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Abstract The relationship between obesity and brain structure is incompletely understood.
Using diffusion-weighted MRI from ∼30,000 UK Biobank participants we test the hypothesis
that obesity (waist-to-hip ratio, WHR) is associated with regional differences in two

micro-structural MRImetrics: isotropic volume fraction (ISOVF), an index of free water, and

intra-cellular volume fraction (ICVF), an index of neurite density. We observed significant

associations with obesity in two coupled but distinct brain systems: a prefrontal-temporal-

striatal system associated with ISOVF and a medial temporal-occipital-striatal system

associated with ICVF. The ISOVF~WHR system colocated with expression of genes enriched for

innate immune functions, decreased glial density, and high mu opioid (MOR) and other

neurotransmitter receptor density. Conversely, the ICVF~WHR system co-located with

expression of genes enriched for G-protein coupled receptors and decreased density of MOR

and other receptors. To test whether these distinct brain phenotypes might differ in terms of

their underlying shared genetics or relationship to maps of the inflammatory marker

C-reactive Protein (CRP), we estimated the genetic correlations between WHR and ISOVF

(rg = 0.026, P = 0.36) and ICVF (rg = 0.112, P < 9 × 10−4) as well as comparing correlations
between WHR maps and equivalent CRP maps for ISOVF and ICVF (p<0.05). These

correlational results are consistent with a two-way mechanistic model whereby genetically

determined differences in neurite density in the medial temporal system may contribute to

obesity, whereas water content in the prefrontal system could reflect a consequence of

obesity mediated by innate immune system activation.
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Introduction
Obesity has long been recognised as a preventable risk factor for cardiovascular and metabolic

disorders such as heart disease and type-2 diabetes. More recently, it has also emerged as

an important risk factor for neurodegenerative disorders, linked to both an increased risk of
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dementia and accelerated age-associated cognitive decline (Sellbom and Gunstad, 2012). Defined
as the excessive accumulation of adipose tissue in the body (González-Muniesa et al., 2017), the
worldwide prevalence of obesity has more than doubled in the last thirty years, making it one of

the most important global public health challenges (Yatsuya et al., 2014).
To date, cross-sectional and longitudinal studies investigating effects of obesity on the brain

have focused almost exclusively on macroscopic aspects of brain structure such as total grey matter

volume and cortical thickness. Results in this field were often contradictory: although studies

tended to report lower gray matter volume in relation to obesity, some have also observed null

or positive associations as described in a meta-analysis by García-García et al. (2019), who noted
that the likely reasons for this were heterogeneities in brain and obesity metrics, a wide variation in

sample size, and poor statistical methodology.

However, the emerging consensus indicates that typically studies are reporting negative associa-

tions between obesity (particularly visceral obesity indexed by waist to hip ratio: WHR) and (smaller)

total grey matter volume (Cox et al., 2019) and (thinner) cortical thickness (Caunca et al., 2019).
Notably, this negative association between body mass index (BMI) and global grey matter volume

has been substantiated in a recent large-scale study conducted in the UK Biobank involving 9,652

participants (Hamer and Batty, 2019). Recent meta-analysis of voxel-based morphometry studies,
including data from 5,882 participants and a mega-analysis of 6,420 participants from the ENIGMA

MDD working group, have also identified a consistent association of obesity with reductions in

grey matter volume and cortical thickness in the medial prefrontal and orbitofrontal cortex and the

temporal pole (García-García et al., 2022; Opel et al., 2020).
These associations between obesity and macroscopic features of grey matter structure have

also been supported by longitudinal studies. For example, Franz et al. showed that by the age of
64 years, participants whose BMI steadily increased over forty years had thinner cortex in several

frontal and temporal brain regions compared to those whose BMI was stable (Franz et al., 2019).
Other longitudinal studies have shown associations between age-associated increases in BMI and

grey matter reductions in the medial temporal lobe (entorhinal cortex and hippocampus) and

cingulate cortex (Arnoldussen et al., 2019; Bobb et al., 2014). Together with the finding (Opel et al.,
2020) of a significant age-by-obesity interaction on cortical thickness driven by lower thickness in
older participants, this suggests that the negative impact of obesity on the brain accumulates over

time.

Together, these studies provide robust evidence for an association between obesity and macro-

structural features of brain anatomy such as grey matter volume and cortical thickness. However,

changes in grey matter volume and cortical thickness can be driven by multiple different underlying

processes and our understanding of the microstructural features that underpin this relationship

remain largely unknown (Westwater et al., 2022). For example, it is currently not known whether
obesity-associated differences in grey matter volume relate to changes in the size, shape or number

of neurons e.g. neurite density or orientation dispersion within that region or alternately to

differences in tissue water content. To date, the only studies to have investigated associations

of obesity with brain microstructure have focused on white matter. Interestingly, these have

identified obesity-associated differences in a number of different microstructural features of white

matter including 1) obesity-related increases in white matter water content, 2) reduced myelination

and 3) lower fractional anisotropy (Zhang et al., 2018; Kullmann et al., 2016). However, whether
comparable differences in cortical and subcortical grey matter micro-structure can be observed

with obesity are yet to be reported.

We hypothesized that obesity would be associated with diffusion-MRImeasures of grey matter

tissue microstructure at 180 cortical regions and 8 subcortical structures (bilaterally) produced

using neurite orientation dispersion and density imaging (NODDI) modelling of data from ∼30,000
participants in the UK Biobank MRI cohort. Unlike conventional diffusion MRI which models data

acquired at a single diffusion weighting (shell), NODDI requires data collected at multiple different

diffusion weightings (shells) then exploits the diffusion characteristics that can be observed in

2 of 32

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2023. ; https://doi.org/10.1101/2022.11.25.517981doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.25.517981
http://creativecommons.org/licenses/by-nc-nd/4.0/


different tissue compartments to quantify their respective volume fractions. In this model, diffusion

is modelled as isotropic in free water, restricted within neurites, and hindered in the extracellular

space resulting in three microstructural metrics: Intracellular Volume Fraction (ICVF) which captures

the volume fraction occupied by neurites (axons and dendrites) but not cell bodies, Orientation

Dispersion Index (OD) which captures the spatial distribution of these processes and isotropic

volume fraction (ISOVF) which provides a measure of free water index).

