravity, and we have found that the linear entropy
is given by the simple expression, S ¼ 2g2τ2, where g is the
(light-enhanced) gravitationally induced optomechanical
coupling defined in Eq. (29), and τ is the experimental time.
In a typical experimental setting, with low intensity light,

the linear entanglement is extremely tiny. Nonetheless, our
estimate suggests that there might be a way of probing the
quantum light-bending interaction by combining heavy,
low-frequency mechanical oscillators [39] and intense light
sources [66].
There will be many outstanding experimental issues we

will need to understand. We will need to study the sources
of decoherence (see Appendix C [67–70]), devise cooling
and squeezing protocols [39], find a way for suppressing
phonon vibrations [71], as well as extending the duration of
petawatt laser pulses, to name a few. Last but not least, we
will need to construct a witness to read out the entangle-
ment (see Appendix D [72,73]).

Although it will be highly challenging to achieve all of
the required experimental parameters, at the least, the
current result highlights the parameter space to pursue
the goal of testing the true quantum nature of gravity via
graviton exchange via quantum entanglement. The pro-
posed scheme can discern between the spin-2 and spin-0
character of the gravitational interaction by adapting
well-established optomechanical protocols from cavity-
optomechanics [59,60], in the regime of short distances
which remains unexplored even by classical experiments.
The gravitational optomechanics is one of the critical
outstanding tests which needs to be performed to under-
stand quantum gravity’s low energy frontier fully.
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APPENDIX A: QUANTUM PHOTON-MATTER
INTERACTION VIA GRAVITON

In this appendix we for completeness provide the
derivation of the quantum-light bending interaction
following the book [46]. We first obtain the graviton
propagator (Appendix A 1) and the vertex contributions
(Appendices A 2 and A 3), which we then use to obtain the
scattering amplitude and by taking the Fourier transform
the quantum light-bending potential (Appendix A 4).

1. Graviton propagator

Consider the following metric perturbation given by,

gμν ¼ ημν þ hμν; ðA1Þ

where, ημν is the Minkowski metric of flat spacetime, μ,
ν ¼ 0, 1, 2, 3, and we take ð−;þ;þ;þÞ signature. The
Lagrangian is given by,

ffiffiffiffiffiffi
−g

p
L ¼ ffiffiffiffiffiffi

−g
p �

−
2

κ2
Rþ Lm þ LGF

�
; ðA2Þ

where, R denotes the Ricci scalar, Lm is the matter
Lagrangian and LGF is the gauge-fixing term. Expanding
up to the second order in hμν, we have,
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−
ffiffiffiffiffiffi
−g

p 2

κ2
R ¼ −

2

κ2
ð∂μ∂νhμν −□hÞ

þ 1

2
ð∂αhμν∂αeμν − 2∂αeμα∂βeμβÞ; ðA3Þ

where, h ¼ TrðhμνÞ and eμν ¼ hμν − 1
2
ημνh. We also have,

LGF ¼ ζ∂μeμν∂αeαν; ðA4Þ

where, ζ ¼ 1 denotes the Harmonic gauge. Using this
gauge, we can simplify the Lagrangian in (A2) and perform
an integration by parts to obtain,

L ¼ 1

2
hμν□

�
Iμναβ −

1

2
ημνηαβ

�
hαβ −

κ

2
hμνTμν; ðA5Þ

where, Iμναβ ¼ 1
2
ðημαηνβ þ ημβηναÞ. The equation of

motion for hμν is then,

�
Iμναβ −

1

2
ημνηαβ

�
□Dαβγδ ¼ Iμν

γδ : ðA6Þ

We can invert and solve (A6) for the Feynman propagator
Dαβγδ, after taking the Fourier transform as,

iDαβγδðxÞ ¼
Z

dq

ð2πÞ4
i

q2 þ iε
Pαβγδ;

⇒ Pαβγδ ¼ 1

2
ðηαγηβδ þ ηαδηβγ − ηαβηγδÞ: ðA7Þ

(A7) gives the spin-2 and spin-0 components of the graviton
propagator in the momentum space, see [28,46,54], which
we shall use to compute the scattering amplitude.

