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Abstract  17 

Background: The COVID-19 pandemic necessitated rapid real-time surveillance of 18 

epidemiological data to advise governments and the public, but the accuracy of these data 19 

depend on myriad auxiliary assumptions, not least accurate reporting of cases by the public. 20 

Wastewater monitoring has emerged internationally as an accurate and objective means for 21 

assessing disease prevalence with reduced latency and less dependence on public 22 

vigilance, reliability, and engagement. How public interest aligns with COVID-19 personal 23 

testing data and wastewater monitoring is, however, very poorly characterised. 24 

Objectives:  This study assesses the associations between internet search volume 25 

data relevant to COVID-19, public healthcare statistics and national-scale wastewater 26 

monitoring of SARS-CoV-2 across South Wales, UK over time to investigate how interest in 27 

mailto:jordancuff@gmail.com
mailto:Weightman@cardiff.ac.uk
mailto:Kille@cardiff.ac.uk


 2 

the pandemic may reflect the prevalence of SARS-CoV-2, as detected by national testing 28 

and wastewater monitoring, and how these data could be used to predict case numbers. 29 

Methods:  Relative search volume data from Google Trends for search terms 30 

linked to the COVID-19 pandemic were extracted and compared against government-31 

reported COVID-19 statistics and RT-qPCR SARS-CoV-2 data generated from wastewater 32 

in South Wales, UK, using multivariate linear models, correlation analysis and predictions 33 

from linear models. 34 

Results:  Wastewater monitoring and infoveillance both show potential for 35 

epidemiological surveillance, but their efficacy changes over time. Google search volumes 36 

surrounding the COVID-19 pandemic decreased across the study period, suggesting a 37 

reduction in public interest which may be reflected in lower volumes of self-testing and 38 

reporting with subsequent loss of accuracy of national reporting data. 39 

Conclusions: Wastewater monitoring presents a valuable means for assessing 40 

population-level prevalence of SARS-CoV-2 and could be integrated with other data types 41 

such as infoveillance for increasingly accurate inference of virus prevalence. The 42 

importance of such monitoring is increasingly clear as a means of objectively assessing the 43 

prevalence of SARS-CoV-2 to circumvent the dynamic interest and participation of the 44 

public. Increased accessibility of wastewater monitoring data to the public, as is the case for 45 

other national data, may enhance public engagement with these forms of monitoring.  46 
 47 
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 49 

Introduction 50 

The COVID-19 pandemic has given rise to a range of public responses which have 51 

dynamically driven cooperation of the public with governmental guidance, and public 52 

recognition of the need for regular testing. Healthcare systems have been stretched beyond 53 

capacity by sudden, large-volume influxes of patients following sometimes unpredictable 54 

waves of the virus [1]. There is a pressing need for local, national and global adaptability to 55 

manage these outbreaks of the disease to minimise the impact on healthcare systems, the 56 
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first requirement of which is stringent collection of reliable and accurate data of viral 57 

prevalence [2]. 58 

Many strategies have been employed to monitor SARS-CoV-2, including self-reporting [3] 59 

and participatory surveillance [4–6], including through use of platforms such as accessible 60 

phone apps [7]. Surveys and self-reporting, achieved through participatory surveillance and 61 

even active crowdsourcing strategies, have proven highly effective through monitoring of 62 

symptoms such as loss-of-taste [8]; participatory surveillance platforms such as this have 63 

been a crucial component of monitoring in partnership with the public [8,9]. Relying on 64 

surveys and personal testing data, however, allows only a reactive approach to mitigating 65 

the healthcare burden imposed by COVID-19, which is often too little, too late to mitigate 66 

the heavy case numbers and death tolls. Case data, while sometimes collected by 67 

standardised surveys, can otherwise depend on self-reporting by the public, many members 68 

of which may not self-test given poor access to tests, may not feel obliged due to 69 

asymptomatic cases or may receive false negative results. Others may unreliably or even 70 

dishonestly report the results of tests given the restrictions that a positive test for COVID-19 71 

imposed [10], or they may be disenfranchised with the efforts to reduce the prevalence of 72 

the disease given the overwhelming extent of misinformation in circulation [11].  73 

Search engine usage has been explored as a means for ascertaining the prevalence of 74 

diseases [12,13], but this method is not infallible and its accuracy over time must be 75 

assessed in different epidemiological contexts [14,15]. Such data can, however, track 76 

