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There are concerns that the extreme requirements of heavy-duty vehicles and aviation will see them left
behind in the electrification of the transport sector, becoming the most significant emitters of greenhouse
gases. Engineers extensively use the finite element method to analyse and improve the performance of electric
machines, but new highly scalable methods with a linear (or near) time complexity are required to make
extreme-scale models viable. This paper introduces a three-dimensional permanent magnet synchronous motor
model using FEniCSx, a finite element platform tailored for efficient computing and data handling at scale.
The model demonstrates comparable magnetic flux density distributions to a verification model built in Ansys
Maxwell with a maximum deviation of 7% in the motor’s static regions. Solving the largest mesh, comprising
over eight million cells, displayed a speedup of 198 at 512 processes. A preconditioned Krylov subspace method
was used to solve the system, requiring 92% less memory than a direct solution. It is expected that advances
built on this approach will allow system-level multiphysics simulations to become feasible within electric
machine development. This capability could provide the near real-world accuracy needed to bring electric
propulsion systems to large vehicles.

1. Introduction criteria, including mass, torque, losses, noise, reliability, and cost.

Most of these specifications can be calculated analytically; however, to

The past decades have seen electrification emerge as a leading so-
lution for reducing the environmental impact of transportation. Global
electric car stock exceeded 10 million in 2020, fuelled by technological
innovation, fiscal incentives, and ambitious policies such as the Paris
Agreement, achieving a year-on-year growth rate of 43% [1]. This rapid
adoption has aided in curbing the increase of global transport emis-
sions to less than 0.5% in 2019, compared with 1.9% annually since
2000 [2]. However, heavy-duty vehicles and aviation are expected
to become the most significant contributors to transport emissions
without breakthroughs in technology [3]. The underlying challenge
with these vehicles is that they require more efficient, power-dense,
and lightweight electric motors than are currently available.

Permanent magnet synchronous motors (PMSMs) are extensively
used within heavy-duty electric vehicles and electric demonstrator
aircraft due to their inherent benefits over other topologies [4-8].
Namely, PMSMs offer high efficiency and high torque density within
a small packaging volume, although they are not economically viable
for many applications due to the frequent use of rare-earth elements
within the magnets. Furthermore, designing high-performance elec-
tric motors involves finding the optimal compromise between many
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accurately predict the electromagnetic performance requires numerical
simulations such as the finite element method.

Ideally, a great deal of detail in the geometry should be retained
to ensure the solution matches the real-world behaviour of a PMSM
system. The most fundamental attribute in building realistic models
is likely the dimension of the simulation. Three-dimensional models
become prohibitively expensive at scale, in terms of computation time,
due to the at best O(n?) time complexity of sparse direct linear solvers,
where n is the number of degrees of freedom (DOFs) [9]. Additionally,
sparse direct solvers are known for being memory intensive, requiring
O(n*/3) memory.

To illustrate this, a previous study [10] considers directly solving a
linear finite element problem using linear Lagrange elements. Achiev-
ing a 10 times reduction in the L?-norm error requires the cell size to be
reduced by a factor of \/ﬁ; in two dimensions, this change increases
the computation time by a factor of 31.6, in contrast to 10 000 for
its three-dimensional counterpart [11]. Hence, two-dimensional and
sector models are commonly employed to bypass this obstacle. Such
simplifications come at the expense of accuracy. As system-level PMSM
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geometries are unlikely to have any symmetry due to the terminal block
and housing body, only a full three-dimensional model can capture the
resulting unsymmetrical behaviour. Therefore, methods with a linear
(or near) time complexity and access to more computing power are
essential to making large three-dimensional simulations feasible. Al-
though less robust than direct solvers, preconditioned Krylov subspace
methods are a promising candidate for delivering O(n) complexity [10]
and will be explored further in this work.

For more than 50 years, increased computing performance has been
facilitated by the miniaturisation of semiconductor transistors [12]. As
miniaturisation approaches its limits, massively parallel systems have
satisfied the persistent demand for increased processing power. Instead
of running a problem in serial, it is broken down into smaller tasks that
are computed simultaneously. Unfortunately, many commercial finite
element packages rely on robust direct solvers, which are challenging
to parallelise. This paper presents the transient analysis of a PMSM
using FEniCSx, an open-source platform for solving partial differential
equations (PDEs) in parallel. FEniCSx is an incremental rewrite of the
original FEniCS platform [13,14] that offers greater customisability,
speed, and scalability [15]. FEniCSx comprises four internal compo-
nents: DOLFINx, a Python/C++ finite element library; UFL (Unified
Form Language) [16,17], a language in which weak formulations are
written; FFCx (FEniCSx Form Compiler) [18-20], a library that gener-
ates efficient C code from the UFL form; and Basix [21], a library that
creates finite element basis functions. In addition, the solving of linear
systems is facilitated through PETSc [22-24] by default, a collection
of data structures and linear algebra solvers for the scalable solution
of PDEs. With further configuration, FEniCSx can interface with other
linear algebra libraries such as Eigen and Trilinos if desired.

The advantages of parallelising electric machine analysis have been
known for decades [25]. The greater compute power delivered by
new platforms offers time and cost benefits for the iterative design
process. Further, these resources are more accessible and flexible with
the advent of cloud computing, the benefits of which have already
been explored in the context of electromagnetic simulations [26].
Lower complexity and parallel finite-element solvers for large-scale 3D
electromagnetic problems have been developed [11,27], though they
have not been applied to models similar in complexity to a PMSM. Con-
sequently, a small selection of commercial electromagnetic packages,
which typically rely on direct solvers, remain dominant within industry.
This work seeks to begin bridging this gap by demonstrating the
scalable solution of a PMSM model that can exploit modern computing
paradigms.

In this article, the following aspects of PMSM simulations in FEniCSx
are conveyed. Beginning with a theoretical background, Section 2
presents the derivation of the governing equations and boundary condi-
tions using the A-V formulation. The outlining of a conventional PMSM
and its implementation into FEniCSx is detailed in Section 3. This sec-
tion covers the core activities involved in building the model, including
the mesh generation, weak formulation definition and PETSc solver
settings. An equivalent model within a commercial electromagnetic
package is also specified to verify the results of the FEniCSx model.
In Section 4, the results of the model are presented and discussed. This
involves analysing the solution of the primary variables, verifying the
computed magnetic flux density, and reviewing the model’s suitability
for high-performance simulations. Finally, conclusions are drawn based
on our findings, and suggestions for future work are proposed in
Section 5.

