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Abstract. One of the strongest results in temporal logic is Chang,
Manna and Pnueli’s partitioning of reactive system properties into the
classes of safety and liveness[1]. Safety and liveness properties state, in-
tuitively and respectively, that something bad will not happen and that
something good will eventually happen. In this paper we show how, in a
multi-agent world, this safety/liveness partitioning can be used to drive
learning. If an agent is introduced to a world and given a set of descrip-
tions of system safety an liveness properties then how is it to discover
how to behave in such a way as to satisfy them? Safety and liveness
properties will influence agent behaviour, safety properties are cast as
system norms exerting a restraining influence whilst liveness properties
are cast as desires which exert a driving influence. Agents will randomly
gather a set of atomic behaviours - simple actions which may be used
individually, in combination or in conjunction with other agents. In or-
der to discover behaviours which satisfy these system properties agents
must have a “mischevious” element in their behaviour. Future worlds
are given a preference ordering, when this ordering fails to provide clear
guidance an agent may “mischeviously” select any available action not
proscribed by safety norms. Undesirable world states are described by
these safety norms and agents will be obliged to prevent these states
by either refraining from actions which are known to bring them about
or acting so as to attempt to clear these states if they are detected. A
small number of dedicated coaching agents will assist “normal” agents
in refining any behaviours they have developed. Coaches will also try to
ensure that successful behaviours are propagated as quickly as possible.
The mechanism for achieving these combined behaviours is a novel com-
bination of belief update and belief revision. This arrangement provides
a belief management framework which is capable of identifying factors
governing the behaviour of the agent’s world with no requirement for
prior knowledge. The resulting set of beliefs will be filtered by an agent’s
desires and intentions so as to produce a partially ordered set of plausible
worlds and, hence, a partial order on sets of available actions to control
the agent’s behaviour.



1 Introduction

Jennings et al.[2] state that “A major selling point of purely reactive systems is
that overall behaviour emerges from the interaction of the component behaviours
when the agent is placed in its environment.” One of our goals is to develop a
mechanism which allows reactive agents to evolve towards behaving in a way
that satisfies a system specification. The promise of emergent behaviour com-
bined with their inherent simplicity makes reactive agents very attractive. There
are, however, a number problems. Jennings notes that the relationship between
atomic behaviours, the environment and the resulting overall behaviour may
be extremely difficult to understand. Despite their relative simplicity specifying
agents for particular tasks is potentially very complex. An additional problem is
that it is difficult to see how to design a purely reactive agent that will learn from
its experience and improve its performance over time, a satisfactory behaviour
may emerge but agents may be unable to improve on this even over an extended
run.

We propose to the adoption of three methods to get round these problems.
Firstly a hybrid reactive/cognitive agent architecture biased towards reactive
operation and secondly, the introduction of dedicated coaching agents to assist
general agents in developing and propagating successful behaviours. The third
element is a novel combination of belief management techniques, coaching agents
will use belief update to manage their knowledge whilst general agents will use
belief revision. The interaction between these methods will drive system learning.

The next section briefly outlines belief management, plausibility and related
work. Section 3.3 describes how the proposed belief management system will
operate and section 3.6 outlines how such a system may be accommodated by a
hybrid agent architecture.

2 Belief management and plausibility

2.1 Beliefs and the BDI agent model

The role of attitudes such as belief, desire and intention has long been recog-
nised in agent design[3](see [4],[5]). This section briefly introduces beliefs, desires
and intentions from a philosophical background then concentrates on beliefs to
examine two approaches to belief management.

An agent’s knowledge and beliefs may be described as information atti-
tudes[6] and its desires and intentions as pro-attitudes[4]. Pro-attitudes have
an influence over how an agent behaves. If I feel uncomortably hot then I may
desire to be a feel cooler. At the same time I believe that the air conditioner on
will make me cooler and form the intention to turn the air conditioner on. De-
sires and intentions differ in that intentions are conduct controlling pro-attitudes
whereas desires are potential influencers of action. An intention, thus, involves a
commitment to action that is absent from a desire, Bratman terms this relation
between intention and action the volitional dimension of commitment.