2. Spin-0 particle-graviton vertex contribution

The classical point particle stress tensor is given by,

TδσðxÞ ¼
X
n

pn
δp

n
σ

En δ3ðx − xnðtÞÞ; ðA8Þ

where, the index n runs over all the point particle legs in the
diagram (n ¼ 1, 2 in our case), En and xnðtÞ denotes the
denotes the energy and the trajectory of the nth particle.
Then, going to the momentum basis, for a 1-particle system
we have,

hp0jTδσðkÞjpi ¼ p0
δpσ þ pδp0

σ − ηδσðp0 · p −m2Þ; ðA9Þ

where, p2 ¼ p02 ¼ m2 is the particle mass. We have also
chosen the standard Lorentz covariant normalization of the
states jpi; jp0i, which absorbs a factor of ð2EÞ−1=2 from
Eq. (A8), each. The Feynman rule for this type of vertex is
therefore,

f

�
p0
δpσ þ pσp0

δ −
1

2
q2ηδσ

�
; ðA10Þ

where, 1
2
q2 ¼ ðm2 − p0 · pÞ and f2 ¼ 8πG is a coupling

constant.

3. Photon-graviton vertex contribution

We start with the classical EM stress tensor as,

Tem
μν ðqÞ ¼ ε�βðk0ÞTμν;βαðq; k0; kÞεαðkÞ; ðA11Þ

where, q ¼ k − k0 [see Fig. 1(b)] and ε�; ε denote the
polarization tensors. Then, the contribution of the photon-
graviton vertex in the momentum basis is given by,

hk0; βjTem
μν ðqÞjk; αi

¼ 1

2
½k0αðkμηβν þ kνηβμÞ þ kβðk0μηαν þ k0νηαμÞ

− ηαβðk0μkν þ kμk0νÞ þ ημνðk0 · kηαβ − kβk0αÞ
− k0 · kðημαηνβ þ ημβηναÞ�: ðA12Þ

The Feynman rule corresponding to this interaction is just,

fTem
μν;βαðq; k0; kÞ ðA13Þ

Henceforth, we shall also make the small grazing angle
approximation, wherein q2 ¼ ðk − k0Þ2 ≈ 0 ⇒ k · k0 ≈ 0.
Therefore, the vertex contributions in (A10) and (A13)
simplify to,

fðp0
δpσ þ pσp0

δÞ; ðA14Þ

and,

f
2
½k0αðkμηβν þ kνηβμÞ þ kβðk0μηαν þ k0νηαμÞ
− ηαβðk0μkν þ kμk0νÞ − ημνkβk0α�; ðA15Þ

respectively.

4. Scattering amplitude and effective potential

Using the results of (A7), (A14), and (A15), the
amplitude for the scattering process in Fig. 1(b) is

Scovfi ¼ ð−iÞ24f2p0
δpσ

iPδσμν

q2 þ iε

�
k0αkμηβν þ kβk0μηαν

− ηαβk0μkν −
1

2
ημνkβk0α

�
εβ�ðk0ÞεαðkÞδ4ðPiÞ; ðA16Þ

The particle four-momenta, before and after scattering are
denoted by p and p0 respectively, while the photon
momenta are labeled by k, k0. Note, that we have made
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the q2 ≈ 0 approximation only in the numerator, while the
denominator is left untouched. The factor of 4 in (A16)
arises from the two possible momentum configurations of
the photon and the point particle being contracted by the
symmetric Pδσμν propagator.
Equation (A16) can be further simplified by inserting the

expression for Pδσμν from (A7) as,

Scovfi ¼ ð−iÞ2if2p0
δpσ

1

q2þ iε

�
k0αkδδσβ þ kβk0δδσα

− ηαβk0δkσ −
1

2
kβk0αησδþ k0αkσδδβ þ kβk0σδδα

− ηαβk0σkδ −
1

2
ηδσkβk0α − ηδσðk0αkβ þ kβk0α − ηαβðk0 · kÞ

− 2ηδσkβk0αÞ
�
εβ�ðk0ÞεαðkÞ ðA17Þ

¼ −2if2p0
δpσ

�
−2k0σkδ

q2 þ iε

�
ε�ðk0Þ · εðkÞ; ðA18Þ

where, in writing the last line, we have used kμεμ ¼ 0.
From Eq. (A18) we calculate the effective potential for a

massive particle of mass m and a photon of frequency ω
using the small momentum transfer limit t → −q⃗2 as,