2. Numerical formulation

The motor is modelled using the nodal A-V formulation in the time
domain, which in essence couples the magnetic vector potential A with
the electric scalar potential V. This formulation was chosen due to its
prevalence and wide range of applications found in the literature [28-
32]. A typical PMSM is composed of a stator, a rotor, permanent
magnets, and coil windings which are denoted by Q, Q,, Q,,, and Q,,
respectively. The surrounding air domain is referred to by Q,.
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2.1. Maxwell’s equations

Deriving the formulation begins with Maxwell’s equations, which
are presented in their differential form as follows

oB
VXE——E (la)
vxH=22 ,J (1b)
ot
V-B=0 (10)
V-D=p ad)

where E is the electric field intensity, H is the magnetic field intensity,
B is the magnetic flux density, J is the current density, and D is the
electric displacement field.

Maxwell’s equations can be used in conjunction with the constitu-
tive relations to capture the effects of particular material properties,
including permeability u, conductivity o, and permittivity e. In the
simplest case, these relations are linear and are defined as

B = #H (Za)
J =cE (2b)
D=cE (20)

Within low-frequency machines, the displacement current will have
a negligible effect on the magnetic field close to the current sources [33—
35]. Hence, the problem is simplified by omitting Eq. (1d), relation
(2¢), and asserting D =0 in Eq. (1b) to reduce it to

VxH=1J 3

The A-V formulation begins by introducing the magnetic vector
potential through the following definition

B=VxA ()]

which is then substituted into Faraday’s law (1a) to define the electric
scalar potential

E:—a——VV 5)

The current density is split into two parts: the source current
density J, (flowing through the wires) and the eddy current density
J, (induced by a time-varying magnetic field). In the A-V formulation,
the eddy current contributions are calculated by substituting Eq. (5)
into Ohm’s law (2b), as presented below

J:Je+JS:a<—(;—'?—VV)+JS 6

2.2. Modelling permanent magnets

The permanent magnets within the motor are modelled as
neodymium iron boron (NdFeB), a ferromagnetic material. Ferromag-
nets exhibit hysteresis, a non-linear behaviour that can be described
through methods such as the Jiles—Atherton model [36]. However, a
linear model is a reasonable approximation for rare-earth permanent
magnets as their performance is commonly described using the second
quadrant of their B-H curve [37,38]. The linear approach will be im-
plemented to reduce the model’s complexity. In this case, the magnetic
flux density is specified by the following unidirectional function

B = pyu.H + B, (7)

where y, is the permeability of free space, u, is the relative perme-
ability of the material, and B, is the remanent magnetic flux density
of the ferromagnet. The final quantity is equated to the magnetisation
field to simplify the source expression in the model. The magnetisation
field is linear from south to north in a saturated magnet, while the
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magnetic field intensity and magnetic flux density are both curved. The
magnetisation M is calculated by

M =v,B (8)

where v is the reluctivity of free space (vy = y; 1). Correspondingly,
reluctivity is defined as v = u~!. Substituting this into Eq. (7) with
u = pyu, leads to

B=uH + uyM 9

which will be used to describe the behaviour of the permanent magnets.
2.3. Modelling rotation

The rotation of the motor can be accounted for using the motion
voltage term v X B, where v is the velocity [33,39]. This approach is
sometimes referred to as the multiple frame of reference scheme [40].
Another technique is the moving band principle [41,42], where the
rotor physically shifts during the simulation time rather than the for-
mulation reflecting the rotation. Once discretised into a mesh, the
translation of the rotor stretches cells within the air gap, eventually
requiring remeshing. The multiple frames of reference scheme will be
employed as the additional meshing operations and cell quality checks
required in the moving band principle would significantly increase the
computational cost of the simulation. This method begins by defining
a stationary reference frame O(x,y,z) and rotating reference frame
O'(x',y', z"). Through the assumption that the time 7 and 7' are the same
in both reference frames, the motion voltage term can be summed to
the electric field intensity within the rotating reference frame to give

E'=E+vxB (10)

The magnetic field intensity, magnetic flux density, and current
density are identical between reference frames. The current density
expression in the rotor and permanent magnet domains, as observed
from the stationary frame, can be revised to

J=a(—%—VV+wvr><B) inQ,uQ,, an
where w, is the angular velocity and r is the distance from the motor’s
central axis.

2.4. Governing equations

Every aspect of the motor has now been considered, allowing the
complete formulation to be assembled. Egs. (3), (4), (6), (9), and (11)
are substituted to reveal

J0A
VX(WVXA)=—06——-0VV +ow,rx(VXA
( ) o o X ( ) 12)
+ VX(vyOM)+JS

To ensure a unique solution of the magnetic vector potential, the
Coulomb gauge must be satisfied [43]. The Coulomb gauge is defined
as

V-A=0 (13)

and using a vector identity alongside the gauge in Eq. (12) introduces
the first governing equation:

szA=a(%+VV—wUr><(V><A))—Vx(vyOM)—Js (14)

Similarly, the conservation of charge must be enforced for the eddy
currents in the formulation [44]. This relation is given as

V.-J,=0 (15)

Applying this conservation law to Eq. (12) results in the second
governing equation:

0V2V=V~a(—% +wvr><(V><A)) (16)
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However, not every term is relevant for the entire motor and the
governing equations will now be defined with respect to each of the
motor’s domains. The solution of the magnetic vector potential will be
calculated using

VV2A = a‘z)—‘? + VV = cw,r X (V X A) inQ, (17a)
VV2A = o‘% +VV inQ, (17b)
VW2A=-J, inQ, (17¢)
VW2A = -V X (viigM ) — ow,r X (V x A) nQ, @174

and in the same manner, the electric scalar potential with the following

oV = v-g(—% +m,,r><(V><A)) inQ,  (18a)
A .

oVIV = V. (—JE) inQ, (18b)

V2V =V - (co,rx (VX A)) inQ,, (18c)

By assuming that the outer boundary is located far from the motor,
where the magnetic fields are negligible, the following homogeneous
Dirichlet condition can be imposed

A=0 on 0Q (19)

The set of coupled governing equations and boundary condition
derived in this section comprises the strong formulation of the problem.
From this, a weak formulation is obtained to construct the finite
element model. This process is carried out by multiplying the strong
formulation by a test function, integrating it over the spatial domain,
and performing integration by parts to terms with second-order deriva-
tives. The unknown variables to be solved are represented by a trial
function, and the trial and test functions must be defined in suitable
function spaces, such as the Sobolev space.