COVID-19 or specific related symptoms [16–19] given its broad accessibility. Whilst 77 

searching for particular character strings cannot be reliably and accurately associated with 78 

the prevalence of the disease, this ‘infoveillance’ does facilitate analysis of public interest in 79 

subjects such as the pandemic [11,20], which can be an important factor in healthcare 80 

management and the pandemic response. Infoveillance can be integrated into 81 

interdisciplinary frameworks such as ‘One Health’ [21,22] and, more specifically, ‘One Digital 82 
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Health’ [23], which aim to view healthcare matters more holistically, particularly the 83 

interaction between human and veterinary health and its implications for zoonotic diseases, 84 

but also the environmental dimension of disease occurrence and transmission. 85 

Given the latency of surveys and testing by the public, and the potential inaccuracies of 86 

infoveillance approaches, objective means for disease surveillance without the requirement 87 

of public participation have become increasingly important throughout the COVID-19 88 

pandemic. The presence of coronaviruses and other human pathogenic viruses in human 89 

faeces and their subsequent presence in urban wastewater is a long-established tool for 90 

assessing disease prevalence within a community [24,25]. This approach provides a non-91 

invasive means for assessing SARS-CoV-2 prevalence across whole populations via 92 

wastewater [25–31]. Monitoring of wastewater has provided a robust and accurate means 93 

of assessing the population-level prevalence of COVID-19, facilitating some prediction of 94 

healthcare burden before symptoms arise [32]. Wastewater monitoring circumvents several 95 

barriers preclusive to accurate testing data such as hesitancy, availability of testing, 96 

asymptomatic patients and socio-economic or cultural barriers by passively sampling from 97 

whole communities [10,33]. The efficacy of this approach does not depend on public 98 

participation, possibly leading some inconsistencies with national testing statistics. A strong 99 

positive correlation between direct testing, wastewater monitoring data and public interest 100 

in the pandemic has been demonstrated [34] but the dynamic relationship between these 101 

data and how public interest dictates the accuracy of monitoring data are still poorly 102 

characterised. 103 

Here, we compare public interest in the pandemic through search engine usage data against 104 

wastewater SARS-CoV-2 surveillance data and nationally reported statistics over time to 105 

assess how public interest dictated the relationship between disease prevalence and 106 

reporting over a year of the COVID-19 pandemic in South Wales, UK. This study also 107 

explores the efficacy of wastewater monitoring and infoveillance as means for assessing the 108 
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national state of the pandemic, how these relationships change over time and how they 109 

could inform predictions of case numbers for streamlined monitoring. 110 

 111 

Methods 112 

Wastewater monitoring 113 

Since mid-September 2020, wastewater samples were collected every Monday, Wednesday, 114 

and Friday from Cardiff Bay, Newport Nash, Llanfoist, Ponthir, Ogmore, Cog Moors, Swansea 115 

Bay, and Gowerton wastewater treatment plants, and samples from Carmarthen and 116 

Haverfordwest were collected every Wednesday. Samples were transported on ice in a cooler 117 

box to designated wastewater processing facilities at Cardiff University. Processing of samples 118 

was based on Farkas et al. [35]. From each site, 200 ml of wastewater was spun at 3000 x g 119 

for 30 min, and 150 ml of supernatant was neutralised to pH 7-7.4 using 1 M NaOH. The 120 

supernatant was incubated with 50 ml of 40% PEG and 8% NaCl overnight. Samples were then 121 

spun at 10,000 x g for 30 min and the pellet was dissolved in 500 µl of PBS (pH-7.4). Of the 122 

dissolved pellet, 100 µl was spiked with 10,000 copies of synthetic Murine Norovirus (MNV) 123 

DNA to check the extraction efficiency. Subsequent nucleic acid extraction and amplification 124 

took place in the COVID-19 testing facilities at Cardiff University. Total RNA was extracted 125 

using the methodology published by Oberacker et al. [36]. Total RNA was eluted in 100 µl of 126 

nuclease-free water. For SARS-CoV-2 detection, four primer sets published by the United 127 

States Centers for Disease Control and Prevention (US CDC), Charité and Hong Kong 128 

University [37] were used for RT-qPCR. Primer sets N1 and N2 target different regions of 129 

nucleocapsid (N genes); E_Sarbeco and ORF1b target the SARS-CoV-2 E and nsp14 genes, 130 

respectively. For the controls, a set of primers that target virus crAssphage [38] (which is 131 

present in human faecal material) and MNV [39] (which was used to assess extraction 132 

efficiency) were selected (Table 1). Samples were run in triplicate on Fast 384-well plates 133 

