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Purpose: Surgeon and hospital-related features, such as volume, can be
associated with treatment choices and outcomes. Accounting for these
covariates with propensity score (PS) analysis can be challenging due to the
clustered nature of the data. We studied six different PS estimation strategies
for clustered data using random effects modelling (REM) compared with logistic
regression.

Methods: Monte Carlo simulations were used to generate variable cluster-level
confounding intensity [odds ratio (OR) = 1.01–2.5] and cluster size
(20–1,000 patients per cluster). The following PS estimation strategies were
compared: i) logistic regression omitting cluster-level confounders; ii) logistic
regression including cluster-level confounders; iii) the same as ii) but including
cross-level interactions; iv), v), and vi), similar to i), ii), and iii), respectively, but using
REM instead of logistic regression. The same strategies were tested in a trial
emulation of partial versus total knee replacement (TKR) surgery, where
observational versus trial-based estimates were compared as a proxy for bias.
Performance metrics included bias and mean square error (MSE).

Results: In most simulated scenarios, logistic regression, including cluster-level
confounders, led to the lowest bias and MSE, for example, with 50 clusters ×
200 individuals and confounding intensity OR = 1.5, a relative bias of 10%, andMSE
of 0.003 for (i) compared to 32% and 0.010 for (iv). The results from the trial
emulation also gave similar trends.

Conclusion: Logistic regression, including patient and surgeon-/hospital-level
confounders, appears to be the preferred strategy for PS estimation.
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Introduction

Observational studies using routinely collected patient data
from health registries are often used for clinical treatment
comparative studies when randomised control trials are

unfeasible or unethical (Bernard et al., 2014). Conversely to
randomisation in trials, treatment allocation in observational
data is often driven by patient and physician features, leading to
confounding by indication. First proposed by Rosenbaum and
Rubin, propensity score (PS) weighting is a popular method to

FIGURE 1
Diagram showing the causal relationship between the covariates in the simulation data. The arrows indicate causes. For example, x1-> Y implies x1 causes Y.

TABLE 1 Generation distribution, effects on treatment allocation, and effects on treatment outcomes for covariates generated in the simulations. OR, odds ratio.

Covariate Description Effects on treatment allocation
(beta value)

Effects on treatment
outcome (beta value)

Generation distribution

z1, z2 Cluster-level confounders z1 = z2 = 0.4055 (equivalent to OR = 1.5) z1 = z2 = [0.01, 0.2231, 0.4055,
0.9163]

z1 ~ N (0, 1)

~ [equivalent to OR = 1.01, 1.25,
1.5, 2.5]

z2 ~ Bernoulli (0.5)

x1–x5 Individual-level
confounders

[x1, x2, x3, x4, x5] = [0.35, 0.4, 0.45, 0.5, 0.55] [x1, x2, x3, x4, x5] = [0.35, 0.4, 0.45,
0.5, 0.55]

[x1, x2, x3]~Bernoulli [(0.4, 0.45,
0.5)] x4, x5 ~ N (0,1)

x6 Individual-level risk factor 0 0.5 Bernoulli (0.5)

x7 Individual-level
instrumental variable

0.5 0 Bernoulli (0.5)

z1*x1 Cross-level interaction
term

[0.01, 0.2231, 0.4055, 0.9163] ~ [equivalent to
OR = 1.01, 1.25, 1.5, 2.5]

0 z1*x1

TABLE 2 Cluster-level information contained and the statistical models used for the six propensity score estimation strategies (M1–M6).

Propensity score
strategy

Cluster-level confounders as
covariates in the PS model

Cross-level confounder interaction term
as a covariate in the PS model

Statistical model to build a
propensity score

M1 Excluded Excluded Logistic regression

M2 Included Excluded Logistic regression

M3 Included Included Logistic regression

M4 Excluded Excluded Random effects modela

M5 Included Excluded Random effects modela

M6 Included Included Random effects modela

aThe random effects models were built with a logit link function.
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minimise the resulting bias (Rosenbaum and Rubin, 1983;
Rosenbaum and Rubin, 1984). Most PS applications in
pharmacoepidemiology include only patient covariates.
Conversely, medical devices and surgical studies typically have
a clustered structure that accommodates hospital and physician/
surgeon features that could impact treatment and outcome and
hence act as confounders (Montgomery and Schneller, 2007;
Papachristofi et al., 2017).