2.5. Temporal discretisation

As the derived problem is transient, the governing equations must
be discretised in both space and time. The backward Euler method was
employed, and hence the time derivative in the strong formulation is
discretised as follows
E _ An+] - An

20
ot At (20)

n
where At, is the time-step and ¢, = t, + At,. The time interval of
interest is I = (0,21

2.6. Weak formulation

The weak formulation of the problem reads: given A, at time 7,, and
J, s and M, attimet,,, find A,,, €[Q,1* and V,,, € Q) such that

; = An+l _An
Fp(A,150) 1= VA, -Vvdx+ bl T Ldx
Q Q At

TS n

+/ oVV,1 ~de—/ cw,r X (VxA,, ) vdx
Q Q

.S r.pm

1 ~vdx—/ vugM, 1 -V xXvdx =0

c .me
Yo e [Q,]° (21a)
F, . = An+1 - An
y Va3 i= [ oVV,yy - Vadx - o Vadx
Q Qr,s t'l
+/ ow,r X (VX Auy) Vgdx=0 Yg€Q,  (21b)
Q

where Q,, is a finite element space and Q, ¢ H!(Q).
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Table 1

Parameters and dimensions of the modelled motor.
Parameter Value Unit
Number of slots 12 -
Number of poles 10 -
Number of phases 3 -
Active axial length 80.0 mm
Stator outer radius 75.0 mm
Rotor outer radius 40.0 mm
Rotor inner radius 17.0 mm
Air gap 0.5 mm
PM width 10.0 mm
PM thickness 2.0 mm
PM embrace 0.7 mm
PM bridge 0.5 mm

3. FEniCSx implementation
3.1. Installation

To assess the parallel performance of the model, FEniCSx was in-
stalled on the University of Hertfordshire high-performance computing
(UH HPCQ) cluster. FEniCSx is readily available through Docker, a
platform that packages software within containers. These containers
provide a convenient and portable method of deploying software, with
research showing that they can achieve near bare-metal performance
when properly tuned [45,46]. “Singularity”, a container platform de-
veloped especially for HPC systems, is installed on the UH HPC cluster
in place of Docker. Singularity is able to convert the FEniCSx Docker
image into a compatible file.

Individual processes communicate with one another in parallel
using the message passing interface (MPI) standard. When using con-
tainers, a separate MPI installation to the host machine is required.
Container-host communication through MPI only properly functions
when both MPI libraries are compatible. The FEniCSx Dockerfile was
modified to use Open MPI v4.0.5 instead of MPICH as this resulted in
the best performance with the MPI implementations already available
on the UH HPC system. The core components of FEniCSx were not
altered with DOLFINX, FFCx, Basix v0.1.0, and UFL v2021.1.0 used.

3.2. Motor specification

As with the formulation, the motor parameters are simplified to ease
the development phase while still representing the fundamental physics
of PMSMs. For example, defining the current density excitation within
double-layer distributed windings would require a considerably more
complex expression than single-layer concentrated windings while not
improving the findings of this work. The complete parameters and
dimensions of the motor are detailed in Table 1.

To aid in visualising the machine, Fig. 1 presents a cross-section
view with each domain shown. The three phases of the supply current
are represented by red, green, and blue colouring.

3.3. Mesh generation

FEniCSx natively supports geometry and mesh generation through
the open-source library Gmsh. However, this is only accessible in
FEniCSx through Gmsh’s Python or C++ application programming
interface. Despite being simplified, the shape of the PMSM is still rather
sophisticated and suits the use of a computer-aided design package with
an advanced graphical user interface. Ansys Maxwell, a commercial
electromagnetic package, can fulfil this role via an internal tool called
rotating machine expert (RMxprt). RMxprt allows users to build a
range of machines through templates which can then be automatically
converted into a three-dimensional Ansys Maxwell model. This process
was used to produce the geometry and subsequent meshes of the motor.
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Fig. 1. Cross-section of the modelled motor. Q; denotes the stator, Q, the rotor, Q,,
the permanent magnets, Q. the coil windings, and Q, the surrounding air. The coil
windings are coloured to signify each phase; red for phase A, green for phase B, and
blue for phase C.

The meshes were converted into a FEniCSx compatible format through
a Python script using the h5py package [47]. The geometries generated
by RMxprt are displayed in Fig. 2. The full motor model in Fig. 2(a)
will be solved by FEniCSx. In contrast, the sector model in Fig. 2(b) is
required to solve the verification model on a personal computer (PC)
due to memory limitations.

Four unstructured meshes of the motor were created using first-
order tetrahedral elements to understand the model’s performance at
increasing problem sizes. The maximum edge lengths for Meshl were
determined by Ansys Maxwell after converting the RMxprt model and
vary by domain. These lengths were halved between successive meshes
and the statistics for each are described in Table 2.

Ansys Maxwell numbers the domains and facets of the geometry,
which are stored within the mesh file. This data was retained during
the conversion process and will be helpful when implementing the
formulation in FEniCSx.

3.4. Problem definition

At this stage, the physical problem is ready to be implemented into
the FEniCSx platform. The majority of the model’s code was written
using functionality from the DOLFINx and UFL libraries. Reading the
mesh, assembling the system, and saving the solution were handled in
parallel by DOLFINx and the implementation of the formulation was
managed by UFL. However, before these steps, the material properties
and simulation parameters had to be defined. The values used are
summarised in Tables 3 and 4.

The rotational speed was set to the motor’s synchronous speed, and
the supply frequency was selected as many electric machines operate
at 50 Hz due to standardisation. Further, the time-step must be small
enough to provide adequate resolution of the sinusoidal supply current.
In this case, the supply current has a period of 0.02 s, and with a time-
step of 2 ms, the solution will be computed at eleven equidistant points
per oscillation.