Vðr⃗Þ ¼ 1

4mω

Z
Scovfi ðq⃗Þeiq⃗·r⃗

d3q
ð2πÞ3

≃
1

4mω

Z
d3q
ð2πÞ3 4f

2
ðk · pÞðk0 · p0Þ

−q2
ε�ðk0Þ · εðkÞeiq⃗·r⃗

¼ f2ðk · pÞðk0 · p0Þ
mωr

ε�ðk0Þ · εðkÞ; ðA19Þ

where r ¼ jr⃗j. Finally, on taking the static limit wherein,
pμ¼p0

μ¼Mgμ0;kμ≡ðω;kÞ;k0μ≡ðω0;k0Þ (with ω → ω0), we
get from Eq. (A19),

VðrÞ ¼ −
1

4mω

8πGðmωÞ2
πr

ε�ðk0Þ · εðkÞ

¼ −
2Gmω

r
ε�ðk0Þ · εðkÞ: ðA20Þ

Equation (A20) has been derived in previous literature
(e.g., see Refs. [46,47,53]).
As discussed in the main text, it is important to note that

in the context of quantum field theory, r is an operator
valued quantity along with the photon polarization vector
εðkÞ, a nontrivial result emerging from perturbative quan-
tum gravity. To highlight this crucial point we rewrite
Eq. (A20) as:

V̂ ¼ −
2Gmω

r̂
ε̂�ðk0Þ · ε̂ðkÞ: ðA21Þ

Starting from this operator-valued potential, which is
induced by the quantized gravitational field, we will
now show that it leads to a nonlinear optomechanical
interaction and matter-photon entanglement.

APPENDIX B: COMPACT SETUP PARAMETERS

In this section we discuss how to optimize the parameters
of the experimental scheme without reducing the generated
entanglement entropy. We will first identify the length-
scales of the problem and then discuss the available range
of masses and mechanical frequencies (Appendix B 1), as
well as the possible values for the laser power and the laser
frequency (Appendix B 2).
We first combine Eqs. (17) and (20) from the main text

and find that the (gravitationally induced) entanglement is
given by:

S ¼ 16G2mIVcτ
2e2ξ

r4
ω

ωm
: ðB1Þ

We recall that Vc ¼ ð2πrÞðπw̃2Þ is the cavity volume (w̃ is
the cavity waist), r is the distance between the cavity and
the mechanical oscillator, and m is the mass of the
oscillator. Assuming a spherical particle, we can define
the particle radius R ¼ ð3m=ð4πρÞÞ1=3, where ρ denotes the
density of the material. We thus see that the generated
entanglement entropy S depends on three length scales: r,
w̃, and R.
Let us find an optimized geometric configuration by

fixing the ratios R=r and w̃=r (and rewrite the expression
for S as a function of the length-scale R). We note that the
generated entanglement in Eq. (B1) scales as r−4 and hence
we want to the optical cavity to be close to the mechanical
oscillator. We set the first ratio for concreteness to q≡
R=r ¼ 1=4 to allow the mechanical oscillator to freely
move (the minimal geometric limit would be R=r ∼ 1).
Furthermore, we recall that we require w̃ ≪ r to work
within the geometric approximation; to avoid introducing a
new parameter we thus set the second ratio for simplicity to
w̃=r ¼ q ¼ 1=4. We then find that Eq. (B1) simplifies to:

S ¼ 128π3q3

3

G2Iωρτ2R2e2ξ

ωm
∝ Δx2m5=3; ðB2Þ

where we have introduced the delocalization parameter
Δx ¼ ð2mωmÞ−1=2eξ.