Several simulation studies on PS weighting have shown that
using random effects models (DerSimonian and Kacker, 2007) in the
PS estimation or treatment outcome modelling can reduce the bias
arising from cluster-level confounding in clustered data (Arpino and
Mealli, 2011; Li et al., 2013; Schuler et al., 2016; Yang, 2018; Cafri

and Austin, 2020; Fuentes et al., 2021). However, it is unclear what is
the best strategy for PS estimation when the outcome is estimated
using the random effect model in observational studies of medical
devices or surgical procedures. Therefore, this study aims to evaluate
different PS estimation strategies for weighting, given the random
effects model is used to estimate the treatment outcome.

We used Monte Carlo simulations (Raychaudhuri, 2008) and a
surgical trial emulation study comparing partial and total knee
replacement (TKR) surgery to evaluate the accuracy and
precision of REM compared to logistic regression for PS
estimation. Additionally, we tested the impact of such PS
estimation strategies in different scenarios of cluster-level
confounding intensity (weak to strong) and cluster sizes.

TABLE 3 Covariates adjusted in the case study.

Covariate Type/description

Socio-demographic covariates Patient covariates (individual-level)

Age Continuous covariate

Gender Binary covariate

Rural, urban Categorical covariate—urban/town and fringe/village/isolated

IMD Categorical covariate in 10 percentiles from least deprived to most deprived

BMI Continuous covariate

Pre-operative patient reported outcomes Patient covariates (individual-level)

Pre-operative OKS Continuous covariate

EQ-5Da Continuous

General health Categorical covariate with discrete scale excellent/1/2/3/4/poor

Comorbidities 3 years before surgery Patient covariates (individual-level)

Charlson comorbidity Binary covariate

Gastrointestinal disease Binary covariate

Osteoarthritis and other joint problems Binary covariate

Mental health Binary covariate

Respiratory disease Binary covariate

Cardiovascular disease Binary covariate

Thyroid problems Binary covariate

Foot, hip, and spinal pain

Foot, hip, and spinal pain Binary covariate

Coxarthrosis Binary covariate

Neurological disorders Binary covariate

Other arthroses Binary covariate

Polyarthrosis Binary covariate

Spondylosis Binary covariate

Surgeon’s feature covariates Surgeon covariates (cluster-level)

Surgery volume of UKR performed by each lead surgeon in the previous year from the NJR Continuous covariate

UKR, unicompartmental knee replacement; NJR, national joint registry.
aStandardised measure of health-related quality of life developed by the EuroQol Group.
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Methods

Simulation data generation process

The simulation settings were based on previous simulation
studies (Arpino and Mealli, 2011; Li et al., 2013) but with
parameters adapted to medical device/surgical epidemiology
data. We simulated clustered datasets via Monte Carlo
simulations with an average sample size of 10,000 individuals to
represent the patients, binary treatment allocation (T), and binary
outcome (Y). We simulated six patient-level covariates (x1–x6),
two cluster-level covariates (z1 and z2 to represent potential
hospital- and surgeon-level confounders), and a cross-level
interaction term between the individual and cluster-level
confounders for each patient. Among the individual covariates
simulated, five were confounders (x1–x5), one (x6) was an

instrumental variable associated with the exposure but not with
the outcome, and x7 was a risk factor associated with the outcome
but not with exposure. Both cluster-level covariates (z1 and z2)
were generated as confounders. Treatment (T) and outcome (Y)
binary variables were then generated using a random intercept
model with the simulated covariates. The complete mathematical
formulae for data generation are included in the supplementary
material. Figure 1 gives the clustered causal diagram of the
simulation covariates.