(Applied Biosystems) using QuantStudio 7 Flex (Applied Biosystems). A 10 µl RT-qPCR 134 
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reaction was performed containing 4 µl of extracted RNA template, 5 µl of Luna Universal Probe 135 

One-step Reaction Mix (2X; NEB), 0.04 µl of each primer set (100 µM), 0.02 µl of fluorescent 136 

probe (100 µM), 0.5 µl NEB Luna reverse transcriptase (20X) and 0.4 µl nuclease free water. 137 

The reverse transcription (RT) was carried out at 55 °C for 10 min, followed by polymerase 138 

activation at 95.0 °C for 1 min, and 40 cycles of denaturation, annealing and extension at 95.0 139 

°C for 10 sec, and then 60.0 °C for 1 min, respectively. Serial dilutions of the heat-inactivated 140 

SARS-CoV-2 viral standards were run on every PCR plate to generate standard curves used 141 

to quantify the copies of SARS-CoV-2 genes. Additionally, RT-qPCR runs were validated by 142 

positive (Qnostics, SCV2QC01-QC) and negative controls (nuclease-free water). Resultant 143 

data were normalised to account for population size in each area, and to correct for dilution as 144 

described by Wilde et al. [40]. 145 

  146 
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Table 1: The qPCR primers used for wastewater monitoring. 147 
Assay Target gene Sequences (5’--3’) 

E_Sarbeco E 
F- 5’-ACAGGTACGTTAATAGTTAATAGCGT-3’ 
R- 5’-ATATTGCAGCAGTACGCACACA-3’ 
P- 5’-HEX-ACACTAGCCATCCTTACTGCGCTTCG- IB®FQ-3  

ORF1b nsp14 
F-5’-TGGGGYTTTACRGGTAACCT-3’ 
R-5’-AACRCGCTTAACAAAGCACTC-3’ 
P- 5’-FAM-TAGTTGTGATGCWATCATGACTAG- IB®FQ-3’ 

N1 Nucleocapsid 
F- 5’-GACCCCAAAATCAGCGAAAT-3’ 
R- 5’-TCTGGTTACTGCCAGTTGAATCTG-3’ 
P-5-HEX- ACCCCGCATTACGTTTGGTGGACC- IB®FQ-3’ 

N2 Nucleocapsid 
F- 5’-TTACAAACATTGGCCGCAAA-3’ 
R- 5’-GCGCGACATTCCGAAGAA-3’ 
P- 5’-FAM- ACAATTTGCCCCCAGCGCTTCAG-IB®FQ-3’ 

crAssphage Q56 
F- 5’-CAGAAGTACAAACTCCTAAAAAACGTAGAG-3’ 
R- 5’-GATGACCAATAAACAAGCCATTAGC-3’ 
P- 5’-HEX- AATAACGATTTACGTGATGTAAC- IB®FQ-3’ 

MNV - 
F- 5’-CCGCAGGAACGCTCAGCAG-3’ 
R- 5’-GGYTGAATGGGGACGGCCTG-3’ 
P-5’-FAM- ATGAGTGATGGCGCA- IB®FQ-3’ 

 148 

National statistics and search volume data extraction 149 

This study concerns two periods: the primary study period (between the weeks of 2020-10-150 

11 and 2021-10-31; the focus of all analyses and visualisations aside from comparison with 151 

model-based predictions described below) and the full study period (the primary study period 152 

with extension up to 2022-07-17 to facilitate comparison of real-world data with model-based 153 

predictions). All data were generated or extracted to encompass the full study period. 154 

National statistics on the daily number of COVID-19 cases, deaths and vaccinations in 155 

Wales were extracted from the UK Government COVID-19 data portal for the full study 156 

period [41]. Case data were new cases by publish date (i.e., the number of new cases 157 

reported since the previous update; API = ‘newCasesByPublishDate’). Death data were new 158 

daily national statistics office deaths by death date (i.e., daily numbers of deaths of people 159 

whose death certificate mentioned COVID-19 as one of the causes; API = 160 

‘newDailyNsoDeathsByDeathDate’). Vaccine data were new vaccines given by publish date 161 