1. Mass and mechanical frequency

Let us assume for concreteness that the bulk of the
mechanical oscillator is composed of bismuth and estimate
the generated entanglement using Eq. (B2). Here we will
consider an optical field of intensity I ¼ 1013 Wcm−2 at
the optical wavelength λ ¼ 1 μm (ω ¼ 2π=λ) and optimize
the mass and mechanical frequency (see Appendix B 2
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below to see how to relax the requirements of the optical
field). We find that for m ¼ 10 kg (radius R ¼ 6 cm
and density ρ ¼ 9.747 g cm−3) we can generate unit
entanglement already with a mechanical frequency of
ωm ∼ 2π × 150 Hz and squeezing parameter ξ ¼ 41, which
corresponds to a spread of the center of mass wave function
of Δx ¼ xzpfeξ ∼ 6 cm. One could be tempted also to
consider a mechanical oscillator with a smaller mass m.
If we set m ¼ 100 g (radius R ¼ 1 cm and density
ρ ¼ 9.747 g cm−3) we can generate unit entanglement
using the mechanical frequency ωm ¼ 2π × 1 Hz and
setting the delocalization to Δx ¼ xzpfeξ ∼ R ∼ 1 cm (cor-
responding to a squeezing parameter ξ ¼ 35).

2. Laser power and photon frequency

Instead of a petawatt laser source it is desirable to use
lower laser powers. A possible approach is to lower the
mechanical frequency and to increase the experimental
time, while keeping the ratio ωmτ of the same order of
magnitude (in the previous section ωm ¼ 2π × 150 Hz and
τ ¼ 1 ms). In particular, From Eq. (17) in the main text,
and using for simplicity τ ¼ π=ð2ωmÞ, we readily find

S ¼ π3G2mω2jαj2e2ξ
r4ω3

m
; ðB3Þ

where we note the favorable scaling ω−3
m . By lowering the

frequency to ωm ¼ 0.1 Hz as well as increasing the
experimental time to τ ¼ 2.5 s we can lower the laser
power to the gigawatt range.
An alternative possibility might be to change the photon

frequency ω from optical frequencies to gamma-rays. From
Eq. (B3) we note that the generated entanglement entropy
scales as ω (note that jαj2 ∝ 1=ω) and hence by changing
the wavelength from λ ¼ 1 μm (optical) down to λ ¼
0.1 nm (gamma-rays) we can reduce the laser power by
4 orders of magnitude, resulting in 100 megawatts of laser
power. The technical details for manipulating x-rays or
gamma-rays goes beyond this work, but we note that
recently entanglement has been witnessed with gamma-
rays [65], suggesting further exploration of this option.

APPENDIX C: ROBUSTNESS ANALYSIS

In this section we discuss the deleterious effects arising
from the interaction with the environment. For the exper-
imental regime suggested in the main text we quantify the
strength of the competing effects and discuss how to
mitigate environmental decoherence.
The entanglement between the system and the exper-

imental equipment (and hence the resulting environmental
decoherence) can be suppressed by a suitable hierarchy of
masses, distances, and frequencies, with the stringiest
requirement coming from (electromagnetic) optomechan-
ical entanglement (Appendix C 1), while gravitationally

induced entanglement with the experimental equipment
will remain negligible (Appendix C 2). We also find that
stochastic noise from gravitons is negligible for the
considered experimental parameters (Appendix C 3).
Finally, we quantify the experimental requirements to
mitigate decoherence induced by the residual gas mole-
cules and black-body radiation (Appendix C 4).

1. Electromagnetically induced entanglement
with experimental equipment

The photons interact electromagnetically with a number
of optical elements (such as the cavity mirrors), which
could result in unwanted electromagnetically induced
entanglement, precluding the observation of the entangle-
ment from the light-bending interaction. It is thus important
to estimate the (electromagnetic) optomechanical couplings
between the optical elements and the photons, and find the
parameter-regime where their effects can be mitigated.
We can model the experimental apparatus (such as an

optical element) as another harmonic oscillator of mass M,
and frequency ωM. The standard cavity-optomechanical
single-photon coupling is given by [59]

gðeMÞ
0 ¼ ωcav

L
xðMÞ
zpf ; ðC1Þ

where ωcav is the cavity resonance-frequency, L is the

cavity length, and xðMÞ
zpf ¼ ð2MωMÞ−1=2 is the zero-point

motion associated to the optical element.
To suppress the effect of the (electromagnetic) optome-

chanical coupling we require that the corresponding maxi-

mal entanglement entropy, which we will label by SðeMÞ
max ,

should be negligible. The maximal entanglement entropy
derived in Eq. (28) applies also for the electromagnetic

case by making the formal replacements: g → gðeMÞ
0 and

ωm → ωM. In particular, we require that SðeMÞ
max should be

much smaller than the gravitationally induced entangle-
ment (assumed to be of order unity), i.e.