Thirty-five different scenarios with 1,000 replications each
were simulated to test: 1) five different combinations of cluster
(m): average cluster size (n) 10: 1,000, 50: 200, 100:100, 200:50,
and 500:20, where (m) represents the number of clusters and the
number of individuals in the cluster was generated with a Poisson
distribution with mean (n); 2) different effect size for z1 and z2 on
the outcome, ranging from negligible with odds ratio = 1.01

FIGURE 2
Graphs showing the simulation treatment effects’ average MSE and 95% confidence interval for propensity score specification strategies
M1–M6 for different cluster-structure and cluster- (surgeon-) level confounder odds ratios on treatment outcomes. Structure = (number of
clusters, individuals per cluster) and surgeon OR = cluster-level confounder odds ratio on treatment outcomes. Propensity score (PS) strategies:
M1, logistic regression PS excluding cluster-level confounders; M2, logistic regression PS including cluster-level confounders; M3, logistic
regression PS with cluster-level confounders and the cross-level interaction term; M4, random effects PS excluding cluster-level confounders;
M5, random effects PS including cluster-level confounders; M6, random effects PS with cluster-level confounders and the cross-level interaction
term.
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(resembling an instrumental variable) to strong with odds ratio =
2.5 (equivalent to strong multilevel confounding); and 3)
different effect size for the across-level interaction term on
treatment allocation, ranging from negligible with odds ratio =
1.01 to strong with odds ratio = 2.5. Table 1 gives the generation
distribution, effect on treatment allocation, and effect on
treatment outcome for all the covariates generated in the
simulations.

Furthermore, we have included 15 additional scenarios where
the data’s cluster size (n) was generated via a negative binomial
distribution with dispersion parameters of 0.1 and 0.2 rather than
the Poisson distribution because the range of cluster sizes
generated with the Poisson distribution can be limited. Using
the negative binomial distribution, we can generate clusters
with a larger range of cluster sizes, which helps us determine
the robustness of the simulation results and strengthen its
generalisability.

The simulation data were generated using the simstudy (version
0.2.1) R package, and the PS models were fitted using the lme4
(version 1.1.21) R package.

Propensity score estimation strategy

For all the data scenarios described in the simulation data
generation process, we tested six different strategies to estimate
PS, as defined in Table 2 (M1–M6).

Treatment effect estimation

For each of the scenarios, the average treatment effect
(ATE) was estimated using random effects models with a
logit function regressed on treatment outcome weighted with

FIGURE 3
Graphs showing the simulation treatment effects’ average absolute relative bias and 95% confidence interval for propensity score specification
strategies M1–M6 for different cluster-structure and cluster- (surgeon-) level confounder odds ratios on treatment outcomes. Structure = (number of
clusters, individuals per cluster) and surgeon OR = cluster-level confounder odds ratio on treatment outcomes. Propensity score (PS) strategies: M1,
logistic regression PS excluding cluster-level confounders; M2, logistic regression PS including cluster-level confounders; M3, logistic regression PS
with cluster-level confounders and the cross-level interaction term; M4, random effects PS excluding cluster-level confounders; M5, random effects PS
including cluster-level confounders; M6, random effects PS with cluster-level confounders and the cross-level interaction term.
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stabilised inverse probability weighting (SIPW) (Xu et al.,
2010) based on PS calculated using each of the strategies
described in Table 2. Random effects models were used for
treatment effect estimation as several simulation studies on PS
(Arpino and Mealli, 2011; Li et al., 2013) have shown that the
use of random effects models to account for the cluster-level
confounding generally gives the least bias.

Assessment of simulation results

We measured each PS specification strategy’s performance
on each scenario by calculating 1) relative bias (%), defined as
the average percentage difference between the true treatment
effect and the estimated treatment effect; 2) mean square error
(MSE), as a measure of accuracy; and 3) confidence interval
coverage, defined as the proportion of the 95% confidence

intervals of the estimated treatment effects containing the
true treatment effect. All the performance measures were
calculated following the simulation study guidelines discussed
by Morris et al. (2019) using the “rsimsum” (version 0.9.1) R
package.

We decided not to name reference PS strategies M1–M6 in
this paper because there is no clear guidance in the current
literature. We could say that M2 would be the preferred method
in general as it included all the known confounders from the
sample in the PS model, which is the general method for non-
clustered data. However, we could also argue that the cluster-
level confounders might behave differently from patient-level
confounders in PS estimation, and the cluster-level
confounding has already been dealt with in the outcome
estimation stage with the random effects outcome model.
These arguments would also make the use of M1 completely
valid.