(i.e., daily numbers of new vaccines (all doses) given; API = 162 
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‘newVaccinesGivenByPublishDate’). These data can be downloaded via a permanent 163 

download link [41]. 164 

Search volume data were extracted from Google Trends. These data provide a proxy for 165 

public interest in or response to the extent of the COVID-19 pandemic. The data extracted 166 

from Google Trends are relative search volumes for pre-determined search terms, allowing 167 

comparison of search rates for different terms via Google, the most widely used internet 168 

search engine. These relative search volumes are presented for each date of a given period 169 

within a given country, nation or region and are normalised relative to the highest search 170 

volume peak in that search batch in the time period specified (this peak represented as a 171 

search volume of 100 %). Search volumes were releveled so that the highest peak in the 172 

primary study period was represented by ‘100’ and any higher peaks across the full study 173 

period exceeded 100 to reflect the limitations of making real-time predictions from existing 174 

data. Given the representation of numbers less than one as “<1” by Google Trends, all 175 

relative search volumes of “<1” were converted to 0 to facilitate quantitative comparison.  176 

Search terms were selected based on their broad relevance throughout the study period 177 

and the high volume of searches generated during that period. These included: “COVID 178 

lockdown”, “COVID rules”, “COVID symptoms”, “COVID test” and “COVID vaccine”. 179 

“COVID” was included in each search term to ensure relevance to the COVID-19 pandemic; 180 

“COVID” was selected over “coronavirus”, “SARS-CoV-2” and other variations due to the 181 

greater prevalence of searches related to this string, and its inclusion within other search 182 

strings like “COVID-19”. 183 

 184 

Statistical analysis 185 

Statistical analyses and plotting of data were carried out using R version v4.0.3 [42] and all 186 

data and code are openly available [43]. Since wastewater sites were sampled weekly, all 187 

data were averaged first by site and then by week. Wastewater qPCR data were log-188 
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transformed to improve model fit and visualisation. Data were processed and aggregated 189 

using ‘tidyverse’ packages for reproducibility [44]. 190 

Correlations between search volumes, wastewater SARS-CoV-2 prevalence and nationally 191 

reported cases, deaths and vaccinations were tested using Spearman’s rho rank correlation 192 

via the ‘rcor’ function of the ‘Hmisc’ package [45]. To facilitate assessment of correlation, 193 

week dates were transformed into successive study weeks (i.e., cumulative weeks of the 194 

study). The data were identified as non-normally distributed via Shapiro-Wilk tests, so non-195 

parametric correlation analyses were selected. The output was visualised in a correlogram 196 

via the ‘corrplot’ function of the ‘corrplot’ package [46], with colours to denote the strength 197 

of correlations assigned via the ‘viridis’ package [47].  198 

To assess how relative search volume for the selected search terms changed with 199 

differences in the number of COVID-related cases, deaths and vaccines, and the estimated 200 

prevalence of COVID in wastewater, a multivariate linear model (MLM) was built via 201 

‘manylm’ in the ‘mvabund’ package [4]. The dependent variable comprised the relative 202 

search volumes, log transformed (log[n+1]) to achieve normality, and the independent 203 

variables were week, national cases, deaths and vaccinations, and two-way interactions 204 

between study week and each of the other variables. For visualisation via line plots, data 205 

were releveled so that their minimum and maximum values were 0 and 100, respectively. 206 

These normalised search volume, wastewater and government data were plotted against 207 

time using the ‘ggplot2’ package [48], with colours assigned via the ‘paired’ palette in the 208 

‘RColorBrewer’ package [49] and data lines smoothed using the ‘loess’ method.  209 

Pairwise plots were generated for reported case data, qPCR data and RSVs from each of 210 

the Google Trends search terms separately using ‘ggpairs’ from the ‘GGAlly’ package. 211 

Linear models were generated with the number of reported cases as the dependent variable 212 

and, in a separate model for each, the qPCR and Google Trends data as independent 213 

variables. The ‘predict’ function was used to make interpolated predictions of case numbers 214 
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across the primary study period, and extrapolated predictions of case numbers beyond the 215 

primary study period for the remainder of the full study period. These predicted case 216 

numbers were plotted against the reported case numbers, and a correlation analysis carried 217 

out as described above. A generalized linear model with a gaussian error family was built 218 

with reported cases as the dependent variables, and predicted case numbers, time and 219 

pairwise interactions between predictions and time as independent variables. 220 

 221 

Information sources and reliability 222 

Wastewater monitoring data were generated by authors of this study at Cardiff University as 223 

part of the Welsh Government-funded WEWASH project. The national statistics on COVID-224 