The simple example above uses a belief-desire model, my intention to turn
the air conditioner on can be reduced to the belief that the air conditioner will
make me feel cooler and a desire to feel cooler. This model has both descriptive
and normative aspects, it attempts to structure a commonsense approach to
action and to articulate a practical rationality. If one accepts the existence of
a predominant desire then this model is adequate. My having a predominant
desire to become cooler means that I desire this more than performing any other
option that I deem incompatible. My intention to turn the air conditioner on
cannot be identified with such a predominant desire because it does not admit
either a volitional or reasoning centred commitment.

The tactic of reducing intentions to beliefs and desires is, it would appear,
inadequate. Bratman goes on to consider intentions in the context of a boundedly
rational agent. Bounded rationality introduces a requirement for practical as
opposed to omniscient reasoning. Bratman frames intentions as partial plans
which can play a role in future reasoning. Intentions are both inputs to and
outputs from an agent’s reasoning. As inputs they can pose problems - I want
to turn the air conditioner on but where is the remote controller. They can also
pose constraints - my desire use the air conditioner may mean that I cannot
use certain other electrical apparatus. Intention has two facets, one deals with
intentional action and the other with coordinating plans, recognising these facets
forces us to consider intention as a distinct element of agency.

Cohen and Levesque[7] formalised Bratman’s work and identified seven prop-
erties forming what Wooldridge terms a desiderata for intention. These are listed
in full here although we are concerned mainly with properties 3, 4, 5 and 6 -
those which are pertinent to belief management. Properties 1 and 2 correspond
to with Bratman’s reasoning centred dimension of commitment.

Property 1 Intentions pose problems for agents who then need to determine
how to solve them.

Property 2 Present intentions can “filter” future intentions so as to prevent
the adoption of conflicting intentions.

Property 3 Agents monitor the success of their intentions, if attempts at a
particular intention fail then an agent will try again.

Property 4 Agents believe that their intentions are possible. It would be irra-
tional to adopt an intention believed impossible.

Property 5 Agents do not believe that they will not bring about their intentions.

Property 6 Agents believe that they will bring about their intentions in certain
circumstances.

Property 7 Agents need not intend all of the side effects, expected or otherwise,
of their intentions.



2.2 Belief management

Beliefs are a core element of a rational agent’s behaviour, properties 4, Properties
5 and Properties 6 outline the influence that beliefs exert over the adoption of
intentions. An agent newly placed in a world may, initially, have a very small set
of beliefs about its surroundings. As the agent discovers new facts or properties
of its world then it will need to change its set of beliefs. Understanding how
an agent ought to change its beliefs given new information has been an active
research area in both philosophy and AI. Two approaches to this change have
been studied in detail, belief revision and belief update.

Belief revision Belief revision originated from studies in the philosophy of sci-
ence and occurs when an agent changes its set of beliefs following the adoption
of a new belief. If an agent learns ϕ and ϕ is consistent with its existing beliefs
then the new belief, ϕ, is simply added to the agent’s knowledge base. If, how-
ever, ϕ is inconsistent with existing beliefs then the existing beliefs are revised
by discarding some older beliefs so as to maintain consistency. The most com-
monly accepted approach to belief revision is known as the AGM theory (after
Alchourrón et al,(1985); Gärdenfors, (1988), see [8]). This theory assumes that
the agent’s epistemic state is represented by a set K of formulas in some logical
language, Le over a set of primitive propositions. Belief revision takes a set of
beliefs, A, a revision operator ◦ and a new formula, ϕ returning a new belief set,
A ◦ ϕ , after the operation. Intuitively this process should result in a minimal
change to the existing belief set, Friedman and Halpern[8] list the following pos-
tulates (where Cl represents the deductive closure of the set of formulas A) to
characterise this notion.