The coil and magnet excitations were created using distinct Python
methods, which are known as expressions within FEniCSx. These ex-
pressions used the motor’s geometry to define the source at every point
before being interpolated by DOLFINx onto a particular mesh. Particu-
lar variables could be updated within the excitations, allowing the three
phases within the coils to be updated based on the current simulation
time. The excitations defined within the model are summarised in
Table 5.
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(a) Full
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(b) Quarter sector

Fig. 2. Model geometries of the motor. (a) The full model contains the entire geometry of the motor. (b) The quarter sector model uses the motor’s two planes of symmetry to

reduce the size of the geometry.

Table 2
Mesh statistics for the full motor model.

Mesh name Number of vertices Number of cells Number of DOFs Maximum Edge Length (mm)
Q. Q Q.Q,.Q,
Meshl 20 964 125 478 83 856 16.00 4.00 14.00
Mesh2 46 941 278 151 187 764 8.00 2.00 7.00
Mesh3 214 684 1 258 542 858 736 4.00 1.00 3.50
Mesh4 1 425 854 8 356 409 5 703 416 1.00 0.50 1.75
Table 3 formulation was inputted into FEniCSx using the UFL library. This
Magnetic and electric material properties. library offers operators and expressions that allow the coded form to
Material Relative Permeability Conductivity (S/m) Domains remain close to mathematical notation. The domain numbers, inherited
Steel 100 2.00x10° Q. Q, from the Ansys Maxwell model, were collected to simplify the form. The
5
NdFeB 1.04457 6.25x107 Q, weak formulation was defined and then separated into the bilinear and
Copper 0.999991 5.80x 10 Q, linear form
Vacuum 1 0 Q, ' .
The boundary condition was enforced through DOLFINX, as demon-
strated in Fig. 5. First, the DOFs on the outer boundaries were collected
Table 4 into an array using the facet numbering from the mesh file. Then, the
Simulation parameters. three components were set to zero, constraining the magnetic vector
Parameter Value Unit potential to vanish at the boundary.
Rotational speed 600 RPM Before the problem was solved, the final step was to translate the
i‘}pply current frequency 20 Hz form into the underlying linear algebra problem. This operation was
st . . . :
jme-siep ms carried out by the external library PETSc but is called using DOLFINx
Final time 10 ms . oY
wrapper functions, as shown in Fig. 6.
The first two lines construct a matrix from the bilinear form with
Table 5 the Dirichlet boundary conditions imposed. The fourth line onwards
Excitations within the motor. constructs a vector from the linear form and applies a lift of the
Excitation type Magnitude Unit Domain Dirichlet boundary conditions. Then, values at the ghost points are
Magnetic coercivity 8.38x10° A/m Q,, updated, and the boundary condition values are inserted into the
Alternating current 35 A Q.

Despite constructing the mesh using linear tetrahedral elements,
FEniCSx allows the element type to be altered as long as the geometries
match. For instance, second-order Nédélec elements could be used for
this model without any modifications to the mesh file. A corresponding
finite element function space was created, within which the trial and
test functions are defined. The model used linear Lagrange elements,
otherwise known as P1 elements, as shown by the trial and test func-
tion definitions in Fig. 3. For brevity, the code snippets highlighting
essential sections of the model are condensed.

The weak formulation was derived from the coupled governing
equations in the previous section. As presented in Fig. 4, the complete

locally owned vectors. To enable parallel computation, the vector is
partitioned and distributed across many processes; ghost points are
the bordering portions of the vector owned by neighbouring processes.
Hence, this operation is required to update the ghost points with the
correct values from the owning process.

3.5. Solver configuration

As previously stated, FEniCSx uses the linear solvers and precon-
ditioners available from PETSc by default. This work concentrates on
Krylov subspace iterative methods to achieve more efficient scaling
compared to direct solvers. A range of solvers and preconditioners were
trialled to understand their effectiveness for the given problem. As the
system is unsymmetric, this included the generalised minimal residual
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CG_V = VectorElement(’CG’, cell, 1)
CG_F = FiniteElement(’CG’, cell, 1)
CG_VF = MixedElement ([CG_V, CG_F1)
V_VF = FunctionSpace(mesh, CG_VF)
A, V = TrialFunctions (V_VF)
v, q = TestFunctions (V_VF)
Fig. 3. Trial and test functions expressed using UFL.
dx_air (dx (1) + dx(2) + dx(4) + dx(23))
dx_rotor = (dx(3) + dx(12))
dx_stator = (dx(5))
dx_coil = (dx(6) + dx(7) + dx(8) + dx(9) + dx(10) + dx(11))
dx_magnet = (dx(13) + dx(14) + dx(15) + dx(16) + dx(17) + \
dx(18) + dx(19) + dx(20) + dx(21) + dx(22))

f_A =\

+ inner (nu_air*grad(A),grad(v))*dx_air \

+ inner(nu_stl*grad(A),grad(v))*dx_rotor \

+ inner (nu_stl*grad(A),grad(v))*dx_stator \

+ inner (nu_cop*grad(A),grad(v))*dx_coil \

+ inner (nu_mag*grad(A),grad(v))*dx_magnet \
\

+ inner (sigma_stl1* ((A-A0)/dt),v)*dx_rotor \

+ inner (sigma_stl*((A-A0)/dt),v)*dx_stator \

+ inner(sigma_stl*grad(V),v)*dx_rotor \
+ inner(sigma_stl*grad(V),v)*dx_stator \

\
- inner(sigma_stl*cross(omega_v*r,curl(A)),v)*dx_rotor \
- inner (sigma_mag*cross (omega_v*r,curl(A)),v)*dx_magnet \
\
- inner(J_s,v)*dx_coil \
\
- inner(nu_mag* muO *M,curl(v))*dx_magnet \
f_vV =\
+ inner (sigma_air*grad(V),grad(q))*dx_air \
+ inner (sigma_stl*grad(V),grad(q))*dx_rotor \
+ inner(sigma_stl*grad(V),grad(q))*dx_stator \
+ inner(sigma_cop*grad(V),grad(q))*dx_coil \
+ inner (sigma_mag*grad(V),grad(q))*dx_magnet \
\
- inner(sigma_stl*((A-A0)/dt),grad(q))*dx_rotor \
- inner(sigma_stl*((A-A0)/dt),grad(q))*dx_stator \
\