SðeMÞ
max ¼

�
gðeMÞ

ωM

�
2

≪ 1; ðC2Þ

where we have introduced the light-enhanced coupling

gðeMÞ ≡ gðeMÞ
0 jαj (we recall that jαi is the coherent state of

the optical field).
From Eqs. (C1) and (C2) we find that the (electromag-

netic) optomechanically induced entanglement scales as

SðeMÞ
max ∝ M−1ω−3

M . In other words, its magnitude can be
suppressed by considering heavy optical elements (large
M) which are strongly confined (stiff mechanical frequency
ωM). Using Eq. (C1), and setting ωcav ∼ ω, L ¼ 2πr, we
find that the condition in Eq. (C2) is satisfied forM ¼ 1 kg
and ωM ¼ 2π × 100 GHz (with the other values set to
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the values from the main text; r ¼ 0.25 m, λ ¼ 1 μm
(ω ¼ 2π=λ), m ¼ 10 kg, and ωm ¼ 2π × 150 Hz).

2. Gravitationally induced entanglement
with experimental equipment

The entanglement between the photons and the exper-
imental apparatus could potentially arise also through the
quantum light-bending interaction. We can estimate the
maximum generated entanglement using a similar analysis
to the one discussed in the previous Appendix C 1.
The (gravitational) single-photon coupling is given by:

gðgMÞ
0 ¼ 2GMω

r2M
xðMÞ
zpf ; ðC3Þ

where M (ωM) is the mass (mechanical frequency) of the

experimental apparatus, xðMÞ
zpf ¼ ð2MωMÞ−1=2 is the zero-

point motion, and rM is the characteristic distance from the
photons in the cavity [see Eq. (11) in the main text]. We

then introduce the light-enhanced coupling gðgMÞ¼gðgMÞ
0 jαj,

where jαi is the coherent state of the optical field, and
require that the maximum entanglement with the exper-

imental apparatus, SðgMÞ
max , should be negligible. Specifically,

we require that

SðgMÞ
max ¼

�
gðgMÞ

ωM

�
2

≪ 1: ðC4Þ

Since SðgMÞ
max ∝ Mω−3

M r−4M we can suppress the generated
entanglement using light experimental equipment (small
M), confined in a high-frequency harmonic trap (stiff ωM),
that is located far from the optical field in the cavity (large
rM). The characteristic distance from any localized optical
element located close to the half-ring cavity will be
approximately equal to the radius of the cavity rM ≈ r.
The mass of the equipment, M, can be larger than the mass
of the probe system, m, but the former will be trapped in a
much stiffer trap, i.e., ωM ≫ ωm. We thus have that the

generated entanglement is negligible, i.e., SðgMÞ
max ≪ 1.

One could also generate gravitationally induced entan-
glement between the mass, m, and the experimental equip-
ment of mass, M. From the Newtonian potential we find
that the dominant coupling for such interaction is given
by [27,70]:

gðgmMÞ
0 ¼ G

ffiffiffiffiffiffiffiffiffi
mM

p

r3mM
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωmωM

p ; ðC5Þ

where rmM is the distance between the two masses. We can

then compute the maximum entanglement entropy, SðgmMÞ
max ,

and require that it is negligible, i.e.,

SðgmMÞ
max ¼ ðgðgmMÞeξÞ2

ωmωM
≪ 1; ðC6Þ

where we have included also the squeezing factor eξ arising

from the mass m. We note that SðgmMÞ
max ∝ Mω−3

M and hence
we ideally want light experimental equipment (small M)
and stiff harmonic traps (large ωM). Let us suppose that the
distance between the two masses is approximately rmM ≈ r.
We then find that the condition in Eq. (C6) is readily
satisfied using the parameters found in Appendix C 1
(M¼1kg, ωM¼2π×100GHz, r ¼ 0.25 m, m ¼ 10 kg,
and ωm ¼ 2π × 150 Hz).