BR1. A ◦ ϕ is a belief set
BR2. ϕ ∈ A ◦ ϕ
BR3. A ◦ ϕ ⊆ Cl(A ∪ {ϕ})
BR4. If ¬ϕ 6∈ A then Cl(A ∪ {ϕ}) ⊆ A ◦ ϕ
BR5. A ◦ ϕ = Cl(false) iff `Le

¬ϕ
BR6. If `Le ϕ⇔ ψ then A ◦ ϕ = A ◦ ψ
BR7. A ◦ (ϕ ∧ ψ) ⊆ Cl(A ◦ ϕ ∪ {ψ})
BR8. If ¬ϕ 6∈ A ◦ ϕ then Cl(A ◦ ϕ ∪ {ψ}) ⊆ A ◦ (ϕ ∧ ψ)

BR1 and BR2 state that after a revision by ϕ the belief set should include ϕ.
BR3 and BR4 describe persistence indicating that if a new belief is consistent
with the existing belief set then revision should not remove any existing beliefs
and should not add anything beyond that implied by the existing set and the
new belief. Coherence is described by BR5 and BR6,BR5 states that the agent is
capable of incorporating any consistent belief and BR6 that the syntactic form
of the new belief does not affect the revision. BR7 and BR8 place constraints
requiring that revision maintain belief coherency.



Belief update Belief update originated from work in the database community
(see [8]) and addresses the problem of changing a knowledge base so as accom-
modate new facts or beliefs about the world. If an agent makes a new observation
that contradicts or is inconsistent with existing beliefs then existing beliefs are
not necessarily considered as being false. Belief revision does not assume that
the world is static and attempts to capture changes in the world. Katsuno and
Mendelzon (see [8]) list a set of postulates addressing formulas, µ, rather than
belief sets which an update operation, �, ought to satisfy.

BU1. `Le
µ � ϕ⇒ ϕ

BU2. If `Le
µ⇒ ϕ,then `Le

µ � ϕ⇔ ϕ
BU3. `Le ¬µ � ϕiff `Le ¬µ or `Le ¬ϕ
BU4. If `Le µ1 ⇔ µ2 and `Le ϕ1 ⇔ ϕ2 then `Le µ1 � ϕ1 ⇔ µ1 � ϕ1

BU5. `Le
(µ � ϕ) ∧ ψ ⇒ µ � (ϕ ∧ ψ)

BU6. If `Le
µ1 ⇒ µ2 and `Le

µ2 ⇔ µ1, then `Le
µ � ϕ1 ⇔ µ � ϕ2

BU7. If µ is complete then `Le
(µ � ϕ1) ∧ (µ � ϕ2) ⇒ µ � (ϕ1 ∨ ϕ2)

BU8. `Le (µ1 ∨ µ2) � ϕ1 ⇔ (µ1 � ϕ) ∨ (µ2 � ϕ)

This set of postulates has a number of similarities to the belief revision pos-
tulates, BU1 (c.f BR2) states that when an agent learns ϕ then it believes ϕ.
BU2 (weaker than BR3 and BR4) specifies that if ϕ is already believed then
updating an agent’s beliefs with ϕ does not change the agent’s beliefs. BU3 and
BU4 (c.f. BR5 and BR6) impose coherence on any belief change process

2.3 Plausibility and agents of change

Assessing the probability of future worlds sits uneasily with the idea of systems
of autonomous agents. Agents are autonomous entities which can influence their
own destinies. Saying that “it is probable that two chemicals will be mixed in a
future world” really means that this future world is plausible and that there is a
probability that the agent will cause the chemicals to be brought together. There
is certainly an element of probability but that is only part of the consideration
and is heavily dependent on the agent’s choice of actions.