+ inner(sigma_stl*cross(omega_v*r,curl(A)),grad(q))*dx_rotor \
+ inner (sigma_mag*cross(omega_v*r,curl(A)),grad(q))*dx_magnet \

f_A + f£_V
system(form)

form
a, L

Fig. 4. Derived A-V formulation expressed using UFL.

method (GMRES), bi-conjugate gradient stabilised method (BiCGSTAB),
and transpose free quasi-minimal residual method (TFQMR) [48]. Sim-
ilarly, the block Jacobi and various multigrid methods, including al-
gebraic multigrid, were assessed to improve the rate of convergence.
The methods were judged by the number of iterations, walltime, and
accuracy compared to a direct solution. The GMRES solver exceeded
the performance of BiCGSTAB in terms of walltime, and the TFQMR
solver did not converge. Further, the block Jacobi preconditioner deliv-
ered greater accuracy to the direct solution than the trialled multigrid
methods.

The complete parameters of the solver are provided in Fig. 7.
The GMRES method computes orthogonal sequences, and all previous

vectors in the sequences must be stored. This approach, therefore, re-
quires memory proportional to the maximum number of iterations. The
method was set to restart every 50 iterations within the solver param-
eters to prevent this, clearing the intermediate sequences. Restarting
reduces the maximum memory needed to solve the problem and re-
duces computational work as the GMRES solver must orthogonalise
against all of the previous vectors. Other restart values were tested but
to no benefit from the initial selection.

The modified Gram-Schmidt algorithm is used to orthogonalise
against the Krylov space. This algorithm offers better stability than
the classical Gram-Schmidt but is more computationally expensive.
The improved robustness of the solver was determined to be worth
the additional cost, especially in the endeavour to reduce the reliance
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u0 = Function(V_VF)
u0.vector.set (0.)
u0 .vector.ghostUpdate (addv=PETSc.InsertMode.INSERT,
mode=PETSc.ScatterMode .FORWARD)
outer_faces = locate_dofs_topological (V_VF,
mesh.topology.dim - 1,
mt_facets.indices[np.logical_or.reduce ((
mt_facets.values == 1,
mt_facets.values ==
mt_facets.
mt_facets.
mt_facets.
mt_facets.

2,
values 3
values == 4

5
6

>

values

)DND)

values

bcs.append( DirichletBC(u0.sub(0), outer_faces) )

Fig. 5. Derived boundary condition expressed using DOLFINx.

A = assemble_matrix(a, bcs)

A.assemble ()

b = assemble_vector (L)

apply_lifting(b, [al, [bcs])

b.ghostUpdate (addv=PETSc.InsertMode.ADD,
mode=PETSc.ScatterMode . REVERSE)

set_bc (b, bcs)

Fig. 6. System assembly using DOLFINx.

solver = PETSc.KSP().create(mesh.mpi_comm())

solver.setOptionsPrefix (’AV_"’)

opts = PETSc.Options(’AV_’)
opts[’ksp_type’] = ’gmres’
opts[’ksp_gmres_restart’] = 50
opts[’ksp_gmres_modifiedgramschmidt’]
opts[’ksp_diagonal_scale’] = None

opts[’ksp_rtol’] = 1e-08
opts[’ksp_max_it’] = 50000
opts[’pc_type’] = ’bjacobi’

solver.setFromOptions ()

None

Fig. 7. Iterative solver configuration expressed using PETSc for Python.

on direct solvers in industry. It has been shown that row scaling can
improve the convergence of nonsymmetric systems with discontinu-
ous coefficients [49]. Diagonal scaling displayed similar benefits and
was implemented as it is readily available through the PETSc solver
parameters. The linear system does not need to be scaled back as
it is reconstructed before the next time-step. The relative tolerance
is set as the desired convergence criterion. The solver will continue
iterating until the relative decrease in the residual norm drops below
the given value. Another convergence criterion is the maximum number
of iterations, which was increased from PETSc’s default of 10 000. This
change will ensure that the solution of each time-step completes due to
satisfying the relative convergence tolerance rather than the maximum
number of iterations.

Incomplete LU factorisation can significantly improve the conver-
gence of GMRES [50]. However, its application is not scalable due to
its inherently sequential process with strong data dependencies. This
limitation can be overcome by partitioning the system using a block
method such as block Jacobi [51], which is one of the simplest parallel
preconditioners. The technique involves breaking down the linear sys-
tem into independent sub-systems corresponding to the diagonal blocks
in the reordered matrix. Each sub-system can be computed locally and,

as there is no overlap, the application of the preconditioner requires
no communication between blocks. Therefore, partitioning the problem
into blocks equal to the number of processes achieves parallelisation
without communication penalties. A well-known shortcoming is the
number of iterations to converge typically increases with the number
of blocks. Although this behaviour is far from ideal, the strategy leads
to favourable performance if the benefits of parallelism and minimised
communication exceed the increased number of iterations.

3.6. Verification model

An equivalent model is solved using a commercial electromagnetic
solver to understand if the FEniCSx results are accurate for the given
problem. Naturally, Ansys Maxwell was considered as the geometry was
already available. The electromagnetic solvers within Maxwell were
initially developed in the 1980s [52] and are now packaged within
the Ansys Electronics Suite. Ansys Maxwell meets the criteria as a
robust package extensively used to develop production-ready designs.
Ansys Electronics version 2019 R3 was used to create and solve the
verification model. The sector model generated in Section 3.3 was



J. McDonagh et al.

Magnetic Vector Potential Magnitude (Vs/m)
0 0.001 0.002 0.003 0.004 0.005
I I I
—— | e
-0.004 -0.002 0 0.002 0.004
Electric Scalar Potential (V)

(a) Magnetic Vector Potential

(b) Electric Scalar Potential

Fig. 8. Contour plots of the solution at 1 =0 s.

modified to use the same maximum edge lengths, excitations, and
material properties as in FEniCSx.