Given previous findings of significant association between macroscopic differences in brain

structure and visceral obesity, we elected to report associations with WHR in the main text and

report complementary results for BMI as a measure of whole body obesity in the SI. Specifically, we

tested each metric at each region for association with waist-to-hip ratio (WHR), and identified two

anatomically and functionally distinct brain systems associated with obesity, using prior maps of

gene expression, cellular composition and neurotransmitter receptor density to refine functional

characterization of each obesity-associated system.

Finally, we then completed two further analyses to explore the potential directionality of the

relationship between obesity and brain microstructure. In the first, we we used genome-wide

association statistics (GWAS) for brain ISOVF and ICVF (Warrier et al., 2022), and for WHR (Pulit
et al., 2019), to estimate the genetic correlations between each MRImetric and WHR, and test the
secondary hypothesis that the WHR would have a tighter genetic correlation with ICVF than ISOVF.

In the second, we produced brain maps for the association of ISOVF and ICVF with C-reactive protein

(CRP), a measure of systemic inflammation. Given the pro-inflammatory properties of adipose

(particularly visceral adipose) tissue we predicted tighter correlations between maps of CRP and

ISOVF than maps of CRP with ICVF.

Results
Sample data
We used data provided by the UK Biobank, a population-based cohort of >500,000 subjects aged

between 39 and 73 years (Sudlow et al., 2015) and focused on a subset of participants for whom
complete multi-modal MRI data were available. Excluding participants with incomplete MRI data

resulted in N ∼30,000 participants for each dataset. For further details on participant numbers see
SI Table S1.

Association of waist-to-hip ratio with multimodal MRImeasures of brain structure
Six MRI metrics of brain structure were used for correlational analysis with two measures of

obesity (WHR and BMI) in N∼30,000 participants from UK Biobank. WHR and BMI were strongly
positively correlated with each other (r = 0.428 ± 0.009, P < 2 × 10−16) and we therefore focus
here on WHR although similar results are reported for BMI in Supplemental Information (see

comparisons in SI Figure S2–S3 and Figure S4–S5 as well as Figure S9). Of the MRImetrics, there
was one macro-structural measure (GM, grey matter volume) and 5 micro-structural measures (MD,

mean diffusivity; FA, fractional anisotropy; OD, orientation dispersion; ICVF, intra-cellular volume

fraction; and ISOVF, isotropic volume fraction). As illustrated in Figure 1a, some of these metrics
were strongly correlated, indicating that they represented similar aspects of the underlying cortical

micro-structure or tissue composition. For example, FA, OD and ICVF metrics of neurite density

were more strongly correlated with each other than with ISOVF, which is typically interpreted as a

marker of tissue free water rather than cytoarchitectonics (Kamiya et al., 2020).
To address this potential redundancy, we performed a preliminary correlational analysis of

all 6 MRI metrics with WHR then focused our subsequent analyses on ICVF and ISOVF, the two

complementary MRImetrics that were most strongly associated with WHR. Comparable results for

the other 4 metrics are reported in the Supplemental Information Figure S2.
Tissue free water (ISOVF) was significantly positively correlated with WHR (FDR=5%) in 136

bilateral regions, concentrated in a prefrontal-temporal-striatal system comprising the prefrontal
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Figure 1. Micro-structural MRImetrics are associated with waist-to-hip ratio (WHR) a) Correlation matrix for six macro- and micro-structural
MRImetrics demonstrating that ISOVF (free-water) is essentially orthogonal to ICVF (neurite density) and OD, which instead form a cluster with FA.

b) Cortical and subcortical t-score map (left lateral and medial hemispheres) of ISOVF~WHR, representing the association of regional ISOVF with

WHR, thresholded for significance at FDR = 5%. Circles indicate regions for which scatterplots are shown on the right. c) Scatterplot of ISOVF in left

inferior premotor region 6r (y-axis) versus WHR (x-axis). d) Cortical and subcortical t-score map of ICVF~WHR, thresholded at FDR = 5%. e)

Scatterplot of ICVF in the right hippocampus versus WHR. The maps of ISOVF~WHR and ICVF~WHR were negatively correlated (r = −0.366,
P = 2.3 × 10−13). Colors in b) and d) refer to t-scores, colors in c) and e) denote normalised density. GM = Grey Matter; MD = Mean Diffusivity; FA =
Fractional Anisotropy; OD = Orientation Dispersion Index; ISOVF = isotropic volume fraction; ICVF = intra-cellular volume fraction

cortex (37 regions), superior temporal (primary auditory) cortex (21 regions), basal ganglia (caudate,

putamen, pallidum, accumbens), hypothalamus and thalamus. Referencing a database of prior

task-related fMRI studies, this anatomical pattern of fMRI activations has been activated by tasks

involving reward, auditory and musical functions (see SI Figure S3b-c). There were also some areas
of significant negative correlation between ISOVF and WHR in the lateral and medial secondary

visual cortex (see Figure 1b).
In contrast, neurite density (ICVF) was significantly positively correlated with WHR (FDR=5%)

in 152 bilateral regions concentrated in a medial temporal-occipital-striatal system comprising

medial and lateral occipital cortex (26 regions), medial temporal lobe (hippocampus and amygdala),

basal ganglia (putamen, pallidum, accumbens), hypothalamus and thalamus (see Figure 1d). This
anatomical pattern has previously been activated by fMRI tasks involving episodic memory and

navigation (see SI Figure S3d-e).
Maps of ISOVF~WHR and ICVF~WHR were negatively correlated (r = −0.366, P = 2.3 × 10−13); see

Supplemental Information for correlation matrix of all MRI~WHR maps. This suggests that obesity is

associated with coupled but anatomically distinct changes in measures of brain water and neurite

density.

Enrichment analysis of genes transcriptionally co-located with brain maps of asso-
ciation between obesity and brain water content, ISOVF–WHR, and between obe-
sity and neurite density, ICVF–WHR.
To investigate the basis for these associations of WHR with tissue water content (measured by ISOVF)

and neurite density (measured by ICVF), we used human brain gene expression data from the Allen

Brain Atlas to identify the individual gene transcripts that were most strongly co-located with each

map. To do this we independently tested 13,561 gene transcripts for significant spatial correlation

with each map, i.e., ISOVF~WHR or ICVF~WHR, controlling for multiple comparisons entailed by

whole genome analysis with FDR = 5% (Figure 2). Similar results were obtained by sensitivity analyses
of co-location of weighted whole genome expression with maps of the correlations between MRI
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a|

ISOVF~WHR

b|

ICVF~WHR

Figure 2. Significantly enriched gene ontology categories according toWebgestalt based on the spatialco-location of the MRI~WHR maps and whole brain expression maps for each of ∼13,500 genes. a)
Results using the ISOVF~WHR maps (free water vs adiposity). Bar graph of significant gene ontologies showing

normalized enrichment score on the x-axis. b) Results using the ICVF~WHR maps (neurite density vs adiposity).