Friedman and Halpern[9] note that future worlds can be considered in terms
of plausibility and that plausibility space is a direct generalisation of probability
space. Rather than mapping worlds to probabilities in [0, 1] plausibility space
maps worlds onto an arbitrary partially ordered plausibility set. Plausibility is
an unstructured approach to uncertainty[10] which leaves agents free to decide
what criteria are important to it and order worlds accordingly. Moreover, this
generalisation can also be applied to other methods of dealing with uncertainty
and can be easily incorporated into the Kripke semantics that are usual for deal-
ing with possible worlds and branching time. If an agent knows little or nothing
about its environment then, obviously, it is not in a position to rationally choose
an action available to it. At some point the agent may come to possess sufficient
knowledge to be able to do this but below this threshold agents will use their
actions randomly and “mischeviously”. Agents will use a modular architecture



which allows them to “collect” actions, when the world is initialised a number of
actions will be distributed randomly and agents will be able to collect these as
they move about their world. agents will build sets available actions randomly
giving the agent population a degree of diversity.

3 The agents

General agents and coaching agents have already been mentioned, this section
briefly describes these entities and the reasons for a hybrid architecture.

3.1 General agents

Emergent behaviour is something normally associated with reactive agents and
learning normally associated with cognitive agents. Both are required here. The
attraction of a completely new architecture hides a number of pitfalls[11, page
235], it was decided to pick the required features from existing architectures to
form a modular hybrid agent combining both reactive and cognitive elements.
There is a body of literature on hybrid architectures covering areas such as
process management agents[12], hybrid control of robots using an interface agent
[13], and symbolic/reactive hybrid robot control [14]. The only novel aspects of
the proposed architecture is the ability of the cognitive module to provide low
level assistance to the basic agent module by analysing data from a history
module which maintains a short history of the agent’s internal state. Low level
assistance will be provided when the reactive core module is unable to select an
appropriate action. Agents will be internally biased to prefer reactive or cognitive
operation, this means that the same architecture can be used for general and
coaching agents, the only real differences being the operational bias and the
resources available.

3.2 Coaching agents

Coaching agents have three main purposes, to mediate in agent interactions so as
to enforce consistency on any terms used to describe world objects and events, to
assist agents in identifying and refining “good” behaviours and to assist agents
in discovering the properties of their environment.

When two agents communicate there may be difficulties in them being able
to relate to each other. Each agent will have its own representation of the local
environment and they may use different representations or names for the same
actions or objects. It may be obvious to an observer that the two agents are in
an identical situation but not to the agents. Agents may co-operate to achieve
something by chance and be unaware of the key events in their recent histories
that have got them to the point where they are co-operating. At some point
in the future either of these agents may encounter a coach and give that coach
their historical data, the coaching agent will be able to analyse the data from an
observer’s point of view and condense the important points from the behaviour



history so as to produce a plan or behaviour for the joint action. Similarly if a
solo agent presents a plan to a coach then that coach - using its greater stored
knowledge - may identify actions or steps that are unnecessary and refine the
plan for the agent. Coaching agents and general agents will use different systems
for belief management, this should assist them in discovering the properties of
their environment, the interaction leading to this is described in section 3.3.

Coaching agents are common in other environments, RoboCup provides many
instances of coaches (see, for example, [15]) but these generally have global
knowledge or a global view of the environment. Coaching agents are situated
in the environment along with other agents and work with local knowledge and
local perceptions. These coaches can, however, draw on the knowledge and per-
ceptions of other agents and apply greater resources to reasoning with and about
it. This gives the system two levels of reasoning, weak in general agents and
strong in coaches.