The solutions of the primary variables could not be compared as
Ansys Maxwell implements the T-Q formulation [53]. This formula-
tion is derived in a similar way to the A-V formulation but instead
implements the electric vector potential T and the magnetic scalar
potential Q. Given an adequately sized mesh, the crucial physical
quantities calculated in the post-processing step are almost identical
between formulations [54]. The magnetic flux density solution, wholly
dependent on the magnetic vector potential, can be calculated via
both formulations and was used to verify the FEniCSx model. Also,
as the parallel performance of Ansys Maxwell was not measured, the
model was solved using a direct solver. Although Ansys Maxwell has
implemented iterative solvers, they are disabled for transient simu-
lations [55]. Instead, to take advantage of HPC systems, the time
decomposition method (TDM) is enabled for transient models. The
TDM parallelises the problem by solving each time-step simultaneously,
rather than sequentially [56]. This method has inherent limitations as
the solution at any time-step cannot depend on a previous time-step.
Therefore, the TDM will not be used in the analysis as it does not
support hysteresis modelling or mechanical transient behaviours [57].

4. Results and discussion

The results from the model were post-processed using the open-
source data visualisation tool ParaView [58]. The results presented in
this section were computed using the largest mesh from Table 2, unless
stated otherwise.

4.1. Primary solutions

The magnetic vector potential and electrical scalar potential solu-
tions are displayed at the motor’s mid-plane in Fig. 8. The outer domain
is disregarded in the plots as both quantities are zero in the surrounding
air.

The maximum values within the magnetic vector potential plot in
Fig. 8(a) highlight the outer edges of the permanent magnets. The
contribution from the coils is shown within eight slots of the motor,
corresponding to the second and third phases. This distribution is
expected as the first phase has no phase shift, and the current should
equal zero at the first time-step. The value is negligible within the
majority of the stator and inner region of the rotor. Fig. 8(b) shows
that the electric scalar potential is zero at the motor’s mid-plane.
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Table 6

Walltime comparison for solving the full Meshl model in serial.
Model DOFs Solver Processor Walltime (s)
FEniCSx 83 856 Iterative AMD EPYC 7452 19

Ansys Maxwell 45 871 Direct Intel i5-3570K 59

4.2. Model verification

The first step before verifying the model is computing the magnetic
flux density, a simple calculation through Eq. (4). This was performed
through ParaView’s Python calculator function for FEniCSx while Ansys
Maxwell outputs this quantity by default. Fig. 9 presents this solution
for both models at 0 and 0.1 s. The magnetic flux density is an essential
quantity for engineers as it can be used to calculate the torque through
approaches such as the Maxwell stress tensor method [41,59-61].
Ansys Maxwell uses the moving band principle to account for rotation
as opposed to the motion voltage term [62]. As this method involves
physically translating the mesh, the time-steps presented were chosen
to ensure the rotors were in the same position across models. To achieve
this, the model’s final time from Table 4 was increased to 100 ms,
with the remaining simulation parameters unchanged. The verification
model was post-processed using tools built-in to Ansys Maxwell.

The FEniCSx results show a similar pattern overall to the verification
model at the first time-step. The maximum magnetic flux density values
for both are at the outer corners of the permanent magnets, although
the magnitude is not as extreme in the FEniCSx model. The coarser
result from Ansys Maxwell varies more and reaches a greater depth
around the rotor. These trends remain relevant after a full rotation,
with the most noticeable change being the more extensive distribution
between the stator slots.

Due to the use of a sector model, the meshes are not identical
between models, which can cause slight variations in the solution.
However, as the same maximum edge lengths and meshing algorithm
were used for both models, it is doubtful that differences in the mesh
would significantly influence the results.

The magnetic flux density values along the x-axis at 0.1 s have been
plotted in Fig. 10 to verify the model further. The magnitude in the
static parts of the motor matches well, while more considerable dif-
ferences are seen within the rotor, mirroring the trends in the contour
plots. The maximum value experienced at the outer edge of the rotor
is 7% higher in Ansys Maxwell. This trend reverses at the inner side
of the permanent magnets where Ansys Maxwell predicts a value 34%
lower than the FEniCSx model. Inspection of the results near material
boundaries shows no sign of the Gibbs phenomenon. These differences
would affect the torque of the motor predicted by both models. The
variance could be explained by the different formulations or methods
used to account for rotation as the static region remains within 0.1 T
between both models.

Table 6 demonstrates the speed advantage of iterative solvers by
comparing the solving step walltime in serial for six time-steps. Mesh1
was used to allow both models to solve the full model mesh and
the different number of DOFs is a result of Ansys Maxwell’s tuned
implementation of the T-Q formulation. Due to being solved on a single
process, the processor’s clock rate is the critical metric rather than
the number of cores or threads. The FEniCSx model was solved using
an AMD EPYC 7452, which has a maximum clock rate of 3.35 GHz,
while the model in Ansys Maxwell was solved on an Intel i5-3570K
with a higher maximum of 3.80 GHz. The maximum clock rates are
referenced as the problems were solved in isolation on each processor.
The iterative FEniCSx model achieved a 67.8% walltime reduction
compared to the commercial direct solver despite solving a larger
matrix on a slower processor (in terms of serial performance).
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Fig. 9. Contour plots of the magnetic flux density solution.

4.3. Suitability for high-performance simulations

The problem was solved on dual-socket compute nodes featuring
AMD EPYC 7452 processors with 256 GB of memory, FDR InfiniBand,
and BeeGFS parallel file system. Each compute node has 64 cores
and threads as simultaneous multithreading was disabled. Accordingly,
inter-node communication only occurred on problems spanning more
than 64 processes. The final time was reverted to the value from
Table 4, and thus six time-steps were computed per run.

4.3.1. Scaling

The preconditioned GMRES solver remained stable in parallel, con-
verging on identical solutions from serial execution to execution across
the maximum number of processes. The impact of the number of cores
on the overall walltime is shown in Fig. 11, and as the total problem
size is fixed, the strong scaling is demonstrated. MPI processes were
distributed across the entire compute node to allow the strong scaling to
be assessed up to 768 processes. This approach can encounter memory-
bandwidth constraints, which can be alleviated by partially occupying
each compute node. For example, this model solved 14.3% quicker
across 128 processes when occupying only half the compute nodes.
However, this strategy required four compute nodes to be reserved, and
for the same effort, running across all 256 processes achieved a more
significant improvement in walltime of 39.5%. The most significant
operations within the code were timed and highlighted separately,
providing insights into how each scale. A brief description of each
section is provided: “Read Mesh” comprises of reading, partitioning,
and distributing the mesh data across each process; “Define Problem”,
the initialisation of the UFL form, excitation vectors, and boundary
conditions; “Assemble System”, the operations presented in Figure 6.
“Solve”, the solution of the problem using PETSc; “Update Problem”,
incrementing the simulation time, updating the source current excita-
tion vector, and copying the solution vector for the magnetic vector
potential; “Other”, the remaining operations in the model, such as
initialising variables and writing the solution.