In both cases, P -values for enrichment were tested by permutation taking into account the smoothness of
cortical maps (using spin permutation correction; see SI Figure S6).
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metrics and BMI instead of WHR; see Figure S7).
The tissue water content map (ISOVF~WHR) was significantly positively co-located with 1,031

gene transcripts and significantly negatively co-located with 1,140 transcripts (FDR=5%; spin per-

mutation corrected). Enrichment analysis of the genes weighted by their spatial co-location with

ISOVF~WHR identified 15 biological processes that were significantly under-represented, and 1 class

that was positively enriched, with FDR = 5% to control for 29,687 biological processes and 11,110

molecular functions tested for enrichment. The most under-represented process was “response

to interleukin-6” and the most enriched process was “pattern recognition receptor activity”, both

processes linked to the innate immune system. Other under-represented processes involved

“protein localisation to the Golgi apparatus”, “mitochondrial metabolism”, “taste receptor activity”

and “tau protein kinase activity”.

In contrast, the neurite density map (ICVF~WHR) was significantly positively co-located with

1,242 gene transcripts and significantly negatively co-located with 1,354 transcripts (FDR=5%; spin

permutation corrected). Enrichment analysis of the genes weighted by their spatial co-location

with ICVF~WHR identified 20 biological processes that were significantly negatively enriched, and

6 classes that were positively enriched, with FDR = 5% to control for 29,687 biological processes

and 11,110 molecular functions tested for enrichment. The most negatively enriched process was

“peptidyl-asparagine modification” and the most positively enriched process was “taste receptor

activity”. Other negatively enriched processes included “protein kinase C-activating G protein

coupled receptor (GPCR) signalling pathway”, ”fatty acid derivative binding” and ”glutamate receptor

activity”.

The whole genome weights of association (vectors of correlations per gene) with ISOVF~WHR

and ICVF~WHR were negatively correlated (r = −0.615, P < 2.2 × 10−16). Thus the gene transcripts
spatially co-located with ISOVF~WHR and ICVF~WHR maps are coupled but biologically distinct. The

prefrontal-temporal-striatal system where ISOVF was positively correlated with WHR was co-located

with gene transcripts enriched for innate immune and metabolic processes; whereas the medial

temporal-occipital-striatal system where ICVF was positively correlated with WHR was co-located

with transcripts enriched for “G-protein coupled receptor signalling”, “fatty acid derivative binding”

and “glutamate receptor activity”.

Co-location of neurotransmitter and cellular atlases with brain maps of associa-
tion between obesity and brain water content, ISOVF–WHR, and between obesity
and neurite density, ICVF–WHR.
To further investigate the brain systems where obesity was strongly associated with brain micro-

structure measured by ISOVF or ICVF, we used prior data on human brain distribution of multiple

neurotransmitter receptors Hansen et al. (2022). Cortical maps of each of 37 neurotransmitter
receptors, e.g., mu opioid receptor (MOR), were independently tested for spatial co-location with

the ISOVF~WHR and ICVF~WHR maps, controlling for multiple comparisons with FDR = 5%.

The prefrontal-temporal-striatal system (ISOVF~WHR) was significantly (positively) co-located

with the atlas distribution of 5 neurotransmitter receptors/transporters: 5HTT, serotonin trans-

porter; D1, dopamine receptor; H3, histamine receptor; Mu, opioid receptor; and VAChT, acetyl-

choline transporter.

In contrast, the medial temporal-occipital-striatal system (ICVF~WHR) was significantly (nega-

tively) co-located with 4 neurotransmitter receptors/transporters: H3 histamine receptor; Mu opioid

receptor; CB1 cannabinoid receptor; and A4B2, �4, �2 nicotinic acetyl-choline receptor.
Interestingly, the mu opioid receptor distribution was the most strongly correlated with both

ISOVF~WHR and ICVF~WHR, but with opposite signs of association, meaning that regions where

WHR correlated with neurite density typically expressed low mu opioid receptor density, whereas

regions showing correlations between WHR and tissue water content typically expressed high mu

opioid receptor density.
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Figure 3. Co-location of neurotransmitter receptor or transporter distributions with obesity-associated micro-structural MRI systems.
Left: Correlations of cortical neurotransmitter maps with the ISOVF~WHR and ICVF~WHR maps shown above (same color scale as in Figure 1).
Significance is indicated by shading (based on spin permutation and Bonferroni correction). The Mu and H3 receptors show the maximum

(absolute) correlation with the ISOVF and ICVF maps of microstructural effect of obesity (top right). Bottom right: scatter plots of raw data.
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Figure 4. Co-location of brain cell distributions with obesity-associated micro-structural MRI systems.
Left: Correlations of brain cell type maps for 7 cell type categories from Lake et al. (2018) with the ISOVF~WHR
map shown above (same color scale as in Figure 1). Significance is indicated by shading (based on spin
permutation and Bonferroni correction). The astrocytes, microglia, and OPC cell type maps show the maximum

(absolute) correlation with the ISOVF~WHR maps (central panel). Right: scatter plots of raw data. (Results for

ICVF were not significant for any category and are only shown in the Supplemental Information.)
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We likewise identified the cell-type distributions that were most strongly co-located with each of

the ISOVF~WHR or ICVF~WHR maps. We independently tested 31 cell distributions atlases, provided

by Lake et al. (2018), for significant spatial correlation with each map, controlling for multiple
comparisons with FDR = 5%. The ISOVF~WHR map was significantly (positively) co-located with the

atlas distribution of 3 glial cell classes: astrocytes, oligodendrocyte progenitor cells, and microglia.

The ICVF~WHR map was not significantly co-located with any specific cell-type distribution.