FIGURE 4
Graphs showing the simulation treatment effects’ average 95% CI model coverage probability and its 95% confidence interval for propensity score
specification strategies M1–M6 for different cluster-structure and cluster-level confounder odds ratios on treatment outcomes. Structure = (number of
clusters, individuals per cluster) and surgeon OR = cluster-level confounder odds ratio on treatment outcomes. Propensity score (PS) strategies: M1,
logistic regression PS excluding cluster-level confounders; M2, logistic regression PS including cluster-level confounders; M3, logistic regression PS
with cluster-level confounders and the cross-level interaction term; M4, random effects PS excluding cluster-level confounders; M5, random effects PS
including cluster-level confounders; M6, random effects PSwith cluster-level confounders and the cross-level interaction term. The black vertical dotted
line indicates 95%.

Frontiers in Pharmacology frontiersin.org06

Du et al. 10.3389/fphar.2023.988605

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.988605


Case study on medical device and surgical
epidemiology

We used data from the UTMOST study (Prats-Uribe et al.,
2021), which aimed to identify optimal methods for controlling
confounding when emulating the results of the TOPKAT surgical
trial (Beard et al., 2019). The UTMOST cohort study included
patients with a first primary TKR or unicompartmental knee
replacement (UKR) (Wilson et al., 2019) in the UK National
Joint Registry (NJR) from 2009 to 2016 who met the TOPKAT
trial eligibility criteria. UTMOST included 2,94,556 patients
(2,94,556 TKR and 21,026 UKR) and 6,420 lead surgeons
carrying out the interventions. UTMOST extracted patient-level
covariates from the UK NJR, linked to Hospital Episode Statistics

(HES) records and to the NHS PROMS (patient-reported outcome
measures) database; surgeon volume of UKR performed by each lead
surgeon in the previous year was obtained from the NJR. The
UTMOST study outcome was revised 5 years after surgery.
Table 3 details the covariates included in the study.

We applied the six proposed PS specification strategies from
Table 2 to the UTMOST dataset to construct PS for UKR and
compared the findings to those of the TOPKAT surgical trial. The
cross-level interaction term considered in UTMOST was the
interaction of surgeon volume and patient gender. As with the
simulated data described in the Methods section, we modelled 5-
year revision risk for patients receiving UKR using a random effects
model with the lead surgeon as cluster-level and patient-level
covariates using SIPW.

FIGURE 5
Graphs showing the simulation treatment effects’ average absolute relative bias and 95% confidence interval for propensity score
specification strategies M1–M6 for different cluster-structure and cross-level interaction effects in the odds ratio on treatment allocation.
Structure = (number of clusters, individuals per cluster) and surgeon OR = cluster-level confounder odds ratio on treatment outcomes.
Propensity score (PS) strategies: M1, logistic regression PS excluding cluster-level confounders; M2, logistic regression PS including cluster-
level confounders; M3, logistic regression PS with cluster-level confounders and the cross-level interaction term; M4, random effects PS
excluding cluster-level confounders; M5, random effects PS including cluster-level confounders; M6, random effects PS with cluster-level
confounders and the cross-level interaction term.
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Results

Simulation study

Figures 2–4 gave the simulations’ average absolute relative bias
and MSE of the treatment effect estimates for PS estimation strategy
M1–M6. Few clear trends were consistent in all cluster-structure
scenarios, as shown in Figures 2, 4. The relative bias and MSE for
models with and without the cross-level interaction were similar; for
example, relative bias = 10.3% in M2 and relative bias = 10.4% in
M3 for cluster-level confounders’ odds ratio (OR) = 1.01 and cluster-
structure (m = 100, n = 100) scenario, suggesting not incorporating
the cross-level correlation where one did not significantly impact
bias. In scenarios where cluster-level confounders had minimal
effect on outcome (OR = 1.01), the model omitting cluster-level
confounders in the logistic-based PS (M1) gave the lowest bias. In

contrast, M1 led to more bias as cluster-level confounding became
stronger (OR ≥ 1.5) and where cluster size was smaller (Figure 3).