The chart illustrates that the model positively scaled up to 512
processes and that all but one operation took advantage of parallel
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processing. Positive scaling occurs when a problem’s walltime reduces
as the number of processes increases and conversely, negative scaling
when the walltime increases with the number of processes. Positive
scaling was not achieved beyond 512 processes as the problem size
per process likely became too small, despite using the largest mesh.
This limit seemed to be around 11 000 DOFs per process. In this
situation, the particular mesh has been excessively partitioned, and
the simulation becomes dominated by the additional communication
between processes. The reading of the mesh file is the only operation
that negatively scaled, accounting for 54% of the total walltime at
768 processes. Every mesh algorithm implemented in FEniCSx, with a
walltime exceeding one second, scaled positively. The overall negative
scaling of the mesh reading portion is due to the external library PT-
Scotch [63] which FEniCSx uses to partition and distribute the mesh
for each process. A report by developers of FEniCSx shows negative
scaling of the partition operation in the previous version, FEniCS [64].
However, one of the three systems trialled in the article scaled pos-
itively to 512 cores, demonstrating that it is achievable. At lower
core counts, defining and updating the problem were the two most
computationally expensive portions of the code. This is because of the
excitation expressions, which involve looping over every point of the
mesh. This operation could be optimised to improve the walltime at
lower core counts, but this did not seem necessary as it efficiently
scaled. It is expected that only iterating over the coil and magnet
domains, and caching the coordinate lists, would reduce the combined
walltime of these operations by more than 90%.

The trends discussed in the previous chart become more apparent
when the speedup is plotted, as in Fig. 12. The following formula was
used to calculate the speedup
T(N,1)

T(N,P)

where T is the walltime, N is the size of the problem, and P is
the number of processes. Therefore, the speedup is the ratio of the
time taken to solve the problem in serial against the time taken in
parallel across P number of processes. Due to operations that cannot
be parallelised and increased communication at scale, the speedup is
typically less than the number of processes [65]. Speedup that equals
the number of processes is known as ideal scaling. Fig. 12(a) shows
the maximum speedup of 198 achieved and that the scaling efficiency
slowly decreases before reversing at 512 processes.

The scalability of the code sections in Fig. 12(b) helps to prioritise
which operations should be focused on to improve the model’s parallel
performance. The two most expensive portions discussed previously
showed the best speedup and did not plateau. The longer walltime
of these portions gives them a higher weighting towards the overall
speedup, meaning that the overall speedup seen in Fig. 12(a) would be
lower if their computational cost were reduced. Conversely, although
declining from different points, the remaining operations could not
scale efficiently beyond 512 processes. At 128 processes, the solving
step was the second-least efficient parallel operation but achieved the
third-best speedup at the largest core count. Although the “Other” sec-
tion had the second-worst speedup at 768 processes, it only contributed
to 3% of the overall walltime.

Although definite improvements could be made, these charts can
understate the practical benefit of this scaling performance. The model
took 13.5 h to solve in serial but only required four minutes across 512
processes. This capability dramatically reduces the turnaround time of
the simulation, enabling designs to be improved at a much quicker
pace. Comparing this performance with Ansys Maxwell reinforces the
advantage of iterative methods, as the full Mesh4 model could not run
on a PC with 24 GB of memory. The 535 GB of memory needed by
FEniCSx to directly solve Mesh4 suggests it would not be possible with
Ansys Maxwell on any engineering PC, usually equipped with 64 GB at
most.

A white paper from Ansys describes the parallel solution of a two-
dimensional transient traction motor using the distributed solve option

Speedup = (22)
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Fig. 12. Speedup of the model using an iterative solver.

(DSO) [66]. Ansys Maxwell achieved a speedup of 16 across 32 cores,
36% lower than the 25 times speedup obtained by the FEniCSx model
at the same core count. The TDM is another approach implemented into
Ansys Maxwell to take advantage of HPC systems. A three-dimensional
PMSM model was simulated by the authors of the TDM, demonstrat-
ing a speedup of 13 at 256 processes [56]. Further, an Ansys white
paper solving a three-dimensional induction motor shows that Ansys
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Maxwell’s implementation of the TDM reached a speedup of 15 at
1024 cores [67]. These are both significantly lower than the maximum
speedup displayed by the FEniCSx model at 512 processes.

The weak scaling performance of the model is demonstrated in
Fig. 13, where the problem size increases proportionally with the
number of processes. Due to hardware limitations, a mesh larger than
Mesh4 could not be generated, and therefore the weak scaling is only
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Table 7
Weak scaling statistics.

Mesh name Number of processes DOFs per process Number of iterations Maximum memory per process (MB)
Mesh1 1 83 856 161 613
Mesh2 2 93 882 223 673
Mesh3 10 85 874 474 664
Mesh4 68 83 874 1255 671

assessed up to 68 processes. Ideally, the weak scaling across many
compute nodes would be evaluated to better understand the model’s
performance at a greater scale. Each mesh was run with around 84 000
DOFs (x11%) per process. Additional statistics concerning the weak
scaling are presented in Table 7.

Most of the code sections, particularly those managed entirely
through FEniCSx, scaled efficiently with the problem size, demon-
strating platform’s excellent scalability. Solving the model across 68
processes led to just a 1.23% increase in the walltime of these sections
compared to executing in serial. Reading the mesh and solving, pri-
marily managed by the PT-Scotch and PETSc libraries, scaled poorly
in comparison. The solving section displays the most dramatic change,
with the walltime increasing by a factor of 12 from serial to 68 pro-
cesses. This behaviour is partly due to the block Jacobi preconditioning,
where the number of blocks, equivalent to the number of processes, is
known for increasing the number of iterations to converge. Another
factor to consider is that the model solved across 68 processes was the
only model spanning more than one compute node. Hence, inter-node
communication was not occurring during the other runs. The maximum
memory required to run each model is an encouraging result, remaining
bound with respect to the model size in parallel.