Genetic correlation analysis of obesity and micro-structural MRI phenotypes
The results reported above (and summarised in Table 1) indicate that obesity is associated with
coupled changes in two anatomically, transcriptionally and neurobiologically differentiated brain

systems, measured using ISOVF and ICVFmicro-structural MRImetrics, respectively. On this basis we

tested the hypothesis that genome-wide association statistics (GWAS) for normal variation in ISOVF

or ICVF (Warrier et al., 2022) were correlated with prior GWAS results for obesity (Pulit et al., 2019),
indexed by WHR (see Shungin et al., 2015). We used linkage disequilibrium score (LDSC) analysis to
estimate genetic correlations between WHR and ISOVF or ICVF. We found a modest, statistically

significant positive genetic correlation between ICVF and WHR (rg = 0.11± 0.030, P < 9 × 10−4), but no
genetic correlation between ISOVF and WHR (rg = −0.026 ± 0.03, P = 0.3); see SI Table S2 for details.
These results indicate shared effects of genetic variation on obesity (WHR) and neurite density

(ICVF), but no shared genetic effects on obesity and brain water content (ISOVF).

Relationship with peripheral inflammation
In the final analysis we compared the effects on microstructure of three variables of interest

at the same time, WHR, BMI, and specifically CRP, a measure of systemic inflammation. To this

end we looked at the pairwise relationships of the maps ISOVF~CRP vs ISOVF~WHR, ICVF~CRP vs

ICVF~WHR, etc. (see Figure S13). Given the pro-inflammatory properties of adipose (particularly
visceral adipose) tissue, for CRP we expected tighter correlations between ISOVF maps than ICVF

maps. This hypothesis is indeed supported by our findings, the correlation is significantly stronger

for the ISOVF maps than the ICVF maps (CRP-BMI: P < 1.2 × 10−5, CRP-WHR: P < 0.024, one-tailed).
We also find that the WHR and BMImaps are different (WHR-BMI: P < 0.05, two-tailed).

Discussion
Here we have reported evidence, consistent with our first hypothesis, that obesity is associated with

coupled changes in two micro-structural MRImetrics (ISOVF, free water; and ICVF, neurite density)

in two anatomically, transcriptionally and neurobiologically differentiated brain systems. We have

also reported genetic correlation analysis that was consistent with our secondary hypothesis, that

these two distinct brain phenotypes have different genetic relationships with obesity.

Obesity and brain MRI phenotypes

Previous well-powered studies have identified associations between obesity and a pattern of

reduced grey matter volume or cortical thickness centred on fronto-temporal cortex and sub-

cortical structures. Here, using NODDI modelling of diffusion-weighted MRI data from ∼30,000
participants in the UK Biobank we have extended these findings to demonstrate associations

between obesity (WHR) and two measures of grey matter microstucture, ISOVF (an index of tissue

water content) and ICVF an index of neurite density (see Table 1 for a summary).
Similar to previously reported associations with brain grey matter macrostructure, positive

scaling of WHR and tissue water content (i.e. oedema) was most pronounced within frontal and

temporal cortices and subcortical structures. In contrast, we observed a more anterior-posterior

pattern of association between WHR and neurite density, with more obese individuals having higher

neurite density in posterior compared to anterior brain regions. By relating obesity associated

grey matter microstructure maps to gene expression data from the Allen Brain Atlas, we show

that regions where WHR was more tightly linked to tissue water content had greater expression of
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scaling with
obesity (WHR)

gene ontology neurotransmitter
receptors or trans-
porters

cell types genetic correla-
tion with WHR

ISOVF
(free

water)

↑prefrontal-
temporo-striatal

system

↑pattern recognition re-
ceptors (PRR)

↑receptors for fatty

acid derivatives

↓IL-6 responses

↑H3, Mu, D1 and
5HTT

↑astrocytes, microglia
and oligodendrocyte

precursor cells (not any

class of neurons)

○ not significant

ICVF
(neurite

density)

↑medial
temporal-

occipito-striatal

system

↑taste receptor activity
↓fatty acid receptors,
glutamate receptor

activity and GPCR

signalling

↓H3, Mu, CB1 and
A4B2

○ not significant ↑significant
(positive)

Table 1. Summary of differences between two obesity-associated micro-structural MRI phenotypes in terms of their associations with other brain
phenotypes (gene ontology, receptor expression, and cell types) and their genetic correlations with obesity.

pattern recognition receptors (PRR) and receptors for binding fatty acid derivatives, and reduced

expression of genes associated with biological processes linked to interleukin-6 (IL-6) responses.

Interestingly, these regions were also richer in astrocytes, microglia and oligodendrocyte precursor

cells but not any class of neurons; and had high concentrations of some but not all neurotransmitter

receptors or transporters tested, e.g., histamine (H3), mu-opioid, D1 and 5HTT.

In contrast the medial temporal-occipital-striatal system where obesity was associated with

increased neurite density was co-located with expression of transcripts positively enriched for

taste receptor activity and lower fatty acid binding, glutamate receptor activity and other biological

processes linked to protein kinase C-activating G protein coupled receptor signalling. Interestingly,

this system was not co-located with any specific cell class but it was co-located with specific

neurotransmitter receptor maps including H3, Mu, CB1 and A4B2, meaning that regions showing

the greatest positive scaling between neurite density and WHR showed relatively low expression of

receptors linked to feeding, appetite, and energy expenditure.

What are the potential causal relationships between obesity and brain MRI phenotypes?

ISOVF and ICVF are weakly correlated (i.e. independent) markers of free water and neurite density,

respectively. Both are significantly and mostly positively correlated with WHR in brain systems.

Obesity-related differences in ISOVF and ICVF were coupled (negatively correlated) but also anatom-

ically, transcriptionally and neurobiologically differentiated from each other Table 1. This raises the
question: Could these two brain phenotypes have a different causal relationship with obesity?