Apart from the result from the cluster structure (m = 500, n =
20), the random effects modelling- (REM)-based PS (M4, M5, and
M6) gave consistently higher bias compared to logistic-based PS
(M1, M2, and M3) in all other cluster–structure scenarios. For
example, the relative bias for M4 is 24.5% compared to 11.4% for
M1 in cluster-structure (m = 50, n = 200) and cluster-level
confounder effect size odds ratio 1.5 scenario. Furthermore,
adding the cluster-level confounders as covariates in the PS
model did not impact the bias much in cluster number (m) and
cluster size (n) = [ (10, 1000), (50, 200)] scenarios, regardless of the
cluster-level confounder effect size on the treatment outcome. As
Figure 2 showed that the relative bias observed in M1 was similar to
that of M2 and M3, while the relative bias observed in M4 was
similar to that of M5 and M6.

FIGURE 6
Graphs showing the simulation treatment effects’ average MSE and 95% confidence interval for propensity score specification strategies
M1–M6 for different cluster-structure and cross-level interaction effects in the odds ratio on treatment allocation. Structure = (number of
clusters, individuals per cluster) and surgeon OR = cluster-level confounder odds ratio on treatment outcomes. Propensity score (PS) strategies:
M1, logistic regression PS excluding cluster-level confounders; M2, logistic regression PS including cluster-level confounders; M3, logistic
regression PS with cluster-level confounders and the cross-level interaction term; M4, random effects PS excluding cluster-level confounders;
M5, random effects PS including cluster-level confounders; M6, random effects PS with cluster-level confounders and the cross-level interaction
term.
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The results for the smallest two cluster-size scenarios (m = 500,
n = 20) and (m = 200, n = 50) behaved differently compared to the
other cluster structures tested in the study. Apart from the cluster
confounder effect on outcome OR = 1.01 scenario, where the
relative bias for M1 were smallest. The relative bias for the PS
strategy that included the cluster-level confounders as covariates in
the PS model (M2–M3) reduced bias compared to the PS strategy
that did not consider the cluster level (M1). The improvement in
bias and MSE was greater as the cluster-level confounder effect on
outcome increased and was also greater as the cluster sizes of the
data decreased. For example, the relative bias for M1 = 11.4%
compared to M2 = 9.77% for the cluster-level confounder effect on
outcome OR = 1.25 in the cluster-structure (m = 200, n = 50)
scenario. For cluster-level confounder effect size on outcome OR =
2.5 in the cluster structure (m = 500, n = 20), the relative bias for
M1 = 31.7% compared to M2 = 9.86%.

Figure 4 reports the coverage for the simulation study. Our
experiments showed that coverage was lower for treatment effect
estimates using REM-based PS (M4–M6), particularly in large
cluster-size scenarios (n ≥ 50). In our small cluster-size scenario
(n = 20), coverage in M4 was more similar to that seen using
strategies M1, M2, and M3. However, M2 and M3 still gave higher
model coverage than M4.

A further set of simulation results is shown in Figures 5–7,
where we varied the cross-level interaction effect on treatment
while keeping the cluster-level confounder effect on treatment
outcome at OR = 1.5. The results in relative bias, MSE, and 95% CI
coverage were similar to those in Figures 2–4. Hence, the results
suggested that regardless of the strength of the cross-level
interaction term effect size on treatment allocation, the cross-
level interaction term in the PS model made little impact on the
treatment effect estimates.

FIGURE 7
Graphs showing the simulation treatment effects’ average 95% CI model coverage probability and its 95% confidence interval for propensity score
specification strategies M1–M6 for different cluster-structure and cross-level interaction effects in the odds ratio on treatment allocation. Structure =
(number of clusters, individuals per cluster), and surgeon OR = cluster-level confounder odds ratio on treatment outcomes. Propensity score (PS)
strategies: M1, logistic regression PS excluding cluster-level confounders; M2, logistic regression PS including cluster-level confounders; M3,
logistic regression PS with cluster-level confounders and the cross-level interaction term; M4, random effects PS excluding cluster-level confounders;
M5, random effects PS including cluster-level confounders; M6, random effects PS with cluster-level confounders and the cross-level interaction term.
The black vertical dotted line indicates 95%.
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Figures 8–10 show the results for scenarios where we varied the
cluster size range in the simulated data with negative binomial
distribution for cluster-level confounder effect on treatment
outcome and allocation at OR = 1.5. The results in relative bias,
MSE, and 95% CI coverage were similar regardless of the
distribution used, suggesting that our simulation results are
likely to be robust against the change in the variability of the
cluster sizes.