3. Stochastic noise from gravitons

For completeness we compare the strength of the light-
bending interaction with the stochastic graviton noise
investigated in [69]. The adimensional stochastic graviton
noise spectrum, assuming a graviton vacuum state (see
below for a discussion about squeezed graviton states), is
given by SNNðω̃Þ ¼ 4Gω̃, where ω̃ denotes the frequency
(we use the ω̃ notation to avoid confusion with the
photon frequency ω). This latter stochastic noise induces
position fluctuations of the distance, r, between the mass
and the photons in the cavity. Specifically, the position
power spectral density is given by Sxxðω̃Þ≡ r2SNNðω̃Þ,
and using the relation between force and acceleration,
Fðω̃Þ ¼ mω̃2xðω̃Þ, we find the force-noise spectrum:

SFFðω̃Þ ¼ 4Gr2m2ω̃5: ðC7Þ

We are interested in the dephasing rate given by [16]:

Γ ¼ SFFðωmÞΔx2; ðC8Þ

where SFF is evaluated at the mechanical frequency ωm,
and Δx ¼ xzpfeξ is the delocalization of the mechanical
oscillator (xzpf ¼ ð2mωmÞ−1=2 is the zero-point motion, and
ξ is the squeezing parameter).
Using the numbers quoted in the main text (m ¼ 10 kg,

r ¼ 0.25 m and ωm ¼ 2π × 150 Hz), we find that the
dephasing rate Γ is smaller by about 8 orders of magnitude
compared to the (gravitationally induced) light-enhanced
coupling geff ¼ geξ [where we have included the mechani-
cal squeezing factor eξ as we have done in Eq. (C8)].
However, the stochastic graviton noise can be augmented
by considering the noise originating from a different
graviton state. For example, for a squeezed graviton state
we find that Γ in Eq. (C7) gets rescaled by ðcoshð2ξðsgÞÞÞ1=2,
where ξðsgÞ is the graviton squeezing parameter [69]. We
find that the augmented dephasing rate Γ becomes com-
parable to the (gravitationally induced) light-enhanced
coupling geff ¼ geξ when we set the stochastic graviton
squeezing parameter to ξðsgÞ ∼ 18.
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4. Residual gas particles and environmental photons

The mechanical oscillator of mass m is subject to
decoherence due to collisions with residual gas particles
(“coll” label) as well as due to electromagnetic emission
(“em” label), absorption (“abs” label) and scattering
(“scatt” label) of environmental photons. The decoherence
rates in the long-wavelength (“lw” label) limit are given by
[67,68,74]

γðlwÞcoll ¼
8

ffiffiffiffiffiffi
2π

p
R2ζð3Þ

3ζð3=2Þ
m1=2

g P
kBT

ðkBTÞ3=2Δx2; ðC9Þ

γðlwÞem;abs;scatt ¼
8!ζð9Þ8R6

9π
ðkBTÞ9Re

�
ϵ − 1

ϵþ 2

�
2

Δx2; ðC10Þ

and the decoherence rates for the saturated short-
wavelength (“sw” label) limit are given by

γðswÞcoll ¼ 16πnVR2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πkBT
mg

s
; ðC11Þ

γðswÞem;abs;scatt ¼ 2π−1R2T3ζð3Þk3B; ðC12Þ

where R is the radius of the harmonically trapped system,
ζð·Þ is the Riemann zeta function, mg is the characteristic
mass of a gas particle, P is the pressure of the gas, kB is the
Boltzmann constant, ϵ is the dielectric constant, and nV is
the number density of the residual gas. T denotes the
temperature of the gas particles, the temperature of the
external photon bath as well as the internal temperature of
the trapped particle (all three denoted by the same symbol,
and assumed equal for simplicity). Δx denotes the length-
scale of our system, in our case it corresponds to the zero-
point motion, rzpf , augmented by the squeezing factor, eξ,
i.e., we have Δx ¼ xzpfeξ.
We will interpolate between the short and asymptotic

long wavelength regimes using the min function, i.e.,
γj ≡minðγswj ; γlwj Þ (for j ¼ coll and j ¼ abs; em; scatt).
The total decoherence rate can be then computed as

t−1coh ≡ γcoll þ γabs;em;scatt; ðC13Þ

where tcoh is the available coherence time. In Fig. 2 we have
identified the optimal temperature and pressure to mitigate
the effect of environmental decoherence of the mechanical
oscillator.