For example, it is conceivable that the changes in brain water associated with obesity could

represent an effect of obesity on the brain, i.e., WHR→ISOVF, whereas the obesity-related changes

in neurite density could represent an effect of the brain on obesity, i.e., ICVF→WHR. Such a bi-

directional mechanistic model of the relationships between obesity and the brain seems somewhat

plausible. Obesity is usually caused by changes in eating behaviour and physical activity, which are

controlled by brain systems enriched for opioid, dopamine and cannabinoid receptor-mediated

signalling. So changes in the brain, indexed by neurite density, could conceivably cause adipogenic

eating behaviours and thus obesity. Obesity in turn causes a pro-inflammatory state systemically

and blood concentrations of CRP, IL-6 and other cytokines have previously been associated with

changed (increased) micro-structural MRImetrics of free water (Kitzbichler et al., 2021). So inflam-
mation could potentially mediate effects of obesity on the brain tissue water content (see also

Turkheimer et al., 2022). Our finding that the CRP-WHR map correlation is significantly stronger for
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the ISOVF maps than the ICVF maps would be consistent with this hypothesis.

Using novel techniques for analysis of spatial co-location of whole genome transcript maps

and MRI phenotypes to optimise subsequent enrichment analysis of strongly co-located gene

transcripts, we found that transcripts co-located with ISOVF~WHR were enriched for IL6 and pattern

recognition receptors (PRRs), both implicated in innate immune signalling; whereas transcripts

co-located with ICVF~WHR were enriched for taste receptors. This pattern of results is consistent

with the model that changes in neurite density associated with obesity might reflect primary brain

changes in taste sensation and reward processing that drive consummatory behaviours leading

to obesity; whereas changes in brain free water associated with obesity might reflect effects of

pro-inflammatory cytokines produced by adipose tissue that drive extravasation and oedema in

some brain regions.

One limitation of this study is that data was collected at multiple centres and even though we

used site as a nuisance regressor there might be unaccounted for non-linear effects. However Duff
et al. (2022) showed that quantities derived from UK Biobank scans at different sites are reliable.

It should also be mentioned that the age range of the AHBA donors (24-57 years) is only partially

overlapping with the participants in the UK Biobank (44-80 years). Future studies will hopefully

provide a more comprehensive picture of whole brain gene expression as a function of age so

that the powerful strategy for linking transcriptional and imaging data that the AHBA dataset has

enabled can be extended to gene expression datasets more closely aligned demographically with

the neuroimaging dataset of interest. These and other methodological issues relating to alignment

of AHBA gene expression data with MRI phenotypes have been rigorously reviewed in detail (Fornito
et al., 2019; Arnatkeviciute et al., 2023).
Concerning the question whether both brain systems are in operation in the same individual at

the same time, we are not aware of any currently available tools that would allow us to actually test

this assumption, but it could be an interesting avenue for future work. Another limitation of our

study is that it is based on a cross-sectional dataset, and it is therefore impossible to disentangle

causally directed relationships with certainty from correlations between MRI and transcriptional

phenotypes. We also approached this question by using GWAS data on obesity and each of the

two MRImetrics to estimate and test genetic correlations between obesity and ISOVF or ICVF. We

found that ICVF was genetically correlated with obesity, but not ISOVF. This result is consistent

with the bidirectional mechanistic model, whereby changes in neurite density (but not brain water)

cause obesity, but it doesn’t prove it. There are many other possible interpretations of a genetic

correlation between phenotypes, i.e., pleiotropic genetic effects on both phenotypes, which do not

entail a causal relationship between phenotypes. Further work will be needed to validate this and

other causal models of the directional relationships between obesity and the brain, which could be

important for future prevention, diagnosis, and treatment of obesity.

Methods and Materials
Data available in UK Biobank
Participants

Data were provided by the UK Biobank (application IDs 20904 & 48943), a population-based cohort

of >500,000 subjects aged between 39 and 73 years (Sudlow et al., 2015). We focused on a subset
of N = 40,680 participants for each of whom complete multimodal MRI data were available for

download (February 2020). We excluded participants with incomplete MRI data resulting in the

numbers for each dataset shown in SI Table S1.

Imaging data acquisiton
Minimally processed T1- and T2-FLAIR- weighted MRI data (and DWI data) were downloaded

from UK Biobank 1. The acquisition of these MRI data has been described in detail in Alfaro-
1https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
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Almagro et al. (2018), and is summarised here. MRI data at all three sites were collected on a
3T Siemens Skyra scanner (Siemens, Munich, Germany) using a 32-channel receive head coil. T1-

weighted images were acquired using a 3D MPRAGE sequence with the following key parameters;

voxel size 1mm × 1mm × 1mm, TI/TR = 880/2,000ms, field-of-view = 208 × 256 × 256matrix, scanning

duration = 5 mins. The diffusion weighted imaging data were acquired using a monopolar Steejskal-

Tanner pulse sequence and multi-shell acquisition (b=0 s∕mm2, b=1.000 s∕mm2, b=2.000 s∕mm2) with

the following key parameters; voxel size 2mm × 2mm × 2mm, TE/TR = 92/3,600ms, field-of-view =

104 × 104 × 72matrix, and scanning duration = 7 minutes (Alfaro-Almagro et al., 2018).

Imaging pre-processing
Structural MRI

Minimal processing for T1-weighted data included defacing, cutting down the field-of-view and

gradient distortion correction using Brain Extraction Tool (Smith, 2002) and FLIRT (FMRIB’s Linear
Image Registration Tool) (Jenkinson et al., 2002). The data were then nonlinearly warped to MNI152
space using FNIRT (FMRIB’s Nonlinear Image Registration Tool) (Andersson et al., 2007). Next, tissue-
type segmentation was done using FAST (FMRIB’s Automated Segmentation Tool) (Zhang et al.,
2001) and a bias-field-corrected version of the T1 was generated (Alfaro-Almagro et al., 2018).
Further processing

We used these data as input to Freesurfer V6.0.1 (Fischl et al., 2004) using the T2-FLAIR weighted
images to improve pial surface reconstruction. Following reconstruction, the Human Connectome

Project (HCP) parcellation (Glasser et al., 2016) was aligned to each individual image and regional
metrics were estimated for 180 bilateral cortical areas and eight bilateral subcortical structures

(giving a total of 376 areas).

Diffusion weighted MRI

Minimal processing for diffusion weighted imaging (DWI) data included correction for eddy cur-

rents (Andersson and Sotiropoulos, 2015, 2016), head motion, outlier-slices removal and gradient
distortion correction (Alfaro-Almagro et al., 2018).
Further processing

We then co-registered the DWI data with the T1-aligned parcellation template to estimate fractional

anisotropy (FA) and mean diffusivity (MD) at each region using DTIFIT 2. For each scan, the first B0

image of the diffusion-sensitive sequence was linearly coregistered to the T1 image with FLIRT. The

resulting inverse transformation was used to map the parcellation into the DWI space. Neurite

orientation dispersion and density imaging (NODDI) reconstruction was done using the AMICO

pipeline (Daducci et al., 2015). Documentation and code for these processing pipelines is available
on Github 3.