Real-world case study

Figure 11 gives the treatment effect estimates using the six PS
strategies (M1–M6) proposed for the case study (UTMOST) and
the TOPKAT surgical trial estimates. We found that, under all
model strategies, UKR had a higher risk for 5-year revision than
TKR. In contrast, TOPKAT found no statistically significant
difference in the revision risk between UKR and TKR. Models
that incorporated multilevel data or not and/or included the
cluster-level confounders in the PS model had an overlapping
confidence interval of outcome estimates. This meant all six
proposed PS strategies (M1–M6) gave similar treatment

estimates and were not statistically significantly different. In
addition, PS models with and without the cross-level interaction
term had similar estimates (M2 vs. M3, M5 vs. M6), suggesting that
adding the cross-level interaction term in the PS models did not
impact the estimate.

Conclusion and Discussion

Discussion

This study aimed to find the best way to account for cluster-
level confounding in the PS model for PS weighting analysis when
the random effects model was used to estimate the treatment
outcome. In the simulation study, we found accounting for the
cluster-level confounders in the PS model when the random
effects model was used as the outcome model does not always
give the smallest bias. For cluster structures with small cluster
numbers and large cluster sizes (m = 10, n = 1,000) and (m = 50,
n = 200), a strategy that ignored the cluster-level confounders
(M1) performed the best. The inclusion of the cluster-level
confounders in the PS model using the random effects model

FIGURE 8
Graphs showing the simulation treatment effects’ average absolute relative bias and 95% confidence interval for propensity score specification
strategies M1–M6 for different cluster structures and cluster sizes generated with different probability distributions for cluster-level confounder effect on
outcome OR = 1.5. The mean of the probability distribution is the same as the average number of individuals per cluster. Poisson, Poisson distribution;
Neg_binomial(0.1), negative binomial distribution with dispersion parameter 0.1; Neg_binomial (0.2), negative binomial distribution with dispersion
parameter 0.2; Structure = (number of clusters, individuals per cluster). Propensity score (PS) strategies: M1, logistic regression PS excluding cluster-level
confounders; M2, logistic regression PS including cluster-level confounders; M3, logistic regression PS with cluster-level confounders and the cross-
level interaction term; M4, random effects PS excluding cluster-level confounders; M5, random effects PS including cluster-level confounders; M6,
random effects PS with cluster-level confounders and the cross-level interaction term.
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and as covariates in the model only offered noticeable
improvement in bias for small cluster-size scenarios [e.g.,
(m = 500, n = 20) and (m = 200, n = 50)]. We could
hypothesise that when the cluster size is small, cluster-level
covariates act more similarly to patient-level covariates (e.g.,
the cluster-level covariates would be the same as patient-level
covariates in data with one patient per cluster). Hence, failure to
include cluster-level confounders would more likely cause bias in
the study with a small cluster size. This is also consistent with
previous studies on PS for clustered data (Arpino and Mealli,
2011; Li et al., 2013; Fuentes et al., 2021), which showed that the
random effects model might give more accurate estimation in PS
compared to the logistics regression model but not improvement
in accuracy for treatment effect estimation. In addition, we found
that adding the cross-level interaction term made little impact on
the treatment effect in the simulation study. Thus, our simulation
study showed that the optimal PS model strategy depended on the
clustered structure and cluster-level confounder effect on the
outcome. However, previous simulation studies (Li et al., 2013;
Fuentes et al., 2021) on this topic were more focused on the
performance of different weighting approaches.

Applying the proposed PS strategies to real-world clinical
studies corroborated with some but not all of our simulation
results. The inclusion of a cross-level interaction term in the
logistic regression or random effects model did not substantially
change the estimated treatment effect, the same as the simulation
study result. However, the treatment effect estimates in the real-
world clinical study all had overlapping confidence intervals,
meaning all six PS strategies (M1–M6) are not significantly
different, which differs from our simulation results. There were
some differences between the cluster structure, which could
contribute to these differences in the result. First, the cluster size
distribution followed a Poisson distribution in the simulation study,
but the distribution for the real-world clinical study did not. Second,
we found that many surgeons carried out only one type of treatment
in the real-world clinical study. However, in our simulation study,
the treatment is allocated individually, meaning both treatments can
appear in all clusters. This discrepancy in results between our real-
world clinical study and simulations also highlighted that the cluster
structure of the data affected the accuracy and precision of results for
PS weighting analysis. More research is needed on how different
cluster structures affect PS weighting analysis.