19 cases, deaths and vaccinations were extracted from the UK Government COVID-19 data 225 

portal [41], which is internationally recognised as a reputable source used for national 226 

reporting, scientific research and public awareness. The Google Trends data should be 227 

reliable as indicators of Google usage since they are collected by Google based on the input 228 

of users of their service. 229 

 230 

Results 231 

Overall, significant correlations were identified between many of the variables (Figure 1, 232 

Table S1). Notably, wastewater SARS-CoV-2 RNA prevalence significantly positively 233 

correlated with the number of reported cases (Spearman rho = 0.428, P = .001), but did not 234 

correlate with the number of reported deaths (Spearman rho = 0.044, P = .746). Of the 235 

search terms included, wastewater prevalence positively correlated with “COVID symptoms” 236 

(Spearman rho = 0.369, P = .005), “COVID test” (Spearman rho = 0.356, P = .007), and 237 

significantly negatively correlated with “COVID vaccine” (Spearman rho = -0.504, P < .001). 238 

The number of reported cases, however, positively correlated with both “COVID symptoms” 239 

(Spearman rho = 0.805, P < .001) and “COVID test” (Spearman rho = 0.531, P < .001), but 240 
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negatively correlated with “COVID vaccine” (Spearman rho = -0.495, P = .001). All search 241 

terms except “COVID rules” significantly negatively correlated with national vaccinations 242 

(Table S1). 243 

 244 

 245 

Figure 1. Correlogram of time (study week, i.e., progressive number of weeks into the study 246 
period), Google Trends search volumes (variables starting with ‘COVID’), nationally reported 247 
cases, deaths and vaccinations, and qPCR-based wastewater SARS-CoV-2 RNA 248 
prevalence. Circle size and colour (purple, through teal to yellow - denoting negative through 249 
neutral to positive) indicate the extent and directionality of the correlation. Crossed out 250 
circles are those for which correlations were not significant. 251 
 252 
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Search volumes were significantly related to several of the independent variables and their 253 

interactions (Table 2; Figure 2), comprising wastewater SARS-CoV-2 prevalence (MLM: 254 

F1,54 = 34.89, P = .002), time (MLM: F1,53 = 120.89, P = .002), national COVID-19 cases 255 

reported (MLM: F1,52 = 117.77, P = .002), national COVID-19-related deaths reported (MLM: 256 

F1,51 = 65.84, P = .002), national COVID-19 vaccines administered (MLM: F1,50 = 54.31, P = 257 

.002), and the interactions between time and national COVID-19 cases (MLM: F1,48 = 46.32, 258 

P = .002), time and national COVID-19 deaths (MLM: F1,48 = 26.09, P = .004), and time and 259 

national vaccinations (MLM: F1,46 = 15.10, P = .022). The interaction between time and 260 

wastewater SARS-CoV-2 RNA prevalence (MLM: F1,49 = 0.77, P = .967) was not significantly 261 

related to relative search volumes. 262 

 263 

Table 2: Univariate results from the multivariate linear model results for search volume data 264 
analysed against time (progressive study weeks), wastewater SARS-CoV-2 RNA 265 
prevalence, nationally reported COVID-19 cases, deaths and vaccines, and two-way 266 
interactions between time and each other variable.  267 

Independent 
variable 

“COVID 
symptoms” “COVID test” 

“COVID 
vaccine” “COVID rules” 

“COVID 
lockdown” 