Imaging quality control
We used T1-weighted and T2-weighted scans for the Freesurfer anatomical image reconstruction,

because this approach improves anatomical reconstruction (Glasser et al., 2013). However, subjects
without T2 scans had cortical thickness systematically biased towards lower values compared to

subjects with both T1 and T2 images. Thus, we excluded participants without T2 scans from all

analyses. In order to avoid spurious effects from pathologies causing systemic inflammation we

also excluded subjects with high CRP (>10mg∕L). We repeated the analysis without subjects who
had reported an episode of stroke or diagnosis of dementia, producing identical results.

2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#DTIFIT

3https://github.com/ucam-department-of-psychiatry/UKB
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Analysis pipeline
A detailed description of the full processing pipeline can be found in Supplemental Information

Appendix 2; briefly, it comprised the following steps: Load and match UKB imaging data with
sociodemographic and health data. Regress imaging modalities from NODDI dataset onto waist-

to-hip ratio (WHR) with age, sex, scan quality and scan site as nuisance regressors. This is done

for males and females at the same time, but including sex as a covariate (for sensitivity analysis

separating by sex see Figure S3). Adopting the pseudo-code format used by the R statistical language,
the regression formula was: ISOVF + ICVF ∼ WHR + Age + Sex + Quality + Site where Quality is
quantified by the Freesurfer Euler number (a higher number means more surface reconstruction

errors) and Site was one of three sites encoded as categorical variable.
The terms on the left can be represented as matrices having Nsubjects rows and NROIs columns,

whereas the terms on the right are vectors with Nsubjects entries. Then for each term on the left (ie.

imaging modality) the result is a matrix of t-statistics or p-values with dimension Ncovariates ×NROIs.

The relevant row from this matrix is the one relating to the WHR coefficient which can be plotted as

a brain map as shown in Figure 1 and Figure S3 for each imaging modality respectively.

ABAGEN gene expression maps

We then related these maps to anatomically localized gene expression data from the Allen Brain

Atlas (Hawrylycz et al., 2012) using the ABAGEN package (Markello et al., 2021) to map gene ex-
pression onto the same parcellation as the imaging data (Glasser HCP). The 43 (predominantly

small) regions without gene expression data were excluded from analysis and are grayed out on the

brain maps. Subsequently we performed a correlation analysis with the ABAGEN maps (∼13,500
maps, one for each gene) as predictors and the NODDI-WHR maps as responses. We then repeated

this step 1,000 times for spin-permuted versions of the NODDI-WHR maps to generate a set of

1,000 surrogate gene correlations. This was done separately but in parallel for both ISOVF and ICVF.

The resulting real and surrogate data loadings were input to the gene enrichment analysis tool

Webgestalt (Wang et al., 2017), which was modified to incorporate the spin permutation process
instead the default process of random permutations to calculate P -values. This yielded a number
of significantly enriched gene ontology categories with FDR corrected PFDR < 0.05), as shown in
Figure 2. Supplemental Information Figure S6 contains a schematic of the analysis pipeline.

Neurotransmitter maps

Hansen et al. (2022) compiled 37 neurotransmitter receptor atlases from the literature and provided
them as 3D volumes in MNI space. These were then parcellated in the same way as the imaging

data (using the Glasser HCP template). We independently tested the resulting 37 neurotransmitter

maps (SI Figure S11) for significant spatial correlation with the MRI~WHR maps, controlling for
spatial autocorrelation using 10,000 spin permutations and correcting for multiple comparisons

with FDR = 5%. Maps for the same receptor from different literature sources were correlated

independently but the results were combined, resulting in the 19 separate receptors shown in

Figure 3 (see Figure S9 for a sensitivity analysis using the original 37 maps individually).

Cell type maps

Lake et al. (2018) provided 31 brain cell distributions atlases based on single-cell DNA transcription
analysis. These were then parcellated in the same way as the imaging data (using the Glasser HCP

template). We independently tested the resulting 31 cell-type maps (SI Figure S12) for significant
spatial correlation with the MRI~WHR maps, controlling for spatial autocorrelation using 10,000

spin permutations and for multiple comparisons with FDR = 5%. We concentrated on the seven

categories at the highest level (Astro, Endo, Micro, Neuro.Ex, Neuro.In, Oligo, OPC; Figure 4) and did
not separately analyse the individual excitatory and inhibitory neuronal sub-types (Ex1-8 and In1-8).
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Genetic correlation analysis

We used genome-wide association statistics for ICVF and ISOVF (Warrier et al., 2022), and for waist-
to-hip ratio (plain and adjusted for BMI; Pulit et al., 2019). Genetic correlations were estimated using
linkage disequilibrium (LD) score regression (Bulik-Sullivan et al., 2015) based on LD information
from North-West European populations.
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Appendix 1
Imaging data acquisiton
MRI data was collected on a 3T Siemens Skyra scanner (Siemens, Munich, Germany) using

a 32-channel receive head coil. T1-weighted images were acquired using a 3D MPRAGE se-

quence with the following key parameters; voxel size 1mm × 1mm × 1mm, TI/TR = 880/2000ms,

Field-of-view = 208 × 256 × 256matrix, scanning duration: fiveminutes. The diffusion weighted

imaging data was acquired using a monopolar Steejskal-Tanner pulse sequence and multi-

shell acquisition (b=0 s∕mm2, b=1.000 s∕mm2, b=2.000 s∕mm2) with the following key parameters;

voxel size 2mm × 2mm × 2mm, TE/TR = 92/3600ms, Field-of-view = 104 × 104 × 72matrix and

scanning duration = seven minutes (Alfaro-Almagro et al., 2018).