FIGURE 9
Graphs showing the simulation treatment effects’ averageMSE and 95% confidence interval for propensity score specification strategies M1–M6 for different
cluster structures and cluster sizes generated with different probability distributions for cluster-level confounder effect on outcome OR = 1.5. The mean of the
probability distribution is the same as the average number of individuals per cluster. Poisson, Poisson distribution; Neg_binomial (0.1), negative binomial distribution
with dispersion parameter 0.1; Neg_binomial (0.2), negative binomial distributionwith dispersion parameter 0.2. Structure= (number of clusters, individuals per
cluster). Propensity score (PS) strategies: M1, logistic regression PS excluding cluster-level confounders; M2, logistic regression PS including cluster-level
confounders; M3, logistic regression PS with cluster-level confounders and the cross-level interaction term; M4, random effects PS excluding cluster-level
confounders;M5, randomeffects PS includingcluster-level confounders;M6, randomeffects PSwith cluster-level confounders and thecross-level interaction term.
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FIGURE 11
Treatment effect estimates in relative risk and their 95% confidence interval using data from the UTMOST study and the six proposed propensity
score strategies M1–M6 and also the TOPKAT surgical trial estimates. TOPKAT, surgical trial estimates. Propensity score (PS) strategies: M1, logistic

(Continued )

FIGURE 10
Graphs showing the simulation treatment effects’ average 95% CI model coverage probability and 95% confidence interval for propensity score specification
strategiesM1–M6fordifferent cluster structures andcluster sizesgeneratedwithdifferentprobabilitydistributions for cluster-level confoundereffectonoutcomeOR=
1.5. The mean of the probability distribution is the same as the average number of individuals per cluster. Poisson, Poisson distribution; Neg_binomial (0.1), negative
binomial distribution with dispersion parameter 0.1; Neg_binomial (0.2), negative binomial distribution with dispersion parameter 0.2. Structure = (number of
clusters, individuals per cluster). Propensity score (PS) strategies: M1, logistic regression PS excluding cluster-level confounders; M2, logistic regression PS including
cluster-level confounders;M3, logistic regressionPSwith cluster-level confounders and thecross-level interaction term;M4, randomeffects PS excludingcluster-level
confounders; M5, random effects PS including cluster-level confounders; M6, random effects PS with cluster-level confounders and the cross-level interaction term.
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Strengths and limitations to the study

This study’s main strength is its use of both simulation and real-
world data. The use of simulated data, where the true average
treatment effect was known, allowed us to compare the accuracy
of the six proposed PS estimation strategies. The use of clinical data
allowed us to test whether the trends from the simulation study were
held with real-world data.

This study has several limitations. In the simulation study, we
investigated only five different cluster-number and cluster-size
scenarios. Hence, the results may not be generalisable to other
cluster-number and cluster-size scenarios. In addition, we only
tested the PS strategies on binary outcomes. Therefore, our results
cannot generalise to other types of outcomes. We also assumed that the
treatment assignment was influenced only by a small set of covariates in
the simulation study. It could be argued that, in real-world settings, the
data would usually contain more covariates. However, the focus of this
study was not on the number of covariates. Finally, the TOPKAT trial
treatment estimate was underpowered in the real-world case study. As a
result, the 95% confidence interval for the trial treatment estimate was
large,making it difficult to compare the accuracy of the treatment effects
from the UTMOST data.

Conclusion

In summary, careful consideration of the cluster structure is
necessary to decide on the best model for PS estimation. We should
only consider the use of the random effects model in the PS model
when the dataset contains large numbers of small clusters.
Moreover, we should consider including cluster-level confounders
as covariates in the PS model, especially when the cluster-level
confounders are thought to strongly affect the treatment outcome
and there are a larger number of clusters in the data as this can
reduce bias.
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