3.3 Combining belief revision and belief update

Friedman and Halpern’s work seeks to provide a general framework for belief
management tachniques such as belief update and belief revision This work seeks
to exploit the differences between them. Belief revision and belief update have
generally been considered as suitable for static and dynamic worlds respectively.
Friedman and Halpern[8] indicate that is more accurate to say that belief update
is more suited to worlds where the propositions used to describe the world are
static. Bringing time into the world description mean that a dynamic world can
be represented by a sequence of static propositions. This is not really suitable for
a reactive system which is generally accepted as maintaining an ongoing interac-
tion with its environment[1]. Waiting for a future event is not really interacting
and expecting future events implies some form of environment model and cog-
nitive goings on in the agent. Timestamped propositions are of no great interest
to reactive agents.

belief revision and belief update handle inconsistent beliefs differently[8]. An
agent using a belief revision system may recover from a state where it holds
inconsistent beliefs whereas an agent using a belief update system may continue
to hold inconsistent beliefs. Cognitive agents can function whilst holding Incon-
sistent beliefs though this may carry a performance penalty. Reactive agents are,
however ill equipped to deal with such operating states and holding inconsistent
beliefs is potentially disastrous.

Belief revision places small restrictions on an agent’s prior beliefs, it requires
that they form a total preorder which fits with the notion of reactive plans. It
would appear that belief revision is a technique well suited to managing beliefs
for reactive agents.

Over time a system develops a simple plan for manufacturing a chemical prod-
uct. Agents provide a reaction vessel with raw materials which spontaneously
react to make the desired product. Agents believe that if chemicals X and Y are
combined then Z is the result. One day this does not happen. The simple agents
are faced with a new observation contradicting a current belief so their belief



revision system discards the old beliefs and assumes the new belief that X and Y
do not spontaneously react. In a later encounter with a coaching agent the coach
sees these discarded beliefs and recognises that this is a reaction that no longer
occurs. The coach then works with what the agents observer and attempts, using
belief revision in combination with other techniques, to identify changes in the
environment that may have contributed to this failed action. the coach will have
access to data from other agents which may have different percepts and have
sensed, perhaps, that the ambient temperature had recently dropped. The coach
could conjecture that the temperature had something to do with the change as
the ambient temperature was higher in all previous successful cases.

The general agent’s belief fault is used by by the coach as a trigger for ex-
amining its knowledge in an attempt to discover what caused the fault.

3.4 Agent communication

A characteristic of reactive agents is that they do not use a model of their en-
vironment. This leads to a requirement for the local environment to provide
sufficient information for agents to carry out their task properly[2]. Rather than
do this by providing agents with a rich set of communications facilities it was de-
cided to have them leave data directly in the environment. This partially avoids
problems with agents using different “names” for objects (mentioned already in
section3.2) and sidesteps potential problems with communications channels be-
coming saturated. Data pertaining to a particular region of an agent’s world will
be concentrated in and around that region. Data will be placed in the environ-
ment by agents leaving internal state records as “patches” in their environment,
this is similar to patches in StarLogo (see [16]). This method means that general
agents will work, for the most part, with immediately local data but will also
have access to smaller amounts of data from elsewhere.

Communications between general agents and coaching agents will be by a
dedicated interface allowing the coach access to an agent’s history data and
the reactive core. The is part of the agent’s cognitive module and this “coach
interface” will allow agents, either singly or multiply, to communicate directly
with dedicated coach agents. The coach will use its greater resources to analyse
the collective event histories and may be able to provide improved plans or
sequences of actions. Is so then the coach agent will distribute these plans to the
connected agents for incorporation into their reactive cores. The coach will also
be able to produce state patches incorporating these new plans so that other
agents in the field can have access to them.

General agents will be unable to communicate directly with each other so
in cases where co-operation between agents is required a triggering mechanism
will generate a plausibility for the other agent co-operating. If an agent deems
this plausibility sufficient then it will unilaterally start the activity requiring
co-operation.