Imaging preprocessing
We obtained T1 and T2-FLAIR weighted data from the UK Biobank after structural minimal

processing. Minimal processing for T1 weighted data included defacing, cutting down the

field-of-View and gradient distortion correction using Brain Extraction Tool (Smith, 2002) and
FLIRT (FMRIB’s Linear Image Registration Tool) (Jenkinson et al., 2002). The data was then
nonlinearly warped to MNI152 space using FNIRT (FMRIB’s Nonlinear Image Registration

Tool) (Andersson et al., 2007). Next, tissue-type segmentation is applied using FAST (FMRIB’s
Automated Segmentation Tool) (Zhang et al., 2001) and a bias-field-corrected version of
the T1 is generated (Alfaro-Almagro et al., 2018). Minimal processing for Diffusion MRI
data included correction for eddy currents (Andersson and Sotiropoulos, 2015, 2016), head
motion, outlier-slices removal and gradient distortion correction (Alfaro-Almagro et al.,
2018).

Imaging quality control
We used T1-weighted and T2-weighted scans for the freesurfer anatomical image recon-

struction, because this approach improves anatomical reconstruction (Glasser et al., 2013).
However, subjects without T2 scans had cortical thickness systematically biased towards

lower values compared to subjects with both T1 and T2 images. Thus, we excluded partici-

pants without T2 scans from all analyses.

Genetic correlation analysis
We conducted genetic correlations using genome-wide summary statistics for ICVF and

ISOVF (Warrier et al., 2022) as well as waist-to-hip ratio (plain and adjusted for BMI; Pulit
et al., 2019). Genetic correlations were conducted using LD score regression (Bulik-Sullivan
et al., 2015) based on LD information from North-West European populations.
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Appendix 2
Analysis pipeline

• load and match UKB imaging data with sociodemographic and health data

• regress imaging modalities from NODDI dataset onto WHR with age as nuisance

regressor and dropping subjects with excessive CRP and no T2. This is done for males

and females at the same time with sex as nuisance regressor:

ISOVF + ICVF ∼ WHR + Age + Sex + Euler + Site … ∀ CRP ≤ 10 ∧ ∃ T2 scan

• the resulting statistics for the WHR coefficient can be plotted as a brain map separately

for each imaging modality as shown in Figure 1.
• add Allen Brain Atlas gene expression data to the mix

• use ABAGEN package (Markello et al., 2021) to map gene expression onto same parcel-
lation as previous imaging data (Glasser HCP):

– after matching samples to regions, only keep regions that have at least one sample
from at least one of the six donors (43 regions did not)

The other parameters used are:

– filter out subcortical samples upfront using AHBA annotations of samples
– use Arnatkeviciute et al. (2019) for native parcellation images mapped to each of
the six donor brains

– when multiple probes are available for a gene, use them probe with highest
differential stability (= mean correlation over spatial regions between all pairs of

donors)

– average samples into regions first within each donor separately, then across
donors

– normalize all samples to have same mean expression over genes, then normalize
genes to have same mean expression over samples, both using scaled robust

sigmoid method (see Arnatkeviciute et al., 2019)
• do correlation analysis with the ABAGEN maps (∼13,000 maps, one for each gene) on
the right (predictors X) and the NODDI-WHR maps on the left (responses Y ):

– as a sensitivity analysis, the process was repeated for BMI instead of WHR (Fig-
ure S4), and correlation was substituted by PLS regression. Statistical significance
was tested by performing 1000 spin permutations of the ABAGEN data (X) and
1000 bootstrap resamples of the imaging data (Y ). The explained variance per
component for both X (Figure S5e) and Y (Figure S5f) is significantly higher for
the empirical dataset (red) compared to the surrogate data distribution (boxes).

• feeding the loadings from the correlation analysis into the gene enrichment analysis

tool Webgestalt (Wang et al., 2017) yielded a number of significantly enriched gene
ontology categories (at spin and FDR corrected PFDR < 0.05) as shown in Figure 2. The
analysis was done separately but in parallel for ISOVF and ICVF.
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Appendix 2 Figure S1. Waist-to-hip ratio (WHR) in a) has a much tighter linear relationship with relative visceral adipose tissue from MRI scans
than BMI in b). Bottom row: internal correlation in adiposity data (c), imaging data (d), and imaging-WHR maps (e). GM = Grey Matter; MD = Mean

Diffusivity; FA = Fractional Anisotropy; OD = Orientation Dispersion Index; ISOVF = isotropic volume fraction; ICVF = intra-cellular volume fraction;

BMI = body mass index; WHR = waist-to-hip ratio; CRP = C-reactive protein; VATI = visceral adipose tissue index; TOTFVI = total fat volume index
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Appendix 2 Figure S2. association of various MRImetrics with BMI: a) Brain maps showing dependence of NODDImetrics and gray matter
density on body mass index, separately for males and females. Bottom: b) enlarged ISOVF-BMImap and c) corresponding terms from Neurosynth

arranged as a word cloud.
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Appendix 2 Figure S3. association of various MRImetrics with BMI: a) Brain maps showing dependence of NODDImetrics and gray matter
density on body mass index, separately for males and females. Bottom: terms from Neurosynth arranged as a word cloud corresponding

respectively to b) ISOVF, c) ISOVF sub-cortical, d) ICVF, and e) ICVF sub-cortical maps.
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Appendix 2 Figure S4. Body mass index: Gene correlational maps of first two X scores (A) and Y scores (B). Scatterplot of X vs Y scores across ROIs
(C). (D) Cross validation of the PLS analysis. Only the first component contributes significantly to reduce the mean square error of the prediction. (E)

and (F) Explained variance in X and Y respectively per component in real data (red) compared to surrogate data (boxes).
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Appendix 2 Figure S5. Waist-to-hip ratio: Gene correlational maps of first two X scores (A) and Y scores (B). Scatterplot of X vs Y scores across ROIs
(C). (D) Cross validation of the PLS analysis. Only the first component contributes significantly to reduce the mean square error of the prediction. (E)

and (F) Explained variance in X and Y respectively per component in real data (red) compared to surrogate data (boxes).
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Appendix 2 Figure S6. Schematic of analysis pipeline for gene ontology analysis with Webgestalt based on the
correlation of NODDI-WHR and gene expression maps. Significance calculation is based on permutations taking

into account the smoothness of cortical patterns (spin permutations).
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Appendix 2 Figure S7. Waist-to-hip ratio: Significantly enriched gene ontology categories according to Webgestalt based on the correlation of
NODDI-WHR and gene expression maps. Left: results using the ISOVF-WHR maps (free water vs adiposity). a) bar graph of significant gene

ontologies showing normalized enrichment score on the x-axis. b) Directed acyclic hierarchical graph (DAG) of GOs in the Biological Processes

category. c) DAG of GOs in the Molecular Function category. Right: d-f) are exactly the same as a-c) on the left, using instead the ICVF-WHR maps

(neurite density vs adiposity). Significance calculation is based on permutations taking into account the smoothness of cortical patterns (spin

permutations).
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Appendix 2 Figure S8. Significantly enriched gene ontology categories according to Webgestalt based on the correlation of NODDI-WHR and gene
expression maps. a-b) same results as in Fig 2a but with semantically reduced GO categories illustrating hierarchical dependencies. Results are

split by category: biological processes (a) and molecular function (b). c-d) same results as in Fig 2b but with semantically reduced GO categories

split by category: biological processes (c) and molecular function (d).