Wastewater 
SARS-CoV-2 

prevalence 

F1,54 = 2.211,  
P = .338 

F1,54 = 0.418,  
P = .687 

F1,54 = 28.838,  
P = .002 

F1,54 = 0.583,  
P = .687 

F1,54 = 2.834,  
P = .306 

Time F1,53 = 0.189,  
P = .885 

F1,53 = 34.716,  
P = .002 

F1,53 = 0.120,  
P = .885 

F1,53 = 4.414,  
P = .116 

F1,53 = 81.453,  
P = .002 

National 
COVID-19 

cases reported 

F1,52 = 77.157,  
P = .002 

F1,52 = 28.501,  
P = .002 

F1,52 = 4.122,  
P = .106 

F1,52 = 0.677,  
P = .413 

F1,52 = 7.315,  
P = .030 

National 
COVID-19-

related deaths 
F1,51 = 2.373,  
P = .222 

F1,51 = 13.42,  
P = .003 

F1,51 = 18.621,  
P = .003 

F1,51 = 30.232,  
P = .002 

F1,51 = 1.193,  
P = .245 

Vaccines 
administered 

nationally 

F1,50 = 17.880,  
P = .002 

F1,50 = 21.308,  
P = .002 

F1,50 = 8.766,  
P = .025 

F1,50 = 0.586,  
P = .429 

F1,50 = 5.770,  
P = .048 

Time: 
Wastewater 
prevalence 

F1,49 = 0.284,  
P = .982 

F1,49 = 0.067,  
P = .982 

F1,49 = 0.011,  
P = .982 

F1,49 = 0.243,  
P = .982 

F1,49 = 0.165,  
P = .982 

Time: Cases F1,48 = 3.349,  
P = .157 

F1,48 = 15.165,  
P = .002 

F1,48 = 10.632,  
P = .004 

F1,48 = 15.869,  
P = .002 

F1,48 = 1.301,  
P = .266 

Time: Deaths F1,47 = 3.536,  
P = .181 

F1,47 = 4.113,  
P = .154 

F1,47 = 3.04,  
P = .181 

F1,47 = 0.246,  
P = .594 

F1,47 = 15.155,  
P =.004 

Time: Vaccines F1,46 = 0.241,  
P = .813 

F1,46 = 0.171,  
P = .813 

F1,46 = 6.898,  
P = .062 

F1,46 = 1.89,  
P = .367 

F1,46 = 5.903,  
P = .069 

 268 

 269 
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 270 
Figure 2. Relative search volumes extracted from Google Trends compared against 271 
nationally reported data and qPCR-based estimates of prevalence for SARS-CoV-2 in 272 
wastewater. All values are normalised so that the maximum value for each variable is 100. 273 
Lines are loess smoothed curves, thus represent the overall trend and do not always 274 
represent the most extreme (e.g., maximum) values. Dashed rectangles represent periods 275 
of national lockdown in Wales for reference. Wastewater qPCR-based SARS-CoV-2 276 
prevalence is given in light purple, Google Trends data are given in green/blue and national 277 
data are given in orange/red/purple. A figure containing non-smoothed trends is presented 278 
in Figure S1. 279 
 280 

National case data significantly related to Google Trends data for “COVID symptoms” (LM: 281 

t = 7.248, P < .001), “COVID test” (LM: t = 6.070, P < .001) and “COVID vaccine” (LM: t = -282 

3.301, P = .002), but not qPCR-based wastewater SARS-CoV-2 prevalence (LM: t = 1.360, 283 
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P = .179), nor Google Trends data for “COVID lockdown” (LM: t = 0.897, P = .374) and 284 

“COVID rules” (LM: t = 0.320, P = .750). Significant correlations were identified between 285 

case data and some the predicted case numbers (Figure 3, Table S2). Notably, wastewater 286 

SARS-CoV-2 RNA prevalence-based predictions significantly positively correlated with the 287 

number of reported cases (Spearman rho = 0.274, P = .008). Of the search terms included, 288 

case data correlated with predictions based on “COVID symptoms” (Spearman rho = 0.683, 289 

P < .001), “COVID test” (Spearman rho = 0.706, P < .001) and “COVID rules” (Spearman 290 

rho = 0.409, P < .001). National case data significantly related to case numbers predicted 291 

by “COVID symptoms” (GLM: t = 5.158, P < 0.001) and “COVID test” (GLM: t = -4.997, P < 292 

0.001) RSVs, but these relationships changed over time (“COVID symptoms”: t = -5.162, P 293 

< 0.001; “COVID test”: t = 5.029, P < 0.001; Figure 4). National case data marginally 294 

insignificantly related to case numbers predicted by qPCR wastewater SARS-CoV-2 295 

prevalence (GLM: t = -1.896, P = 0.016) and “COVID rules” RSVs (GLM: t = 1.853, P = 296 

0.068), but these relationships were marginally insignificantly related to time (qPCR: t = 297 

1.920, P = 0.059 “COVID rules”: t = -1.866, P = 0.066; Figure 4). 298 

 299 
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 300 
Figure 3. Correlogram of time (study week, i.e., progressive number of weeks into the study 301 
period), nationally reported cases, and the number of cases predicted based on linear 302 
models of cases against Google Trends search volumes and qPCR-based wastewater 303 
SARS-CoV-2 prevalence. Circle size and colour (purple, through teal to yellow - denoting 304 
negative through neutral to positive) indicate the extent and directionality of the correlation. 305 
Crossed out circles are those for which correlations were not significant. 306 
 307 
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 308 