APPENDIX D: ADAPTATION OF PROTOCOLS
FROM CAVITY-OPTOMECHANICS

The analysis in the main text showed that the quantum
light-bending interaction reduces to the familiar optome-
chanical interaction:

V̂ ¼ g0ðb̂þ b̂†Þâ†â; ðD1Þ

where â (b̂) is the optical (mechanical) mode, and g0 is
the (gravitationally induced) single-photon coupling [see
Eqs. (10) and (11) in the main text]. Importantly, the form
of Eq. (D1) matches the familiar interaction found in
(electromagnetically induced) cavity-optomechanics—we
can thus directly apply existing protocols from quantum
optomechanics [59]. In this section we outline a possible
method to experimentally measure the entanglement aris-
ing from the gravitational interaction (from the quantum
light-bending interaction discussed in the main text), by
adapting the experimental protocol from [73].
We first linearize the interaction by writing â → αþ δâ,

where we have introduced the mean value α ¼ hâi, and we

FIG. 2. Plot showing the required temperature, T, and pressure, P,
to achieve a coherence time of tcoh as defined in Eq. (C13). T
denotes the temperature of the external photon bath, the temperature
of the residual gas, as well as the internal temperature of the trapped
particle (all three denoted by the same symbol, and assumed equal
for simplicity). The brown (gray) shaded regions correspond to the
parameter space excluded by considering emission, absorption, and
scattering of environmental photons (collisions of residual gas
particles). The shade corresponds to the mass (mechanical fre-
quency):m ¼ 10 kg (ωm ¼ 0.1 Hz),m ¼ 10 kg (ωm ¼ 150 Hz),
m ¼ 100 g (ωm ¼ 150 Hz) delocalized by Δx ∼ 6 cm,
Δx ∼ 6 cm,Δx ∼ 1 cm, respectively (from lighter to darker shade).
The required coherence time is set to τ ¼ 1 ms (τ ¼ 2.5 s)when the
harmonic frequency is ωm ¼ 2π × 150 Hz (ωm ¼ 2π × 0.1 Hz).
For concreteness we consider a spherical bismuth particle with
density ρ ¼ 9.747 g cm−3 [radius R ¼ ð3m=ð4πρÞÞ1=3], and
dielectric constant ϵ ¼ −19.489þ 2.0864i.
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can assume without loss of generality that α is real-valued.
The interaction from Eq. (D1) thus simplifies to:

V̂grav ¼ gðb̂þ b̂†Þðδâ† þ δâÞ; ðD2Þ
where we have introduced the (gravitationally induced)
light-enhanced optomechanical coupling g ¼ g0jαj [see
Eq. (14) in the main text]. In addition, we suppose that
the mechanical oscillator is coupled also to another optical
mode, ĉ, via an (electromagnetically induced) light-
enhanced coupling gc, with the interaction given by:

V̂em ¼ gcðb̂þ b̂†Þðδĉ† þ δĉÞ; ðD3Þ
where δĉ denote fluctuations around the mean value hĉi.
The schematic depiction of the setup is given in Fig. 3.

The quantum light-bending interaction entangles the opti-
cal cavity mode, â, and the mechanical oscillator mode, b̂,
the latter measured using an auxiliary optical field, ĉ. By
detecting entanglement between the out optical modes âout
and ĉout we can infer the gravitationally induced entangle-
ment between the mechanical oscillator mode b̂ and the
optical field mode â.
We suppose that both cavities are driven, and that the

output fields are subject to continuous measurement,
analogous to the situation discussed in [73]. Assuming
the initial state of the system is Gaussian, and working in
the linearized regime of Eqs. (D2) and (D3), the final state
will in general be an entangled Gaussian state. From the
output modes âout and ĉout one can then construct EPR-type
variables and use the Duan-Giedke-Cirac-Zoller (DGCZ)
criterion to ascertain entanglement [72], or perform full

Gaussian homodyne tomography to reconstruct the state of
the system. Any detected entanglement between the two
out modes can thus be used to ascertain the quantum nature
of the light-bending interaction.
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