26 of 32

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2023. ; https://doi.org/10.1101/2022.11.25.517981doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.25.517981
http://creativecommons.org/licenses/by-nc-nd/4.0/


5H
T

1a
5H

T
1b

5H
T

2a
5H

T
4

5H
T

6
5H

T
T

A
4B

2
C

B
1

D
1

D
2

D
AT

G
A

B
A

a
G

A
B

A
a−

bzH
3

M
1

m
G

luR
5

M
U

N
AT

N
M

D
A

V
A

C
hT

−0.4 −0.2 0.0 0.2

5HT1a_cumi_hc8_beliveau

5HT1a_way_hc36_savli

5HT1b_az_hc36_beliveau

5HT1b_p943_hc22_savli

5HT1b_p943_hc65_gallezot

5HT2a_alt_hc19_savli

5HT2a_cimbi_hc29_beliveau

5HT2a_mdl_hc3_talbot

5HT4_sb20_hc59_beliveau

5HT6_gsk_hc30_radnakrishnan

5HTT_dasb_hc100_beliveau

5HTT_dasb_hc30_savli

A4B2_flubatine_hc30_hillmer

CB1_FMPEPd2_hc22_laurikainen

CB1_omar_hc77_normandin

D1_SCH23390_hc13_kaller

D2_fallypride_hc49_jaworska

D2_flb457_hc37_smith

D2_flb457_hc55_sandiego

D2_raclopride_hc7_alakurtti

DAT_fepe2i_hc6_sasaki

DAT_fpcit_hc174_dukart_spect

GABAa_flumazenil_hc6_dukart

GABAa−bz_flumazenil_hc16_norgaard

H3_cban_hc8_gallezot

M1_lsn_hc24_naganawa

mGluR5_abp_hc22_rosaneto

mGluR5_abp_hc28_dubois

mGluR5_abp_hc73_smart

MU_carfentanil_hc204_kantonen

MU_carfentanil_hc39_turtonen

NAT_MRB_hc10_hesse

NAT_MRB_hc77_ding

NMDA_ge179_hc29_galovic

VAChT_feobv_hc18_aghourian_sum

VAChT_feobv_hc4_tuominen

VAChT_feobv_hc5_bedard_sum

5H
T

1a
5H

T
1b

5H
T

2a
5H

T
4

5H
T

6
5H

T
T

A
4B

2
C

B
1

D
1

D
2

D
AT

G
A

B
A

a
G

A
B

A
a−

bz
H

3
M

1
m

G
luR

5
M

U
N

AT
N

M
D

A
V

A
C

hT

−0.4 −0.2 0.0 0.2

5HT1a

5HT1b

5HT2a

5HT4

5HT6

5HTT

A4B2

CB1

D1

D2

DAT

GABAa

GABAa−bz

H3

M1

mGluR5

MU

NAT

NMDA

VAChT

Appendix 2 Figure S9. Body mass index: correlations of cortical neurotransmitter maps from the literature with the NODDI ICVF-BMImaps shown
above. Significance after Bonferroni correction is indicated by shading. Left: individual studies, right: same neurotransmitters from different

studies combined. The CB1 (cannabinoid) receptors show the maximum (absolute) correlation with the maps of microstructural effect of obesity.
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Appendix 2 Figure S10. Left: Correlations of Brain cell type maps for 31 cell types from Lake et al 2018 with the NODDI ISOVF and ICVF-WHR maps
shown above. Significance is indicated by shading (based on spin permutation and Bonferroni correction). Right: The Astrocytes, Microglia, and

OPC cell type maps show the maximum (absolute) correlation with the ISOVF maps of microstructural effect of obesity.
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Appendix 2 Figure S11. Neurotransmitter maps for 36 neurotransmitters from Hansen et al 2022
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Appendix 2 Figure S12. Brain cell type maps for 31 cell types from Lake et al 2018.
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Appendix 2 Figure S13. Scatterplot over 376 regions of pairwise relationships between t-score maps for variables WHR, BMI, and CRP respectively.
Top: similarity between ISOVF maps, bottom: similarity between ICVF maps. Calculating statistics based on Fisher transformed correlation values,

for both CRP pairs the correlation is significantly stronger for the ISOVF maps than the ICVF maps (CRP-BMI: P < 1.2 × 10−5, CRP-WHR: P < 0.024,
one-tailed) and we also find that the BMI and WHR maps are marginally different (BMI-WHR: P < 0.05, two-tailed).
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Variable N Female Male
Age 34229 18143 16086

Body Mass Index (BMI), kg/m2 33090 17501 15589

Waist to Hip Ratio (WHR) 33183 17560 15623

Visceral Adipose Tissue (VAT) 7539 3957 3582

extracellular free water (isotropic volume fraction ISOVF) 34194 18126 16068

intracellular neurite density (intracellular volume fraction ICVF) 34194 18126 16068

intracellular neurite dispersion (orientation dispersion OD) 34194 18126 16068

fractional anisotropy (FA) 34194 18126 16068

mean diffusivity (MD) 34194 18126 16068

gray matter volume (GM) 34229 18143 16086

Appendix 2 Table S1. UK Biobank data

Appendix 2 Table S2. Gene correlation analysis results.
a trait 1 b trait 2 correlation rg std error z-score p-value
WHR ISOVF 0.0259 0.0282 0.9184 0.3584
WHR ICVF 0.1118 0.0337 3.3187 9 × 10−4 ***

afrom Pulit et al. (2019)
bfromWarrier et al. (2022)
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