Figure 4. COVID-19 case numbers, and predicted case numbers interpolated and 309 
extrapolated based on linear models of case numbers and, separately, each Google Trends 310 
search term and qPCR-based SARS-CoV-2 prevalence in wastewater. The dashed 311 
rectangle denotes the primary study period, within which data are interpolated. 312 
Interpolations are based on data from the primary study period from which models were 313 
generated. Extrapolations (outside of the rectangle) are based on data from the following 314 
nine months. Wastewater qPCR-estimated SARS-CoV-2 prevalence is given in light purple, 315 
Google Trends data are given in green/blue and national reported case data are given in 316 
orange. Non-smoothed data are presented in Figure S7. 317 
 318 

Discussion 319 

This study provides evidence to suggest that public interest in topics related to the pandemic 320 

changed dynamically across the study period, with some relation to the prevalence of the 321 

virus in wastewater, and the number of reported cases. Both internet search volume and 322 

qPCR-based SARS-CoV-2 RNA prevalence data provide some predictive potential for 323 

monitoring of SARS-CoV-2 and could be applied across other contexts.  324 

During the course of this study, comprising two significant waves of the COVID-19 pandemic 325 

in Wales, the correlation between reported COVID-19 cases and wastewater-quantified 326 

SARS-CoV-2 prevalence was significantly positive overall, as has been demonstrated in 327 

previous studies [28,34], but this correlation may have changed over time. Comparing the 328 
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prevalence of wastewater SARS-CoV-2 estimates and national cases across the full study 329 

period shows that wastewater prevalence of SARS-CoV-2 peaked substantially higher in 330 

early Autumn 2020 than the rest of the study period, whereas case data peaked the following 331 

Autumn (Figure S1). Indications of correlation between SARS-CoV-2 prevalence in 332 

wastewater and COVID-19 disease prevalence were recognised at an early stage of the 333 

pandemic in other countries [32]. The Google Trends search volume data show online 334 

searching for some COVID-19-related strings largely reduced over time, although this was 335 

highly dependent on the search string. This could indicate reduced public interest, 336 

fluctuations in which were reported even in the initial months of the pandemic despite the 337 

importance of sustained public action to ensure the success of public health measures [50]. 338 

In this same period, many of the search volumes, with the intuitive exception of ‘COVID 339 

vaccine’, appear to inversely correlate with increased vaccinations. This suggests that the 340 

public may have been seeking vaccine opportunities and otherwise expressed less interest 341 

in COVID-19 following mass vaccinations, although additional data would be required to 342 

confirm this. Importantly, searches for “COVID vaccine” may also represent those that were 343 

concerned with misinformation or conspiracy theories which were commonplace, particularly 344 

around the vaccine [11]. 345 

The search term ‘COVID test’ was maintained at a relatively constant level throughout the 346 

study and, along with ‘COVID symptoms’ and ‘COVID vaccine’, correlated with the 347 

wastewater SARS-CoV-2 prevalence just as national case data did. This indicates the 348 

potential of carefully selected search terms for estimating the prevalence of the virus, further 349 

ratified by the predictions made in this study. The relationship between predictions and case 350 

data varied greatly depending on the data used to guide predictions and, importantly, these 351 

relationships changed over time. The variable potential of infoveillance to predict 352 

epidemiological trends has been recorded in other cases, such as for Google Flu Trends 353 

[13,15] and is an important consideration for the use of infoveillance in a monitoring context. 354 
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The efficacy of infoveillance is contingent on public interest consistently reflecting 355 

epidemiology which is ultimately unlikely for global pandemics given natural spikes and 356 

fluctuations in public interest. It is, however, important to contextualise this with the likely 357 

reasons for members of the public searching with this particular string. Search volume data 358 

could nonetheless provide anecdotal monitoring of disease prevalence, especially since 359 

many nations face difficulties in monitoring the virus using molecular methods or population-360 

level testing. Search volume data, while imperfect, may provide a valuable alternative for 361 

anecdotal epidemiological monitoring in nations or regions lacking access to alternatives 362 

[51], but the search terms must be carefully considered, closely monitored and interpreted 363 

with appropriate scepticism. 364 

The strong positive correlation between national testing, wastewater monitoring data and 365 