3.5 Analysis of events

Agent cognitive modules will use event histories in a number of ways. Both
general and coaching agents will use a backwards looking possible worlds rep-
resentation of event histories (coach agents will be able to collect and pool this
data from several agents) and will apply a variant of standard deontic logic to
this in an attempt to identify agent roles by assigning responsibilities to agents
to ensure that they see to it that certain things are brought about. Horty[17]
has presented an account of deontic logic in the context of agency. agency in this
account is represented by Chellas’s stit semantics representing agent’s abilities
to see to it that something is brought about. Coaching agents possess greater
resources and will be able to apply a number of techniques, such as data mining,
to find relationships between events and agent actions and to identify rules gov-
erning the world’s behaviour. This will allow the agents to refine existing plans
and identify unnecessary actions in a sequence leading to a desired world state.

3.6 A hybrid agent architecture

The planned agent architecture is illustrated in figure 1 and its main components
briefly described below.

Fig. 1. Planned hybrid agent architecture.



– BAM Basic Agent Module : This is responsible for very basic agent functions
moving in the environment, recognising and dealing with state patches.

– Agent framework : This module carries out background tasks and manages
communications between the agent’s internal modules. The main function
of the framework is resource management, it is configured by the BAM and
will provide resources to agent modules as instructed.

– Reactive core : This module is responsible for the agents general operation
and how it acts in response to environmental data.

– Percepts module : This contains sensors for a subset of world elements and
can furnish other modules with environment data.

– Actions Module : The actions module provides an interface which allows the
agent to manipulate its environment.

– History module : This module provides general agents with a small store
used for maintaining a history of recent events. Coaching agents will have a
much larger history module providing storage for a database of behaviours
and sample histories. This will allow the coach to acquire sufficient data to
allow analysis and refinement of behaviours.

– Coach interface : This is the cognitive part of the hybrid architecture, in
non coaching agents this module has two functions, it provides low level
assistance when the reactive core has difficulty in making a decision and
it manages transactions with coaching agents updating the reactive core
as necessary. Dedicated coaching agents are biased more towards cognitive
operation and, consequently, the coach interface module plays a much larger
role in their operation. The cognitive module will, in such cases, be able to
control the reactive module directly.

This hybrid architecture has two main components, the cognitive “coach
interface” and the reactive “core”. additional modules, with the exception of the
BAM, are implementation specific support modules and do not have any control
over the agent’s operation. The BAM is a minimal reactive core and is part of
the agent to ensure that it can at least move and collect state patches when it
is newly instantiated in an environment.

4 Related work

Barbeau et al. address similar issues, safety, liveness and agent planning, in [18].
This work differs in a number of respects. Most notably in the use of a global
process view and the requirement that the available controllable agent actions
and uncontrollable environmental factors are known beforehand. Our method
assumes no prior knowledge and has system goals defined in terms of Barbeau’s
work is similar in that it searches for a solution, our work also searches but the
search is carried out by agents and involves discovering and combining atomic
actions rather than searching a known set of actions.



5 Conclusion and further work

The novel combination of hybrid agents, simple reactive/cognitive agents using
belief revision and more capable cognitive/reactive agents using belief update,
can be used to drive system learning. When a simple agent encounters something
that leads to an inconsistent belief set it revises its beliefs and moves the faulted
beliefs to a discard set. Coaching agents will use this discard set and the agent’s
knowledge in conjunction with pooled discards and knowledge from other agents
in an attempt to discover reasons for previously held beliefs becoming faulty.
Systems will be specified by describing their safety and liveness properties. A
stochastic element in agent behaviour will help to drive discovery and this will
be constrained by system safety properties.

It is anticipated that this learning system will allow reactive systems to
“evolve” towards a stable system satisfying a required behaviour. The method
used should provide some form of reasoning or description of the components of
the final behaviour. The ability to handle faulted beliefs should give the system
the ability to handle disturbances and unusual occurrences. This approach may
be useful for generating agent based control systems to replace existing systems
that are based on a known specification but have been extensively modified so
that the current system configuration is not not thoroughly understood. exam-
ples of this may be plant or chemical process controllers with certain products
required at certain locations.
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