4.3.2. Memory usage

The memory benefit of iterative methods is demonstrated in Fig. 14.
The maximum memory used by the model was compared using an
iterative and direct solver. The direct solver uses the PETSc implemen-
tation of LU decomposition. The chart shows that the restarted GMRES
iterative solver requires 42% less memory when solving the smallest
mesh. This advantage exponentially grows to a 92% reduction for the
largest mesh, only needing 45 GB of memory. It is clear from these
results why iterative solvers are a leading candidate in making the
solution of extreme-scale models feasible.

4.3.3. Storage usage

The resources required to store meshes and results is the final
aspect of the model evaluated. Storing data affects how economical a
simulation is, with larger files costing more to retain. A compromise
exists between the cost of maintaining the results against solving the
model again when needed.

11

The mesh and result data are stored using the HDF5 file format, as it
allows for reading and writing in parallel [68]. The mesh files comprise
five arrays: the mesh geometry and topology, the facet topology and
numbering, and the domain numbering. The result files also include
the mesh geometry and topology along with the nodal solution at
each time-step. The result files could be output without the mesh data
to avoid duplicating information; however, its inclusion simplifies the
visualisation of the data through tools such as ParaView.

Figs. 15 and 16 illustrate how the model’s raw and compressed
file sizes grow with the mesh. The file format is space-efficient, with
the largest file displayed only reaching 0.5 GB. Although writing com-
pressed data in parallel is not yet possible through FEniCSx, it can
be executed later using h5repack, a tool from the HDF group, to
reduce the amount of cold storage required to store the model’s data.
Lossless compression was carried out using the gzip filter available
through h5repack with the maximum compression level. This process
was inexpensive, with all of the files compressed serially in under a
minute.

The files show a linear (or near) relationship against the number of
cells, and extrapolating the data suggests that a mesh with one billion
cells would only require 45 GB of storage and 14 GB if compressed.
Compression reduced the vector and scalar solution file sizes by around
50% and 64%, respectively. The result files shown contain the values
for six time-steps. If many more time-steps were computed, the model
could be modified to only save the results for certain time-steps instead.

5. Conclusions

This article demonstrates the scalable simulation of a PMSM through
the FEniCSx platform. The derivation of the A-V formulation is pre-
sented along with its implementation in FEniCSx. The electromagnetic
analysis of a three-phase PMSM at its synchronous speed is carried out
to benchmark the model.

The solutions of the weak formulation are smooth and reflect the
expected behaviour of the motor. The magnetic flux density was com-
puted to verify against the result of an equivalent model from a
commercial electromagnetic package. The results match well both qual-
itatively and quantitatively in the static regions, with the maximum
values deviating by 7%. The variation increases in the rotor, with the
verification model predicting a 34% lower magnitude than the FEniCSx
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model. However, the commercial package uses a differing method
to account for the motor’s rotation. The iterative solver in FEniCSx
demonstrated a 68% walltime reduction compared to Ansys Maxwell’s
direct solver when computing identical meshes.

The model’s performance on HPC systems was investigated in three
areas: scaling, memory usage, and storage usage. Solving the largest
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mesh, with over eight million cells, achieved a speedup of 198 across
512 processes. The speedup plateaued beyond this, likely due to com-
munication dominating the simulation as the problem size per process
further reduces. This limit was reached at around 11 000 DOFs per
process and suggests that a larger model could achieve a greater
speedup beyond 512 processes.
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The speedup demonstrated by FEniCSx exceeded that of Ansys
Maxwell using the DSO and TDM approaches. The FEniCSx model
showed a 57% greater speedup than the Ansys Maxwell model solved
using the DSO and a 16.5 times larger speedup than the TDM at
identical core counts.

The weak scaling was assessed up to 68 processes with the problem
size kept around 84 000 DOFs (+11%) per process. The results demon-
strated efficient scaling for the code sections managed by FEniCSx. The
walltime of these sections only increased by 1.23% when solved across
68 processes compared to the serial execution. Libraries external to
FEniCSx primarily manage the mesh reading and solution stages, which
did not scale as efficiently. The block Jacobi preconditioner imple-
mented likely contributed to the increased walltime of the solving step
as it typically requires more iterations to converge when distributed
across more processes. The maximum memory used by the model
remained bound in parallel at approximately 670 MB per process.
Evaluating the weak scaling at higher core counts was not possible due
to hardware limitations that restricted the maximum mesh size.

PETSc’s implementation of the restarted GMRES iterative method
significantly benefited memory usage compared to LU decomposition,
a direct approach. Only 45 GB of memory was needed to solve the
largest mesh, 92% less than was required when using the direct method.
Finally, the model file sizes were analysed to understand the amount of
space needed to store the data. This was another positive finding with
the largest file, the vector result file for Mesh4, only requiring 0.5 GB
of space.

There are many opportunities to develop the model further to
improve its performance. The derivation of the T-Q formulation and use
of Nédélec edge elements could reduce the number of DOFs compared
to the nodal A-V formulation used in this work. This endeavour requires
more than modifying the UFL form as preconditioning H (curl) spaces is
significantly more challenging than H' spaces [69]. This could improve
the effectiveness of multigrid algorithms as a preconditioner, which can
be shown to be asymptotically optimal for many problems [70]. Such
algorithms have been developed for 3D Maxwell problems discretised
using edge elements [27,71]. Resolutions to the negative scaling of
the mesh operations may be found by substituting PT-Scotch with an
alternate parallel graph partitioner. The latest version of FEniCSx has a
functional interface to ParMETIS and KaHIP, and the potential benefits
of these partitioners could be explored. Further, non-linear magnetic
behaviour could be implemented to improve the model’s accuracy to
real-world data, and the benefits of higher-order elements could be
investigated.

Enabling highly scalable simulations of electric machines is neces-
sary to take advantage of ever-expanding HPC clusters. Developments
upon the techniques explored in this paper could bring the capability
to solve extremely large models that are currently not feasible. The
data from these simulations would empower engineers to develop the
high-performance machines needed to electrify the entire transport
sector.
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