Google RSVs has previously been demonstrated in the USA [34]. The relation of search 366 

term data to SARS-CoV-2 prevalence in wastewater changed over time, suggesting that 367 

such approaches require monitoring and constant evaluation, again suggesting that an 368 

approach combining data types may be optimal [34]. Importantly, the predictions made 369 

based on qPCR-based wastewater monitoring were marginally insignificantly related to 370 

recorded cases. Given the relative objectivity of this molecular monitoring, this is likely to 371 

reflect the inconsistent accuracy of national case data reporting as the pandemic 372 

progressed, highlighting the need for objective measures of virus prevalence irrespective of 373 

public participation. While these different data types dynamically interact and often 374 

imperfectly reflect one another, as demonstrated by our univariate predictions, together they 375 

could generate models with greater predictive power for forecasting improved above that of 376 

univariate approaches [34]. This aligns with the ‘One Health’ perspective of integrating 377 

different data types across disciplinary boundaries to monitor healthcare and 378 

epidemiological events more holistically [22,23]. Wastewater monitoring has been integrated 379 

into One Health frameworks for pathogen monitoring [52] and emerging concepts like 380 
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antimicrobial resistance in the environment [53]. Given that infoveillance similarly aligns with 381 

the principles of One Health  [23], this presents an ideal opportunity to integrate different 382 

data types for socio-biological monitoring of SARS-CoV-2 and other pandemic agents. 383 

 384 

Limitations 385 

Regarding infoveillance, this study relied exclusively on Google search volume data; while 386 

this represents the most used search engine and thus the greatest single source of such 387 

data, other search engines are regularly used that might provide different insights. Online 388 

search data, while an asset for assessing public responses, is also collected without the 389 

context of its users’ motives, thus assumptions cannot reliably be made about the specific 390 

interests related to each search string. Even without this context, however, the search 391 

volumes presented in this study indicate interest, positive or negative, in those topics. 392 

Previous studies have demonstrated that the efficacy of these data in predicting 393 

epidemiological trends can be, at best, variable and, at worst, ineffective [13–15]; this can 394 

be mitigated to some degree via robust statistical methods to increase the reliability and 395 

accuracy of infoveillance for epidemiological ‘nowcasting’ [15] but integration of these data 396 

into more holistic frameworks across disciplinary boundaries could further ameliorate these 397 

inaccuracies and provide increasingly accurate predictions [22,23].  398 

Whilst the qPCR data in this study represent a nationwide effort to monitor SARS-CoV-2, 399 

they do not comprehensively cover the nation of Wales which is otherwise fully represented 400 

by the Google Trends and national reporting data. Importantly, the qPCR data do account 401 

for all of South Wales which, in turn, accounts for approximately 71 % of the national 402 

population [54], meaning that these data should accurately reflect the overall national SARS-403 

CoV-2 prevalence. Future studies could investigate how different spatiotemporal resolutions 404 

of data affect the accuracy and outcomes of analyses such as these, especially given that 405 

this will impact feasibility of long-term monitoring using most methods. 406 
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The progression of COVID-19 as a global pandemic continues to be extremely complicated 407 

and unpredictable, and the findings of this study focus on just one period in this evolving 408 

situation, prior to the emergence of the SARS-CoV-2 Omicron variant and its sub-lineages. 409 

More importantly, the early months of the pandemic are not represented due to the 410 

unavailability of qPCR data for that period. While this study relates primarily to those later 411 

months of the first year of the pandemic through to the second year, the use of Google 412 

Trends data may have been more powerful in the early months of the pandemic when public 413 

familiarity was lower and more people were seeking information.  414 

 415 

Conclusions 416 

Both molecular monitoring of wastewater and infoveillance approaches demonstrate 417 

potential for monitoring and prediction of epidemiological trends. Personal testing and 418 

surveys can introduce latency to monitoring, lack randomisation and can receive reduced 419 

participation for fear of positive test outcomes [10], thus reduced dependency on these data 420 

through widespread adoption of wastewater monitoring will likely improve the accuracy of 421 

epidemiological data. Wastewater monitoring has previously correlated strongly with 422 

national case data [32], but any decrease in this correlation must importantly be viewed with 423 

respect to public interest and how this might impact reported case data. Disease surveillance 424 

via wastewater monitoring provides many potential benefits, not least its objectivity. As 425 

public interest in the pandemic wanes, widespread molecular analysis of wastewater will 426 

become increasingly important as personal testing data become increasingly inaccurate at 427 

the population level. Public access to wastewater monitoring data has been facilitated 428 

through online reporting, including the data used in this study [38], but accessible 429 

presentation of these data in interactive dashboards, as has been the case for other national 430 

data, may increase public understanding, appreciation and use of this important data 431 

source. 432 
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